
PowerPC AS Virtual Environment Architecture

Book II

Version 2.00

Feb. 24, 1999

Manager:
Paul Ledak/Burlington/IBM
Phone: 802-769-6960
Tie: 446-6960

Technical Content:
Ed Silha/Austin/IBM Andy Wottreng/Rochester/IBM Cathy May/Watson/IBM
Phone: 512-838-1848 Phone: 507-253-3597 Phone: 914-945-1054
Tie: 678-1848 Tie: 553-3597 Tie: 862-1054

IBM Confidential - Feb. 24, 1999

Softcopy Distribution:
VM: KISS64 disk Rochester: VM DOC disk BOOK4
DFS: /.../austin.ibm.com/fs/projects/utds/server_arch/Books

/.../rchland.ibm.com/fs/eng/docs/workbooks/cec_architecture/
Web: (Austin users) file:/.../austin.ibm.com/fs/projects/utds/server_arch/index.html

(Rochester users) file:/.../austin.ibm.com/fs/projects/system_arch/public_html/amazon.html
DFS Access Information: file:/.../austin.ibm.com/fs/projects/utds/index.html

Hardcopy distribution for Rochester: video conference center 025-1/A206

NOTES

■ This is a controlled document.
■ Verify version and completeness prior to use.
■ See Preface for additional important information.

 Copyright International Business Machines Corporation, 1994, 1999. All rights reserved.

IBM Confidential - Feb. 24, 1999

ii PowerPC AS Virtual Environment Architecture

IBM Confidential - Feb. 24, 1999

Preface

This document defines the additional instructions and
facilities, beyond those of the PowerPC AS User
Instruction Set Architecture, that are provided by the
PowerPC AS Virtual Environment Architecture. It
covers the storage model and related instructions and
facilities available to the application programmer, and
the Time Base as seen by the application pro-
grammer.

Other related documents define the PowerPC AS User
Instruction Set Architecture, the PowerPC AS Oper-
ating Environment Architecture, and PowerPC AS
Implementation Features. Book I, PowerPC AS User
Instruction Set Architecture defines the base instruc-
tion set and related facilities available to the applica-
tion programmer. Book III, PowerPC AS Operating
Environment Architecture defines the system (privi-
leged) instructions and related facilities. Book IV,
PowerPC AS Implementation Features defines the
implementation-dependent aspects of a particular
implementation.

As used in this document, the term “PowerPC AS
Architecture” refers to the instructions and facilities
described in Books I, II, and III. The description of the
instantiation of the PowerPC AS Architecture in a
given implementation includes also the material in
Book IV for that implementation.

Note: Two kinds of change bar are used. Both mark
changes from Version 1.07.

| This marks a substantive change.

† This marks a non-substantive change.

User Responsibilities

■ Do not make any unauthorized alterations to the
document (user notes are permitted).

■ Destroy the entire document when it is super-
seded, obsolete, or no longer needed.

■ Distribute copies of the document or portions of
the document only to IBM employees with a need
to know.

■ Verify the version prior to use. The version ver-
ification procedure is described later in this
preface.

■ Verify completeness prior to use. The last page
is labeled “Last Page - End of Document”. The
end of the Table of Contents shows the last page
number.

■ Report any deviations from these procedures to
the document owner.

Next Scheduled Review

There is no scheduled review.

Approval Process

The process used by the Processor Architecture
Review Board (PARB) to approve or reject changes
proposed for this architecture is documented at the
following DFS directory:
/.../austin.ibm.com/fs/projects/utds/server_arch/process

Approvals

This version has been approved by the PARB.

Version Verification for those with access to KISS64

■ Link to the KISS64 disk in Yorktown or a shadow of this disk in Austin or Endicott. In Yorktown, linking to
KISS64 can be done by executing the command “GIME KISS64”. In Rochester, the shadow disk is
VMCTOOLS 801.

■ Browse the file “AMAZON VERSION” by typing “b r ” next to the file name.
■ Verify that your version matches this file.

Version Verification for those without access to KISS64

■ Verify that the version date matches the date on the Books on the Web site at:

http://w3.austin.ibm.com/.../austin.ibm.com/fs/projects/utds/server_arch/

Preface iii

IBM Confidential - Feb. 24, 1999

iv PowerPC AS Virtual Environment Architecture

IBM Confidential - Feb. 24, 1999

Table of Contents

Chapter 1. Storage Model 1
1.1 Definitions and Notation 1
1.2 Introduction 2
1.3 Virtual Storage 2
1.4 Single-Copy Atomicity 3
1.5 Cache Model 4
1.6 Storage Control Attributes 4
1.6.1 Write Through Required 4
1.6.2 Caching Inhibited 5
1.6.3 Memory Coherence Required . . 5
1.6.4 Guarded 6
1.7 Shared Storage 6
1.7.1 Storage Access Ordering 6
1.7.2 Atomic Update 9

Chapter 2. Effect of Operand
Placement on Performance 13

2.1 Instruction Restart 14

Chapter 3. Storage Control
Instructions 15

3.1 Parameters Useful to Application
Programs 15

3.2 Cache Management Instructions . 16
3.2.1 Instruction Cache Instruction . . . 17
3.2.2 Data Cache Instructions 18
3.3 Synchronization Instructions 21
3.3.1 Instruction Synchronize Instruction 21
3.3.2 Load And Reserve and Store

Conditional Instructions 22
3.3.3 Memory Barrier Instructions . . . 25

Chapter 4. Time Base 29
4.1 Time Base Instructions 30
4.2 Reading the Time Base 30
4.3 Computing Time of Day from the

Time Base 31

Chapter 5. Opti onal Facilities and
Instructions 33

5.1 External Control 33
5.1.1 External Access Instructions . . . 34
5.2 Storage Control Instructions 35
5.2.1 Cache Management Instructions 35
5.3 Little-Endian 37

Appendix A. Assembler Extended
Mnemonics 39

A.1 Synchronize Mnemonics 39

Appendix B. Programming Examples
for Sharing Storage 41

B.1 Atomic Update Primitives 41
B.2 Lock Acquisition and Release, and

Related Techniques 43
B.2.1 Lock Acquisition and Import

Barriers 43
B.2.2 Lock Release and Export Barriers 44
B.2.3 Safe Fetch 44
B.3 List Insertion 45
B.4 Notes 45

Appendix C. Cross-Reference for
Changed POWER Mnemonics 47

Appendix D. New Instructions 49

Appendix E. PowerPC AS Virtual
Environment Instruction Set 51

Index . 53

Last Page - End of Document 55

Table of Contents v

IBM Confidential - Feb. 24, 1999

vi PowerPC AS Virtual Environment Architecture

IBM Confidential - Feb. 24, 1999

Figures

1. Performance effects of storage operand
placement 13

2. Time Base 29
3. Performance effects of storage operand

placement, Little-Endian mode 37

Figures vii

IBM Confidential - Feb. 24, 1999

Changes as of 1999/02/24 Version 2.00

change reason page

Make several changes related to Data Cache
instructions.

■ Add an optional version of the dcbt instruc-
tion with a Touch Hint field.

■ State that the hint provided by dcbt and
dcbtst is ignored if the specified block is in
Guarded storage.

■ Weaken the description of the hint provided
by dcbt and dcbtst , making it merely a state-
ment that the program is likely soon to
access the block.

■ Change dcbt and dcbtst so that the actions
caused by these instructions cannot be syn-
chronized by software.

■ Modify dcbt and dcbtst so that they never
invoke the system data storage error
handler.

■ Make minor wording changes for consistency
in the dcbt , dcbtst , mftb , eciwx , and ecowx
descriptions.

RFC02000 and Correspondence of 3 Nov. '98. In
addition the following changes were made.

■ An Engineering Note was added to the
description of dcbt in Section 3.2.2, pointing
the designers to the description of the
optional version of this instruction.

■ The beginning of the first sentence of the
Engineering Note for dcbt [st] and for the
data stream variant of dcbt regarding impli-
cations for cache design was corrected to
avoid implying that programs are likely to
contain these instructions.

■ The table showing the TBR encodings for
mftb was reformatted to match that for mfspr
in Book I. In particular, the “Privileged”
column was deleted (nothing in Book II is
privileged).

■ The title of Section 5.2.1.1 was made sin-
gular.

4, 18, 30,
34-36

Remove references to “direct-store segments”
and “ordinary segments”.

RFC02001. 2, 17

■ Add “lightweight” variant of the sync instruc-
tion (lwsync).

■ Remove the vsync instruction from the archi-
tecture.

■ State that the architecture is likely to be
changed in the future to permit a dcbf
instruction to clear the reservation on the
processor executing the instruction.

■ Move the Book I material about storage syn-
chronization to Book II.

RFC02002 and Correspondence of 26 Dec. '98.
Material that was moved from Book I to Book II
(Book I's five Storage Synchronization
instructions and Section D.1) has change bars
only where where it is modified. In addition the
following changes were made.

■ In Section 1.5, isync was removed from the
bulleted list of Cache Management
instructions because this RFC moves isync
out of the “Cache Management Instructions”
section.

■ In Section 3.3.3 in the first bullet of the
second paragraph of the second Program-
ming Note of the sync instruction description,
“reference and change recording” was
changed to “reference, change, and tag set
recording”.

■ For clarity, “ in the PowerPC AS Virtual Envi-
ronment Architecture” was inserted in the
new paragraph for Appendix E.

6-12, 16-17,
21-27,
39-51

Remove references to address compare from
Book II. Also, remove the statement that eciwx
and ecowx can invoke the system data storage
error handler only if E=0.

RFC02003. 16, 34

Define a second virtual page size that is imple-
mentation-dependent and remove a reference to
“BAT”.

RFC02005. In addition, for completeness “or
instructions” was added near the end of the
fourth paragraph of Section 1.3.

2, 15, 37

Eliminate Firm Consistency. RFC02009. 2, 6-7

viii PowerPC AS Virtual Environment Architecture

IBM Confidential - Feb. 24, 1999

change reason page

Describe dcbz in terms of architecture rather
than implementation. Eliminate dcba and dcbi .

RFC02010. In addition the following changes
were made.

■ dcbz instruction description:

— RTL was added.
— Mention of tag bits was removed from

the second paragraph. (The RTL covers
it, as for Store instructions.)

— The paragraph about Memory Coherence
was deleted, because it applies to all
instructions that alter storage.

— The last paragraph of the Engineering
Note was corrected.

— Minor wording changes were made, for
consistency with wording elsewhere in
the Books.

■ The fact that stwcx. and stdcx. clear the
associated tag bits was added to their RTL.

3, 10,
15-16, 19,
36, 49-51

Make the following changes.

■ Clarify that lq , stq , ldarx , and stdcx. , as well
as lwarx and stwcx. , may cause the system
data storage error handler to be invoked if
they specify a location that is Write Through
Required or Caching Inhibited.

■ State that performance is likely to be poor
for non-atomic accesses to storage that is
Write Through Required or Caching Inhibited.

■ Rewrite Section 2.1 and allow instruction
restart in more cases.

RFC02011 and Correspondence of 18 Dec. '98. In
addition the following changes were made.

■ A new paragraph was added at the beginning
of Section 2.1, similar to the paragraph that
the RFC adds to the section entitled “Per-
forming Operations Out-of-Order” in Book III.

■ Mention of the fact that Load And Reserve
and Store Conditional can cause the system
alignment error handler to be invoked if they
specify a location that is Write Through
Required or Caching Inhibited was added to
the introduction to Section 3.3.2.

4, 13-16,
22, 37

Make the following changes.

■ Make Little-Endian optional.

■ Make Write Through Required Optional.

■ Do not allow mismatched Write Through
Required attributes for a page.

■ Remove the Architecture Note in Section 1.7
(about aliasing) and in the icbi instruction
description in Section 3.2.1 (about a COBRA
4 deviation).

RFC02014. In addition the following changes
were made.

■ In Section 1.4 an inappropriate bullet con-
cerning a 32-bit implementation was deleted.

■ “Byte Ordering” was removed from the title
of Section 5.3, and the first paragraph of the
section was reworded for consistency with
wording elsewhere in the Book.

■ “Amazon” was changed to “PowerPC AS”
throughout the Book, without change bars.

3-6, 13, 17,
37

For Version 1.07 and earlier versions, PowerPC AS Requests for Change (RFCs) are explicitly identified as such;
other RFCs that are not explicitly identified are PowerPC changes that are adopted for PowerPC AS.

Changes as of 1998/04/30 Version 1.07

change reason page

Clarify that dcbz and dcba need not be QW
atomic but must set tag bit(s) to zero atomically
with each access that modifies byte(s) within the
tag block.

Amazon RFC 373 3

Changes ix

IBM Confidential - Feb. 24, 1999

change reason page

Correct statement of operand placement on per-
formance for 2 byte integers in Little-Endian to
be consistent with PowerPC RFC00236.

Amazon RFC 368 37

Make minor changes including:

■ Eliminate the definition of “mechanism” in
Section Chapter 1.

■ Add dcba in the list of new instructions in
Appendix D.

compatibility with PowerPC and obvious omis-
sions

1, 49

Start phasing Block Address Translation (BAT)
out of the architecture.

RFC00249. 13-14

Provide support for 4 KB pages and one larger
page size.

RFC00248 as rewritten by Correspondence of 9
Dec. '97.

15

Changes as of 1998/03/27 Version 1.06

change reason page

Make support of Load And Reserve and Store
Conditional to Caching Inhibited storage optional,
in the “being phased out of the architecture” cat-
egory of optionality.

RFC00245 as amended at June PAWG meeting. 4, 9

Remove the Engineering Note in vsync
description that points out a difference between
sync and vsync . Add an example of a store-load
sequence that can be ordered by vsync .

