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Preface

This document defines the additional instructions and
facilities, beyond those of the PowerPC AS User
Instruction Set Architecture and PowerPC AS Virtual
Environment Architecture, that are provided by the
PowerPC AS Operating Environment Architecture. It
covers instructions and facilities not available to the
application programmer, affecting storage control,
interrupts, and timing facilities.

Other related documents define the PowerPC AS User
Instruction Set Architecture, the PowerPC AS Virtual
Environment Architecture, and PowerPC AS Imple-
mentation Features. Book I, PowerPC AS User
Instruction Set Architecture defines the base instruc-
tion set and related facilities available to the applica-
tion programmer. Book II, PowerPC AS Virtual
Environment Architecture defines the storage model
and related instructions and facilities available to the
application programmer, and the Time Base as seen
by the application programmer. Book IV, PowerPC
AS Implementation Features defines the implementa-
tion-dependent aspects of a particular implementa-
tion.

As used in this document, the term “PowerPC AS
Architecture” refers to the instructions and facilities
described in Books I, II, and III. The description of the
instantiation of the PowerPC AS Architecture in a
given implementation includes also the material in
Book IV for that implementation.

Note: Two kinds of change bar are used. Both mark
changes from Version 1.07.

| This marks a substantive change.

† This marks a non-substantive change.

User Responsibilities

■ Do not make any unauthorized alterations to the
document (user notes are permitted).

■ Destroy the entire document when it is super-
seded, obsolete, or no longer needed.

■ Distribute copies of the document or portions of
the document only to IBM employees with a need
to know.

■ Verify the version prior to use. The version ver-
ification procedure is described later in this
preface.

■ Verify completeness prior to use. The last page
is labeled “Last Page - End of Document”. The
end of the Table of Contents shows the last page
number.

■ Report any deviations from these procedures to
the document owner.

Next Scheduled Review

There is no scheduled review.

Approval Process

The process used by the Processor Architecture
Review Board (PARB) to approve or reject changes
proposed for this architecture is documented at the
following DFS directory:
/.../austin.ibm.com/fs/projects/utds/server_arch/process

Approvals

This version has been approved by the PARB.

Version Verification for those with access to KISS64

■ Link to the KISS64 disk in Yorktown or a shadow of this disk in Austin or Endicott. In Yorktown, linking to
KISS64 can be done by executing the command “GIME KISS64”. In Rochester, the shadow disk is
VMCTOOLS 801.

■ Browse the file “AMAZON VERSION” by typing “b r ” next to the file name.
■ Verify that your version matches this file.

Version Verification for those without access to KISS64

■ Verify that the version date matches the date on the Books on the Web site at:

http://w3.austin.ibm.com/.../austin.ibm.com/fs/projects/utds/server_arch/

Preface iii
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Changes as of 1999/02/24 Version 2.00

change reason page

Add Data Stream Touch variant of dcbt instruc-
tion.

RFC02000 and Correspondence of 3 Nov. '98. 18, 41-42,
56-57, 81,
94

Make RA 62-bit, and eliminate E=R, E=DS, and
T=1.

RFC02001. In addition, in Section 4.5.2 the first
sentence of the paragraph that describes how the
HTABSIZE field is used was corrected by
inserting a parenthetical phrase.

2-4, 11-12,
15, 21,
24-27,
29-30, 32,
34-36, 40,
45-47,
60-68, 70,
72-74, 80,
82, 84,
84+1, 89

Add lightweight sync ; drop vsync ; make other
changes regarding shared storage.

RFC02002. In addition the following changes
were made.

■ Because it is mentioned in item 2 of the
section, isync was added to the list of exam-
ples at the end of the first paragraph of
Section 1.6.1.

■ For clarity, “ in the PowerPC AS Operating
Environment Architecture” was inserted in
the new paragraph for Appendix G.

3, 24, 26,
39, 41, 46,
56-58, 61,
64-66, 69,
93-94,
102+1,
117

Minimize ACCR, make Data Address Compare
and Data Address Breakpoint more similar.

RFC02003. In addition, in the Engineering Note in
Section 10.2, for consistency with the preceding
paragraphs “target storage location” was
changed to “storage operand”.

37-38, 47,
64-66, 84

Relax rules regarding setting C and TS bits; drop
Floating-Point Assist interrupt.

RFC02004. 1, 3, 26, 35,
40-42, 47,
62, 69,
71-74

x PowerPC AS Operating Environment Architecture



IBM Confidential - Feb. 24, 1999

change reason page

Add software-managed SLB and make various
other MMU changes.

RFC02005. In addition the following changes
were made.

■ For consistency with the new Programming
Note for mtmsrd , in other such Notes “please
refer to” was changed to “see”. These are
regarded as minor editorial changes, and are
neither marked with change bars nor
reflected in the page list in this entry.

■ “ interrupt” was changed to “exception” in a
few places, and eliminated in a few others.

■ The RFC's wording for Sections 4.2.1 and
5.2.1 was modified in several respects,
including the following.
— To avoid requiring the list of storage

exceptions to be complete, the list was
stated to give examples.

— Because RFC02011 permits certain
instructions to cause either a Data
Storage interrupt or an Alignment inter-
rupt if they attempt to access Write
Through Required or Caching Inhibited
storage, Alignment interrupt was added
to the list of interrupts that a storage
exception can cause.

■ The second bullet of the Programming Note
in Section 4.4.1.1 was clarified.

■ The RTL for slbie and slbia was revised to
avoid double subscripting.

■ Because the phrase seemed more confusing
than helpful, “ in real address space” was not
added at the end of the paragraph preceding
Section 6.2.1.

■ For consistency with the description of DAR
setting for Data Storage interrupts, the same
parenthesized explanation of “f i rst” was
added to the description of DAR setting for
Data Segment interrupts.

■ Chapter 9 Note 6:
— The RFC's wording for the last sentence

of the second paragraph was modifed for
consistency with changes made to the
preceding sentence by the RFC02000
Correspondence of 3 Nov. '98.

— Item 1 of the Programming Note was
clarified slightly.

■ In Section 10.3, for consistency with wording
in RFC02007 “real mode” was changed to
“real addressing mode” except in the section
title. Also the last Engineering Note was
deleted because it applied only to the real
mode I bit portion of the section, which
RFC02007 moves to the architecture proper.

■ mtmsr definition:
— The definition was placed in Chapter 10,

instead of in Chapter 11, because AIX
software does not intend to phase out
the use of mtmsr . (This also affects
Appendix C.)

— The paragraph referring to Chapter 9
was made a separate Note, for consist-
ency with usage elsewhere, and in the
existing Programming Note “additional”
was changed to “analogous”.

1-4, 7-9,
19-21,
24-27,
30-37,
41-43,
46-47,
49-58,
61-62,
64-66, 71,
73-74,
79-82,
84+1,
86-92, 94,
99, 106,
117

Changes xi



IBM Confidential - Feb. 24, 1999

change reason page

Define a common Logical Partitioning architec-
ture for AS/400 and RS/6000.

RFC02007 and Correspondence of 13 Jan. '99. In
addition the following changes were made.

■ Because for AS/400 “supervisor” is not
equivalent to “privileged”, in the relevant
places “supervisor” was changed to “super-
visor (privileged)”.

■ The name of the “A4R6” bit was changed to
the less cryptic “LPES” (“Logical Partitioning
Environment Selector”).

■ The last sentence of the Programming Note
in Section 4.2.5.1 was reworded slightly, for
consistency with Section 4.2.6.

■ The end of the last sentence of the first para-
graph of Section 4.5.1 was revised to cite
Section 4.2.5.2 instead of Section 4.7.

■ The MSRPR and MSRUS bullets in Section
4.9.1 were reworded slightly for consistency
with Section 4.9.2.

■ In Sections 4.9.1 and 4.9.2, material was
added near the beginning of the second
“rule” to avoid conflict between that “ru le”
and the first “rule”.

■ In Figure 30, “(implementation-dependent)”
was added to the definitions of m, s, and v,
for consistency with the subsequent Pro-
gramming Note and with the rfcsv definition.

■ In Appendix G the definition of “TA” was
reworded slightly for consistency with
changes made in the “Key” definitions by
this RFC and RFC02005.

2-6, 8-13,
16-21, 25,
27-29, 31,
34-35, 38,
42-43,
46-47,
55-57,
62-66,
69-70,
75-76,
79-80, 83,
84, 84+1,
86-87,
91-92, 117

Adopt PowerPC model of DSI/ISI exception
ordering.

RFC02008. 65-66,
72-73, 84

Eliminate Firm Consistency. RFC02009. In addition, the Architecture Note
describing the old use of MSRFC was reworded
slightly for consistency with other such Notes.

10, 26, 62,
80

Describe dcbz as architecture, drop dcba and
dcbi .

RFC02010. 41, 49,
63-64, 89,
99, 115,
117
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change reason page

Make changes regarding Alignment interrupts
and instruction restart.

RFC02011 and Correspondence of 18 Dec. '98. In
addition the following changes were made.

■ Section 7.5.3:
— The current fifth bullet, as modified by

RFC02001, was merged into the current
second bullet, as modified by RFC02002.
(The parenthesized phrase in the current
two bullets is no longer true: RFC02011
permits these cases to cause an Align-
ment interrupt. RFC02002 removes the
phrase for the current second bullet.)

— For clarity, in the Engineering Note at
the end of the section “may not be sup-
ported” was changed to “need not be
supported”.

■ In Sections 7.5.8 and 7.7.1 a few very minor
changes (for clarity or consistency) were
made in the current wording.

■ Section 10.2:
— Because dcbz does not appear in the

bulleted list that precedes the Program-
ming Note, dcbz was omitted from the
second sentence of the paragraph before
the list. (Both the paragraph and the list
are supplied by the Correspondence.)

— The last sentence of the new paragraph
proposed in the Correspondence for the
Programming Note added by RFC02003
was omitted, because it is an obvious
consequence of the paragraph before
the Note. (Also the sentence was incor-
rect; the cases covered by the cited list
are those in which the operand is not
altered. And the citation of “the pre-
ceding paragraph” mistakenly referred
to the first paragraph of the Note.)

25, 27, 38,
65, 67-68,
72-74, 84,
101

Changes xiii
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change reason page

Reduce complexity associated with interruption
vectors.

RFC02013 and Correspondence of 21 Dec. '98. In
addition the following changes were made.

■ In Section 4.2.6, explanation of the use of the
first 256 bytes was added to the first bullet.
Also, minor wording changes were made for
internal consistency and for consistency with
Section 4.2.5.1.

■ The section citation in the description of scv
was changed from Section 7.4 to Section 7.5,
for correctness and to match sc .

■ Section 7.4:
— The material excepting Machine Check

and System Call Vectored interrupts was
reworded somewhat and moved.

— For consistency with the RFC's approach
for this section, mention of Machine
Check was deleted from items 3 and 5,
and item 4 was reworded somewhat.

— The sentence about interrupts and reser-
vations was not moved. (The sentence
is architecture, and Book II expects Book
III to treat it as such.)

■ Section 7.5 Figure 31:
— An ending delimiter was added to the

00Exx range.
— The current ending delimiter (03FFF) was

retained, modified appropriately.
— The notation in Note 1 was changed

slightly.
■ In the new Programming Note in Section

7.5.15, for clarity the order of the two para-
graphs was reversed and the first sentence
of the (now) second paragraph was reworded
somewhat. Also, a new second sentence
was added to that paragraph.

9-12, 29,
47, 61-71,
80, 113
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change reason page

Make the following changes.

■ Make Little-Endian optional.

■ Make support of Write Through Required
optional.

■ Delete tagged pointer support.

■ Delete Programming Notes and Architecture
Notes regarding deviations by earlier
PowerPC AS processors.

■ Delete old Performance Monitor.

■ Clarify tag bit description.

RFC02014 and Correspondence of 10 Feb. '99. In
addition the following changes were made.

■ Because “tags_active” RTL notation is used
only in the lmd section, which this RFC
deletes, its definition in Section 1.3.1 was
deleted.

■ The definitions of MSRLE and MSRILE were
reworded slightly, for consistency with the
RFC's changes in Book I.

■ The RFC's change for Chapter 9 was not
made. RFC02007 changes the definition of
mtmsr [ d] such that using mtmsr [ d] to set
PR to 1 has the side effect of setting IR to 1.
Thus mtmsr [ d] (PR) can still cause an
implicit branch in real address space.

■ In Section A.1, MMCRA and MMCR1 were
also added to the table (not SIAR or SDAR,
because they are less likely to become part
of the base PM architecture). Also the PM
SPRs were inserted in order of SPR number,
and the Programming Note was reworded
slightly.

■ In Section E.2, IMRU and IMRL were deleted
from the figure because they are not men-
tioned in the rest of the section.

■ “Amazon” was changed to “PowerPC AS”
throughout the Book, without change bars.

2, 7-10,
12-13, 20,
23-24,
38-39, 45,
58, 62, 68,
84+1, 86,
89, 94, 107,
117
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Note: Change list entries for versions of the Books earlier than the current version may have been simplified in
order to avoid references to deleted material.

For Version 1.07 and earlier versions, PowerPC AS Requests for Change (RFCs) are explicitly identified as such;
other RFCs that are not explicitly identified are PowerPC changes that are adopted for PowerPC AS.

Changes as of 1998/04/30 Version 1.07

change reason page

Identify MMCR01:4 as a basic feature. Remove
MMCR06 as a basic feature.

Amazon RFC 371 108

Remove Architecture Note that said the base
address would be 0 when E = R was dropped.

Amazon RFC 370 9, old
LPAR sect.

Remove VSID0:24 from the RS register for mtsr
and mtsrin .

Amazon RFC 369 90

Modify tags inactive mode page protection to
allow PP encodes of 4 and 5 to behave the same
as encodes 0 and 1, respectively.

Amazon RFC 367 43

Miscellaneous changes:

■ In Section 2.2.3 drop the explanation for “full
function” since it duplicates the explanation
in the Architecture Note.

■ Add the missing note 2 cited by the entries
in the mfspr table (Figure 12) for perf_mon
and for SPRG3.

■ Adopt PowerPC note numbering convention
to use the same note number for each reg-
ister in Figure 12 as in Figure 11.

■ Remove IPR from extended mnemonics for
mfspr and mtspr

■ Add the word “Lower” to the SPR “Time
Base” for the mttbl extended mnemonic.

Obvious errors or minor changes for consistency
with PowerPC

7, 20, 94

Adopt changes in Chapter 4 corresponding to
PowerPC RFC00248 (large pages) and RFC00249
(BAT).

Amazon RFC 372 24-25,
26-27, old
addr.
xlation
mech.
sect., old
SegTab
sects., 34,
36-40, 42
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change reason page

Start phasing Block Address Translation (BAT)
out of the architecture.

RFC00249 and Correspondence of 17 Dec. '97, as
amended at 16 Dec. '97 PAWG conference call.
The changes are modified by Amazon RFC 372.
In addition the following changes were made.

■ For consistency with wording elsewhere,
“data storage access” was changed to “data
access” in the first paragraph of Section
7.5.3.

■ An item in the new Section 10.3 was
reworded somewhat.

■ The paragraph after the table showing the
allowed BL values was deleted, because it is
redundant with the last paragraph of its
section.

■ A few minor changes were made to wording
proposed in the RFC.

19-20, 46,
old Ch. 5
sects.,
47-47, 43,
64-67, 72,
80-80, 84,
86, 89, old
dir. store
sect., old
BAT sect.,
93-94

Changes xvii
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change reason page

Provide support for 4 KB pages, one larger page
size, and No-execute pages.

RFC00248 as modified by Amazon RFC 372 and
rewritten by Correspondence of 9 Dec. '97, and
Correspondence of 17 Dec. '97 and 10 March '98.
In addition the following changes were made.

■ To avoid confusion with large pages, two
instances of the word “page” were clarified
to refer to 4 KB explicitly. For consistency
and improved accuracy, “power of 2” was
changed to “multiple of 4 KB”.

■ For accuracy, in the last sentence of the first
paragraph of Section 7.7 “that spanned a
page boundary” was changed to “for which
the storage operand crosses a virtual page
boundary”, and the other two instances of
“page” were changed to “virtual page”.

■ In the old “Large Page” section:
— p was used instead of n for log2 of the

page size; p seems more suggestive,
and permits retaining “PTEGn” in the old
“Large Page” section's virtual-to-real
figure.

— The introduction to the description of the
PTE was reworded for consistency with
the description of the STE. The second
sentence was omitted because it is
redundant with the PS bit definition.

— The first sentence after the RTL in the
definition of tlbie was reworded and
moved to the beginning of the sub-
section, for consistency with the intro-
duction to the description of the STE.

— The name of the PS field used by the
new form of tlbie was changed to S,
because a 1-letter name fits better in the
instruction format, and use of PS here
might cause confusion with the other use
of PS (field in PTE). (S was chosen
instead of P to avoid confusion with uses
of p to represent the log2 of the page
size.)

■ “VPS” was changed to “pg_ind” in the RTL
for tlbie (old form and new).

■ A few minor changes were made to wording
proposed in the RFC.

old Ch. 5
sects., 55,
64-66, 72,
old Large
Page sect.

Make several corrections related to changing
PTEs.

RFC00247. The second proposed UP simplifi-
cation, for the new “General Case” sequence of
modifying a PTE, was omitted because it is incor-
rect. Because a TLB entry can be loaded at any
time (e.g., to prefetch the instructions following
the final sync ), absence of the eieio that sepa-
rates the second PTE update from the third would
permit an inconsistent TLB entry to be loaded.

56-58

Permit Load and Reserve and Store Conditional
to Caching Inhibited storage to cause a Data
Storage interrupt.

RFC00245. 64ff
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Changes as of 1998/03/27 Version 1.06

change reason page

Permit SPRG3 to be read in problem state. RFC00246. In addition the following change was
made.

■ The new paragraph proposed by the
RFC00243 Correspondence of 2 Nov. '97 to
be added near the end of the mtspr and
mfspr instruction descriptions was added as
part of RFC00246, because RFC00246's new
note 3 for Figure 12 assumes that the para-
graph exists (and absence of the paragraph
is an oversight in Version 1.09).

16, 19-20

Permit Load and Reserve and Store Conditional
to Caching Inhibited storage to cause a Data
Storage interrupt.

RFC00245. 64ff

Remove the Architecture Note that says bits
11:15 of slbia must be zero.

Amazon RFC 363 52

Show SDR10:11 must be zero. Amazon RFC 362 35

Clarify high order EA bits are ignored in real
addressing mode.

Amazon RFC 361 27

Make it implementation-dependent whether a
65-bit or 80-bit VA is supported.

Amazon RFC 358 24, 45

Adopt PowerPC change to identify real storage
locations having defined uses.

Amazon RFC 357 29, 47

Remove references to tags inactive mode direct-
store from PowerPC AS.

Amazon RFC 356 47, old dir.
store sect.

Add quadword atomicity requirement to dcbi
instruction description

Amazon RFC 351 old dcbi
def.

Remove IPR from the architecture. Amazon RFC 350 old MSRIP
definition,
10, 19, 20,
80

Allow instruction fetch storage protection for tags
active mode to be implementation-dependent.

Amazon RFC 349 43

Correct the Page Table Hash description to refer
to the correct VPN bits.

Amazon RFC 348 36

Added Process Local Storage addressing and
additional storage protection states

Amazon RFC 347 24-25,
30-33, 42,
64, old
DSI/ISI
excep. ord.
section

Add requirement for synchronizing TBs in all
processors.

Amazon RFC 343 76

Removed C2 Security Mode Amazon RFC 342 8, 10, 24,
26

Ease requirement to block covert channel; add
the requirement to synchronize all processors
TBs to almost the same value.

Amazon RFC 341 76

Changes xix
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change reason page

Delete Appendix F. Implementation-Specific SPRs PowerPC RFC00167 and Amazon RFC 340 old
implem'n.-
specific
SPRs
appendix

Allow an implementation-dependent DSI for lq
and stq to Write Through Required or Caching
Inhibited storage or direct-store segments

Amazon RFCs 304 and 339 old dir.
store sect.,
64

Highlight that for implementations like Northstar
that provide a mechanism to define a portion of
real address space as non-Guarded, software
should not map a virtual page with an I bit of 1 to
such a real address.

Amazon RFC 336 27, old Ch.
5 sect.

Require an isync after a Load from a direct-store
segment

Amazon RFC 333 old dir.
store sect.

Define DAR to be undefined after a direct-store
access.

Amazon RFC 332 15, old
direct-store
sections

Add Programming Note in 7.5.3 explaining how
consistent behavior can be obtained for Problem
State E = R accesses.

Amazon RFC 331 64

Define the exception priorities for T = 1
instruction/data accesses and for Guarded
instruction fetches

Amazon RFC 329 old DSI/ISI
excep. ord.
section

Add LPAR support:

■ Add mode for translating E = R addresses

■ Add mode for preventing instructions from
changing MSRIR or MSRDR from 1 to 0.

■ Remove the option for hardware to modify
SRR0 & SRR1 when MSRIR = 1 or MSRDR =
1.

Amazon RFC 328 7, 9, 24, old
Stg. Seg.
sect., 47,
61, old
LPAR
section

Delete references to an implied N bit for Direct-
Store segments.

ISI occurs for instruction fetch of Direct-Store
segment regardless of implied N bit.

old Stg.
Seg. sect.

If an EAO exception occurs in tags active mode
simultaneously with an Alignment interrupt, the
DAR can be loaded based on a 24 or 64-bit add if
the instruction is lq , stq or in Little-Endian mode,
lmd , stmd lmw , stmw or Move Assist
instructions.

Amazon RFC 326 68

Restrict E=DS accesses to elementary
loads/stores with doubleword operands that are
doubleword-aligned.

Amazon RFC 325 old dir.
store
sects., 72

Re-define TAGR as 32-bit register and change
mtspr and mfspr to show only 32 or 64-bit reg-
ister moves.

Amazon RFC 324 19, 20, old
TAGR sect.

Adopt PowerPC Performance Monitor facility as
optional architecture and phase out the previous
Amazon Performance Monitor facility.

Amazon RFC 322 79, old
Perf. Mon.
sect., 105ff

Clarify that the Tag Set bit is set by out-of-order
accesses only if XER:43= 1

Amazon RFC 321 40, 41
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change reason page

Clarify that E=DS instruction fetches with PR=0
result in an Instruction Storage interrupt. Clarify
how cache management instructions with an
E=DS operand are handled.

Amazon RFC 318 25, old dir.
store sect.,
old dcbi
def.

Clarify that it is implementation-dependent which
SRR1 or DSISR bits are set for Problem State
E=DS accesses.

Amazon RFC 317 64, 66

State the exception priority for Data Address
Breakpoint exceptions

Amazon RFC 314 old DSI/ISI
excep. ord.
section, 84

Remove statements that STET bit must be 0 in
tags active mode

Amazon RFC 311 old SegTab
sect.

Specify context synchronizing requirements for
moves to ACCR.

Amazon RFC 310 80

Make TAGR optional. Amazon RFC 309 17, 20, 72,
old lmd
def.

State that sync does not synchronize Direct-Store
Errors.

Amazon RFC 308 4, old
direct-store
sections,
old TA/
direct-store
synch.
Note

Clarify that for Big-Endian, tags active mode, an
EAO type of Data Storage interrupt has priority
over Alignment interrupt

Amazon RFC 307 67

Remove note relating to synchronization require-
ments for changing Endian mode by scv since
this scv does not change MSRLE.

Amazon RFC 306 80

State that if the length is zero, stsdx is allowed
to set the Change bit and stsdx and lsdx can set
the Reference bit.

Amazon RFC 306 40, 41

Clarify that E = R and E=DS addresses with
MSRPR= 0 are not “translated”

Amazon RFC 306 24

Remove references to MXU Amazon RFC 302 101, 102

List the key bit as an item that is passed to the
storage controller for direct-store addresses.

Amazon RFC 301 old dir.
store sect.

State that direct-store errors are another excep-
tion to the sequential execution model.

Amazon RFC 300 2

Add Programming Notes for Cobra 4 deviations

■ sync required in instruction stream after rfi
or rfscv.

■ no modification of interrupt vector locations
after IPL

Amazon RFC 298 12, 13, old
dir. store
sect., 62

Remove slbiex and tlbiex Amazon RFC 294 37, 49, 99

Remove references to MUSKIE Pass 1 and
COBRA 0 since these processor versions are no
longer used.

Amazon RFC 294 12-13

Clarify the definition of “protection boundary”. Amazon RFC 291 42

Changes xxi
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change reason page

Correct the description of coherence when the W
bit differs among processors.

Amazon RFC 290 old “Mis-
matched
WIMG
Bits”
section

Clarify or restrict several aspects of out-of-order
operations

Amazon RFC 289 25, 27

Tighten the rules for setting the Change and Tag
Set bits out-of-order.

Amazon RFC 288 40-41

Modify the description of Change bit setting to
avoid mentioning the TLB.

Amazon RFC 287 40

Clarify that Reference and Change bits are set
for virtual pages

Amazon RFC 286 40

Adopt wording changes similar to those in
PowerPC version 1.07 and Morgan Kaufmann

Amazon RFC 285 24ff

Add minor changes for 32-bit Bridge facilities to
Chapter 4.

Amazon RFC 284 25, 25, 30,
old STE fig.

Adapt PowerPC Bridge Facilities wording to
PowerPC AS

Amazon RFC 236 89ff

Delete sections on instruction formats and fields. RFC00231. 2

Redefine sync to make it a memory barrier, rede-
fine tlbsync to make it order tlbie effects only
with respect to the memory barrier created by a
subsequent sync , and make eieio order tlbie and
tlbsync as a third set.

Amazon RFC 360, RFC00233 and Correspondence
of 7 Nov. '96. In addition the following changes
were made, for consistency with changes made
by the RFC.

■ Minor font and wording changes were made
in the names of the instructions in the first
sentence of Section 5.1. Also, “and” was
changed to “o r ” for consistency with Book I.

■ In the paragraph before the old Chapter 5
R/C bit figure, “treated as loads with respect
to address translation” was changed to
“treated as Loads”, and similarly for stores.

■ In item 2 of Section 7.3.1, “generated by”
was changed to “associated with” and “all
other” was changed to “other”.

3, 24, 26,
27, 40ff, 45,
old Ch. 5
sect., 47,
47ff, 55-56,
57ff, 60-61,
79ff, old
dcbi def.

Require SRR0 and SRR1 to be preserved when
addresses are translated by BAT.

RFC00235 and Correspondence of 5 Nov. '96, as
amended at Oct. PAWG meeting. In addition the
following changes were made, for consistency
with wording elsewhere in the Books.

■ In the first paragraph of Section 5.2.5, “trans-
lation modes” was changed to “translation
mechanisms”.

■ In the last Programming Note in the old
Chapter 5 “Segment Table Search” section,
“covered by BAT translation” was changed
to “translated by BAT”.

7-7, 46, 47,
old Ch. 5
sect., 61

Clarify “last to be assigned a meaning” for
resources used by Amazon (MSR bits 1 and 33,
bit 54 of doubleword 1 of PTE).

Consistency with RFC00225 as amended at Oct.
PAWG meeting.

8

clarify various aspects of Trace. RFC00223 as rewritten by Correspondence of 19
Nov. '96. In addition, for brevity and readability,
in the new appendix “MSRSE BE” was used
instead of “MSRSE || MSRBE”.

9, 71, 115ff
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change reason page

Add optional Performance Monitor facility. RFC00222 and Correspondence of 6 Nov. '96 and
14 Nov. '96, as amended at 21 Nov. PAWG con-
ference call. In addition the following changes
were made.

■ In Figure 12, the text of the 14 Nov. Corre-
spondence's Note 6 was appended to its
Note 4, with no citation of Note 6 at the top
of the “SPR” column, because Note 6 applies
only to the Performance Monitor registers.

■ The second sentence of Section 7.5.14 was
reworded for consistency with the description
of the PMM bit.

■ The word “Facility” was omitted from the
title of the new appendix, for consistency
with similar sections.

■ In the second bullet describing the Perform-
ance Monitor hierarchy (Appendix E), “the
MMCRs” was changed to “an MMCR” for
consistency with the next bullet.

■ In Section E.1, for reasons of page layout
and consistency the Notes were placed at
the end of the section.

■ In the last paragraph of the Programming
Note for MMCR0TBSEL, “system service
routine” was changed to “system service
program” for consistency with the Books'
terminology.

■ Clarify that the Trace facility need not
include setting SIAR and SDAR (see changes
made by RFC00223).

10-10,
19-20, 62,
71, 80,
105ff

Reserve SPRs for implementation-specific uses. RFC00167 as rewritten by Correspondence of 30
May '96, as amended at Oct. PAWG meeting. In
addition the following changes were made.

■ “(SPRs)” was inserted in the first new sen-
tence in Section 3.2, because the abbrevi-
ation is used subsequently.

■ Because RFC00222 causes the Performance
Monitor SPR numbers to be specified in the
architecture proper, those SPR numbers
were removed from the new Engineering
Note in Section 3.4.1 and “implementation
specific uses” was moved from the list of
SPR numbers to the first sentence of that
Note. SPR numbers 944-945 and 952-955
were removed from the new Architecture
Note because they are in the Performance
Monitor range.

■ For reasons of page layout, the new Notes in
Section 3.4.1 were placed after the para-
graph covering extended mnemonics instead
of before it.

15, 18ff, old
implem'n.-
specific
SPRs
appendix

Add PIR, add a requirement for processors to
provide a way to clean the entire data cache, and
make a number of miscellaneous changes.

RFC00238 as amended at Oct. PAWG meeting. In
addition, the first sentence of the new paragraph
at the end of Section 6.1.1 was reworded slightly,
for reasons of consistency with RFC00242 and of
grammar, and the citation of Book IV in the next
sentence was changed to match the Books' usual
style.

17, 20, old
BAT
section, 49,
51, 55, 65,
66, 68, old
dir. store
sect., 94

Changes xxiii



IBM Confidential - Feb. 24, 1999

change reason page

Reorganize WIMG description, and remove
redundant descriptions of Cache Management
instructions.

Amazon RFC 359, RFC00242 and Correspondence
of 14 Nov. '96. In addition the following changes
were made.

■ For consistency with the changes for item 4
of Section 5.2, “devices” was changed to
“I/O devices” in item 1.

■ For consistency with the changes regarding
“data storage” (Correspondence of 14 Nov.
'96) and with the title of Section 5.2.2,
“Storage” was deleted from the title of
Section 5.2.3.

■ For consistency with other changes made by
the RFC and for readability, “Caching Inhib-
ited Guarded storage” was changed to
“storage that is both Caching Inhibited and
Guarded” near the beginning of the third
paragraph of the old Chapter 5 “Guarded
Storage” section.

■ Because the AIM Books should not attempt
to dictate section titles for alternative Books,
the reference to Book II was changed from
generic to specific in the first paragraph of
Section 5.5 and in the second paragraph of
the last Engineering Note of that section.

24, 25-27,
27, old
SegTab
sects., 34,
37, 46, 46,
old Ch. 5
sects., old
dir. store
sect., old
dcbi def.

Revise the rules for fetching instructions when
MSRIR= 0 .

RFC00239. In addition, for reasons of grammar
“is met” was changed to “are met” in the first
sentence under “Instruction Fetch” in the old
Chapter 5 “Out-of-Order Accesses to Guarded
Storage” section.

old Ch. 5
sect.

Permit aliasing of dcbi as dcbf , and start phasing
dcbi out of the architecture.

RFC00234 and Correspondence of 23 Sept. '96,
as amended at Oct. PAWG meeting. In addition
the following changes were made in the
description of dcbi .

■ In the second and third paragraphs, the first
sentence uses wording from RFC00242
rather than that in RFC00234, and the second
sentence was reworded for consistency with
RFC00242 (including that RFC's effects on
dcbf ) and to clarify the temporal ordering.

■ The fifth paragraph combines wording from
RFC00233 with that in RFC00234, with some
modifications for consistency with RFC00233
and RFC00242.

■ The third bullet was reworded for consist-
ency with RFC00233.

■ Adding a clause at the end of the Architec-
ture Note as agreed at the meeting (similar
to wording in the Architecture Note that
RFC00167 adds to Section 3.4.1) required
changing “architecture” to “PowerPC AS
Architecture” in the preceding clause.

old Ch. 5
R/C fig.,
49, 64ff, 89,
old dcbi
def., 99

Clarify what causes FPSCRFEX to be set to 1. RFC00230. 68

Make various clarifications regarding instruction
restart.

RFC00237 and Correspondence of 19 Sept. '96,
as amended at Oct. PAWG meeting.

72

Clarify that reserved MSR bits need not be saved
or restored. Delete obsolete Engineering Note
about reserved bits.

RFC00213 and Correspondence of 23 March '96,
as amended at March PAWG meeting.

2, 7
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change reason page

Start to phase direct-store out of the architec-
ture.

RFC00220. In addition the following changes
were made.

■ The old Chapter 5 and direct-store STE
figures were made single-column.

■ In the description of DSISR bit 5 for Section
7.5.3 the word “instruction” was added in the
Write Through Required clause, for consist-
ency with wording elsewhere in the section.

3-3, 45-46,
47, 47, old
Ch. 5
sects., old
BAT
section,
47-43, 49,
old STE
update
sects.,
63-68, 72,
83ff, 90ff,
old dir.
store sect.,
101, old UP
Appendix

Clarify definition of execution synchronization. RFC00221 as amended at March PAWG meeting. 4, 87

Clarify use of storage now shown as allocated to
interrupt vectors.

RFC00214. In addition, boldface was used for the
bullets on p. 47 for consistency with usage else-
where in the Books.

9, 47, old
Ch. 5 sect.,
62

Make MSRIP= 1 always vector interrupts to base
real address 0xFFF0_0000.

RFC00216. In addition, “0xC00” was changed to
“0x00C00” in the sc description on p. 11 for con-
sistency with the System Call interrupt
description.

9, 11, 63-71

Revise description of PVR. RFC00211 and Correspondence of 11 March '96,
as amended at March PAWG meeting. The
changes proposed for the “Processor Version
Numbers” appendix were not made because
RFC00212 deletes that appendix.

17

Permit alternative virtual address size of 64 bits. RFC00229. 45, old Ch.
5 sects.,
old
“Bridge”
fig., old
mtsrd [ in ]
sect.

Add new Cache Management instruction Data
Cache Block Allocate (dcba ).

RFC00228 and Correspondence of 10 May '96. In
addition, in the first sentence of the second Pro-
gramming Note in Section 7.5.2 the phrase “exe-
cution of dcbz or dcba ” was changed to
“executing a dcbz or dcba instruction”, for con-
sistency with wording elsewhere in the Note.

46, old Ch.
5 R/C fig.,
49, 63, 65,
84, old dir.
store sect.

Revise the description of table update synchroni-
zation requirements.

RFC00226 as amended at March PAWG meeting.
In addition the following changes were made.

■ The wording of the new clause about WIMG
for storage tables was changed slightly (con-
sistency with related sections).

■ The content and layout of several comments
in the operation sequences in Section 6.2
were changed slightly (page layout).

■ In the last paragraph under “Modifying the
Virtual Address” on p. 58, “ is replaced” was
changed to “would be replaced” (grammar).

46, old Ch.
5 sects.,
old R/C
synch.
section,
55-56, 57ff
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change reason page

Describe why various facilities and instructions
are optional.

RFC00218 as amended at March PAWG meeting,
and Correspondence of 10 April '96. The
“Optional” appendices were made chapters, as
agreed at the March PAWG meeting; this necessi-
tated changing “appendix” to “chapter” in
several places. In addition the following changes
were made.

■ The wording for the introduction to the new
chapter (optionality category 2) was made
singular and “instructions” was omitted,
because the chapter contains just one facility
(direct-store).

■ The new chapter was placed after the
“Bridge” chapter, instead of before it as pro-
posed in the RFC, because (a) the new
chapter refers to the “Bridge” facility, and
(b) the “Bridge” facility is likely to be ele-
vated to optionality category 3.

old Ch. 5
sects., 49,
71, 83, 89,
91ff, 89

Amplify Engineering Note about ignoring M bit for
instruction fetch.

RFC00200 as amended at March PAWG meeting. old Ch. 5
sect.

Delete “Processor Version Numbers” appendix. RFC00212 as amended at March PAWG meeting. old PVN
appendix

Incorporate minor changes from the Morgan
Kaufmann book. All such changes that seem
desirable have now been made. Very minor
changes (e.g., fixing grammatical errors) are not
marked with change bars.

Agreed in discussion of RFC00173 at Nov. '94
PAWG meeting.

various

Correct the “Approval Process” description. Correspondence of 27 Oct. '94. iii

Clarify or restrict several aspects of out-of-order
operations.

RFC00187 as amended at Nov. PAWG meeting.
The change proposed for the old Chapter 5 R/C
figure was not made because it is overridden by
RFC00184.

2, 46-46

Make 64-bit MMU functions an extension of 32-bit
MMU functions.

RFC00178 as rewritten by Correspondence of 24
Oct. '94. The change proposed for the old
Chapter 5 R/C figure was not made because it is
superseded by RFC00184. A few minor format-
ting changes were made in 11.1, to make various
schematic descriptions fit in a single column. In
Chapter 1 the “ [ d] ” suffix was added to a few
instances of rfi and mtmsr that were missed by
RFC00178.

2-7, old rfi
def., 87,
old Ch. 5
sects., old
STE update
sect., 61,
73, 79ff, 83,
71, 89ff, 99,

Correct several minor errors. Error Notice of 27 Oct. '94, Book III items 1-5,
7-11, and 13-14. (Items 6 and 12 are done as
part of RFC 173.) Also, “Floating-Point Enabled
Exception interrupt” has been changed to
“Floating-Point Enabled Exception type Program
interrupt” in a few places in Sections 7.3.2 and
7.5.9 that items 7 and 11 missed.

7, 9, old
Ch. 5 sect.,
43, old dcbi
def., 60,
68-70, 73,
97, 101

Clarify meaning of “reserved full/partial
function”.

RFC00188. rfid , added by RFC00178, has been
included in the new Architecture Note.

8-10

Change the definition of MSR46 to use an Archi-
tecture Note, and state that MSR61 is “implemen-
tation-specific”.

RFC00189. 8, 9

Relax rules for hardware's handling of reserved
bits in registers.

RFC00195. 9
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change reason page

Clarify instruction fetching and instruction cache
paradoxes.

RFC00202. 46

Delete item 3 (a cautionary remark about cache
synonyms) from three Programming Notes.

RFC00173. old Ch. 5
sects.

Specify that IBATs contain W and G bits and that
software must not write 1s to them.

RFC00191 as amended at Nov. PAWG meeting. old BAT
section, 47

Change “only have meaning” to “have meaning
only”.

RFC00208. 47

Correct the description of coherence when the W
bit differs among processors.

RFC00190. old “Mis-
matched
WIMG
Bits”
section

Clarify that Reference and Change bits are set
for virtual pages.

RFC00179. 47

Revise description of Change bit setting to avoid
depending on the TLB.

RFC00183. 47, old R/C
synch.
section

Tighten the rules for setting the Change bit out-
of-order.

RFC00184 as amended at Nov. PAWG meeting. 47, old R/C
synch.
section

Change “load or store” to “load, store, or instruc-
tion fetch”.

RFC00173. old R/C
synch.
section

Clarify the definition of “protection boundary”. RFC00193. 43

Change “WIM” to “WIMG” (two places). RFC00173. 57, 58

Clarify Programming Note about Machine Check
corrupting registers.

RFC00207. 63

Describe which multiple DSISR bits may be set
due to simultaneous Data Storage exceptions.

RFC00163 as amended at Nov. PAWG meeting. 65

Remove software synchronization requirements
for TB and DEC.

RFC00182. 75-77

Clarify “monotonically increasing” in Program-
ming Notes for Time Base.

RFC00206. 76

Say that rfi and interrupts change Endian mode
reliably for I-fetch.

RFC00181. mtmsrd , added by RFC00178, has
been included in the revised Note.

80, 80

Simplify DAR setting for a DABR interrupt. RFC00192. 84

Say that assemblers should provide the listed
extended mnemonics, not that they must.

RFC00173. 93

Define “AIM” and use “-AIM” suffix on citations
as needed.

RFC00203. The change proposed for the “New
Instructions” appendix was not made because it
is overridden by RFC00178.

various

Incorporate minor changes from the Morgan
Kaufmann book. Not all such changes have been
made; the rest will be made in future versions of
this Book. Very minor changes (e.g., fixing gram-
matical errors) are not marked with change bars.

Agreed in discussion of RFC00173 at Nov. PAWG
meeting.

various

Changes xxvii
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1.1 Overview

Chapter 1 of Book I, PowerPC AS User Instruction Set
Architecture describes computation modes, compat-
ibility with the POWER Architecture, document con-
ventions, a general systems overview, instruction
formats, and storage addressing. This chapter aug-
ments that description as necessary for the PowerPC
AS Operating Environment Architecture.

1.2 Compatibility with the
POWER Architecture

The PowerPC AS Architecture provides binary com-
patibility for POWER application programs, except as
described in the appendix entitled “Incompatibilities
with the POWER Architecture” in Book I, PowerPC AS
User Instruction Set Architecture. Binary compatibility
is not necessarily provided for privileged POWER
instructions.

1.3 Document Conventions

The notation and terminology used in Book I apply to
this Book also, with the following substitutions.

■ For “system alignment error handler” substitute
“Alignment interrupt”.

■ For “system data storage error handler” substi-
| tute “Data Storage interrupt”, “Data Segment
| interrupt”, or “Data Storage or Data Segment
| interrupt”, as appropriate.

■ For “system error handler” substitute “interrupt”.

|

■ For “system floating-point enabled exception
error handler” substitute “Floating-Point Enabled
Exception type Program interrupt”.

†

■ For “system illegal instruction error handler” sub-
stitute “Illegal Instruction type Program
Interrupt”.

■ For “system instruction storage error handler”
substitute “Instruction Storage interrupt”,

| “Instruction Segment interrupt”, or “Instruction
| Storage or Instruction Segment interrupt”, as
| appropriate.

■ For “system privileged instruction error handler”
substitute “Privileged Instruction type Program
interrupt”.

■ For “system service program” substitute “System
Call interrupt”.

■ For “system trap handler” substitute “Trap type
Program interrupt”.

1.3.1 Definitions and Notation

The definitions and notation given in Book I, PowerPC
AS User Instruction Set Architecture are augmented
by the following.

| ■ A real page is a 4 KB unit of real storage that is
| aligned at a 4 KB boundary.

■ The context of a program is the environment
(e.g., privilege and relocation) in which the
program executes. That context is controlled by

Chapter 1. Introduction 1
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the contents of certain System Registers, such as
the MSR and SDR1, and of the address trans-
lation tables.

■ An exception is an error, unusual condition, or
external signal, that may set a status bit and may
or may not cause an interrupt, depending upon
whether the corresponding interrupt is enabled.

■ An interrupt is the act of changing the machine
state in response to an exception, as described in
Chapter 7, “Interrupts” on page 59.

■ A trap interrupt is an interrupt that results from
execution of a Trap instruction.

■ Additional exceptions to the rule that the
processor obeys the sequential execution model,
beyond those described in the section entitled
“Instruction Fetching” in Book I, are the following.

|

— A System Reset or Machine Check interrupt
may occur. The determination of whether an
instruction is required by the sequential exe-
cution model is not affected by the potential
occurrence of a System Reset or Machine
Check interrupt. (The determination is
affected by the potential occurrence of any
other kind of interrupt.)

