
HARDWARE SUPPORT FOR MALWARE DEFENSE AND END-TO-
END TRUST

INTERNATIONAL BUSINESS MACHINES CORPORATION (IBM)

FEBRUARY 2017

FINAL TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

AFRL-RI-RS-TR-2017-021

 UNITED STATES AIR FORCE ROME, NY 13441 AIR FORCE MATERIEL COMMAND

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose
other than Government procurement does not in any way obligate the U.S. Government. The fact that
the Government formulated or supplied the drawings, specifications, or other data does not license the
holder or any other person or corporation; or convey any rights or permission to manufacture, use, or
sell any patented invention that may relate to them.

This report is the result of contracted fundamental research deemed exempt from public affairs security
and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and AFRL/CA policy
clarification memorandum dated 16 Jan 09. This report is available to the general public, including
foreign nationals. Copies may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RI-RS-TR-2017-021 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE CHIEF ENGINEER:

 / S /
CARL THOMAS
Work Unit Manager

 / S /
JOHN D. MATYJAS, Technical Advisor
Computing and Communications Division
 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

This material is based on research sponsored by the Department of Homeland Security (OHS) Science and
Technology Directorate, Cyber Security Division (OHS S & T CSD) via BAA 11-02; the Department of
National Defence of Canada, Defence Research and Development Canada (DRDC); and Air Force Research
Laboratory Information Directorate via contract FA8750-12-C-0243. The U.S. Government and the
Department of National Defence of Canada, Defence Research and Development Canada(DRDC) are
authorized to reproduce and distribute this report for Government purposes notwithstanding any copyright
notation thereon.

The views and conclusions contained herein are those of the authors and should not be interepreted as
necessarily representing the official policies or endorsements, either expressed or implied, of the Department
of Homeland Security; Air Force Research Laboratory; the U.S. Government; or the Department of National
Defence of Canada, Defense Research and Development Canada (DRDC).

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, W ashington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

FEBRUARY 2017
2. REPORT TYPE

FINAL TECHNICAL REPORT
3. DATES COVERED (From - To)

SEP 2012 – JUN 2016
4. TITLE AND SUBTITLE

HARDWARE SUPPORT FOR MALWARE DEFENSE AND
END-TO-END TRUST

5a. CONTRACT NUMBER

5b. GRANT NUMBER
FA8750-12-2-0243

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Richard Boivie, Ek Ekanadham, Bhushan Jain, Eric Hall, Guerney Hunt,
Mohit Kapur, Mehmet Kayaalp, Elaine Palmer, Dimitrios Pendarakis,
David Safford, and Ray Valdez

5d. PROJECT NUMBER
DHS2

5e. TASK NUMBER
IB

5f. WORK UNIT NUMBER
M2

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

International Business Machines Corporation
T.J. W atson Research Center
1101 Kitchawan Rd
Yorktown Heights, NY 10598-0218

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RITA Department of Homeland Security
525 Brooks Road 1120 Vermont Ave NW
Rome NY 13441-4505 W ashington DC 20005

10. SPONSOR/MONITOR'S ACRONYM(S)

AFRL/RI
11. SPONSOR/MONITOR’S REPORT NUMBER

AFRL-RI-RS-TR-2017-021
12. DISTRIBUTION AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited. This report is the result of contracted fundamental research deemed
exempt from public affairs security and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and
AFRL/CA policy clarification memorandum dated 16 Jan 09.
13. SUPPLEMENTARY NOTES

14. ABSTRACT

This report describes an end-to-end architecture for establishing end-to-end trust. Including computing platforms, Internet
of Things (IoT) sensors and actuators, mobile devices and servers; cloud based, stand alone, and traditional
mainframes. The prototype developed demonstrated that hardware extensions, along with corresponding firmware can
provide strong isolation for secure virtual machines and be transparent to unmodified virtual machines. For mobile
platforms we developed and prototyped an architecture supporting separation of personalities on the same platform,
safeguarding enterprise from personal data in a bi-directional manner. Lastly we demonstrated IoT sensor and actuator
security using trusted security.

15. SUBJECT TERMS

End-to-End Trust, Secure, Hyper-Visor, Super-Visor, IoT devices, Servers, Virtual Machines

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON

CARL THOMAS
a. REPORT

U
b. ABSTRACT

U
c. THIS PAGE

U
19b. TELEPHONE NUMBER (Include area code)

N/A
Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std. Z39.18

81

Table of Contents

TABLE OF FIGURES ... iii

ACKNOWLEDGMENTS ... iv

1. SUMMARY ... 1

1.1. SUMMARY OF PROTOTYPES DEVELOPED .. 1

1.2. SUMMARY OF TECHNOLOGY TRANSITION ACTIVITIES 2

2. INTRODUCTION .. 3

3. METHODS ASSUMPTIONS AND PROCEDURES .. 4

3.1. MOBILE ... 4

3.1.1. GOALS... 4

3.1.2. HARDWARE ... 4

3.1.3. SOFTWARE ARCHITECTURE ... 5

3.1.4. INTEGRITY COMPONENT DESCRIPTIONS ... 5

3.1.5. APPROACH TO IMPLEMENTATION .. 7

3.2. SERVER ... 8

3.2.1. BASIC PRINCIPLES .. 8

3.2.2. BASIC COMPONENTS ... 8

3.2.3. BUILDING THE ACM BLUESPEC FPGA MODEL OF A POWER PC
SERVER PROCESSOR ... 9

3.2.4. MODIFYING AN EXISTING POWER PROCESSOR FOR ACM 11

4. RESULTS AND DISCUSSION .. 18

i

4.1. MOBILE PLATFORM RESULTS ... 18

4.1.1. IMA-APPRAISAL-IMASIG TEMPLATE PATCHES AND POLICIES 18

4.1.2. OAT ANALYSIS AND INTEGRATION .. 18

4.1.3. QEMU INTEGRATION WITH CUSE BASED SWTPM 18

4.1.4. CHANGES TO THE ORIGINAL PLAN .. 19

4.1.5. STATUS ... 20

4.2. SERVER RESULTS ... 20

4.2.1. ACM BLUESPEC FPGA MODEL .. 20

4.2.2. MODIFYING THE MODEL OF AN EXISTING POWER PROCESSOR 33

4.2.3. PERFORMANCE OF BARE BONES ACM FIRMWARE ... 38

4.3. CUSTOMER NEEDS ADDRESSED .. 39

4.4. COMPARISON WITH COMPETITION ... 39

4.5. TECHNOLOGY TRANSITION AND TRANSFER .. 39

5. CONCLUSION ... 41

6. REFERENCES ... 42

APPENDIX A: PUBLICATIONS .. 43

LIST OF SYMBOLS ABBREVIATIONS AND ACRONYMS 73

ii

TABLE OF FIGURES
Figure 1 Mobile Architecture .. 6
Figure 2 Samsung verified boot .. 8
Figure 3 Architectural block diagram of the ACM Bluespec FPGA model 10
Figure 4 Design flow of ACM Bluespec FPGA model .. 11
Figure 5 ACM concept: confidentiality and integrity by isolation ... 12

Figure 6 ACM demonstration hardware preparation .. 12
Figure 7 ACM demonstration: program loaded into memory .. 13
Figure 8 FPGA based emulation platform .. 14
Figure 9 Overview of the Linux/KVM environment on Powre systems 16
Figure 10 QEMU Process and guest system relationship ... 16

Figure 11 Conceptual view of SVM ... 17
Figure 12 ACM demonstration: step 1 - creation of initial ACM... 21
Figure 13 ACM demonstration: step 2 - domain D2 requested .. 22
Figure 14 ACM demonstration: step 3 domain D3 completed ... 23
Figure 15 ACM demonstration: Step 4 - OS attempts invalid access... 24
Figure 16 Process isolation OS jumps to secure code .. 24

Figure 17 Process isolation secure domain invalid access .. 25
Figure 18 Process hierarchy illustration ... 28
Figure 19 Functional overview of ACM firmware ... 36
Figure 20 Components required for bare bones ACM firmware .. 37

iii

ACKNOWLEDGMENTS

The following staff members at IBM Research have contributed during the duration of this project:

Rick Boivie, Ek Ekanadham, Kenneth Goldman, Bhushan Jain, Eric Hall, Guerney Hunt, Mohit
Kapur, Mehmet Kayaalp, Elaine Palmer, Dimitrios Pendarakis, David Safford (now with GE
Research), Ed Suh (Cornell University, while an academic visitor with IBM Research) and Ray
Valdez.

Additionally, we would like to acknowledge a number of IBM employees, across both Research
and business units, in particular IBM Systems, for the extensive and close collaboration we had
while pursuing commercialization of the technologies developed throughout this project.
Specifically, we would like to thank Jens Leenstra, Pete Sandon (now retired), Utz Bacher, Stefan
Berger, Jonathan Bradbury, Reinhard Buendgen, John Cohn, John Dayka, Donna Dillenberger,
Brad Frey, Joefon Jann, Christian Jacobi, Ronald Kalla, Jeb Linton, Angel Nunez Mencias, Jose
Moreira, Pratap Pattnaik, JR Rao, Balaram Sinharoy, Bill Starke, Charles Webb, George Wilson
Christian Zoellin and Mimi Zohar.

Finally, we would like to acknowledge the valuable feedback and guidance we received throughout
the duration of this project from our government sponsors from the Department of Homeland
Security (DHS) Science and Technology Directorate (S&T) and the Air Force Research
Laboratory (AFRL), Rome, New York. Specifically, we would like to thank Edward Rhyne,
Matthew Billone, John Drake and Douglas Maughan from DHS S&T and Carl Thomas from
AFRL.

iv

1. SUMMARY
The objective of this project was to develop and prototype an end-to-end architecture for defending
against “malware" and establishing end-to-end trust. The performers defined “end-to-end" as
spanning computing platforms from Internet of Things (IoT) sensors and actuators or mobile
devices to servers which could be cloud based, stand alone or traditional mainframes. In this
environment it was observed “trust" cannot be established if the software components of any part
of the Trusted Computing Base (TCB) were unknown or unverified. This definition of trust is
similar to the one used by the Trusted Computing Group (TCG) for the definition of the Trusted
Platform Module (TPM). It is noted that for long running systems, establishing trust at boot may
be insufficient for continuation of trust at an arbitrary point in the future. If the design of the system
permits undetectable attacks against memory, continuous trust must be established. Our conclusion
is that for the smallest devices where the dynamic memory is typically inaccessible to attackers
and the software operating the device may be replaceable or upgradeable, secure boot is necessary
and trusted boot is sufficient. As devices become more capable these technologies combined with
the work described herein become necessary.

1.1. SUMMARY OF PROTOTYPES DEVELOPED

This project developed a number of different prototypes, targeted for the different computing
platforms, as we outline below.

• Mobile/Embedded prototypes with security enhancements
o Secure firmware enhancements for representative embedded Linux devices
o Mobile platform with integrity management and verification for different

“personalities”.
o Trust Dust: Secure Cyber Physical/IoT platform with embedded hardware root of

Trust ─ demonstrated at the 2013 PI Meeting
• Access Control Monitor ACM a server side architecture

o We build two simulation environments for enhanced general-purpose processor
architectures, targeted for secure server platforms. Please note that a summary of
our proposed hardware-enabled security architecture for server platforms and its
evaluation is provided in the draft paper included in 6.