Amazon RFC 355 old vsync
section, 41,
old “Sync'
w/o a
Lock”
section

Change mention of “Rochester Future Systems”
to “AS/400”

Amazon RFC 354 6

Add an Engineering Note to warn against giving a
cache block to another processor after the block
is partially modified by dcbz or dcba

Amazon RFC 353 19, old
dcba
section

Give vsync the same cumulative property for
storage accesses that RFC00233 gives to eieio
and sync

Amazon RFC 352 6

For GP, change atomicity rules to be equivalent
to PowerPC except for quadword and tag
atomicity.

■ lhbrx , lwbrx , sthbrx , stwbrx , instructions are
now atomic in tags active mode

■ Load and Store instructions whose operand
is wholly contained within an aligned DW are
no longer atomic

■ floating-point Load and Store instructions
with aligned operands are atomic in tags
active mode

Amazon RFC 351 3, 3

Add an Architecture Note saying that due to TLB
array hardware errors and multithreading,
Amazon, but not PowerPC, allows instruction
restart for accesses to storage that is not
Guarded.

Amazon RFC 345 14

x PowerPC AS Virtual Environment Architecture

IBM Confidential - Feb. 24, 1999

change reason page

Require E=DS accesses to aligned doublewords Amazon RFC 325 14

Clarify that “ordinary segments” are used in tags
active mode and “segments” in tags inactive
mode.

Amazon RFC 323 2

Move Programming Note in Chapter 2 to Book III,
PowerPC AS Operating Environment Architecture
“Optional Facilities and Instructions”

Amazon RFC 309 14

Explain that “treated as a Load(Store)” includes
address compare.

Amazon RFC 303 16

Add an Architecture Note stating that a COBRA 4
deviation requires that if a mtmsrd instruction is
followed by an isync and the isync is one or two
instructions in the sequential instruction stream
before an icbi , then a sync instruction must exist
between the isync and icbi .

Amazon RFC 298 17

Reorganize WIMG description, and remove
redundant descriptions of Cache Management
instructions.

RFC00242 and Correspondence of 9 Oct., 29 Oct.,
and 14 Nov. '96, as amended at 21 Nov. '96
PAWG conference call.

1, 4ff, 9-11,
15-27, 33,
old dcba
section

Changes xi

IBM Confidential - Feb. 24, 1999

change reason page

Redefine sync to make it a memory barrier, state
the extent to which dependencies order storage
accesses, and make eieio 's memory barrier
cumulative for accesses in its second set.

RFC00233 and Correspondence of 7 Nov. '96. In
addition the following changes were made.

■ At the end of the paragraph before the Engi-
neering Note in Section 1.7.2, “accesses by”
was changed to “accesses caused by” for
consistency with changes made by the RFC.

■ In the Engineering Note in Section 3.2.1, “or
of the corresponding implementation-specific
sequence” was changed to “and of any cor-
responding system-specific sequence” for
consistency with changes made to this
section by the RFC00242 Correspondence
dated 14 Nov. '96.

■ A few comments in the code sequences in
Sections 3.2.1, B.2.2.1, and B.2.2.2 were
abbreviated slightly to make them fit.

■ In the first sentence after the code sequence
in Section B.2.1.2, “GPR 5” was used instead
of “ r5 ” for consistency with the paragraph
before the sequence.

■ Terminology used by the RFC regarding
storage control attributes was changed as
needed for consistency with RFC00242. The
cases that required more than simple substi-
tution or minor rewording are the following.
— second paragraph of Section 1.7.1

Because “Memory Coherence Not
Required” is no longer considered a
storage control attribute, “ i f any” was
inserted near the end of the last sen-
tence (and “Memory Coherence” was
changed to “Memory Coherence
Required”).

— first paragraph of Section B.2.2.1
The parenthesized material in the first
sentence was changed, and the second
sentence was reworded substantially.
The RFC's second sentence is both too
strong (the Guarded attribute is irrel-
evant if the storage is in eieio 's second
set) and too weak (sync must be used
unless the storage is in eieio 's second
set, because cumulative ordering is
required).

— title of Section B.2.2.2
“using eieio ” was used instead of the
RFC's parenthesized material. That
material is incomplete in omitting the
Write Through Required attribute, and
mentioning both that and the Caching
Inhibited attribute would make the title
too long.

1-3, 6-11,
15-27, 33ff,
41ff

Permit aliasing of dcbi as dcbf , and start phasing
dcbi out of the architecture.

RFC00234. 10, 11, 15

Make Little-Endian performance guidelines equiv-
alent to PowerPC (but not Amazon) Big-Endian.

RFC00236. 13

xii PowerPC AS Virtual Environment Architecture

IBM Confidential - Feb. 24, 1999

change reason page

Make various clarifications regarding instruction
restart.

RFC00237 as amended at Oct. PAWG meeting. In
addition the following changes were made, both
in Section 2.1.

■ The phrase “ in which the instruction may be
restarted” was added to the Engineering
Note, because the Note does not apply to
aligned single-register accesses.

■ The title of Book III was retained in the Pro-
gramming Note (the RFC wrongly states that
the title appears in the preceding para-
graph).

13, 14

Clarify that the effective address specified by icbi
is translated as for a Load instruction.

RFC00238 as amended at Oct. PAWG meeting. 17

Make miscellaneous clarifications in Book II. RFC00240 as amended at Oct. PAWG meeting. 18, 34

Say that pages are aligned. RFC00177 and Correspondence of 23 March '96. 2

Start to phase tags inactive direct-store out of the
architecture.

RFC00220. In addition, in the Engineering Note
on p. 9 “they can” was changed to “the storage
subsystem can”, instead of to “ i t can” as pro-
posed in the RFC, to avoid ambiguity of “ i t ” .
(The Engineering Note in Section 2.2 in Version
1.07 was moved by RFC00217 to Section 1.4; the
changes proposed for that Note in RFC00220
have been made in the new section.)

2, 3, old
Chapter 1
cache op
sections,
13, 14,
17-20, 9

Require Caching Inhibited Guarded stores to be
ordered.

RFC00217 as amended at March PAWG meeting.
In addition, for correctness, a clause covering
load/store combining operations was added at
the end of the paragraph added to the eieio Pro-
gramming Note on p. 27.

3, 6, old
Chapter 1
eieio
section, 14,
19, 27, 34

Add new Cache Management instruction Data
Cache Block Allocate (dcba).

RFC00228 and Correspondence of 10 May '96. In
addition the following changes were made.

■ A sentence was added at the end of the
introduction to Chapter 5 to match a corre-
sponding sentence in the introduction to the
“Optional” chapters of the other Books.

■ Because the new sentence might suggest
that an implementation could provide one of
the External Control instructions and not the
other, clarification that this is not permitted
was added at the end of that sentence and at
the end of the first paragraph of Section 5.1.

■ In the second Engineering Note in the dcba
instruction description, the word “a l l ” in “al l
processors” was italicized for emphasis.

■ dcba was added at the beginning of the table
in Appendix E, instead of before dcbz as pro-
posed in the RFC, because the table lists
instructions alphabetically by mnemonic.

3, old
Chapter 1
sync
section,
6+1 , 10,
15, 17-20,
27, 33, 35,
49, 51

Eliminate reference to Book III sentence that RFC
deletes. Clarify that sync waits for Reference
and Change bit updates to be visible to all
processors and mechanisms.

RFC00226. old
Chapter 1
sync
section

Add Programming Note about self-modifying code
on MP with combined caches.

RFC00200. 17

Changes xiii

IBM Confidential - Feb. 24, 1999

change reason page

State in their instruction descriptions that eciwx
and ecowx are optional.

RFC00218. The “Optional Facilities and
Instructions” appendix was made a chapter, as
agreed at the March PAWG meeting; this necessi-
tated changing “appendix” to “chapter” in
several places.

34

Incorporate minor changes from the Morgan
Kaufmann book. All such changes that seem
desirable have now been made. Very minor
changes (e.g., fixing grammatical errors) are not
marked with change bars.

Agreed in discussion of RFC00173 at Nov. '94
PAWG meeting.

various

Correct the “Approval Process” description. Correspondence of 27 Oct. '94. iii

Clarify conditions under which a cache block is
considered “modified”.

RFC00201, correspondence of 24 Oct. '94, and
amendment from Nov. PAWG meeting.

old “Coher-
ence [Not]
Required”
sections,
18

State in Book II that WIMG bits have meaning
only when the effective address is translated.

RFC00208. 4

Correct four minor errors. Error Notice of 27 Oct. '94, Book II items 1-4. old
Chapter 1
dcbz
section, 13,
18, 31

Clarify that isync does not wait for storage
accesses to be performed.

RFC00199 and correspondence of 25 Oct. '94. 21, 27

Use “performed” vs. “executed” consistently for
loads and stores.

RFC00205. 18

Clarify “monotonically increasing” in Program-
ming Notes for Time Base.

RFC00206. 29

Clarify paging implications of eciwx and ecowx . RFC00180. 33

Define “AIM” and use “-AIM” suffix on citations
as needed.

RFC00203. various

Incorporate minor changes from the Morgan
Kaufmann book. Not all such changes have been
made; the rest will be made in future versions of
this Book. Very minor changes (e.g., fixing gram-
matical errors) are not marked with change bars.

Agreed in discussion of RFC00173 at Nov. PAWG
meeting.

various

xiv PowerPC AS Virtual Environment Architecture

IBM Confidential - Feb. 24, 1999

Chapter 1. Storage Model

1.1 Definitions and Notation 1
1.2 Introduction 2
1.3 Virtual Storage 2
1.4 Single-Copy Atomicity 3
1.5 Cache Model 4
1.6 Storage Control Attributes 4
1.6.1 Write Through Required 4
1.6.2 Caching Inhibited 5

1.6.3 Memory Coherence Required . . 5
1.6.4 Guarded 6
1.7 Shared Storage 6
1.7.1 Storage Access Ordering 6
1.7.2 Atomic Update 9
1.7.2.1 Reservations 10
1.7.2.2 Forward Progress 11

1.1 Definitions and Notation

The following definitions, in addition to those specified
in Book I, are used in this Book.

■ processor
A hardware component that executes the
PowerPC AS instructions specified in a program.

■ system
A combination of processors, storage, and associ-
ated mechanisms that is capable of executing
programs. Sometimes the reference to system
includes services provided by the operating
system.

■ main storage
The level of the storage hierarchy in which all
storage state is visible to all processors and
mechanisms in the system.

■ instruction storage
The view of storage as seen by the mechanism
that fetches instructions.

■ data storage
The view of storage as seen by a Storage Access
or Cache Management instruction.

■ program order
The execution of instructions in the order
required by the sequential execution model (see
Book I, PowerPC AS User Instruction Set Archi-
tecture).

■ storage location
One or more sequential bytes of storage begin-
ning at the address specified by a Storage Access
or Cache Management instruction or by the
instruction fetching mechanism. The number of
bytes comprising the location depends on the

type of instruction being executed, or is four for
instruction fetching.

■ storage access
An access to a storage location caused by exe-
cuting a Storage Access or Cache Management
instruction (“data access”) or by fetching an
instruction, or an implicit access that occurs as a
side effect of such an access (e.g., to translate
the effective address).

■ uniprocessor
A system that contains one PowerPC AS
processor.

■ multiprocessor
A system that contains two or more PowerPC AS
processors.

■ shared storage multiprocessor
A multiprocessor that contains some common
storage, which all the PowerPC AS processors in
the system can access.

■ performed
A load or instruction fetch by a processor or
mechanism (P1) is performed with respect to any
processor or mechanism (P2) when the value to
be returned by the load or instruction fetch can
no longer be changed by a store by P2. A store
by P1 is performed with respect to P2 when a
load by P2 from the location accessed by the
store will return the value stored (or a value
stored subsequently). An instruction cache block
invalidation by P1 is performed with respect to P2
when an instruction fetch by P2 will not be satis-
fied from the copy of the block that existed in its
instruction cache when the instruction causing the
invalidation was executed, and similarly for a
data cache block invalidation. The preceding

Chapter 1. Storage Model 1

IBM Confidential - Feb. 24, 1999

definitions apply regardless of whether P1 and P2
are the same entity.

■ page
An aligned unit of storage for which protection
and control attributes are independently
specifiable and for which reference and change

| status are independently recorded. Two virtual
| page sizes are supported simultaneously, 4 KB
| and a larger size. The larger size is an imple-
| mentation-dependent power of 2 (bytes). Real
| pages are always 4 KB.

■ block
The aligned unit of storage operated on by each
Cache Management instruction. The size of a
block can vary by instruction and by implementa-

| tion. The maximum block size is 4 KB.
■ aligned storage access

A load or store is aligned if the address of the
target storage location is a multiple of the size of
the transfer effected by the instruction.

1.2 Introduction

The PowerPC AS User Instruction Set Architecture,
discussed in Book I, defines storage as a linear array
of bytes indexed from 0 to a maximum of 264 − 1.
Each byte is identified by its index, called its address,
and each byte contains a value. This information is
sufficient to allow the programming of applications
that require no special features of any particular
system environment. The PowerPC AS Virtual Envi-
ronment Architecture, described herein, expands this
simple storage model to include caches, virtual
storage, and shared storage multiprocessors. The
PowerPC AS Virtual Environment Architecture, in con-
junction with services based on the PowerPC AS
Operating Environment Architecture (see Book III) and
provided by the operating system, permits explicit
control of this expanded storage model. A simple
model for sequential execution allows at most one
storage access to be performed at a time and
requires that all storage accesses appear to be per-
formed in program order. In contrast to this simple

| model, the PowerPC AS architecture specifies a
| relaxed model of storage consistency. In a multi-

processor system that allows multiple copies of a
storage location, aggressive implementations of the
architecture can permit intervals of time during which
different copies of a storage location have different
values. This chapter describes features of the
PowerPC AS architecture that enable programmers to
write correct programs for this storage model.