Engineering Note

Although External, Decrementer, and
imprecise interrupts must be considered
in determining whether an instruction is
required by the sequential execution
model, the fact that these interrupts are
not required to be recognized at any spe-
cific point in the instruction stream allows
an implementation to halt instruction dis-
patching and delay recognition of the
interrupt until the processor comes into a
state consistent with the sequential exe-
cution model. Such an implementation
need not consider these interrupts in
determining whether an instruction is
required by the sequential execution
model.

Instruction-caused precise interrupts
must also be considered in determining
whether an instruction is required by the
sequential execution model. However,
for these it is always possible to predict
whether they might be caused by any
given instruction and thus to determine
whether subsequent instructions are sure
to be required by the sequential exe-
cution model.

— A context-altering instruction is executed
(see Chapter 9, “Synchronization Require-
ments for Special Registers and for Look-
aside Buffers” on page 79). The context
alteration need not take effect until the
required subsequent synchronizing operation
has occurred.

■ Hardware means any combination of hard-wired
implementation, emulation assist, or interrupt for
software assistance. In the last case, the inter-
rupt may be to an architected location or to an
implementation-dependent location. Any use of
emulation assists or interrupts to implement the
architecture is described in Book IV, PowerPC AS
Implementation Features.

■ /, //, ///, ... denotes a field that is reserved in an
instruction, in a register, or in an architected
storage table.

|

1.3.2 Reserved Fields

Some fields of certain storage tables may be written
to automatically by hardware, e.g., Reference and
Change bits in the Page Table. When the hardware

† writes to such a table, the following rules are obeyed.

| ■ Unless otherwise stated, no defined field other
than the one(s) the hardware is specifically

† updating are modified.

† ■ Contents of reserved fields are either preserved
† by hardware or written as 0s. No other changes
† to reserved fields are made.

The handling of reserved bits in System Registers
described in Book I applies here as well. The reader
should be aware that reading and writing of some of
these registers (e.g., the MSR) can occur as a side
effect of processing an interrupt and of returning from
an interrupt, as well as when requested explicitly by

† the appropriate instruction (e.g., mtmsrd ).

Programming Note

System software should initialize reserved fields
| in architected storage tables (e.g., the Page Table)

to 0s and not keep data in them, as the fields may
be assigned a meaning in some future version of
the architecture.

|
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1.4 General Systems Overview

The processor or processor unit contains the
sequencing and processing controls for instruction
fetch, instruction execution, and interrupt action.
Instructions that the processing unit can execute fall
into three classes:

■ instructions executed in the Branch Processor
■ instructions executed in the Fixed-Point Processor
■ instructions executed in the Floating-Point

Processor

Almost all instructions executed in the Branch
Processor, Fixed-Point Processor, and Floating-Point
Processor are nonprivileged and are described in
Book I, PowerPC AS User Instruction Set Architecture.
Book II, PowerPC AS Virtual Environment Architecture
may describe additional nonprivileged instructions
(e.g., Book II describes some nonprivileged
instructions for cache management). Instructions
related to the privileged state of the processor,
control of processor resources, control of the storage
hierarchy, and all other privileged instructions are
described here or in Book IV, PowerPC AS Implemen-
tation Features.

ÚÄÄÄÄÄÄÄÄÄÄÄÄÄ¿ ÚÄÄÄÄÄÄÄÄÄÄÄÄÄ¿ ÚÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
³ ³ ³ ³ ³ ³
³ BRANCH ÃÄÄÄH³ FIXED- ³ ³ ³
³ ³ ³ POINT ³IÄH³ DATA ³
³ PROCESSOR ÃÄ¿ ³ PROCESSOR ³ ³ CACHE ³
³ ³ ³ ³ ³ ³ ³
ÃÄÄÄÄÄÄÄÄÄÄÄÄÄ́ ³ ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÙ ³ ³
³ ³ ³ ÚÄÄÄÄÄÄÄÄÄÄÄÄÄ¿ ³ ³
³ ³ ³ ³ ³ ³ ³
³ INSTRUCTION ³ ³ ³ FLOATING- ³ ³ ³
³ CACHE ³ ÀÄH³ POINT ³ ³ ³
³ ³ ³ PROCESSOR ³IÄH³ ³
³ ³ ³ ³ ³ ³
ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÙ ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÙ ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÙ

↑ ↑
³ ↓

ÚÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
³ ³
³ MAIN MEMORY ³
³ ³
ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ

↑
↓

ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
³ DIRECT MEMORY ACCESS³
ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ

Figure 1. Logical view of the PowerPC AS processor
architecture

1.5 Exceptions

The following augments the list, given in Book I, of
exceptions that can be caused directly by the exe-
cution of an instruction:

|

| ■ the execution of a floating-point instruction when
| MSRFP= 0 (Floating-Point Unavailable interrupt)

| ■ an attempt to modify a hypervisor resource when
| the processor is in privileged but non-hypervisor
| state (see Section 1.7), or an attempt to execute
| a hypervisor-only instruction (e.g., tlbie ) when the
| processor is in privileged but non-hypervisor
| state.

■ the execution of a traced instruction (Trace inter-
rupt)

1.6 Synchronization

The synchronization described in this section refers to
the state of the processor that is performing the syn-
chronization.

1.6.1 Context Synchronization

An instruction or event is context synchronizing if it
satisfies the requirements listed below. Such
instructions and events are collectively called context
synchronizing operations. Examples of context syn-
chronizing operations include the sc instruction, the

| isync instruction, the rfid instruction, and most inter-
rupts.

1. The operation causes instruction dispatching (the
issuance of instructions by the instruction fetch
mechanism to any instruction execution mech-
anism) to be halted.

2. The operation is not initiated or, in the case of
isync , does not complete, until all instructions
already in execution have completed to a point at
which they have reported all exceptions they will

| cause.

3. The instructions that precede the operation com-
plete execution in the context (privilege, relo-
cation, storage protection, etc.) in which they
were initiated.

4. If the operation directly causes an interrupt (e.g.,
sc directly causes a System Call interrupt) or is
an interrupt, the operation is not initiated until no
exception exists having higher priority than the
exception associated with the interrupt (see
Section 7.8, “Interrupt Priorities” on page 73).

5. The instructions that follow the operation will be
fetched and executed in the context established
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by the operation. (This requirement dictates that
any prefetched instructions be discarded and that
any effects and side effects of executing them
out-of-order also be discarded, except as

† described in Section 4.2.4, “Performing Oper-
† ations Out-of-Order” on page 25.)

A context synchronizing operation is necessarily exe-
cution synchronizing; see Section 1.6.2, “Execution
Synchronization”. Unlike the sync instruction, a
context synchronizing operation does not affect the
order in which storage accesses are performed with
respect to other processors and mechanisms, or the
order in which Reference, Change, and Tags Set bit

| updates are performed.

1.6.2 Execution Synchronization

An instruction is execution synchronizing if it satisfies
items 2 on page 3 and 3 on page 3 of the definition
of context synchronization (see Section 1.6.1). sync is
treated like isync with respect to item 2 on page 3
(i.e., the conditions described in item 2 on page 3
apply to the completion of sync ). Examples of exe-
cution synchronizing instructions are sync and

| mtmsrd . Also, all context synchronizing instructions
are execution synchronizing.

Unlike a context synchronizing operation, an exe-
cution synchronizing instruction need not ensure that
the instructions following that instruction will execute
in the context established by that instruction. This
new context becomes effective sometime after the
execution synchronizing instruction completes and
before or at a subsequent context synchronizing oper-
ation.

| 1.7 Logical Partitioning (LPAR)

| The Logical Partitioning (LPAR) facility permits
| processors and portions of real storage to be
| assigned to logical collections called partitions, such
| that a program executing on a processor in one parti-
| tion cannot interfere with any program executing on a
| processor in a different partition. This isolation can
| be provided for both problem state and privileged
| state programs, by using a layer of trusted software,
| called a hypervisor program (or simply a
| “hypervisor”), and the resources provided by this
| facility to manage system resources. (A hypervisor is
| a program that runs in hypervisor state; see below.)

| The number of partitions supported is implementa-
| tion-dependent.

| A processor is in only one partition at any given time.
| Partitions can be defined without consideration of the
| physical configuration of the system (e.g., shared
| caches, organization of the storage hierarchy).

| A processor may be removed from one partition and
| assigned to a different partition while other
| processors continue to execute programs in their
| respective partitions. The operations necessary to
| assign a processor to a different partition are imple-
| mentation-dependent.

| The following resources are provided to support
| logical partitioning.

| 1. HV bit of the MSR

| This bit, along with MSRPR, controls whether the
| processor is in hypervisor state (see Section 2.2.3
| on page 7).

| 2. Logical Partitioning Environment Selector (LPES)
| bit

| This bit affects how storage is accessed in real
| addressing mode (see Section 4.2.5 on page 27
| and Section 4.9.3 on page 43) and how the MSR
| is set when an interrupt occurs (see Section 7.5
| on page 62).

| Programming Note

| LPES=0 provides an environment in which
| only the hypervisor can run with address
| translation disabled and in which all inter-
| rupts except the System Call Vectored inter-
| rupt invoke the hypervisor. This value (along
| with MSRHV= 1 ) can also be used in a system
| that is not partitioned, to permit the operating
| system (except the System Call Vectored
| interrupt handler) to access all system
| resources.

| 3. Real mode storage access control

| The Real Mode Offset Register (RMOR), Real
| Mode Limit Register (RMLR), and Real Mode
| Caching Inhibited bit control access to storage in
| real addressing mode, as described in Section
| 4.2.5 on page 27.

| 4. Logical Partition Identity Register (LPIDR)

| This register contains a value that identifies the
| partition to which the processor is assigned.

| With the exception of MSRHV, the format and contents
| of these resources, the conditions that must be estab-
| lished before they are altered, the means provided for
| altering them, and the software synchronization
| required in order to make the alterations effective are
| implementation-dependent.

| With the exception of MSRHV, the resources defined
| above and those in the following list are hypervisor
| resources.

| ■ All implementation-specific resources, including
| implementation-specific registers (e.g., “HID” reg-
| isters), that control hardware functions or affect
| the results of instruction execution. Examples
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| include resources that disable caches, disable
| hardware error detection, set breakpoints, control
| power management, or significantly affect per-
| formance.

| ■ ME bit of the MSR

| ■ SDR1, EAR, SPRG0, Time Base, PIR, DABR (if
| implemented)

| ■ the large virtual page size, if a means is provided
| by which software can alter it

| The contents of a hypervisor resource can be modi-
| fied by the execution of an instruction (e.g., mtspr )
| only in hypervisor state (MSRHV PR = 0b10). Whether
| an attempt to modify the contents of a given
| hypervisor resource, other than MSRME, in privileged
| but non-hypervisor state (MSRHV PR = 0b00) is
| ignored (i.e., treated as a no-op) or causes a Privi-
| leged Instruction type Program interrupt is implemen-
| tation-dependent. An attempt to modify MSRME in
| privileged but non-hypervisor state is ignored (i.e.,
| the bit is not changed).

| Engineering Note

| Causing a Privileged Instruction type Program
| interrupt if attempt is made to modify the contents
| of a hypervisor resource in privileged but non-
| hypervisor state facilitates the debugging of soft-
| ware.

| The tlbie and tlbsync instructions can be executed
| only in hypervisor state; see the descriptions of these
| instructions on pages 55 and 56.

| In general, if software violates a rule that is stated in
| the Books using the word “must” (e.g., “this field
| must be set to 0”) the results are boundedly unde-
| fined. The only exception is that if hypervisor soft-
| ware violates such a rule that pertains to the contents
| of a hypervisor resource, to accessing storage in real
| addressing mode, or to using the tlbie and tlbsync
| instructions, the results are undefined, and may
| include altering resources belonging to other parti-
| tions, causing the system to “hang”, etc.

| Programming Note

| Because the SPRs listed above are privileged for
| writing, an attempt to modify the contents of any
| of these SPRs in problem state (MSRPR= 1 ) using
| mtspr causes a Privileged Instruction type
| Program exception, and similarly for MSRME.

| If the hypervisor sets a breakpoint for an oper-
| ating system program without verifying the
| requested breakpoint conditions, the breakpoint
| could cause an unexpected Data Storage interrupt
| when the hypervisor is executing.

| Architecture Note

| MSRME, the SPRs listed above, and the large
| virtual page size are hypervisor resources
| because they must be altered only by hypervisor
| software. Consequences of permitting alteration
| by non-hypervisor software include the following.

| MSRME: Non-hypervisor software could cause a
| subsequent Machine Check to cause a
| system-wide Checkstop.

| SDR1, large virtual page size: Non-hypervisor
| software could access storage not allo-
| cated to the partition in which it is
| running.

| EAR: Non-hypervisor software could access
| memory controller resources (corre-
| sponding to values of EARRID) not allo-
| cated to the partition in which it is
| running.

| SPRG0: Non-hypervisor software could cause the
| hypervisor to use invalid data (see the
| intended use of this register described in
| Section 3.3.3).

| Time Base: Non-hypervisor software could cause
| the Time Base on one processor to be
| out of synchronization with that on other
| processors, with the result that the first
| processor's Time Base would have to be
| resynchronized as part of assigning the
| processor to a different partition.

| PIR: Because the PIR is used in communi-
| cation with other processors and with I/O
| devices, non-hypervisor software could
| cause the system to “hang”.

| DABR: Non-hypervisor software could set a
| breakpoint in hypervisor data.

| Engineering Note

| On an implementation that provides a Perform-
| ance Monitor facility (e.g., see Appendix E), any
| Performance Monitor resource having the prop-
| erty that alteration of the resource by a processor
| in one partition could affect the integrity of other
| partitions must be a hypervisor resource. (It is
| expected that most Performance Monitor
| resources will not have this property.)

| Control bits that are hypervisor resources should
| not be defined in registers or resources that
| contain bits that can be altered by non-hypervisor
| programs.
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| Engineering Note

| The requirements for altering hypervisor
| resources must be such that a processor assigned
| to one partition can be reassigned to a different
| partition without affecting the execution of pro-
| grams on other processors. In addition,
| deterministic means must be provided to perform
| other functions associated with reassigning a
| processor to a different partition, such as invali-
| dating SLB, TLB, and ERAT entries.

| The speed with which this reassignment can be
| performed may affect how the LPAR facility is
| used. Decisions regarding how reassignment is
| accomplished in a given implementation must
| include consideration of the intended uses of the
| facility and of the consequent performance
| requirements.
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2.1 Branch Processor Overview

This chapter describes the details concerning the reg-
isters and the privileged instructions implemented in
the Branch Processor that are not covered in Book I,
PowerPC AS User Instruction Set Architecture.

2.2 Branch Processor Registers

2.2.1 Machine Status Save/Restore
Register 0

The Machine Status Save/Restore Register 0 (SRR0)
is a 64-bit register. This register is used to save
machine status on interrupts, except for System Call
Vectored interrupts, and to restore machine status

| when an rfid instruction is executed.

On interrupt, SRR0 is set to the current or next
instruction address. Thus if the interrupt occurs in
32-bit mode, the high-order 32 bits of SRR0 are set to

| 0. When rfid is executed, the contents of SRR0 are
copied to the next instruction address (NIA), except
that the high-order 32 bits of the NIA are set to 0
when returning to 32-bit mode.

SRR0 //

0 61 63

Figure 2. Save/Restore Register 0

In general, SRR0 contains either the address of the
instruction that caused the interrupt, or the address of

the instruction to return to after an interrupt is ser-
viced.

2.2.2 Machine Status Save/Restore
Register 1

The Machine Status Save/Restore Register 1 (SRR1)
is a 64-bit register. This register is used to save
machine status on interrupts, except for System Call
Vectored interrupts, and to restore machine status

| when an rfid instruction is executed.

SRR1

0 63

Figure 3. Save/Restore Register 1

In general, when an interrupt occurs, bits 33:36 and
42:47 of SRR1 are loaded with information specific to
the interrupt type, and bits 0:32, 37:41, and 48:63 of
the MSR are placed into the corresponding bit posi-
tions of SRR1.

SRR1 bits in the range 0:32, 37:41, and 48:63 may be
treated as reserved in a given implementation if they
correspond to MSR bits that are reserved or are
treated as reserved in that implementation.

2.2.3 Machine State Register

The Machine State Register (MSR) is a 64-bit register.
This register defines the state of the processor. On
interrupt, the MSR bits are altered in accordance with
Figure 30 on page 62. The MSR can also be modified

| by the mtmsr [ d] , sc , scv , rfscv , and rfid instructions.
It can be read by the mfmsr instruction.

Chapter 2. Branch Processor 7
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MSR

0 63

Figure 4. Machine State Register

Below are shown the bit definitions for the Machine
State Register.

Architecture Note

Defined MSR bits are classified as either full func-
tion or partial function. Full function MSR bits are
saved in SRR1 when an interrupt other than
System Call Vectored interrupt occurs and

| restored by rfid or rfscv , while partial function
MSR bits are not saved or restored. Full function
MSR bits lie in the range 0:32, 37:41, and 48:63,
and partial function MSR bits lie in the range
33:36 and 42:47.

Reserved MSR bits in the “full function range”
need not be saved or restored. If they are not
restored then they must be written as 0; if they
are not saved then for System Call Vectored inter-
rupt the corresponding CTR bits must be written
as 0, and for interrupts other than System Call
Vectored interrupt the corresponding SRR1 bits
must be written as 0. The properties of reserved
bits in System Registers are such that this alter-
native behavior does not conflict with the

| descriptions of sc, scv, rfid , and interrupt proc-
essing elsewhere in this Book.

Bit Description

0 Sixty-Four-Bit Mode (SF)

† 0 The processor is in 32-bit mode.
† 1 The processor is in 64-bit mode.

| If MSRSF TA = 0b01, all results are boundedly
| undefined.

1 Tags Active Mode (TA)

† 0 The processor is in tags inactive mode.
† 1 The processor is in tags active mode.

| If MSRSF TA = 0b01, all results are boundedly
| undefined.

| Engineering Note

| One way to ensure that results are limited
| to being boundedly undefined if software
| attempts to set MSRSF TA = 0b01 is to set
| MSRSF to the OR of the supplied SF value
| and the supplied TA value whenever an
| rfscv, rfid, or mtmsrd instruction is exe-
| cuted. E.g., rfid would set MSR0 to
| SRR10 | SRR11. This technique may sim-
| plify verification. (Interrupts are not a
| problem in this regard, because all inter-
| rupts set MSRSF to 1.)

| 2 Reserved

| Architecture Note

| Bit 2 will be among the last to be
| assigned a meaning. It was the ISF (Inter-
| rupt Sixty-Four Bit Mode) bit in earlier
| versions of the architecture.

| 3 Hypervisor State (HV)

| 0 The processor is not in hypervisor state.
| 1 If MSRPR= 0 the processor is in
| hypervisor state; otherwise the processor
| is not in hypervisor state.

| Programming Note

| The privilege state of the processor is
| determined by MSRHV and MSRPR, as
| follows.

| HV PR

| 0 0 privileged
| 0 1 problem
| 1 0 privileged and hypervisor
| 1 1 problem

| MSRHV can be set to 1 only by the System
| Call instruction and some interrupts. It
| can be set to 0 only by the rfid instruction,
| and possibly by the rfscv instruction and
| some interrupts.

| 4:46 Reserved

Architecture Note

| Bits 33 and 45 will be among the last to
† be assigned a meaning. In earlier ver-
† sions of the architecture bit 33 was the C2
| Security bit and bit 45 was the POW
| (Power Management) bit.

In the POWER Architecture, SRR15 is used
by the Instruction Storage interrupt to
indicate a loop in the translation mech-
anism. Because of this, MSR37 will not be
assigned a new meaning in the near
future.

† Bit 46 is used on some implementations
for an implementation-specific function.
See the Book IV, PowerPC AS Implemen-
tation Features document for the imple-

† mentation. (Bit 46 is the Temporary GPR
Remapping (TGPR) bit on the 603.)
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47 Interrupt Little-Endian Mode (ILE)

| This bit is part of the optional Little-Endian
| facility; see the section entitled “Little-Endian”
| in Book I.

| If the Little-Endian facility is implemented,
| when an interrupt occurs this bit is copied to

MSRLE to select the Endian mode for the
context established by the interrupt.

| If the Little-Endian facility is not implemented,
| this bit is treated as reserved.

48 External Interrupt Enable (EE)

† 0 External and Decrementer interrupts are
† disabled.
† 1 External and Decrementer interrupts are
† enabled.

49 Problem State (PR)

| 0 The processor is in privileged state.
| 1 The processor is in problem state.

| Programming Note

| Any instruction or event that sets MSRPR
| to 1 also sets MSRIR and MSRDR to 1.

50 Floating-Point Available (FP)

0 The processor cannot execute any float-
ing-point instructions, including floating-
point loads, stores, and moves.

1 The processor can execute floating-point
instructions.

51 Machine Check Enable (ME)

0 Machine Check interrupts are disabled.
1 Machine Check interrupts are enabled.

| This bit is a hypervisor resource; see Section
| 1.7, “Logical Partitioning (LPAR)” on page 4.

| Programming Note

| The only instruction that can alter MSRME
| is the rfid instruction.

52 Floating-Point Exception Mode 0 (FE0)

See below.

53 Single-Step Trace Enable (SE)

0 The processor executes instructions
normally.

1 The processor generates a Single-Step
type Trace interrupt after successfully
completing the execution of the next

| instruction (unless that instruction is rfid
or rfscv , which are never traced). Suc-
cessful completion means that the instruc-
tion caused no other interrupt.

54 Branch Trace Enable (BE)

0 The processor executes branch
instructions normally.

1 The processor generates a Branch type
Trace interrupt after completing the exe-
cution of a branch instruction, whether or
not the branch is taken. See Book IV,
PowerPC AS Implementation Features.

Branch tracing may not be present on all
implementations. If the function is not imple-
mented, this bit is treated as reserved.

55 Floating-Point Exception Mode 1 (FE1)

See below.

56 User State (US)

† In tags inactive mode this bit is treated as
reserved.

† In tags active mode this bit distinguishes
between operating system code and user
code for purposes of storage protection.

0 Operating system code is executing.
1 User code is executing.

| Architecture Note

| This bit corresponds to the AL bit of the
| POWER Architecture (see the appendix
| entitled “Incompatibilities with the POWER
| Architecture” in Book I). Therefore the
| tags active function of this bit should not
| be made available in tags inactive mode
| until POWER-compatible operating system
| code no longer needs to be supported on
| PowerPC AS processors.

| 57 Reserved

| Architecture Note

| Bit 57 will be among the last to be
| assigned a meaning. It was the IP (Inter-
| rupt Prefix) bit in earlier versions of the
| architecture.

58 Instruction Relocate (IR)

0 Instruction address translation is off.
1 Instruction address translation is on.

| Programming Note

| Any instruction or event that sets MSRIR
| to 0 also sets MSRPR to 0.

59 Data Relocate (DR)

0 Data address translation is off.
1 Data address translation is on.

| Programming Note

| Any instruction or event that sets MSRDR
| to 0 also sets MSRPR to 0.

Chapter 2. Branch Processor 9
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| 60 Reserved

| Architecture Note

| Bit 60 will be among the last to be
| assigned a meaning. It was the FC
| (Firmly Consistent) bit in earlier versions
| of the architecture.

61 Performance Monitor Mark (PMM)

This bit is part of the optional Performance
Monitor facility; see Appendix E. If the Per-
formance Monitor facility is not implemented
or does not use this bit, this bit is treated as
reserved.

62 Recoverable Interrupt (RI)

0 Interrupt is not recoverable.
1 Interrupt is recoverable.

Additional information about the use of this
bit is given in Sections 7.4, “Interrupt
Processing” on page 61, 7.5.1, “System Reset
Interrupt” on page 63, and 7.5.2, “Machine
Check Interrupt” on page 63.

63 Little-Endian Mode (LE)

| This bit is part of the optional Little-Endian
| facility; see the section entitled “Little-Endian”
| in Book I.

| If the Little-Endian facility is implemented, this
| bit has the following meaning.

† 0 The processor is in Big-Endian mode.
† 1 The processor is in Little-Endian mode.

| If the Little-Endian facility is not implemented,
| this bit is treated as reserved.

The Floating-Point Exception Mode bits FE0 and FE1
are interpreted as shown below. For further details
see Book I, PowerPC AS User Instruction Set Archi-
tecture.

FE0 FE1 Mode
0 0 Ignore Exceptions
0 1 Imprecise Nonrecoverable
1 0 Imprecise Recoverable
1 1 Precise

Architecture Note

The initial state of the MSR should be as follows:

tags inactive tags active
† Bit Name mode * mode *

0 SF 1 1
† 1 TA * *
† 2 unspecified unspecified
| 3 HV 1 1
| 4:46 unspecified unspecified

47 ILE 0 0
48 EE 0 0
49 PR 0 0
50 FP 0 0
51 ME 0 0
52 FE0 0 0
53 SE 0 0
54 BE 0 0
55 FE1 0 0
56 US unspecified 0

| 57 unspecified unspecified
58 IR 0 0
59 DR 0 0

| 60 unspecified unspecified
61 PMM unspecified unspecified
62 RI 0 0
63 LE 0 0

|
† * product-specific

10 PowerPC AS Operating Environment Architecture
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2.3 Branch Processor Instructions

2.3.1 System Linkage Instructions

These instructions provide the means by which a
program can call upon the system to perform a
service, and by which the system can return from per-
forming a service or from processing an interrupt.

|

The System Call instructions are described in Book I,
PowerPC AS User Instruction Set Architecture, but
only at the level required by an application pro-
grammer. A complete description of these
instructions appears below.

System Call SC-form

| sc LEV

[ POWER mnemonic: svca]

| 17 /// /// // LEV // 1 /
| 0 6 11 16 20 27 30 31

SRR0 ←iea CIA + tia 4
SRR133:36 42:47 ← 0
SRR10:32 37:41 48:63 ← MSR0:32 37:41 48:63
MSR ← new_value (see below)

| NIA ← 0x0000_0000_0000_0C00

The effective address of the instruction following the
System Call instruction is placed into SRR0. Bits 0:32,
37:41, and 48:63 of the MSR are placed into the corre-
sponding bits of SRR1, and bits 33:36 and 42:47 of
SRR1 are set to undefined values.

Then a System Call interrupt is generated. The inter-
rupt causes the MSR to be altered as described in
Section 7.5, “Interrupt Definitions” on page 62.

The interrupt causes the next instruction to be fetched
| from effective address 0x0000_0000_0000_0C00.

| The contents of the LEV field must be 0 or 1; other-
| wise the results are boundedly undefined.

This instruction is context synchronizing.

Special Registers Altered:
SRR0 SRR1 MSR

| Programming Note

| sc serves as both a basic and an extended mne-
| monic. The Assembler will recognize an sc mne-
| monic with one operand as the basic form, and an
| sc mnemonic with no operand as the extended
| form. In the extended form the LEV operand is
| omitted and assumed to be 0.

| Programming Note

| If LEV=1 the hypervisor is invoked.

| If LPES=1, executing this instruction with LEV=1
| is the only way that executing an instruction can
| cause hypervisor state to be entered.

| Because this instruction is not privileged, it is
| possible for application software to invoke the
| hypervisor. However, such invocation should be
| considered a programming error.

| Engineering Note

| LEV0:5 must be ignored by the processor.

| Architecture Note

| The requirement that LEV0:5 contain zeros and be
| ignored by the processor permits these bits to be
| assigned a meaning in the future if that proves
| desirable.

Compatibility Note

For a discussion of POWER compatibility with
| respect to instruction bits 16:19 and 27:29, see the

appendix entitled “Incompatibilities with the
POWER Architecture” in Book I, PowerPC AS User
Instruction Set Architecture. For compatibility

† with future versions of the PowerPC AS Architec-
† ture, these bits should be coded as zeros.

Chapter 2. Branch Processor 11
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System Call Vectored SC-form

scv LEV

[ POWER mnemonic: svcl]

17 /// /// // LEV // 0 1

0 6 11 16 20 27 30 31

LR ← CIA + tia 4
CTR33:36 42:47 ← undefined
CTR0:32 37:41 48:63 ← MSR0:32 37:41 48:63
MSR ← new_value (see below)

| NIA ← 0xFFFF_FFFF_FF00_3 || LEV || 0b0_0000

The effective address of the instruction following the
System Call Vectored instruction is placed into the
Link Register. Bits 0:32, 37:41, and 48:63 of the MSR
are placed into the corresponding bits of Count Reg-
ister, and bits 33:36 and 42:47 of Count Register are
set to undefined values.

Then a System Call Vectored interrupt is generated.
The interrupt causes the MSR to be altered as

† described in Section 7.5, “Interrupt Definitions” on
† page 62.

The interrupt causes the next instruction to be fetched
| from effective address 0xFFFF_FFFF_FF00_3 || LEV ||
| 0b0_0000.

The SRRs are not affected.

| This instruction is context synchronizing.

This instruction is available in tags active mode only.
In tags inactive mode this is an illegal instruction.

Special Registers Altered:
LR CTR MSR

|

Return From System Call Vectored
XL-form

rfscv

[ POWER mnemonic: rfsvc]

19 /// /// /// 82 /

0 6 11 16 21 31

| on some implementations MSR 3 ← 0
| MSR58 ← CTR58 | CTR49
| MSR59 ← CTR59 | CTR49
| MSR0:2 4:32 37:41 48:50 52:57 60:63 ← CTR0:2 4:32 37:41 48:50 52:57 60:63

NIA ← LR0:61 || 0b00

| The result of ORing bits 58 and 49 of the Count Reg-
| ister is placed into MSR58. The result of ORing bits 59
| and 49 of the Count Register is placed into MSR59.
| Bits 0:2, 4:32, 37:41, 48:50, 52:57, and 60:63 of the
| Count Register are placed into the corresponding bits
| of the MSR. It is implementation-dependent whether
| MSR3 is set to 0 or is unchanged.

Then the next instruction is fetched, under the the
control of the new MSR value, from the address
LR0:61 || 0b00.

| This instruction is privileged and context synchro-
| nizing.

This instruction is available in tags active mode only.
In tags inactive mode this is an illegal instruction.

Special Registers Altered:
MSR

| Programming Note

| If this instruction sets MSRPR to 1, it also sets
| MSRIR and MSRDR to 1. This instruction does not
| alter MSRME.

| This instruction should not be executed in
| hypervisor state, so the fact that some implemen-
| tations do not set MSRHV to 0 does not matter.

|
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Return From Interrupt Doubleword
XL-form

rfid

19 /// /// /// 18 /

0 6 11 16 21 31

| MSR51 ← (MSR3 & SRR151) | ((¬MSR 3) & MSR51)
| MSR3 ← MSR3 & SRR13
| MSR58 ← SRR158 | SRR149
| MSR59 ← SRR159 | SRR149
| MSR0:2 4:32 37:41 48:50 52:57 60:63 ←SRR10:2 4:32 37:41 48:50 52:57 60:63

NIA ←iea SRR00:61 || 0b00

| If MSR3= 1 then bits 3 and 51 of SRR1 are placed into
| the corresponding bits of the MSR. The result of
| ORing bits 58 and 49 of SRR1 is placed into MSR58.
| The result of ORing bits 59 and 49 of SRR1 is placed
| into MSR59. Bits 0:2, 4:32, 37:41, 48:50, 52:57, and
| 60:63 of SRR1 are placed into the corresponding bits
| of the MSR.

If the new MSR value does not enable any pending
exceptions, then the next instruction is fetched, under
control of the new MSR value, from the address
SRR00:61 || 0b00 (when SF=1 in the new MSR value)
or 320 || SRR032:61 || 0b00 (when SF=0 in the new
MSR value). If the new MSR value enables one or
more pending exceptions, the interrupt associated
with the highest priority pending exception is gener-
ated; in this case the value placed into SRR0 by the
interrupt processing mechanism (see Section 7.4,
“Interrupt Processing” on page 61) is the address of
the instruction that would have been executed next
had the interrupt not occurred.

This instruction is privileged and context synchro-
nizing.

Special Registers Altered:
MSR

| Programming Note

| If this instruction sets MSRPR to 1, it also sets
| MSRIR and MSRDR to 1.

| This instruction is the only instruction that can be
| used to set MSRHV to 0 on all implementations.
| This instruction is the only instruction that can be
| used to alter MSRME. These bits can be altered
| by this instruction only if it is executed in
| hypervisor state.

|
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3.1 Fixed-Point Processor
Overview

This chapter describes the details concerning the reg-
isters and the privileged instructions implemented in
the Fixed-Point Processor that are not covered in
Book I, PowerPC AS User Instruction Set Architecture.

3.2 Special Purpose Registers

Special Purpose Registers (SPRs) are read and
written using the mfspr (page 20) and mtspr (page 19)
instructions. Most SPRs are defined in other chapters
of this book; see the index to locate those definitions.

3.3 Fixed-Point Processor
Registers

3.3.1 Data Address Register

The Data Address Register (DAR) is a 64-bit register
| that is set by Data Storage, Data Segment, and Align-
| ment interrupts. See Section 7.5.3, “Data Storage
| Interrupt” on page 64, Section 7.5.4, “Data Segment
| Interrupt” on page 65, and Section 7.5.8, “Alignment
| Interrupt” on page 67. When one of these interrupts
† occurs, the DAR is set to an effective address associ-
† ated with the storage access caused by the inter-

rupting instruction. If the interrupt occurs in 32-bit
mode, the high-order 32 bits of the DAR are set to 0.

DAR

0 63

Figure 5. Data Address Register

|
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3.3.2 Data Storage Interrupt Status
Register

The Data Storage Interrupt Status Register (DSISR) is
a 32-bit register that defines the cause of Data
Storage and Alignment interrupts. See Section 7.5.3,
“Data Storage Interrupt” on page 64 and Section
7.5.8, “Alignment Interrupt” on page 67.

DSISR

0 31

Figure 6. Data Storage Interrupt Status Register

3.3.3 Software-Use SPRs

SPRG0 through SPRG3 are 64-bit registers provided
| for use by privileged software.

SPRG0

SPRG1

SPRG2

SPRG3

0 63

Figure 7. Software-use SPRs

The following list describes the conventional uses of
SPRG0 through SPRG3.

SPRG0
| Hypervisor software may keep a unique real

address in this register to identify an area of
| storage reserved for use by the hypervisor first-

level interrupt handler. This area must be unique
for each processor in the system.

| SPRG0 is a hypervisor resource; see Section 1.7,
| “Logical Partitioning (LPAR)” on page 4.

SPRG1
This register may be used as a scratch register by
the first-level interrupt handler to save the contents
of a GPR. That GPR then can be loaded from
SPRG0 and used as a base register to save other
GPRs to storage.

SPRG2
This register may be used by the operating system
as needed.

SPRG3
This register may be used by the operating system
as needed.

It is optional whether SPRG3 can be read in
problem state. On implementations that provide
this ability, SPRG3 may be used for information,

such as a “thread-id”, that the operating system
makes available to application programs.

Programming Note

On implementations for which SPRG3 can be
read in problem state, operating systems must
ensure that no sensitive data are left in SPRG3
when a problem state program is dispatched,
and operating systems for secure systems must
ensure that SPRG3 cannot be used to imple-
ment a “covert channel” between problem
state programs. These requirements can be
satisfied by clearing SPRG3 before passing
control to a program that will run in problem
state.

On such implementations, SPRG3 can be used
“orthogonally” for both the purpose described
for it above and the purpose described for
SPRG1. If this is done, SPRG1 can be used for
some other purpose.

Engineering Note

The ability to read SPRG3 in problem state is
being phased into the architecture, and will
become required in a future version of the
architecture.

3.3.4 Control Register

The Control Register (CTRL) is a 32-bit register that
controls an external I/O pin. This signal may be used
for the following:

■ driving the RUN Light on a system operator panel

■ External interrupt routing

■ Performance Monitor event counting (see
Appendix E, “Example Performance Monitor
(Optional)” on page 105)

/// RUN

0 31

Bit Name Description
31 RUN Run state bit

All other fields are implementation-dependent.

Figure 8. Control Register

The CTRL RUN can be used by the operating system
to indicate when the processor is doing useful work.

The contents of the CTRL can be written by the mtspr
instruction and read by the mfspr instruction. Write
access to the CTRL is privileged. Reads can be per-
formed in privileged or problem state.
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3.3.5 Processor Version Register

The Processor Version Register (PVR) is a 32-bit read-
only register that contains a value identifying the
version and revision level of the processor. The con-
tents of the PVR can be copied to a GPR by the mfspr
instruction. Read access to the PVR is privileged;
write access is not provided.

Version Revision
0 16 31

Figure 9. Processor Version Register

The PVR distinguishes between processors that differ
in attributes that may affect software. It contains two
fields.

Version A 16-bit number that identifies the
version of the processor. Different
version numbers indicate major differ-
ences between processors, such as which
optional facilities and instructions are
supported.

Revision A 16-bit number that distinguishes
between implementations of the version.
Different revision numbers indicate minor
differences between processors having
the same version number, such as clock
rate and Engineering Change level.

Version numbers are assigned by the PowerPC AS
Architecture process. Revision numbers are assigned
by an implementation-defined process.

Engineering Note

Although the classification of a given difference
between processors as “major” or “minor” is
somewhat arbitrary, the following are examples of
differences that generally should be considered
“major”.

■ number and types of execution units
■ optional facilities and instructions supported
■ level of support of instructions (hard-wired or

emulated)
■ size, geometry, and management of caches

and of TLBs

The following are examples of differences that
generally should be considered “minor”.

■ remapping a processor to a new technology
■ redesigning a critical path to increase clock

rate
■ fixing bugs

In general, any change to a processor should
cause a new PVR value to be assigned. Even a
seemingly trivial change that is not expected to
be apparent to software should cause a new
revision number to be assigned, in case the
change is later discovered to have introduced an
error that software must circumvent.

3.3.6 Processor Identification
Register

The Processor Identification Register (PIR) is a 32-bit
† register that contains a value that can be used to dis-

tinguish the processor from other processors in the
system. The contents of the PIR can be copied to a
GPR by the mfspr instruction. Read access to the PIR
is privileged; write access, if provided, is described in
the Book IV, PowerPC AS Implementation Features
document for the implementation.

PROCID

0 31

Bits Name Description
0:31 PROCID Processor ID

Figure 10. Processor Identification Register

The means by which the PIR is initialized are imple-
mentation-dependent (see Book IV).

| The PIR is a hypervisor resource; see Section 1.7,
| “Logical Partitioning (LPAR)” on page 4.
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3.4 Fixed-Point Processor Privileged Instructions

3.4.1 Move To/From System Register Instructions

The Move To Special Purpose Register and Move
From Special Purpose Register instructions are
described in Book I, PowerPC AS User Instruction Set
Architecture, but only at the level available to an

† application programmer. For example, no mention is
made there of registers that can be accessed only in

| privileged state. The descriptions of these
| instructions given below extend the descriptions given
| in Book I, but do not list Special Purpose Registers
| that are defined in Book IV, PowerPC AS Implementa-
| tion Features. In the descriptions of these instructions
| given below, the “defined” SPR numbers are the SPR
| numbers shown in the figure for the instruction and
| the SPR numbers defined in Book IV for the instruc-
| tion, and similarly for “defined” registers.

Extended mnemonics

† Extended mnemonics are provided for the mtspr and
mfspr instructions so that they can be coded with the
SPR name as part of the mnemonic rather than as a
numeric operand. See Appendix A, “Assembler
Extended Mnemonics” on page 93.

Engineering Note

SPR numbers that are not shown in Figure 11 or
Figure 12 and are in the ranges shown below are
reserved for implementation-specific uses.

848 - 863
880 - 895
976 - 991

1008 - 1023

Implementation-specific registers must be privi-
leged, and must comply with the other guidelines
and limitations given in the Preface of Book I.
SPR numbers for implementation-specific regis-
ters must be registered in advance with the
person responsible for the technical content of
this document (see the cover page).

Architecture Note

SPR numbers that are in the ranges 28-29, 80-82,
136-142, 144-159, 276-279, 512-639, and 972-973
are used in some early implementations for imple-
mentation-specific purposes. These SPR numbers
will not be assigned a meaning in the PowerPC AS
Architecture except after careful consideration of
the effect of such assignment on existing imple-
mentations.
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Move To Special Purpose Register
XFX-form

mtspr SPR,RS

31 RS spr 467 /
0 6 11 21 31

n ← spr 5:9 || spr 0:4
if length(SPREG(n)) = 64 then

SPREG(n) ← (RS)
else

SPREG(n) ← (RS) 32:63

The SPR field denotes a Special Purpose Register,
encoded as shown in Figure 11. The contents of reg-
ister RS are placed into the designated Special
Purpose Register. For Special Purpose Registers that
are 32 bits long, the low-order 32 bits of RS are
placed into the SPR.

For this instruction, SPRs TBL and TBU are treated as
separate 32-bit registers; setting one leaves the other
unaltered.

spr0= 1 if and only if writing the register is privileged.
Execution of this instruction specifying a defined and

† privileged register when MSRPR= 1 causes a Privi-
leged Instruction type Program interrupt.

| Execution of this instruction specifying an SPR
| number that is not defined for the implementation
| causes either an Illegal Instruction type Program
| interrupt or one of the following.

| ■ if spr0= 0 : boundedly undefined results
| ■ if spr0= 1 :
| — if MSRPR= 1 : Privileged Instruction type
| Program interrupt
| — if MSRPR= 0 and MSRHV= 0 : boundedly unde-
| fined results
| — if MSRPR= 0 and MSRHV= 1 : undefined
| results

If the SPR field contains a value that is shown in
Figure 11 but corresponds to an optional Special
Purpose Register that is not provided by the imple-
mentation, the effect of executing this instruction is
the same as if the SPR number were not shown in the
figure.

Special Registers Altered:
See Figure 11

Compiler and Assembler Note

For the mtspr and mfspr instructions, the SPR
number coded in assembler language does not
appear directly as a 10-bit binary number in the
instruction. The number coded is split into two
5-bit halves that are reversed in the instruction,
with the high-order 5 bits appearing in bits 16:20
of the instruction and the low-order 5 bits in bits
11:15. This maintains compatibility with POWER
SPR encodings, in which these two instructions
have only a 5-bit SPR field occupying bits 11:15.

SPR1 Register Privi-
decimal spr 5:9 spr 0:4 Name leged

1 00000 00001 XER no
8 00000 01000 LR no
9 00000 01001 CTR no

18 00000 10010 DSISR yes
19 00000 10011 DAR yes
22 00000 10110 DEC yes

| 25 00000 11001 SDR1 6 hypv
26 00000 11010 SRR0 yes
27 00000 11011 SRR1 yes
29 00000 11101 ACCR yes

152 00100 11000 CTRL yes
| 272 01000 10000 SPRG0 6 hypv

273 01000 10001 SPRG1 yes
274 01000 10010 SPRG2 yes
275 01000 10011 SPRG3 yes

| 280 01000 11000 ASR 3 yes
| 282 01000 11010 EAR 2,6 hypv
| 284 01000 11100 TBL 6 hypv
| 285 01000 11101 TBU 6 hypv
|

784-799 11000 1xxxx perf_mon4 yes
| 1013 11111 10101 DABR 5,6 hypv

1 Note that the order of the two 5-bit halves
of the SPR number is reversed.

2 Part of the optional External Control facility
(see Section 10.1).

| 3 Part of the optional “Bridge” facility
| (see Section 11.1).