 A PowerPC Book III compliant processor in the Bluespec language,
emulated on a field programmable gate array (FPGA) platform

 An IBM Power Server central processing unit (CPU) software simulation
platform, based on a commercial IBM Power Systems processor

o ACM Firmware (previously referred to as Ultravisor): we have developed a
prototype firmware component which manages the ACM hardware extensions and
which is in the process of being transferred to our IBM Systems Group partners.

 We tested and validated this prototype by booting the Linux/KVM
hypervisor on the ACM hardware model and then booting secure virtual
machines on top of Linux/KVM.

 We demonstrated that the ACM firmware function is transparent to any
Virtual Machine that is not exploiting the ACM/SB++ functionality.

 We started our prototype from a “barebones ACM firmware" and have been
improving it and adding functionality as the project evolved.

o Tools for building and deploying secure virtual machines (SVMs)

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
1

 Created Linux command line utilities for building SVMs from existing VMs
in Power Linux

 Designed and developed a secure bootstrap loader for launching SVMs in
PowerKVM

 Made appropriate modifications to the Open Firmware boot process and
Petitboot (git://ozlabs.org/ jk/petitboot) to create the initial bootstrap loader
for booting SVMs

1.2. SUMMARY OF TECHNOLOGY TRANSITION ACTIVITIES

 Commercialization: The processor hardware and firmware security architecture developed
is pursued for commercialization with the IBM Systems Group and specifically IBM
servers. In particular, a derivative of the ACM hardware extensions and associated ACM
firmware are planned for release in a next generation Power processor. The planned feature
was referred to as “trusted execution enforced by hardware” in a recent presentation by
IBM, titled “POWER9: Processor for the Cognitive Era”, at the Hot Chips Conference [7].
The relevant slides from this presentation are extracted and included in Appendix A. The
embedded/mobile and cyber-physical security assets (including “Trust Dust”) are pursued
within IBM, in particular the recently formed IoT division, and with selected partners.

 Standards: “Trust Dust”, the early prototype of the value of embedded TPM for cyber-
physical systems influenced the creation of the Trusted Computing Group (TCG) IoT
Subgroup (referred to as a root of trust for measurement (RTM)).

 Open Source Software Contributions: As mentioned in 3.2.1 our approach leverages and
builds on the Trusted Computing model. In particular, our work on the secure mobile
prototype motivated additional requirements for the virtual Trusted Platform Module
(vTPM) and led to a new vTPM implementation (tpm server cuse) that was open sourced,
along with the requisite extensions to quick emulator (QEMU) and libvirt.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
2

2. INTRODUCTION
This report is organized as follows. In Section 3 we describe our approach to this project, including
the key assumptions, methods and procedures we employed in the course of our research. We
break these down across the different platforms where we pursued hardware-enabled security;
mobile, FPGA-emulator and server class processor. In Section 4 we outline the key results, again
along the different platforms, and discuss their benefits, comparison with competitive offerings
and status of commercialization. Next, we present the conclusions of our project in Section 5 and
include references in Section 6. Additionally, the report includes an appendix which lists
academic publications generated by this project. Finally, at the end there is a list of all
symbols, abbreviations and acronyms used in this report.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
3

3. METHODS ASSUMPTIONS AND PROCEDURES
As described earlier we developed an end-to-end architecture, consequently this project worked
on the one end on client devices, such as IoT and mobile platforms, and on the other end on higher
performance servers. First, we will describe how we approached the IoT sensor, actuator and
mobile device platforms, followed by a description of our work our methodology and assumption
on the server end.

3.1. MOBILE

In this section, we describe our approach to developing a secure mobile platform. Our objective is
to develop an architecture that supports separation between multiple personalities on the same
platform. As an example, a personal mobile phone or tablet is used within an enterprise to access
corporate data and applications, in additional to personal applications. The different personalities
separate and safeguard enterprise from personal data and applications in a bi-directional manner.

While some prior work has focused on how to provide “sandboxing" and isolation between
different applications and/or containers running on the same mobile platform, less emphasis has
been placed on verifying the integrity of these applications and/or containers. In this work, the
initial focus is on mobile containers of Virtual Machine granularity, trying to leverage the
capabilities available through virtualization technologies like those present in servers and
desktops. This was possible for this project as new mobile processors with hardware virtualization
support became available. The technologies that were developed verified the integrity and
trustworthiness of different virtual machines, which correspond to different personalities. This
project also leveraged secure and trusted boot capabilities that were developed for embedded Linux
devices.

3.1.1. GOALS The mobile prototype is a key component of our end-to-end security architecture,
offering a practical demonstration realized in an actual mobile device. It demonstrates the
combination of isolation, integrity measurement (trusted boot), integrity appraisal (secure boot),
and remote attestation, and it was implemented on hardware representative of the mobile space (as
described below), including phones, tablets, and books (ebooks, netbooks and Chromebooks). The
specific goals were:

 Mobile Compatible Hardware
 Multiple VMs (Personalities) to isolate domains
 Measured/Appraised/Attested Native and VMs
 Trusted and Secure boot with hardware root of trust
 Field Deployable

3.1.2. HARDWARE For the prototype we selected the Samsung ARM Chromebook. This is a
representative platform for the mobile environment, since it has a hardware architecture, which is
compatible across the phone/tablet/book spectrum, while supporting the project requirements for
isolation and integrity management. In particular, it has:

 The same base hardware as the Galaxy S4 phone
 Acorn RISC machine (ARM) A15 cores (with hardware virtualization support)
 1GB random access memory (RAM), 16GB Flash
 Trusted Boot with Hardware TPM
 Secure Boot with SPI Hardware Protected Mode (HPM)
 Perfect prototype for Phone/Tablet/Book use cases

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
4

The ARM A15 cores are the first mobile cores capable of supporting virtualization, and kernel
virtual machine (KVM) in particular is supported as of Linux Kernel 3.11. As this is the same SoC
(Samsung Exynos 5250), with the same flash and RAM sizes as the international version of the
Galaxy S4 phone, this hardware is representative of a significant portion of the mobile market 1.

The Chromebook also contains a TPM chip, which provides the needed hardware root of trust for
measurement and attestation. In addition, the Chromebook has a hardware root of trust for secure
boot, based on hardware write-protection of the bootstrap SPI ash, and the u-boot boot code
implements secure boot (Samsung calls it “verified boot”) based on this hardware write-protection.
In fact, this verified boot makes it difficult to install our own new kernel that supports KVM, as
we do not have Google's private key for signing the new kernel. The solution for this problem is
described in section 3.1.5.

3.1.3. SOFTWARE ARCHITECTURE Starting from the Chromebook hardware platform,
this project removed the base Chromium OS software that comes pre-installed, and installed our
own version of Linux (based on Ubuntu), which supports running multiple isolated personalities
(KVM Virtual Machines) of Android, while including our overall integrity architecture with
integrity measurement, appraisal, and attestation, both for the native Linux, and for the Android
guests. The overall architecture developed in this project is shown in Figure 1.

3.1.4. INTEGRITY COMPONENT DESCRIPTIONS Figure 1 shows the overall
software architecture, with the base Linux kernel and window management, and Android guests
running on KVM. In addition, it shows the integrity components added. These components have
been developed separately by IBM and other open source community contributors, initially
targeted for desktop and server environments. These integrity components are:

 TPM - this is the hardware TPM, which is used as the root of trust for measurement and
attestation for the native Linux system (native kernel, and stripped down Ubuntu based
user space.) This is a standard part of the Chromebook, although the standard Chromium
OS does not take advantage of it as a measurement root of trust.

 swTPM - this is the software based TPM emulator [1]. This is used to provide emulated
TPM service to the KVM guests. This code is added to the native Linux system, and is
measured/appraised/attested as part of the native system. It provides TPM services to the
guests, with guarantees similar to a physical TPM, as this software is outside of the running
guests, so they cannot tamper with it, just as a native OS cannot tamper with the physical
TPM.

 IMA - (Integrity Measurement Architecture [2]) has several components, which provide
various integrity services. The base IMA maintains a kernel-based measurement list of all
files accessed, including all measurements of the boot chain. This list is anchored in PCR
10 of the TPM, and the TPM can sign PCR 10 with a private key known only to the TPM,
so this signature (called a TPM Quote) cannot be forged by the possibly corrupt OS. This
attestation is created and verified by the OpenAttestation (OAT) [3] client and server
components.

In addition, IMA has an appraisal module, which validates RSA signatures on all files

1 Even though most mobile phones do not contain a TPM, there is an active standardization effort, for example in
the Trusted Computing Group (TCG), focused on defining a “TPM" for phones and smaller devices.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
5

accessed. If a file's signature is invalid, access to that file is denied, even to root, thus
protecting the integrity of the running system. If a file has a valid signature, IMA appraisal
adds the measurement and signature information to the measurement list. The signature
data makes analysis of the measurement list much simpler and more scalable, as it provides
file provenance for all measurements (the signature includes the key fingerprint, which
identifies the signer of the file.) With the signature extensions, attestation verification
reduces to verifying the small number of signing keys used, rather than maintaining a large
list of all “good” file hashes.

IMA and IMA-Appraisal are upstreamed in the current Linux Kernel.

 EVM - The extended verification module [2] module signs or HMAC's file metadata (the
inode and all of its security extended attributes, including the selinux label and IMA
signature) to prevent off-line attacks on the file's data or metadata.

 TPMDD - this is the Linux kernel's TPM device driver for the native (physical) TPM. This
is already a standard kernel component.

 OAT - OpenAttestation [3] includes a monitoring agent on the mobile device and on its
guest Android systems. The client agent provides the measurement list and the
corresponding TPM Quote, for remote attestation. The OAT server/verifier collects the
integrity reports, verifies them, and displays the results for all monitored systems on the
OAT portal.

The OAT client and server are extended to verify the IMA measurement list, and to provide
details and summary to the OAT server display.

Figure 1 Mobile Architecture

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
6

The remaining three components are patches to QEMU to support emulation of a TPM to KVM
guests [4]:

 eTPM - This is a the swTPM emulation, modified to fit into QEMU as a library, so that
QEMU can provide an emulated TPM service to its guests.

 eBIOS - This is an extension to the normal SEA BIOS used by QEMU as the virtual
machine's BIOS, to perform the necessary standard boot-time measurements for the guest.

 eTIS - This is the emulation of the hardware TPM interface added to QEMU to support the
guest. (TIS is the Trusted Interface Specification, which gives the details of the TPM chip
hardware interface on a nominal low pin count (LPC) bus.

An earlier implementation of this architecture on a server platform, applicable to trusted cloud
environments was presented and demonstrated in [6]. The work on these components in the open
source community has continued since then.

3.1.5. APPROACH TO IMPLEMENTATION The basic ARM/KVM installation on the
Chromebook, as enabled in kernel 3.11, is described in [5]. Though insightful, this paper has
serious limitations. It describes how to install KVM only on an external SD card and turns off the
Chromebook's verified boot. It does not automate startup of guests or hide the native Ubuntu OS
at all. The instructions are incomplete or incorrect in several places. In addition to installing our
own Linux kernel natively (not only on an external SD card), we also have to add our desired
integrity components: IMA for the native and guest kernels, IMA-Appraisal for the native and
guest images, OAT clients for the native and guest systems, signing of all files, vTIS, vBIOS, and
vTPM support in the native QEMU.

Installation The Samsung Arm Chromebook has restricted boot (it is called verified boot or VB.)
The architecture of verified boot is illustrated in Figure 2.