1.3 Virtual Storage

The PowerPC AS system implements a virtual storage
† model for applications. For tags inactive mode and
† for PLS addresses in tags active mode (see Book III,

PowerPC AS Operating Environment Architecture),
this means that a combination of hardware and soft-
ware can present a storage model that allows applica-
tions to exist within a “vir tual” address space larger
than either the effective address space or the real
address space.

Each program can access 264 bytes of “effective
address” (EA) space, subject to limitations imposed
by the operating system. In a typical PowerPC AS
system in tags inactive mode and for PLS addresses
in tags active mode, each program's EA space is a
subset of a larger “virtual address” (VA) space
managed by the operating system.

Each effective address is translated to a real address
(i.e., to an address of a byte in real storage or on an
I/O device) before being used to access storage. The
hardware accomplishes this, using the address trans-
lation mechanism described in Book III. The oper-
ating system manages the real (physical) storage
resources of the system, by setting up the tables and
other information used by the hardware address
translation mechanism.

Book II deals primarily with effective addresses that
† are in “segments” translated by the “address trans-
† lation mechanism” (see Book III). Each such effective

address lies in a “virtual page”, which is mapped to a
| “real page” (4 KB virtual page) or to a contiguous
| sequence of real pages (large virtual page) before
† data or instructions in the virtual page are accessed.

In general, real storage may not be large enough to
map all the virtual pages used by the currently active
applications. With support provided by hardware, the
operating system can attempt to use the available
real pages to map a sufficient set of virtual pages of
the applications. If a sufficient set is maintained,
“paging” activity is minimized. If not, performance
degradation is likely.

The operating system can support restricted access to
virtual pages (including read/write, read only, and no
access: see Book III), based on system standards
(e.g., program code might be read only) and applica-
tion requests.

2 PowerPC AS Virtual Environment Architecture

IBM Confidential - Feb. 24, 1999

1.4 Single-Copy Atomicity

An access is single-copy atomic, or simply atomic, if it
is always performed in its entirety with no visible
fragmentation. Atomic accesses are thus serialized:
each happens in its entirety in some order, even
when that order is not specified in the program or
enforced between processors.

In PowerPC AS the following single-register accesses
are always atomic:

■ byte accesses (all bytes are aligned on byte
boundaries)

■ halfword accesses aligned on halfword bounda-
ries

■ word accesses aligned on word boundaries

■ doubleword accesses aligned on doubleword
boundaries

■ quadword accesses aligned on quadword bounda-
ries in tags active mode and only for the following
instructions:

— lq

— stq

Quadword atomicity applies only to storage that
is neither Write Through Required nor Caching
Inhibited. The tag bit(s) are part of every
quadword atomic access the same as every other
bit in the quadword.

No other accesses are guaranteed to be atomic. For
example, the access caused by the following
instructions is not guaranteed to be atomic.

■ any Load or Store instruction for which the
operand is unaligned

■ lmw, stmw, lswi, lswx, stswi, stswx
■ lmd, stmd, lsdi, lsdx, stsdi, stsdx

†
■ any Cache Management instruction

An access that is not atomic is performed as a set of
smaller disjoint atomic accesses. The number and
alignment of these accesses are implementa-
tion-dependent, as is the relative order in which they
are performed.

| For dcbz and for Store instructions other than stq , the
tag bit for every tag block that has a byte modified is
set to zero as part of the atomic access that modified

| the byte(s) within the tag block. If a dcbz or Store
instruction causes multiple disjoint atomic accesses
within a tag block, the tag bit of the tag block is set to
zero as part of each atomic access.

The results for several combinations of loads and
stores to the same or overlapping locations are
described below.

1. When two processors execute atomic stores to
locations that do not overlap, and no other stores
are performed to those locations, the contents of
those locations are the same as if the two stores
were performed by a single processor.

2. When two processors execute atomic stores to
the same storage location, and no other store is
performed to that location, the contents of that
location are the result stored by one of the
processors.

3. When two processors execute stores that have
the same target location and are not guaranteed
to be atomic, and no other store is performed to
that location, the result is some combination of
the bytes stored by both processors.

4. When two processors execute stores to overlap-
ping locations, and no other store is performed to
those locations, the result is some combination of
the bytes stored by the processors to the over-
lapping bytes. The portions of the locations that
do not overlap contain the bytes stored by the
processor storing to the location.

5. When a processor executes an atomic store to a
location, a second processor executes an atomic
load from that location, and no other store is per-
formed to that location, the value returned by the
load is the contents of the location before the
store or the contents of the location after the
store.

6. When a load and a store with the same target
location can be executed simultaneously, and no
other store is performed to that location, the
value returned by the load is some combination
of the contents of the location before the store
and the contents of the location after the store.

Engineering Note

Atomicity of storage accesses is provided by the
processor in conjunction with the storage sub-
system. The processor must provide a storage
subsystem interface that is sufficient to allow a
storage subsystem to meet the atomicity require-
ments specified here.

Multiprocessor implementations with doubleword
tags must give the appearance of having
quadword tag atomicity.

For initial hardware debug it is often useful to run
with cache disabled. In some ways cache disa-
bled mode is similar to Caching Inhibited storage.
Although quadword atomicity is not required for
storage that is Caching Inhibited, support for
quadword atomicity with cache disabled should be
considered.

Chapter 1. Storage Model 3

IBM Confidential - Feb. 24, 1999

1.5 Cache Model

A cache model in which there is one cache for
instructions and another cache for data is called a
“Harvard-style” cache. This is the model assumed by
the PowerPC AS Architecture, e.g., in the descriptions
of the Cache Management instructions in Section 3.2,
“Cache Management Instructions” on page 16. Alter-
native cache models may be implemented (e.g., a
“combined cache” model, in which a single cache is
used for both instructions and data, or a model in
which there are several levels of caches), but they
support the programming model implied by a
Harvard-style cache.

The processor is not required to maintain copies of
storage locations in the instruction cache consistent
with modifications to those storage locations (e.g.,
modifications caused by Store instructions).

| A location in the data cache is considered to be modi-
fied in that cache if the location has been modified
(e.g., by a Store instruction) and the modified data

| have not been been written to main storage.

Cache Management instructions are provided so that
programs can manage the caches when needed. For
example, program management of the caches is
needed when a program generates or modifies code
that will be executed (i.e., when the program modifies
data in storage and then attempts to execute the
modified data as instructions). The Cache Manage-
ment instructions are also useful in optimizing the use
of memory bandwidth in such applications as graphics
and numerically intensive computing. The functions
performed by these instructions depend on the
storage control attributes associated with the speci-
fied storage location (see Section 1.6, “Storage
Control Attributes”).

The Cache Management instructions allow the
program to do the following.

■ invalidate the copy of storage in an instruction
cache block (icbi)

†
† ■ provide a hint that the program will probably
† soon access a specified data cache block (dcbt,
† dcbtst)

■ set the contents of a data cache block to zeros
(dcbz)

■ copy the contents of a modified data cache block
to main storage (dcbst)

■ copy the contents of a modified data cache block
to main storage and make the copy of the block
in the data cache invalid (dcbf)

1.6 Storage Control Attributes

Some operating systems may provide a means to
allow programs to specify the storage control attri-
butes described in this section. Because the support
provided for these attributes by the operating system
may vary between systems, the details of the specific
system being used must be known before these attri-
butes can be used.

Storage control attributes are associated with units of
storage that are multiples of the page size. Each
storage access is performed according to the storage
control attributes of the specified storage location, as
described below. The storage control attributes are
the following.

■ Write Through Required
■ Caching Inhibited
■ Memory Coherence Required
■ Guarded

These attributes have meaning only when an effective
address is translated by the processor performing the
storage access. All combinations of these attributes

† are supported except Write Through Required with
Caching Inhibited.

Programming Note

The Write Through Required and Caching Inhibited
attributes are mutually exclusive because, as
described below, the Write Through Required
attribute permits the storage location to be in the
data cache while the Caching Inhibited attribute
does not.

Storage that is Write Through Required or
Caching Inhibited is not intended to be used for
general-purpose programming. For example, the

† lq , stq , lwarx , ldarx , stwcx. , and stdcx.
instructions may cause the system data storage
error handler to be invoked if they specify a
location in storage having either of these attri-

† butes.

In the remainder of this section, “ Load instruction”
includes the Cache Management and other
instructions that are stated in the instruction
descriptions to be “treated as a Load”, and similarly
for “ Store instruction”.

1.6.1 Write Through Required

A store to a Write Through Required storage location
is performed in main storage. A Store instruction that
specifies a location in Write Through Required storage
may cause additional locations in main storage to be
accessed. If a copy of the block containing the speci-
fied location is retained in the data cache, the store is
also performed in the data cache. The store does not

4 PowerPC AS Virtual Environment Architecture

IBM Confidential - Feb. 24, 1999

cause the block to be considered to be modified in the
data cache.

|

In general, accesses caused by separate Store
instructions that specify locations in Write Through
Required storage may be combined into one access.
Such combining does not occur if the Store
instructions are separated by a sync instruction or by
an eieio instruction.

1.6.2 Caching Inhibited

An access to a Caching Inhibited storage location is
performed in main storage. A Load instruction that
specifies a location in Caching Inhibited storage may
cause additional locations in main storage to be
accessed unless the specified location is also
Guarded. An instruction fetch from Caching Inhibited
storage may cause additional words in main storage
to be accessed. No copy of the accessed locations is
placed into the caches.

In general, non-overlapping accesses caused by sepa-
rate Load instructions that specify locations in
Caching Inhibited storage may be combined into one
access, as may non-overlapping accesses caused by
separate Store instructions that specify locations in
Caching Inhibited storage. Such combining does not
occur if the Load or Store instructions are separated
by a sync instruction, or by an eieio instruction if the
storage is also Guarded.

1.6.3 Memory Coherence Required

An access to a Memory Coherence Required storage
location is performed coherently, as follows.

Memory coherence refers to the ordering of stores to
a single location. Atomic stores to a given location
are coherent if they are serialized in some order, and
no processor or mechanism is able to observe any
subset of those stores as occurring in a conflicting
order. This serialization order is an abstract
sequence of values; the physical storage location
need not assume each of the values written to it. For
example, a processor may update a location several
times before the value is written to physical storage.
The result of a store operation is not available to
every processor or mechanism at the same instant,
and it may be that a processor or mechanism
observes only some of the values that are written to
a location. However, when a location is accessed
atomically and coherently by all processor and mech-
anisms, the sequence of values loaded from the
location by any processor or mechanism during any

interval of time forms a subsequence of the sequence
of values that the location logically held during that
interval. That is, a processor or mechanism can
never load a “newer” value first and then, later, load
an “older” value.

Memory coherence is managed in blocks called
coherence blocks. Their size is implementa-
tion-dependent (see the Book IV, PowerPC AS Imple-
mentation Features document for the implementation),
but is usually larger than a word and often the size of
a cache block.

For storage that is not Memory Coherence Required,
software must explicitly manage memory coherence
to the extent required by program correctness. The
operations required to do this may be system-
dependent.

Because the Memory Coherence Required attribute
for a given storage location is of little use unless all
processors that access the location do so coherently,
in statements about Memory Coherence Required
storage elsewhere in Books I − III it is generally
assumed that the storage has the Memory Coherence
Required attribute for all processors that access it.

Programming Note

Operating systems that allow programs to request
that storage not be Memory Coherence Required
should provide services to assist in managing
memory coherence for such storage, including all
system-dependent aspects thereof.

In most systems the default is that all storage is
Memory Coherence Required. For some applica-
tions in some systems, software management of
coherence may yield better performance. In such
cases, a program can request that a given unit of
storage not be Memory Coherence Required, and
can manage the coherence of that storage by
using the sync instruction, the Cache Management
instructions, and services provided by the oper-
ating system.

Engineering Note

Memory coherence can be implemented, for
example, by an ownership protocol that allows at
most one processor at a time to store to a given
location in Memory Coherence Required storage.

A processor observing a storage access initiated
by another processor or mechanism must honor
the coherence requirements of that access, even
if the observing processor last accessed the
affected storage location as not Memory Coher-
ence Required.

Chapter 1. Storage Model 5

IBM Confidential - Feb. 24, 1999

1.6.4 Guarded

A data access to a Guarded storage location is per-
formed only if either (a) the access is caused by an
instruction that is known to be required by the
sequential execution model, or (b) the access is a
load and the storage location is already in a cache. If
the storage is also Caching Inhibited, only the storage
location specified by the instruction is accessed; oth-
erwise any storage location in the cache block con-
taining the specified storage location may be
accessed.

Instructions are not fetched from virtual storage that
is Guarded. If the effective address of the current
instruction is in such storage, the system instruction
storage error handler is invoked.

Programming Note

In some implementations, instructions may be
executed before they are known to be required by
the sequential execution model. Because the
results of instructions executed in this manner are
discarded if it is later determined that those
instructions would not have been executed in the
sequential execution model, this behavior does
not affect most programs.

This behavior does affect programs that access
storage locations that are not “well-behaved”
(e.g., a storage location that represents a control
register on an I/O device that, when accessed,
causes the device to perform an operation). To
avoid unintended results, programs that access
such storage locations should request that the
storage be Guarded, and should prevent such
storage locations from being in a cache (e.g., by
requesting that the storage also be Caching Inhib-
ited).

1.7 Shared Storage

This architecture supports the sharing of storage
between programs, between different instances of the
same program, and between processors and other
mechanisms. It also supports access to a storage
location by one or more programs using different
effective addresses. All these cases are considered
storage sharing. Storage is shared in blocks that are
an integral number of pages.

When the same storage location has different effec-
tive addresses, the addresses are said to be aliases.
Each application can be granted separate access priv-
ileges to aliased pages.

|

Engineering Note

Page level aliasing can be implemented in many
ways, for example with real addressed caches, L2
directories, or an external signal to an inverse
directory. Each processor implementation will
decide on its level of implementation in support of
its system requirements.