4 Part of the optional Performance Monitor
facility (see Appendix E).

5 Part of the optional Data Address Breakpoint
facility (see Section 10.2).

| 6 This register is a hypervisor resource, and
| can be modified by this instruction only in
| hypervisor state (see Section 1.7).

All SPR numbers not shown above, or in
| Figure 12, or in Book IV are reserved.

Figure 11. SPR encodings for mtspr

Programming Note

For a discussion of software synchronization
requirements when altering certain Special
Purpose Registers, see Chapter 9, “Synchroniza-
tion Requirements for Special Registers and for
Lookaside Buffers” on page 79.

Compatibility Note

For a discussion of POWER compatibility with
respect to SPR numbers not shown in the instruc-
tion descriptions for mtspr and mfspr , see the
appendix entitled “Incompatibilities with the
POWER Architecture” in Book I, PowerPC AS User
Instruction Set Architecture.

| Engineering Note

| Causing an interrupt if this instruction is executed
| specifying an SPR number that is not defined for
| the implementation facilitates the debugging of
| software.
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Move From Special Purpose Register
XFX-form

mfspr RT,SPR

31 RT spr 339 /

0 6 11 21 31

n ← spr 5:9 || spr 0:4
if length(SPREG(n)) = 64 then

RT ← SPREG(n)
else

RT ← 320 || SPREG(n)

The SPR field denotes a Special Purpose Register,
encoded as shown in Figure 12. The contents of the
designated Special Purpose Register are placed into
register RT. For Special Purpose Registers that are
32 bits long, the low-order 32 bits of RT receive the
contents of the Special Purpose Register and the
high-order 32 bits of RT are set to zero.

spr0= 1 if and only if reading the register is privi-
leged. Execution of this instruction specifying a
defined and privileged register when MSRPR= 1

† causes a Privileged Instruction type Program inter-
rupt.

† Execution of this instruction specifying an SPR
| number that is not defined for the implementation
† causes either an Illegal Instruction type Program
† interrupt or one of the following.

† ■ if spr0= 0 : boundedly undefined results
† ■ if spr0= 1 :
† — if MSRPR= 1 : Privileged Instruction type
† Program interrupt
† — if MSRPR= 0 : boundedly undefined results

If the SPR field contains a value that is shown in
Figure 12 but corresponds to an optional Special
Purpose Register that is not provided by the imple-
mentation, the effect of executing this instruction is
the same as if the SPR number were not shown in the
figure.

Special Registers Altered:
None

Note

See the Notes that appear with mtspr .

SPR1 Register Privi-
decimal spr 5:9 spr 0:4 Name leged

1 00000 00001 XER no
8 00000 01000 LR no
9 00000 01001 CTR no

18 00000 10010 DSISR yes
19 00000 10011 DAR yes
22 00000 10110 DEC yes
25 00000 11001 SDR1 yes
26 00000 11010 SRR0 yes
27 00000 11011 SRR1 yes
29 00000 11101 ACCR yes

136 00100 01000 CTRL no

272 01000 10000 SPRG0 yes
273 01000 10001 SPRG1 yes
274 01000 10010 SPRG2 yes

259,275 01000 n0011 SPRG3 6,7 no,yes
| 280 01000 11000 ASR 3 yes
|

282 01000 11010 EAR 2 yes
287 01000 11111 PVR yes

|

768-799 11000 nxxxx perf_mon4,7 no,yes

1013 11111 10101 DABR 5 yes
1023 11111 11111 PIR yes

1 Note that the order of the two 5-bit halves
of the SPR number is reversed.

2 Part of the optional External Control facility
(see Section 10.1).

| 3 Part of the optional “Bridge” facility
| (see Section 11.1).

4 Part of the optional Performance Monitor
facility (see Appendix E).

5 Part of the optional Data Address Breakpoint
facility (see Section 10.2).

6 The ability to read SPRG3 in problem state is
optional (see Section 3.3.3). If this ability is
not provided by the implementation, SPR
number 259 is treated as if it corresponded to
an optional SPR that is not provided by the
implementation.

7 Reading the SPR is privileged if and only if
n=1 .

|

Moving from the Time Base (TB and TBU) is
accomplished with the mftb instruction,
described in Book II.

All SPR numbers not shown above, or in
| Figure 11, or in Book IV are reserved.

Figure 12. SPR encodings for mfspr
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Move To Machine State Register
Doubleword X-form

mtmsrd RS

31 RS /// /// 178 /

0 6 11 16 21 31

| MSR58 ← (RS) 58 | (RS) 49
| MSR59 ← (RS) 59 | (RS) 49
| MSR0:2 4:50 52:57 60:63 ← (RS) 0:2 4:50 52:57 60:63

| The result of ORing bits 58 and 49 of register RS is
| placed into MSR58. The result of ORing bits 59 and 49
| of register RS is placed into MSR59. Bits 0:2, 4:50,
| 52:57, and 60:63 of register RS are placed into the
| corresponding bits of the MSR.

This instruction is privileged. This instruction is exe-
| cution synchronizing except with respect to alter-
| ations to the LE bit; see Chapter 9, “Synchronization

Requirements for Special Registers and for Lookaside
Buffers” on page 79.

In addition, alterations to the EE and RI bits are effec-
tive as soon as the instruction completes. Thus if
MSREE= 0 and an External or Decrementer interrupt
is pending, executing an mtmsrd instruction that sets
MSREE to 1 will cause the External or Decrementer
interrupt to be taken before the next instruction is
executed, if no higher priority exception exists (see
Section 7.8, “Interrupt Priorities” on page 73).

Special Registers Altered:
MSR

| Programming Note

| If this instruction sets MSRPR to 1, it also sets
| MSRIR and MSRDR to 1.

| This instruction does not alter MSRHV or MSRME.

† Programming Note

† For a discussion of software synchronization
† requirements when altering certain MSR bits, see
† Chapter 9.

Move From Machine State Register
X-form

mfmsr RT

31 RT /// /// 83 /

0 6 11 16 21 31

RT ← MSR

The contents of the MSR are placed into register RT.

This instruction is privileged.

Special Registers Altered:
None
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4.1 Storage Addressing

A program references storage using the effective
address computed by the processor when it executes
a Load, Store, Branch, or Cache Management instruc-
tion, or when it fetches the next sequential instruction.
The effective address is translated to a real address
according to procedures described in Section 4.3,
“Address Translation Overview” on page 30 and fol-
lowing sections. The real address is what is pre-
sented to the storage subsystem. See Figure 13 on
page 30.

For a complete discussion of storage addressing and
effective address calculation, see the section entitled
“Storage Addressing” in Book I, PowerPC AS User
Instruction Set Architecture.

|

† Tags Active vs. Tags Inactive

| The selection between tags active and tags inactive
| operation is made by MSRTA. This chapter describes
| storage control in tags active mode.
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† Storage Control Overview

| ■ Real address space size is 2m bytes, m≤ 62; see
| Note 1.

| ■ Real page size is 212 bytes (4 KB).

† ■ Effective address space size is 264 bytes.

| ■ There are two ways to translate an effective
| address to a virtual address. (A virtual address
| is always translated to a real address via the
| Page Table.)

| — A Process Local Storage (PLS) effective
| address is translated via the Segment Look-
| aside Buffer (SLB) to a virtual address.

| — Virtual address space size is 2n bytes,
| 65≤ n≤ 80; see Note 2.
| — Segment size is 228 bytes (256 MB).
| — Number of virtual segments is 2n− 28; see
| Note 2.
| — Virtual page size is 2p bytes, 12≤ p≤ 28;
| two sizes are supported simultaneously,
| 4 KB (p=12) and a larger size; see Note
| 3.

| — A Single Level Storage (SLS) effective
| address is used directly as the virtual
| address (no SLB lookup).

| — Virtual address space size is 264− 248

| bytes.
| — Segment size is 224 bytes (16 MB).
| — Number of virtual segments is 240− 224.
| — Virtual page size is 212 bytes (4 KB).

| Notes:

| 1. The value of m is implementation-dependent
| (subject to the maximum given above). When
| used to address storage, the high-order 62− m
| bits of the “62-bit” real address must be zeros.
| 2. The value of n is implementation-dependent
| (subject to the range given above). In references
| to 80-bit virtual addresses elsewhere in this Book,
| the high-order 80− n bits of the “80-bit” virtual
| address are assumed to be zeros.
| 3. The value of p for the larger virtual page size is
| implementation-dependent (subject to the range
| given above).

4.2 Storage Model

The storage model provides the following features.

1. The architecture allows the storage implementa-
tions to take advantage of the performance bene-
fits of weak ordering of storage accesses between
processors or between processors and I/O
devices.

2. The architecture provides instructions that allow
the programmer to ensure a consistent and
ordered storage state.

dcbf lwarx
| dcbst lwsync

eieio stdcx.
icbi stwcx.
isync sync

| ldarx tlbsync

3. Storage accesses appear to be performed in
program order with respect to the processor per-
forming them but, in general, may be performed
in different orders with respect to other
processors and mechanisms.

4. Storage consistency between processors, and
between a processor and an I/O device, is con-
trolled by software using the “WIM” storage
control bits (see Section 4.7). These bits allow
software to control whether a given storage
location has any of the following attributes.

■ Write Through Required (W)
■ Caching Inhibited (I)
■ Memory Coherence Required (M)

Engineering Note

The architecture does not suggest or preclude any
implementation of storage consistency supporting
the features listed above. In particular, the imple-
mentation may be a snoopy bus design, a central-
ized cache directory design, or other design.

|

4.2.1 Storage Exceptions

| A storage exception is an exception that causes an
| Instruction Storage interrupt, an Instruction Segment
| interrupt, a Data Storage interrupt, a Data Segment
| interrupt, or an Alignment interrupt. Attempting to
| fetch or execute an instruction causes a storage
| exception if certain conditions apply. Such conditions
| include the following.

| ■ The appropriate relocate bit in the MSR is set to
| 1 and the effective address cannot be translated
| to a real address.
| ■ The access is not permitted by the storage pro-
| tection mechanism.
| ■ The access causes a Data Address Compare
| match or a Data Address Breakpoint match.

In certain cases a storage exception may result in the
“restart” of (re-execution of at least part of) a Load or
Store instruction. See the section entitled “Instruction
Restart” in Book II, PowerPC AS Virtual Environment
Architecture, and Section 7.6, “Partially Executed
Instructions” on page 72 in this Book.
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4.2.2 Instruction Fetch

Instructions are fetched under control of MSRIR.

MSR IR= 0

The effective address of the instruction is inter-
preted as described in Section 4.2.5, “Real
Addressing Mode” on page 27.

MSR IR= 1

| The effective address of the instruction is trans-
| lated by the Address Translation mechanism. (If it
| cannot be translated, a storage exception occurs.)

|

4.2.2.1 Implicit Branch

Explicitly altering certain MSR bits (using mtmsr [ d] ),
| or explicitly altering SLB entries, Page Table entries,

or certain System Registers, may have the side effect
of changing the addresses, effective or real, from
which the current instruction stream is being fetched.
This side effect is called an implicit branch. For
example, an mtmsrd instruction that changes the
value of MSRSF may change the effective addresses
from which the current instruction stream is being
fetched. The MSR bits and System Registers for
which alteration can cause an implicit branch are indi-
cated as such in Chapter 9, “Synchronization
Requirements for Special Registers and for Lookaside
Buffers” on page 79. Implicit branches are not sup-
ported by the PowerPC AS Architecture. If an implicit
branch occurs, the results are boundedly undefined.

4.2.3 Data Access

Data accesses are controlled by MSRDR.

MSRDR= 0

The effective address of the data is interpreted as
described in Section 4.2.5, “Real Addressing
Mode” on page 27.

MSRDR= 1

| The effective address of the data is translated by
| the Address Translation mechanism. (If it cannot
| be translated, a storage exception occurs.)

|

4.2.4 Performing Operations
Out-of-Order

An operation is said to be performed “in-order” if, at
the time that it is performed, it is known to be
required by the sequential execution model. An oper-
ation is said to be performed “out-of-order” if, at the
time that it is performed, it is not known to be
required by the sequential execution model.

Architecture Note

In earlier versions of the architecture specifica-
tion, “speculative” was used instead of “out-of-
order”. The terminology was changed to be
consistent with the technical literature, where
“speculative execution” often means the exe-
cution of instructions past unresolved branches
and “out-of-order execution” means execution of
an instruction before it is known to be required by
the sequential execution model. Because the
meaning of “speculative” in the literature differs
from ordinary English usage the term would cause
confusion no matter how the architecture specifi-
cation defined it, so the term is no longer used
here at all.

Operations are performed out-of-order by the hard-
ware on the expectation that the results will be
needed by an instruction that will be required by the
sequential execution model. Whether the results are
really needed is contingent on everything that might
divert the control flow away from the instruction, such
as Branch, Trap, System Call, System Call Vectored,

| rfid , and rfscv instructions, and interrupts, and on
everything that might change the context in which the
instruction is executed.

Typically, the hardware performs operations out-of-
order when it has resources that would otherwise be
idle, so the operation incurs little or no cost. If subse-
quent events such as branches or interrupts indicate
that the operation would not have been performed in
the sequential execution model, the processor aban-
dons any results of the operation (except as described
below).

| In the remainder of this section, including its sub-
| sections, “ Load instruction” includes the Cache Man-
| agement and other instructions that are stated in the
| instruction descriptions to be “treated as a Load”, and
| similarly for “ Store instruction”.

Most operations can be performed out-of-order, as
long as the machine appears to follow the sequential
execution model. Certain out-of-order operations are
restricted, as follows.
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■ Stores

| Stores are performed in-order (even if the Store
| instructions that caused them were executed out-
| of-order).

■ Accessing Guarded Storage

The restrictions for this case are given in Section
4.2.4.2.

No error of any kind other than Machine Check may
be reported due to an operation that is performed
out-of-order, until such time as it is known that the
operation is required by the sequential execution
model. The only other permitted side effects (other
than Machine Check) of performing an operation out-
of-order are the following.

■ Reference, Change, and Tag Set bits may be set
as described in Section 4.8, “Reference, Change,
and Tag Set Recording” on page 40.

■ Non-Guarded storage locations that could be
fetched into a cache by in-order execution may
be fetched out-of-order into that cache.

Engineering Note

| Out-of-order execution of the stwcx. and stdcx.
instructions is extremely complex and is not
recommended.

Engineering Note

Because an External or Decrementer exception
can become pending at any time, it might seem
that if MSREE= 1 then fetching or executing any
instruction beyond the current instruction is an
out-of-order operation. However, these oper-
ations need not be treated as out-of-order if the
taking of the interrupt is delayed until after they
have completed. Similar considerations apply to
Floating-Point Enabled Exception type Program
interrupts when one of the Imprecise floating-
point exception modes is in effect.

Engineering Note

Implementations that perform operations out-of-
order must take care to obey the sequential exe-
cution model except as permitted by the
architecture. Examples of cases that may require
special attention include the following.

■ Changes of control flow, including sc , scv ,
| Trap, rfid , rfscv , and interrupts as well as

branches.

■ Changes of context due to changes of control
flow. For example, the code at a branch
target location, or the handler for System
Call, System Call Vectored, or Trap interrupts,
may change the context and then return, so
that the instructions immediately following the
Branch, sc , scv , or Trap execute in a new
context.

■ Changes to resources that affect address
translation, storage protection, or storage
control attributes, when the change is
followed by the appropriate software
synchronization. Such resources include

| MSRSF TA PR US IR DR, SDR1, EAR, Page
Tables, SLBs, and TLBs.

■ Execution synchronizing and context synchro-
nizing operations.

4.2.4.1 Guarded Storage

Storage is said to be “well-behaved” if the corre-
sponding real storage exists and is not defective, and
if the effects of a single access to it are indistinguish-
able from the effects of multiple identical accesses to
it. Data and instructions can be fetched out-of-order
from well-behaved storage without causing undesired
side effects.

† Storage is said to be Guarded if either of the following
conditions is satisfied.

■ MSR bit IR or DR is 1 for instruction fetches or
† data accesses respectively, and the G bit is 1 in

the relevant Page Table Entry.

■ MSR bit IR or DR is 0 for instruction fetches or
data accesses respectively, and the optional Real
Mode Storage Control facility (see Section 10.3) is
not implemented. In this case all of storage is
Guarded for the corresponding accesses.

|

In general, storage that is not well-behaved should be
Guarded. Because such storage may represent a
control register on an I/O device or may include
locations that do not exist, an out-of-order access to
such storage may cause an I/O device to perform
unintended operations or may result in a Machine
Check.
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| The following rules apply to in-order execution of
| Load and Store instructions for which the first byte of
| the storage operand is in storage that is both Caching
| Inhibited and Guarded.

| ■ Load or Store instruction that causes an atomic
| access

| If any portion of the storage operand has been
| accessed and an External, Decrementer, or
| Imprecise mode Floating-Point Enabled exception
| is pending, the instruction completes before the
| interrupt occurs.

| ■ Load or Store instruction that causes an Align-
| ment exception, or that causes a Data Storage
| exception for reasons other than Data Address
| Compare match or Data Address Breakpoint
| match

| The portion of the storage operand that is in
| Caching Inhibited and Guarded storage is not
| accessed.

| (The corresponding rules for instructions that
| cause a Data Address Compare match or Data
| Address Breakpoint match are given in Sections
| 4.6 and 10.2 respectively.)

Architecture Note

The rules for accessing Guarded storage when an
Imprecise mode Floating-Point Enabled exception
is pending should be revisited when the architec-
ture is clarified with respect to those modes. For
example, it may be acceptable to require software
synchronization between any instruction that
could cause a floating-point enabled exception in
Imprecise mode and a subsequent instruction that
accesses Guarded storage. (A Floating-Point
Status and Control Register instruction might
provide sufficient synchronization.)

4.2.4.2 Out-of-Order Accesses to
Guarded Storage

In general, Guarded storage is not accessed out-of-
order. The only exceptions to this rule are the fol-
lowing.

Load Instruction

† If a copy of any byte of the storage operand is in a
† cache then that byte may be accessed in the cache or

in main storage.

Instruction Fetch

| If MSRIR= 0 then an instruction may be fetched if any
| of the following conditions are met.

1. The instruction is in a cache. In this case it may
be fetched from the cache or from main storage.

2. The instruction is in a real page from which an
instruction has previously been fetched, except

that if that previous fetch was based on condition
† 1 then the previously fetched instruction must

have been in the instruction cache.

3. The instruction is in the same real page as an
instruction that is required by the sequential exe-
cution model, or is in the real page immediately
following such a page.

|

Programming Note

Software should ensure that only well-behaved
storage is copied into a cache, either by
accessing as Caching Inhibited (and Guarded) all
storage that may not be well-behaved, or by
accessing such storage as not Caching Inhibited
(but Guarded) and referring only to cache blocks
that are well-behaved.

If a real page contains instructions that will be
† executed when MSRIR= 0 , software should ensure

that this real page and the next real page contain
only well-behaved storage (or, if the optional Real
Mode Storage Control Facility is implemented,
that this real page is not Guarded).

†

Engineering Note

† When MSRIR= 0 or MSRDR= 0 , performance may
be significantly degraded because all of storage
defaults to being Guarded for the corresponding
accesses. If it is important to avoid this degrada-
tion, a means of specifying portions of real
storage that are treated as non-Guarded in real

† addressing mode should be provided as described
in Section 10.3, “Real Mode Storage Control” on
page 86.

4.2.5 Real Addressing Mode

| Instruction fetches are performed in “real addressing
| mode” if instruction address translation is disabled
| (MSRIR=0) . Data accesses are performed in real
| addressing mode if data address translation is disa-
| bled (MSRDR=0) . Storage accesses in real
| addressing mode are performed in a manner that
| depends on the contents of MSRHV, LPES, and the
| RMLR and RMOR (see Section 1.7, “Logical Parti-
| tioning (LPAR)” on page 4), as described below. In
| all cases, bits 0:1 of the effective address are ignored
| and, on implementations that support a real address
| size of only m bits, m< 62, bits 2:63− m of the effective
| address may be ignored.

| ■ If MSRHV= 1 , bits 2:63 of the effective address
| are used as the real address for the access.
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| ■ If MSRHV= 0 and LPES=0, the access causes a
| storage exception as described in Section 4.9.3,
| “Storage Protection, Address Translation
| Disabled” on page 43.

| ■ If MSRHV= 0 and LPES=1, the Offset Real Mode
| Address mechanism, described in Section 4.2.5.1,
| controls the access.

| 4.2.5.1 Offset Real Mode Address

| If MSRHV= 0 and LPES=1, the access is controlled by
| the contents of the Real Mode Limit Register and
| Real Mode Offset Register, as follows.

| Real Mode Limit Register (RMLR)

| If bits 2:63 of effective address for the access are
| greater than or equal to the value (limit) represented
| by the contents of the RMLR, the access causes a
| storage exception (see Section 4.9.3). The RMLR sup-
| ports effective address limits that are powers of 2.
| The number and values of the limits supported are
| implementation-dependent.

| Real Mode Offset Register (RMOR)

| If the access is permitted by the RMLR, the effective
| address for the access is ORed with the offset repres-
| ented by the contents of the RMOR and the low-order
| m bits of the result are used as the real address for
| the access. The number and values of the offsets
| supported are implementation-dependent.

| Programming Note

| The offset specified by the RMOR should be a
| non-zero multiple of the limit specified by the
| RMLR. If these registers are set thus, ORing the
| effective address with the offset produces a result
| that is equivalent to adding the effective address
| and the offset. (The offset must not be zero,
| because real page 0 contains the fixed interrupt
| vectors and real pages 1 and 2 may be used for
| implementation-specific purposes; see Section
| 4.2.6, “Address Ranges Having Defined Uses” on
| page 29.)

| Engineering Note

| Ignoring bits 2:63− m of the effective address sim-
| plifies the real mode limit check. Specifically, if
| the minimum limit value supported by the imple-
| mentation is 2k, only bits 64− m:63− k of the effec-
| tive address need be checked.

| 4.2.5.2 Storage Control Attributes for
| Real Addressing Mode and for Implicit
| Storage Accesses

| Storage accesses in real addressing mode are per-
| formed as though all of storage had the following
| storage control attributes, except as modified by the
| optional Real Mode Storage Control facility (see
| Section 10.3) if that facility is implemented. (The
| storage control attributes are defined in Book II,
| PowerPC AS Virtual Environment Architecture.)

| ■ not Write Through Required
| ■ not Caching Inhibited, for instruction fetches
| ■ not Caching Inhibited, for data accesses if the
| Real Mode Caching Inhibited bit is set to 0;
| Caching Inhibited, for data accesses if the Real
| Mode Caching Inhibited bit is set to 1
| ■ Memory Coherence Required, for data accesses
| ■ Guarded

| Implicit accesses to the Page Table by the processor
| in performing address translation and in recording
| reference, change, and tag set information are per-
| formed as though the storage occupied by the Page
| Table had the following storage control attributes.

| ■ not Write Through Required
| ■ not Caching Inhibited
| ■ Memory Coherence Required
| ■ not Guarded

| These implicit accesses are ordered by the sync
| instruction in the same manner as are explicit storage
| accesses.

| Software must ensure that any data storage location
| that is accessed with the Real Mode Caching Inhibited
| bit set to 1 is not in the caches.

| Software must ensure that the Real Mode Caching
| Inhibited bit contains 0 whenever data address trans-
| lation is enabled and whenever the processor is not in
| hypervisor state.

| Programming Note

| Because storage accesses in real addressing
| mode do not use the SLB or the Page Table,
| accesses in this mode bypass all checking and
| recording of information contained therein (e.g.,
| storage protection checks that use information
| contained therein are not performed, and refer-
| ence, change, and tag set information is not
| recorded).

| The Real Mode Caching Inhibited bit can be used
| to permit a control register on an I/O device to be
| accessed without permitting the corresponding
| storage location to be copied into the caches.
| The bit should normally contain 0. Software
| would set the bit to 1 just before accessing the
| control register, access the control register as
| needed, and then set the bit back to 0.
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| 4.2.6 Address Ranges Having
| Defined Uses

| The address ranges described below have uses that
| are defined by the architecture.

| ■ Fixed interrupt vectors

| Except for the first 256 bytes, which are reserved
| for software use, the real page beginning at real
| address 0x0000_0000_0000_0000 is either used
| for interrupt vectors or reserved for future inter-
| rupt vectors.

| ■ Implementation-specific use

| The two contiguous real pages beginning at real
| address 0x0000_0000_0000_1000 are reserved for
| implementation-specific purposes.

| ■ Offset Real Mode interrupt vectors

| The real page beginning at the real address spec-
| ified by the RMOR is used similarly to the page
| for the fixed interrupt vectors.

| ■ System Call Vectored interrupt vectors

| The virtual page containing the byte addressed
| by effective address 0xFFFF_FFFF_FF00_3000
| contains the interrupt vectors that are invoked by
| the System Call Vectored instruction.

| ■ Page Table

| A contiguous sequence of real pages beginning at
| the real address specified by SDR1 contains the
| Page Table.

4.2.7 Invalid Real Address

| A storage access (including an access that is per-
| formed out-of-order; see Section 4.2.4) may cause a
| Machine Check if the accessed storage location con-
| tains an uncorrectable error or does not exist. In the
| latter case the Checkstop state may be entered. See
| Section 7.5.2, “Machine Check Interrupt” on page 63.

| Programming Note

| Hypervisor software must ensure that a storage
| access by a program in one partition will not
| cause a Checkstop or other system-wide event
| that could affect the integrity of other partitions
| (see Section 1.7, “Logical Partitioning (LPAR)” on
| page 4). For example, such an event could occur
| if a real address placed in a Page Table Entry or
| made accessible to a partition using the Offset
| Real Mode Address mechanism (see Section
| 4.2.5.1) does not exist.

|
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4.3 Address Translation
Overview

Figure 13 gives an overview of the address trans-
lation process in tags active mode.

| ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
| ³ Effective Address ³
| ÀÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÙ
| ³
| ³
| EA does not ³ EA matches
| match 0x0000... ³ 0x0000...
| ÚÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄ¿
| ³ ³
| SLS ³ ³ PLS
| address ³ ³ address
| ³ ³
| ³ ↓
| ³ ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
| ³ ³ Lookup in ³
| ³ ³ SLB ³
| ³ ÀÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÙ
| ³ ³
| ↓ ↓
| ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
| ³ Virtual Address ³
| ÀÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÙ
| ³
| ↓
| ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
| ³ Lookup in ³
| ³ Page Table ³
| ÀÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÙ
| ³
| ↓
| ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
| ³ Real Address ³
| ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ

Figure 13. PowerPC AS address translation, tags
active

| The effective address (EA) is the address generated
| by the processor for an instruction fetch or for a data
| access. If address translation is enabled (MSRIR= 1
| or MSRDR= 1 as appropriate), this address is passed
| to the Address Translation mechanism, which
| attempts to convert the address to a real address
| which is then used to access storage.

| The first step in address translation is to convert the
| effective address to a virtual address (VA), as
| described in Section 4.4. The second step, conversion
| of the virtual address to a real address (RA), is
| described in Section 4.5.

| If the effective address cannot be translated, a
| storage exception (see Section 4.2.1) occurs.

|

4.4 Virtual Address Generation

| PLS effective addresses (EA0:15=0x0000) in tags
| active mode and all effective addresses in tags inac-
| tive mode are translated to virtual addresses as
| described in Section 4.4.1. SLS effective addresses
| (EA0:15≠ 0x0000) are translated to virtual addresses as
| described in Section 4.4.2.

| 4.4.1 Virtual Address Generation,
| Tags Inactive Mode or PLS Address

| For a PLS effective address in tags active mode and
| for any effective address in tags inactive mode, con-
| version of a 64-bit effective address to a virtual
| address is done by searching the Segment Lookaside
| Buffer (SLB) as shown in Figure 14.

| 64-bit Effective Address

| ÚÄÄÄÄÄÄÄÄÄ36ÄÂÄÄÄÄÄ28-p ÄÂÄÄÄÄÄÄpÄÄ¿
| ³ ESID ³ Page ³ Byte ³
| ÀÄÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÙ
| 0 35 36 63-p 64-p 63
| ÀÄÄÄÄÄÂÄÄÄÄÙ ÀÄÄÄÄÂÄÄÄÙ ÀÄÄÄÄÄÂÄÙ
| ³ ³ ³
| ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ ³ ³
| ³ ³ ³
| ³ Segment Lookaside ³ ³
| ³ Buffer (SLB) ³ ³
| ↓ ³ ³
| ÚÄÄÄÄÄÄÄÄÄÂÄÂÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄ¿ ³ ³
| SLBE0 ³ ESID ³V³ VSID ³KsKpNLC³ ³ ³
| ÃÄÄÄÄÄÄÄÄÄÅÄÅÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄ́ ³ ³
| ³ ³ ³ ³ ³ ³ ³
| ³ ³ ³ ³ ³ ³ ³
| = = = = = ³ ³
| ³ ³ ³ ³ ³ ³ ³
| ³ ³ ³ ³ ³ ³ ³
| ÃÄÄÄÄÄÄÄÄÄÅÄÅÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄ́ ³ ³
| SLBEn ³ ³ ³ ³ ³ ³ ³
| ÀÄÄÄÄÄÄÄÄÄÁÄÁÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÙ ³ ³
| 0 35 37 88 89 93 ³ ³
| ÀÄÄÄÄÄÄÂÄÄÙ ³ ³
| ³ ³ ³
| ↓ ↓ ↓
| ÚÄÄÄÄÄÄÄÄÄÄÄÄÄ52ÄÂÄÄÄÄÄ28-p ÄÂÄÄÄÄÄÄpÄ¿
| ³ VSID ³ Page ³ Byte ³
| ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÙ
| IÄVirtual Page Number (VPN) ÄH

| 80-bit Virtual Address

Figure 14. Translation of 64-bit effective address to 80-bit
virtual address, tags inactive mode or PLS
address
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| 4.4.1.1 Segment Lookaside Buffer (SLB)

| The Segment Lookaside Buffer (SLB) specifies the
| mapping between Effective Segment IDs (ESIDs) and
| Virtual Segment IDs (VSIDs). The number of SLB
| entries is implementation-dependent, except that all
| implementations provide at least 32 entries.

| The contents of the SLB are managed by software,
| using the instructions described in Section 6.1.2.1,
| “SLB Management Instructions” on page 50. See
| Chapter 9, “Synchronization Requirements for Special
| Registers and for Lookaside Buffers” on page 79 for
| the rules that software must follow when updating the
| SLB.

| SLB Entry

| Each SLB entry (SLBE) maps one ESID to one VSID.
| Figure 15 shows the layout of an SLB entry.

| ESID V VSID KsKpNLC

| 0 35 37 89 93

| Bit(s) Name Description
| 0:35 ESID Effective Segment ID
| 36 V Entry valid (V=1) or
| invalid (V=0)
| 37:88 VSID Virtual Segment ID
| 89 Ks Supervisor (privileged) state
| storage key
| 90 Kp Problem state storage key
| 91 N No-execute segment if N = 1
| 92 L Virtual pages are large (L=1)
| or 4 KB (L=0)
| 93 C Class

| Figure 15. SLB Entry

| On implementations that support a virtual address
| size of only n bits, n< 80, bits 0:79− n of the VSID field
| are treated as reserved bits, and software must set
| them to zeros.

| A No-execute segment (N=1) contains data that
| should not be executed.

| The L bit selects between two virtual page sizes, 4 KB
| (p=12) and “large”. The large page size is an imple-
| mentation-dependent value that is a power of 2 and is
| in the range 8 KB : 256 MB (13≤ p≤ 28). Some imple-
| mentations may provide a means by which software
| can select the large page size from a set of several
| implementation-dependent sizes during system initial-
| ization.

| If “large page” is used in reference to real storage, it
| means the sequence of contiguous real (4 KB) pages
| to which a large virtual page is mapped.

| The Class field is used in conjunction with the slbie
| instruction (see Section 6.1.2.1).

| Software must ensure that the SLB contains at most
| one entry that translates a given effective address
| (i.e., that a given ESID is contained in no more than
| one SLB entry).

| Programming Note

| Because the virtual page size is used both in
| searching the Page Table and in forming the real
| address using the matching Page Table Entry
| (PTE) (see Section 4.5, “Virtual to Real
| Translation” on page 33), and PTEs contain no
| indication of the virtual page size, the virtual page
| size must be the same for all address translations
| that use a given VSID value. This has the fol-
| lowing consequences, which apply collectively to
| all processors that use the same Page Table.

| ■ The value of the L bit must be the same in all
| SLB entries that contain a given VSID value.

| ■ If a given PTE is used to translate both SLS
| addresses and non-SLS addresses, the value
| of the L bit must be 0 in all SLB entries that
| contain the corresponding VSID value.

| ■ Before changing the value of the L bit in an
| SLB entry, software must invalidate all SLB
| entries, TLB entries, and PTEs that contain
| the corresponding VSID value.

| Engineering Note

| It is suggested that implementations provide a
| mechanism by which software can select one of
| three different large page sizes. For example, an
| implementation might provide large page sizes of
| 64 KB, 1 MB, and 16 MB. Because this selection
| will be changed very infrequently (i.e., only during
| system initialization), the selection mechanism
| need not be directly accessible to software.

| Architecture Note

| If additional SLB entry fields are defined in the
| future, consideration should be given to retaining
| the potential to enlarge the Class field. Such
| enlargement would be in the low-order direction
| (i.e., the current Class bit would become the high-
| order bit of the enlarged Class field). Related
| considerations affect the slbie , slbmte , and
| slbmfev instructions.

| Consideration should also be given to retaining
| the property that the Class value returned by
| slbmfev can be inserted into the register con-
| taining the ESID for slbie using a single instruc-
| tion.
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| 4.4.1.2 SLB Search

| When the hardware searches the SLB, all entries are
| tested for a match with the EA. For a match to exist,
| the following must be true:

| ■ SLBEV = 1
| ■ SLBEESID = EA0:35

| If the SLB search succeeds, the virtual address (VA)
| is formed by concatenating the VSID from the
| matching SLB entry with bits 36:63 of the EA.

| The Virtual Page Number (VPN) is bits 0:79− p of the
| virtual address.

| If the SLB search fails, a segment fault occurs. This is
| an Instruction Segment exception or a Data Segment
| exception, depending on whether the effective
| address is for an instruction fetch or for a data
| access.

† 4.4.2 Virtual Address Generation,
† SLS Address

| For an SLS effective address (tags active mode), con-
version of a 64-bit effective address to a virtual

† address (VA) is done by extending the effective
| address on the left with 16 0 bits. (The SLB is not
| used.)

64-bit Effective Address

ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ40ÄÂÄÄÄÄÄ12ÄÂÄÄÄÄÄ12Ä¿
³ ESID ³ Page ³ Byte ³
ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÙ

0 39 40 51 52 63
ÀÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÙ ÀÄÄÂÄÄÄÙ ÀÄÄÂÄÄÄÙ

³ ³ ³
ÚÄÄÄ16Ä¿ ³ ³ ³
³ 0s ³ ³ ³ ³
ÀÄÄÄÄÄÄÙ ³ ³ ³
ÀÄÄÂÄÄÄÙ ³ ³ ³

³ ³ ³ ³
↓ ↓ ↓ ↓

ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ56ÄÂÄÄÄÄÄ12ÄÂÄÄÄÄÄ12Ä¿
³ VSID ³ Page ³ Byte ³
ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÙ
IÄÄÄÄ Virtual Page Number (VPN) ÄÄÄÄÄH

80-bit Virtual Address

Figure 16. Translation of 64-bit effective address to
80-bit virtual address, SLS address

| The virtual page size is 4 KB (p=12). The Virtual
| Page Number (VPN) is bits 0:67 of the virtual address.
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4.5 Virtual to Real Translation

| For all virtual addresses (PLS or SLS virtual address in tags active mode, any virtual address in tags inactive
| mode), conversion of an 80-bit virtual address to a real address is done by searching the Page Table as shown in
| Figure 17.

| ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ80-p ÄÂÄÄÄÄÄÄÄÄÄpÄ¿
| 80-bit Virtual Address ³ Virtual Page Number (VPN) ³ Byte ³
| ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÙ
| 0 13 51 52 79-p 80-p 79
| ÀÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ ÀÄÄÄÄÄÄÂÄÄÄÄÄÄÙ ÀÄÄÄÄÂÄÄÄÄÙ
| ³ ³ ³
| ³ ³ ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
| HTABORG HTABSIZE ³ ↓ ³
| ÚÄ2ÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ44ÄÂÄÄÄÄÄÄÄÄ13ÄÂÄÄÄÄÄÄÄÄÄÄÄ5Ä¿ ³ ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ11+pÄÂÄÄÄÄÄÄÄÄÄÄ28-p Ä¿ ³
| SDR1 ³// ³ xxx.................xx000.....00 ³ /// ³ ³ ³ ³ 0s ³ ³ ³
| ÀÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÙ ³ ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ ³
| 0 2 17 18 45 59 63 ³ 0 38 ³
| ÀÄÄÄÄÂÄÄÄÄÙ ÀÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÙ ÀÄÄÄÄÄÂÄÄÄÄÄÙ ³ ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ ³
| ³ ³ ³ ³ ³ ³
| ³ ³ ³ ³ ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÙ ³
| ³ ³ ↓ ³ ³ ³
| ³ ³ ÚÄÄÄÄÄÄÄÄÄ¿ ↓ ↓ ³
| ³ ³ ³ ³ ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿ ³
| ³ ³ ³ DECODE ³ ³ ³ ³
| ³ ³ ³ ³ ³ Hash Function ³ ³
| ³ ³ ÀÄÄÄÄÂÄÄÄÄÙ ³ ³ ³
| ³ ³ ³ ÀÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÙ ³
| ³ ³ ³ ³ ³
| ³ ³ Mask ↓ ↓ ³
| ³ ³ ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ28Ä¿ ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ39Ä¿ ³
| ³ ³ ³ 000.....00111.....11 ³ ³ ³ ³
| ³ ³ ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ ³
| ³ ³ 0 27 0 27 28 38 ³
| ³ ³ ÀÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÙ ÀÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÙ ÀÄÄÄÄÄÂÄÄÄÄÄÙ ³
| ³ ³ ³ ³ ³ ³
| ³ ³ ³ ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ ³ ³
| ³ ³ ³ ³ ³ ³
| ³ ÀÄÄÄÄÄÄÄÄÄ¿ ↓ ↓ ³ ³
| ³ ³ ÚÄÄÄÄÄÄÄÄÄ¿ ³ ³
| ³ ³ ³ ³ ³ ³
| ÀÄÄÄÄÄÄÄ¿ ³ ³ AND ³ ³ ³
| ³ ³ ³ ³ ³ ³
| ³ ³ ÀÄÄÄÄÂÄÄÄÄÙ ³ ³
| ³ ³ ³ ³ ³
| ³ ³ ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ ³ ³
| ³ ³ ³ ³ ³
| ³ ³ ³ ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ ³
| ³ ³ ³ ³ ³
| ³ ³ ³ ³ ³
| ³ ↓ ↓ ³ ³
| ³ ÚÄÄÄÄÄÄÄÄÄ¿ ³ Page Table ³
| ³ ³ ³ ³ ³
| ³ ³ OR ³ ³ ÄÄH| | IÄÄ 16 bytes ³
| ³ ³ ³ ³ / ÚÄÄÄÄÄÄÂÄÄÄÄÄÄÂÄÄÄÄÄÄÂÄÄÄÄÄÄÂÄÄÄÄÄÄÂÄÄÄÄÄÄÂÄÄÄÄÄÄÂÄÄÄÄÄÄ¿ ³
| ³ ÀÄÄÄÄÂÄÄÄÄÙ ³ / ³ PTE0 ³ ³ ³ ³ ³ ³ ³ PTE7 ³ PTEG0 ³
| ³ ³ ³ / ÃÄÄÄÄÄÄÅÄÄÄÄÄÄÅÄÄÄÄÄÄÅÄÄÄÄÄÄÅÄÄÄÄÄÄÅÄÄÄÄÄÄÅÄÄÄÄÄÄÅÄÄÄÄÄÄ´ ³
| ↓ ↓ ↓ / ³ ³ ³ ³ ³ ³ ³ ³ ³ ³
| ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄ16ÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ28ÄÂÄÄÄÄÄÄÄÄÄÄ11ÄÂÄÄÄÄÄ7Ä¿ / ³ ³ ³ ³ ³ ³ ³ ³ ³ ³
| ³ ³ ³ ³0000000 ³ = = = = = = = = = ³
| ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÙ \ ³ ³ ³ ³ ³ ³ ³ ³ ³ ³
| \ ³ ³ ³ ³ ³ ³ ³ ³ ³ ³
| 62-bit Real Address of Page Table Entry Group \ ÃÄÄÄÄÄÄÅÄÄÄÄÄÄÅÄÄÄÄÄÄÅÄÄÄÄÄÄÅÄÄÄÄÄÄÅÄÄÄÄÄÄÅÄÄÄÄÄÄÅÄÄÄÄÄÄ´ ³
| \ ³ ³ ³ ³ ³ ³ ³ ³ ³ PTEGn ³
| \ ÀÄÄÄÄÄÄÁÄÄÄÄÄÄÁÄÄÄÄÄÄÁÄÄÄÄÄÄÁÄÄÄÄÄÄÁÄÄÄÄÄÄÁÄÄÄÄÄÄÁÄÄÄÄÄÄÙ ³
| ³
| IÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ 128 bytes ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄH ³
| ³
| Page Table Entry (PTE) ³
| 16 bytes ³
| ³
| ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ57ÄÂÄÄÄÄÄÂÄÄÂÄÄÂÄÄ¿ÚÄÄÂÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ50ÄÂÄÄÄÄÂÄÄÂÄÄÂÄÄÂÄÄÄÄÄÄÂÄÄÂÄÄÄÄ¿ ³
| ³ AVPN ³ SW ³/ ³H ³V ³³pp³TS³ Real Page Number (RPN) ³ // ³AC³R ³C ³ WIMG ³N ³ pp ³ ³
| ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÁÄÄÁÄÄÁÄÄÙÀÄÄÁÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÁÄÄÁÄÄÁÄÄÁÄÄÄÄÄÄÁÄÄÁÄÄÄÄÙ ³
| 0 56 60 62 63 0 1 2 63 Äp 52 54 55 56 57 60 61 63 ³
| ÀÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ ³
| ³ ³
| ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿ ³
| ³ ³
| ↓ ↓
| ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ62-p ÄÂÄÄÄÄÄÄÄÄÄpÄ¿
| 62-bit Real Address ³ RPN ³ Byte ³
| ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÙ

Figure 17. Translation of 80-bit virtual address to 62-bit real address

|
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4.5.1 Page Table

The Hashed Page Table (HTAB) is a variable-sized
† data structure that specifies the mapping between

Virtual Page Numbers and Real Page Numbers. The
HTAB's size must be a multiple of 4 KB, its starting
address must be a multiple of its size, and it must be

† located in storage having the storage control attri-
† butes that are used for implicit accesses to it (see
† Section 4.2.5.2).

† The HTAB contains Page Table Entry Groups (PTEGs).
A PTEG contains 8 Page Table Entries (PTEs) of 16
bytes each; each PTEG is thus 128 bytes long. PTEGs
are entry points for searches of the Page Table.

See Section 6.2, “Page Table Update Synchronization
Requirements” on page 57 for the rules that software
must follow when updating the Page Table.