In this architecture, the Google root key is locked in the SPI flash with HPM that prevents any
modification unless the device is disassembled, and a washer removed. Even then, there are no
instructions or scripts that support changing the root key.

The Chromebook's U-boot is locked in a 4MB serial programming interface (SPI) flash, so all of
the tools used in our prior embedded Linux security project are available to help read and write
the u-boot, once the chip is physically unlocked (and they can help recover the Chromebook, even
if it is accidentally bricked).

In order to achieve our objectives, the u-boot flash had to be unlocked so that the root key could
be replaced with our key. This enabled our project to sign the new KVM capable kernel, while
retaining secure and trusted boot supported by the hardware. Three scripts were developed to
automate this key replacement and kernel signing: make new keys, sign firmware and sign kernel.

Taking Control Instructions This is the process that was used to take control of the Chromebook:
 Disassemble Chromebook and remove !WP washer
 Enter Developer mode (esc-refresh-power)
 Copy scripts to somewhere executable (/usr/local/takeown)
 Press (ctl-alt->), login as chronos, sudo -i
 ./makekey (makes all new key pairs)

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
7

 ./takeown firmware.sh (signs RW u-boots and keys)
 ./takeown kernel.sh (signs kernels and keys)
 dev debug vboot (verifies all keys/signatures)
 Modify RO u-boot to set power cycle protection
 Save keys to usb, reboot, and follow prompts for normal mode

3.2. SERVER

This project worked on two variants of the server architecture that are related to one another. The
architecture was first developed as a formal model, which was proven. That model fulfilled the
basic principles listed in section 3.2.1. We worked on realizing this architecture with two different
but complementary approaches. The first was to modify an existing Bluespec model for a server
class PowerPC processor. The second was to modify an existing mambo model for an IBM Power
8 processor. These two approaches are reported on separately below.

3.2.1. BASIC PRINCIPLES The following are the basic principles of our approach.
 Protect integrity and confidentiality of both code and data
 Minimize the Trusted Computing Base (TCB) hardware and software that needs to be

trusted. In our case the TCB consists of the processor and a small amount of firmware that
manages hardware extensions

 Minimize changes on existing hardware and systems software to maximize
commercialization opportunity

 Ability to apply transparently to existing software
 Leverage as much as possible the existing TCG architecture for hardware root of trust

o we aim to build on the TCG model; not to replace it

3.2.2. BASIC COMPONENTS To realize our objectives and basic principles, we derived our
approach from the following basic components.

 SecureBlue++: technology to create:
o Cryptographically protected enclaves corresponding to a process

Figure 2 Samsung verified boot

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
8

o Build and distribute protected software, which may be optionally encrypted using
a system key to protect distribution with secrets

 Leverage complementary trusted computing capabilities to verify capabilities of target
systems and manage system keys

 Initial focus on Linux/KVM hypervisor and Linux OS
 A Bluespec model of a server class PowerPC processor
 A mambo model of an existing IBM server

3.2.3. BUILDING THE ACM BLUESPEC FPGA MODEL OF A POWER PC
SERVER PROCESSOR This approach was done by modifying an existing Bluespec PowerPC
server class processor model. A demonstration was run on a Verilog simulator and was shown at
the DHS S&T PI meeting in December 2014. The architecture of the ACM Bluespec model is
shown in Figure 3.

This figure depicts the delineation between hardware and software. The hardware model consists
of a processor, connected to main memory over a memory bus and external devices over an I/O
bus. The ACM hardware component is shown as connected to the processor. The software
components consist of the “ACM Software”, an operating system and two secure processes. Each
of the software components is labeled with a different color, which is the same as the color of the
memory that they are accessing.

Figure 4 shows the development flow that was employed in the construction of the ACM model
and the demonstration components. The processor architecture changes are coded in the Bluespec
language and translated into Verilog. The partition and synthesis tools, with input from the
infrastructure logic, generate FPGA images that are loaded onto our FPGA hardware platform,
shown in the icon. The software components that are part of the demonstration scenario (ACM
Software, OS and secure processes) are loaded onto the platform and a set of simulated events are
triggered to test how the ACM protects against unauthorized accesses. A trace is generated and by
inspecting it, we can confirm that the correct ACM operation took place. The detailed steps are
shown in the following sequence of figures, a subset of which were shown at the public
demonstration event organized by DHS S&T CSD R&D Showcase in December 2014.

Figure 5 provides a review of the key ACM concept and objectives.

Figure 6 shows how the ACM is integrated with the PowerPC (PPC) processor model through the
"glue logic" and the steps taken to prepare the hardware for the demonstration.

Figure 7 presents a synopsis of how the program is loaded onto memory.

Figure 8 shows our FPGA based emulation platform. It comprises of 28 daughter cards populated
with Xilinx Virtex-5 and Virtex-6 devices. Each daughter card has on board 32 MB of static RAM

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
9

(SRAM) or 2GB of dynamic RAM (DRAM). These 28 daughter cards are mounted on a
motherboard. The motherboard has a board controller FPGA and four more FPGAs which are
primarily used for routing and logic between the 28 cards. All daughter cards as well as the
motherboard are connected to a host machine via 1Gb Ethernet cables running UDP. The host
machine runs a Server on top of Linux. This Server provides the tool control language (TCL) user
interface to the FPGA hardware. It is used to configure the FPGAs, load files directly into DRAM
or SRAM and issue commands to the board controller for single stepping or waveform extraction.

To produce configuration files for the FPGA devices we followed the following procedure:
1. Bluespec models of PPC + ACM were compiled to generate Verilog models.
2. VHDL models of clock controller, double data rate (DDR) DRAM controller were then

added to the above Verilog models.
3. The combined model was then synthesized using Xilinx tool chain to generate bit files for

configuration.
4. To load programs into the PPC memory, a haskell based custom compiler was built to

generate the object code. This object code was then directly loaded into the DRAM.
We observed a six percent increase in FPGA LUT utilization due to the addition of ACM to the
PPC core.

Software setup process isolation demonstration
The software is primarily divided into three code segments:

1. Operating system (OS) code. The OS segment is further divided into:
a) Code to invoke ACM functions. We choose the location of this code at 0x0 address.
b) Code to handle ACM exceptions. We chose the location of this code at 0xf00 address.
c) Code to handle System calls. We chose the location of this code at 0xb00 address.
d) A simple scheduler was coded to schedule various tasks.

Figure 3 Architectural block diagram of the ACM Bluespec FPGA model

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
10

2. Code performing some of the ACM functions (ACM firmware).
3. Secure domain code.

3.2.4. MODIFYING AN EXISTING POWER PROCESSOR FOR ACM Our second
approach to ACM involves modifying a model of an existing IBM server. These modifications
introduce a new higher privileged mode into the architecture called ultravisor mode. In order to do
this we had to add new registers, interrupts, and instructions. A more detailed but still high level
introduction to these modifications can be found in the draft ASPLOS paper in Appendix A. This
paper describes these new features in the context of the existing Power ISATM Version 2.07 B
architecture (P8). ACM also adds some new control bits in other parts of the architecture.

The Access Control Monitor (ACM) facility provides secure isolation of virtual machines and
applications from one another and from system software. ACM functionality is implemented using
a combination of hardware facilities and firmware that runs at a privilege level above the
hypervisor. ACM targets a threat model in which the hypervisor or operating system can be
compromised such that its inherent isolation capabilities can no longer be counted on.

The ACM protection mechanism is based on an assignment of virtual machines (VMs) and their
data to security domains. The hypervisor is in one security domain, along with all the VMs that do
not take advantage of the ACM security capabilities called normal virtual machines (or NVMs).
Each of the secure virtual machines (SVMs) is assigned to its own secure domain so that its data
(and state) can be protected from the others. Secure entity identifiers (SEIDs) are used to keep
track of the security domain to which a VM or page of memory belongs. Hardware enforces the
isolation boundaries associated with security domains based on the SEIDs.

Figure 4 Design flow of ACM Bluespec FPGA model

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
11

ACM firmware runs in Ultravisor mode, which is a privilege level above that of the hypervisor.
This firmware, along with the ACM hardware, is responsible for maintaining SEIDs associated

Figure 5 ACM concept: confidentiality and integrity by isolation

Figure 6 ACM demonstration hardware preparation

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
12

with processes and memory and enforcing the corresponding access restrictions. In addition, this
firmware provides oversight of hypervisor services, such as page table management, that must be
coordinated with SEID management. Finally, hardware mechanisms are in place to invoke ACM
firmware when a thread transitions between security domains, so that the state of the process in
one domain is not available to the process in the other domain.

In order to test the architecture modifications, it was necessary to build tooling to construct secure
virtual machines as well as ACM firmware to support the modifications.

ACM firmware Key Objectives, Requirements and Principles There are multiple objectives
that motivate the development of the ACM firmware software architecture.

 We want to further study how the different software components that comprise the ACM
firmware will interact with all the components of an ACM enabled system. This includes
low-level firmware, hypervisor, operating system, various libraries (including
cryptographic) and applications. This is especially important to support ACM
commercialization in IBM server platforms and to help IBM product and service groups
build offerings around the prototype research technologies.

 A detailed software architecture is essential for performing a security evaluation of the
system, which could be desirable.

Figure 7 ACM demonstration: program loaded into memory

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
13

 In addition to a security evaluation, detailed documentation of our software would be
important for acceptance by the open source community, if and when parts of our overall
architecture are open sourced. We note that IBM and IBM Research has been a leading
contributor to open source security solutions, for example in the area of Linux security
(Linux Integrity) and Trusted Computing.

The ACM firmware provides ultravisor calls that manage SVMs, provides “shim" code for
intercepted interrupts, handles protection violations, and provides oversight of hypervisor
functions. Our objective is to make the ACM firmware as transparent as possible to other software
running on a system and to have minimal performance overhead.

Figure 8 FPGA based emulation platform

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
14

The following assumptions/requirements guided the initial development of the ACM firmware
prototype. They were motivated by a desire to integrate with the IBM OpenPOWER and Power
architectures.

 In steady state, (after it has started) the ACM firmware only responds to interrupts and it
has no timer. The ACM firmware functions are time limited and no function should take
longer than the hypervisor interrupt time. Similarly, the ACM firmware has no idle loop.

 The ACM firmware must be thread safe: it operates on the thread of the process that was
active when it got control.

 When ultravisor mode is active, even when there is no ESM (Enter Secure Mode)
instruction or ultravisor call, it must handle SEID faults and perform allowable operations
on restricted registers. The ACM firmware provides oversight of hypervisor services, such
as page table management, that must be coordinated with SEID management.

 The SEID table is an ultravisor mode resource, and therefore must be placed in storage to
which only the ACM firmware has write access. Furthermore, the contents of the SEID
Table must be such that non-ultravisor mode software cannot modify storage that contains
ACM firmware programs or data.

 The ACM firmware is responsible for measurement and attestation of the Hypervisor (or
the next program to execute) in order to verify its integrity. This function may also be
performed by Host boot.

Tooling for Building SVMs Tooling needs to enable and support the following objectives:
 Provide protection for virtual machines running on Linux/KVM on Power (Open-POWER

platform). This implies that virtual machines are protected from a potentially compromised
Linux/LVM hypervisor/host and at the same time the Linux/KVM host is protected from
the VMs.