1.7.1 Storage Access Ordering

| The storage model for the ordering of storage
| accesses is weakly consistent. This model provides

an opportunity for improved performance over a
model that has stronger consistency rules, but places
the responsibility on the program to ensure that
ordering or synchronization instructions are properly

† placed when storage is shared by two or more pro-
| grams.

The order in which the processor performs storage
accesses, the order in which those accesses are per-
formed with respect to another processor or mech-
anism, and the order in which those accesses are
performed in main storage may all be different.
Several means of enforcing an ordering of storage
accesses are provided to allow programs to share
storage with other programs, or with mechanisms
such as I/O devices. These means are listed below.
The phrase “to the extent required by the associated
Memory Coherence Required attributes” refers to the
Memory Coherence Required attribute, if any, associ-
ated with each access.

■ If two Store instructions specify storage locations
that are both Caching Inhibited and Guarded, the
corresponding storage accesses are performed in
program order with respect to any processor or
mechanism.

■ If a Load instruction depends on the value
returned by a preceding Load instruction
(because the value is used to compute the effec-
tive address specified by the second Load), the
corresponding storage accesses are performed in
program order with respect to any processor or
mechanism to the extent required by the associ-
ated Memory Coherence Required attributes.
This applies even if the dependency has no effect
on program logic (e.g., the value returned by the
first Load is ANDed with zero and then added to
the effective address specified by the second
Load).

| ■ When a processor (P1) executes a sync , lwsync ,
or eieio instruction a memory barrier is created,

| which orders applicable storage accesses
| pairwise, as follows. Let A be a set of storage
| accesses that includes all storage accesses asso-
| ciated with instructions preceding the barrier-
| creating instruction, and let B be a set of storage
| accesses that includes all storage accesses asso-

6 PowerPC AS Virtual Environment Architecture

IBM Confidential - Feb. 24, 1999

| ciated with instructions following the barrier-
| creating instruction. For each applicable pair ai,bj
| of storage accesses such that ai is in A and bj is
| in B, the memory barrier ensures that ai will be
| performed with respect to any processor or
| mechanism, to the extent required by the associ-
| ated Memory Coherence Required attributes,
| before bj is performed with respect to that
| processor or mechanism.

The ordering done by a memory barrier is said to
be “cumulative” if it also orders storage accesses
that are performed by processors and mech-
anisms other than P1, as follows.

† — A includes all applicable storage accesses by
any such processor or mechanism that have
been performed with respect to P1 before the
memory barrier is created.

† — B includes all applicable storage accesses by
any such processor or mechanism that are
performed after a Load instruction executed
by that processor or mechanism has returned

† the value stored by a store that is in B.

No ordering should be assumed among the storage
accesses caused by a single instruction (i.e, by an
instruction for which the access is not atomic), and no
means are provided for controlling that order.

Chapter 1. Storage Model 7

IBM Confidential - Feb. 24, 1999

Programming Note

Because stores cannot be performed “out-of-order”
(see Book III, PowerPC AS Operating Environment
Architecture), if a Store instruction depends on the
value returned by a preceding Load instruction
(because the value returned by the Load is used to
compute either the effective address specified by
the Store or the value to be stored), the corre-
sponding storage accesses are performed in
program order. The same applies if whether the
Store instruction is executed depends on a condi-
tional Branch instruction that in turn depends on the
value returned by a preceding Load instruction.

Because an isync instruction prevents the execution
of instructions following the isync until instructions
preceding the isync have completed, if an isync
follows a conditional Branch instruction that depends
on the value returned by a preceding Load instruc-
tion, the load on which the Branch depends is per-
formed before any loads caused by instructions
following the isync . This applies even if the effects
of the “dependency” are independent of the value
loaded (e.g., the value is compared to itself and the
Branch tests the EQ bit in the selected CR field), and
even if the branch target is the sequentially next
instruction.

With the exception of the cases described above and
earlier in this section, data dependencies and
control dependencies do not order storage accesses.
Examples include the following.

■ If a Load instruction specifies the same storage
location as a preceding Store instruction and the
location is in storage that is not Caching Inhib-
ited, the load may be satisfied from a “store
queue” (a buffer into which the processor places
stored values before presenting them to the
storage subsystem), and not be visible to other
processors and mechanisms. A consequence is
that if a subsequent Store depends on the value
returned by the Load, the two stores need not
be performed in program order with respect to
other processors and mechanisms.

■ Because a Store Conditional instruction may
complete before its store has been performed, a
conditional Branch instruction that depends on
the CR0 value set by a Store Conditional
instruction does not order the Store
Conditional's store with respect to storage
accesses caused by instructions that follow the
Branch.

■ Because processors may predict branch target
addresses and branch condition resolution,
control dependencies (e.g., branches) do not
order storage accesses except as described
above. For example, when a subroutine returns
to its caller the return address may be pre-
dicted, with the result that loads caused by
instructions at or after the return address may
be performed before the load that obtains the
return address is performed.

Because processors may implement nonarchitected
duplicates of architected resources (e.g., GPRs, CR
fields, and the Link Register), resource dependen-
cies (e.g., specification of the same target register
for two Load instructions) do not order storage
accesses.

| Examples of correct uses of dependencies, sync ,
| lwsync , and eieio to order storage accesses can be

found in Appendix B, “Programming Examples for
Sharing Storage” on page 41.

Because the storage model is weakly consistent, the
sequential execution model as applied to
instructions that cause storage accesses guarantees
only that those accesses appear to be performed in
program order with respect to the processor exe-
cuting the instructions. For example, an instruction
may complete, and subsequent instructions may be
executed, before storage accesses caused by the
first instruction have been performed. However, for
a sequence of atomic accesses to the same storage
location, if the location is in storage that is Memory
Coherence Required the definition of coherence
guarantees that the accesses are performed in
program order with respect to any processor or
mechanism that accesses the location coherently,
and similarly if the location is in storage that is
Caching Inhibited.

Because accesses to storage that is Caching Inhib-
ited are performed in main storage, memory bar-
riers and dependencies on Load instructions order
such accesses with respect to any processor or
mechanism even if the storage is not Memory
Coherence Required.

8 PowerPC AS Virtual Environment Architecture

IBM Confidential - Feb. 24, 1999

Programming Note

The first example below illustrates cumulative
ordering of storage accesses preceding a memory
barrier, and the second illustrates cumulative
ordering of storage accesses following a memory
barrier. Assume that locations X, Y, and Z initially
contain the value 0.

Example 1:

Processor A: stores the value 1 to location X

Processor B: loads from location X obtaining the
value 1, executes a sync instruc-
tion, then stores the value 2 to
location Y

Processor C: loads from location Y obtaining the
value 2, executes a sync instruc-
tion, then loads from location X

Example 2:

Processor A: stores the value 1 to location X,
executes a sync instruction, then
stores the value 2 to location Y

Processor B: loops loading from location Y until
the value 2 is obtained, then stores
the value 3 to location Z

Processor C: loads from location Z obtaining the
value 3, executes a sync instruc-
tion, then loads from location X

In both cases, cumulative ordering dictates that
the value loaded from location X by processor C
is 1.

Engineering Note

It is permissible to perform a dependent load
before the load on which it depends, if software
accessing shared storage cannot tell the differ-
ence.

It is always permissible to prefetch a data cache
block from non-Guarded storage based on pre-
dicting the effective address specified by a Load
or Store instruction.

Engineering Note

| The correct operation of sync , lwsync , and eieio
depends on both the processor and the storage
subsystem.

The definition of memory barriers is not intended
to preclude address pipelining. If two applicable
Storage Access instructions are separated by

| sync , lwsync , or eieio , it is permissible for the
address associated with the second instruction to
be presented to a given level of the storage hier-
archy before the data access caused by the first
instruction has completed at that level. However,
if such pipelining is done, the processor must
provide sufficient information that the storage
subsystem can keep the storage accesses in the
correct order, and the storage subsystem must do
so.

| Memory barriers need not order the following:

| ■ the prefetching of cache blocks
| ■ the casting out of cache blocks
| ■ consistency operations initiated by other
| processors

† 1.7.2 Atomic Update

The Load And Reserve and Store Conditional
instructions together permit atomic update of a
storage location. There are word and doubleword
forms of each of these instructions. Described here is
the operation of the word forms lwarx and stwcx. ;
operation of the doubleword forms ldarx and stdcx. is
the same except for obvious substitutions.

|

The lwarx instruction is a load from a word-aligned
† location that has two side effects. Both of these side
† effects occur at the same time that the load is per-
† formed.

1. A reservation for a subsequent stwcx. instruction
is created.

2. The storage coherence mechanism is notified that
† a reservation exists for the storage location spec-
† ified by the lwarx .

The stwcx. instruction is a store to a word-aligned
location that is conditioned on the existence of the
reservation created by the lwarx and on whether the
same storage location is specified by both
instructions. To emulate an atomic operation with
these instructions, it is necessary that both the lwarx

† and the stwcx. specify the same storage location.

†

Chapter 1. Storage Model 9

IBM Confidential - Feb. 24, 1999

A stwcx. performs a store to the target storage
† location only if the storage location specified by the

lwarx that established the reservation has not been
† stored into by another processor or mechanism since
† the reservation was created. If the storage locations

specified by the two instructions differ, the store is
† not necessarily performed.

†

† A stwcx. that performs its store is said to “succeed”.

Examples of the use of lwarx and stwcx. are given in
† Appendix B, “Programming Examples for Sharing
† Storage” on page 41.

A successful stwcx. to a given location may complete
before its store has been performed with respect to
other processors and mechanisms. As a result, a
subsequent load or lwarx from the given location on
another processor may return a “stale” value.
However, a subsequent lwarx from the given location
on the other processor followed by a successful
stwcx. on that processor is guaranteed to have
returned the value stored by the first processor's
stwcx. (in the absence of other stores to the given
location).

† Programming Note

† The store caused by a successful stwcx. is
† ordered, by a dependence on the reservation,
† with respect to the load caused by the lwarx that
† established the reservation, such that the two
† storage accesses are performed in program order
† with respect to any processor or mechanism.

Engineering Note

Both lwarx and stwcx. have a data dependence
on the processor reservation resource.

1.7.2.1 Reservations

The ability to emulate an atomic operation using
lwarx and stwcx. is based on the conditional behavior
of stwcx. , the reservation created by lwarx , and the
clearing of that reservation if the target location is
modified by another processor or mechanism before
the stwcx. performs its store.

A reservation is held on an aligned unit of real
storage called a reservation granule. The size of the

† reservation granule is 2n bytes, where n is implemen-
† tation-dependent but is always at least 4 (thus the
† minimum reservation granule size is a quadword).

The reservation granule associated with effective

address EA contains the real address to which EA
maps. (“real_addr(EA)” in the RTL for the Load And

† Reserve and Store Conditional instructions stands for
† “real address to which EA maps”.)

†

A processor has at most one reservation at any time.
† A reservation is established by executing a lwarx or
† ldarx instruction, and is lost (or may be lost, in the
| case of the fourth bullet) if any of the following occur.

■ The processor holding the reservation executes
another lwarx or ldarx : this clears the first reser-
vation and establishes a new one.

■ The processor holding the reservation executes
any stwcx. or stdcx. , regardless of whether the

† specified address matches the address specified
† by the lwarx or ldarx that established the reser-
† vation.

■ Some other processor executes a Store or dcbz
to the same reservation granule, or modifies a
Reference, Change, or Tag Set bit (see Book III,
PowerPC AS Operating Environment Architecture)
in the same reservation granule.

■ Some other processor executes a dcbtst, dcbst,
or dcbf to the same reservation granule: whether
the reservation is lost is undefined.

|
■ Some other mechanism modifies a storage

location in the same reservation granule.

Interrupts (see Book III, PowerPC AS Operating Envi-
ronment Architecture) do not clear reservations
(however, system software invoked by interrupts may
clear reservations).

Programming Note

One use of lwarx and stwcx. is to emulate a
“Compare and Swap” primitive like that provided
by the IBM System/370 Compare and Swap

† instruction; see Section B.1, “Atomic Update
† Primitives” on page 41. A System/370-style

Compare and Swap checks only that the old and
current values of the word being tested are equal,
with the result that programs that use such a
Compare and Swap to control a shared resource
can err if the word has been modified and the old
value subsequently restored. The combination of
lwarx and stwcx. improves on such a Compare
and Swap, because the reservation reliably binds
the lwarx and stwcx. together. The reservation is
always lost if the word is modified by another
processor or mechanism between the lwarx and
stwcx. , so the stwcx. never succeeds unless the
word has not been stored into (by another
processor or mechanism) since the lwarx .

10 PowerPC AS Virtual Environment Architecture

IBM Confidential - Feb. 24, 1999

| Programming Note

| Warning: The architecture is likely to be changed
| in the future to permit the reservation to be lost if
| a dcbf instruction is executed on the processor
| holding the reservation. Therefore dcbf
| instructions should not be placed between a Load
| And Reserve instruction and the subsequent Store
| Conditional instruction.

Programming Note

In general, programming conventions must ensure
that lwarx and stwcx. specify addresses that
match; a stwcx. should be paired with a specific
lwarx to the same storage location. Situations in
which a stwcx. may erroneously be issued after
some lwarx other than that with which it is
intended to be paired must be scrupulously
avoided. For example, there must not be a
context switch in which the processor holds a res-
ervation in behalf of the old context, and the new
context resumes after a lwarx and before the
paired stwcx. . The stwcx. in the new context
might succeed, which is not what was intended by
the programmer. Such a situation must be pre-

† vented by executing a stwcx. or stdcx. that speci-
† fies a dummy writable aligned location as part of
† the context switch; see the section entitled “Inter-
† rupt Processing” in Book III.