Programming Note

| The Page Table must be treated as a hypervisor
| resource (see Section 1.7, “Logical Partitioning
| (LPAR)” on page 4), and therefore must be placed
| in real storage to which only the hypervisor has
| write access. Moreover, the contents of the Page
| Table must be such that non-hypervisor software
| cannot modify storage that contains hypervisor
| programs or data. Finally, to protect against
| incorrect use of the L bit of SLB entries by non-
| hypervisor software, real storage that is mapped
| by the Page Table must be allocated to partitions
| in units each of which has a size that is a multiple
| of 2P bytes and is aligned at a 2P byte boundary,
| where 2P is the maximum large page size for any
| processor in the system. (Incorrect use of the L
| bit could cause the virtual address for a large
| virtual page to be translated using a PTE that was
| created to translate a 4 KB virtual page. If 2P

| were the maximum large page size for the parti-
| tion, instead of for the system, it might be neces-
| sary to change a processor's large page size as
| part of reassigning the processor to a different
| partition.)

Page Table Entry

Each Page Table Entry (PTE) maps one VPN to one
† RPN. Figure 18 shows the layout of a PTE.

0 56 60 62 63

AVPN SW / H V

| pp TS RPN // AC R C WIMG N pp

| 0 1 2 51 54 55 5657 60 61 62 63

Dword Bit(s) Name Description
0 0:56 AVPN Abbreviated Virtual Page

Number
† 57:60 SW Available for software use

62 H Hash function identifier
63 V Entry valid (V=1)

or invalid (V=0)
1 0 pp Page Protection bit 0

1 TS Tag Set bit
| 2:51 RPN Real Page Number

54 AC Address Compare bit
55 R Reference bit
56 C Change bit
57:60 WIMG Storage control bits

| 61 N No-execute page if N = 1
62:63 pp Page protection bits 1:2

All other fields are reserved.

Figure 18. Page Table Entry

| If p≤ 23, the Abbreviated Virtual Page Number (AVPN)
| field contains bits 0:56 of the VPN. Otherwise bits
| 0:79− p of the AVPN field contain bits 0:79− p of the
| VPN, and bits 80− p:56 of the AVPN field must be
| zeros.

| Programming Note

| If p≤ 23, the AVPN field omits the low-order 23− p
| bits of the VPN. These bits are not needed in the
| PTE, because the low-order 11 bits of the VPN are
| always used in selecting the PTEGs to be
| searched (see Section 4.5.3).

On implementations that support a virtual address
| size of only n bits, n< 80, bits 0:79− n of the AVPN field
| must be zeros.

| The RPN field contains the page number of the real
| page that contains the first byte of the block of real
| storage to which the virtual page is mapped. If p> 12,
| the low-order p− 12 bits of the RPN field (bits 64− p:51
| of doubleword 1 of the PTE) must be 0. On implemen-
| tations that support a real address size of only m bits,
| m< 62, bits 0:61− m of the RPN field must be zeros.
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| Programming Note

| For a large virtual page, the high-order 62− p bits
| of the RPN field (bits 0:61− p) comprise the large
| real page number.

| Engineering Note

| The requirement that if p> 12 the low-order p− 12
| bits of the RPN field must be 0 permits bits 34:49
| of the 62-bit real address to be formed by ORing
| RPN34:49 with 28− p0 || VPN80− p:67 (equivalently, by
| ORing RPN34:49 with 28− p0 || EA64− p:51), instead of
| by concatenating as described in Section 4.5.3.
| (To protect against incorrect use of the L bit of
| SLB entries by non-hypervisor software, bits 34:49
| of the 62-bit real address must not be formed by
| adding the two components.)

| A No-execute page (N=1) contains data that should
| not be executed.

†

Page Table Size

The number of entries in the Page Table directly
affects performance because it influences the hit ratio

† in the Page Table and thus the rate of page faults. If
the table is too small, it is possible that not all the
virtual pages that actually have real pages assigned
can be mapped via the Page Table. This can happen
if too many hash collisions occur and there are more
than 16 entries for the same primary/secondary pair
of PTEGs. While this situation cannot be guaranteed
not to occur for any size Page Table, making the Page

† Table larger than the minimum size (see Section
† 4.5.2) will reduce the frequency of occurrence of such

collisions.

Programming Note

| If large pages are not used, it is recommended
that the number of PTEGs in the Page Table be at
least half the number of real pages to be

† accessed. For example, if the amount of real
storage to be accessed is 231 bytes (2 GB), then
we have 231− 12= 2 19 real pages. The minimum
recommended Page Table size would be 218

PTEGs, or 225 bytes (32 MB).

†

4.5.2 Storage Description Register 1

The SDR1 register is shown in Figure 19.

| // HTABORG /// HTABSIZE

| 0 2 45 59 63

Bits Name Description
| 2:45 HTABORG Real address of Page Table

59:63 HTABSIZE Encoded size of Page Table

All other fields are reserved.

Figure 19. SDR1

| SDR1 is a hypervisor resource; see Section 1.7,
| “Logical Partitioning (LPAR)” on page 4.

The HTABORG field in SDR1 contains the high-order
| 44 bits of the 62-bit real address of the Page Table.

The Page Table is thus constrained to lie on a 218 byte
(256 KB) boundary at a minimum. At least 11 bits
from the hash function (see Figure 17 on page 33)
are used to index into the Page Table. The minimum
size Page Table is 256 KB (211 PTEGs of 128 bytes
each).

The Page Table can be any size 2n bytes where
18≤ n≤ 46. As the table size is increased, more bits
are used from the hash to index into the table and the
value in HTABORG must have more of its low-order
bits equal to 0.

The HTABSIZE field in SDR1 contains an integer
† giving the number of bits (in addition to the minimum
† of 11 bits) from the hash that are used in the Page

Table index. This number must not exceed 28.
HTABSIZE is used to generate a mask of the form
0b00...011...1, which is a string of 28 − HTABSIZE
0-bits followed by a string of HTABSIZE 1-bits. The
1-bits determine which additional bits (beyond the
minimum of 11) from the hash are used in the index

† (see Figure 17 on page 33). The number of low-order
† 0 bits in HTABORG must be greater than or equal to
† the value in HTABSIZE.

| On implementations that support a real address size
| of only m bits, m< 62, bits 0:61− m of the HTABORG
| field are treated as reserved bits, and software must
| set them to zeros.
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Programming Note

†

| If neither PLS addresses nor tags inactive mode
| are used, let n=64. If either PLS addresses or
| tags inactive mode are used, let n equal the
| virtual address size (in bits) supported by the
| implementation. If n< 67, software should set the
| HTABSIZE field to a value that does not exceed
| n− 39. Because the high-order 80− n bits of the
| VSID are zeros (SLS address) or are assumed to
| be zeros (PLS address or tags inactive mode), the
| hash value used in the Page Table search will
| have the high-order 67− n bits either all 0s
| (primary hash; see Section 4.5.3) or all 1s (sec-
| ondary hash). If HTABSIZE> n− 39, some of these
| hash value bits will be used to index into the Page
| Table, with the result that certain PTEGs will not
| be searched.

Engineering Note

† Because software must ensure that the number of
† low-order 0 bits in HTABORG is greater than or
| equal to the value in HTABSIZE, the 62-bit real
† address of the PTEG can be formed by ORing the

various components.

Example:

Suppose that the Page Table is 16,384 (214) 128-byte
PTEGs, for a total size of 221 bytes (2 MB). A 14-bit
index is required. Eleven bits are provided from the
hash to start with, so 3 additional bits from the hash
must be selected. Thus the value in HTABSIZE must
be 3 and the value in HTABORG must have its low-
order 3 bits (bits 43:45 of SDR1) equal to 0. This
means that the Page Table must begin on a 23 + 1 1 + 7

= 221 = 2 MB boundary.

† 4.5.3 Page Table Search

When the hardware searches the Page Table, the
accesses are performed as described in Section 4.2.5,
“Real Addressing Mode” on page 27.

An outline of the HTAB search process is shown in
Figure 17 on page 33. The detailed algorithm is as
follows.

†

1. Primary Hash:
A 39-bit hash value is computed by Exclusive

| ORing bits 13:51 of the VPN with a 39-bit value
| formed by concatenating 1 1 + p 0-bits with the
| low-order 28− p bits of the VPN. The 62-bit real

address of a PTEG is formed by concatenating the
following values:

| ■ Bits 2:17 of SDR1 (the high-order 16 bits of
| HTABORG).

■ Bits 0:27 of the 39-bit hash value ANDed with
the mask generated from bits 59:63 of SDR1
(HTABSIZE) and then ORed with bits 18:45 of
SDR1 (the low-order 28 bits of HTABORG).

■ Bits 28:38 of the 39-bit hash value.
■ Seven 0-bits.

This operation identifies a particular PTEG, called
the “primary PTEG”, whose eight PTEs will be
tested.

2. Secondary Hash:
A 39-bit hash value is computed by taking the
one's complement of the Exclusive OR of bits

| 13:51 of the VPN with a 39-bit value formed by
| concatenating 1 1 + p 0-bits with the low-order
| 28− p bits of the VPN. The 62-bit real address of

a PTEG is formed by concatenating the following
values:

| ■ Bits 2:17 of SDR1 (the high-order 16 bits of
| HTABORG).

■ Bits 0:27 of the 39-bit hash value ANDed with
the mask generated from bits 59:63 of SDR1
(HTABSIZE) and then ORed with bits 18:45 of
SDR1 (the low-order 28 bits of HTABORG).

■ Bits 28:38 of the 39-bit hash value.
■ Seven 0-bits.

This operation identifies the “secondary PTEG”.

3. As many as 16 PTEs in the two identified PTEGs
| are tested for a match with the VPN. Let q =
| minimum(5, 28− p). For a match to exist, the fol-

lowing must be true:

■ PTEH= 0 for the primary PTEG, 1 for the sec-
ondary PTEG

■ PTEV= 1
| ■ PTEAVPN0:51

= V A 0:51

| ■ if p< 28, PTEAVPN52:51+q
= V A 52:51+q

If one or more matches are found, the search is
successful; otherwise it fails. If more than one
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match is found, the matching entries must be
identical in all defined fields with the exception of
SW, H, AC, R, C, and TS. If they are, one of the
matching entries is used, for the translation, Data
Address Compare, and the setting of the R, C,
and TS bits. If they are not, the translation and
Data Address Compare are undefined, as is the
setting of the R, C, and TS bits in the matching
entries, and the remainder of this section does
not apply.

| If the Page Table search succeeds, the real address
| (RA) is formed by concatenating bits 0:61− p of the
| RPN from the matching PTE with bits 64− p:63 of the
| effective address (the byte offset).

| RA=RPN0:61− p || EA64− p:63

| For SLS addresses, the N (No-execute) value used for
| the storage access is the N bit of the matching PTE.
| For PLS addresses and tags inactive mode addresses,
| the N value used for the storage access is the result
| of ORing the N bit from the matching PTE with the N
| bit from the SLB entry that was used to translate the
| effective address.

† If the Page Table search fails, a page fault occurs.
† This is an Instruction Storage exception or a Data
† Storage exception, depending on whether the effec-

tive address is for an instruction fetch or for a data
access.

Programming Note

To obtain the best performance, Page Table
Entries should be allocated beginning with the
first empty entry in the primary PTEG, or with the
first empty entry in the secondary PTEG if the
primary PTEG is full.

Translation Lookaside Buffer

Conceptually, the Page Table is searched by the
address relocation hardware to translate every refer-
ence. For performance reasons, the hardware usually
keeps a Translation Lookaside Buffer (TLB) that holds
PTEs that have recently been used. The TLB is
searched prior to searching the Page Table. As a
consequence, when software makes changes to the
Page Table it must perform the appropriate TLB inval-
idate operations to maintain the consistency of the

† TLB with the Page Table (see Section 6.2).

Programming Notes

1. Page Table entries may or may not be cached
in a TLB.

2. It is possible that the hardware implements
more than one TLB, such as one for data and
one for instructions. In this case the size and
shape of the TLBs may differ, as may the
values contained therein.

3. Use the tlbie or tlbia instruction to ensure
that the TLB no longer contains a mapping for
a particular virtual page.

4.6 Data Address Compare

| The Data Address Compare mechanism provides a
| means of detecting load and store accesses to a
| virtual page.

† The Data Address Compare mechanism is controlled
† by the Address Compare Control Register (ACCR),

and by a bit in each Page Table Entry (PTEAC).

| /// DWDR

| 0 62 63

| Bit Name Description
|
† 62 DW Data Write Enable
† 63 DR Data Read Enable

All other fields are reserved.

| Figure 20. Address Compare Control Register

† A Data Address Compare match occurs for a Load or
† Store instruction if, for any byte accessed,

† ■ PTEAC= 1 for the PTE that translates the virtual
† address, and

† ■ the instruction is a Store and ACCRDW= 1 , or the
† instruction is a Load and ACCRDR= 1 .

|

| If the above conditions are satisfied, a match also
| occurs for dcbz , eciwx , and ecowx . For the purpose
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| of determining whether a match occurs, eciwx is
| treated as a Load, and dcbz and ecowx are treated as
| Stores.

| If the above conditions are satisfied, it is undefined
| whether a match occurs in the following cases.

| ■ The instruction is Store Conditional but the store
| is not performed.
| ■ The instruction is a Load/Store String of zero
| length.

| The Cache Management instructions other than dcbz
| never cause a match.

| A Data Address Compare match causes a Data
| Storage exception (see Section 7.5.3, “Data Storage
| Interrupt” on page 64). If a match occurs, some or all
| of the bytes of the storage operand may have been
| accessed; however, if a Store, dcbz , or ecowx instruc-
| tion causes the match, the bytes of the storage
| operand that are in a virtual page with PTEAC= 1 are
| not altered.

| Programming Note

† The Data Address Compare mechanism does not
† apply to instruction fetches, or to data accesses in
| real addressing mode (MSRDR=0) .

| If a Data Address Compare match occurs for a
| Load instruction for which any byte of the storage
| operand is in storage that is both Caching Inhib-
| ited and Guarded, or for an eciwx instruction, it
| may not be safe for software to restart the
| instruction.

| Engineering Note

| In the case of a Data Address Compare match, it
| is preferable not to access any bytes of the
| storage operand at or after the first matching
| byte. This makes the Data Address Compare
| mechanism more useful for debugging.

4.7 Storage Control Bits

When address translation is enabled, each storage
access is performed under the control of the Page
Table Entry used to translate the effective address.
Each Page Table Entry contains storage control bits
that specify the presence or absence of the corre-
sponding storage control attribute (see the section
entitled “Storage Control Attributes” in Book II,
PowerPC AS Virtual Environment Architecture) for all
accesses translated by the entry, as shown in
Figure 21. The bits are called W, I, M, and G.

Figure 21. Storage control bits

| Instructions are not fetched from storage for which
| the G bit in the Page Table Entry is set to 1 (see
| Section 4.9, “Storage Protection” on page 42).

Programming Note

In a uniprocessor system in which only the
processor has caches, correct coherent execution
does not require the processor to access storage
as Memory Coherence Required, and accessing
storage as not Memory Coherence Required may
give better performance.

Bit Storage Control Attribute

| W1| 0 − not Write Through Required
1 − Write Through Required

I 0 − not Caching Inhibited
1 − Caching Inhibited

| M2| 0 − not Memory Coherence Required
1 − Memory Coherence Required

G 0 − not Guarded
1 − Guarded

| 1. Support for the 1 value of the W bit is optional.
| Implementations that do not support the 1 value
| treat the bit as reserved and assume its value
| to be 0.
| 2. Support for the 0 value of the M bit is optional.
| Implementations that do not support the 0 value
| assume the value of the bit to be 1, and may
| either preserve the value of the bit or write it as 1.

38 PowerPC AS Operating Environment Architecture



IBM Confidential - Feb. 24, 1999

Engineering Note

Mechanisms other than processors (e.g., I/O
devices) usually issue memory requests that are
coherent. Such a mechanism may use the same
coherence protocol that the processors use. In
this case, the mechanism's use of the coherence
protocol for storage that is shared with the
processors may be independent of whether the
processors access that storage as Memory Coher-
ence Required.

Engineering Note

Because instruction storage need not be con-
sistent with data storage, it is permissible for an
implementation to ignore the M bit for instruction
fetches.

Treating instruction fetches as noncoherent may
result in better performance in an implementation
in which a coherent storage request has greater
latency or overhead than a noncoherent storage
request. However, care must be taken to avoid
using a copy of a storage location that was
fetched noncoherently (in response to an instruc-
tion fetch) to satisfy a subsequent coherent data
request caused by a Load, Store, or Cache Man-
agement instruction. Also, care must be taken to
ensure that the instruction sequence for instruc-
tion modification that is shown in the section enti-

† tled “Instruction Cache Instruction” in Book II has
the effects described there.

In system designs, consideration must be given to
whether instruction fetches are to be noncoherent
and, if so, how this choice affects the implementa-
tion of I/O subsystems and I/O caches. For
example, if the processor ignores the M bit for
instruction fetches, the system could ensure that
instructions being copied into main storage have
been flushed from any I/O cache before the
program using them is restarted.

4.7.1 Storage Control Bit Restrictions

All combinations of W, I, M, and G values are sup-
ported except those for which both W and I are 1.

Programming Note

If an application program requests both the Write
Through Required and the Caching Inhibited attri-
butes for a given storage location, the operating
system should set the I bit to 1 and the W bit to 0.

The value of the I bit must be the same for all
accesses to a given real page.

| The value of the W bit must be the same for all
| accesses to a given real page.

4.7.2 Altering the Storage Control Bits

When changing the value of the I bit for a given real
page from 0 to 1, software must set the I bit to 1 and
then flush all copies of locations in the page from the
caches using dcbf and icbi before permitting any
other accesses to the page.

When changing the value of the W bit for a given real
page from 0 to 1, software must ensure that no
processor modifies any location in the page until after
all copies of locations in the page that are considered
to be modified in the data caches have been copied to
main storage using dcbst or dcbf .

When changing the value of the M bit for a given real
page, software must ensure that all data caches are
consistent with main storage. The actions required to
do this to are system-dependent.

Programming Note

For example, when changing the M bit in some
directory-based systems, software may be
required to execute dcbf instructions on each
processor to flush all storage locations accessed
with the old M value before permitting the
locations to be accessed with the new M value.

Additional requirements for changing the storage
control bits are given in Section 6.2.1, “Page Table
Updates” on page 57 and in Chapter 9, “Synchroni-
zation Requirements for Special Registers and for
Lookaside Buffers” on page 79.
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4.8 Reference, Change, and Tag
Set Recording

If address translation is enabled (MSRIR= 1 or
MSRDR=1) , Reference (R), Change (C), and Tag Set
(TS) bits are maintained in the Page Table Entry that

| is used to translate the virtual address. If the storage
| operand of a Load or Store instruction crosses a
| virtual page boundary, the accesses to the compo-
| nents of the operand in each page are treated as sep-
| arate and independent accesses to each of the pages
| for the purpose of setting the Reference, Change, and
| Tag Set bits.

† Reference, Change, and Tag Set bits are set by the
| processor as described below. Setting the bits need
| not be atomic with respect to performing the access
| that caused the bits to be updated. An attempt to
| access storage may cause one or more of the bits to
| be set (as described below) even if the access is not
| performed. The bits are updated in the Page Table

Entry if the new value would otherwise be different
from the old, as determined by examining either the
Page Table Entry or any corresponding lookaside
information maintained by the processor (e.g., in a
TLB).

Reference Bit

| The Reference bit is set to 1 if the corresponding
| access (load, store, or instruction fetch) is required
| by the sequential execution model and is per-
| formed. Otherwise the Reference bit may be set to
| 1 if the corresponding access is attempted, either
| in-order or out-of-order, even if the attempt causes
| an exception.

Change Bit

| The Change bit is set to 1 if a Store instruction is
| executed and the store is performed. Otherwise
| the Change bit may be set to 1 if a Store instruction
| is executed and the store is permitted by the
| storage protection mechanism and would not cause
| an EAO exception and, if the Store instruction is
| executed out-of-order, the instruction would be

required by the sequential execution model in the
absence of the following kinds of interrupts:

■ system-caused interrupts (i.e., System Reset,
Machine Check, External, and Decrementer
interrupts)

■ Floating-Point Enabled Exception type Program
interrupts when the processor is in an Impre-
cise mode

|

| Programming Note

| Even though the execution of a Store instruc-
| tion causes the Change bit to be set to 1, the
| store might not be performed or might be only
| partially performed in cases such as the fol-
| lowing.

| ■ A Store Conditional instruction (stwcx. or
| stdcx. ) is executed, but no store is per-
| formed.

| ■ A Store String Word Indexed instruction
| (stswx ) or Store String Doubleword
| Indexed instruction (stsdx ) is executed, but
| the length is zero.

| ■ The Store instruction causes a Data
| Storage exception (for which setting the
| Change bit is not prohibited).

| ■ The Store instruction causes an Alignment
| exception.

| ■ The Page Table Entry that translates the
| virtual address of the storage operand is
| altered such that the new contents of the
| Page Table Entry preclude performing the
| store (e.g., the PTE is made invalid, or the
| PP bits are changed).

| For example, when executing a Store
| instruction, the processor may search the
| Page Table for the purpose of setting the
| Change bit and then reexecute the instruc-
| tion. When reexecuting the instruction, the
| processor may search the Page Table a
| second time. If the Page Table Entry has
| meanwhile been altered, by a program exe-
| cuting on another processor, the second
| search may obtain the new contents, which
| may preclude the store.

| ■ A system-caused interrupt occurs before
| the store has been performed.

Tag Set Bit

There are two implementation alternatives for this
bit.

† 1. The Tag Set bit is not altered by the processor.

| 2. If a stq instruction is executed when XER43= 1 ,
| the Tag Set bit is or may be set to 1 under the
| same conditions as those in which the Change
| bit is or may be set to 1.

|

Figure 22 on page 41 summarizes the rules for
setting the Reference, Change, and Tag Set bits. The
table applies to each atomic storage reference. It
should be read from the top down; the first line
matching a given situation applies. For example, if
stwcx. fails due to both a storage protection violation
and the lack of a reservation, the Change bit is not
altered.
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In the figure, the “ Load-type” instructions are the
† Load instructions described in Books I and II, eciwx ,
† and the Cache Management instructions that are
† treated as Loads. The “ Store-type” instructions are
† the Store instructions described in Books I and II,

ecowx , and the Cache Management instructions that
are treated as Stores. The “ordinary” Load and Store

† instructions are those described in Books I and II.
† “set” means “set to 1”.

†

Status of Access R C TS

|
Effective Address Overflow exception Acc1 No No

|
Storage protection violation Acc1 No No
Out-of-order I-fetch or Load-type inst'n Acc No No
Out-of-order Store-type inst'n

Would be required by the sequential
execution model in the absence of
system-caused or imprecise

| interrupts3 Acc Acc1 2 Acc1 4 6

| All other cases Acc No No
| In-order Load-type or Store-type inst'n,
| access not performed
| Load-type inst'n Acc No No
| Store-type inst'n Acc Acc2 Acc4 6

| Other in-order access
| I-fetch Yes No No

Ordinary Load, eciwx Yes No No
stq Yes Yes Yes5

| Other ordinary Store, ecowx , dcbz Yes Yes No
| icbi, dcbt, dcbtst, dcbst, dcbf Acc No No

| “Acc” means that it is acceptable to set the bit.
1 It is preferable not to set the bit.

| 2 If C is set, R is also set unless it is already set.
|

3 For Floating-Point Enabled Exception type Program
† interrupts, “imprecise” refers to the exception mode

controlled by MSRFE0 FE1.
| 4 If TS is set, R and C are also set unless they are
| already set.
† 5 TS is set only if XER43= 1 .
† 6 TS may be set only if the instruction is stq and XER43= 1 .

Figure 22. Setting the Reference, Change, and Tag Set bits

Engineering Note

Any implementation-specific interrupt used to
emulate instructions in software can be handled in

| a manner similar to a system-caused interrupt.
That is, if the hardware can determine that the

| instruction to be emulated will not cause a precise
| architected interrupt then the Change and Tag Set
| bits can be set out-of-order past the instruction to
| be emulated under the same conditions as these
| bits can be set past a potential system-caused
| interrupt.

When the hardware updates the Reference, Change,
and Tag Set bits in the Page Table Entry, the
accesses are performed as described in Section 4.2.5,

| “Real Addressing Mode” on page 27. The accesses
| may be performed using operations equivalent to a
| store to a byte, halfword, word, or doubleword, and
| are not necessarily performed as an atomic
| read/modify/write of the affected bytes.

These Reference, Change, and Tag Set bit updates
are not necessarily immediately visible to software.
Executing a sync instruction ensures that all Refer-
ence, Change, and Tag Set bit updates associated
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| with address translations that were performed, by the
| processor executing the sync instruction, before the
| sync instruction is executed will be performed with
† respect to that processor before the sync instruction's

memory barrier is created. There are additional
requirements for synchronizing Reference, Change,
and Tag Set bit updates in multiprocessor systems;
see Section 6.2.1, “Page Table Updates” on page 57.

| Programming Note

| Because the sync instruction is execution synchro-
| nizing, the set of Reference, Change, and Tag set
| bit updates that are performed with respect to the
| processor executing the sync instruction before
| the memory barrier is created includes all Refer-
| ence, Change, and Tag Set bit updates associated
| with instructions preceding the sync instruction.

If software refers to a Page Table Entry when
MSRDR= 1 , Reference, Change, and Tag Set bits in
the associated Page Table Entries are set as for ordi-
nary loads and stores. See Section 6.2.1 for the rules
software must follow when updating Reference,
Change, and Tag Set bits.

Engineering Note

| If the hardware updates a Reference, Change, or
| Tag Set bit in the Page Table Entry without using
| an atomic read/modify/write operation, care must
| be taken to avoid overwriting an update to any of
| these bits by another processor. Thus the datum
| written to the Page Table Entry must not contain a
| 0 value for any of these bits.

| Subject to the preceding requirement, when the
| hardware updates the Reference, Change, or Tag
| Set bit in the Page Table Entry it is permissible to
| store the corresponding byte, halfword, word, or
| doubleword, with the relevant subset of these
| three bits updated, from any lookaside information
| (e.g., TLB) maintained by the processor.

Engineering Note

Since most TLB reloads do not require altering
† the Reference, Change, or Tag Set bit in the Page
† Table Entry (PTE), it is suggested that on a TLB
† miss the search for the PTE be done without
† fetching the PTEs for exclusive access. This will

reduce cache thrashing due to TLB reloads. It is
assumed that a nonexclusive request for a PTE
will be returned with exclusive access if no other
processor has a copy.

4.9 Storage Protection

The storage protection mechanism provides a means
| for selectively granting instruction fetch access,

granting read access, granting read/write access, and
prohibiting access to areas of storage based on a
number of control criteria.

| The operation of the protection mechanism depends
| on whether address translation is enabled (MSRIR= 1
| or MSRDR= 1 , as appropriate for the access) or disa-
| bled (MSRIR= 0 or MSRDR= 0 , as appropriate for the
| access) and, if address translation is enabled, on
| whether the processor is in tags active mode or tags
| inactive mode.

| If an instruction fetch is not permitted by the pro-
| tection mechanism, an Instruction Storage exception
| is generated. If a data access is not permitted by the
| protection mechanism, a Data Storage exception is
| generated. (See Section 4.2.1, “Storage Exceptions”
| on page 24.)

| When address translation is enabled, a protection
| domain is a range of unmapped effective addresses, a
| virtual page, or a segment that is not an SLS
| segment. When address translation is disabled and
| LPES=1 there are two protection domains: the set of
| effective addresses that are less than the value speci-
| fied by the RMLR, and all other effective addresses.
| When address translation is disabled and LPES=0 the
| entire effective address space comprises a single pro-
| tection domain. A protection boundary is a boundary

between protection domains.

| 4.9.1 Storage Protection, Address
| Translation Enabled, Tags Active

| When address translation is enabled and the
| processor is in tags active mode, the protection mech-
| anism is controlled by the following.

† ■ MSRPR, which distinguishes between supervisor
† (privileged) state and problem state
† ■ MSRUS, which distinguishes between system state
† and user state
† ■ PP, page protection bits 0:2 in the Page Table

Entry used to translate the effective address
| ■ For instruction fetches only:
| — the N (No-execute) value used for the access
| (see Section 4.5.3)
| — PTEG, the G (Guarded) bit in the Page Table
| Entry used to translate the effective address

| Using the above values, the following rules are
| applied.

| 1. For an instruction fetch, the access is not per-
| mitted if the N value is 1 or if PTEG= 1 .
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| 2. For any access except an instruction fetch that is
| not permitted by rule 1, Figure 23 is applied. An
| instruction fetch is permitted for any entry in the
| figure except “no access”; it is implementa-
| tion-dependent whether an instruction fetch is
| permitted for an entry with “no access”. A load
| is permitted for any entry except “no access”. A
| store is permitted only for entries with
| “read/write”.

P R = 1 & P R = 1 & P R = 0 & P R = 0 & PP
U S = 1 U S = 0 U S = 1 U S = 0

no access read/write no access read/write 000
read only read/write read only read/write 001
read/write read/write read/write read/write 010
read only read only read only read only 011
no access no access read/write read/write 100
read only read only read/write read/write 101

|
† All PP encodings not shown above are reserved.
| The results of using reserved PP encodings are
| boundedly undefined.

Figure 23. PP bit protection states, address trans-
lation enabled, tags active

†

| 4.9.2 Storage Protection, Address
| Translation Enabled, Tags Inactive

| When address translation is enabled and the
| processor is in tags inactive mode, the protection
| mechanism is controlled by the following.

■ MSRPR, which distinguishes between supervisor
† (privileged) state and problem state
† ■ Ks and Kp, the supervisor (privileged) state and
| problem state storage key bits in the SLB entry

used to translate the effective address
† ■ PP, page protection bits 0:2 in the Page Table

Entry used to translate the effective address
| ■ For instruction fetches only:
| — the N (No-execute) value used for the access
| (see Section 4.5.3)
| — PTEG, the G (Guarded) bit in the Page Table
| Entry used to translate the effective address

| Using the above values, the following rules are
| applied.

| 1. For an instruction fetch, the access is not per-
| mitted if the N value is 1 or if PTEG= 1 .

| 2. For any access except an instruction fetch that is
| not permitted by rule 1, a “Key” value is com-
| puted using the following formula:

Key ← (K p & MSRPR) | (K s & ¬MSRPR)

| Using the computed Key, Figure 24 is applied.
| An instruction fetch is permitted for any entry in
| the figure except “no access”. A load is per-

| mitted for any entry except “no access”. A store
| is permitted only for entries with “read/write”.

† Key PP Access Authority

† 0 - 00 read/write
† 0 - 01 read/write
† 0 010 read/write
† 0 011 read only

† 1 - 00 no access
† 1 - 01 read only
† 1 010 read/write
† 1 011 read only

- PP0 may be 0 or 1.

| All PP encodings not shown above are reserved.
| The results of using reserved PP encodings are
| boundedly undefined.

Figure 24. PP bit protection states, address trans-
lation enabled, tags inactive

| 4.9.3 Storage Protection, Address
| Translation Disabled

| When address translation is disabled, the protection
| mechanism is controlled by the following (see Section
| 1.7, “Logical Partitioning (LPAR)” on page 4 and
| Section 4.2.5, “Real Addressing Mode” on page 27).

| ■ LPES, which distinguishes between the two modes
| of using the LPAR facility
| ■ MSRHV, which distinguishes between hypervisor
| state and other privilege states
| ■ RMLR, which specifies the real mode limit value

| Using the above values, Figure 25 is applied. The
| access is permitted for any entry in the figure except
| “no access”.

| Figure 25. Protection states, address translation disa-
| bled

| Programming Note

| The comparison described in note 1 in Figure 25
| ignores bits 0:1 of the effective address and may
| ignore bits 2:63− m; see Section 4.2.5.

| LPES| HV| Access Authority

| 0| 0| no access
| 0| 1| read/write
| 1| 0| read/write or no access1

| 1| 1| read/write

| 1. If the effective address for the access is less
| than the value specified by the RMLR the
| access authority is read/write; otherwise the
| access is not permitted.
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5.1 Storage Addressing

A program references storage using the effective
address computed by the processor when it executes
a Load, Store, Branch, or Cache Management instruc-
tion, or when it fetches the next sequential instruction.
The effective address is translated to a real address
according to procedures described in Section 5.3,
“Address Translation Overview” on page 47 and fol-
lowing sections. The real address is what is pre-
sented to the storage subsystem. See Figure 26 on
page 47.

For a complete discussion of storage addressing and
effective address calculation, see the section entitled
“Storage Addressing” in Book I, PowerPC AS User
Instruction Set Architecture.

† Tags Active vs. Tags Inactive

| The selection between tags active and tags inactive
| operation is made by MSRTA. This chapter describes
| storage control in tags inactive mode.

Storage Control Overview

| ■ Real address space size is 2m bytes, m≤ 62; see
| Note 1.

| ■ Real page size is 212 bytes (4 KB).

■ Effective address space size is 264 bytes.

| ■ Virtual address space size is 2n bytes, 65≤ n≤ 80;
| see Note 2.

■ Segment size is 228 bytes (256 MB).

| ■ Number of virtual segments is 2n− 28; see Note 2.

| ■ Virtual page size is 2p bytes, 12≤ p≤ 28; two sizes
| are supported simultaneously, 4 KB (p=12) and a
| larger size; see Note 3.

| Notes:

| 1. The value of m is implementation-dependent
| (subject to the maximum given above). When
| used to address storage, the high-order 62− m
| bits of the “62-bit” real address must be zeros.
| 2. The value of n is implementation-dependent
| (subject to the range given above). In references
| to 80-bit virtual addresses elsewhere in this Book,
| the high-order 80− n bits of the “80-bit” virtual
| address are assumed to be zeros.
| 3. The value of p for the larger virtual page size is
| implementation-dependent (subject to the range
| given above).
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5.2 Storage Model

The storage model provides the following features.

1. The architecture allows the storage implementa-
tions to take advantage of the performance bene-
fits of weak ordering of storage accesses between
processors or between processors and I/O
devices.

2. The architecture provides instructions that allow
the programmer to ensure a consistent and
ordered storage state.

dcbf lwarx
| dcbst lwsync

eieio stdcx.
icbi stwcx.
isync sync
ldarx tlbsync

3. Storage accesses appear to be performed in
program order with respect to the processor per-
forming them but, in general, may be performed
in different orders with respect to other
processors and mechanisms.

4. Storage consistency between processors, and
between a processor and an I/O device, is con-
trolled by software using the “WIM” storage

† control bits (see Section 4.7). These bits allow
software to control whether a given storage
location has any of the following attributes.

■ Write Through Required (W)
■ Caching Inhibited (I)
■ Memory Coherence Required (M)

Engineering Note

The architecture does not suggest or preclude any
implementation of storage consistency supporting
the features listed above. In particular, the imple-
mentation may be a snoopy bus design, a central-
ized cache directory design, or other design.

†

5.2.1 Storage Exceptions

| A storage exception is an exception that causes an
| Instruction Storage interrupt, an Instruction Segment
| interrupt, a Data Storage interrupt, a Data Segment
| interrupt, or an Alignment interrupt. Attempting to
| fetch or execute an instruction causes a storage
| exception if certain conditions apply. Such conditions
| include the following.

| ■ The appropriate relocate bit in the MSR is set to
| 1 and the effective address cannot be translated
| to a real address.
| ■ The access is not permitted by the storage pro-
| tection mechanism.

| ■ The access causes a Data Address Compare
| match or a Data Address Breakpoint match.

In certain cases a storage exception may result in the
“restart” of (re-execution of at least part of) a Load or
Store instruction. See the section entitled “Instruction
Restart” in Book II, PowerPC AS Virtual Environment

† Architecture, and Section 7.6, “Partially Executed
† Instructions” on page 72 in this Book.

5.2.2 Instruction Fetch

| Instruction fetch, for both tags active mode and tags
| inactive mode, is described in Section 4.2.2.

5.2.3 Data Access

| Data access, for both tags active mode and tags inac-
| tive mode, is described in Section 4.2.3.

5.2.4 Performing Operations
Out-of-Order

| The limits on performing operations out-of-order, for
| both tags active mode and tags inactive mode, are
| described in Section 4.2.4.

5.2.5 32-Bit Mode

The computation of the 64-bit effective address is
independent of mode. In 32-bit mode (MSRSF=0) , the
high-order 32 bits of the 64-bit effective address are
treated as zeros for the purpose of addressing
storage. This applies to both data accesses and
instruction fetches. It applies independent of whether
address translation is enabled or disabled. This trun-
cation of the effective address is the only respect in
which storage accesses are mode-dependent.

Programming Note

Treating the high-order 32 bits of the effective
address as zeros effectively truncates the 64-bit
effective address to a 32-bit effective address

† such as would have been generated on a 32-bit
† implementation of the PowerPC Architecture.
| Thus, for example, the ESID in 32-bit mode is the
| high-order four bits of this truncated effective
| address; the ESID thus lies in the range 0-15.
| When address translation is enabled, these four
| bits would select a Segment Register on a 32-bit
| implementation of the PowerPC Architecture. On
| PowerPC AS the SLB entries that translate these
| 16 ESIDs can be used to emulate the PowerPC
| 32-bit implementation's Segment Registers.
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5.2.6 Real Addressing Mode

| Real addressing mode, for both tags active mode and
| tags inactive mode, is described in Section 4.2.5.

5.2.7 Real Storage Locations Having
Defined Uses

| The defined uses of real storage, for both tags active
| mode and tags inactive mode, are described in
| Section 4.2.6.

5.2.8 Invalid Real Address

| The results of attempting to access an invalid real
| address, for both tags active mode and tags inactive
| mode, are described in Section 4.2.7.

5.3 Address Translation
Overview

Figure 26 gives an overview of the address trans-
lation process in tags inactive mode.

ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
³ Effective Address ³
ÀÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÙ

³
↓

ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
| ³ ³
| ³ Lookup in ³
| ³ SLB ³
| ³ ³

ÀÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÙ
³
↓

ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
³ Virtual Address ³
ÀÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÙ

³
↓

ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
³ ³
³ Lookup in ³
³ Page Table ³
³ ³
ÀÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÙ

³
↓

ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
³ Real Address ³
ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ

Figure 26. PowerPC AS address translation, tags
inactive

The effective address (EA) is the address generated
by the processor for an instruction fetch or for a data

† access. If address translation is enabled (MSRIR= 1
† or MSRDR= 1 as appropriate), this address is passed
† to the Address Translation mechanism, which

attempts to convert the address to a real address
† which is then used to access storage.

† The first step in address translation is to convert the
effective address to a virtual address (VA), as

† described in Section 4.4.1, “Virtual Address Gener-
† ation, Tags Inactive Mode or PLS Address” on
† page 30. The second step, conversion of the virtual

address to a real address (RA), is described in
† Section 4.5.

If the effective address cannot be translated, a
† storage exception (see Section 4.2.1) occurs.

|

5.4 Data Address Compare

| The Data Address Compare mechanism, for both tags
| active mode and tags inactive mode, is described in
| Section 4.6.

5.5 Storage Control Bits

| The storage control bits, for both tags active mode
| and tags inactive mode, are described in Section 4.7.

5.6 Reference and Change
Recording

| Reference and Change recording, for both tags active
| mode and tags inactive mode, is described in Section
| 4.8.

5.7 Storage Protection

| Storage protection, for both tags active mode and tags
| inactive mode, is described in Section 4.9.
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6.1 Storage Control Instructions

6.1.1 Cache Management
Instructions

This section describes aspects of cache management
that are relevant only to operating systems.

|

| For a dcbz instruction that causes the target block to
| be newly established in the data cache without being
| fetched from main storage, the processor need not
| verify that the associated real address is valid. The
| existence of a data cache block that is associated with
| an invalid real address (see Section 4.2.7) can cause
| a delayed Machine Check interrupt or a delayed
| Checkstop.

Each implementation provides an efficient means by
which software can ensure that all blocks that are
considered to be modified in the data cache have
been copied to main storage before the processor
enters any power conserving mode in which data
cache contents are not maintained. The means are
described in the Book IV, PowerPC AS Implementa-
tion Features document for the implementation.

| 6.1.2 Lookaside Buffer Management

| All implementations have a Segment Lookaside Buffer
| (SLB), and provide the SLB Management instructions
| described in Section 6.1.2.1.

| For performance reasons, most implementations have
| a Translation Lookaside Buffer (TLB), which is a cache
| of recently used Page Table Entries (PTEs). The TLB
| is not necessarily kept consistent with the Page Table
| in main storage. When software alters the contents of
| a PTE, it must also invalidate all corresponding TLB
| entries.

Each implementation that has a TLB provides a
means by which software can do the following.

■ Invalidate the TLB entry that translates a given
effective address

■ Invalidate all TLB entries

An implementation may provide one or more of the
| TLB Management instructions described in Section
| 6.1.2.2 in order to satisfy requirements in the pre-

ceding list. Alternatively, an algorithm may be given
that performs one of the functions listed above (a

† loop invalidating individual TLB entries may be used
† to invalidate the entire TLB, for example), or different

instructions may be provided. Such algorithms or
instructions are described in Book IV, PowerPC AS

| Implementation Features. Because most implementa-
| tions have a TLB and also provide instructions similar
| or identical to the TLB Management instructions
| described in Section 6.1.2.2, other sections of the
| Books assume that the TLB exists and that the
| instructions described in Section 6.1.2.2 are provided.

|
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| An implementation that does not have a TLB treats
the corresponding instructions (tlbie , tlbia , and
tlbsync ) either as no-ops or as illegal instructions.

Programming Note

Because the presence, absence, and exact
| semantics of the TLB Management instructions

are implementation-dependent, it is recommended
† that system software “encapsulate” uses of these

instructions into subroutines to minimize the
impact of moving from one implementation to
another.

Programming Note

† The function of all the instructions described in
† Sections 6.1.2.1 and 6.1.2.2 is independent of
† whether address translation is enabled or disa-
† bled.

For a discussion of software synchronization
requirements when invalidating SLB and TLB
entries, see Chapter 9, “Synchronization Require-
ments for Special Registers and for Lookaside
Buffers” on page 79.

Engineering Note

It is possible for the hardware to implement more
| than one TLB, such as one for data and one for

instructions. If this approach is taken, the
requirement for an instruction that invalidates a

| TLB entry may be satisfied by a single instruction
| for all TLBs or by separate instructions for each
| TLB.

Engineering Note

Primary opcode 31, extended opcode 308, can be
used for a privileged implementation-specific TLB
invalidation function.

Primary opcode 31, extended opcodes 978 and
1010, can be used for a privileged implementa-
tion-specific TLB reload function for data and
instructions respectively.

| 6.1.2.1 SLB Management Instructions

| Programming Note

| Accesses to a given SLB entry caused by the
| instructions described in this section obey the
| sequential execution model with respect to the
| contents of the entry and with respect to data
| dependencies on those contents. That is, if an
| instruction sequence contains two or more of
| these instructions, when the sequence has com-
| pleted, the final state of the SLB entry and of
| General Purpose Registers is as if the instructions
| had been executed in program order.

| However, software synchronization is required in
| order to ensure that any alterations of the entry
| take effect correctly with respect to address trans-
| lation; see Chapter 9.
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SLB Invalidate Entry X-form

slbie RB

31 /// /// RB 434 /

0 6 11 16 21 31

| esid ← (RB) 0:35
| class ← (RB) 36
| if class = SLBE C for SLB entry that translates
| or most recently translated esid
| then for SLB entry (if any) that translates esid
| SLBEV ← 0
| all other fields of SLBE ← undefined
| else translation of esid ← undefined

| Let the Effective Segment ID (ESID) be (RB)0:35. Let
| the class be (RB)36. The class value must be the
| same as the Class value in the SLB entry that trans-
| lates the ESID, or the Class value that was in the SLB
| entry that most recently translated the ESID if the
| translation is no longer in the SLB; if the class value
| is not the same, the results of translating effective
| addresses for which EA0:35=ESID are undefined, and
| the next paragraph need not apply.

| If the SLB contains an entry that translates the speci-
| fied ESID, the V bit in that entry is set to 0, making
| the entry invalid, and the remaining fields of the entry
| are set to undefined values.

| (RB)37:63 must be zeroes.

| If this instruction is executed in 32-bit mode, (RB)0:31
| must be zeros (i.e., the ESID must be in the range
| 0-15).