 As envisioned by the SecureBlue++ model, the architecture should protect the virtual
machine no matter where it is. That means unauthorized software cannot read or
undetectably write the disk image or read/tamper with the VM while it is executing.

 Minimize changes to QEMU, Linux and KVM.
 Create secure virtual machines that run as guests, with one or more secure disks. The secure

virtual machine (SVM) has all the capabilities of a regular virtual machine. First targets are
Linux virtual machines.

Figure 9 shows the Linux/KVM environment on POWER Systems and the steps involved in
booting a Linux Virtual Machine. Furthermore, Figure 10 shows the interaction between the
QEMU process and guest VMs.

Given this environment of Linux/KVM/QEMU and guest VMs on POWER Systems, we proposed
the conceptual view of SVMs (Secure VMs) in Figure 11.

Our proposed SVM is a modified VM image that consists of the following:
 Customized bootloader containing:

o Boot wrapping code instrumented with ultracalls, e.g. ESM, and embedded Linux
kernel with Petitboot application

o Secure Object - encrypted with the ACM public key and decrypted and interpreted
by the ACM firmware

 Boot partition integrity protected w. digital signatures

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
15

We studied the Open Firmware boot process and created a bootloader for booting VMs in the
PowerKVM environment. The bootloader is the first step toward creating a SVM. We also
identified steps for deriving a SVM from an existing VM image at rest; experimented with
Buildroot (git://git.buildroot.net/buildroot) and Petitboot (git://ozlabs.org/ jk/petitboot) open

Figure 9 Overview of the Linux/KVM environment on Powre systems

Figure 10 QEMU Process and guest system relationship

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
16

source tools for creating a bootstrap loader for VM images; and reviewed documentation and
source code on the Open Firmware boot process.

Using the Buildroot tool, a tool to automate the creation of Linux images for embedded systems,
we created our initial bootloader for booting an SVM. This bootloader consisted of custom Linux
kernel with an embedded initramfs containing the Petitboot application, a user level application
bootloader based on kexec. We employed Petitboot to boot the VMs from their image files since
it is the bootloader used to natively boot Linux on Power Systems. We demonstrated that our
custom Linux can boot VM images from the Linux command line using the qemu-system-ppc64
command. We also tested booting the VM image by writing a zImage version of the bootloader
into the VMs PreP boot partition. A zImage is a compressed kernel image wrapped with
bootstrapping code.

We created a bash script called writeprep.sh. This script writes an ELF file into the VM images
PReP partition by associating a loop back device with the image and using the dd command to
write the ELF file into the image. The script requires the following input parameters: VM image,
bootloader (ELF file), and VM name. The writeprep.sh script uses the zImage version of our
bootloader as an input parameter.

We reviewed the IEEE Standard for Boot Firmware (1275-1994) and the Standard for Embedded
Power Architecture Platform Requirements (ePAPR) Version 1.1 documentation for information
on device tree format and the client program interface for accessing Open Firmware services.
Additionally, we examined the source code of the Slimline Open Firmware (SLOF,
http://git.qemu.org/SLOF.git) which is an open source implementation of the IEEE 1275-1994
standard.

Figure 11 Conceptual view of SVM

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
17

4. RESULTS AND DISCUSSION

4.1. MOBILE PLATFORM RESULTS

This project built the components required to realize the architecture illustrated in Figure 1. This
involved working with the previously existing technologies identified in section 3.1. The primary
work involved extensions to OAT, adaptation of the IMA policy and integration with QEMU in a
mobile platform. During the course of this project our objectives were changed based on
technology developments described in section 4.1.4 below.

4.1.1. IMA-APPRAISAL-IMASIG TEMPLATE PATCHES AND POLICIES The
Linux integrity work provided two distinct, but separate integrity models: one “trusted” computing
model, rooted in a hardware TPM, and the second “secure” computing model, rooted in secure
boot. The trusted model records hashes of files in a measurement list, which is anchored in platform
configuration register (PCR) 10 of a hardware TPM (or virtualized TPM for guest virtual
machines).

Prior to our project work was submitted and accepted into the Linux kernel 3.13, that allows
integration of the two models, by creating a new measurement list template. This template adds
the “secure" computing signatures to the measurement list, so that they too can be securely attested
in the “trusted” computing list.

This project gains the benefit of hardware based attestation and the benefit of signature based
verification, which provides authenticated provenance for all signed files.

4.1.2. OAT ANALYSIS AND INTEGRATION This project developed an extension to
OpenAttestation (OAT) to support the verification based on the new integrated IMA attestation
model (see section 4.1.4).

The existing OAT base validates only the boot aggregate PCR values (PCR 0-7). It has a client
program that runs on the host or VM to be monitored, which signs these PCR values with a TPM
Quote, and forwards the signed values to the OAT server, which stores the reports in a report
database, and can verify and display the reports on an integrity web portal. The database stores a
single “good” value for each PCR, based on the value at client registration, and creates an alert if
a new submitted report has PCR values that are different, or if the TPM signature does not validate.

This project extended the OAT data to include all of the IMA measurements and signatures. A
new verification program was written, which validated all signatures against the corresponding
public keys (collected from the client at registration). Errors were noted if:

o The overall list did not validate to the TPM Quote
o A signature did not verify against the indicated key
o A signature verified, but against an untrusted key
o A file was not signed

These OAT extensions have been demonstrated and tested in a prototype environment.

4.1.3. QEMU INTEGRATION WITH CUSE BASED SWTPM For virtual machines on
QEMU/KVM to take advantage of the Linux integrity model, QEMU has to provide at least a

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
18

software emulation of a per-VM TPM. Our original plan was to integrate our software emulation
of a TPM (swTPM - http://ibmswtpm.sourceforge.net) directly with QEMU as a shared library
(libtpms).

However, the QEMU maintainer has not accepted our submitted patches to do this, but did accept
a simple patch that provides a “passthrough” driver linking a single VM to the native hardware
(via /dev/tpm0).

For now, we have developed a work around which requires no changes to the guest or native
kernels, QEMU, or libtpms. The basic approach is to use the existing “cuse” (character driver in
user space) kernel module in the native kernel, to connect a user space application (“tpm server
cuse”) to virtual devices which appear as /dev/vtpm*. The passthrough driver does accept a
pathname to the host TPM, so we can redirect it to /dev/vtpm*, so long as the cuse driver duplicates
the functionality of the /dev/tpm* device driver.

For full support of all TPM functionality, we add a few ioctls to the cuse driver, so that in the
future the QEMU passthrough driver will be able to support hardware level TPM features, such as
TPM Init, for more complete emulation.

A backend script for virt-manager/libvirt was developed, to startup the cuse drivers for each VM
instance, and to pass the needed passthrough driver command line parameters to QEMU, without
having to modify libvirt for now.

4.1.4. CHANGES TO THE ORIGINAL PLANOAT This work was done with members
of the OpenAttestation community, who completed version 1.7 of OAT (released 3/25/2014)
which includes a framework for OAT verification and reporting of IMA measurements. This
framework provides for the necessary external verification programs,

Originally, we had planned on integrating this support into the latest OAT version 2.1, but the 2.1
design and implementation is so different, that any port from 1.7 to 2.1 will require a significant
effort. Consequently, our work remained on 1.7 for the mobile prototype.

Containers During the course of this project, containers including Docker and Linux containers
(LXC) have become increasingly popular, due to security improvements, most notably the
completion and upstreaming of user namespaces in the Linux Kernel. A separate project at IBM,
which members of this team led, did a detailed security analysis of containers (particularly Docker)
as candidates to replace virtualization as a secure isolation technology. Modern containers,
particularly LXC are a reasonably secure alternative to virtualization. Because containers have
such significantly lower space and performance overhead compared to virtualization, we view
them as a prime alternative for mobile isolation.

This project completed a prototype for IMA measurement and appraisal for LXC containers, with
extensions to OAT to verify the attestations by container. This prototype successfully
demonstrated the ability of the OAT system to verify attestations at all levels, including native,
VM, container, and containers in VMs. The work included patches to IMA to include container
mount point information in every measurement list entry, and modifications to the OAT appraiser

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
19

to verify each container independently. The IMA patches have been posted for review, and we
anticipate they will be accepted.

IMA A more complete IMA policy was developed that guarantees integrity of the entire TCB with
digital signatures, while avoiding the problem of false alarms from changing files. This avoids
having to maintain a database of measurements of files that are read (but not executed) by root
processes.

This new design involves locking of "mutable" TCB files. The TCB was mapped by logging of
IMA-appraisal data. As files were opened, mapped, or executed, we logged details on who made
the request, the owner of the file, and which process was making the request. With this data we
mapped the files that were (and were not) in the TCB. Most of the TCB files (roughly 3000) were
immutable files, such as ELF executables, shared libraries, and interpreted executables, and were
thus easy to lock down with an IMA policy. There were a smaller set (roughly 1000 files), which
were read by root, which were more problematic. Some of these, such as interpreted code being
read into an interpreter could be made immutable. Others need to remain mutable to root, or the
system cannot boot or perform updates.

A patch to IMA was developed and tested to enable IMA to boot in a mode which allows mutable
files to be updated while maintaining trusted appraisal hashes. Then, after the system is booted and
updated, the systemd scripts can "lock" IMA-appraisal not to allow any further updates to any
appraised files, whether signed or hashed. In addition, this new "locked" mode blocks renaming,
blocks changing the security.ima xattr, blocks unlinking of TCB files, and locks all root owned
directories, so that TCB files cannot be replaced or changed in any way, even by a root privileged
attacker. All of this locking is under IMA policy control.

This design was implemented. The demonstration showed that it successfully boots and updates a
full Fedora 20 system, and then the system can be locked against root attack, without affecting any
user level processes or applications.

4.1.5. STATUS During this portion of the project, we completed and made available the
following:

o Upstreamed the OAT extensions for IMA and IMA-sig.
o Upstreamed modifications to the QEMU passthrough driver.
o Hosting of a tpm server cuse application that became available in distributions such as

Fedora and Redhat Enterprise Linux (RHEL).
o Completed "locking" extensions to IMA.
o Posted tools for signing .deb adn.rpm packages.
o Developed, tested, and posted IMA and OAT extensions for containers.

4.2. SERVER RESULTS

4.2.1. ACM BLUESPEC FPGA MODEL

Isolation This project built a demonstration of our Bluespec approach to ACM. Figure 12, Figure
1, Figure 14 and Figure 15 depict a 4 demonstration of the isolation capabilities of acm . The full

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
20

demonstration of this part of the technology was shown at the public demonstration event
organized by DHS S&T CSD R&D Showcase in December 2014.

FPGA implementation of PPC core with Access Control Monitor In paragraph 4.2.1 we
showed how ACM enforces secure process isolation on a Verilog simulator. In this section we will
show how the Verilog models were mapped to our FPGA emulation platform.

Figure 16 shows the process isolation demo code in which the OS tries to branch into the location
owned by a secure application or domain and is stopped by the ACM by redirecting the execution
to an ACM fault handler. Figure 17 shows the process isolation demo code in which one secure
domain tries to access the contents of another secure domain and is denied by the ACM. Once
again, execution control is transferred to an ACM fault handler. These two figures illustrate the
process isolation capability of an ACM enhanced PPC core.

In the next sections we will describe and demonstrate the advanced features of ACM model on
FPGA hardware, including support for hierarchical ACMs and routing of interrupts from various
hierarchies.