† Programming Note

† Because the reservation is lost if another
† processor stores anywhere in the reservation
† granule, lock words (or doublewords) should be
† allocated such that few such stores occur, other
† than perhaps to the lock word itself. (Stores by
† other processors to the lock word result from con-
† tention for the lock, and are an expected conse-
† quence of using locks to control access to shared
† storage; stores to other locations in the reserva-
† tion granule can cause needless reservation loss.)
† Such allocation can most easily be accomplished
† by allocating an entire reservation granule for the
† lock and wasting all but one word. Because res-
† ervation granule size is implementa-
† tion-dependent, portable code must do such
† allocation dynamically.

† Similar considerations apply to other data that are
† shared directly using lwarx and stwcx. (e.g.,
† pointers in certain linked lists; see Section B.3,
† “List Insertion” on page 45).

Engineering Note

Reservations must take part in storage coher-
ence. A reservation must be cleared if another
processor receives authorization from the coher-
ence mechanism to store to the reservation
granule.

If an implementation continues to hold a reserva-
† tion when the cache block containing the reserva-
† tion granule (here called the “reserved block”) is

evicted, the reservation must continue to partic-
ipate in the coherence protocol. In a snooping
implementation, it must join in snooping. In a
directory-based implementation, it must register
its interest in the reserved block with the direc-
tory (shared-read access).

| Note: The implementation technique described in
| the next paragraph will become possible if and
| when the architecture is changed to permit dcbf to
| clear the reservation on the processor executing
| the dcbf instruction.

If an implementation demands that the reserved
block be held in the cache, one way to satisfy the
architectural requirements is the following. The
implementation must be able to protect that block
from eviction except by explicit invalidation (e.g.,
execution of dcbf) by the processor holding the
reservation, and by cross-invalidates received
from other processors, as long as the reservation
persists. Caches in such an implementation must
be sufficiently associative that the machine can
continue to run with eviction of the reserved block
inhibited.

1.7.2.2 Forward Progress

Forward progress in loops that use lwarx and stwcx.
is achieved by a cooperative effort among hardware,
system software, and application software.

The architecture guarantees that when a processor
executes a lwarx to obtain a reservation for location
X and then a stwcx. to store a value to location X,
either

1. the stwcx. succeeds and the value is written to
location X, or

2. the stwcx. fails because some other processor or
mechanism modified location X, or

3. the stwcx. fails because the processor's reserva-
tion was lost for some other reason.

In Cases 1 and 2, the system as a whole makes
progress in the sense that some processor success-
fully modifies location X. Case 3 covers reservation
loss required for correct operation of the rest of the
system. This includes cancellation caused by some
other processor writing elsewhere in the reservation
granule for X, as well as cancellation caused by the
operating system in managing certain limited

Chapter 1. Storage Model 11

IBM Confidential - Feb. 24, 1999

resources such as real storage. It may also include
implementation-dependent causes of reservation loss.

An implementation may make a forward progress
guarantee, defining the conditions under which the
system as a whole makes progress. Such a guar-
antee must specify the possible causes of reservation
loss in Case 3. While the architecture alone cannot
provide such a guarantee, the characteristics listed in
Cases 1 and 2 are necessary conditions for any
forward progress guarantee. An implementation and
operating system can build on them to provide such a
guarantee.

† Programming Note

The architecture does not include a “fairness
guarantee”. In competing for a reservation, two
processors can indefinitely lock out a third.

†

12 PowerPC AS Virtual Environment Architecture

IBM Confidential - Feb. 24, 1999

Chapter 2. Effect of Operand Placement on Performance

2.1 Instruction Restart 14

The placement (location and alignment) of operands
in storage affects relative performance of storage
accesses, and may affect it significantly. The best
performance is guaranteed if storage operands are
aligned. In order to obtain the best performance
across the widest range of implementations, the pro-
grammer should assume the performance model

| described in Figure 1 with respect to the placement of
| storage operands. Performance of accesses varies

depending on the following:

1. Operand Size
2. Operand Alignment

|
3. Crossing no boundary
4. Crossing a cache block boundary
5. Crossing a virtual page boundary
6. Crossing a segment boundary (see Book III,

PowerPC AS Operating Environment Architecture
for a description of storage segments)

The Load and Store Multiple instructions are defined
to operate only on aligned operands. The Move

† Assist instructions have no alignment requirements.

†

Architecture Note

All processors will provide at a minimum the level
| of support implied by Figure 1.

Operand Boundary Crossing

Byte Cache Virtual
† Size Align. None Block Page 2 Seg.

Integer

8 Byte 8 optimal − − −
4 good good good poor
< 4 good good good poor

4 Byte 4 optimal − − −
< 4 good good good poor

2 Byte 2 optimal − − −
< 2 good good good poor

1 Byte 1 optimal − − −

lmw, 4 good good good poor
stmw

lmd, 8 good good good poor
stmd

string good good good poor

Float

8 Byte 8 optimal − − −
4 good good poor poor
< 4 poor poor poor poor

4 Byte 4 optimal − − −
< 4 poor poor poor poor

| 1 If an instruction causes an access that is not
| atomic and any portion of the operand is in
| storage that is Write Through Required or
| Caching Inhibited, performance is likely to be
| poor.
† 2 If the storage operand spans two virtual pages
† that have different storage control attributes,
† performance is likely to be poor.

Figure 1. Performance effects of storage operand
placement

|

Chapter 2. Effect of Operand Placement on Performance 13

IBM Confidential - Feb. 24, 1999

2.1 Instruction Restart

| In this section, “ Load instruction” includes the Cache
| Management and other instructions that are stated in
| the instruction descriptions to be “treated as a Load”,
| and similarly for “ Store instruction”.

| The following instructions are never restarted after
| having accessed any portion of the storage operand
| (unless the instruction causes a “Data Address
| Compare match” or a “Data Address Breakpoint
| match”, for which the corresponding rules are given
| in Book III).

| 1. A Store instruction that causes an atomic access

| 2. A Load instruction that causes an atomic access
| to storage that is both Caching Inhibited and
| Guarded

| Any other Load or Store instruction may be partially
| executed and then aborted after having accessed a
| portion of the storage operand, and then re-executed
| (i.e., restarted, by the processor or the operating
| system). If an instruction is partially executed, the
| contents of registers are preserved to the extent that
| the correct result will be produced when the instruc-
| tion is re-executed.

| Programming Note

| There are many events that might cause a Load
| or Store instruction to be restarted. For example,
| a hardware error may cause execution of the
| instruction to be aborted after part of the access
| has been performed, and the recovery operation
| could then cause the aborted instruction to be re-
| executed.

| When an instruction is aborted after being par-
| tially executed, the contents of the instruction
| pointer indicate that the instruction has not been
| executed, however, the contents of some registers
| may have been altered and some bytes within the
| storage operand may have been accessed. The
| following are examples of an instruction being
| partially executed and altering the program state
| even though it appears that the instruction has
| not been executed.

| 1. Load Multiple, Load String: Some registers in
| the range of registers to be loaded may have
| been altered.

| 2. Any Store instruction, dcbz : Some bytes of
| the storage operand may have been altered.

| 3. Any floating-point Load instruction: The
| target register (FRT) may have been altered.

14 PowerPC AS Virtual Environment Architecture

IBM Confidential - Feb. 24, 1999

Chapter 3. Storage Control Instructions

3.1 Parameters Useful to Application
Programs 15

3.2 Cache Management Instructions . 16
3.2.1 Instruction Cache Instruction . . . 17
3.2.2 Data Cache Instructions 18

3.3 Synchronization Instructions 21
3.3.1 Instruction Synchronize Instruction 21
3.3.2 Load And Reserve and Store

Conditional Instructions 22
3.3.3 Memory Barrier Instructions . . . 25

3.1 Parameters Useful to Application Programs

It is suggested that the operating system provide a
service that allows an application program to obtain
the following information.

| 1. The two virtual page sizes
2. Coherence block size
3. Granule sizes for reservations
4. An indication of the cache model implemented

(e.g., Harvard-style cache, combined cache)
5. Instruction cache size
6. Data cache size
7. Instruction cache line size (see Book IV, PowerPC

AS Implementation Features)
8. Data cache line size (see Book IV)

| 9. Block size for icbi
| 10. Block size for dcbt and dcbtst
| 11. Block size for dcbz , dcbst , and dcbf

12. Instruction cache associativity
13. Data cache associativity
14. Factors for converting the Time Base to seconds

If the caches are combined, the same value should be
given for an instruction cache attribute and the corre-
sponding data cache attribute.

Architecture Note

All processors in a symmetric multiprocessor
must be identical with respect to the cache model,
the coherence block size, and the reservation
granule sizes.

Chapter 3. Storage Control Instructions 15

IBM Confidential - Feb. 24, 1999

3.2 Cache Management Instructions

The Cache Management instructions obey the sequen-
tial execution model except as described in Section
3.2.1, “Instruction Cache Instruction” on page 17.

In the instruction descriptions the statements “this
instruction is treated as a Load” and “this instruction
is treated as a Store” mean that the instruction is
treated as a Load (Store) from (to) the addressed byte

† with respect to address translation, storage pro-
tection, reference and change recording, and the

| storage access ordering described in Section 1.7.1,
“Storage Access Ordering” on page 6.

Engineering Note

An example of the requirements of the sequential
execution model with respect to Cache Manage-
ment instructions is that a Load instruction that
specifies a storage location in the block specified
by a preceding dcbf instruction must be satisfied
from main storage (if the location is in storage
that is not Memory Coherence Required) or from
coherent storage (if the location is in storage that
is Memory Coherence Required), and not from the
copy of the location that existed in the cache
when the dcbf instruction was executed.

Similar requirements apply to cache reload
buffers. For example, if a cache reload request
for a given instruction cache block is pending
when an icbi instruction is executed specifying the
same block, the results of the reload request must
not be used to satisfy a subsequent instruction
fetch.

An example of the requirements of data depend-
encies with respect to Cache Management
instructions is that if a dcbf instruction depends
on the value returned by a preceding Load
instruction, the invalidation caused by the dcbf
must be performed after the load has been per-
formed.

Engineering Note

|

If, at any level of the storage hierarchy, a com-
bined cache is implemented such that locations in
that cache lack an indication of whether they were
fetched as data or as instructions, the locations
must be treated as if they were fetched as data
and must not be treated as if they were fetched
as instructions. E.g., dcbf must flush and invali-
date them, and icbi must not invalidate them.
(Permitting icbi to invalidate a block that was

† fetched as data would permit it to invalidate modi-
† fied data, creating a security and data integrity

exposure.)

16 PowerPC AS Virtual Environment Architecture

IBM Confidential - Feb. 24, 1999

† 3.2.1 Instruction Cache Instruction

The instruction cache is not necessarily kept con-
sistent with the data cache or with main storage.
When instructions are modified by processors or by
other mechanisms, software must ensure that the
instruction cache is made consistent with data
storage and that the modifications are made visible to
the instruction fetching mechanism. The following
instruction sequence can be used to accomplish this
when the instructions being modified are in storage
that is Memory Coherence Required and one program
both modifies the instructions and executes them.
(Additional synchronization is needed when one
program modifies instructions that another program
will execute.) In this sequence, location “ instr” is
assumed to contain instructions that have been modi-
fied.

dcbst instr #update block in main storage
sync #order update before invalidat'n
icbi instr #invalidate copy in instr cache
isync #discard prefetched instructions

Programming Note

Because the optimal instruction sequence may
vary between systems, many operating systems
will provide a system service to perform the func-
tion described above.

Engineering Note

Correct operation of the instruction sequence
shown above, and of any corresponding system-
specific sequence, may require that an instruction
fetch request not bypass a writeback of the same
storage location caused by the sequence
(including a writeback by another processor).

Instruction Cache Block Invalidate X-form

icbi RA,RB

31 /// RA RB 982 /

0 6 11 16 21 31

Let the effective address (EA) be the sum
(RA|0)+ tea(RB).

If the block containing the byte addressed by EA is in
storage that is Memory Coherence Required and a
block containing the byte addressed by EA is in the
instruction cache of any processors, the block is inval-

† idated in those instruction caches.

If the block containing the byte addressed by EA is in
storage that is not Memory Coherence Required and
a block containing the byte addressed by EA is in the
instruction cache of this processor, the block is invali-

† dated in that instruction cache.

The function of this instruction is independent of
whether the block containing the byte addressed by
EA is in storage that is Write Through Required or
Caching Inhibited.

This instruction is treated as a Load (see Section 3.2),
except that reference and change recording need not

| be done.

Special Registers Altered:
None

†

Programming Note

As stated above, the effective address is trans-
lated using translation resources used for data
accesses, even though the block being invalidated
was copied into the instruction cache based on
translation resources used for instruction fetches
(see Book III, PowerPC AS Operating Environment
Architecture).

†

Chapter 3. Storage Control Instructions 17

IBM Confidential - Feb. 24, 1999

3.2.2 Data Cache Instructions

Data Cache Block Touch X-form

dcbt RA,RB

31 /// RA RB 278 /

0 6 11 16 21 31

Let the effective address (EA) be the sum
(RA|0)+ tea(RB).

† The dcbt instruction provides a hint that the program
† will probably soon load from the block containing the
† byte addressed by EA. The hint is ignored if the block
| is Caching Inhibited or Guarded.

| The actions (if any) taken by the processor in
| response to the hint are not considered to be “caused
| by” or “associated with” the dcbt instruction (e.g.,
| dcbt is considered not to cause any data accesses).
| No means are provided by which software can syn-
| chronize these actions with the execution of the
| instruction stream. For example, these actions are
| not ordered by the memory barrier created by a sync
| instruction.

This instruction is treated as a Load (see Section 3.2),
except that the system data storage error handler is

| not invoked, and reference and change recording
need not be done.