This instruction is privileged.

|

Special Registers Altered:
None

| Programming Note

| The only SLB entry that is invalidated is the entry
| (if any) that translates the specified ESID.

| slbie does not affect SLBs on other processors.

| Programming Note

| The reason the class value specified by slbie must
| be the same as the Class value that is or was in
| the relevant SLB entry is that the processor may
| use these values to optimize invalidation of imple-
| mentation-specific lookaside information used in
| address translation. If the value specified by slbie
| differs from the value that is or was in the rele-
| vant SLB entry, these optimizations may produce
| incorrect results. (An example of implementa-
| tion-specific address translation lookaside infor-
| mation is the set of recently used translations of
| effective addresses to real addresses that some
| processors maintain in an Effective to Real
| Address Translation (ERAT) lookaside buffer.)

| The recommended use of the Class field is to
| classify SLB entries according to the expected
| longevity of the translations they contain, or a
| similar property such as whether the translations
| are used by all programs or only by a single
| program. If this is done and the processor invali-
| dates certain implementation-specific lookaside
| information based only on the specified class
| value, an slbie instruction that invalidates a short-
| lived translation will preserve such lookaside
| information for long-lived translations.

| If the optional “Bridge” facility is implemented
| (see Section 11.1), the Move To Segment Register
| instructions create SLB entries in which the Class
| value is 0.

| Engineering Note

| (RB)37:63 must be ignored by the processor.

| Preserving the contents of the SLB entry (other
| than the V bit) when an slbie instruction is exe-
| cuted, and returning the contents of the SLB entry
| when an slbmfev or slbmfee instruction is exe-
| cuted that specifies an invalid SLB entry, facili-
| tates the debugging of software.
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| Engineering Note

| An example of how the class value can be used to
| optimize invalidation of implementation-specific
| address translation lookaside information is as
| follows. (The class value has no architecturally
| defined use, nor does the Class field of SLB
| entries.)

| On implementations that have an Effective to Real
| Address Translation lookaside buffer (ERAT), the
| class value can be used to select the ERAT
| entries to invalidate when an slbie instruction is
| executed. (Invalidating only ERAT entries in
| which the Class value is equal to the specified
| class value is likely to provide better performance
| than invalidating all ERAT entries.) If ERAT
| entries are used to translate effective addresses
| in real addressing mode, those entries can be
| treated as if they contain a Class value that lies
| outside the range supported by the SLB entry, so
| that slbie does not invalidate them.

Architecture Note

† Bits 11:15 of the slbie instruction (ordinarily the
position of an RA field) must be zero. This pro-
vides implementations the option of using

† (RA|0)+(RB) address arithmetic for slbie .

| The requirement that RB37:63 contain zeros and be
| ignored by the processor permits the Class field
| of the SLB entry and the class value supplied by
| slbie to be enlarged in the future if that proves
| desirable.

| The requirement that RB0:31 contain zeros in
| 32-bit mode permits normal EA computation (in
| which the high-order 32 bits of the result are
| treated as zeros in 32-bit mode but not in 64-bit
| mode) to be used for slbie .

|

SLB Invalidate All X-form

slbia

31 /// /// /// 498 /

0 6 11 16 21 31

| for each SLB entry except SLB entry 0
| SLBEV ← 0
| all other fields of SLBE ← undefined

| For all SLB entries except SLB entry 0, the V bit in
| the entry is set to 0, making the entry invalid, and the
| remaining fields of the entry are set to undefined
| values. SLB entry 0 is not altered.

This instruction is privileged.

|

Special Registers Altered:
None

| Programming Note

| slbia does not affect SLBs on other processors.

| Programming Note

| If slbia is executed when instruction address
| translation is enabled (MSRIR=1) , software can
| ensure that attempting to fetch the instruction fol-
| lowing the slbia does not cause an Instruction
| Segment interrupt by placing the slbia and the
| subsequent instruction in the effective segment
| mapped by SLB entry 0. (The preceding assumes
| that no other interrupts occur between executing
| the slbia and executing the subsequent instruc-
| tion.)
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| SLB Move To Entry X-form

| slbmte RS,RB

| 31 RS /// RB 402 /
| 0 6 11 16 21 31

| The SLB entry specified by bits 52:63 of register RB is
| loaded from register RS and from the remainder of
| register RB. The contents of these registers are
| interpreted as shown in Figure 27.

| RS

| VSID KsKpNLC 0s

| 0 52 56 63

| RB

| ESID V 0s index

| 0 35 37 52 63

| RS0:51 VSID
| RS52 Ks
| RS53 Kp
| RS54 N
| RS55 L
| RS56 C
| RS57:63 must be 0b000_0000

| RB0:35 ESID
| RB36 V
| RB37:51 must be 0b000 || 0x000
| RB52:63 index, which selects the SLB entry

| Figure 27. GPR contents for slbmte

| On implementations that support a virtual address
| size of only n bits, n< 80, (RS)0:79− n must be zeros.

| High-order bits of (RB)52:63 that correspond to SLB
| entries beyond the size of the SLB provided by the
| implementation must be zeros.

| If this instruction is executed in 32-bit mode, (RB)0:31
| must be zeros (i.e., the ESID must be in the range
| 0-15).

| This instruction cannot be used to invalidate an SLB
| entry.

| This instruction is privileged.

| Special Registers Altered:
| None

| Programming Note

| The reason slbmte cannot be used to invalidate
| an SLB entry is that it does not necessarily affect
| implementation-specific address translation look-
| aside information. slbie (or slbia ) must be used
| for this purpose.

| Engineering Note

| (RS)57:63 must be ignored by the processor.

| Architecture Note

| The requirement that RS57:63 contain zeros and be
| ignored by the processor permits the Class field
| of the SLB entry to be enlarged in the future if
| that proves desirable.

| The requirement that RB0:31 contain zeros in
| 32-bit mode permits normal EA computation (in
| which the high-order 32 bits of the result are
| treated as zeros in 32-bit mode but not in 64-bit
| mode) to be used for slbmte .
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| SLB Move From Entry VSID X-form

| slbmfev RT,RB

| 31 RT /// RB 851 /
| 0 6 11 16 21 31

| If the SLB entry specified by bits 52:63 of register RB
| is valid (V=1), the contents of the VSID, Ks, Kp, N, L,
| and C fields of the entry are placed into register RT.
| The contents of these registers are interpreted as
| shown in Figure 28.

| RT

| VSID KsKpNLC 0s

| 0 52 56 63

| RB

| 0s index

| 0 52 63

| RT0:51 VSID
| RT52 Ks
| RT53 Kp
| RT54 N
| RT55 L
| RT56 C
| RT57:63 set to 0b000_0000

| RB0:51 must be 0x0_0000_0000_0000
| RB52:63 index, which selects the SLB entry

| Figure 28. GPR contents for slbmfev

| On implementations that support a virtual address
| size of only n bits, n< 80, RT0:79− n are set to zeros.

| If the SLB entry specified by bits 52:63 of register RB
| is invalid (V=0), the contents of register RT are unde-
| fined.

| High-order bits of (RB)52:63 that correspond to SLB
| entries beyond the size of the SLB provided by the
| implementation must be zeros.

| This instruction is privileged.

| Special Registers Altered:
| None

| Architecture Note

| The requirement that RT57:63 be set to zeros
| permits the Class field of the SLB entry to be
| enlarged in the future if that proves desirable.

| SLB Move From Entry ESID X-form

| slbmfee RT,RB

| 31 RT /// RB 915 /
| 0 6 11 16 21 31

| If the SLB entry specified by bits 52:63 of register RB
| is valid (V=1), the contents of the ESID and V fields
| of the entry are placed into register RT. The contents
| of these registers are interpreted as shown in Figure
| 29.

| RT

| ESID V 0s

| 0 35 37 63

| RB

| 0s index

| 0 52 63

| RT0:35 ESID
| RT36 V
| RT37:63 set to 0b000 || 0x00_0000

| RB0:51 must be 0x0_0000_0000_0000
| RB52:63 index, which selects the SLB entry

| Figure 29. GPR contents for slbmfee

| If the SLB entry specified by bits 52:63 of register RB
| is invalid (V=0), RT36 is set to 0 and the contents of
| RT0:35 and RT37:63 are undefined.

| High-order bits of (RB)52:63 that correspond to SLB
| entries beyond the size of the SLB provided by the
| implementation must be zeros.

| This instruction is privileged.

| Special Registers Altered:
| None
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| 6.1.2.2 TLB Management Instructions (Optional)

TLB Invalidate Entry X-form

| tlbie RB,L

[ POWER mnemonic: tlbi]

| 31 /// L /// RB 306 /
| 0 6 10 11 16 21 31

| if L = 0
| then pg_size ← 4 KB
| else pg_size ← large page size
| p ← log_base_2(pg_size)
| if (RB) 0:15 = 0x0000
| then seg_type = non-SLS
| else seg_type = SLS
| for each TLB entry
| if (entry_VPN 32:79−p = (RB) 16:63−p) &
| (entry_pg_size = pg_size) &
| (entry_seg_type = seg_type)
| then TLB entry ← invalid

| If (RB)0:15=0x0000 let the segment type be non-SLS
| (PLS segment or tags inactive mode segment); other-
| wise let the segment type be SLS. If the L field of the
| instruction is 1 let the page size be large; otherwise
| let the page size be 4 KB.

| All TLB entries that have all of the following proper-
| ties are made invalid on all processors.

| ■ The entry translates a virtual address for which
| VPN32:79− p is equal to (RB)16:63− p.
| ■ The segment type of the entry matches the
| segment type specified by (RB)0:15.
| ■ The page size of the entry matches the page size
| specified by the L field of the instruction.

| Additional TLB entries may also be made invalid on
| any processor.

| MSRSF must be 1 when this instruction is executed;
| otherwise the results are undefined.

The operation performed by this instruction is ordered
by the eieio (or sync ) instruction with respect to a
subsequent tlbsync instruction executed by the
processor executing the tlbie instruction. The oper-
ations caused by tlbie and tlbsync are ordered by
eieio as a third set of operations, which is inde-
pendent of the other two sets that eieio orders.

| This instruction is privileged, and can be executed
| only in hypervisor state. If it is executed in privileged
| but non-hypervisor state either a Privileged Instruc-
| tion type Program interrupt occurs or the results are
| boundedly undefined.

This instruction is optional.

See Section 6.2.1, “Page Table Updates” on page 57
for a description of other requirements associated
with the use of this instruction.

Special Registers Altered:
None

| Programming Note

| If the same VPN is used for both an SLS segment
| and a non-SLS segment, two tlbie instructions
| must be executed in order to invalidate the trans-
| lation, one with (RB)0:15=0x0000 and one with
| (RB)0:15 ≠ 0x0000.

Architecture Note

† Bits 11:15 of the tlbie instruction (ordinarily the
position of an RA field) must be zero. This pro-
vides implementations the option of using

† (RA|0)+(RB) address arithmetic for tlbie .

| The requirement that tlbie be executed only in
| 64-bit mode permits normal EA computation (in
| which the high-order 32 bits of the result are
| treated as zeros in 32-bit mode but not in 64-bit
| mode) to be used for tlbie . (If tlbie were executed
| in 32-bit mode, on an implementation that does
| normal EA computation for tlbie the high-order 16
| bits of the specified VPN bits would be treated as
| zeros.)

| The requirement that tlbie (and tlbsync ) be exe-
| cuted only in hypervisor state reduces implemen-
| tation complexity, by avoiding the need to ensure
| that violation of the requirements described in
| Section 6.2.1 by non-hypervisor software does not
| cause a Checkstop or other significant system-
| wide event.

Architecture Note

Cumulative ordering is moot for the memory
barrier created by eieio for tlbie and tlbsync ,
because at most one processor should execute
these instructions at a time (see Section 6.2.1).

| Engineering Note

| Causing a Privileged Instruction type Program
| interrupt if tlbie or tlbsync is executed in privi-
| leged but non-hypervisor state facilitates the
| debugging of software.
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TLB Invalidate All X-form

tlbia

31 /// /// /// 370 /

0 6 11 16 21 31

all TLB entries ← invalid

† All TLB entries are made invalid on the processor
† executing the tlbia instruction.

†

This instruction is privileged.

This instruction is optional.

Special Registers Altered:
None

† Programming Note

† tlbia does not affect TLBs on other processors.

TLB Synchronize X-form

tlbsync

31 /// /// /// 566 /
0 6 11 16 21 31

The tlbsync instruction provides an ordering function
for the effects of all tlbie instructions executed by the
processor executing the tlbsync instruction, with
respect to the memory barrier created by a subse-
quent sync instruction executed by the same
processor. Executing a tlbsync instruction ensures
that all of the following will occur.

■ All TLB invalidations caused by tlbie instructions
preceding the tlbsync instruction will have com-

| pleted on any other processor before any data
accesses caused by instructions following the
sync instruction are performed with respect to
that processor.

■ All storage accesses by other processors for
which the address was translated using the trans-

| lations being invalidated, and all Reference,
| Change, and Tag Set bit updates associated with
| address translations that were performed by
| other processors using the translations being
| invalidated, will have been performed with

respect to the processor executing the sync
instruction, to the extent required by the associ-
ated Memory Coherence Required attributes,
before the sync instruction's memory barrier is
created.

The operation performed by this instruction is ordered
by the eieio (or sync ) instruction with respect to pre-
ceding tlbie instructions executed by the processor
executing the tlbsync instruction. The operations
caused by tlbie and tlbsync are ordered by eieio as a
third set of operations, which is independent of the
other two sets that eieio orders.

The tlbsync instruction may complete before oper-
ations caused by tlbie instructions preceding the
tlbsync instruction have been performed.

| This instruction is privileged, and can be executed
| only in hypervisor state. If it is executed in privileged
| but non-hypervisor state either a Privileged Instruc-
| tion type Program interrupt occurs or the results are
| boundedly undefined.

This instruction is optional.

See Section 6.2.1, “Page Table Updates” on page 57
for a description of other requirements associated
with the use of this instruction.

Special Registers Altered:
None

| Architecture Note

| See the first Architecture Note in the tlbie instruc-
| tion description for an explanation of why tlbsync
| can be executed only in hypervisor state.
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| 6.2 Page Table Update
| Synchronization Requirements

This section describes rules that software should
| follow when updating the Page Table, and includes

suggested sequences of operations for some repre-
sentative cases.

In the sequences of operations shown in the following
subsections, any alteration of a Page Table Entry

| (PTE) that corresponds to a single line in the
sequence is assumed to be done using a Store
instruction for which the access is atomic. Appro-
priate modifications must be made to these
sequences if this assumption is not satisfied (e.g., if a

† store doubleword operation is done using two Store
Word instructions).

| Sequences that use the tlbie instruction may require
a context synchronizing operation before and/or after
the sequence; see Chapter 9, “Synchronization
Requirements for Special Registers and for Lookaside
Buffers” on page 79. Similarly, sequences that add a

| PTE require a context synchronizing operation after
the sequence if the new entry is needed in order to
translate the effective addresses of subsequent
instructions.

| Page Table Entries must not be changed in a manner
that causes an implicit branch.

6.2.1 Page Table Updates

TLBs are non-coherent caches of the HTAB . TLB
entries must be invalidated explicitly with one of the
TLB Invalidate instructions.

Unsynchronized lookups in the HTAB continue even
while it is being modified . Any processor, including
the processor modifying the HTAB, may look in the
HTAB at any time in an attempt to reload a TLB entry.
When altering a PTE, software must ensure that the
PTE's Valid bit is 0 if the PTE is inconsistent (e.g., if

| the RPN field is not correct for the current AVPN
field).

Updates of Reference, Change, and Tag Set bits by
the processor are not synchronized with the accesses
that cause the updates . When modifying the low-
order half of a PTE, software must take care to avoid
overwriting a processor update of these bits and to
avoid having the value written by a Store instruction
overwritten by a processor update. The processor
does not alter any other fields of the PTE.

In a multiprocessor system, when one or more tlbie
| instructions have been executed by a processor in a

| given partition, the following sequence of instructions
must be executed by that processor before a tlbie or
tlbsync instruction is executed by another processor

| in that partition.

eieio
tlbsync
sync

Other instructions may be interleaved with this
sequence of instructions, but these instructions must
appear in the order shown.

Programming Note

The eieio instruction prevents the reordering of
tlbie instructions previously executed by the
processor with respect to the subsequent tlbsync
instruction. The tlbsync instruction and the subse-
quent sync instruction together ensure that all

| storage accesses for which the address was
| translated using the translations being invali-
| dated, and all Reference, Change, and Tag Set bit
| updates associated with address translations that
| were performed using the translations being inval-
| idated, will be performed with respect to any

processor or mechanism, to the extent required
by the associated Memory Coherence Required

| attributes, before any data accesses caused by
instructions following the sync instruction are per-
formed with respect to that processor or mech-
anism.

Similarly, when a tlbsync instruction has been exe-
| cuted by a processor in a given partition, a sync

instruction must be executed by that processor before
a tlbie or tlbsync instruction is executed by another

| processor in that partition.

The sequences of operations shown in the following
subsections assume a multiprocessor environment.
In a uniprocessor environment the tlbsync can be
omitted, as can the eieio that separates the tlbie from
the tlbsync .

6.2.1.1 Adding a Page Table Entry

This is the simplest Page Table case. The Valid bit of
the old entry is assumed to be 0. The following
sequence can be used to create a PTE, maintain a
consistent state, and ensure that a subsequent refer-
ence to the virtual address translated by the new
entry will use the correct real address and associated
attributes.

| PTETS,RPN,AC,R,C,WIMG,N,PP ← new values
eieio /* order 1st update before 2nd */

| PTEAVPN,SW,H,V ← new values (V=1)
sync /* order updates before next

storage accesses */
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6.2.1.2 Modifying a Page Table Entry

General Case

If a valid entry is to be modified and the translation
instantiated by the entry being modified is to be inval-
idated, the following sequence can be used to modify
the PTE, maintain a consistent state, ensure that the
translation instantiated by the old entry is no longer
available, and ensure that a subsequent reference to
the virtual address translated by the new entry will
use the correct real address and associated attri-
butes. (The sequence is equivalent to deleting the
PTE and then adding a new one; see Sections 6.2.1.3
and 6.2.1.1.)

PTEV ← 0 /* (other fields don't matter) */
sync /* order update before tlbie and

before next storage accesses */
| tlbie (old_seg_type,old_VPN 32:79−p,old_L) /* invali-

date old translation */
eieio /* order tlbie before tlbsync */
tlbsync /* order tlbie before sync */
sync /* order tlbie and tlbsync before

next storage accesses */
| PTETS,RPN,AC,R,C,WIMG,N,PP ← new values

eieio /* order 2nd update before 3rd */
| PTEAVPN,SW,H,V ← new values (V=1)

sync /* order 2nd and 3rd updates before
next storage accesses */

Resetting the Reference Bit

If the only change being made to a valid entry is to
set the Reference bit to 0, a simpler sequence suf-
fices because the Reference bit need not be main-
tained exactly.

oldR ← PTER /* get old R */
if oldR = 1 then

PTER ← 0 /* store byte (R=0, other bits
unchanged) */

| tlbie (seg_type,VPN 32:79−p,L) /* invalidate entry*/
eieio /* order tlbie before tlbsync */
tlbsync /* order tlbie before sync */
sync /* order tlbie, tlbsync, and

update before next storage
accesses */

Modifying the Virtual Address

If the virtual address translated by a valid PTE is to
be modified and the new virtual address hashes to
the same two PTEGs as does the old virtual address,
the following sequence can be used to modify the
PTE, maintain a consistent state, ensure that the
translation instantiated by the old entry is no longer
available, and ensure that a subsequent reference to
the virtual address translated by the new entry will
use the correct real address and associated attri-
butes.

| PTEAVPN,SW,H,V ← new values (V=1)
sync /* order update before tlbie and

before next storage accesses */
| tlbie (old_seg_type,old_VPN 32:79−p,old_L) /* invali-

date old translation */
eieio /* order tlbie before tlbsync */
tlbsync /* order tlbie before sync */
sync /* order tlbie and tlbsync before

next storage accesses */

| To modify the AC, N, or PP bits without overwriting a
Reference, Change, or Tag Set bit update being per-

| formed by the processor or by some other processor
| in the system, a sequence similar to that shown

above can be used except that the first line would be
| replaced by a sync instruction followed by a loop con-
| taining a ldarx /stdcx. pair that emulates an atomic
| “Compare and Swap” of the low-order doubleword of
† the PTE. (See the section entitled “Atomic Update
† Primitives” in Book II, PowerPC AS Virtual Environ-
† ment Architecture for a description of “Compare and

Swap”.)

6.2.1.3 Deleting a Page Table Entry

The following sequence can be used to ensure that
the translation instantiated by an existing entry is no
longer available.

PTEV ← 0 /* (other fields don't matter) */
sync /* order update before tlbie and

before next storage accesses */
| tlbie (old_seg_type,old_VPN 32:79−p,old_L) /* invali-

date old translation */
eieio /* order tlbie before tlbsync */
tlbsync /* order tlbie before sync */
sync /* order tlbie and tlbsync before

next storage accesses */

|
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7.1 Overview

The PowerPC AS architecture provides an interrupt
mechanism to allow the processor to change state as
a result of external signals, errors, or unusual condi-
tions arising in the execution of instructions.

System Reset and Machine Check interrupts are not
ordered. All other interrupts are ordered such that
only one interrupt is reported, and when it is proc-
essed (taken) no program state is lost. Since
save/restore registers SRR0 and SRR1 are serially
reusable resources used by most interrupts, program
state may be lost when an unordered interrupt is
taken.

7.2 Interrupt Synchronization

When an interrupt occurs, SRR0 is set to point to an
instruction such that all preceding instructions have
completed execution, no subsequent instruction has
begun execution, and the instruction addressed by
SRR0 may or may not have completed execution,
depending on the interrupt type.

With the exception of System Reset and Machine
Check interrupts, all interrupts are context synchro-
nizing as defined in Section 1.6.1, “Context
Synchronization” on page 3. System Reset and
Machine Check interrupts are context synchronizing if
they are recoverable (i.e., if bit 62 of SRR1 is set to 1
by the interrupt). If a System Reset or Machine
Check interrupt is not recoverable (i.e., if bit 62 of
SRR1 is set to 0 by the interrupt), it acts like a
context synchronizing operation with respect to sub-
sequent instructions. That is, a non-recoverable
System Reset or Machine Check interrupt need not
satisfy items 1 through 3 of Section 1.6.1, but does
satisfy items 4 and 5.
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7.3 Interrupt Classes

Interrupts are classified by whether they are directly
caused by the execution of an instruction or are
caused by some other system exception. Those that
are “system-caused” are:

■ System Reset
■ Machine Check
■ External
■ Decrementer

External and Decrementer are maskable interrupts.
While MSREE= 0 , the interrupt mechanism ignores the
exceptions that generate these interrupts. Therefore,
software may delay the generation of these interrupts
by setting MSREE= 0 or by failing to set MSREE= 1
after processing an interrupt. When any interrupt is
taken, MSREE is set to 0 by the interrupt mechanism,
delaying the recognition of any further exceptions
causing these interrupts.

System Reset and Machine Check exceptions are not
maskable. These exceptions will be recognized
regardless of the setting of the MSR.

“Instruction-caused” interrupts are further divided
into two classes, precise and imprecise.

7.3.1 Precise Interrupt

Except for the Imprecise Mode Floating-Point Enabled
| Exception type Program interrupt, all instruction-

caused interrupts are precise. When the fetching or
execution of an instruction causes a precise interrupt,
the following conditions exist at the interrupt point.

1. SRR0 addresses either the instruction causing the
exception or the immediately following instruc-
tion. Which instruction is addressed can be
determined from the interrupt type and status
bits.

2. An interrupt is generated such that all
instructions preceding the instruction causing the
exception appear to have completed with respect
to the executing processor. However, some
storage accesses associated with these preceding
instructions may not have been performed with
respect to other processors and mechanisms.

3. The instruction causing the exception may appear
not to have begun execution (except for causing
the exception), may have been partially executed,
or may have completed, depending on the inter-
rupt type.

4. Architecturally, no subsequent instruction has
begun execution.

|

7.3.2 Imprecise Interrupt

| This architecture defines one imprecise interrupt, the
| Imprecise Mode Floating-Point Enabled Exception type
| Program interrupt.

When the execution of an instruction causes an impre-
cise interrupt, the following conditions exist at the
interrupt point.

1. SRR0 addresses either the instruction causing the
exception or some instruction following the
instruction causing the exception that generated
the interrupt.

2. An interrupt is generated such that all
instructions preceding the instruction addressed
by SRR0 appear to have completed with respect
to the executing processor.

3. If the imprecise interrupt is forced by the context
synchronizing mechanism, due to an instruction
that causes another interrupt (e.g., Alignment,
Data Storage), then SRR0 addresses the
interrupt-forcing instruction, and the interrupt-
forcing instruction may have been partially exe-
cuted (see Section 7.6, “Partially Executed
Instructions” on page 72).

4. If the imprecise interrupt is forced by the exe-
cution synchronizing mechanism, due to exe-
cuting an execution synchronizing instruction
other than sync or isync , then SRR0 addresses
the interrupt-forcing instruction, and the interrupt-
forcing instruction appears not to have begun
execution (except for forcing the imprecise inter-
rupt). If the imprecise interrupt is forced by a
sync or isync instruction, then SRR0 may address
either the sync or isync instruction, or the fol-
lowing instruction.

5. If the imprecise interrupt is not forced by either
the context synchronizing mechanism or the exe-
cution synchronizing mechanism, then the instruc-
tion addressed by SRR0 appears not to have
begun execution, if it is not the excepting instruc-
tion.

6. No instruction following the instruction addressed
by SRR0 appears to have begun execution.

|

All Floating-Point Enabled Exception type Program
interrupts are maskable using the MSR bits FE0 and
FE1. Although these interrupts are maskable, they
differ significantly from the other maskable interrupts
in that the masking of these interrupts is usually con-
trolled by the application program, whereas the
masking of External and Decrementer interrupts is
controlled by the operating system.
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Architecture Note

An implementation may define one or more addi-
tional interrupts to be imprecise. If this is done,
then a complete description of how such impre-
cise interrupts are implemented by the processor
and how they are to be handled by the operating
system can be found in the Book IV, PowerPC AS
Implementation Features document for the imple-
mentation. Such an implementation must provide
a means of forcing the processor to process inter-
rupts in a precise fashion as described here,
perhaps with reduced performance.

| The discussion here assumes that only the Impre-
| cise Mode Floating-Point Enabled Exception type
| Program interrupt is imprecise.

7.4 Interrupt Processing

Associated with each kind of interrupt is an interrupt
vector, which contains the initial sequence of
instructions that is executed when the corresponding
interrupt occurs.

Interrupt processing consists of saving a small part of
the processor's state in certain registers, identifying

† the cause of the interrupt in other registers, and con-
tinuing execution at the corresponding interrupt
vector location. When an exception exists that will
cause an interrupt to be generated and it has been

† determined that the interrupt will occur, the following
| actions are performed. The handling of Machine
| Check and System Call Vectored interrupts (see
| Sections 7.5.2 and 7.5.15 respectively) differs from the
| description given below in several respects.

1. SRR0 is loaded with an instruction address that
depends on the type of interrupt; see the specific
interrupt description for details.

2. Bits 33:36 and 42:47 of SRR1 are loaded with
information specific to the interrupt type.

3. Bits 0:32, 37:41, and 48:63 of SRR1 are loaded
† with a copy of the corresponding bits of the MSR.

4. The MSR is set as shown in Figure 30 on
† page 62. In particular, MSR bits IR and DR are
† set to 0, disabling relocation, and MSR bit SF is
† set to 1, selecting 64-bit mode. The new values

take effect beginning with the first instruction
† executed following the interrupt.

5. Instruction fetch and execution resumes, using
| the new MSR value, at the effective address spe-
| cific to the interrupt type. These effective
| addresses are shown in Figure 31 on page 62.

|

Interrupts do not clear reservations obtained with
† lwarx or ldarx .

Programming Note

In general, when an interrupt occurs, the following
instructions should be executed by the operating
system before dispatching a “new” program.

† ■ stwcx. or stdcx. , to clear the reservation if
one is outstanding, to ensure that a lwarx or
ldarx in the interrupted program is not paired
with a stwcx. or stdcx. in the “new” program.

■ sync , to ensure that all storage accesses
caused by the interrupted program will be
performed with respect to another processor
before the program is resumed on that other
processor.

| ■ isync or rfid , to ensure that the instructions in
the “new” program execute in the “new”
context.

Programming Note

In order to handle Machine Check and System
Reset interrupts correctly, the operating system
should manage MSRRI as follows.

■ In the Machine Check and System Reset
interrupt handlers, interpret SRR1 bit 62
(where MSRRI is placed) as:

— 0: interrupt is not recoverable
— 1: interrupt is recoverable

■ In each interrupt handler, when enough state
has been saved that a Machine Check or
System Reset interrupt can be recovered
from, set MSRRI to 1.

■ In each interrupt handler, do the following (in
order) just before returning.

1. Set MSRRI to 0.
2. Set SRR0 and SRR1 to the values to be

| used by rfid . The new value of SRR1
should have bit 62 set to 1 (which will
happen naturally if SRR1 is restored to
the value saved there by the interrupt,
because the interrupt handler will not be
executing this sequence unless the inter-
rupt is recoverable).

| 3. Execute rfid .

MSRRI can be managed similarly to handle inter-
rupts other than Machine Check and System
Reset that occur within interrupt handlers.

This Note describes only the management of
MSRRI. It is not intended to be a full description
of the requirements for an interrupt handler.

Engineering Note

Implementations that use emulation assists must
report in SRR0 the effective address of the
instruction being emulated, and in the DAR if
applicable the effective address that would have
been computed by the instruction being emulated.
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7.5 Interrupt Definitions

Figure 30 shows all the types of interrupts and the
values assigned to the MSR for each. Figure 31

| shows the effective address of the interrupt vector for
† each interrupt type. (Section 4.2.6 on page 29 sum-
| marizes all architecturally defined uses of effective
| addresses, including those implied by Figure 31.)

Interrupt Type MSR Bit
| IR DR FE0 FE1 EE RI ME HV

| System Reset 0 0 0 0 0 0 - 1
| Machine Check 0 0 0 0 0 0 0 1
| Data Storage 0 0 0 0 0 0 - m
| Data Segment 0 0 0 0 0 0 - m
| Instruction Storage 0 0 0 0 0 0 - m
| Instruction Segment 0 0 0 0 0 0 - m
| External 0 0 0 0 0 0 - m
| Alignment 0 0 0 0 0 0 - m
| Program 0 0 0 0 0 0 - m
| FP Unavailable 0 0 0 0 0 0 - m
| Decrementer 0 0 0 0 0 0 - m
| System Call 0 0 0 0 0 0 - s
| Trace 0 0 0 0 0 0 - m
| Performance Monitor 0 0 0 0 0 0 - m
| System Call Vectored 1 1 - - - - - v

0 bit is set to 0
| 1 bit is set to 1

- bit is not altered
| m if LPES=0, set to 1; otherwise (implementa-
| tion-dependent) set to 0 or unchanged
| s if LEV=1 or LPES=0, set to 1; otherwise
| (implementation-dependent) set to 0 or
| unchanged
| v set to 0 or unchanged (implementa-
| tion-dependent)

| Bits BE, FP, PMM, PR, and SE are set to 0.

| In tags active mode, the US bit is not altered.

| In tags inactive mode, the US bit is treated as
† reserved and is set as if written as 0.

| If the optional Little-Endian facility is implemented
| (see the section entitled “Little-Endian” in Book I),
| the bits associated with the facility are set as
| follows. The ILE bit is not altered. The LE bit is

copied from the ILE bit except for System Call
Vectored interrupt. For System Call Vectored
interrupt, LE is not altered.

Bit SF is set to 1.

Bit TA is not altered.

Reserved bits are set as if written as 0.

Figure 30. MSR setting due to interrupt

| Programming Note

| For all the cases in which it is implementa-
| tion-dependent whether the interrupt sets MSRHV
| to 0 or leaves it unchanged, the bit should already
| be 0, so the fact that some implementations do
| not set it to 0 does not matter.

| Effective Interrupt Type
| Address 1

| 00..0000_0100 System Reset
| 00..0000_0200 Machine Check
| 00..0000_0300 Data Storage
| 00..0000_0380 Data Segment
| 00..0000_0400 Instruction Storage
| 00..0000_0480 Instruction Segment
| 00..0000_0500 External
| 00..0000_0600 Alignment
| 00..0000_0700 Program
| 00..0000_0800 Floating-Point Unavailable
| 00..0000_0900 Decrementer
| 00..0000_0A00 Reserved
| 00..0000_0B00 Reserved
| 00..0000_0C00 System Call
| 00..0000_0D00 Trace
| 00..0000_0E00 Reserved
| 00..0000_0E10 Reserved
| . . . . . .
| 00..0000_0EFF Reserved
| 00..0000_0F00 Performance Monitor
| 00..0000_0F10 Reserved
| . . . . . .
| 00..0000_0FFF Reserved
| FF..FF00_3000 System Call Vectored
| FF..FF00_3020 System Call Vectored
| . . . . . .
| FF..FF00_3FE0 System Call Vectored
| FF..FF00_3FFF (end of scv interrupt vectors)

| 1 The values in the Effective Address column are
| interpreted as follows.
| ■ 00..0000_nnnn means 0x0000_0000_0000_nnnn
| ■ FF..FF00_nnnn means 0xFFFF_FFFF_FF00_nnnn
| 2 Effective addresses 0x0000_0000_0000_0000
| through 0x0000_0000_0000_00FF are used by
| software and will not be assigned as interrupt
| vectors.

| Figure 31. Effective address of interrupt vector by
| interrupt type

Programming Note

| When address translation is disabled, use of any
| of the effective addresses that are shown as

reserved in Figure 31 risks incompatibility with
future implementations.

†

|
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7.5.1 System Reset Interrupt

If a System Reset exception causes an interrupt that
is not context synchronizing, or causes the loss of a

| Machine Check exception, an External exception, or a
Floating-Point Enabled Exception type Program excep-
tion, the interrupt is not recoverable.

The following registers are set:

SRR0 Set to the effective address of the instruc-
tion that the processor would have
attempted to execute next if no interrupt
conditions were present.

SRR1
33:36 Set to 0.
42:47 Set to 0.
62 Loaded from bit 62 of the MSR if the

processor is in a recoverable state; other-
wise set to 0.

Others Loaded from the MSR.

MSR See Figure 30 on page 62.

| Execution resumes at effective address
| 0x0000_0000_0000_0100.

Each implementation provides a means for software
to distinguish power-on Reset from other types of
System Reset, and describes it in the Book IV,
PowerPC AS Implementation Features document for
the implementation.

Engineering Note

Every attempt should be made to allow continuing
execution.

If the result of a System Reset interrupt is the
same as that produced by an External interrupt
with the exception of where execution resumes,
the interrupt is recoverable. This condition exists
if none of the specified exceptions have been lost
and if the state of the processor has not been cor-
rupted by an error in the processor.

7.5.2 Machine Check Interrupt

The causes of Machine Check interrupts are imple-
mentation-dependent. For example, a Machine Check

| interrupt may be caused by a reference to a storage
| location that contains an uncorrectable error or does
† not exist (see Section 4.2.7, “Invalid Real Address” on
† page 29), or by an error in the storage subsystem.

Machine Check interrupts are enabled when
MSRME= 1 . If MSRME= 0 and a Machine Check

occurs, the processor enters the Checkstop state.
| The Checkstop state may also be entered if an access
| is attempted to a storage location that does not exist
| (see Section 4.2.7).

Disabled Machine Check (Checkstop State)

When a processor is in Checkstop state, instruction
processing is suspended and generally cannot be
restarted without resetting the processor. Some
implementations may preserve some or all of the
internal state of the processor when entering
Checkstop state, so that the state can be analyzed as
an aid in problem determination.

Enabled Machine Check

If a Machine Check exception causes an interrupt that
is not context synchronizing, or causes the loss of an

| External exception or a Floating-Point Enabled Excep-
tion type Program exception, the interrupt is not
recoverable.

In some systems, the operating system may attempt
to identify and log the cause of the Machine Check.

The following registers are set:

SRR0 Set on a “best effort” basis to the effective
address of some instruction that was exe-
cuting or was about to be executed when
the Machine Check exception occurred.
For further details see the Book IV,
PowerPC AS Implementation Features doc-
ument for the implementation.

SRR1
62 Loaded from bit 62 of the MSR if the

processor is in a recoverable state; other-
wise set to 0.

Others See the Book IV, PowerPC AS Implementa-
tion Features document for the implemen-
tation.

MSR See Figure 30 on page 62.

| Execution resumes at effective address
| 0x0000_0000_0000_0200.

Programming Note

If a Machine Check interrupt is caused by an error
in the storage subsystem, the storage subsystem
may return incorrect data, which may be placed
into registers. This corruption of register contents
may occur even if the interrupt is recoverable.

|
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Engineering Note

Every attempt should be made to allow continuing
execution.

If the result of a Machine Check interrupt is the
same as that produced by an External interrupt
with the exception of where execution resumes,
the interrupt is recoverable. This condition exists
if none of the specified exceptions have been lost
and if the state of the processor has not been cor-
rupted by an error in the processor. A load oper-
ation that places data, possibly corrupted by the
storage subsystem, into a GPR or FPR does not
make the interrupt unrecoverable.

7.5.3 Data Storage Interrupt

A Data Storage interrupt occurs when no higher pri-
† ority exception exists and a data access cannot be

performed for any of the following reasons.

| ■ Data address translation is enabled (MSRDR= 1 )
| and the virtual address of any byte of the storage
| location specified by a Load, Store, icbi, dcbz,

dcbst, dcbf, eciwx, or ecowx instruction cannot be
† translated to a real address.
† ■ The effective address specified by a lq, stq,

lwarx, ldarx, stwcx. , or stdcx. instruction refers to
storage that is Write Through Required or

| Caching Inhibited.

|
■ The access violates storage protection.

† ■ A Data Address Compare match or a Data
† Address Breakpoint Register (DABR) match
† occurs.

■ Execution of an eciwx or ecowx instruction is dis-
allowed because EARE= 0 .

†
■ The effective address calculation of a Load, Store,

| icbi, dcbz, dcbst , or dcbf instruction results in an
Effective Address Overflow (EAO) exception (see
Book I, PowerPC AS User Instruction Set Archi-
tecture).

|

†

| If a stwcx. or stdcx. would not perform its store in the
| absence of a Data Storage interrupt, and either (a)
| the specified effective address refers to storage that
| is Write Through Required or Caching Inhibited, or (b)
| a non-conditional Store to the specified effective
| address would cause a Data Storage interrupt, it is

implementation-dependent whether a Data Storage
interrupt occurs.

If a Move Assist instruction has a length of zero (in
| the XER), a Data Storage interrupt does not occur for

| reasons of Effective Address Overflow, address trans-
| lation, or storage protection, regardless of the effec-

tive address.

The following registers are set:

SRR0 Set to the effective address of the instruc-
tion that caused the interrupt.

SRR1
33:36 Set to 0.
42:47 Set to 0.
Others Loaded from the MSR.

MSR See Figure 30 on page 62.

DSISR
0 Set to 0.

| 1 Set to 1 if MSRDR= 1 and the translation
for an attempted access is not found in the

| primary PTEG or in the secondary PTEG;
otherwise set to 0.

2:3 Set to 0.
4 Set to 1 if the access is not permitted by

the storage protection mechanism; other-
wise set to 0.

| Programming Note

| The only cases in which DSISR4 can be
| set to 1 for an access that occurs when
| MSRDR= 0 are those described in
| Figure 25. These cases can be distin-
| guished from other causes of data
| storage protection violations by exam-
| ining SRR159 (the bit in which MSRDR
| was saved by the interrupt).

| 5 Set to 1 if the access is due to a lq, stq,
lwarx, ldarx, stwcx. , or stdcx. instruction
that addresses storage that is Write

| Through Required or Caching Inhibited;
otherwise set to 0.

| 6 Set to 1 for a Store, dcbz, or ecowx
instruction; otherwise set to 0.

7:8 Set to 0.
9 Set to 1 if a Data Address Compare match

† or a DABR match occurs; otherwise set to
0.

| 10 Set to 0.
11 Set to 1 if execution of an eciwx or ecowx

instruction is attempted when EARE= 0 ;
otherwise set to 0.

12:14 Set to 0.
| 15 Set to 1 if MSRDR= 1 , the translation for an
| attempted access is found in the SLB, the

translation is not found in the primary
PTEG or in the secondary PTEG, and

| SLBEL= 1 ; otherwise set to 0.
16:30 Set to 0.
31 Set to 1 if an Effective Address Overflow

(EAO) exception caused the interrupt.

|
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DAR Set to the effective address of a storage
element as described in the following list.

| The list should be read from the top down;
| the DAR is set as described by the first
| item that corresponds to an exception that
| is reported in the DSISR. For example, if a
| Load instruction causes a storage pro-
| tection violation and a DABR match (and
| both are reported in the DSISR), the DAR
| is set to the effective address of a byte in
| the first aligned doubleword for which
| access was attempted in the page that
| caused the exception.
| ■ undefined, for an EAO exception
| ■ a Data Storage exception occurs for
| reasons other than DABR match or, for
| eciwx and ecowx , EARE= 0
| — a byte in the block that caused the
| exception, for a Cache Manage-
| ment instruction
| — a byte in the first aligned
| doubleword for which access was
| attempted in the page that caused
| the exception, for a Load, Store,
| eciwx , or ecowx instruction (“f irst”
| refers to address order; see
| Section 7.7)
| ■ undefined, for a DABR match, or if
| eciwx or ecowx is executed when
| EARE= 0

If the interrupt occurs in 32-bit mode, the
high-order 32 bits of the DAR are set to 0.

†

| If multiple Data Storage exceptions occur for a given
| effective address, any one or more of the bits corre-
| sponding to these exceptions may be set to 1 in the
| DSISR, subject to the requirement that if Effective
| Address Overflow occurs for this effective address
| then bit 31 is set to 1.

| Programming Note

| More than one bit may be set to 1 in the DSISR in
| the following combinations.

| 1, { s + }
| 1, 15, { s + }
| 4, { s + }
| 4, 5, {s}
| 5, {s}
| { s + }

| In this list, “ { s } ” represents any combination of
| the set of bits {6, 9, 31} and “ { s + } ” adds bit 11 to
| this set.

| Execution resumes at effective address
| 0x0000_0000_0000_0300.

|

Engineering Note

For initial hardware debug it is often useful to run
with cache disabled. In some ways cache disa-
bled mode is similar to Caching Inhibited storage.