Access Control Monitor enforced process hierarchy on FPGA platform In this paragraph we
show how we extended our ACM model and the Power core to support secure process hierarchies.

Figure 12 ACM demonstration: step 1 - creation of initial ACM

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
21

Secure process hierarchy is a unique and innovative concept, which we have brought to the secure
processor design.

Hierarchical ACM allows a secure process to create child secure processes with parent secure
process having no access to memory pages owned by child and vice versa. To further illustrate the
advantage of this feature, a Secure Virtual Machine (SVM) could be run on processor with
hierarchical ACMs. This SVM could then run an untrusted Operating System (OS) and several
secure as well as un-secure processes on top of this OS. The hierarchical ACM will dynamically
track pages owned by each process entity at various levels of the software stack and enforce strict
hardware based isolation rules between them. In order to accommodate hierarchical ACMs several
changes had to be made in the processor pipeline.

1. Instruction format: Power architecture has fixed length instructions. The new instructions
added to support ACM now required more than six arguments. We decided to pass these
arguments through General Purpose Registers (GPRs). Seeding specific GPRs with the
right argument thus becomes the part of a software specification. Thus, all ACM
instructions were changed to mnemonic only instructions. A thread stall mechanism had to
be developed so that the execution pipeline could be suspended until all GPRs containing
the ACM instruction arguments could be accessed in order to pass them to the ACM
hardware.

2. ACM request-response interface: To support multiple hierarchies ACM could require
multiple number of cycles to respond to requests, hence an asynchronous interface was

adopted between the processor pipeline and ACM hardware. Making the interface

Figure 13 ACM demonstration: step 2 - domain D2 requested

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
22

asynchronous increased the design flexibility but introduced the problem of inability of
ACM to stop execution of instructions which caused an ACM fault. This could be
prevented by suspending the thread for arbitrary amount of period till the ACM responded
but this design choice was dropped as it has a huge penalty on performance. An alternative
approach of ACM responses to be handled as asynchronous interrupts was adopted. ACM
responses were divided into two parts ones causing access fault must be returned in single
cycle and the second ones like creating domains or requesting service of ACM software
processes could take an arbitrary number of cycles. As a result, the multi cycle responses
could be handled by an interrupt mechanism without stalling the thread.

3. Instruction fetch caused ACM faults: The instruction fetch stage of the processor pipeline
has a buffer to hide the latency of fetching from memory. The fetch stage fills this buffer
based upon an algorithm which minimizes any present or future fetch latencies. All fetch
requests are approved by the ACM before completion. Certain ACM instructions or an
ACM response can cause context switch forcing the program counter to change to a branch
address. The prefetch algorithm cannot predict this and thus fetches the instructions
sequentially until its buffer is flushed. These fetches will be faulted by the ACM as the
ACM expects the next instruction to be fetched from the branch address, thus creating an
infinite loop of context switch and fetch faults. In order to solve this problem, we modified
the pipeline to carry fault tags with instructions that had caused fetch faults and allowed
the ACM to change its context only when the instruction carrying the fault flag arrived at
the execute stage.

Figure 14 ACM demonstration: step 3 domain D3 completed

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
23

After making these three architectural changes, we enhanced the ACM model to maintain multiple
hierarchical contexts. All the models were first tested using a Verilog simulator. We then
synthesized these models to run on our FPGA platform.

Figure 16 Process isolation OS jumps to secure code

Figure 18 shows an illustration of the hierarchy demo. All the code is written in assembly language
segments. First, an ACM data structure is created at level 0 by ACM hardware. This ACM data
structure is then populated with two domains - OS (D00) and ACM software (D01). The OS at
D00 requests the ACM hardware to create two new secure domains. ACM hardware allocates the
two new secure domains (D02 and D03) different colors. To create another hierarchy the OS at
level 0 requests the creation of another ACM at level 1 using the color allocated to one of the

Figure 15 ACM demonstration: Step 4 - OS attempts invalid access

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
24

secure domains (D03). The new ACM at level 1 data structure is then created by ACM hardware.
The ACM hardware repeats the operation of populating the new ACM at level 1 data structure
with colors for OS at level1 (D10) and ACM software at level 1 (D11). OS at level 1 then requests
creation of a secure domain D12 at level1. We further demonstrate that when secure domain D12
tries to load the contents from a page that belongs to secure domain D02, the ACM hardware dis
allows this load operation by creating an ACM fault and forcing a branch to ACM fault handler at
level0. This is a policy choice. We made this choice to enable processes at lower level in hierarchy
to kill processes in higher level if a fault was committed against them. The following page explains
the various code segments of the demo and corresponding program ow. The OS code at various
levels as well as the ACM software code uses a simple scheduler to perform multiple tasks. This
scheduler code was described in section 3.2.3 and is used as is.

Hierarchy Demonstration 1

//D00 creates two secure domains D02 and D03;
//D00 creates new acm D10 using color of D03;
//D10 creates secure domain D12; D12 tries to load from D02 creating an access fault

Set 0x0
AcmNewAcm 0x10000 0x10000 0x0 0x0 0x0 --> Step1: OS requests creation of ACM0
AcmNewDomain 0x20000 0x20000 --------------> Step2: OS requests creation of secure domain D02
AcmResume 0x1 --------------------------> Step3: OS notifies ACM of scheduling acmSw process

Set 0xb00 ------------------------> Step8, 14: OS resumes control after acmSw releases
Schedule 0xc00 ------------------------> Step9, 15: OS schedules the next process

Set 0xc10

Figure 17 Process isolation secure domain invalid access

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
25

Branch 0xc50 ------------------------> Branch address for OS scheduled process
Branch 0xd00 ------------------------> Branch address for OS scheduled process

Set 0xc50
AcmNewDomain 0x30000 0x30000 --------------> Step10: OS requests creation of secure domain D03
AcmResume 0x1 --------------------------> Step11: OS notifies ACM of scheduling acmSw process

Set 0xd00
AcmNewAcm 0x40000 0x40000 0x60000 0x60000 0x3 ----> Step16: OS requests creation of ACM1 using color
of D03
AcmResume 0x3 ----------------------> Step17: OS notifies ACM0 of scheduling D03

Set 0xf00 ----------------------> Step28: Level0 fault handler when ACM denies D12 to D02 load
Branch 0xf00

Set 0x10000 ------> Step4: PC changes to acmSw address
Schedule 0x10100 ------> Step5: acmSw scheduler code branches to addr 10200

Set 0x10110
Branch 0x10200 ------> Step6: acmSw at level 0 runs the first time
Branch 0x10250 ------> Step12: acmSw at level 0 runs the second time

Set 0x10200
AcmSwResp 0x7 0x20000 0x20000 0x2 0x2 --> Step7: acmSw finishes creating secure domain D02

Set 0x10250
AcmSwResp 0x7 0x30000 0x30000 0x3 0x3 --> Step13: acmSw finishes creating secure domain D03

Set 0x40000 -----------------------> Step21: PC changes to acmSw address at level 1
Schedule 0x40100 -----------------------> Step22: acmSw scheduler code branches to addr 40100

Set 0x40110
Branch 0x40200 -----------------------> Step23: acmSw at level 1 runs the first time

Set 0x40200
AcmSwResp 0x7 0x50000 0x50000 0x2 0x2 ---> Step24: acmSw finishes creating secure domain D12

Set 0x50000
Load 0x20000 -----------------------> Step27: D12 tries to load D02
Branch 0x50000 -----------------------> If above load passes loop!

Set 0x60000 ---------------------> Step18: OS at level1 gains control
AcmNewDomain 0x50000 0x50000 -------------> Step19: OS level1 requests creation of secure domain
AcmResume 0x1 -------------------------> Step20: OS notifies ACM1 of scheduling acmSw

Hierarchy Demonstration 2
In the second demo we extend the example in demo1 by creating two secure domains at level 1
(D12 & D13). We then try to load contents of D13 from D12. The ACM denies this load but this
time it transfers the control to the fault handler lying at level 1 thus illustrating the hierarchy of
privileges brought in by a hierarchical ACM architecture.

//D00 creates two secure domains D02 and D03;
//D00 creates new acm D10 using color of D03;
//D10 creates secure domain D12; D12 tries to load from D02 creating an access fault

Set 0x0
AcmNewAcm 0x10000 0x10000 0x0 0x0 0x0 ----> Step1: OS requests creation of ACM0
AcmNewDomain 0x20000 0x20000 ----------------> Step2: OS requests creation of secure domain D02
AcmResume 0x1 ----------------------------> Step3: OS notifies ACM of scheduling acmSw process

Set 0xb00 ----------------> Step8, 14: OS resumes control after acmSw releases

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
26

Schedule 0xc00 ----------------> Step9, 15: OS schedules the next process

Set 0xc10
Branch 0xc50 ----------------> Branch address for OS scheduled process
Branch 0xd00 ----------------> Branch address for OS scheduled process

Set 0xc50
AcmNewDomain 0x30000 0x30000 -------> Step10: OS requests creation of secure domain D03
AcmResume 0x1 -------------------> Step11: OS notifies ACM of scheduling acmSw process

Set 0xd00
AcmNewAcm 0x40000 0x40000 0x60000 0x60000 0x3 ----> Step16: OS requests creation of ACM1 using color
of D03
AcmResume 0x3 ------------------------------------> Step17: OS notifies ACM0 of scheduling D03

Set 0xf00 ----------------------> Level0 fault handler when ACM denies D12 to D02 load
Branch 0xf00

Set 0x10000 ---------------------------> Step4: PC changes to acmSw address
Schedule 0x10100 ---------------------------> Step5: acmSw scheduler code branches to addr 10200

Set 0x10110
Branch 0x10200 ---------------------------> Step6: acmSw at level 0 runs the first time
Branch 0x10250 ---------------------------> Step12: acmSw at level 0 runs the second time

Set 0x10200
AcmSwResp 0x7 0x20000 0x20000 0x2 0x2 -------> Step7: acmSw finishes creating secure domain D02

Set 0x10250
AcmSwResp 0x7 0x30000 0x30000 0x3 0x3 -------> Step13: acmSw finishes creating secure domain D03

Set 0x40000 ---------------------------> Step21, 30: PC changes to acmSw address at level 1
Schedule 0x40100 ---------------------------> Step22, 31: acmSw scheduler code runs

Set 0x40110
Branch 0x40200 -----------------------> Step23: acmSw at level 1 runs the first time
Branch 0x40250 -----------------------> Step32: acmSw at level 1 runs the second time

Set 0x40200
AcmSwResp 0x7 0x50000 0x50000 0x2 0x2 ----> Step24: acmSw finishes creating secure domain D12

Set 0x40250
AcmSwResp 0x7 0x70000 0x70000 0x3 0x3 ----> Step33: acmSw finishes creating secure domain D13

Set 0x50000
Load 0x70000 -------------------------> Step37: D12 tries to load D13
Branch 0x50000 -------------------------> If above load passes loop!