Special Registers Altered:
None

| Engineering Note

| See the description of the optional version of dcbt
| in Section 5.2.1.1 for additional information about
| this instruction.

| Programming Note

| In response to the hint provided by dcbt and
| dcbtst , the processor may prefetch the specified
| block into the data cache, or take other actions
| that reduce the latency of subsequent Load or
| Store instructions that refer to the block.

| Earlier implementations do not necessarily ignore
| the hint provided by dcbt and dcbtst if the speci-
| fied block is in storage that is Guarded and not
| Caching Inhibited. Therefore a dcbt or dcbtst
| instruction should not specify an EA in such
| storage if the program is to be run on such imple-
| mentations.

Data Cache Block Touch for Store X-form

dcbtst RA,RB

31 /// RA RB 246 /

0 6 11 16 21 31

Let the effective address (EA) be the sum
(RA|0)+ tea(RB).

† The dcbtst instruction provides a hint that the
† program will probably soon store to the block con-
† taining the byte addressed by EA. The hint is ignored
| if the block is Caching Inhibited or Guarded.

| The actions (if any) taken by the processor in
| response to the hint are not considered to be “caused
| by” or “associated with” the dcbtst instruction (e.g.,
| dcbtst is considered not to cause any data accesses).
| No means are provided by which software can syn-
| chronize these actions with the execution of the
| instruction stream. For example, these actions are
| not ordered by the memory barrier created by a sync
| instruction.

This instruction is treated as a Load (see Section 3.2),
except that the system data storage error handler is

| not invoked, and reference and change recording
need not be done.

Special Registers Altered:
None

Engineering Note

Executing dcbtst does not cause the specified
block to be considered to be modified in the data
cache.

Engineering Note

† Programs that use dcbt or dcbtst are likely to
† contain multiple instances of the instruction pre-
† ceding the Load or Store instructions that refer to
† the prefetched blocks. In designing the data
† cache and any associated prefetch buffers, con-
† sideration should be given to minimizing the
† extent to which the prefetched blocks displace
† other data needed or requested by the program,
† or are themselves displaced before they are used.

18 PowerPC AS Virtual Environment Architecture

IBM Confidential - Feb. 24, 1999

Data Cache Block set to Zero X-form

dcbz RA,RB

[POWER mnemonic: dclz]

31 /// RA RB 1014 /

0 6 11 16 21 31

† if RA = 0 then b ← 0
† else b ← (RA)
† EA ← b +tea (RB)
† n ← block size (bytes)
† m ← log 2(n)
† ea ← EA0:63−m || m0
| MEM(ea, n) ← n0x00
† MEMtag(EA, n) ← 0

Let the effective address (EA) be the sum
(RA|0)+ tea(RB).

| All bytes in the block containing the byte addressed
| by EA are set to zero.

†

This instruction is treated as a Store (see Section 3.2).

Special Registers Altered:
None

Programming Note

† dcbz does not cause the block to exist in the data
† cache if the block is in storage that is Caching
† Inhibited.

† For storage that is neither Write Through
† Required nor Caching Inhibited, dcbz provides an
† efficient means of setting blocks of storage to
† zero. It can be used to initialize large areas of
† such storage, in a manner that is likely to
† consume less memory bandwidth than an equiv-
† alent sequence of Store instructions.

† For storage that is either Write Through Required
† or Caching Inhibited, dcbz is likely to take signif-
† icantly longer to execute than an equivalent
† sequence of Store instructions.

† See the section entitled “Cache Management
† Instructions” in Book III, PowerPC AS Operating
† Environment Architecture for additional informa-
† tion about dcbz .

Engineering Note

† If the specified block is in storage that is neither
† Write Through Required nor Caching Inhibited and
| is not already in the data cache, establishing the
| block in the data cache without fetching it from
| main storage may provide the best performance.

† If the specified block is in storage that is either
† Write Through Required or Caching Inhibited, an
† Alignment exception may be generated.

† If dcbz causes the specified block to be estab-
† lished in the data cache without being fetched
| from main storage, the contents of any byte of the
| cache block must not be made available to
| another processor or mechanism until that byte
| has been set to zero.

Chapter 3. Storage Control Instructions 19

IBM Confidential - Feb. 24, 1999

Data Cache Block Store X-form

dcbst RA,RB

31 /// RA RB 54 /

0 6 11 16 21 31

Let the effective address (EA) be the sum
(RA|0)+ tea(RB).

If the block containing the byte addressed by EA is in
storage that is Memory Coherence Required and a
block containing the byte addressed by EA is in the
data cache of any processor and any locations in the
block are considered to be modified there, those
locations are written to main storage, additional
locations in the block may be written to main storage,
and the block ceases to be considered to be modified
in that data cache.

If the block containing the byte addressed by EA is in
storage that is not Memory Coherence Required and
a block containing the byte addressed by EA is in the
data cache of this processor and any locations in the
block are considered to be modified there, those
locations are written to main storage, additional
locations in the block may be written to main storage,
and the block ceases to be considered to be modified
in that data cache.

The function of this instruction is independent of
whether the block containing the byte addressed by
EA is in storage that is Write Through Required or
Caching Inhibited.

This instruction is treated as a Load (see Section 3.2),
except that reference and change recording need not
be done.

Special Registers Altered:
None

Data Cache Block Flush X-form

dcbf RA,RB

31 /// RA RB 86 /

0 6 11 16 21 31

Let the effective address (EA) be the sum
(RA|0)+ tea(RB).

If the block containing the byte addressed by EA is in
storage that is Memory Coherence Required and a
block containing the byte addressed by EA is in the
data cache of any processor and any locations in the
block are considered to be modified there, those
locations are written to main storage and additional
locations in the block may be written to main storage.
The block is invalidated in the data caches of all
processors.

If the block containing the byte addressed by EA is in
storage that is not Memory Coherence Required and
a block containing the byte addressed by EA is in the
data cache of this processor and any locations in the
block are considered to be modified there, those
locations are written to main storage and additional
locations in the block may be written to main storage.
The block is invalidated in the data cache of this
processor.

The function of this instruction is independent of
whether the block containing the byte addressed by
EA is in storage that is Write Through Required or
Caching Inhibited.

This instruction is treated as a Load (see Section 3.2),
except that reference and change recording need not
be done.

Special Registers Altered:
None

20 PowerPC AS Virtual Environment Architecture

IBM Confidential - Feb. 24, 1999

† 3.3 Synchronization Instructions

† 3.3.1 Instruction Synchronize
† Instruction

Instruction Synchronize XL-form

isync

[POWER mnemonic: ics]

19 /// /// /// 150 /

0 6 11 16 21 31

† Executing an isync instruction ensures that all
instructions preceding the isync instruction have com-
pleted before the isync instruction completes, and
that no subsequent instructions are initiated until
after the isync instruction completes. It also causes
any prefetched instructions to be discarded, with the
effect that subsequent instructions will be fetched and
executed in the context established by the
instructions preceding the isync instruction.

The isync instruction may complete before storage
accesses associated with instructions preceding the
isync instruction have been performed.

This instruction is context synchronizing (see Book III,
PowerPC AS Operating Environment Architecture).

Special Registers Altered:
None

Chapter 3. Storage Control Instructions 21

IBM Confidential - Feb. 24, 1999

† 3.3.2 Load And Reserve and Store Conditional Instructions

† The Load And Reserve and Store Conditional
† instructions can be used to construct a sequence of
† instructions that appears to perform an atomic update
† operation on an aligned storage location. See Section
† 1.7.2, “Atomic Update” on page 9 for additional infor-
† mation about these instructions.

† The Load And Reserve and Store Conditional
† instructions are fixed-point Storage Access
† instructions; see the section entitled “Storage Access
† Instructions” in Book I, PowerPC AS User Instruction
† Set Architecture.

† The storage location specified by the Load And
† Reserve and Store Conditional instructions must be in
† storage that is Memory Coherence Required if the
† location may be modified by other processors or
† mechanisms. If the specified location is in storage
† that is Write Through Required or Caching Inhibited,
| the system data storage error handler or the system
| alignment error handler is invoked.

† Programming Note

† The Memory Coherence Required attribute on
† other processors and mechanisms ensures that
† their stores to the reservation granule will cause
† the reservation created by the Load And Reserve
† instruction to be lost.

† Programming Note

† Because the Load And Reserve and Store Condi-
† tional instructions have implementation depend-
† encies (e.g., the granularity at which reservations
† are managed), they must be used with care. The
† operating system should provide system library
† programs that use these instructions to implement
† the high-level synchronization functions (Test and
† Set, Compare and Swap, locking, etc.; see
† Appendix B) that are needed by application pro-
† grams. Application programs should use these
† library programs, rather than use the Load And
† Reserve and Store Conditional instructions
† directly.

22 PowerPC AS Virtual Environment Architecture

IBM Confidential - Feb. 24, 1999

Load Word And Reserve Indexed
X-form

lwarx RT,RA,RB

31 RT RA RB 20 /

0 6 11 16 21 31

if RA = 0 then b ← 0
else b ← (RA)
EA ← b +tea (RB)
RESERVE← 1
RESERVE_ADDR← real_addr(EA)
RT ← 320 || MEM(EA, 4)

Let the effective address (EA) be the sum
(RA|0)+ tea(RB). The word in storage addressed by EA
is loaded into RT32:63. RT0:31 are set to 0.

This instruction creates a reservation for use by a
Store Word Conditional instruction. An address com-

† puted from the EA as described in Section 1.7.2.1 is
associated with the reservation, and replaces any

† address previously associated with the reservation.

EA must be a multiple of 4. If it is not, either the
system alignment error handler is invoked or the
results are boundedly undefined.

Special Registers Altered:
None

Engineering Note

† Causing an Alignment exception if attempt is
made to execute a Load And Reserve or Store
Conditional instruction having an incorrectly
aligned effective address facilitates the debugging
of software.

Load Doubleword And Reserve Indexed
X-form

ldarx RT,RA,RB

31 RT RA RB 84 /

0 6 11 16 21 31

if RA = 0 then b ← 0
else b ← (RA)
EA ← b +tea (RB)
RESERVE← 1
RESERVE_ADDR← real_addr(EA)
RT ← MEM(EA, 8)

Let the effective address (EA) be the sum
(RA|0)+ tea(RB). The doubleword in storage addressed
by EA is loaded into RT.

This instruction creates a reservation for use by a
Store Doubleword Conditional instruction. An

† address computed from the EA as described in
† Section 1.7.2.1 is associated with the reservation, and

replaces any address previously associated with the
† reservation.

EA must be a multiple of 8. If it is not, either the
system alignment error handler is invoked or the
results are boundedly undefined.

Special Registers Altered:
None

Chapter 3. Storage Control Instructions 23

IBM Confidential - Feb. 24, 1999

Store Word Conditional Indexed X-form

stwcx. RS,RA,RB

31 RS RA RB 150 1

0 6 11 16 21 31

if RA = 0 then b ← 0
else b ← (RA)
EA ← b +tea (RB)
if RESERVE then

if RESERVE_ADDR = real_addr(EA) then
MEM(EA, 4) ← (RS) 32:63

† MEMtag(EA, 4) ← 0
CR0 ← 0b00 || 0b1 || XERSO
FXCC ← 0b00 || 0b1 || 0b0

else
u ← undefined 1-bit value
if u then

MEM(EA, 4) ← (RS) 32:63
† MEMtag(EA, 4) ← 0

CR0 ← 0b00 || u || XERSO
FXCC ← 0b00 || u || 0b0

RESERVE← 0
else

CR0 ← 0b00 || 0b0 || XERSO
FXCC ← 0b00 || 0b0 || 0b0

Let the effective address (EA) be the sum
(RA|0)+ tea(RB).

† If a reservation exists and the storage location speci-
fied by the stwcx. is the same as that specified by the
Load And Reserve instruction that established the
reservation, (RS)32:63 are stored into the word in
storage addressed by EA and the reservation is
cleared.

† If a reservation exists but the storage location speci-
fied by the stwcx. is not the same as that specified by
the Load And Reserve instruction that established the
reservation, the reservation is cleared, and it is unde-
fined whether (RS)32:63 are stored into the word in
storage addressed by EA.

If a reservation does not exist, the instruction com-
pletes without altering storage.

CR Field 0 and the FXCC are set to reflect whether
the store operation was performed, as follows.

CR0LT GT EQ SO = 0b00 || store_performed || XERSO
FXCC = 0b00 || store_performed || 0b0

EA must be a multiple of 4. If it is not, either the
system alignment error handler is invoked or the
results are boundedly undefined.

Special Registers Altered:
CR0 FXCC

†

Store Doubleword Conditional Indexed
X-form

stdcx. RS,RA,RB

31 RS RA RB 214 1

0 6 11 16 21 31

if RA = 0 then b ← 0
else b ← (RA)
EA ← b +tea (RB)
if RESERVE then

if RESERVE_ADDR = real_addr(EA) then
MEM(EA, 8) ← (RS)

† MEMtag(EA, 8) ← 0
CR0 ← 0b00 || 0b1 || XERSO
FXCC ← 0b00 || 0b1 || 0b0

else
u ← undefined 1-bit value
if u then

MEM(EA, 8) ← (RS)
† MEMtag(EA, 8) ← 0

CR0 ← 0b00 || u || XERSO
FXCC ← 0b00 || u || 0b0

RESERVE← 0
else

CR0 ← 0b00 || 0b0 || XERSO
FXCC ← 0b00 || 0b0 || 0b0

Let the effective address (EA) be the sum
(RA|0)+ tea(RB).

† If a reservation exists and the storage location speci-
fied by the stdcx. is the same as that specified by the
Load And Reserve instruction that established the
reservation, (RS) is stored into the doubleword in
storage addressed by EA and the reservation is
cleared.

† If a reservation exists but the storage location speci-
fied by the stdcx. is not the same as that specified by
the Load And Reserve instruction that established the
reservation, the reservation is cleared, and it is unde-
fined whether (RS) is stored into the doubleword in
storage addressed by EA.