† Although lq and stq need not be supported by an
implementation for storage that is Caching Inhib-
ited, support for lq and stq with cache disabled
should be considered.

| 7.5.4 Data Segment Interrupt

| A Data Segment interrupt occurs when no higher pri-
| ority exception exists and a data access cannot be
| performed because data address translation is
| enabled (MSRDR= 1 ) and the effective address of any
| byte of the storage location specified by a Load,
| Store, icbi, dcbz, dcbst, dcbf, eciwx, or ecowx instruc-
| tion cannot be translated to a virtual address.

| If a stwcx. or stdcx. would not perform its store in the
| absence of a Data Segment interrupt, and a non-
| conditional Store to the specified effective address
| would cause a Data Segment interrupt, it is imple-
| mentation-dependent whether a Data Segment inter-
| rupt occurs.

| If a Move Assist instruction has a length of zero (in
| the XER), a Data Segment interrupt does not occur,
| regardless of the effective address.

| The following registers are set:

| SRR0 Set to the effective address of the instruc-
| tion that caused the interrupt.

| SRR1
| 33:36 Set to 0.
| 42:47 Set to 0.
| Others Loaded from the MSR.

| MSR See Figure 30 on page 62.

| DAR Set to the effective address of a storage
| element as described in the following list.
| ■ a byte in the block that caused the
| Data Segment interrupt, for a Cache
| Management instruction
| ■ a byte in the first aligned doubleword
| for which access was attempted in the
| segment that caused the Data
| Segment interrupt, for a Load, Store,
| eciwx , or ecowx instruction (“f irst”
| refers to address order; see Section
| 7.7)
| If the interrupt occurs in 32-bit mode, the
| high-order 32 bits of the DAR are set to 0.

| Execution resumes at effective address
| 0x0000_0000_0000_0380.
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| Programming Note

| A Data Segment interrupt cannot occur for an SLS
| address. For a PLS address or in tags inactive
| mode it occurs if MSRDR= 1 and the translation of
| the effective address of any byte of the specified
| storage location is not found in the SLB.

7.5.5 Instruction Storage Interrupt

An Instruction Storage interrupt occurs when no
† higher priority exception exists and the next instruc-
† tion to be executed cannot be fetched for any of the

following reasons.

| ■ Instruction address translation is enabled
| (MSRIR= 1 ) and the virtual address cannot be
| translated to a real address.

|
■ The fetch access violates storage protection.

|

†

The following registers are set:

SRR0 Set to the effective address of the instruc-
tion that the processor would have
attempted to execute next if no interrupt
conditions were present (if the interrupt
occurs on attempting to fetch a branch
target, SRR0 is set to the branch target
address).

SRR1
| 33 Set to 1 if MSRIR= 1 and the translation for

an attempted access is not found in the
| primary PTEG or in the secondary PTEG;

otherwise set to 0.
34 Set to 0.
35 Set to 1 if the access occurs when

MSRIR= 1 and is to No-execute storage or
| to Guarded storage; otherwise set to 0.
| 36 Set to 1 if the access is not permitted by
| Figure 23, 24, or 25, as appropriate; other-
| wise set to 0.

| Programming Note

| The only cases in which SRR136 can be
| set to 1 for an access that occurs when
| MSRIR= 0 are those described in
| Figure 25. These cases can be distin-
| guished from other causes of instruc-
| tion storage protection violations that
| set SRR136 to 1 by examining SRR158
| (the bit in which MSRIR was saved by
| the interrupt).

| 42:46 Set to 0.
| 47 Set to 1 if MSRIR= 1 , the translation for an
| attempted access is found in the SLB, the

translation is not found in the primary
PTEG or in the secondary PTEG, and

| SLBEL= 1 ; otherwise set to 0.
Others Loaded from the MSR.

MSR See Figure 30 on page 62.

|

† If multiple Instruction Storage exceptions occur due to
attempting to fetch a single instruction, any one or

† more of the bits corresponding to these exceptions
† may be set to 1 in SRR1.

† Programming Note

† More than one bit may be set to 1 in SRR1 in the
† following combinations.

† 33, 35
† 33, 47
† 33, 35, 47
† 35, 36

| Execution resumes at effective address
| 0x0000_0000_0000_0400.

| 7.5.6 Instruction Segment Interrupt

| An Instruction Segment interrupt occurs when no
| higher priority exception exists and the next instruc-
| tion to be executed cannot be fetched because
| instruction address translation is enabled (MSRIR= 1 )
| and the effective address cannot be translated to a
| virtual address.

| The following registers are set:

| SRR0 Set to the effective address of the instruc-
| tion that the processor would have
| attempted to execute next if no interrupt
| conditions were present (if the interrupt
| occurs on attempting to fetch a branch
| target, SRR0 is set to the branch target
| address).

| SRR1
| 33:36 Set to 0.
| 42:47 Set to 0.
| Others Loaded from the MSR.

| MSR See Figure 30 on page 62.

| Execution resumes at effective address
| 0x0000_0000_0000_0480.
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| Programming Note

| An Instruction Segment interrupt cannot occur for
| an SLS address. For a PLS address or in tags
| inactive mode it occurs if MSRIR= 1 and the trans-
| lation of the effective address of the next instruc-
| tion to be executed is not found in the SLB.

7.5.7 External Interrupt

An External interrupt occurs when no higher priority
exception exists, an External interrupt exception is
presented to the interrupt mechanism, and MSREE= 1 .
The occurrence of the interrupt does not cancel the
request.

The following registers are set:

SRR0 Set to the effective address of the instruc-
tion that the processor would have
attempted to execute next if no interrupt
conditions were present.

SRR1
33:36 Set to 0.
42:47 Set to 0.
Others Loaded from the MSR.

MSR See Figure 30 on page 62.

| Execution resumes at effective address
| 0x0000_0000_0000_0500.

7.5.8 Alignment Interrupt

An Alignment interrupt occurs when no higher priority
† exception exists and a data access cannot be per-
† formed for any of the following reasons.

■ The operand of a floating-point Load or Store is
† not word-aligned, or crosses a virtual page
† boundary.

† ■ The operand of lq, stq, lmw, lmd, stmw, stmd,
lwarx, ldarx, st wcx., stdcx., eciwx , or ecowx is not
aligned.

■ The operand of a single-register Load or Store is
not aligned and the processor is in Little-Endian
mode.

■ The instruction is lq, stq, lmw, lmd, stmw, stmd,
lswi, lswx, lsdi, lsdx, stswi, stswx, stsdi, or stsdx ,

| and the operand is in storage that is Write
| Through Required or Caching Inhibited, or the

processor is in Little-Endian mode.

|

| ■ The operand of a Load or Store crosses a
| segment boundary, or crosses a boundary
| between virtual pages that have different storage
| control attributes.

| ■ The operand of a Load or Store is not aligned and
| is in storage that is Write Through Required or
| Caching Inhibited.

| ■ The operand of dcbz, lwarx, ldarx, st wcx., or
| stdcx. is in storage that is Write Through
| Required or Caching Inhibited.

†

|

Engineering Note

Early implementations have additional require-
ments for lmw and stmw , for reasons of compat-
ibility with the POWER Architecture. See the

† section entitled “Load/Store Multiple Instructions”
in the “Incompatibilities with the POWER Architec-
ture” appendix of Book I.

| If a stwcx. or stdcx. would not perform its store in the
| absence of an Alignment interrupt and the specified
| effective address refers to storage that is Write
| Through Required or Caching Inhibited, it is imple-
| mentation-dependent whether an Alignment interrupt
| occurs.

| Setting the DSISR and DAR as described below is
| optional for implementations on which Alignment
| interrupts occur rarely, if ever, for cases that the
| Alignment interrupt handler emulates. For such
| implementations, if the DSISR and DAR are not set as
| described below they are set to undefined values.

| Engineering Note

| For a given implementation, decisions regarding
| whether to set the DSISR and DAR as described
| in the remainder of this section, and what poten-
| tial causes of Alignment interrupts actually cause
| Alignment interrupts, must include consideration
| of the cases that the Alignment interrupt handler
| would emulate, and of the effect of such emulation
| on software performance.

The following registers are set:

SRR0 Set to the effective address of the instruc-
tion that caused the interrupt.

SRR1
33:36 Set to 0.
42:47 Set to 0.
Others Loaded from the MSR.

MSR See Figure 30 on page 62.

DSISR
0:11 Set to 0.
12:13 Set to bits 30:31 of the instruction if

DS-form.
Set to 0b00 if D-, DQ-, or X-form.
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14 Set to 0.
15:16 Set to bits 29:30 of the instruction if X-form.

Set to 0b00 if D-, DS-, or DQ-form.
17 Set to bit 25 of the instruction if X-form.

Set to bit 5 of the instruction if D-, DS-, or
DQ-form.

18:21 Set to bits 21:24 of the instruction if X-form.
Set to bits 1:4 of the instruction if D-, DS-,
or DQ-form.

22:26 Set to bits 6:10 of the instruction
(RT/RS/FRT/FRS), except undefined for
dcbz .

27:31 Set to bits 11:15 of the instruction (RA) for
update form instructions; set to either bits
11:15 of the instruction or to any register
number not in the range of registers to be
loaded for a valid form lmw , a valid form
lswi , or a valid form lswx for which neither
RA nor RB is in the range of registers to be
loaded; otherwise undefined.

Engineering Note

The requirement for lmw, lswi , and lswx
ensures that the program that emulates
these instructions when they cause an
Alignment interrupt on the 601 can also
be used on subsequent PowerPC AS
implementations. (601 implements
POWER semantics for these
instructions, preserving RA when it is in
the range to be loaded and is not 0.
Therefore the 601 Alignment interrupt
handler must do the same. Software
wants to use the same Alignment inter-
rupt handler for all PowerPC AS imple-
mentations. This requires that the “RA
field” saved in the DSISR for post-601
implementations not be in the range
that would be loaded if the effective
address were aligned.)

For lmw , the requirement can be met
either by storing zeros or by storing the
RT field with 1 subtracted from it. For
lswi and lswx , it can be met by storing
the RT field with 1 subtracted from it
(the Load String instructions wrap from
GPR 31 to GPR 0, so simply storing
zeros is not adequate).

† DAR Set to the effective address computed by
† the instruction, except that if the interrupt

occurs in 32-bit mode the high-order 32 bits
| of the DAR are set to 0.

† For an X-form Load or Store, it is acceptable for the
† processor to set the DSISR to the same value that

would have resulted if the corresponding D- or
DS-form instruction had caused the interrupt. Simi-
larly, for a D- or DS-form Load or Store, it is accept-

† able for the processor to set the DSISR to the value
that would have resulted for the corresponding X-form

instruction. For example, an unaligned lwax (that
crosses a protection boundary) would normally, fol-
lowing the description above, cause the DSISR to be
set to binary:

000000000000 00 0 01 0 0101 ttttt ?????

where “ t t t t t ” denotes the RT field, and “?????”
† denotes an undefined 5-bit value. However, it is

acceptable if it causes the DSISR to be set as for lwa ,
which is

000000000000 10 0 00 0 1101 ttttt ?????

If there is no corresponding alternative form instruc-
† tion (e.g., for lwaux ), the value described above is set

in the DSISR.

The instruction pairs that may use the same DSISR
value are:

lhz/lhzx lhzu/lhzux lha/lhax lhau/lhaux
lwz/lwzx lwzu/lwzux lwa/lwax
ld/ldx ldu/ldux
sth/sthx sthu/sthux stw/stwx stwu/stwux
std/stdx stdu/stdux
lfs/lfsx lfsu/lfsux lfd/lfdx lfdu/lfdux
stfs/stfsx stfsu/stfsux stfd/stfdx stfdu/stfdux

| Execution resumes at effective address
| 0x0000_0000_0000_0600.

Programming Note

The architecture does not support the use of an
unaligned effective address by lwarx, ldarx,
stwcx., stdcx., eciwx , and ecowx . If an Alignment
interrupt occurs because one of these instructions
specifies an unaligned effective address, the
Alignment interrupt handler must not attempt to
simulate the instruction, but instead should treat
the instruction as a programming error.

|

|

7.5.9 Program Interrupt

A Program interrupt occurs when no higher priority
exception exists and one of the following exceptions
arises during execution of an instruction:

Floating-Point Enabled Exception

A Floating-Point Enabled Exception type Program
interrupt is generated when the expression

(MSRFE0 | MSRFE1) & FPSCRFEX

is 1. FPSCRFEX is set to 1 by the execution of a
floating-point instruction that causes an enabled
exception, including the case of a Move To
FPSCR instruction that causes an exception bit
and the corresponding enable bit both to be 1.
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Illegal Instruction

An Illegal Instruction type Program interrupt is
generated when execution is attempted of an
illegal instruction, or of a reserved or optional
instruction that is not provided by the implemen-
tation.

An Illegal Instruction type Program interrupt may
be generated when execution is attempted of any

† of the following kinds of instruction.

† ■ an instruction that is in invalid form

■ an lswx instruction for which RA or RB is in
† the range of registers to be loaded

■ an mtspr or mfspr instruction with an SPR
field that does not contain one of the defined

† values, or an mftb instruction with a TBR
† field that does not contain one of the defined
† values

|

Engineering Note

Early implementations have additional
requirements for instructions that are
reserved because they correspond to non-
privileged POWER instructions that are not in
PowerPC AS, and for mtspr and mfspr , for
reasons of compatibility with the POWER
Architecture. See the sections entitled “Move
To/From SPR” and “Discontinued Opcodes” in
the “Incompatibilities with the POWER Archi-
tecture” appendix of Book I.

Privileged Instruction

† The following applies if the instruction is executed
when MSRPR = 1.

A Privileged Instruction type Program inter-
rupt is generated when execution is
attempted of a privileged instruction, or of an
mtspr or mfspr instruction with an SPR field
that contains one of the defined values
having spr0= 1 . It may be generated when
execution is attempted of an mtspr or mfspr
instruction with an SPR field that does not
contain one of the defined values but has

† spr0= 1 , or when execution is attempted of an
† mftb instruction with a TBR field that does
† not contain one of the defined values but has
† tbr0= 1 .

| The following applies if the instruction is executed
| when MSRHV PR = 0b00.

| A Privileged Instruction type Program inter-
| rupt may be generated when execution is
| attempted of an mtspr instruction with an
| SPR field that designates a hypervisor
| resource (see Section 1.7, “Logical Parti-
| tioning (LPAR)” on page 4), or when exe-
| cution of a tlbie or tlbsync instruction is
| attempted.

| Programming Note

| These are the only cases in which a Privi-
| leged Instruction type Program interrupt
| can be generated when MSRPR= 0 . They
| can be distinguished from other causes of
| Privileged Instruction type Program inter-
| rupts by examining SRR149 (the bit in
| which MSRPR was saved by the inter-
| rupt).

Trap

A Trap type Program interrupt is generated when
any of the conditions specified in a Trap instruc-
tion is met.

The following registers are set:

SRR0 For all Program interrupts except a
Floating-Point Enabled Exception when in
one of the Imprecise modes, set to the
effective address of the instruction that
caused the Program interrupt.

For an Imprecise Mode Floating-Point
Enabled Exception, set to the effective
address of the excepting instruction or to
the effective address of some subsequent

† instruction. If SRR0 points to a subsequent
instruction, that instruction has not been
executed. If a subsequent instruction is

† isync or sync , SRR0 will not point more
than four bytes beyond the isync or sync
instruction.

If FPSCRFEX= 1 but Floating-Point Enabled
Exception type Program interrupts are dis-
abled by having both MSRFE0 and MSRFE1
= 0, a Floating-Point Enabled Exception
type Program interrupt will occur prior to
or at the next synchronizing event if these
MSR bits are altered by any instruction
that can set the MSR so that the
expression

(MSRFE0 | MSRFE1) & FPSCRFEX

is 1. When this occurs, SRR0 is loaded
with the address of the instruction that
would have executed next, not with the
address of the instruction that modified the
MSR causing the interrupt.

SRR1
33:36 Set to 0.
42 Set to 0.
43 Set to 1 for a Floating-Point Enabled Excep-

tion type Program interrupt; otherwise set
to 0.

44 Set to 1 for an Illegal Instruction type
Program interrupt; otherwise set to 0.

45 Set to 1 for a Privileged Instruction type
Program interrupt; otherwise set to 0.

46 Set to 1 for a Trap type Program interrupt;
otherwise set to 0.
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47 Set to 0 if SRR0 contains the address of
the instruction causing the exception, and
to 1 if SRR0 contains the address of a sub-
sequent instruction.

Others Loaded from the MSR.

Only one of bits 43:46 can be set to 1.

MSR See Figure 30 on page 62.

| Execution resumes at effective address
| 0x0000_0000_0000_0700.

Engineering Note

If the Imprecise Recoverable Mode Floating-Point
Enabled Exception type Program interrupt is
implemented as imprecise, the hardware must
provide, at the minimum, the address at which to
resume the interrupted process (this is given in
SRR0), the excepting instruction's opcode,
extended opcode, and record bit, the source
values or registers, and the target register. This
information can be provided directly in registers
or by means of a pointer to the excepting instruc-
tion. The manner in which it is provided is
described in the Book IV, PowerPC AS Implemen-
tation Features document for the implementation.

7.5.10 Floating-Point Unavailable
Interrupt

A Floating-Point Unavailable interrupt occurs when no
higher priority exception exists, an attempt is made to
execute a floating-point instruction (including floating-
point loads, stores, and moves), and MSRFP= 0 .

The following registers are set:

SRR0 Set to the effective address of the instruc-
tion that caused the interrupt.

SRR1
33:36 Set to 0.
42:47 Set to 0.
Others Loaded from the MSR.

MSR See Figure 30 on page 62.

| Execution resumes at effective address
| 0x0000_0000_0000_0800.

7.5.11 Decrementer Interrupt

A Decrementer interrupt occurs when no higher pri-
ority exception exists, the Decrementer exception
exists, and MSREE= 1 . The occurrence of the inter-
rupt cancels the request.

The following registers are set:

SRR0 Set to the effective address of the instruc-
tion that the processor would have
attempted to execute next if no interrupt
conditions were present.

SRR1
33:36 Set to 0.
42:47 Set to 0.
Others Loaded from the MSR.

MSR See Figure 30 on page 62.

| Execution resumes at effective address
| 0x0000_0000_0000_0900.

|

7.5.12 System Call Interrupt

A System Call interrupt occurs when a System Call
instruction is executed.

The following registers are set:

SRR0 Set to the effective address of the instruc-
tion following the System Call instruction.

SRR1
33:36 Set to 0.
42:47 Set to 0.
Others Loaded from the MSR.

MSR See Figure 30 on page 62.

| Execution resumes at effective address
| 0x0000_0000_0000_0C00.

| Programming Note

| An attempt to execute an sc instruction with
| LEV=1 in problem state should be treated as a
| programming error.
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7.5.13 Trace Interrupt

A Trace interrupt occurs when no higher priority
exception exists and either MSRSE= 1 and any

| instruction except rfid or rfscv is successfully com-
pleted, or MSRBE= 1 and a Branch instruction is com-
pleted. Successful completion means that the
instruction caused no other interrupt. Thus a Trace
interrupt never occurs for a System Call instruction,
or for a Trap instruction that traps. The instruction
that causes a Trace interrupt is called the “traced
instruction”.

When a Trace interrupt occurs, the following registers
are set:

SRR0 Set to the effective address of the instruc-
tion that the processor would have
attempted to execute next if no interrupt
conditions were present.

SRR1
33:36 and 42:47 See the Book IV, PowerPC AS

Implementation Features document for the
implementation.

Others Loaded from the MSR.

MSR See Figure 30 on page 62.

| Execution resumes at effective address
| 0x0000_0000_0000_0D00.

Extensions to the Trace facility are described in
Appendix F, “Example Trace Extensions (Optional)”
on page 115.

Programming Note

The following instructions are not traced.

| ■ rfid
■ rfscv
■ sc , scv , and Trap instructions that trap
■ other instructions that cause interrupts (other

than Trace interrupts)
■ the first instructions of any interrupt handler
■ instructions that are emulated by software

In general, interrupt handlers can achieve the
effect of tracing these instructions.

Architecture Note

| If a Trace interrupt were permitted after an rfid or
rfscv , the Trace interrupt handler would never be
able to return to a program for which MSRSE= 1 .

|

7.5.14 Performance Monitor Interrupt
(Optional)

The Performance Monitor interrupt is part of the
optional Performance Monitor facility; see
Appendix E. If the Performance Monitor facility is not
implemented or does not use this interrupt, the corre-
sponding interrupt vector (see Figure 31 on page 62)
is treated as reserved.

7.5.15 System Call Vectored Interrupt

A System Call Vectored interrupt occurs when a
System Call Vectored instruction is executed in tags
active mode.

The following registers are set:

LR Set to the effective address of the instruc-
tion following the System Call Vectored
instruction.

CTR
33:36 undefined
42:47 undefined
Others Loaded from corresponding bits of the

MSR.

MSR See Figure 30 on page 62.

| Execution resumes at effective address
| 0xFFFF_FFFF_FF00_3 || LEV || 0b0_0000, where LEV
| is the 7-bit value specified by the System Call Vec-
| tored instruction.

| Programming Note

| Because the System Call Vectored interrupt sets
| MSRIR to 1, the effective address described above
| is translated to a real address before being used
| to access storage. If the effective address cannot
| be translated, or if instructions cannot be fetched
| from the addressed storage location (e.g., the
| access would violate storage protection, or would
| be to No-execute storage), an Instruction Storage
| interrupt occurs before the first instruction at the
| effective address is executed.

| Because the System Call Vectored interrupt uses
| save/restore registers that differ from those used
| by other interrupts, the System Call Vectored
| interrupt handler can run with address translation
| enabled and External interrupts enabled. Simi-
| larly, the Programming Note about managing
| MSRRI in Section 7.4, “Interrupt Processing” on
| page 61 does not apply to the System Call Vec-
| tored interrupt handler (the System Call Vectored
| interrupt does not alter MSRRI).
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7.6 Partially Executed
Instructions

| If a system-caused, Data Storage, Data Segment, or
| Alignment exception occurs while a Load or Store
| instruction is executing, the instruction may be
| aborted. In such cases the instruction is not com-
| pleted, but may have been partially executed in the
| following respects.

| ■ Some of the bytes of the storage operand may
| have been accessed, except that if access to a
| given byte of the storage operand would cause
| Effective Address Overflow or would violate
| storage protection, that byte is neither copied to
| a register by a Load instruction nor modified by a
| Store instruction. Also, the rules for storage
| accesses given in Section 4.2.4.1, “Guarded
| Storage” on page 26 and in the section entitled
| “Instruction Restart” in Book II are obeyed.

| ■ Some registers may have been altered as
| described in the Book II section cited above.

| ■ Reference, Change, and Tag Set bits may have
| been updated as described in Section 4.8.

| ■ For a stwcx. or stdcx. instruction that is executed
| in-order, CR0 and the FXCC may have been set to
| undefined values and the reservation may have
| been cleared.

| ■ For an lq instruction that is executed in-order, the
| TGCC may have been set to an undefined value.

| The architecture does not support continuation of an
| aborted instruction but intends that the aborted
| instruction be re-executed if appropriate.

| Programming Note

| An exception may result in the partial execution of
| a Load or Store instruction. For example, if the
| Page Table Entry that translates the address of
| the storage operand is altered, by a program
| running on another processor, such that the new
| contents of the Page Table Entry preclude per-
| forming the access, the alteration could cause the
| Load or Store instruction to be aborted after
| having been partially executed.

| As stated in the Book II section cited above, if an
| instruction is partially executed the contents of
| registers are preserved to the extent that the
| instruction can be re-executed correctly. The con-
| sequent preservation is described in the following
| list. For any given instruction, zero, one, or two
| items in the list apply.

| ■ For a fixed-point Load instruction that is not a
| multiple or string form, or for an eciwx
| instruction, if RT = RA or RT = RB then the
| contents of register RT are not altered.

| ■ For an lq instruction, if RT+1 = RA then the
| contents of register RT+1 are not altered.

| ■ For an update form Load or Store instruction,
| the contents of register RA are not altered.

7.7 Exception Ordering

Since multiple exceptions can exist at the same time
and the architecture does not provide for reporting
more than one interrupt at a time, the generation of
more than one interrupt is prohibited. Also some
exceptions would be lost if they were not recognized
and handled when they occurred. For example, if an
External interrupt was generated when a Data
Storage exception existed, the Data Storage exception
would be lost. If the Data Storage exception was
caused by a Store Multiple instruction for which the
storage operand crosses a virtual page boundary and
the exception was a result of attempting to access the
second virtual page, the store could have modified
locations in the first virtual page even though it
appeared that the Store Multiple instruction was
never executed.

In addition, the architecture defines imprecise inter-
rupts that must be recoverable, cannot be lost, and
can occur at any time with respect to the executing
instruction stream. Some of the maskable and non-
maskable exceptions are persistent and can be
deferred. The following exceptions persist even
though some other interrupt is generated:

■ Floating-Point Enabled Exceptions
■ External
■ Decrementer

For the above reasons, all exceptions are prioritized
with respect to other exceptions that may exist at the
same instant to prevent the loss of any exception that
is not persistent. Some exceptions cannot exist at the
same instant as some others.

| Data Storage, Data Segment, and Alignment excep-
| tions occur as if the storage operand were accessed
| one byte at a time in order of increasing effective
| address (with the obvious caveat if the operand
| includes both the maximum effective address and
| effective address 0).

| 7.7.1 Unordered Exceptions

The exceptions listed here are unordered, meaning
that they may occur at any time regardless of the

† state of the interrupt processing mechanism. These
† exceptions are recognized and processed when pre-

sented.

1. System Reset
2. Machine Check

|
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7.7.2 Ordered Exceptions

| The exceptions listed here are ordered with respect to
| the state of the interrupt processing mechanism.

System-Caused or Imprecise

|
1. Program

- Imprecise Mode Floating-Point Enabled Exception
2. External
3. Decrementer

Instruction-Caused and Precise

| 1. Instruction Segment
2. Instruction Storage
3. Program

- Illegal Instruction
- Privileged Instruction

4. Function-Dependent
4.a Fixed-Point

1a Program
- Trap

† 1b System Call or System Call Vectored
| 1c.1 EAO type Data Storage
| 1c.2 non-EAO type Data Storage, or Data
| Segment or Alignment

2 Trace

4.b Floating-Point
1 FP Unavailable
2a Program

- Precise Mode Floating-Point Enabled Excep'n
|
| 2b.1 EAO type Data Storage
| 2b.2 non-EAO type Data Storage, or Data
| Segment or Alignment

3 Trace

For implementations that execute multiple instructions
in parallel using pipeline or superscalar techniques, or
combinations of these, it can be difficult to understand
the ordering of exceptions. To understand this

† ordering it is useful to consider a model in which each
† instruction is fetched, then decoded, then executed,
† all before the next instruction is fetched. In this

model, the exceptions a single instruction would gen-
erate are in the order shown in the list of instruction-
caused exceptions. Exceptions with different numbers
have different ordering. Exceptions with the same
numbering but different lettering are mutually exclu-
sive and cannot be caused by the same instruction.

| Where Data Storage, Data Segment, and Alignment
| exceptions are listed in the same item they have
| equal ordering.

Even on processors that are capable of executing
several instructions simultaneously, or out of order,
instruction-caused interrupts (precise and imprecise)
occur in program order.

|

7.8 Interrupt Priorities

This section describes the relationship of nonmask-
able, maskable, precise, and imprecise interrupts. In
the following descriptions, the interrupt mechanism
waiting for all possible exceptions to be reported
includes only exceptions caused by previously initi-
ated instructions (e.g., it does not include waiting for
the Decrementer to step through zero). The excep-
tions are listed in order of highest to lowest priority.

1. System Reset

System Reset exception has the highest priority
of all exceptions. If this exception exists, the
interrupt mechanism ignores all other exceptions
and generates a System Reset interrupt.

Once the System Reset interrupt is generated, no
nonmaskable interrupts are generated due to
exceptions caused by instructions issued prior to
the generation of this interrupt.

2. Machine Check

Machine Check exception is the second highest
priority exception. If this exception exists and a
System Reset exception does not exist, the inter-
rupt mechanism ignores all other exceptions and
generates a Machine Check interrupt.

Once the Machine Check interrupt is generated,
no nonmaskable interrupts are generated due to
exceptions caused by instructions issued prior to
the generation of this interrupt.

|

3. Instruction-Dependent

† This exception is the third highest priority excep-
tion. When this exception is created, the interrupt
mechanism waits for all possible Imprecise
exceptions to be reported. It then generates the
appropriate ordered interrupt if no higher priority
exception exists when the interrupt is to be gen-
erated. Within this category a particular instruc-
tion may present more than a single exception.
When this occurs, those exceptions are ordered in

| priority as indicated in the following lists. Where
| Data Storage, Data Segment, and Alignment
| exceptions are listed in the same item they have
| equal priority (i.e., the processor may generate
| any one of the three interrupts for which an
| exception exists).

A. Fixed-Point Loads and Stores

| a. EAO type Data Storage
| b. non-EAO type Data Storage, or Data
| Segment or Alignment

c. Trace
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B. Floating-Point Loads and Stores

a. Floating-Point Unavailable
| b. EAO type Data Storage
| c. non-EAO type Data Storage, or Data
| Segment or Alignment

d. Trace

C. Other Floating-Point Instructions

a. Floating-Point Unavailable
b. Program - Precise Mode Floating-Point

Enabled Exception
|

c. Trace

| D. rfid , rfscv , and mtmsr [ d]

a. Program - Privileged Instruction
b. Program - Precise Mode Floating-Point

Enabled Exception
c. Trace, for mtmsr [ d] only

If the MSR bits FE0 and FE1 are set such that
Precise Mode Floating-Point Enabled Excep-
tion type Program interrupts are enabled and
FPSCR bit FEX is set, a Program interrupt will
result prior to or at the next synchronizing
event.

E. Other Instructions

a. These exceptions are mutually exclusive
and have the same priority:
■ Program - Trap
■ System Call
■ System Call Vectored
■ Program - Privileged Instruction
■ Program - Illegal Instruction

b. Trace

| F. Instruction Storage and Instruction Segment

| These exceptions have the lowest priority in
| this category. They are recognized only
| when all instructions prior to the instruction
| causing one of these exceptions appear to
| have completed and that instruction is the
| next instruction to be executed. The two
| exceptions are mutually exclusive.

| The priority of these exceptions is specified
| for completeness and to ensure that they are
| not given more favorable treatment. It is
| acceptable for an implementation to treat
| these exceptions as though they had a lower
| priority.

4. Program - Imprecise Mode Floating-Point Enabled
Exception

† This exception is the fourth highest priority
exception. When this exception is created, the
interrupt mechanism waits for all other possible
exceptions to be reported. It then generates this
interrupt if no higher priority exception exists
when the interrupt is to be generated.

5. External

† This exception is the fifth highest priority excep-
tion. When this exception is created, the interrupt
mechanism waits for all other possible exceptions
to be reported. It then generates this interrupt if
no higher priority exception exists when the inter-
rupt is to be generated.

6. Decrementer

This exception is the lowest priority exception.
When this exception is created, the interrupt
mechanism waits for all other possible exceptions
to be reported. It then generates this interrupt if
no higher priority exception exists when the inter-
rupt is to be generated.
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Chapter 8. Timer Facilities
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Decrementer . . . . . . . . . . . . . . . 77

8.1 Overview

The Time Base and the Decrementer provide timing
functions for the system. Both are volatile resources
and must be initialized during startup. The mftb
instruction is used to read the Time Base; the mtspr
and mfspr instructions are used to write the Time
Base and Decrementer and to read the Decrementer.

Time Base (TB)
The Time Base provides a long-period counter
driven by an implementation-dependent fre-
quency.

Decrementer (DEC)
The Decrementer, a counter that is updated at
the same rate as the Time Base, provides a
means of signaling an interrupt after a specified
amount of time has elapsed unless

■ the Decrementer is altered by software in the
interim, or

■ the Time Base update frequency changes.

8.2 Time Base

The Time Base (TB) is a 64-bit register (see
Figure 32) containing a 64-bit unsigned integer that is
incremented periodically. Each increment adds 1 to
the low-order bit (bit 63). The frequency at which the
integer is updated is implementation-dependent.

TBU TBL

0 32 63

Field Description
TBU Upper 32 bits of Time Base
TBL Lower 32 bits of Time Base

Figure 32. Time Base

| The Time Base is a hypervisor resource; see Section
| 1.7, “Logical Partitioning (LPAR)” on page 4.

There is no automatic initialization of the Time Base;
system software must perform this initialization.

The Time Base increments until its value becomes
0xFFFF_FFFF_FFFF_FFFF (264 − 1). At the next incre-
ment, its value becomes 0x0000_0000_0000_0000.
There is no interrupt or other indication when this
occurs.

The period of the Time Base depends on the driving
frequency. As an order of magnitude example,
suppose that the CPU clock is 100 MHz and that the
Time Base is driven by this frequency divided by 32.
Then the period of the Time Base would be

TTB = 264 × 32
100 MHz

= 5.90 × 1012 seconds

which is approximately 187,000 years.

The Time Base must be implemented such that the
following requirements are satisfied.

1. Loading a GPR from the Time Base shall have no
effect on the accuracy of the Time Base.

2. Storing a GPR to the Time Base shall replace the
value in the Time Base with the value in the GPR.

The PowerPC AS Architecture does not specify a
relationship between the frequency at which the Time
Base is updated and other frequencies, such as the
CPU clock or bus clock in an PowerPC AS system.
The Time Base update frequency is not required to be
constant. What is required, so that system software
can keep time of day and operate interval timers, is
one of the following.

■ The system provides an (implementa-
tion-dependent) interrupt to software whenever
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the update frequency of the Time Base changes,
and a means to determine what the current
update frequency is.

■ The update frequency of the Time Base is under
the control of the system software.

Implementations must provide a means for either pre-
venting the Time Base from incrementing or pre-
venting it from being read in problem state
(MSRPR=1) . If the means is under software control, it

| must be accessible only in hypervisor state
| (MSRHV PR = 0b10). There must be a method for

getting all processors' Time Bases to start incre-
menting with values that are identical or almost iden-
tical in all processors.

Architecture Note

Disabling the Time Base or making the mftb
instruction privileged prevents the Time Base
from being used to implement a “covert channel”
in a secure system.

The requirements stated above for the Time Base
apply also to any other SPRs that measure time
and can be read in problem state (e.g., Perform-
ance Monitor registers).

Programming Note

| If the hypervisor initializes the Time Base on
power-on to some reasonable value and the
update frequency of the Time Base is constant,
the Time Base can be used as a source of values
that increase at a constant rate, such as for time
stamps in trace entries.

Even if the update frequency is not constant,
values read from the Time Base are
monotonically increasing (except when the Time
Base wraps from 264− 1 to 0). If a trace entry is
recorded each time the update frequency
changes, the sequence of Time Base values can
be post-processed to become actual time values.

Successive readings of the Time Base may return
identical values.

See the description of the Time Base in Book II,
PowerPC AS Virtual Environment Architecture for
ways to compute time of day in POSIX format
from the Time Base.

Architecture Note

It is intended that the Time Base be useful for
timing reasonably short sequences of code (a few
hundred instructions) and for low-overhead time
stamps for tracing. The Time Base should not
“t ick” faster than the CPU instruction clock.
Driving the Time Base directly from the CPU
instruction clock is probably finer granularity than
necessary; the instruction clock divided by 8, 16,
or 32 would be more appropriate.

The Time Base driving frequency is also used to
update the Decrementer (see Section 8.3), which
is used by system software to set interval timers
(“alarms”). The update frequency chosen should
be appropriate for this purpose as well.

Engineering Note

One method that can be used to meet the require-
ment to synchronize Time Base values in all
processors is to have a TB Enable input signal.
When this signal is active, the Time Base is
allowed to increment. When this signal is inac-
tive, the Time Base does not increment. This
signal may also be used to satisfy the require-
ment either to prevent the Time Base from incre-
menting or to prevent the Time Base from being
read in problem state.

If the TB Enable input signal is implemented, the
Decrementer does not decrement when this signal
is inactive.

8.2.1 Writing the Time Base

| Writing the Time Base is privileged, and can be done
| only in hypervisor state. Reading the Time Base is

not privileged; it is discussed in Book II, PowerPC AS
Virtual Environment Architecture.

It is not possible to write the entire 64-bit Time Base
using a single instruction. The mttbl and mttbu
extended mnemonics write the lower and upper
halves of the Time Base (TBL and TBU), respectively,
preserving the other half. These are extended mne-
monics for the mtspr instruction; see page 94.

The Time Base can be written by a sequence such as:

lwz Rx,upper # load 64-bit value for
lwz Ry,lower # TB into Rx and Ry
li Rz,0
mttbl Rz # force TBL to 0
mttbu Rx # set TBU
mttbl Ry # set TBL

Provided that no interrupts occur while the last three
instructions are being executed, loading 0 into TBL
prevents the possibility of a carry from TBL to TBU
while the Time Base is being initialized.
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Programming Note

The instructions for writing the Time Base are
implementation- and mode-independent. Thus
code written to set the Time Base will work cor-
rectly in either 64-bit or 32-bit mode.

8.3 Decrementer

The Decrementer (DEC) is a 32-bit decrementing
counter that provides a mechanism for causing a
Decrementer interrupt after a programmable delay.

DEC

0 31

Figure 33. Decrementer

The Decrementer is driven by the same frequency as
the Time Base. The period of the Decrementer will
depend on the driving frequency, but if the same
values are used as given above for the Time Base
(see Section 8.2), and if the Time Base update fre-
quency is constant, the period would be

TDEC = 232 × 32
100 MHz

= 1.37 × 103 seconds

which is approximately 23 minutes.

The Decrementer counts down, causing an interrupt
(unless masked) when passing through zero. The
Decrementer must be implemented such that the fol-
lowing requirements are satisfied.

1. The operation of the Time Base and the
Decrementer is coherent, i.e., the counters are
driven by the same fundamental time base.

2. Loading a GPR from the Decrementer shall have
no effect on the accuracy of the Decrementer.

3. Storing a GPR to the Decrementer shall replace
the value in the Decrementer with the value in
the GPR.

4. Whenever bit 0 of the Decrementer changes from
0 to 1, an interrupt request is signaled. If mul-
tiple Decrementer interrupt requests are received
before the first can be reported, only one inter-
rupt is reported. The occurrence of a
Decrementer interrupt cancels the request.

5. If the Decrementer is altered by software and the
contents of bit 0 are changed from 0 to 1, an
interrupt request is signaled.

Programming Note

In systems that change the Time Base update fre-
quency for purposes such as power management,
the Decrementer input frequency will also change.
Software must be aware of this in order to set
interval timers.

8.3.1 Writing and Reading the
Decrementer

The contents of the Decrementer can be read or
written using the mfspr and mtspr instructions, both
of which are privileged when they refer to the
Decrementer. Using an extended mnemonic (see
page 94), the Decrementer may be written from GPR
Rx using:

mtdec Rx

Programming Note

If the execution of the mtdec instruction causes
bit 0 of the Decrementer to change from 0 to 1, an
interrupt request is signaled.

The Decrementer may be read into GPR Rx using:

mfdec Rx

Copying the Decrementer to a GPR has no effect on
the Decrementer contents or interrupt mechanism.
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Chapter 9. Synchronization Requirements for Special
Registers and for Lookaside Buffers

† Changing the contents of certain System Registers
| and of SLB entries, and invalidating SLB and TLB

entries, can have the side effect of altering the
context in which data addresses and instruction
addresses are interpreted, and in which instructions

† are executed and data accesses are performed. For
example, changing MSRIR from 0 to 1 has the side
effect of enabling translation of instruction addresses.
These side effects need not occur in program order,
and therefore may require explicit synchronization by
software. (Program order is defined in Book II,
PowerPC AS Virtual Environment Architecture.)

An instruction that alters the context in which data
addresses or instruction addresses are interpreted, or

† in which instructions are executed or data accesses
† are performed, is called a context-altering instruction.

This chapter covers all the context-altering
instructions. The software synchronization required
for them is shown in Table 1 (for data access) and
Table 2 (for instruction fetch and execution).

The notation “CSI” in the tables means any context
| synchronizing instruction (i.e., sc, isync, or rfid ). A

context synchronizing interrupt (i.e., any interrupt
except non-recoverable System Reset or non-
recoverable Machine Check) can be used instead of a
context synchronizing instruction. If it is, phrases like
“the synchronizing instruction”, below, should be
interpreted as meaning the instruction at which the
interrupt occurs. If no software synchronization is
required before (after) a context-altering instruction,
“the synchronizing instruction before (after) the
context-altering instruction” should be interpreted as
meaning the context-altering instruction itself.

The synchronizing instruction before the context-
altering instruction ensures that all instructions up to
and including that synchronizing instruction are
fetched and executed in the context that existed
before the alteration. The synchronizing instruction
after the context-altering instruction ensures that all
instructions after that synchronizing instruction are
fetched and executed in the context established by
the alteration. Instructions after the first synchro-
nizing instruction, up to and including the second syn-
chronizing instruction, may be fetched or executed in
either context.

If a sequence of instructions contains context-altering
instructions and contains no instructions that are
affected by any of the context alterations, no software
synchronization is required within the sequence.

Programming Note

Sometimes advantage can be taken of the fact
that certain instructions that occur naturally in the

| program, such as the rfid at the end of an inter-
rupt handler, provide the required synchroniza-
tion.

No software synchronization is required before
† altering the MSR using mtmsr [ d] (except perhaps
| when altering the LE bit: see the tables), because

mtmsr [ d] is execution synchronizing. No software
synchronization is required before most of the other
alterations shown in Table 2, because all instructions
before the context-altering instruction are fetched and
decoded before the context-altering instruction is exe-
cuted (the processor must determine whether any of
the preceding instructions are context synchronizing).
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Table 1. Synchronization requirements for data
access

Notes:

Table 2. Synchronization requirements for instruction
fetch and/or execution

Instruction or
Event

Required
Before

Required
After

Notes Instruction or
Event

Required
Before

Required
After

Notes

| interrupt| none| none | interrupt| none| none
| rfid| none| none | rfid| none| none
| rfscv| none| none| 1 | rfscv| none| none| 1
| sc| none| none | sc| none| none
| scv| none| none | scv| none| none
| Trap| none| none | Trap| none| none

mtmsrd (SF) none CSI mtmsrd (SF) none CSI 8
mtmsrd (TA) none CSI mtmsrd (TA) — CSI| 9
mtmsr [ d] (ILE) none none |
mtmsr [ d] (PR) none CSI mtmsr [ d] (ILE) none none

| mtmsr [ d] (EE) none none 2
mtmsr [ d] (US) none CSI mtmsr [ d] (PR) none CSI 9
mtmsr [ d] (DR) none CSI mtmsr [ d] (FP) none CSI

| |
mtmsr [ d] (LE) — — 1 mtmsr [ d] (FE0,FE1) none CSI
mtsr [ in ] CSI CSI mtmsr [ d] (SE, BE) none CSI

| mtmsr [ d] (US) none CSI
mtspr (ACCR) CSI CSI |

| mtmsr [ d] (IR) none CSI 9
mtspr (SDR1) sync CSI 4, 5 mtmsr [ d] (RI) none none
mtspr (DABR) — — 3 mtmsr [ d] (LE) — — 1
mtspr (EAR) CSI CSI mtsr [ in ] none CSI 9

| slbie| CSI| CSI |
| slbia| CSI| CSI mtspr (SDR1) sync CSI 4, 5
| slbmte| CSI| CSI| 11 mtspr (DEC) none none 10

tlbie CSI sync 6, 7 mtspr (CTRL) none none
tlbia CSI sync 6 | slbie| none| CSI

| slbia| none| CSI
| slbmte| none| CSI| 9, 11

tlbie none CSI or sync 6, 7
tlbia none CSI or sync 6

|

1. Synchronization requirements for changing from
| one Endian mode to the other using the rfscv or

mtmsr [ d] instruction are implementa-
tion-dependent, and are specified in the Book IV,
PowerPC AS Implementation Features document
for the implementation.