Set 0x60000 -------------------------> Step18: OS at level1 gains control
AcmNewDomain 0x50000 0x50000 -----------------> Step19: OS level1 requests creation of secure domain
AcmResume 0x1 -----------------------------> Step20: OS notifies ACM1 of scheduling acmSw

Set 0x60b00
Schedule 0x60c00 -----------------------------> Step 25, 34: OS level1 regains control after acmSw

Set 0x60c10
Branch 0x60c50 -----------------------------> Step 26: OS level1 schedules first process
Branch 0x60d00 -----------------------------> Step 35: OS level1 schedules second process

Set 0x60c50 -----------------------------> Step 27: OS level1 scheduled process runs
AcmNewDomain 0x70000 0x70000 ---------------------> Step 28: OS level1 process requests creation of domain D13
AcmResume 0x1 ---------------------------------> Step 29: OS level1 notifies ACM1 of scheduling acmSw

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
27

Set 0x60d00
AcmResume 0x2 ---------------------------------> Step 36: OS level1 notifies ACM1 of scheduling domain D12

Set 0x60f00 -----------------------------> Step 38: Level1 fault handler when ACM denies D12 to D13 load
Branch 0x60f00

Both code pieces shown in Demo 1 and Demo 2 are written in plain text format. A parser coded
in Haskell takes the text file and generates assembly code. This assembly code is then compiled to
generate a Hex file. The Hex file is then used to seed the memory model for Verilog simulations.
The same Hex file is also used to create a binary file. The binary file is loaded using a backdoor
DDR interface into the memory of the processor implemented on the FPGA platform. While the
Verilog simulator gives a detailed trace as each instruction is executed, the FPGA system has a
separate debug interface which lets the user read the contents of any register or memory location
after execution of one or more instructions. We thus verified the concept of hierarchical ACM
using the two simulations as well as the hardware platform. In the next section we will describe
and demonstrate another unique feature of our secure processor architecture | sharing. This feature
allows sharing of memory pages between two or more secure processes. This property will be
demonstrated in both simulation and in hardware on our FPGA platform.

Demonstration of Access Control Monitor enforced sharing of memory pages on FPGA
platform In previous paragraphs we described and demonstrated ACM enforced secure process
hierarchy on the FPGA platform. We now describe how our ACM model and the Power core were

Figure 18 Process hierarchy illustration

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
28

extended to support secure sharing of memory pages. Like secure process hierarchy, secure sharing
of memory pages is a unique and innovative concept, which we have introduced to the secure
processor design. Secure sharing allows a secure process to share its selectively chosen memory
pages with another secure process. For example if a secure process needs to send data to another
secure process for further computation on the data, it can now do so by sharing the memory page
containing this data with another secure process. The ACM hardware will ensure that the secure
processes with the right key will be the only processes that will have access to the shared pages.
The ACM also offers further granularity with read only, write only, execute only or any
combinations of access privileges for sharing of memory pages between processes. In order to
enhance the ACM integrated Power core to allow hardware enforced secure sharing, many
enhancements were made to the decode and execute pipeline.

Two new instructions were added with the following semantics:

1. Instruction : AcmNewShare
Usage : AcmNewShare (GPR0), (GPR1)

| 4 | 0 | 7 |0|

0 5 6 21 30 31

GPR0 : Effective address of the shared page
GPR1 : Key associated with sharing

Function : Create a shared page
It can be issued by the secure domain owning the page

GPR0 contains the effective address of the page
GPR1 contains the identifying key

AcmRequest arguments :
Opcode : AcmNewShare
Program Counter : Program counter address
Argument List [0] : (GPR0) = Effective address of shared page
Argument List [1] : (GPR1) = sharing key

AcmResponse arguments :
Opcode : AcmSucc, AcmFail
Program Counter : Base effective address of next instruction
Argument List[0] : AcmNewShare (reflected request)

2. Instruction : AcmAddShare
Usage : AcmAddShare (GPR0),(GPR1)

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
29

| 4 | 0 | 8 |0|

0 5 6 21 30 31

GPR0 : Effective address of the shared page
GPR1 : Key associated with sharing

Function : Request the permission to access a shared page.
It can only be issued by the secure domain requesting
access to a page shared by another secure domain.

GPR0 contains the effective address of the page
GPR1 contains the identifying key

AcmRequest arguments :
Opcode : AcmAddShare
Program Counter : Current PC address
Argument List[0] : (GPR0) = Effective address of shared page
Argument List[1] : (GPR1) = sharing key

AcmResponse arguments :
Opcode : AcmSucc, AcmFail
Program Counter : Base effective address of next instruction
Argument List[0] : AcmAddShare (reflected request)

The general principle of operation is to first create secure domains. One of the secure domains then
requests from the operating system a new page. On the FPGA platform model it then notifies the
operating system that it would like to share this page with another process and associates a key
with it using the instruction AcmNewShare. This instruction is trapped by the ACM hardware and
an entry is made in its internal table for process versus page ownership. Any other process with
the right key can request access to the page from the OS by using the command AcmAddShare.
The ACM hardware traps this instruction and matches the key. If the match occurs, the ACM
allows the program to proceed, if it fails the contents of the Program counter are modified to point
to the fault location. There is no mechanism explicitly built in hardware for the sharing processes
to exchange the keys. It is assumed that conventional methods of symmetric key encapsulation
with public key cryptography will be used to perform the key exchange. The following two demos
illustrate the basic working principle. The first demo shows how two secure domains can share a
page. The second demo extends beyond the first demo where the OS tries to access the shared page
between two secure domains and the access is denied.

Sharing Demo 1

// Notation: Dij refers to j-th domain at the i-th level
// Thus, D00 = OS at level 0, D01 = AcmSw at level 0, D02, D03,... are other secure domains at level 0

// Thus, D10 = OS at level 1, D11 = AcmSw at level 1, D12, D13,... are other secure domains at level 1 and so on
// Sharing Demo 1

// D00 creates two secure domains D02 and D03; when it runs D02, D02 shares a page with D03

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
30

Set 0x0
AcmNewAcm 0x10000 0x10000 0x0 0x0 0x0 // Step1: First Acm is established
AcmNewDomain 0x20000 0x20000 // Step 2: OS establishes a new secure domain D02
AcmResume 0x1 // Step 3: OS runs the AcmSw to complete creation of D02
Set 0xb00 // OS trap location (in particular, AcmSwResp comes here)
Schedule 0xc00 // Step 8, 15, 19, 26, 31: Scheduler for system handler
Set 0xc10
Branch 0xc50 // Step 9: return after first acmSwResp
Branch 0xd00 // Step 16: return after second acmSwResp
Branch 0xd50 // Step 20: return after newShare
Branch 0xe00 // Step 26: return after acmMap
Branch 0xe50 // Step 32: return after addShare
Set 0xc50
AcmNewDomain 0x30000 0x30000 // Step 10: OS establishes a new secure domain D03
AcmResume 0x1 // Step 11: OS runs the AcmSw to complete creation of D03
Set 0xd00
AcmResume 0x2 // Step 17: OS runs secure domain D02 at 0x20000
Set 0xd50
AcmMap 0x40000 0x40000 0x4 // Step 21: OS notifies ACM of mapping new page
AcmResume 0x1 // Step 22: OS runs acmSw
Set 0xe00
AcmResume 0x3 //Step 27: OS runs secure domain D03 at 0x30000
Set 0xe50
AcmResume 0x3 // Step 33: OS maps allocates page to D03 also,

// runs secure domain D03 at 0x30000
Set 0xf00 // Acm Fault location
Branch 0xf00 // Step 37: self-loop, stays here once acm-fault occurs
Set 0x10000
Schedule 0x10100 // Steps 4, 12, 23: Scheduler for acmSw
Set 0x10110
Branch 0x10200 // Step 5: creation of D02
Branch 0x10250 // Step 13: creation of D03
Branch 0x10300 // Step 24: acm map for page share
Set 0x10200
AcmSwResp 0x10000002 0x20000 0x20000 0x2 0x2 // Step 6: new domain D02 created by acmSw,

// control goes back to OS 0xb00
Set 0x10250
AcmSwResp 0x10000002 0x30000 0x30000 0x3 0x3 // Step 14: new domain D03 created by acmSw,

// control goes back to OS 0xb00
Set 0x10300
AcmSwResp 0x10000006 0x40000 0x40000 0x4 // Step 25: acm map completed by acmSw,

// control goes back to OS 0xb00
Set 0x20000 // Secure Domain D02 code
AcmNewShare 0x40000 0x1729 // Step 18: Secure domain requests new page for sharing,

// control goes back to OS
Set 0x30000 // Secure domain D03 code
Schedule 0x30100 // Step 28, 34: Scheduler for secure domain
Set 0x30110
Branch 0x30200 // Step 29: Secure domain code for requesting shared page
Branch 0x30234 // Step 35: Secure domain code to attempt access to shared page
Set 0x30200
AcmAddShare 0x40000 0x1729 // Step 30: Domain D03 requests shared page access

// control goes back to OS 0xb00
Set 0x30234
Load 0x40000 // Step 36: Tries to read from Secure Domain D02
Branch 0x30240 // Step 37: self-loop if above load is successful

Set 0x30200
AcmAddShare 0x40000 0x1729 // Step 30: Domain D03 requests shared page access

// control goes back to OS 0xb00
Set 0x30234
Load 0x40000 // Step 36: Tries to read from Secure Domain D02
Branch 0x30240 // Step 37: self-loop if above load is successful

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
31

Sharing Demo 2

// Notation: Dij refers to j-th domain at the i-th level
// Thus, D00 = OS at level 0, D01 = AcmSw at level 0, D02, D03,... are other secure domains at level 0
// Thus, D10 = OS at level 1, D11 = AcmSw at level 1, D12, D13,... are other secure domains at level 1 and so on
// Sharing Demo 2
// D00 creates two secure domains D02 and D03; D02, D03 share a page, OS tries to access the page.

Set 0x0
AcmNewAcm 0x10000 0x10000 0x0 0x0 0x0 // Step 1: First Acm is established
AcmNewDomain 0x20000 0x20000 // Step 2: OS establishes a new secure domain D02
AcmResume 0x1 // Step 3: OS runs the AcmSw to complete creation of D02

Set 0xb00 // Step 6, 13, 18, 25, 31: OS trap location
(in particular, AcmSwResp comes here)

Schedule 0xc00 // Insert here OS scheduler code to jump to schedule at 0xc00

Set 0xc10
Branch 0xc50 // Step 7: return after D02 creation
Branch 0xd00 // Step 14: return after D03 creation
Branch 0xd50 // Step 19: return after new page for sharing request
Branch 0xe00 // Step 26: return to OS after map completion
Branch 0xe50 // Step 32: return to OS after add share by D03

Set 0xc50
AcmNewDomain 0x30000 0x30000 // Step 8: OS establishes a new secure domain D03
AcmResume 0x1 // Step 9: OS runs the AcmSw to complete creation of D03

Set 0xd00
AcmResume 0x2 // Step 15: OS runs secure domain D02 at 0x20000

Set 0xd50
AcmMap 0x40000 0x40000 0x4 // Step 20: OS maps new page
AcmResume 0x1 // Step 21: OS runs acmSw at 0x10000

Set 0xe00
AcmResume 0x3 // Step 27: OS runs secure domain D03 at 0x30000

Set 0xe50
Load 0x40000 // Step 33: OS tries to read the shared page between D02 and D03

Set 0xf00 // Acm Fault location
Branch 0xf00 // Step 34: self-loop, stays here once acm-fault occurs

Set 0x10000
Schedule 0x10100 // Step 4, 10, 22, acmSw location

Set 0x10110
Branch 0x10200 // Step 5: acmSw creates D02
Branch 0x10250 // Step 11: acmSw creates D03
Branch 0x10300 // Step 23: acmSw to complete new page share

Set 0x10200
AcmSwResp 0x10000002 0x20000 0x20000 0x2 0x2 // Step 6: D02 created, control returns to OS at 0xb00

Set 0x10250
AcmSwResp 0x10000002 0x30000 0x30000 0x3 0x3 // Step 12: D03 created, control returns to OS at 0xb00

Set 0x10300
AcmSwResp 0x10000006 0x40000 0x40000 0x4 // Step 24: page mapping completed by acmSw, return to OS at
0xb00

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
32

Set 0x20000 // Secure Domain D02 code
AcmNewShare 0x40000 0x1729 // Step 17: request for new page share by D02, return to OS at 0xb00

Set 0x30000 // Secure domain D03 code
Schedule 0x30100 // Step 28: Scheduler for secure domain

Set 0x30110
Branch 0x30200 // Step 29: Secure domain code
Branch 0x30234

Set 0x30200
AcmAddShare 0x40000 0x1729 // Step 30: Request shared page access, control returns to OS at 0xb00

Set 0x30234
Load 0x40000 // Tries to read from Secure Domain D02
Branch 0x30240 // self-loop

Both code pieces shown in Demo 1 and Demo 2 are written in plain text format. A parser coded
in Haskell takes the text file and generates assembly code. This assembly code is then compiled to
generate a Hex file. The Hex file is then used to seed the memory model for Verilog simulations.
The same Hex file is also used to create a binary file. The binary file is loaded using a backdoor
DDR interface into the memory of the processor implemented on the FPGA platform. While the
Verilog simulator gives a detailed trace as each instruction is executed, the FPGA system has a
separate debug interface, which lets the user read the contents of any register or memory location
after execution of one or more instructions. We thus verified the concept of sharing using the
simulation and on the hardware platform.