If a reservation does not exist, the instruction com-
pletes without altering storage.

CR Field 0 and the FXCC are set to reflect whether
the store operation was performed, as follows.

CR0LT GT EQ SO = 0b00 || store_performed || XERSO
FXCC = 0b00 || store_performed || 0b0

EA must be a multiple of 8. If it is not, either the
system alignment error handler is invoked or the
results are boundedly undefined.

Special Registers Altered:
CR0 FXCC

†

24 PowerPC AS Virtual Environment Architecture

IBM Confidential - Feb. 24, 1999

† 3.3.3 Memory Barrier Instructions

† The Memory Barrier instructions can be used to
† control the order in which storage accesses are per-
† formed with respect to other processors and mech-
† anisms. Additional information about these
† instructions and about related aspects of storage
† management can be found in Book III, PowerPC AS
† Operating Environment Architecture.

| Extended mnemonics for Synchronize

| Extended mnemonics are provided for the Synchro-
| nize instruction so that it can be coded with the L
| value as part of the mnemonic rather than as a
| numeric operand. These are shown as examples with
| the instruction. See Appendix A, “Assembler
| Extended Mnemonics” on page 39.

Synchronize X-form

| sync L

[POWER mnemonic: dcs]

| 31 /// L /// /// 598 /
| 0 6 10 11 16 21 31

† The sync instruction creates a memory barrier (see
| Section 1.7.1). The set of storage accesses that is
| ordered by the memory barrier depends on the value
| of the L bit.

| L = 0 (“heavyweight sync”)
| The memory barrier provides an ordering func-
| tion for the storage accesses associated with all
| instructions that are executed by the processor
| executing the sync instruction. The applicable
| pairs are all pairs ai,bj in which bj is a data
| access.

| L = 1 (“lightweight sync”)
| The memory barrier provides an ordering func-
| tion for the storage accesses caused by Load,
| Store, and dcbz instructions that are executed by
| the processor executing the sync instruction and
| for which the specified storage location is in
| storage that is Memory Coherence Required and
| is neither Write Through Required nor Caching
| Inhibited. The applicable pairs are all pairs ai,bj
| of such accesses except those in which ai is an
| access caused by a Store or dcbz instruction and
| bj is an access caused by a Load instruction.

† The ordering done by the memory barrier is cumula-
† tive.

The sync instruction may complete before storage
accesses associated with instructions preceding the
sync instruction have been performed.

| If L=0 , the sync instruction has the following addi-
| tional properties.

† ■ Executing it ensures that all instructions pre-
ceding the sync instruction have completed
before the sync instruction completes, and that
no subsequent instructions are initiated until after
the sync instruction completes.

† ■ It is execution synchronizing (see Book III,
PowerPC AS Operating Environment

| Architecture).

Special Registers Altered:
None

| Extended Mnemonics:

| Extended mnemonics for Synchronize:

| Extended: Equivalent to:

| sync sync 0
| lwsync sync 1

| Except in the sync instruction description in this
| section, references to “ sync ” in Books I − III imply
| L = 0 unless otherwise stated or obvious from context;
| “ lwsync ” is used when L = 1 is intended.

| Programming Note

| sync serves as both a basic and an extended
| mnemonic. The Assembler will recognize a sync
| mnemonic with one operand as the basic form,
| and a sync mnemonic with no operand as the
| extended form. In the extended form the L
| operand is omitted and assumed to be 0.

Chapter 3. Storage Control Instructions 25

IBM Confidential - Feb. 24, 1999

Programming Note

The sync instruction can be used to ensure that
all stores into a data structure, caused by Store
instructions executed in a “critical section” of a
program, will be performed with respect to
another processor before the store that releases
the lock is performed with respect to that

† processor; see Section B.2, “Lock Acquisition and
† Release, and Related Techniques” on page 43.

| For instructions following a sync instruction, the
| storage accesses listed below need not be
| ordered after the memory barrier created by the
| sync instruction.

| ■ implicit storage accesses (see Book III) for
| purposes of address translation and refer-
| ence, change, and tag set recording
† ■ instruction fetches

| The memory barrier created by the sync instruc-
| tion does not order the actions (if any) taken by
| the processor in response to the hint provided by
| a dcbt or dcbtst instruction.

| Additional operations that are ordered by sync
| with L = 0 include Reference, Change, and Tag Set
| bit updates and, with tlbsync , TLB invalidations;
| see Book III.

| If L = 0 the functions performed by the sync
instruction may take a significant amount of time

| to complete, so indiscriminate use of this form of
| the instruction may adversely affect performance.
| Using either sync with L = 1 or the eieio instruc-
† tion may be more appropriate than using sync
| with L = 0 for many cases.

Engineering Note

Unlike a context synchronizing operation, sync
† need not cause prefetched instructions to be dis-
† carded.

| Architecture Note

| The functions provided by sync with L = 1 are a
| strict subset of those provided by sync with L=0 .

26 PowerPC AS Virtual Environment Architecture

IBM Confidential - Feb. 24, 1999

Enforce In-order Execution of I/O X-form

eieio

31 /// /// /// 854 /

0 6 11 16 21 31

† The eieio instruction creates a memory barrier (see
† Section 1.7.1), which provides an ordering function for

the storage accesses caused by Load, Store, dcbz ,
| eciwx , and ecowx instructions executed by the

processor executing the eieio instruction. These
storage accesses are divided into two sets, which are

† ordered separately. The storage access caused by an
† eciwx instruction is ordered as a load, and the
| storage access caused by a dcbz or ecowx instruction

is ordered as a store.

1. Loads and stores to storage that is both Caching
Inhibited and Guarded, and stores to main
storage caused by stores to storage that is Write
Through Required

† The applicable pairs are all pairs ai,bj of such
† accesses.

† The ordering done by the memory barrier for
† accesses in this set is not cumulative.

2. Stores to storage that is Memory Coherence
Required and is neither Write Through Required
nor Caching Inhibited

† The applicable pairs are all pairs ai,bj of such
† accesses.

† The ordering done by the memory barrier for
† accesses in this set is cumulative.

†

The eieio instruction may complete before storage
accesses caused by instructions preceding the eieio
instruction have been performed.

Special Registers Altered:
None

Programming Note

The eieio instruction is intended for use in man-
† aging shared data structures (see Appendix B,
† “Programming Examples for Sharing Storage” on
† page 41), in doing memory-mapped I/O, and in

preventing load/store combining operations in
main storage (see Section 1.6, “Storage Control

† Attributes” on page 4).

Because stores to storage that is both Caching
Inhibited and Guarded are performed in program
order (see Section 1.7.1, “Storage Access
Ordering” on page 6), eieio is needed for such
storage only when loads must be ordered with
respect to stores or with respect to other loads, or
when load/store combining operations must be
prevented.

† For accesses in set 1, ai and bj need not be the
† same kind of access or be to storage having the
† same storage control attributes. For example, ai
† can be a load to Caching Inhibited, Guarded
† storage, and bj a store to Write Through Required
† storage.

If stronger ordering is desired than that provided
| by eieio , the sync instruction must be used, with
| the appropriate value in the L field.

Engineering Note

See the descriptions of tlbie and tlbsync in Book
III for additional operations that are ordered by
eieio .

Architecture Note

The functions provided by eieio are a strict subset
| of those provided by sync with L=0 . The func-
| tions provided by eieio for its second set are a
| strict subset of those provided by sync with L=1 .

|

Chapter 3. Storage Control Instructions 27

IBM Confidential - Feb. 24, 1999

28 PowerPC AS Virtual Environment Architecture

IBM Confidential - Feb. 24, 1999

Chapter 4. Time Base

4.1 Time Base Instructions 30
4.2 Reading the Time Base 30

4.3 Computing Time of Day from the
Time Base 31

The Time Base (TB) is a 64-bit register (see Figure 2)
containing a 64-bit unsigned integer that is incre-
mented periodically. Each increment adds 1 to the
low-order bit (bit 63). The frequency at which the
integer is updated is implementation-dependent.

TBU TBL

0 32 63

Field Description
TBU Upper 32 bits of Time Base
TBL Lower 32 bits of Time Base

Figure 2. Time Base

The Time Base increments until its value becomes
0xFFFF_FFFF_FFFF_FFFF (264 − 1). At the next incre-
ment, its value becomes 0x0000_0000_0000_0000.
There is no explicit indication (such as an interrupt:
see Book III, PowerPC AS Operating Environment
Architecture) that this has occurred.

The period of the Time Base depends on the driving
frequency. As an order of magnitude example,
suppose that the CPU clock is 100 MHz and that the
Time Base is driven by this frequency divided by 32.
Then the period of the Time Base would be

TTB = 264 × 32
100 MHz

= 5.90 × 1012 seconds

which is approximately 187,000 years.

The PowerPC AS Architecture does not specify a
relationship between the frequency at which the Time
Base is updated and other frequencies, such as the
CPU clock or bus clock, in a PowerPC AS system. The
Time Base update frequency is not required to be

constant. What is required, so that system software
can keep time of day and operate interval timers, is
one of the following.

■ The system provides an (implementa-
tion-dependent) interrupt to software whenever
the update frequency of the Time Base changes,
and a means to determine what the current
update frequency is.

■ The update frequency of the Time Base is under
the control of the system software.

Engineering Note

See Book III, PowerPC AS Operating Environment
Architecture for additional requirements related to
secure systems.

Programming Note

If the operating system initializes the Time Base
on power-on to some reasonable value and the
update frequency of the Time Base is constant,
the Time Base can be used as a source of values
that increase at a constant rate, such as for time
stamps in trace entries.

Even if the update frequency is not constant,
values read from the Time Base are
monotonically increasing (except when the Time
Base wraps from 264− 1 to 0). If a trace entry is
recorded each time the update frequency
changes, the sequence of Time Base values can
be post-processed to become actual time values.

Successive readings of the Time Base may return
identical values.

Chapter 4. Time Base 29

IBM Confidential - Feb. 24, 1999

4.1 Time Base Instructions

Extended mnemonics

† Extended mnemonics are provided provided for the
† Move From Time Base instruction so that it can be

coded with the TBR name as part of the mnemonic
rather than as a numeric operand. See the appendix
entitled “Assembler Extended Mnemonics” in Book III,
PowerPC AS Operating Environment Architecture.

Move From Time Base XFX-form

mftb RT,TBR

31 RT tbr 371 /

0 6 11 21 31

n ← tbr 5:9 || tbr 0:4
if n = 268 then

RT ← TB
else if n = 269 then

RT ← 320 || TB0:31

The TBR field denotes either the Time Base or Time
† Base Upper, encoded as shown in the table below.

The contents of the designated register are placed
into register RT. When reading Time Base Upper, the
high-order 32 bits of register RT are set to zero.

† TBR* Register
† decimal tbr 5:9 tbr 0:4 Name

† 268 01000 01100 TB
† 269 01000 01101 TBU

* Note that the order of the two 5-bit
halves of the TBR number is reversed.

If the TBR field contains any value other than one of
the values shown above then one of the following
occurs.

■ The system illegal instruction error handler is
invoked.

■ The system privileged instruction error handler is
invoked.

■ The results are boundedly undefined.

Special Registers Altered:
None

Extended Mnemonics:

Extended mnemonics for Move From Time Base:

Extended: Equivalent to:

mftb Rx mftb Rx,268
mftbu Rx mftb Rx,269

Programming Note

mftb serves as both a basic and an extended
mnemonic. The Assembler will recognize an mftb
mnemonic with two operands as the basic form,
and an mftb mnemonic with one operand as the

† extended form. In the extended form the TBR
† operand is omitted and assumed to be 268 (the
† value that corresponds to TB).

Compiler and Assembler Note

The TBR number coded in assembler language
does not appear directly as a 10-bit binary
number in the instruction. The number coded is
split into two 5-bit halves that are reversed in the
instruction, with the high-order 5 bits appearing in
bits 16:20 of the instruction and the low-order 5
bits in bits 11:15.

Architecture Note

Some implementations may implement mftb and
mfspr identically. Therefore a TBR number must
not match an SPR number.

Engineering Note

The extended opcode for mftb differs from that of
mfspr by only one bit. Implementations are per-
mitted to ignore this bit and treat both
instructions identically.

4.2 Reading the Time Base

The contents of the Time Base can be read into a
GPR by the mftb extended mnemonic. To read the
contents of the Time Base into register Rx, execute:

mftb Rx

Reading the Time Base has no effect on the value it
contains or on the periodic incrementing of that value.

30 PowerPC AS Virtual Environment Architecture

IBM Confidential - Feb. 24, 1999

4.3 Computing Time of Day
from the Time Base

Since the update frequency of the Time Base is imple-
mentation-dependent, the algorithm for converting the
current value in the Time Base to time of day is also
implementation-dependent.

As an example, assume that the Time Base is incre-
mented at a constant rate of once for every 32 cycles
of a 100 MHz CPU instruction clock. What is wanted
is the pair of 32-bit values comprising a POSIX
standard clock:1 the number of whole seconds that
have passed since midnight January 0, 1970, and the
remaining fraction of a second expressed as a
number of nanoseconds.

Assume that:

■ The value 0 in the Time Base represents the start
time of the POSIX clock (if this is not true, a
simple 64-bit subtraction will make it so).

■ The integer constant ticks_per_sec contains the
value

100 MHz
32

= 3,125,000

which is the number of times the Time Base is
updated each second.

■ The integer constant ns_adj contains the value

1,000,000,000
3,125,000

= 320

which is the number of nanoseconds per tick of
the Time Base.