2. The effect of changing the EE bit is immediate.

■ If an mtmsr [ d] instruction sets the EE bit to
0, neither an External interrupt nor a
Decrementer interrupt occurs after the
mtmsr [ d] is executed.

■ If an mtmsr [ d] instruction changes the EE bit
from 0 to 1 when an External, Decrementer,
or higher priority exception exists, the corre-
sponding interrupt occurs immediately after
the mtmsr [ d] is executed, and before the
next instruction is executed in the program
that set EE to 1.

3. Synchronization requirements for changing the
Data Address Breakpoint Register are implemen-
tation-dependent, and are specified in the Book
IV, PowerPC AS Implementation Features docu-
ment for the implementation.
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4. SDR1 must not be altered when MSRDR= 1 or
MSRIR= 1 ; if it is, the results are undefined.

Architecture Note

Altering SDR1 when MSRIR= 1 is prohibited
because synchronizing Reference bit updates
and instruction fetches, based on the old and
new contents of SDR1, would be complex for
both hardware and software. Altering SDR1
when MSRDR= 1 is prohibited because the
capability is deemed not to be sufficiently
useful to software to warrant verifying it.

For most operating systems, SDR1 is
expected not to be altered after it has been
initialized. Therefore there is no need to
support altering it quickly.

5. A sync instruction is required before the mtspr
instruction because SDR1 identifies the Page
Table and thereby the location of Reference,
Change, and Tag Set bits. To ensure that Refer-
ence, Change, and Tag Set bits are updated in
the correct Page Table, SDR1 must not be altered
until all Reference, Change, and Tag Set bit

| updates associated with address translations that
| were performed, by the processor executing the
| mtspr instruction, before the mtspr instruction is
| executed have been performed with respect to
† that processor. A sync instruction guarantees

this synchronization of Reference, Change, and
Tag Set bit updates, while neither a context syn-
chronizing operation nor the instruction fetching
mechanism does so.

Architecture Note

The reasoning given above might suggest
that the architecture should require a sync
instruction before alteration of MSRSF and

| SLB entries (including alteration of SLB
| entries caused by mtsr [ in ] instructions; see
| Section 11.1.2), because they can affect the

mapping of effective addresses to virtual
addresses and hence can affect which PTE a
given effective address maps to. But it is
unlikely that any implementation would use

| MSRSF or an SLB entry more than once per
storage access, whereas some implementa-
tions might use SDR1 twice — once to deter-
mine the real address for the access and
once to set the Reference, Change, and Tag
Set bits. Therefore the architecture does not
require a sync instruction before alteration of

| MSRSF and SLB entries.

(An implementation might use SDR1 twice per
storage access by keeping in the store queue
entry for the Reference, Change, and Tag Set
bit update only the offset in the Page Table of
the corresponding PTE, instead of the PTE's
real address, and then adding the Page Table
address from SDR1 to the offset to determine
where to update the Reference, Change, and
Tag Set bits.)

6. For data accesses, the context synchronizing
| instruction before the tlbie or tlbia instruction

ensures that all preceding instructions that
access data storage have completed to a point at
which they have reported all exceptions they will
cause.

| A context synchronizing instruction after the tlbie
or tlbia ensures that storage accesses associated

| with fetching instructions following the tlbie or
| tlbia will not use the TLB entry(s) being invali-
† dated. A sync instruction (or a context synchro-
| nizing instruction) after the tlbie or tlbia has the
† corresponding effect for data accesses. A sync
† instruction also ensures that all storage accesses

associated with instructions preceding the sync
† instruction, and all Reference, Change, and Tag
| Set bit updates associated with address trans-
| lations that were performed, by the processor
| executing the sync instruction, before the sync
| instruction is executed, will be performed with

respect to any processor or mechanism, to the
extent required by the associated Memory Coher-

| ence Required attributes, before any data
accesses caused by instructions following the
sync instruction are performed with respect to
that processor or mechanism. If effects

† described in both the first and the third sentences
† of this paragraph are needed, both a context syn-

chronizing instruction and a sync instruction must
be used.

Section 6.2, “Page Table Update Synchronization
Requirements” on page 57 gives examples of the

| synchronization required when using tlbie in a
| sequence that alters a Page Table Entry.

Programming Note

The following sequence illustrates why it is
necessary to ensure that all instructions that

| precede the tlbie or tlbia and access data
storage have completed to a point at which
they have reported all exceptions they will

| cause. Assume that valid SLB and Page
Table entries exist for the target storage
location when the sequence starts.

† 1. A program issues a Load or Store
| instruction to a page.

2. The same program marks the entry for
| the target page invalid in the Page Table.
| 3. The same program executes a tlbie or
| tlbia that invalidates the corresponding
| TLB entry.

4. The Load or Store instruction finally exe-
| cutes, and gets a page fault.

| The page fault is semantically incorrect. In
order to prevent it, a context synchronizing
instruction must be executed between steps 1
and 2.
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7. Multiprocessor systems have additional require-
ments to synchronize “TLB shoot down” (i.e., to
invalidate one or more TLB entries on all
processors in the multiprocessor system and be
able to ensure that the invalidations will have
completed and that all side effects of the invali-
dations will have taken effect before any data
accesses caused by subsequent instructions are
performed); see Section 6.2.1, “Page Table
Updates” on page 57.

8. The alteration must not cause an implicit branch
in effective address space. Thus the mtmsrd
instruction and all subsequent instructions, up to
and including the next context synchronizing
instruction, must have effective addresses that
are less than 232.

9. The alteration must not cause an implicit branch
in real address space. Thus the real address of
the context-altering instruction and of each sub-
sequent instruction, up to and including the next
context synchronizing instruction, must be inde-
pendent of whether the alteration has taken
effect.

10. The elapsed time between the contents of the
Decrementer becoming negative and the sig-
naling of the Decrementer exception is not
defined.

|

| 11. If an slbmte instruction alters the mapping, or
| associated attributes, of a currently mapped
| ESID, the slbmte must be preceded by an slbie
| (or slbia ) instruction that invalidates the existing
| translation. This applies even if the corre-
| sponding entry is no longer in the SLB (the trans-
| lation may still be in implementation-specific
| address translation lookaside information). No
| software synchronization is needed between the
| slbie and the slbmte , regardless of whether the
| index of the SLB entry (if any) containing the
| current translation is the same as the SLB index
| specified by the slbmte .

| No slbie (or slbia ) is needed if the slbmte instruc-
| tion replaces a valid SLB entry with a mapping of
| a different ESID (e.g., to satisfy an SLB miss).
| However, the slbie is needed later if and when
| the translation that was contained in the replaced
| SLB entry is to be invalidated.
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Chapter 10. Optional Facilities and Instructions

10.1 External Control . . . . . . . . . . . 83
10.1.1 External Access Register . . . . 83
10.1.2 External Access Instructions . . 83
10.2 Data Address Breakpoint . . . . . 84

10.3 Real Mode Storage Control . . . . 86
10.4 Move to Machine State Register

Instruction . . . . . . . . . . . . . . . . . 87

The facilities described in this chapter are optional.
An implementation may provide all, some, or none of
them.

10.1 External Control

The External Control facility permits a program to
communicate with a special-purpose device. The
facility consists of a Special Purpose Register, called
EAR, and two instructions, called External Control In
Word Indexed (eciwx ) and External Control Out Word
Indexed (ecowx ).

This facility must provide a means of synchronizing
the devices with the processor to prevent the use of
an address by the device when the translation that
produced that address is being invalidated.

Engineering Note

Synchronization of devices with respect to tlbie
instructions previously executed by the processor
can be provided by tlbsync .

10.1.1 External Access Register

This 32-bit Special Purpose Register controls access
to the External Control facility and, for external
control operations that are permitted, identifies the
target device.

E /// RID
0 26 31

Bit(s) Name Description
0 E Enable bit
26:31 RID Resource ID

All other fields are reserved.

Figure 34. External Access Register

| The EAR is a hypervisor resource; see Section 1.7,
| “Logical Partitioning (LPAR)” on page 4.

The high-order bits of the RID field that correspond to
bits of the Resource ID beyond the width of the
Resource ID supported by a particular implementation
are treated as reserved bits.

| Programming Note

| The hypervisor can use the EAR to control which
| programs are allowed to execute External Access
| instructions, when they are allowed to do so, and
| which devices they are allowed to communicate
| with using these instructions.

10.1.2 External Access Instructions

The External Access instructions, External Control In
Word Indexed (eciwx ) and External Control Out Word
Indexed (ecowx ), are described in Book II, PowerPC
AS Virtual Environment Architecture. Additional infor-
mation about them is given below.

If attempt is made to execute either of these
instructions when EARE= 0 , a Data Storage interrupt
occurs with bit 11 of the DSISR set to 1.

The instructions are supported whenever MSRDR= 1 .
If either instruction is executed when MSRDR= 0 (real
addressing mode), the results are boundedly unde-
fined.
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10.2 Data Address Breakpoint

The Data Address Breakpoint facility provides a
means of detecting load and store accesses to a des-
ignated doubleword. The address comparison is done

| on an effective address, and is done independent of
| whether address translation is enabled or disabled.

† The Data Address Breakpoint facility is controlled by
the Data Address Breakpoint Register (DABR).

DAB BT DWDR

0 61 63

Bit(s) Name Description
0:60 DAB Data Address Breakpoint
61 BT Breakpoint Translation Enable
62 DW Data Write Enable
63 DR Data Read Enable

Figure 35. Data Address Breakpoint Register

| The DABR is a hypervisor resource; see Section 1.7,
| “Logical Partitioning (LPAR)” on page 4.

† A Data Address Breakpoint match occurs for a Load
or Store instruction if, for any byte accessed,

■ EA0:60=DABR DAB, and
■ MSRDR=DABR BT, and
■ the instruction is a Store and DABRDW= 1 , or the

instruction is a Load and DABRDR= 1 .

In 32-bit mode the high-order 32 bits of the EA are
treated as zeros for the purpose of detecting a match.

| If the above conditions are satisfied, a match also
| occurs for eciwx and ecowx . For the purpose of
† determining whether a match occurs, eciwx is treated
† as a Load, and ecowx is treated as a Store.

If the above conditions are satisfied, it is undefined
whether a match occurs in the following cases.

■ The instruction is Store Conditional but the store
is not performed.

■ The instruction is a Load/Store String of zero
length.

| ■ The instruction is dcbz . (For the purpose of
| determining whether a match occurs, dcbz is

treated as a Store.)

The Cache Management instructions other than dcbz
| never cause a match.

| A Data Address Breakpoint match causes a Data
| Storage exception (see Section 7.5.3, “Data Storage
| Interrupt” on page 64). If a match occurs, some or all
| of the bytes of the storage operand may have been
| accessed; however, if a Store or ecowx instruction
| causes the match, the storage operand is not altered
| if the instruction is one of the following:

| ■ a stq instruction for which the match occurs for
| the first doubleword of the storage operand
| ■ any other Store instruction that causes an atomic
| access
| ■ ecowx

| Programming Note

† The Data Address Breakpoint facility does not
† apply to instruction fetches.

| If a Data Address Breakpoint match occurs for a
| Load instruction for which any byte of the storage
| operand is in storage that is both Caching Inhib-
| ited and Guarded, or for an eciwx instruction, it
| may not be safe for software to restart the
| instruction.

Engineering Note

In the case of a DABR match, it is preferable not
† to access or alter any bytes of the storage
† operand at or after the breakpoint address. This

makes the Data Address Breakpoint facility more
useful for debugging.

|
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10.3 Real Mode Storage Control

The Real Mode Storage Control facility provides a
| means of specifying portions of real storage that are
† treated as non-Guarded in real addressing mode
† (MSRIR= 0 or MSRDR= 0 , as appropriate for the type
† of access). The remaining portions are treated as
† Guarded in real addressing mode (as is all of storage

on implementations that do not provide this means).
| The means is a hypervisor resource (see Section 1.7,
| “Logical Partitioning (LPAR)” on page 4), and may

also be system-specific.

The facility does not apply to implicit accesses to the
| Page Table by the hardware in performing address
† translation or recording reference, change, and tag
† set information. These accesses are performed as
† described in Section 4.2.5, “Real Addressing Mode”
† on page 27.

Programming Note

|

† The preceding capability can be used to improve
the performance of software that runs in real

† addressing mode, by causing accesses to
instructions and data that occupy well-behaved
storage to be treated as non-Guarded. Because

† in real addressing mode all storage is not Caching
Inhibited, software should not map a Caching

| Inhibited virtual page to storage that is treated as
† non-Guarded in real addressing mode. Doing so

could permit storage locations in the virtual page
to be copied into the cache, which could lead to
violations of the requirement given in Section

† 4.7.2 for changing the value of the I bit.

Engineering Note

|

† The preceding capability should be provided at
sufficiently fine granularity that the operating
system can specify that kernel space (code and
data) is treated as non-Guarded in real

† addressing mode and can map all application
space to real storage that is treated as Guarded

† in real addressing mode. (This is necessary in
order to prevent application code or data from
being fetched into a cache when address trans-
lation is disabled.) A simple way to provide the
capability is to use an implementation-specific
SPR to specify the boundary between non-
Guarded and Guarded real storage; any address
below the value contained in the SPR would be
treated as non-Guarded, and any address above
the value (inclusive) would be treated as Guarded.
It is permissible to treat any boundaries thus pro-
vided as if they were protection boundaries, with
respect to causing an Alignment interrupt if an
access crosses a boundary.

|
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10.4 Move to Machine State Register Instruction

Move To Machine State Register X-form

mtmsr RS

31 RS /// /// 146 /

0 6 11 16 21 31

| MSR58 ← (RS) 58 | (RS) 49
| MSR59 ← (RS) 59 | (RS) 49
| MSR32:50 52:57 60:63 ← (RS) 32:50 52:57 60:63

| The result of ORing bits 58 and 49 of register RS is
| placed into MSR58. The result of ORing bits 59 and 49
| of register RS is placed into MSR59. Bits 32:50, 52:57,
| and 60:63 of register RS are placed into the corre-
| sponding bits of the MSR. The high-order 32 bits of

the MSR are unchanged.

This instruction is privileged. This instruction is exe-
cution synchronizing except with respect to alter-

| ations to the LE bit; see Chapter 9, “Synchronization
Requirements for Special Registers and for Lookaside
Buffers” on page 79.

In addition, alterations to the EE and RI bits are effec-
tive as soon as the instruction completes. Thus if
MSREE= 0 and an External or Decrementer interrupt
is pending, executing an mtmsr instruction that sets
MSREE to 1 will cause the External or Decrementer
interrupt to be taken before the next instruction is
executed, if no higher priority exception exists (see
Section 7.8, “Interrupt Priorities” on page 73).

Special Registers Altered:
MSR

| Programming Note

| If this instruction sets MSRPR to 1, it also sets
| MSRIR and MSRDR to 1.

| This instruction does not alter MSRME. (This
| instruction does not alter MSRHV because it does
| not alter any of the high-order 32 bits of the
| MSR.)

† Programming Note

† For a discussion of software synchronization
† requirements when altering certain MSR bits, see
† Chapter 9.

Programming Note

† There is no need for an analogous version of the
mfmsr instruction, because the existing instruction
copies the entire contents of the MSR to the
selected GPR.
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Chapter 11. Optional Facilities and Instructions that are being
Phased Out of the Architecture

11.1 Bridge to SLB Architecture . . . . 89
11.1.1 Address Space Register . . . . . 89

11.1.2 Segment Register Manipulation
Instructions . . . . . . . . . . . . . . . . 90

The facilities and instructions described in this
chapter are optional. An implementation may provide
all, some, or none of them.

Warning: These facilities and instructions are being
phased out of the architecture.

The facilities and instructions described in this
chapter are generally not mentioned elsewhere in
Books I − III. Any conflict between this chapter and
other parts of the Books is deemed to be resolved in
favor of this chapter.

|

| 11.1 Bridge to SLB Architecture

| The facility described in this section can be used to
| ease the transition to the current PowerPC AS
| software-managed Segment Lookaside Buffer (SLB)
| architecture, from either the Segment Register archi-
| tecture provided by 32-bit PowerPC implementations
| or the hardware-accessed Segment Table architecture
| provided by 64-bit PowerPC implementations and by
| earlier PowerPC AS implementations.

| The facility permits the operating system to continue
| to use the 32-bit PowerPC implementation's Segment
| Register Manipulation instructions, and to continue to
| use the Address Space Register (ASR).

| Programming Note

| Warning: This facility is being phased out of the
| architecture. It is likely not to be supported on
| future implementations. New programs should
| not use it.

| Engineering Note

| Decisions regarding whether to implement this
| facility in a given implementation, and how well to
| make it perform there, must include consideration
| of migration plans for existing software that uses
| it.

| 11.1.1 Address Space Register

| The ASR is a 64-bit Special Purpose Register pro-
| vided for operating system use.

| ASR

| 0 63

| Figure 36. Address Space Register

| Programming Note

| The ASR can be used to point to a Segment
| Table.

| On earlier PowerPC AS implementations and on
| 64-bit PowerPC implementations, bits 0:51 of the
| ASR contained the high-order 52 bits of the 64-bit
| real address of the Segment Table, and bit 63 of
| the ASR indicated whether the specified Segment
| Table should (bit 63 = 1) or should not (bit 63 =
| 0) be searched by the processor when doing
| address translation.
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† 11.1.2 Segment Register Manipulation Instructions

† The instructions described in this section — mtsr ,
† mtsrin , mfsr , and mfsrin — allow software to associate
† effective segments 0 through 15 with any of virtual
| segments 0 through 227− 1. SLB entries 0:15 serve as
† virtual Segment Registers, with SLB entry i used to
† emulate Segment Register i. The mtsr and mtsrin

instructions move 32 bits from a selected GPR to a
selected SLB entry. The mfsr and mfsrin instructions

| move 32 bits from a selected SLB entry to a selected
† GPR.

† The contents of the GPRs used by the instructions
† described in this section are shown in Figure 37.
| Fields shown as zeros must be zero for the Move To

Segment Register instructions. Fields shown as
hyphens are ignored. Fields shown as periods are
ignored by the Move To Segment Register
instructions and set to zero by the Move From

| Segment Register instructions. Fields shown as
| colons are ignored by the Move To Segment Register
| instructions and set to undefined values by the Move
| From Segment Register instructions.

| RS/RT

| : : : . KsKpN 0 VSID25:51

| 0 31 33 35 37 63

RB

- - - ESID - - -

0 32 35 63

Figure 37. GPR contents for mtsr, mtsrin, mfsr, and
mfsrin

† Programming Note

† The “Segment Register” format used by the
† instructions described in this section corresponds
† to the low-order 32 bits of RS and RT shown in
† the figure. This format is essentially the same as
† that for the Segment Registers of 32-bit PowerPC
† implementations. The only differences are the fol-
† lowing.

† ■ Bit 36 corresponds to a reserved bit in
| Segment Registers. Software must supply 0
| for the bit because it corresponds to the L bit
| in SLB entries, and large pages are not sup-
| ported for SLB entries created by the Move
| To Segment Register instructions.

† ■ VSID bits 25:27 correspond to reserved bits in
| Segment Registers. Software can use these
| extra VSID bits to create VSIDs that are
| larger than those supported by the Segment
| Register Manipulation instructions of 32-bit
| PowerPC implementations.

† Bit 32 of RS and RT corresponds to the T (direct-
† store) bit of early 32-bit PowerPC implementa-
| tions. No corresponding bit exists in SLB entries.

| Programming Note

| The Programming Note in the introduction to
| Section 6.1.2.1, “SLB Management Instructions”
| on page 50 applies also to the Segment Register
| Manipulation instructions described in this
| section, and to any combination of the instructions
| described in the two sections, except as specified
| below for mfsr and mfsrin .

| The requirement that the SLB contain at most one
| entry that translates a given effective address
| (see Section 4.4.1.1, “Segment Lookaside Buffer
| (SLB)” on page 31) applies to SLB entries created
| by mtsr and mtsrin . This requirement is satisfied
| naturally if only mtsr and mtsrin are used to
| create SLB entries for a given ESID, because for
| these instructions the association between SLB
| entries and ESID values is fixed (SLB entry i is
| used for ESID i). However, care must be taken if
| slbmte is also used to create SLB entries for the
| ESID, because for slbmte the association between
| SLB entries and ESID values is specified by soft-
| ware.
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Move To Segment Register X-form

mtsr SR,RS

31 RS / SR /// 210 /

0 6 11 12 16 21 31

| The SLB entry specified by SR is loaded from register
| RS, as follows.

| SLBE Bit(s) Set to SLB Field(s)
| 0:31 0x0000_0000 ESID0:31
| 32:35 SR ESID32:35
| 36 0b1 V
| 37:61 0x00_0000||0b0 VSID0:24
| 62:88 (RS)37:63 VSID25:51
| 89:91 (RS)33:35 KsKpN
| 92 (RS)36 L ((RS)36 must be 0b0)
| 93 0b0 C

| MSRSF must be 0 when this instruction is executed;
| otherwise the results are boundedly undefined.

This instruction is privileged.

†

Special Registers Altered:
None

| Architecture Note

| The requirement that the Segment Register
| Manipulation instructions be executed only in
| 32-bit mode permits normal EA computation (in
| which the high-order 32 bits of the result are
| treated as zeros in 32-bit mode but not in 64-bit
| mode) to be used for mtsrin and mfsrin .

Move To Segment Register Indirect
X-form

mtsrin RS,RB

[ POWER mnemonic: mtsri]

31 RS /// RB 242 /

0 6 11 16 21 31

| The SLB entry specified by (RB)32:35 is loaded from
| register RS, as follows.

| SLBE Bit(s) Set to SLB Field(s)
| 0:31 0x0000_0000 ESID0:31
| 32:35 (RB)32:35 ESID32:35
| 36 0b1 V
| 37:61 0x00_0000||0b0 VSID0:24
| 62:88 (RS)37:63 VSID25:51
| 89:91 (RS)33:35 KsKpN
| 92 (RS)36 L ((RS)36 must be 0b0)
| 93 0b0 C

| MSRSF must be 0 when this instruction is executed;
| otherwise the results are boundedly undefined.

This instruction is privileged.

†

Special Registers Altered:
None

†
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Move From Segment Register X-form

mfsr RT,SR

31 RT / SR /// 595 /

0 6 11 12 16 21 31

| The contents of the low-order 27 bits of the VSID field,
| and the contents of the Ks, Kp, N, and L fields, of the
| SLB entry specified by SR are placed into register RT,
| as follows.

| SLBE Bit(s) Copied to SLB Field(s)
| 62:88 RT37:63 VSID25:51
| 89:91 RT33:35 KsKpN
| 92 RT36 L (SLBEL must be 0b0)

| RT32 is set to 0. The contents of RT0:31 are undefined.

| MSRSF must be 0 when this instruction is executed;
| otherwise the results are boundedly undefined.

| This instruction must be used only to read an SLB
| entry that was, or could have been, created by mtsr
| or mtsrin and has not subsequently been invalidated
| (i.e., an SLB entry in which ESID< 16, V=1 , VSID< 227,
| L=0 , and C=0). Otherwise the contents of register
| RT are undefined.

This instruction is privileged.

†

Special Registers Altered:
None

Move From Segment Register Indirect
X-form

mfsrin RT,RB

31 RT /// RB 659 /

0 6 11 16 21 31

| The contents of the low-order 27 bits of the VSID field,
| and the contents of the Ks, Kp, N, and L fields, of the
| SLB entry specified by (RB)32:35 are placed into reg-
| ister RT, as follows.

| SLBE Bit(s) Copied to SLB Field(s)
| 62:88 RT37:63 VSID25:51
| 89:91 RT33:35 KsKpN
| 92 RT36 L (SLBEL must be 0b0)

| RT32 is set to 0. The contents of RT0:31 are undefined.

| MSRSF must be 0 when this instruction is executed;
| otherwise the results are boundedly undefined.

| This instruction must be used only to read an SLB
| entry that was, or could have been, created by mtsr
| or mtsrin and has not subsequently been invalidated
| (i.e., an SLB entry in which ESID< 16, V=1 , VSID< 227,
| L=0 , and C=0). Otherwise the contents of register
| RT are undefined.

This instruction is privileged.

†

Special Registers Altered:
None

|
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Appendix A. Assembler Extended Mnemonics

In order to make assembler language programs simpler to write and easier to understand, a set of extended
† mnemonics and symbols is provided for certain instructions. This appendix defines extended mnemonics and
† symbols related to instructions defined in Book III.

† Assemblers should provide the extended mnemonics and symbols listed here, and may provide others.
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A.1 Move To/From Special Purpose Register Mnemonics

† This section defines extended mnemonics for the mtspr and mfspr instructions, including the Special Purpose Reg-
† isters (SPRs) defined in Book I and certain privileged SPRs, and for the Move From Time Base instruction defined
† in Book II.

† The mtspr and mfspr instructions specify an SPR as a numeric operand; extended mnemonics are provided that
† represent the SPR in the mnemonic rather than requiring it to be coded as an operand. Similar extended mne-
† monics are provided for the Move From Time Base instruction, which specifies the portion of the Time Base as a
† numeric operand.

Note : mftb serves as both a basic and an extended mnemonic. The Assembler will recognize an mftb mnemonic
† with two operands as the basic form, and an mftb mnemonic with one operand as the extended form. In the
† extended form the TBR operand is omitted and assumed to be 268 (the value that corresponds to TB).

Table 3 (Page 1 of 2). Extended mnemonics for moving to/from an SPR

Special Purpose Register
Move To SPR Move From SPR 1

Extended Equivalent to Extended Equivalent to

Fixed Point Exception
Register

mtxer Rx mtspr 1,Rx mfxer Rx mfspr Rx,1

Link Register mtlr Rx mtspr 8,Rx mflr Rx mfspr Rx,8

Count Register mtctr Rx mtspr 9,Rx mfctr Rx mfspr Rx,9

Data Storage Interrupt
Status Register

mtdsisr Rx mtspr 18,Rx mfdsisr Rx mfspr Rx,18

Data Address Register mtdar Rx mtspr 19,Rx mfdar Rx mfspr Rx,19

Decrementer mtdec Rx mtspr 22,Rx mfdec Rx mfspr Rx,22

Storage Description
Register 1

mtsdr1 Rx mtspr 25,Rx mfsdr1 Rx mfspr Rx,25

Save/Restore Register 0 mtsrr0 Rx mtspr 26,Rx mfsrr0 Rx mfspr Rx,26

Save/Restore Register 1 mtsrr1 Rx mtspr 27,Rx mfsrr1 Rx mfspr Rx,27

ACCR mtaccr Rx mtspr 29,Rx mfaccr Rx mfspr Rx,29

CTRL mtctrl Rx mtspr 152,Rx mfctrl Rx mfspr Rx,136

|

Special Purpose Registers
G0 through G3

mtsprg n,Rx mtspr 272+n,Rx mfsprg Rx,n mfspr Rx,272+n

|

Time Base [ Lower] mttbl Rx mtspr 284,Rx mftb Rx mftb Rx,268

Time Base Upper mttbu Rx mtspr 285,Rx mftbu Rx mftb Rx,269

Processor Version Register − − mfpvr Rx mfspr Rx,287

| MMCRA| mtmmcra Rx| mtspr 786,Rx| mfmmcra Rx| mfspr Rx,770

| PMC1| mtpmc1 Rx| mtspr 787,Rx| mfpmc1 Rx| mfspr Rx,771

| PMC2| mtpmc2 Rx| mtspr 788,Rx| mfpmc2 Rx| mfspr Rx,772

| PMC3| mtpmc3 Rx| mtspr 789,Rx| mfpmc3 Rx| mfspr Rx,773

| PMC4| mtpmc4 Rx| mtspr 790,Rx| mfpmc4 Rx| mfspr Rx,774

| PMC5| mtpmc5 Rx| mtspr 791,Rx| mfpmc5 Rx| mfspr Rx,775

| PMC6| mtpmc6 Rx| mtspr 792,Rx| mfpmc6 Rx| mfspr Rx,776

| PMC7| mtpmc7 Rx| mtspr 793,Rx| mfpmc7 Rx| mfspr Rx,777
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Table 3 (Page 2 of 2). Extended mnemonics for moving to/from an SPR

Special Purpose Register
Move To SPR Move From SPR 1

Extended Equivalent to Extended Equivalent to

| PMC8| mtpmc8 Rx| mtspr 794,Rx| mfpmc8 Rx| mfspr Rx,778

| MMCR0| mtmmcr0 Rx| mtspr 795,Rx| mfmmcr0 Rx| mfspr Rx,779

| MMCR1| mtmmcr1 Rx| mtspr 798,Rx| mfmmcr1 Rx| mfspr Rx,782

Processor Identification
Register

− − mfpir Rx mfspr Rx,1023

1Except for mftb and mftbu .

| Programming Note

| The extended mnemonics in Table 3 for SPRs
| associated with the Performance Monitor facility
| are based on the definitions in Appendix E.

| Other versions of Performance Monitor facilities
| used different sets of SPR numbers (all 32-bit
| PowerPC processors used a different set, and
| some early PowerPC AS processors used yet a
| different set).
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Appendix B. Cross-Reference for Changed POWER
Mnemonics

The following table lists the POWER instruction mne-
monics that have been changed in the PowerPC AS
Operating Environment Architecture, sorted by
POWER mnemonic.

To determine the PowerPC AS mnemonic for one of
these POWER mnemonics, find the POWER mnemonic
in the second column of the table: the remainder of

the line gives the PowerPC AS mnemonic and the
page on which the instruction is described, as well as
the instruction names.

POWER mnemonics that have not changed are not
listed. POWER instruction names that are the same in
PowerPC AS are not repeated: i.e., for these, the last
column of the table is blank.

Page
POWER PowerPC AS

Mnemonic Instruction Mnemonic Instruction

91 mtsri Move To Segment Register Indirect mtsrin
12 rfsvc Return From SVC rfscv Return From System Call Vectored
11 svca Supervisor Call sc System Call
12 svcl Supervisor Call scv System Call Vectored
55 tlbi TLB Invalidate Entry tlbie

Appendix B. Cross-Reference for Changed POWER Mnemonics 97



IBM Confidential - Feb. 24, 1999

98 PowerPC AS Operating Environment Architecture



IBM Confidential - Feb. 24, 1999

Appendix C. New Instructions

The following instructions in the PowerPC AS Oper-
ating Environment Architecture are new: they are not

† in the POWER Architecture.

| The following instructions are optional: tlbia, tlbsync,
| mtmsr . In addition the following instructions may

optionally be provided as part of a “bridge” facility as
| described in Section 11.1, “Bridge to SLB
| Architecture” on page 89: mfsr, mfsrin, mtsr, mtsrin .

|
mfsrin Move From Segment Register Indirect
mtmsrd Move To Machine State Register

Doubleword
|

rfid Return From Interrupt Doubleword
slbia SLB Invalidate All
slbie SLB Invalidate Entry

| slbmfee SLB Move From Entry ESID
| slbmfev SLB Move From Entry VSID
| slbmte SLB Move To Entry

tlbia TLB Invalidate All
tlbsync TLB Synchronize
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Appendix D. Interpretation of the DSISR as Set by an
Alignment Interrupt

For most causes of Alignment interrupt, the interrupt
handler will emulate the interrupting instruction. To
do this, it needs the following characteristics of the
interrupting instruction:

Load or store
Length (halfword, word, doubleword, or

quadword)
String, multiple, or elementary
Fixed-point or floating-point
Update or non-update
Byte reverse or not
Is it dcbz ?

| The PowerPC AS Architecture optionally provides this
| information by setting bits in the DSISR that identify

the interrupting instruction type. It is not necessary
for the interrupt handler to load the interrupting
instruction from storage. The mapping is unique
except for a few exceptions that are discussed below.
The near-uniqueness depends on the fact that many
instructions, such as the fixed- and floating-point
arithmetic instructions and the one-byte loads and
stores, cannot cause an Alignment interrupt.

See Section 7.5.8, “Alignment Interrupt” on page 67
for a description of how the opcode and extended
opcode are mapped to a DSISR value for an X-, D-, or
DS-form instruction that causes an Alignment inter-
rupt.

The table on the next page shows the inverse
mapping: how the DSISR bits identify the interrupting
instruction. The following notes are cited in the table.

(1) The instructions lwz and lwarx give the same
DSISR bits (all zero). But if lwarx causes an
Alignment interrupt, it should not be emulated. It
is adequate for the Alignment interrupt handler
simply to treat the instruction as if it were lwz .
The emulator must use the address in the DAR,
rather than compute it from RA/RB/D, because
lwz and lwarx have different instruction formats.

If opcode 0 (“Illegal or Reserved”) can cause an
Alignment interrupt, it will be indistinguishable to
the interrupt handler from lwarx and lwz .

(2) These are distinguished by DSISR bits 12:13, which
are not shown in the table.

The interrupt handler has no need to distinguish
between an X-form instruction and the corresponding
D- or DS-form instruction if one exists, and vice versa.
Therefore two such instructions may yield the same
DSISR value (all 32 bits). For example, stw and stwx
may both yield either the DSISR value shown in the
following table for stw , or that shown for stwx .
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If DSISR
15:21 is:

then it is
either
X-form
opcode:

or
D/DS-
form
opcode: so the instruction is:

If DSISR
15:21 is:

then it is
either
X-form
opcode:

or
D/DS-
form
opcode: so the instruction is:

00 0 0000 00000xxx00 x00000 lwarx, lwz, reserved
(1)

01 1 1111 11111xxx01 -
10 0 0000 00000xxx10 -

00 0 0001 00010xxx00 x00010 ldarx 10 0 0001 00010xxx10 -
00 0 0010 00100xxx00 x00100 stw 10 0 0010 00100xxx10 stwcx.
00 0 0011 00110xxx00 x00110 - 10 0 0011 00110xxx10 stdcx.
00 0 0100 01000xxx00 x01000 lhz 10 0 0100 01000xxx10 -
00 0 0101 01010xxx00 x01010 lha 10 0 0101 01010xxx10 -
00 0 0110 01100xxx00 x01100 sth 10 0 0110 01100xxx10 -
00 0 0111 01110xxx00 x01110 lmw 10 0 0111 01110xxx10 -
00 0 1000 10000xxx00 x10000 lfs 10 0 1000 10000xxx10 lwbrx
00 0 1001 10010xxx00 x10010 lfd 10 0 1001 10010xxx10 -
00 0 1010 10100xxx00 x10100 stfs 10 0 1010 10100xxx10 stwbrx
00 0 1011 10110xxx00 x10110 stfd 10 0 1011 10110xxx10 -
00 0 1100 11000xxx00 x11000 lq 10 0 1100 11000xxx10 lhbrx
00 0 1101 11010xxx00 x11010 ld, ldu, lwa, lmd (2) 10 0 1101 11010xxx10 -
00 0 1110 11100xxx00 x11100 - 10 0 1110 11100xxx10 sthbrx
00 0 1111 11110xxx00 x11110 std, stdu, stmd, stq

(2)
10 0 1111 11110xxx10 -
10 1 0000 00001xxx10 -

00 1 0000 00001xxx00 x00001 lwzu 10 1 0001 00011xxx10 -
00 1 0001 00011xxx00 x00011 - 10 1 0010 00101xxx10 -
00 1 0010 00101xxx00 x00101 stwu 10 1 0011 00111xxx10 -
00 1 0011 00111xxx00 x00111 - 10 1 0100 01001xxx10 eciwx
00 1 0100 01001xxx00 x01001 lhzu 10 1 0101 01011xxx10 -
00 1 0101 01011xxx00 x01011 lhau 10 1 0110 01101xxx10 ecowx
00 1 0110 01101xxx00 x01101 sthu 10 1 0111 01111xxx10 -
00 1 0111 01111xxx00 x01111 stmw 10 1 1000 10001xxx10 -
00 1 1000 10001xxx00 x10001 lfsu 10 1 1001 10011xxx10 -
00 1 1001 10011xxx00 x10011 lfdu 10 1 1010 10101xxx10 -
00 1 1010 10101xxx00 x10101 stfsu 10 1 1011 10111xxx10 -
00 1 1011 10111xxx00 x10111 stfdu 10 1 1100 11001xxx10 -
00 1 1100 11001xxx00 x11001 - 10 1 1101 11011xxx10 -
00 1 1101 11011xxx00 x11011 - 10 1 1110 11101xxx10 -
00 1 1110 11101xxx00 x11101 - 10 1 1111 11111xxx10 dcbz
00 1 1111 11111xxx00 x11111 - 11 0 0000 00000xxx11 lwzx
01 0 0000 00000xxx01 ldx 11 0 0001 00010xxx11 -
01 0 0001 00010xxx01 - 11 0 0010 00100xxx11 stwx
01 0 0010 00100xxx01 stdx 11 0 0011 00110xxx11 -
01 0 0011 00110xxx01 - 11 0 0100 01000xxx11 lhzx
01 0 0100 01000xxx01 - 11 0 0101 01010xxx11 lhax
01 0 0101 01010xxx01 lwax 11 0 0110 01100xxx11 sthx
01 0 0110 01100xxx01 - 11 0 0111 01110xxx11 -
01 0 0111 01110xxx01 - 11 0 1000 10000xxx11 lfsx
01 0 1000 10000xxx01 lswx 11 0 1001 10010xxx11 lfdx
01 0 1001 10010xxx01 lswi 11 0 1010 10100xxx11 stfsx
01 0 1010 10100xxx01 stswx 11 0 1011 10110xxx11 stfdx
01 0 1011 10110xxx01 stswi 11 0 1100 11000xxx11 -
01 0 1100 11000xxx01 - 11 0 1101 11010xxx11 -
01 0 1101 11010xxx01 - 11 0 1110 11100xxx11 -
01 0 1110 11100xxx01 - 11 0 1111 11110xxx11 stfiwx
01 0 1111 11110xxx01 - 11 1 0000 00001xxx11 lwzux
01 1 0000 00001xxx01 ldux 11 1 0001 00011xxx11 -
01 1 0001 00011xxx01 - 11 1 0010 00101xxx11 stwux
01 1 0010 00101xxx01 stdux 11 1 0011 00111xxx11 -
01 1 0011 00111xxx01 - 11 1 0100 01001xxx11 lhzux
01 1 0100 01001xxx01 - 11 1 0101 01011xxx11 lhaux
01 1 0101 01011xxx01 lwaux 11 1 0110 01101xxx11 sthux
01 1 0110 01101xxx01 - 11 1 0111 01111xxx11 -
01 1 0111 01111xxx01 - 11 1 1000 10001xxx11 lfsux
01 1 1000 10001xxx01 lsdx 11 1 1001 10011xxx11 lfdux
01 1 1001 10011xxx01 lsdi 11 1 1010 10101xxx11 stfsux
01 1 1010 10101xxx01 stsdx 11 1 1011 10111xxx11 stfdux
01 1 1011 10111xxx01 stsdi 11 1 1100 11001xxx11 -
01 1 1100 11001xxx01 - 11 1 1101 11011xxx11 -
01 1 1101 11011xxx01 - 11 1 1110 11101xxx11 -
01 1 1110 11101xxx01 - 11 1 1111 11111xxx11 -
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Appendix E. Example Performance Monitor (Optional)

A Performance Monitor facility provides a means of
collecting information about program and system per-
formance.

The resources (e.g., SPR numbers) that a Perform-
ance Monitor facility may use are identified elsewhere
in this Book. All other aspects of any Performance
Monitor facility are implementation-dependent, and
are described in the Book IV, PowerPC AS Implemen-
tation Features document for the implementation.

This appendix provides an example of a Performance
Monitor facility. It is only an example; implementa-
tions may provide all, some, or none of the features
described here, or may provide features that are
similar to those described here but differ in detail.

Programming Note

Because the features provided by a Performance
Monitor facility are implementation-dependent,
operating systems should provide services that
support the useful performance monitoring func-
tions in a generic fashion. Application programs
should use these services, and should not depend
on the features provided by a particular imple-
mentation.

The example Performance Monitor facility consists of
the following features (described in detail in subse-
quent sections).

■ one MSR bit

— PMM (Performance Monitor Mark), which can
be used to select one or more programs for
monitoring

■ SPRs

— PMC1 − PMC8 (Performance Monitor
Counter registers 1 − 8), which count events

— MMCR0 and MMCR1 (Monitor Mode Control
Registers 0 and 1), which control the Per-
formance Monitor facility

— SIAR and SDAR (Sampled Instruction
Address Register and Sampled Data Address
Register), which contain the address of the
“sampled instruction” and of the “sampled
data”

■ the Performance Monitor interrupt, which can be
caused by monitored conditions and events

The minimal subset of these features that makes the
resulting Performance Monitor useful to applications
consists of MSRPMM, PMC1, PMC2, PMC3, PMC4,
MMCR0, MMCR1, and MMCRA and certain bits of
these three Monitor Mode Control Registers. These
features support the counting of four selected events,
and are identified as the “basic” features below. The
remaining features (the remaining SPRs, the
remaining bits in MMCR0, and the Performance
Monitor interrupt) are considered “extensions”.

The events that can be counted in the PMCs are
implementation-dependent. The Book IV, PowerPC
AS Implementation Features document for the imple-
mentation describes the events that are available for
each PMC, and also the code that identifies each
event. The events and codes may vary between
PMCs, as well as between implementations. The
event to be counted in a given PMC is selected by
specifying the appropriate code in the MMCR
“Selector” field for the PMC. As described in Book IV,
some events may include operations that are per-
formed out-of-order.

Many aspects of the operation of the Performance
Monitor are summarized by the following hierarchy,
which is described starting at the lowest level.

■ A “counter negative condition” occurs when the
value in a PMC is negative (i.e., when bit 0 of the
PMC is 1). A “Time Base transition event” occurs
when a selected bit of the Time Base changes
from 0 to 1 (the bit is selected by an MMCR field).
The term “condition or event” is used as an
abbreviation for “counter negative condition or
Time Base transition event”. A condition or
event can be caused implicitly by the processor
(e.g., incrementing a PMC) or explicitly by soft-
ware (mtspr ).

■ A condition or event is enabled if the corre-
sponding “Enable” bit in an MMCR is 1. The
occurrence of an enabled condition or event can
have side effects within the Performance Monitor,
such as causing the PMCs to cease counting.
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■ An enabled condition or event causes a Perform-
ance Monitor exception if Performance Monitor
exceptions are enabled by the corresponding
“Enable” bit in an MMCR. A single Performance
Monitor exception may reflect multiple enabled
conditions and events.

■ A Performance Monitor exception causes a Per-
formance Monitor interrupt when MSREE= 1 .