Booting Linux on Access Control Monitor Integrated Power core on the FPGA platform
Eight new instructions have been added to the Power ISA in our prototype and many new service
addresses to handle context switch and ACM faults. In order to enhance the adaptability of this
new hardware we are moving from coding in assembly language to writing code in any higher
level language with the operating system understanding and utilizing the new secure processor.
Along this direction we have started booting the Linux kernel on the ACM integrated Power core.
After running 200, 000 instructions in the Linux kernel we discovered that the core was hanging.
Further debug led to the discovery of a Bluespec-Xilinx design bug in pre-fetch buffers. These
buffers were implemented using Block-RAM based FIFOs, the threshold signals of FIFO - full
and empty were incorrectly generated thus inserting invalid instructions in the pipeline
occasionally. The library element of the Bluespec was changed to generate FIFOs using distributed
RAMs with correct threshold detectors. This problem is now fixed. A TCL based interface was
also created for the Verilog simulation environment. This interface is identical to the interface
being used on the FPGA platform thus identical traces from both FPGA hardware and Verilog
simulation can now be generated and compared for hardware debug.

4.2.2. MODIFYING THE MODEL OF AN EXISTING POWER PROCESSOR

Developing tools for building SVMs: The initial SVM bootloader consisted of a compressed
kernel image wrapped with some bootstrapping code. The compressed kernel image contains a
Linux kernel (version 3.17) embedded with the Petitboot application; we called this component
Linux-Petitboot. The Petitboot application is a user-space application that loads and executes the
VMs kernel image using kexec. After the bootstrapping code loads and decompresses the kernel

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
33

image, Linux-Petitboot interacts with the Slimline Open Firmware (SLOF) using a callback pointer
to retrieve information about devices available on the system in our case the VM. Due to security
concerns, the SVM must enter secure mode (i.e., invoke the esm ucall) early in the bootstrapping
code before transitioning to Linux-Petitboot. Consequently, this changes the interaction between
Linux-Petitboot and SLOF to one that involves data transfer between memory regions with
different security labels. Our ACM memory protection is designed to deny such data transfer, and
thus this interaction requires special handing, such as wrapping calls to SLOF, to permit read/write
from memory regions with different labels.

We addressed this interaction issue by using the flattened device calling convention when
entering/calling Linux-Petitboot instead of the Open Firmware callback pointer. We designed and
implemented code to build the flattened device tree data structure, set up the pre-boot runtime
environment, and invoke Linux-Petitboot using this data structure. Building the flattened device
required walking the device tree information maintained by SLOF. In the bootstrapping code, we
added code to call SLOF functions to retrieve device information and build the flattened device
tree data structure, which consists of nodes having property name/value pairs describing properties
of the device. At a high level, the flattened device tree contains four sections: header, memory
reserve map, string structure, and device structure. The header includes magic number, and offset
and length information of the other sections. The memory reserve map section declares memory
ranges that Linux should not allocate. An example is the memory region of the RTAS component.
The string section has the list of strings corresponding to property names in the tree. The device
section contains the tree nodes representing the devices on the system.

Setting up the pre-boot runtime environment required performing two tasks. The first task included
instantiating the RTAS object and updating its RTAS property values specifying memory location
and size in the device tree. The second task involved updating the /chosen and /vga nodes in the
device tree with environment information required by Linux. For example, Linux requires the
absolute path to the console to be specified in the /chosen/linux, stdout-path property.

We instrumented the bootloader with calls (ultracalls) to the ACM. After invoking the esm
ultracall, which sets up the secure executing environment, the bootloader invokes the memory
permission ultracall and then transfers control to the Petitboot kernel by executing its entry point.
Changing the memory permission of unprotected memory segments prevents future running code
in the SVM from reusing these memory segments (address space) for disclosing or leaking
sensitivity information. We also automated the creation of SVMs from normal VMs. We designed
and wrote two bash scripts to derive SVMs from VMs defined in the PowerLinux Qemu/KVM
environment. The first script creates the SVM xml configuration file and image file based on an
existing VM configuration in the system. The SVM image file is a clone of the original VM, except
for the PreP partition in the original image file. The SVM image contains a PreP boot, boot and
root partition with the appropriate sizes and attributes, such as PreP boot, boot, and lvm. The PreP
partition is created with a size of 32,768 KB, which is large enough to hold the secure bootstrap
loader which is 17 MB if embedded with a gzip compressed Petitboot Linux kernel image. The
first script uses the virt-clone Linux command line tool to generate unique values in the SVM
configuration file for MAC address and VM uuid. The SVM image filename is created by
concatenating the original VM image filename with the string svm. The second script writes data
into the SVM image disk. It copies the boot and root partitions from the original VM image into
the SVM image file. It then writes the secure bootstrap loader into the SVM PreP boot partition.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
34

The second script uses Linux utility tools losetup and kpartx to loop mount the original VM and
SVM image partitions.

The tooling successfully creates an SVM which the prototype ACM firmware successfully boots.

Modifying the P8 architecture We modified the P8 architecture as described in our draft
ASPLOS paper in Appendix A. This draft paper contains a detailed but high level description of
the architecture so we will not reproduce it here.

Design Requirements for ACM firmware The ACM firmware will operate in the following
environment:

• The ACM firmware only receives control as a result of an interrupt or from HostBoot on
power up.

o In our simulated environment (Mambo) the bare bones ACM firmware receives
control directly

• The interrupts that the ACM firmware receives can be broadly divided into three classes
o Ultravisor mode (or ACM firmware) directed interrupts
o Hypervisor directed interrupts
o Supervisor directed interrupts

• ACM firmware functions are time limited. No function should take longer than the
hypervisor interrupt time.

o There will be no idle loop in the ACM firmware
o Some functions cannot be completed in one time quantum. They will have to be

implemented so that they can be suspended and resumed.
• The ACM firmware must be thread safe.

o The ACM firmware operates on the thread of the process that was active when it
received control. It must respect all time limitations. Consequently, there will be variable time
periods available for its work.

Figure 19 identifies the major functions of the ACM firmware that we have developed for our
prototype. At the bottom of the picture is a box titled Ultravisor support routines this refers to all
of the support functions that are being written to support the main functions of ACM firmware.
The main ACM firmware functions in the prototype are defined as follows:

• Initialization: This code initializes the ACM firmware
• Ucall: Handles ACM firmware calls
• SLOF Support: Support for Simline Open Firmware (SLOF)
• SEID table management: Management of the SEID table

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
35

• H-call Support: for hypervisor calls (wrappers) made by SVMs.
• Cryptographic Support: Cryptographic routines in use by the ACM firmware.
• Ultravisor Control Interrupt Processing: Ultravisor control interrupt processing. This

interrupt occurs when the systems touches a facility being monitored by the ACM
firmware.

• RTAS: Real time abstractions services (RTAS) support.
• Page Table Management: Page table support. The ACM firmware monitors all page

tables in the system
• Ultravisor support routines: Support routines required for ACM firmware.

For a full product version of ACM firmware on an IBM Power server additional support might be
required such as:

• Partition Migration and/or Hibernation: Support to allow migration or hibernation of
SVMs.

• MM I/O Support: Support for memory mapped I/O.
• XIV Support: XIV table support.
• Window Context Management: Window context management support.

ACM firmware The ACM firmware contains the nine functions identified in Figure 20. Many of
the functions of the ACM firmware involve multiple interrupts. During the power on sequence,
the ACM firmware takes control of the system and then passes control to the next executing

Figure 19 Functional overview of ACM firmware

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
36

component usually a hypervisor or an OS (for a guest VM). During the initial tests of ACM
firmware, the hypervisor and the VMs it ran did not exploit any features of the ACM firmware
(i.e., no SVMs were executing). The objective of this test was to demonstrate that the ACM
firmware function are transparent to any system that is not exploiting the ACM/SB++
functionality. As previously stated, the ACM hardware does not include any timer that passes
control to the ACM firmware. Consequently, the ACM firmware only responds to interrupts.
Within these criteria, the full implementation of ACM firmware has to perform all of the functions
listed in previously. Whenever Ultravisor mode is active, even when there is no ESM instruction
or Ultravisor call, ACM firmware must do the following:

• Handle SEID faults because the SEID table is filled in on demand
• Handle Control calls
• Perform allowable operations on restricted registers.
• Watch SDR1 and RMOR, LPIDR and PIDR (Power architecture registers)
• Manage writes to context windows (SEID fault)
• Manage page tables (Ucalls)
• Monitor XIVE tables (SEID fault)

Our hardware architecture supported the development of type-1 ACM firmware. Consequently,
the ACM firmware was developed incrementally. The green boxes in Figure 20 indicate the
components we developed to complete our test. The seven dark green boxes have to be fully

Figure 20 Components required for bare bones ACM firmware

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
37

implemented, the lighter green boxes are only implemented to the extent required by the four dark
green boxes to successfully boot and run an SVM. The components that were fully or partially
implemented are:

• Initialization: This code initializes the ACM firmware.
• U-call: Support for ultravisor calls. A full system will have more than we implemented.
• SLOF support: Support for SLOF.
• SEID table management: Management of the SEID table.
• H-call Wrappers for the H-calls used by the virtual machines we booted. A full system

has to support all 118.
• Cryptographic: Cryptographic routines and TPM functions used by ACM firmware.
• Ultravisor Control Interrupt Processing: Ultravisor control interrupt processing. This

interrupt occurs when the systems touches a facility being monitored by the ACM
firmware.

• RTAS: Support for RTAS.
• Page Table Management: Page table support. The ACM firmware monitors all page

tables in the system
• Ultravisor Support Routines: Common functions that can be shared by multiple ACM

firmware components.