Programming Note

The Performance Monitor can be effectively disa-
bled (i.e., put into a state in which Performance
Monitor SPRs are not altered and Performance
Monitor interrupts do not occur) by setting
MMCR0 to 0x8000_0000.

E.1 PMM Bit of the Machine
State Register

The Performance Monitor uses MSR bit PMM, which is
defined as follows.

Bit Description

61 Performance Monitor Mark (PMM)

This bit is a basic feature.

This bit contains the Performance Monitor
“mark” (0 or 1).

If an mtmsr or mtmsrd instruction is executed that
changes the value of the PMM bit, the change is not
guaranteed to have taken effect until after a subse-
quent context synchronizing instruction has been exe-
cuted (see Chapter 9, “Synchronization Requirements
for Special Registers and for Lookaside Buffers” on
page 79).

Programming Note

Software can use this bit as a process-specific
marker which, in conjunction with
MMCR0FCM0 FCM1 (see Section E.2.2), permits
events to be counted on a process-specific basis.
(The bit is saved by interrupts and restored by

| rfid .)

Common uses of the PMM bit include the fol-
lowing.

■ Count events for a few selected processes.
This use requires the following bit settings.

— MSRPMM= 1 for the selected processes,
MSRPMM= 0 for all other processes

— MMCR0FCM0= 1
— MMCR0FCM1= 0

■ Count events for all but a few selected proc-
esses. This use requires the following bit set-
tings.

— MSRPMM= 1 for the selected processes,
MSRPMM= 0 for all other processes

— MMCR0FCM0= 0

— MMCR0FCM1= 1

Notice that for both of these uses a mark value of
1 identifies the “few” processes and a mark value
of 0 identifies the remaining “many” processes.
Because the PMM bit is set to 0 when an interrupt
occurs (see Figure 30 on page 62), interrupt han-
dlers are treated as one of the “many”. If it is
desired to treat interrupt handlers as one of the
“few”, the mark value convention just described
would be reversed.

Architecture Note

The two mark values (0 and 1) are equivalent
except with respect to interrupts. That is, either
mark value can be specified for a given process,
and either mark value can control whether the
PMCs are incremented, but interrupts always
cause the mark value in the MSR to be set to 0
(see Figure 30).

Architecture Note

No MSR bit is provided to disable the Perform-
ance Monitor, because the Performance Monitor is
considered a system-wide resource rather than a
per-process resource. MMCR0 can be used to
achieve the effect of disabling the Performance
Monitor, as described in the introduction to
Appendix E.

106 PowerPC AS Operating Environment Architecture



IBM Confidential - Feb. 24, 1999

E.2 Special Purpose Registers

The Performance Monitor SPRs count events, control
the operation of the Performance Monitor, and
provide associated information.

The Performance Monitor SPRs can be read and
written using the mfspr and mtspr instructions (see
Section 3.4.1, “Move To/From System Register
Instructions” on page 18). The Performance Monitor
SPR numbers are shown in Figures 38. Writing any of
the Performance Monitor SPRs is privileged. Reading
any of the Performance Monitor SPRs is not privileged
(however, the privileged SPR numbers used to write
the SPRs can also be used to read them; see the
figures).

The elapsed time between the execution of an instruc-
tion and the time at which events due to that instruc-
tion have been reflected in Performance Monitor SPRs
is not defined. No means are provided by which soft-
ware can ensure that all events due to preceding
instructions have been reflected in Performance
Monitor SPRs. Similarly, if the events being moni-
tored may be caused by operations that are per-
formed out-of-order, no means are provided by which
software can prevent such events due to subsequent
instructions from being reflected in Performance
Monitor SPRs. Thus the value obtained by reading a
Performance Monitor SPR may not be precise: it may
fail to reflect some events due to instructions that
precede the mfspr and may reflect some events due
to instructions that follow the mfspr . This lack of pre-
cision applies regardless of whether the state of the
processor is such that the SPR is subject to change
by the processor at the time the mfspr is executed.

If an mtspr instruction is executed that changes the
value of a Performance Monitor SPR other than SIAR
or SDAR, the change is not guaranteed to have taken
effect until after a subsequent context synchronizing
instruction has been executed (see Chapter 9, “Syn-
chronization Requirements for Special Registers and
for Lookaside Buffers” on page 79).

Programming Note

Depending on the events being monitored, the
contents of Performance Monitor SPRs may be
affected by aspects of the runtime environment
(e.g., cache contents) that are not directly attribut-
able to the programs being monitored.

SPR1,2 Register Privi-
decimal spr 5:9 spr 0:4 Name leged

|
770,786 11000 n0010 MMCRA no,yes
771,787 11000 n0011 PMC1 no,yes
772,788 11000 n0100 PMC2 no,yes
773,789 11000 n0101 PMC3 no,yes
774,790 11000 n0110 PMC4 no,yes
775,791 11000 n0111 PMC5 no,yes
776,792 11000 n1000 PMC6 no,yes
777,793 11000 n1001 PMC7 no,yes
778,794 11000 n1010 PMC8 no,yes
779,795 11000 n1011 MMCR0 no,yes
780,796 11000 n1100 SIAR no,yes
781,797 11000 n1101 SDAR no,yes
782,798 11000 n1110 MMCR1 no,yes

1 Note that the order of the two 5-bit halves
of the SPR number is reversed.

2 For mtspr , n must be 1. For mfspr , reading
the SPR is privileged if and only if n=1 .

Figure 38. Performance Monitor SPR encodings for
mtspr and mfspr

E.2.1 Performance Monitor Counter
Registers

The eight Performance Monitor Counter registers,
PMC1 through PMC8, are 32-bit registers that count
events.

PMC1

PMC2

PMC3

PMC4

PMC5

PMC6

PMC7

PMC8
0 31

Figure 39. Performance Monitor Counter registers

PMC1 and PMC2 are basic features.

Normally each PMC is incremented each processor
cycle by the number of times the corresponding event
occurred in that cycle. Other modes of incrementing
may also be provided (e.g., see the description of
MMCR1 bits PMC1HIST and PMCjHIST).

“PMCj” is used as an abbreviation for “PMCi, i > 1”.
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Programming Note

Software can use a PMC to “pace” the collection
of Performance Monitor data. For example, if it is
desired to collect event counts every n cycles,
software can specify that a particular PMC count
cycles and set that PMC to 0x8000_0000 − n. The
events of interest would be counted in other
PMCs. The counter negative condition that will
occur after n cycles can, with the appropriate
setting of MMCR bits, cause counter values to
become frozen, cause a Performance Monitor
interrupt to occur, etc.

Architecture Note

Because they count events, the PMCs indirectly
measure time and are therefore subject to the
same requirements as the Time Base with respect
to “covert channels” (see Section 8.2, “Time
Base” on page 75). The requirements are satis-
fied by MMCR0FC (see Section E.2.2).

Architecture Note

The PMCs are numbered 1− 8, rather than 0− 7
which would be more consistent with the num-
bering in other register names, because early
implementations of Performance Monitors num-
bered them thus.

E.2.2 Monitor Mode Control Register 0

Monitor Mode Control Register 0 (MMCR0) is a 32-bit
register. This register, along with MMCR1, controls
the operation of the Performance Monitor.

MMCR0

0 31

Figure 40. Monitor Mode Control Register 0

MMCR0 is a basic feature. Within MMCR0, some of
the bits and fields are basic features and some are
extensions. The basic bits and fields are identified as
such, below.

Some bits of MMCR0 are altered by the processor
when various events occur, as described below.

The bit definitions of MMCR0 are as follows. MMCR0
bits that are not implemented are treated as
reserved.

Bit(s) Description

0 Freeze Counters (FC)

This bit is a basic feature.

0 The PMCs are incremented (if permitted
by other MMCR bits).

1 The PMCs are not incremented.

The processor sets this bit to 1 when an
enabled condition or event occurs and
MMCR0FCECE= 1 .

1 Freeze Counters in Supervisor State (FCS)

This bit is a basic feature.

0 The PMCs are incremented (if permitted
by other MMCR bits).

1 The PMCs are not incremented if
MSRPR= 0 .

2 Freeze Counters in Problem State (FCP)

This bit is a basic feature.

0 The PMCs are incremented (if permitted
by other MMCR bits).

1 The PMCs are not incremented if
MSRPR= 1 .

3 Freeze Counters while Mark = 1 (FCM1)

This bit is a basic feature.

0 The PMCs are incremented (if permitted
by other MMCR bits).

1 The PMCs are not incremented if
MSRPMM= 1 .

4 Freeze Counters while Mark = 0 (FCM0)

This bit is a basic feature.

0 The PMCs are incremented (if permitted
by other MMCR bits).

1 The PMCs are not incremented if
MSRPMM= 0 .

5 Performance Monitor Exception Enable
(PMXE)

This bit is a basic feature.

0 Performance Monitor exceptions are disa-
bled.

1 Performance Monitor exceptions are
enabled until a Performance Monitor
exception occurs, at which time:
■ MMCR0PMXE is set to 0

Programming Note

Software can set this bit to 0 to prevent
Performance Monitor interrupts.

Software can set this bit to 1 and then poll
the bit to determine whether an enabled
condition or event has occurred. This is
especially useful on an implementation
that does not provide the Performance
Monitor interrupt.

6 Freeze Counters on Enabled Condition or
Event (FCECE)

0 The PMCs are incremented (if permitted
by other MMCR bits).
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1 The PMCs are incremented (if permitted
by other MMCR bits) until an enabled con-
dition or event occurs when
MMCR0TRIGGER= 0 , at which time:
■ MMCR0FC is set to 1

If the enabled condition or event occurs when
MMCR0TRIGGER= 1 , the FCECE bit is treated
as if it were 0.

7:8 Time Base Selector (TBSEL)

This field selects the Time Base bit that can
cause a Time Base transition event (the event
occurs when the selected bit changes from 0
to 1).

00 Time Base bit 63 is selected.
01 Time Base bit 55 is selected.
10 Time Base bit 51 is selected.
11 Time Base bit 47 is selected.

Programming Note

Time Base transition events can be used
to collect information about processor
activity, as revealed by event counts in
PMCs and by addresses in SIAR and
SDAR, at periodic intervals.

In multiprocessor systems in which the
Time Base registers are synchronized
among the processors, Time Base transi-
tion events can be used to correlate the
Performance Monitor data obtained by the
several processors. For this use, software
must specify the same TBSEL value for all
the processors in the system.

Because the frequency of the Time Base
is implementation-dependent, software
should invoke a system service program
to obtain the frequency before choosing a
value for TBSEL.

9 Time Base Event Enable (TBEE)

0 Time Base transition events are disabled.
1 Time Base transition events are enabled.

10:15 Threshold (THRESHOLD)

This field contains a “threshold value”, which
is a value such that only events that exceed
the value are counted. The events to which a
threshold value can apply are implementa-
tion-dependent, as are the dimension of the
threshold (e.g., duration in cycles) and the
granularity with which the threshold value is
interpreted. See the Book IV, PowerPC AS
Implementation Features document for the
implementation.

Programming Note

By varying the threshold value, software
can obtain a profile of the characteristics
of the events subject to the threshold.
For example, if PMC1 counts the number
of cache misses for which the duration
exceeds the threshold value, then soft-
ware can obtain the distribution of cache
miss durations for a given program by
monitoring the program repeatedly using
a different threshold value each time.

Engineering Note

A desirable use of THRESHOLD is to
obtain a profile of the durations of cache
misses.

It is recommended that one or two bits in
a HID register be provided that permit
software to control the granularity with
which the THRESHOLD value is inter-
preted. For example, if one bit is pro-
vided the value 0 could specify a
granularity of 1 and the value 1 could
specify a granularity of 32.

16 PMC1 Condition Enable (PMC1CE)

This bit controls whether counter negative
conditions due to a negative value in PMC1
are enabled.

0 Counter negative conditions for PMC1 are
disabled.

1 Counter negative conditions for PMC1 are
enabled.

17 PMCj Condition Enable (PMCjCE)

This bit controls whether counter negative
conditions due to a negative value in any
PMCj (i.e., in any PMC except PMC1) are
enabled.

0 Counter negative conditions for all PMCjs
are disabled.

1 Counter negative conditions for all PMCjs
are enabled.

18 Trigger (TRIGGER)

0 The PMCs are incremented (if permitted
by other MMCR bits).

1 PMC1 is incremented (if permitted by
other MMCR bits). The PMCjs are not
incremented until PMC1 is negative or an
enabled condition or event occurs, at
which time:
■ the PMCjs resume incrementing (if

permitted by other MMCR bits)
■ MMCR0TRIGGER is set to 0

See the description of the FCECE bit, above,
regarding the interaction between TRIGGER
and FCECE.
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Programming Note

Uses of TRIGGER include the following.

■ Resume counting in the PMCjs when
PMC1 becomes negative, without
causing a Performance Monitor inter-
rupt. Then freeze all PMCs (and
optionally cause a Performance
Monitor interrupt) when a PMCj
becomes negative. The PMCjs then
reflect the events that occurred
between the time PMC1 became neg-
ative and the time a PMCj becomes
negative. This use requires the fol-
lowing MMCR0 bit settings.

— TRIGGER=1
— PMC1CE=0
— PMCjCE=1
— TBEE=0
— FCECE=1
— PMXE=1 (if a Performance

Monitor interrupt is desired)

■ Resume counting in the PMCjs when
PMC1 becomes negative, and cause a
Performance Monitor interrupt without
freezing any PMCs. The PMCjs then
reflect the events that occurred
between the time PMC1 became neg-
ative and the time the interrupt
handler reads them. This use
requires the following MMCR0 bit set-
tings.

— TRIGGER=1
— PMC1CE=1
— TBEE=0
— FCECE=0
— PMXE=1

19:25 PMC1 Selector (PMC1SEL)

This field is a basic feature.

This field contains a code (one of at most 128
values) that identifies the event to be counted
in PMC1; see the Book IV, PowerPC AS Imple-
mentation Features document for the imple-
mentation.

26:31 PMC2 Selector (PMC2SEL)

This field is a basic feature.

This field contains a code (one of at most 64
values) that identifies the event to be counted
in PMC2; see Book IV.

E.2.3 Monitor Mode Control Register 1

Monitor Mode Control Register 1 (MMCR1) is a 32-bit
register. This register, along with MMCR0, controls
the operation of the Performance Monitor.

MMCR1

0 31

Figure 41. Monitor Mode Control Register 1

Some bits of MMCR1 are altered by the processor
when various events occur, as described below.

The bit definitions of MMCR1 are as follows. MMCR1
bits that are not implemented are treated as
reserved.

Bit(s) Description

0:4 PMC3 Selector (PMC3SEL)
5:9 PMC4 Selector (PMC4SEL)
10:14 PMC5 Selector (PMC5SEL)
15:19 PMC6 Selector (PMC6SEL)
20:24 PMC7 Selector (PMC7SEL)

Each of these fields contains a code (one of at
most 32 values) that identifies the event to be
counted in PMCs 3 through 7 respectively; see
Book IV.

25:28 PMC8 Selector (PMC8SEL)

This field contains a code (one of at most 16
values) that identifies the event to be counted
in PMC8; see Book IV.

29 Freeze Counters until IABR Match (FCUIABR)

0 The PMCs are incremented (if permitted
by other MMCR bits).

1 The PMCs are not incremented until a
“monitored” IABR match occurs. An IABR
match is said to be “monitored” if it
occurs when PMC incrementing is per-
mitted by MMCR00:4 and MSRPR PMM.
When a monitored IABR match occurs:
■ the PMCs resume incrementing (if

permitted by other MMCR bits)
■ MMCR1FCUIABR is set to 0

The IABR (Instruction Address Breakpoint
Register) is an implementation-specific SPR,
and the definition of “IABR match” is imple-
mentation-dependent; see the Book IV,
PowerPC AS Implementation Features docu-
ment for the implementation.

30 PMC1 History Mode (PMC1HIST)

This bit controls whether PMC1 is incre-
mented in the normal way, described in
Section E.2.1, or in “history mode”. In history
mode a PMC is shifted left by one bit each
processor cycle, and the vacated low-order bit
is set to 1 if the associated event occurred
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(one or more times) in that cycle and is set to
0 otherwise.

0 PMC1 is incremented normally (if incre-
menting is permitted by other MMCR bits).

1 PMC1 is incremented in history mode (if
incrementing is permitted by other MMCR
bits).

31 PMCj History Mode (PMCjHIST)

This bit controls whether all PMCjs are incre-
mented in the normal way, described in
Section E.2.1, or in “history mode”, described
under PMC1HIST above.

0 All PMCjs are incremented normally (if
incrementing is permitted by other MMCR
bits).

1 All PMCjs are incremented in history
mode (if incrementing is permitted by
other MMCR bits).

E.2.4 Monitor Mode Control Register A

Monitor Mode Control Register A (MMCRA) is a 32-bit
register. This register, along with MMCR0 and
MMCR1, controls the operation of the Performance
Monitor.

MMCRA

0 31

Figure 42. Monitor Mode Control Register A

The bit definitions of MMCRA are as follows. MMCRA
bits that are not implemented are treated as
reserved.

Bit(s) Description

0 Multithread Count Mode (MODE)
0 Global Mode: All PMCs count all threads

(no thread active gating)
Example: If MMCR0 is programmed to
have PMC1 count instructions executed,
PMC1 will count instructions executed by
both thread 0 and 1.

1 Thread Mode: PMC1 - PMC4 count events
tor thread 0. PMC5-8 count the same
events for thread 1.
Example: If MMCR0 is programmed to
have PMC1 count instructions executed,
PMC1 will count instructions executed both
thread 0, and and PMC5 will count instruc-
tion executed by thread 1.

When MODE = 1, the PMC SPR addressing
changes.

■ For thread 0, PMC1 - PMC4 (Performance
Monitor Counter registers 1 - 4) are
addressed using PMC1 - PMC4 SPR
addresses from Figure 38 on page 107.

The results of mfspr or mtspr instructions
that use a PMC5 - PMC8 SPR address are
implementation-dependent.

■ For thread 1, PMC5 - PMC8 are addressed
using PMC1 - PMC4 SPR addresses from
Figure 38 on page 107. The results of
mfspr or mtspr instructions that use a
PMC5-8 SPR address are implementa-
tion-dependent.

1 Freeze Counters 1-4 (FC1-4)
0 PMC1 - PMC4 are incremented (if per-

mitted by other MMCR bits).
1 PMC1 - PMC4 are not incremented

2 Freeze Counters 5-8 (FC5-8)
0 PMC5 - PMC8 are incremented (if per-

mitted by other MMCR bits).
1 PMC1 - PMC4 are not incremented

3-7 Reserved
8-14 Reserved for implementation-specific use
15 External Performance Monitor Exception

(EPMX)

Set to 1 if an External Performance Monitor
Exception is received. This bit can be set to 0
only by the mtspr instruction. Software
should set this bit to 0 after handling the
external event.

16 External Performance Monitor Exception
Enable (EPMXE)
0 External Performance Monitor exceptions

are disabled.
1 External Performance Monitor exceptions

are enabled.

An external signal can be driven by other
components in the system to signal an excep-
tion when one or more of their counters has
its most significant bit set to 1.

17:23 Reserved
24:27 Reserved for implementation-specific use
28 Freeze Counters in Tags Inactive Mode (FCTI)

0 The PMCs are incremented (if permitted
by other MMCR bits).

1 The PMCs are not incremented in tags
inactive mode.

This bit is a basic feature.
29 Freeze Counters in Tags Active Mode (FCTA)

0 The PMCs are incremented (if permitted
by other MMCR bits).

1 The PMCs are not incremented in tags
active mode.

This bit is a basic feature.
30 Freeze Counters in Wait State (FCWAIT)

0 The PMCs are incremented (if permitted
by other MMCR bits).

1 The PMCs are not incremented if
CTRL31= 0 . Software is expected to set
CTRL31= 0 when it is in a wait state, i.e.
there is no process ready to run.

This bit is a basic feature.
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Only Branch Unit type of events do not incre-
ment if CTRL31= 0 . Other units continue to
count.

31 Reserved

E.2.5 Sampled Instruction Address
Register

The Sampled Instruction Address Register (SIAR) is a
64-bit register. It contains the address of the
“sampled instruction” when a Performance Monitor
exception occurs.

SIAR

0 63

Figure 43. Sampled Instruction Address Register

When a Performance Monitor exception occurs, SIAR
is set to the effective address of an instruction that
was executing, possibly out-of-order, at or around the
time that the Performance Monitor exception
occurred. This instruction is called the “sampled
instruction”.

The contents of SIAR may be altered by the processor
if and only if MMCR0PMXE= 1 . Thus after the Perform-
ance Monitor exception occurs, the contents of SIAR
are not altered by the processor until software sets
MMCR0PMXE to 1. After software sets MMCR0PMXE to
1, the contents of SIAR are undefined until the next
Performance Monitor exception occurs.

See Section E.4 regarding the effects of the optional
Trace facility on SIAR.

Engineering Note

If the Performance Monitor exception is caused by
an enabled counter negative condition that can be
associated with the execution of a specific instruc-
tion, it is preferable to set SIAR to that
instruction's address.

E.2.6 Sampled Data Address
Register

The Sampled Data Address Register (SDAR) is a
64-bit register. It contains the address of the
“sampled data” when a Performance Monitor excep-
tion occurs.

SDAR

0 63

Figure 44. Sampled Data Address Register

When a Performance Monitor exception occurs, SDAR
is set to the effective address of the storage operand
of an instruction that was executing, possibly out-of-
order, at or around the time that the Performance
Monitor exception occurred. This storage operand is
called the “sampled data”. The sampled data may
be, but need not be, the storage operand (if any) of
the “sampled instruction” (see Section E.2.5). If the
Performance Monitor exception causes a Performance
Monitor interrupt, SRR1 indicates whether the
sampled data is in fact the storage operand of the
sampled instruction (see Section E.3).

The contents of SDAR may be altered by the
processor if and only if MMCR0PMXE= 1 . Thus after
the Performance Monitor exception occurs, the con-
tents of SDAR are not altered by the processor until
software sets MMCR0PMXE to 1. After software sets
MMCR0PMXE to 1, the contents of SDAR are undefined
until the next Performance Monitor exception occurs.

See Section E.4 regarding the effects of the optional
Trace facility on SDAR.

Engineering Note

If the sampled instruction has a storage operand,
it is preferable to set SDAR to that storage oper-
and's address.

E.3 Performance Monitor
Interrupt

The Performance Monitor interrupt is a system-
caused interrupt (see Section 7.3, “Interrupt Classes”
on page 60). It is masked by MSREE in the same
manner that External and Decrementer interrupts are.

A Performance Monitor interrupt occurs when no
higher priority exception exists, a Performance
Monitor exception exists, and MSREE= 1 . The occur-
rence of the interrupt cancels the exception (i.e.,
causes the exception to cease to exist).

If multiple Performance Monitor exceptions occur
before the first causes a Performance Monitor inter-
rupt, the interrupt reflects the most recent Perform-
ance Monitor exception and the preceding
Performance Monitor exceptions are lost.

The following registers are set:

SRR0 Set to the effective address of the instruc-
tion that the processor would have
attempted to execute next if no interrupt
conditions were present.
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SRR1
33 Set to 1 if the contents of SIAR and SDAR

are associated with the same instruction
(i.e., if SDAR contains the effective address
of the storage operand of the “sampled
instruction”); otherwise set to 0 (including
the case in which the “sampled
instruction” has no storage operand).

34:36 and 42:47 See the Book IV, PowerPC AS
Implementation Features document for the
implementation.

Others Loaded from the MSR.

Engineering Note

SRR1 bits 34:36 and 42:47 can be used to
provide information about the state of the
processor at the time the “sampled instruction”
was being executed or at the time the Perform-
ance Monitor exception is generated.

MSR See Figure 30 on page 62.

SIAR Set to the effective address of the
“sampled instruction” (see Section E.2.5).

SDAR Set to the effective address of the
“sampled data” (see Section E.2.6).

| Execution resumes at effective address
| 0x0000_0000_0000_0F00.

In general, statements about External and
Decrementer interrupts elsewhere in this Book apply
also to the Performance Monitor interrupt; for
example, if a Performance Monitor exception is
pending when an mtmsr or mtmsrd instruction is exe-
cuted that changes MSREE from 0 to 1, the Perform-
ance Monitor interrupt will occur before the next
instruction is executed (if no higher priority exception
exists).

The priority of the Performance Monitor interrupt is
between that of the External interrupt and that of the
Decrementer interrupt (see Section 7.7.2, “Ordered
Exceptions” on page 73 and Section 7.8, “Interrupt
Priorities” on page 73).

E.4 Interaction with the Trace
Facility

If the Trace facility includes setting SIAR and SDAR
(see Appendix F, “Example Trace Extensions
(Optional)” on page 115), and tracing is active
(MSRSE= 1 or MSRBE=1) , the contents of SIAR and
SDAR as used by the Performance Monitor facility are
undefined and may change even when
MMCR0PMXE= 0 , and the contents of SRR133 when a
Performance Monitor interrupt occurs are also unde-
fined.

Programming Note

A potential combined use of the Trace and Per-
formance Monitor facilities is to trace the control
flow of a program and simultaneously count
events for that program.

E.5 Synchronization
Requirements for Registers

Any requirements for synchronizing the effect of
loading performance monitor registers is implementa-
tion-dependent.
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Appendix F. Example Trace Extensions (Optional)

This appendix provides an example of extensions that
may be added to the optional Trace facility described
in Section 7.5.13, “Trace Interrupt” on page 71. It is
only an example; implementations may provide all,
some, or none of the features described here, or may
provide features that are similar to those described
here but differ in detail. See the Book IV, PowerPC
AS Implementation Features document for the imple-
mentation.

The extensions consist of the following features
(described in detail below).

■ use of MSRSE BE=0b11 to specify new causes of
Trace interrupts

■ specification of how certain SRR1 bits are set
when a Trace interrupt occurs

■ setting of SIAR and SDAR (see Appendix E) when
a Trace interrupt occurs

MSRSE BE = 0b11

If MSRSE BE=0b11, the processor generates a Trace
exception under the conditions described in Section
7.5.13 for MSRSE BE=0b01, and also after successfully
completing the execution of any instruction that would
cause at least one of SRR1 bits 33:36, 42, and 44:46 to
be set to 1 (see below) if the instruction were exe-
cuted when MSRSE BE=0b10.

This overrides the implicit statement in Section 7.5.13
that the effects of MSRSE BE=0b11 are the same as
those of MSRSE BE=0b10.

SRR1

When a Trace interrupt occurs, the SRR1 bits that are
not loaded from the MSR are set as follows instead of
as described in Section 7.5.13.

33 Set to 1 if the traced instruction is icbi ; oth-
erwise set to 0.

34 Set to 1 if the traced instruction is dcbt,
| dcbtst, dcbz, dcbst, or dcbf ; otherwise set

to 0.
35 Set to 1 if the traced instruction is a Load

instruction or eciwx ; may be set to 1 if the
traced instruction is icbi, dcbt, dcbtst,

| dcbst, or dcbf ; otherwise set to 0.

36 Set to 1 if the traced instruction is a Store
| instruction, dcbz, or ecowx ; otherwise set

to 0.
42 Set to 1 if the traced instruction is lswx or

stswx ; otherwise set to 0.
43 See the Book IV, PowerPC AS Implementa-

tion Features document for the implemen-
tation.

44 Set to 1 if the traced instruction is a
Branch instruction and the branch is taken;
otherwise set to 0.

45 Set to 1 if the traced instruction is eciwx or
ecowx ; otherwise set to 0.

46 Set to 1 if the traced instruction is lwarx,
ldarx, stwcx., or stdcx. ; otherwise set to 0.

47 See the Book IV, PowerPC AS Implementa-
tion Features document for the implemen-
tation.

Engineering Note

The setting of bit 44 as specified above is not
expected to be provided on implementations that
fold branches.

Bits 43 and 47 can be used to provide information
about the state of the processor at the time the
traced instruction was being executed.

SIAR and SDAR

If the optional Performance Monitor facility is imple-
mented and includes SIAR and SDAR (see
Appendix E, “Example Performance Monitor
(Optional)” on page 105), the following additional reg-
isters are set when a Trace interrupt occurs:

SIAR Set to the effective address of the traced
instruction.

SDAR Set to the effective address of the storage
operand (if any) of the traced instruction;
otherwise undefined.

If the state of the Performance Monitor is such that
the Performance Monitor may be altering these regis-
ters (i.e., if MMCR0PMXE=1) , the contents of SIAR and
SDAR as used by the Trace facility are undefined and
may change even when no Trace interrupt occurs.
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Engineering Note

On an implementation for which the Performance
Monitor permits the number of instructions com-
pleted between successive Trace interrupts to be
counted exactly, the setting of SIAR as described
above is not needed.

It is acceptable for SDAR not to be set as speci-
fied above under certain conditions (e.g., for a
Storage Access instruction that causes a Data
Storage interrupt).
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Appendix G. PowerPC AS Operating Environment Instruction
Set

Form
Opcode Mode

Dep.1 Priv. 2 Page Mnemonic Instruction
Primary Extend

|
X 31 83 P 21 mfmsr Move From Machine State Register
XFX 31 339 O 20 mfspr Move From Special Purpose Register

| X| 31| 595| 32| P| 92| mfsr| Move From Segment Register
| X| 31| 659| 32| P| 92| mfsrin| Move From Segment Register Indirect

X 31 146 P 87 mtmsr Move To Machine State Register
X 31 178 P 21 mtmsrd Move To Machine State Register Doubleword
XFX 31 467 O 19 mtspr Move To Special Purpose Register

| X| 31| 210| 32| P| 91| mtsr| Move To Segment Register
|
| X| 31| 242| 32| P| 91| mtsrin| Move To Segment Register Indirect
|

XL 19 18 P 13 rfid Return From Interrupt Doubleword
XL 19 82 TA P 12 rfscv Return From System Call Vectored
SC 17 1 11 sc System Call
SC 17 0 TA 12 scv System Call Vectored
X 31 498 P 52 slbia SLB Invalidate All
X 31 434 P 51 slbie SLB Invalidate Entry

| X| 31| 915| P| 54| slbmfee| SLB Move From Entry ESID
| X| 31| 851| P| 54| slbmfev| SLB Move From Entry VSID
| X| 31| 402| P| 53| slbmte| SLB Move To Entry

X 31 370 P 56 tlbia TLB Invalidate All
| X| 31| 306| 64| H| 55| tlbie| TLB Invalidate Entry
| X| 31| 566| H| 56| tlbsync| TLB Synchronize

1Key to Mode Dependency Column

† Except as described below and in the section entitled
† “Effective Address Calculation” in Book I, all
† instructions in the PowerPC AS Operating Environ-
† ment Architecture are independent of whether the
† processor is in 32-bit or 64-bit mode and of whether
† the processor is in tags active or tags inactive mode.

† TA The instruction can be executed only in tags
active mode. In tags inactive mode the
instruction is an illegal instruction.

| 32 The instruction must be executed only in
| 32-bit mode.

| 64 The instruction must be executed only in
| 64-bit mode.

2Key to Privilege Column

P denotes a privileged instruction.

O denotes an instruction that may be treated as privi-
| leged or nonprivileged (or hypervisor, for mtspr ),

depending on the SPR number.

| H denotes an instruction that can be executed only in
| hypervisor state.
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Index

A

ACCR 37
address

effective address 23
Process Local Storage address 30
real 25, 27, 47
Single Level Storage address 30

address compare 24, 46, 64
ACCR 37

Address Compare Control Register 19, 20, 37
Address Space Register 19, 20, 47, 89
address translation 40, 47

EA to VA 46
esid to vsid 46
overview 30, 47
Page Table Entry 47
PTE

page table entry 34, 40
Reference bit 40, 47
RPN

real page number 33
SLS address 32
Tags Active 30
VA to RA 33
VPN

virtual page number 33
32-bit mode 46

addresses
accessed by processor 29
implicit accesses 29
interrupt vectors 29
with defined uses 29

Alignment interrupt 67, 101
ASR 89
assembler language

extended mnemonics 93
mnemonics 93
symbols 93

B

BE
See Machine State Register

Branch Trace 71
Bridge 89

ASR 89
Segment Registers 90
SR 90

C

Caching Inhibited 24, 46
Change bit 40, 47
CIA

See Current Instruction Address
context

definition 1
synchronization 3

Control Register 0 16, 19, 20
CTRL

See Control Register
Current Instruction Address 7, 11, 12

D

DABR interrupt 84
DAR

See Data Address Register
data access 25
Data Address Breakpoint Register 19, 20, 84
data address compare 64

ACCR 37
Data Address Register 15, 19, 20, 61, 65, 68
Data Segment interrupt 65
Data Storage interrupt 64
Data Storage Interrupt Status Register 16, 19, 20,

64, 67, 68, 101
Alignment interrupt 101

dcbf instruction 64
dcbst instruction 64
dcbz instruction 37, 49, 64, 67, 101
Decrementer 19, 20, 77
Decrementer interrupt 21, 70, 87
DR

See Machine State Register
DSISR

See Data Storage Interrupt Status Register
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E

E (Enable bit) 83
EAO

See effective address overflow
eciwx instruction 83, 64, 67, 68
ecowx instruction 83, 64, 67, 68
EE

See Machine State Register
effective address 23, 30, 45, 47

size 24
translation 30

effective address overflow 64
eieio instruction 57
emulation assist 2, 61
exceptions

address compare 24, 37, 46, 64
definition 2
effective address overflow 64
page fault 24, 37, 46, 64
protection 24, 46
segment fault 24, 46
storage 24, 46

execution synchronization 4
External Access Register 83, 19, 20, 64
External interrupt 21, 67, 87

F

FE0
See Machine State Register

FE1
See Machine State Register

Floating-Point Unavailable interrupt 70
FP

See Machine State Register

H

hardware
definition 2

hashed page table 34
size 35

HTAB
See hashed page table

HTABORG 35
HTABSIZE 35
hypervisor 4

page table 34

I

icbi instruction 64
ILE

See Machine State Register

implicit branch 25, 46
imprecise interrupt 60
in-order operations 25, 46
instruction fetch 25, 46

effective address 25, 46
implicit branch 25, 46

Instruction Segment interrupt 66
Instruction Storage interrupt 66
instruction-caused interrupt 60
instructions

dcbf 64
dcbst 64
dcbz 37, 49, 64, 67, 101
eciwx 83, 64, 67, 68
ecowx 83, 64, 67, 68
eieio 57
icbi 64
isync 4, 60, 61, 69
ldarx 61, 64, 67, 68
lmd 67
lmw 67, 68
lookaside buffer 49
lq 67
lswi 68
lswx 68
lwa 68
lwarx 61, 64, 67, 68, 101
lwaux 68
lwz 101
mfmsr 7, 21
mfspr 20
mfsr 92
mfsrin 92
mtmsr 4, 7, 74, 87
mtmsrd 4, 7, 21, 74
mtspr 19
mtsr 91
mtsrin 91
optional

See optional instructions
rfi 61, 71
rfid 7, 13, 61, 74
rfscv 7, 12, 74
sc 11, 70
scv 7, 12, 71
slbia 52
slbie 51
slbmfee 54
slbmfev 54
slbmte 53
stdcx. 61, 64, 67, 68
stmdw 67
stmw 67
storage control 49
stq 67
stw 101
stwcx. 61, 64, 67, 68
stwx 101
sync 4, 40, 47, 57, 60, 61, 69
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instructions (continued)
tlbia 37, 56
tlbie 37, 55, 56, 57
tlbsync 56, 57

interrupt
Alignment 67, 101
DABR 84
Data Segment 65
Data Storage 64
Decrementer 21, 70, 87
definition 2
External 21, 67, 87
Floating-Point Unavailable 70
imprecise 60
Instruction Segment 66
Instruction Storage 66
instruction-caused 60
Machine Check 47, 63
new MSR 62
overview 59
Performance Monitor 71
precise 60
priorities 73
processing 61
Program 68
recoverable 61
synchronization 59
System Call 70
System Call Vectored 71
System Reset 63
system-caused 60
Trace 71
vector 61, 62

IR
See Machine State Register

isync instruction 4, 60, 61, 69

K

K bits 42, 47
K bits (tags active) 42
K bits (tags inactive) 43
key, storage 42

L

large page 31
ldarx instruction 61, 64, 67, 68
LE

See Machine State Register
lmd instruction 67
lmw instruction 67, 68
Logical Partition Identity Register 4
Logical Partitioning 4
lookaside buffer 49
lookaside buffers 79

LPAR (see Logical Partitioning) 4
LPES bit 4
LPIDR 4
lq instruction 67
lswi instruction 68
lswx instruction 68
lwa instruction 68
lwarx instruction 61, 64, 67, 68, 101
lwaux instruction 68
lwz instruction 101

M

Machine Check interrupt 47, 63
Machine State Register 7, 11, 12, 21, 60, 61, 62, 71,

87
BE Branch Trace Enable 9
DR Data Relocate 9
EE External Interrupt Enable 9, 21, 87
FE0 FP Exception Mode 9
FE1 FP Exception Mode 9
FP FP Available 9
ILE Interrupt Little-Endian Mode 9
IR Instruction Relocate 9
LE Little-Endian Mode 10
ME Machine Check Enable 9
PMM Performance Monitor Mark 10, 106
PR Problem State 9
RI Recoverable Interrupt 10, 21, 87
SE Single-Step Trace Enable 9
SF Sixty Four Bit mode 8
TA Tags Active Mode 8
US User State 9

Machine Status Save Restore Register
See SRR0, SRR1

Machine Status Save Restore Register 0 7, 19, 20,
60, 61

Machine Status Save Restore Register 1 7, 19, 20,
61, 70

ME
See Machine State Register

Memory Coherence 24
Memory Coherence Required 46
mfmsr instruction 7, 21
mfspr instruction 20
mfsr instruction 92
mfsrin instruction 92
mnemonics

extended 93
MSR

See Machine State Register
mtmsr instruction 4, 7, 74, 87
mtmsrd instruction 4, 7, 21, 74
mtspr instruction 19
mtsr instruction 91
mtsrin instruction 91
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N

Next Instruction Address 7, 11, 12, 13
NIA

See Next Instruction Address

O

opcode 0 101
optional facilities 89
optional instructions 49, 83

slbia 52
slbie 51
tlbia 56
tlbie 55
tlbsync 56

out-of-order operations 25, 46

P

page
size 24

page fault 24, 37, 46, 64
page size

large page 31
page table

See also hashed page table
search 36
update 57

page table entry 34, 40, 47
Change bit 40
PP bits 42
Reference bit 40
Tag Set bit 40
update 57

partition 4
Performance Monitor interrupt 71
PLS 24
PLS Address 30
PLS segment 30
PMM

See Machine State Register
PP bits 42, 47
pp bits (tags active) 42
PP bits (tags inactive) 43
PR

See Machine State Register
precise interrupt 60
priority of interrupts 73
Processor ID Register 17, 20
Processor Version Register 17, 20
Program interrupt 68
protection boundary 42, 68
protection domain 42
PTE 36

See also page table entry

PTEG 36
PVR

See Processor Version Register

R

RC bits 40, 47
real address 27, 30, 47
Real Mode Caching Inhibited bit 4
Real Mode Limit Register 4
Real Mode Offset Register 4
real page

definition 1
real page number 34
recoverable interrupt 61
reference and change recording 40, 47
Reference bit 40, 47
reference, change, and tag set recording 40
registers

ACCR
Address Compare Control Register 19, 20

ASR
Address Space Register 19, 20, 47

CTRL
Control Register 0 16, 19, 20

DABR
Data Address Breakpoint Register 19, 20, 84

DAR
Data Address Register 15, 19, 20, 61, 65, 68

DEC
Decrementer 19, 20, 77

DSISR
Data Storage Interrupt Status Register 16, 19,

20, 64, 67, 68, 101
EAR

External Access Register 83, 19, 20, 64
MSR

Machine State Register 7, 11, 12, 21, 60, 61,
62, 71, 87

optional 83
PIR

Processor ID Register 17, 20
PVR

Processor Version Register 17, 20
SDR1

Storage Description Register 1 19, 20, 35, 47
Segment Registers 79
SPRGn

software-use SPRs 16, 19, 20
SPRs 79
SRR0

Machine Status Save Restore Register 0 7, 19,
20, 60, 61

SRR1
Machine Status Save Restore Register 1 7, 19,

20, 61, 70
status and control 79
TB

Time Base 75
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registers (continued)
TBL

Time Base Lower 19, 75
TBU

Time Base Upper 19, 75
relocation

data 25
reserved field 2
rfi instruction 61, 71
rfid instruction 7, 13, 61, 74
rfscv instruction 7, 12, 74
RI

See Machine State Register
RID (Resource ID) 83
RMLR 4
RMOR 4

S

sc instruction 11, 70
scv instruction 7, 12, 71
SDR1

See Storage Description Register 1
SE

See Machine State Register
segment 47

PLS 24
size 24
SLS 24
type 24

Segment Lookaside Buffer
See SLB

Segment Registers 79, 90
segment table

bridge 89
update 57

sequential execution model
definition 2

SF
See Machine State Register

Single-Step Trace 71
SLB 31, 49

entry 31
slbia instruction 52
slbie instruction 51
slbmfee instruction 54
slbmfev instruction 54
slbmte instruction 53
SLS 24, 32
SLS segment 30
software-use SPRs 16, 19, 20
speculative operations 25, 46
SPRGn

See software use SPRs
SPRs 79
SR 90
status and control registers 79

stdcx. instruction 61, 64, 67, 68
stmdw instruction 67
stmw instruction 67
storage

accessed by processor 29
consistency 24, 46
implicit accesses 29
interrupt vectors 29
K (tags active) 42
K (tags inactive) 43
key 47
key (tags active) 42
key (tags inactive) 43
N 36
N (tags active) 42
N (tags inactive) 43
no-execute 36
no-execute (tags active) 42
no-execute (tags inactive) 43
ordering 24, 46
pp (tags active) 42
PP (tags inactive) 43
PR (tags active) 42
PR (tags inactive) 43
protection 47

translation disabled 43
protection (tags active) 42
protection (tags inactive) 43
US (tags active) 42
US (tags inactive) 43
weak ordering 24, 46
with defined uses 29

storage control
instructions 49

storage control bits 38, 47
Storage Description Register 1 19, 20, 35, 47
storage key 42
storage key (tags active) 42
storage key (tags inactive) 43
storage model 24, 46
storage operations

in-order 25, 46
out-of-order 25, 46
speculative 25, 46

storage protection 42
stq instruction 67
stw instruction 101
stwcx. instruction 61, 64, 67, 68
stwx instruction 101
symbols 93
sync instruction 4, 40, 47, 57, 60, 61, 69
synchronization 3, 57, 79

context 3
execution 4
interrupts 59

System Call interrupt 70
System Call Vectored interrupt 71
System Reset interrupt 63
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system-caused interrupt 60

T

TA
See Machine State Register

table update 57
Tag Set bit 40
Time Base 75
Time Base Lower 19, 75
Time Base Upper 19, 75
TLB 37, 49
tlbia instruction 37, 56
tlbie instruction 37, 55, 56, 57
tlbsync instruction 56, 57
Trace interrupt 71
translation lookaside buffer 37
trap interrupt

definition 2
TS Bit 40

U

US
See Machine State Register

User State
See Machine State Register

V

virtual address 30, 33, 47
generation 30
PLS 30
size 24
SLS 32
tags inactive 30

virtual page number 34

W

Write Through 24
Write Through Required 46

Numerics

32-bit mode 46
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