Booting an SVM with Bare Bones ACM firmware The prototype ACM firmware supporting an
SVM contains the components shown inside the green boxes identified in Figure 20. In order to
boot an SVM the ACM firmware must decrypt the secure header to obtain a symmetric key, an
integrity root, the address range that is cryptographically protected (note that the entire address
range that is integrity-protected). The ACM firmware then verifies the integrity of the initial code,
assigns to the SVM an SEID (color) and a runtime key and returns to the SVM in secure mode at
the start address for secure execution. To support this process we had to develop appropriate
"wrappers" to facilitate data transfer to/from protected to unprotected memory space.

We tested our ACM firmware support for SVMs by booting Linux/KVM (as a hypervisor) on our
hardware model, booting a virtual machine on top of Linux/KVM hypervisor. We booted and ran
an SVM on top of the ACM firmware) (including virtual I/O). By booting Linux/KVM and
multiple virtual machine we have demonstrated the feasibility of this approach to security. It is
important to note that the simulator we are using is CPU focused and consequently does not contain
an architecturally accurate simulation of the I/O subsystem. Linux/KVM boots off a disk, but the
disk is provided by the simulator without simulating all of the actual hardware for I/O that exist in
our current (or future) systems.

4.2.3. PERFORMANCE OF BARE BONES ACM FIRMWARE
Based on our initial measurements the overhead for having the current ACM firmware manage
page tables is 25% - 33%. This measurement was made by counting the number of instructions it
takes to boot to the command prompt using the simulator on an unmodified processor and
comparing that to the number of instructions it takes to boot to the command prompt on top of the
bare-bones ACM firmware. This overhead is significant. The largest component of the overhead
appears to be page table management. For every page table update Linux/KVM touches the page
tables three time. First to get the lock, next to update the entry, and finally to release the lock. We
expect that paravirtualization would reduce this overhead by about one-third.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
38

Kernel same-page merging (KSM) is a facility in the Linux/KVM hypervisor that allows multiple
virtual machines to share the same page of the kernel (write only). Our testing showed that this
facility adds excessive cryptographic overhead when booting an SVM. Since KSM did not add
value to our proof of concept, we disabled it in all SVMs we booted. It should not apply to an SVM
because our cryptographic support encrypts each page uniquely so the KVM daemon will never
find a match between two SVMs.

4.3. CUSTOMER NEEDS ADDRESSED

Our high-level objective is to build systems that can protect sensitive software and data from other
software, including systems software and other applications, as well as rogue administrators. This
objective is even more timely given that the frequency and impact of breeches and the consequent
loss of sensitive data is increasing, despite increased investments in cybersecurity. It can be
observed that it very hard to verify the provenance, correctness and malware-free operation of all
software components like hypervisors, operating systems, privileged software, etc. Security
concerns are amplified by the increased popularity of multitenant and cloud computing models,
which introduce multiple owners and system software components. Therefore, our key thesis is
that building systems to protect sensitive software and data requires hardware enabled security To
facilitate achieving this objective, we need to minimize the hardware and software that needs to
be trusted ─ also known as the Trusted Computing Base (TCB).

4.4. COMPARISON WITH COMPETITION

The most relevant related work is Intel Software Guard Extensions (SGX), which was announced
after the start of this project. SGX is motivated by similar requirements for protecting the integrity
and confidentiality of sensitive code and data. It employs a similar approach for creating
“enclaves” protected by processor extensions. We note that Intel SGX publications refer to one of
our IBM Research papers on SecureBlue++.

In terms of comparison, SGX appears to be more focused on protecting sensitive parts of an
application - what we refer to as “fine grain” protection. This approach requires changes to
application source code. Our initial focus is on “coarse grain”, end-to-end protection for entire
Virtual Machines (or containers) ─ protection that is more applicable to cloud workloads and goes
beyond what is currently possible with SGX. By end-to-end protection of VMs we mean that our
approach safeguards SVMs across their life-cycle and, for example, allows for building,
distributing and running SVMs with built-in secrets. Our approach also aims to be largely
transparent to existing software ─ i.e. not requiring changes to application source code.

4.5. TECHNOLOGY TRANSITION AND TRANSFER

During this project we engaged with IBM product partners in the Systems Group, which is now
the successor to the previously named Systems and Technology Group (STG), in order to pursue
the commercialization of a subset or a derivative of the proposed architecture developed under
this project. Our technical discussions with the IBM Systems Group have focused on secure
processor architecture, design and prototyping and span both hardware, targeted for future
generation processors, and modifications to the associated software stacks for firmware

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
39

(including the ACM firmware), hypervisor, guest OS and applications that take advantage of the
hardware/processor enhancements.

As part of our technology transfer activities we developed the functionality of the simulators of
our processor core extensions that are aligned with existing commercial POWER processor
models, along with prototypes of the ACM firmware. We also generated a detailed analysis of
the hardware and software overhead of our architecture on a future generation Power processor
in order to provide a more accurate estimate of all the development requirements for our IBM
commercialization partners.

A derivative of the ACM hardware extensions and associated ACM firmware developed under
this project are planned for release in a next generation Power processor. The planned feature
was referred to as “trusted execution enforced by hardware” in a recent presentation by IBM,
titled “POWER9: Processor for the Cognitive Era”, at the Hot Chips Conference [7]. The relevant
slides from this presentation are extracted and included in Appendix A.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
40

5. CONCLUSION
End-to-end security and trust is a critical part for sensitive workloads that may be deployed across
a combination of cloud, enterprise servers, mobile or IoT platforms. At the start of this project
there was no proof that VMs could be isolated in the way that was proposed. The prototypes
constructed during this project proved that hardware extensions, along with a type-1 ACM
firmware can be developed in a way that is transparent to unmodified VMs while supporting
SVMs. The “hardware enforced trusted execution” announced for POWER9 [7] is a derivative of
the architecture and benefits from lessons learned from this project. If container technology
evolves to exploit virtualization hardware, as is projected by some, containers will also be able to
exploit this architecture and its derivatives. Further research can and will be done in this area; most
likely driven by customer requirements and the evolution of container technologies and offerings.

For low-end and mobile clients we demonstrated that it is possible to build secure devices. This is
an area that TCG is also focused on. We used a TPM chip to illustrate the concept for sensors and
actuators, without employing the function of the TPM. TCG is developing a specification for RTM
that will help IoT developers integrate trusted computing into their designs. We contributed to that
standardization work as part of this project. For mobile platforms we developed and prototyped an
architecture that supports separation between different personalities on the same platform,
safeguarding enterprise from personal data and applications in a bi-directional manner. The
technologies that were developed verified the integrity and trustworthiness of different virtual
machines, which correspond to different personalities

Combining the different parts of our work produces a novel, realistic and feasible architecture for
malware defense and end-to-end trust.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
41

6. REFERENCES

1 swTPM, Ken Goldman and Stefan Berger, IBM http://ibmswtpm.sourceforge.net
2 IMA and EVM, Mimi Zohar, IBM http://linux-ima.sourceforge.net
3 OpenAttestation (OAT), Intel https://github.com/OpenAttestation/OpenAttestation
4 QEMU patches, Stefan Berger http://lists.nongnu.org/archive/html/qemu- devel/2011-

07/msg00525.html
5 “KVM Virtualization on the Arm Chromebook", Alexander Spyridakis, and

NikolayNikolaev, Virtual Open
Systems,http://www.virtualopensystems.com/media/chromebook/chromebook.pdf

6 “A Virtualized Linux Integrity Subsystem for Trusted Cloud Computing", Stefan Berger,
Kenneth Goldman, Dimitrios Pendarakis, David Sa_ord and Mimi Zohar, The 2nd NSA
Trusted Computing Conference and Exposition, September 20-22, 2011, Orlando, FL

7 “POWER9: Processor for the Cognitive Era", Brian Thompto, Hot Chips: A Symposium on
High Performance Chips, August 21-23, 2016, Cupertino, CA. http://www.hotchips.org/
http://www.hotchips.org/wp-content/uploads/hc archives/hc28/HC28.23-Tuesday-
Epub/HC28.23.90- High-Perform-Epub/HC28.23.921-.POWER9-Thompto-IBM-_nal.pdf

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
42

APPENDIX A: PUBLICATIONS
“Embedded Linux Integrity", by David Sa_ord, presented at Linux Security Summit (LSS)2013.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
43

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
44

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
45

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
46

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
47

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
48

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
49

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
50

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
51

Invention, titled ``Architectural Prevention of Return-Oriented Programming'', published on
August 4th, 2015 on ip.com, under the following link:
http://priorart.ip.com/IPCOM/000242687D

Inventors are: Guerney Hunt, Eric Hall, Rick Boivie, Peter Sandon, Dave Safford, Jonathan D
Bradbury, Dimitrios Pendarakis, Mohit Kapur, Ray Valdez.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
52

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
53

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
54

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
55

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
56

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
57

An early draft of a paper, for which publication clearance was previously requested, which was
submitted to ASPLOS 2017, the 22nd ACM International Conference on Architectural Support
for Programming Languages and Operating Systems. This version was prepared for blind
submission. At the request of the conference, the version actually submitted did not contain the
footnote citing the sponsors. We were told that if the paper was accepted, the sponsor citation
could be added before final publication.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
58

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
59

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
60

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
61

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
62

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
63

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
64

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
65

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
66

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
67

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
68

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
69

A set of slides extracted from a larger presentation given by Brian Thompto, an IBM employee, at
the Hot Chips 2016 Conference, August 21-23, in Cupertino CA. This presentation was not
generated by this project but is included as a reference for the technology transfer and
commercialization status of the technologies developed under this project. The relevant slides are
pages 4 and 10, and specifically the reference to “Hardware Enforced Trusted Execution”. The
presentation is reference [7] in our list and can be found at

http://www.hotchips.org/wp-content/uploads/hc_archives/hc28/HC28.23-Tuesday-
Epub/HC28.23.90-High-Perform-Epub/HC28.23.921-.POWER9-Thompto-IBM-final.pdf.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
70

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
71

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
72

LIST OF SYMBOLS ABBREVIATIONS AND ACRONYMS
ACM Access Control Monitor
AFRL Air Force Research Laboratory
ARM acorn RISC machine
BIOS basic input output services
DDR double data rate
DHS Department of Homeland Security
DRAM dynamic RAM
ELF executable and linkable format
ESM enter secure mode
FIFO first in first out
eBIOS extension to SEA BIOS
eTIS emulated hardware TPM interface for QEMU
eTPM swTPM emulation for QEMU
EVM extended verification module
CPU central processing unit
GPR general purpose register
FPGA field programmable gate array
IBM International Business Machines
IMA integrity measurement architecture
IoT Internet of things
KVM kernel virtual machine
KSM kernel same page merging
LPC low pin count
LXC Linux containers
NVM normal virtual machine
OAT open attestation
PCR platform configuration register
PPC Power PC
QEMU quick emulator
RAM random access memory
RHEL Redhat Enterprise Linux
RISC reduced instructions set computing
RTAS real time abstraction services
RTM Root of trust for measurement
SB++ secure blue ++
SEID secure entity identifiers
SGX Software Guard Extensions
SLOF simline open firmware
SPI serial programming interface
SRAM static RAM
STG Systems and Technology Group
SVM secure virtual machine
S&T Science and Technology Directorate
swTPM software based TPM emulator
TCB trusted computing base
TCG Trusted Computing Group

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
73

TCL tool control language
TPM Trusted Platform Module
TPMDD TPM device driver
VM virtual machine
vTPM virtual TPM

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
74