The POSIX clock can be computed with an instruction
sequence such as this:

mftb Ry # Ry = Time Base
lwz Rx,ticks_per_sec
divd Rz,Ry,Rx # Rz = whole seconds
stw Rz,posix_sec
mulld Rz,Rz,Rx # Rz = quotient * divisor
sub Rz,Ry,Rz # Rz = excess ticks
lwz Rx,ns_adj
mulld Rz,Rz,Rx # Rz = excess nanoseconds
stw Rz,posix_ns

Non-constant update frequency

In a system in which the update frequency of the Time
Base may change over time, it is not possible to
convert an isolated Time Base value into time of day.
Instead, a Time Base value has meaning only with
respect to the current update frequency and the time
of day that the update frequency was last changed.
Each time the update frequency changes, either the
system software is notified of the change via an inter-
rupt (see Book III, PowerPC AS Operating Environ-
ment Architecture), or the change was instigated by
the system software itself. At each such change, the
system software must compute the current time of
day using the old update frequency, compute a new
value of ticks_per_sec for the new frequency, and
save the time of day, Time Base value, and tick rate.
Subsequent calls to compute time of day use the
current Time Base value and the saved data.

1 Described in POSIX Draft Standard P1003.4/D12, Draft Standard for Information Technology -- Portable Operating System Interface (POSIX) --
Part 1: System Application Program Interface (API) - Amendment 1: Realtime Extension [C Language] . Institute of Electrical and Electronics
Engineers, Inc., Feb. 1992.

Chapter 4. Time Base 31

IBM Confidential - Feb. 24, 1999

32 PowerPC AS Virtual Environment Architecture

IBM Confidential - Feb. 24, 1999

Chapter 5. Optional Facilities and Instructions

5.1 External Control 33
5.1.1 External Access Instructions . . . 34
5.2 Storage Control Instructions 35

5.2.1 Cache Management Instructions 35
5.2.1.1 Data Cache Instruction 35
5.3 Little-Endian 37

The facilities and instructions described in this
chapter are optional. An implementation may provide
all, some, or none of them, except as described
below.

5.1 External Control

The External Control facility permits a program to
communicate with a special-purpose device. Two
instructions are provided, both of which must be
implemented if the facility is provided.

■ External Control In Word Indexed (eciwx), which
does the following:

— Computes an effective address (EA) as for
any X-form instruction

— Validates the EA as would be done for a load
from that address

— Translates the EA to a real address
— Transmits the real address to the device
— Accepts a word of data from the device and

places it into a General Purpose Register

■ External Control Out Word Indexed (ecowx),
which does the following:

— Computes an effective address (EA) as for
any X-form instruction

— Validates the EA as would be done for a
store to that address

— Translates the EA to a real address
— Transmits the real address and a word of

data from a General Purpose Register to the
device

Permission to execute these instructions and identifi-
cation of the target device are controlled by two
fields, called the E bit and the RID field respectively.

If attempt is made to execute either of these
instructions when E = 0 the system data storage error
handler is invoked. The location of these fields is
described in Book III, PowerPC AS Operating Environ-
ment Architecture.

The storage access caused by eciwx and ecowx is
performed as though the specified storage location is
Caching Inhibited and Guarded, and is neither Write
Through Required nor Memory Coherence Required.

Interpretation of the real address transmitted by
eciwx and ecowx and of the 32-bit value transmitted
by ecowx is up to the target device, and is not speci-
fied by the PowerPC AS Architecture. See the System
Architecture documentation for a given PowerPC AS
system for details on how the External Control facility
can be used with devices on that system.

Example

An example of a device designed to be used with the
External Control facility might be a graphics adapter.
The ecowx instruction might be used to send the
device the translated real address of a buffer con-
taining graphics data, and the word transmitted from
the General Purpose Register might be control infor-
mation that tells the adapter what operation to
perform on the data in the buffer. The eciwx instruc-
tion might be used to load status information from the
adapter.

A device designed to be used with the External
Control facility may also recognize events that indi-
cate that the address translation being used by the
processor has changed. In this case the operating
system need not “p in” the area of storage identified
by an eciwx or ecowx instruction (i.e., need not
protect it from being paged out).

Chapter 5. Opti onal Facilities and Instructions 33

IBM Confidential - Feb. 24, 1999

5.1.1 External Access Instructions

In the instruction descriptions the statements “this
instruction is treated as a Load” and “this instruction
is treated as a Store” have the same meanings as for

the Cache Management instructions; see Section 3.2,
“Cache Management Instructions” on page 16.

External Control In Word Indexed
X-form

eciwx RT,RA,RB

31 RT RA RB 310 /
0 6 11 16 21 31

if RA = 0 then b ← 0
else b ← (RA)
EA ← b +tea (RB)
raddr ← address translation of EA
send load word request for raddr to

device identified by RID
RT ← 320 || word from device

Let the effective address (EA) be the sum
(RA|0)+ tea(RB).

A load word request for the real address corre-
sponding to EA is sent to the device identified by RID,
bypassing the cache. The word returned by the device
is placed into RT32:63. RT0:31 are set to 0.

The E bit must be 1. If it is not, the data storage error
handler is invoked.

† EA must be a multiple of 4. If it is not, either the
† system alignment error handler is invoked or the
† results are boundedly undefined.

This instruction is treated as a Load.

†

See Book III, PowerPC AS Operating Environment
Architecture for additional information about this
instruction.

Special Registers Altered:
None

Programming Note

The eieio instruction can be used to ensure that
the storage accesses caused by eciwx and ecowx
are performed in program order with respect to
other Caching Inhibited and Guarded storage
accesses.

Engineering Note

Causing the system alignment error handler to be
invoked if attempt is made to execute an eciwx or
ecowx instruction having an incorrectly aligned
effective address facilitates the debugging of soft-
ware.

External Control Out Word Indexed
X-form

ecowx RS,RA,RB

31 RS RA RB 438 /
0 6 11 16 21 31

if RA = 0 then b ← 0
else b ← (RA)
EA ← b +tea (RB)
raddr ← address translation of EA
send store word request for raddr to

device identified by RID
send (RS) 32:63 to device

Let the effective address (EA) be the sum
(RA|0)+ tea(RB).

A store word request for the real address corre-
sponding to EA and the contents of RS32:63 are sent to
the device identified by RID, bypassing the cache.

The E bit must be 1. If it is not, the data storage error
handler is invoked.

† EA must be a multiple of 4. If it is not, either the
† system alignment error handler is invoked or the
† results are boundedly undefined.

This instruction is treated as a Store, except that its
storage access is not performed in program order
with respect to accesses to other Caching Inhibited
and Guarded storage locations unless software explic-
itly imposes that order.

†

See Book III, PowerPC AS Operating Environment
Architecture for additional information about this
instruction.

Special Registers Altered:
None

Architecture Note

Treating ecowx as a Store with respect to the
storage access ordering done solely by virtue of
the Caching Inhibited and Guarded storage control
attributes would require the processor to detect
this case during instruction decoding, instead of
during address translation as for other Caching
Inhibited and Guarded stores.

34 PowerPC AS Virtual Environment Architecture

IBM Confidential - Feb. 24, 1999

5.2 Storage Control Instructions

5.2.1 Cache Management Instructions

† 5.2.1.1 Data Cache Instruction

| The optional version of the Data Cache Block Touch
| instruction includes a TH (Touch Hint) field, which
| permits a program to provide a hint that a sequence
| of data cache blocks is likely to be needed soon. The
| sequence is called a “data stream”.

| Data Cache Block Touch X-form

| dcbt RA,RB,TH

| 31 /// TH RA RB 278 /
| 0 6 9 11 16 21 31

| Let the effective address (EA) be the sum
| (RA|0)+ tea(RB).

| The dcbt instruction provides a hint that the program
| will probably soon load from the storage locations
| specified by EA and the TH field. The hint is ignored
| for storage locations that are Caching Inhibited or
| Guarded.

| The encodings of the TH field are as follows.

| TH Description

| 00 The storage location is the block containing the
| byte addressed by EA.

| 01 The storage locations are the block containing
| the byte addressed by EA and sequentially fol-
| lowing blocks (i.e., the blocks containing the
| bytes addressed by EA + n × block_size, where
| n = 0, 1, 2, ...).

| 10 Reserved

| 11 The storage locations are the block containing
| the byte addressed by EA and sequentially pre-
| ceding blocks (i.e., the blocks containing the
| bytes addressed by EA − n × block_size, where
| n = 0, 1, 2, ...).

| The actions (if any) taken by the processor in
| response to the hint are not considered to be “caused
| by” or “associated with” the dcbt instruction (e.g.,
| dcbt is considered not to cause any data accesses).
| No means are provided by which software can syn-
| chronize these actions with the execution of the

| instruction stream. For example, these actions are
| not ordered by the memory barrier created by a sync
| instruction.

| This instruction is treated as a Load (see Section 3.2),
| except that the system data storage error handler is
| not invoked, and reference and change recording
| need not be done.

| Special Registers Altered:
| None

| Programming Note

| In response to the hint provided by dcbt , the
| processor may prefetch the specified storage
| locations into the data cache, or take other
| actions that reduce the latency of subsequent
| Load instructions that refer to the locations.

| Programming Note

| dcbt serves as both a basic and an extended
| mnemonic. The Assembler will recognize a dcbt
| mnemonic with three operands as the basic form,
| and a dcbt mnemonic with two operands as the
| extended form. In the extended form the TH
| operand is omitted and assumed to be 0b00.

| Programming Note

| If the TH field is set to 0b00, the instruction oper-
| ates as described in Section 3.2.2, “Data Cache
| Instructions” on page 18.

| The TH field should not be set to 0b10, as that
| value may be assigned a meaning in some future
| version of the architecture.

| Earlier implementations that do not support the
| optional version of dcbt ignore the TH field (i.e.,
| treat it as if it were set to 0b00), and do not nec-
| essarily ignore the hint provided by dcbt if the
| specified block is in storage that is Guarded and
| not Caching Inhibited. Therefore a dcbt instruc-
| tion with TH1= 1 should not specify an EA in such
| storage if the program is to be run on such imple-
| mentations.

Chapter 5. Opti onal Facilities and Instructions 35

IBM Confidential - Feb. 24, 1999

| Architecture Note

| Some implementations use bit 8 of the dcbt
| instruction as an additional prefetch hint. This bit
| will not be assigned a meaning in the PowerPC AS
| Architecture except after careful consideration of
| the effect of such assignment on existing imple-
| mentations.

| Programming Note

| Although optimal use of the data stream variant
| of dcbt (TH1= 1) depends on the characteristics of
| the prefetch mechanism and of the storage hier-
| archy (see Book IV), the programmer should
| assume that the following programming model is
| supported.

| ■ Data stream resources are allocated in round-
| robin fashion. Therefore dcbt instructions
| (with TH1= 1) should be executed for the least
| important stream first and the most important
| stream last. If this technique is used and
| dcbt instructions are executed for more
| streams than the processor supports, the
| most important streams will be prefetched.

| ■ The prefetch mechanism paces prefetching of
| a data stream with consumption of the pre-
| fetched data, prefetching only a limited
| number of blocks ahead of the block that is
| currently being loaded from by the program.
| As a consequence, when the program ceases
| to load from successive blocks of the stream,
| prefetching of the stream ceases.

| ■ Certain conditions may cause prefetching to
| be terminated for a data stream that the
| program is still using. However, the prefetch
| mechanism will subsequently detect that the
| stream is still being loaded from and will
| resume prefetching of the stream. Therefore
| there is no need to code more than one dcbt
| instruction (with TH1= 1) for the stream.

| Although the dcbt instruction described in Section
| 3.2.2 (equivalently, dcbt with TH=0b00) can be
| used to provide the same function as the data
| stream variant, the data stream variant may be
| easier to use because only one instance of the
| dcbt instruction is needed per stream, instead of
| one per cache block, and because the perform-
| ance of processing the stream is less sensitive to
| how far ahead of the Load instructions the dcbt
| instruction is placed.

| Engineering Note

| Programs that use the data stream variant of dcbt
| are likely to contain multiple instances of the
| instruction (each for a different data stream) pre-
| ceding the Load instructions that refer to the pre-
| fetched blocks. In designing the data cache and
| any associated prefetch buffers, consideration
| should be given to minimizing the extent to which
| the prefetched blocks displace other data needed
| or requested by the program, or are themselves
| displaced before they are used.

|

36 PowerPC AS Virtual Environment Architecture

IBM Confidential - Feb. 24, 1999

| 5.3 Little-Endian

† If the optional Little-Endian facility is implemented
† (see the section entitled “Little-Endian” in Book I,
† PowerPC AS User Instruction Set Architecture), the
† programmer should assume the performance model
† described in Figure 3 with respect to the placement of
† storage operands that are accessed in Little-Endian
† mode.

Operand Boundary Crossing

| Byte Cache Virtual
† Size Align. None Block Page 2 Seg.

Integer

8 Byte 8 optimal − − −
4 good good poor poor
< 4 poor poor poor poor

4 Byte 4 optimal − − −
< 4 good good poor poor

2 Byte 2 optimal − − −
< 2 good good poor poor

1 Byte 1 optimal − − −

Float

8 Byte 8 optimal − − −
4 good good poor poor
< 4 poor poor poor poor

4 Byte 4 optimal − − −
< 4 poor poor poor poor

| 1 If an instruction causes an access that is not
| atomic and any portion of the operand is in
| storage that is Write Through Required or
| Caching Inhibited, performance is likely to be
| poor.
† 2 If the storage operand spans two virtual pages
† that have different storage control attributes,
† performance is likely to be poor.

Figure 3. Performance effects of storage operand
placement, Little-Endian mode

Chapter 5. Opti onal Facilities and Instructions 37

IBM Confidential - Feb. 24, 1999

38 PowerPC AS Virtual Environment Architecture

IBM Confidential - Feb. 24, 1999

| Appendix A. Assembler Extended Mnemonics

| In order to make assembler language programs
| simpler to write and easier to understand, a set of
| extended mnemonics and symbols is provided for
| certain instructions. This appendix defines extended

| mnemonics and symbols related to instructions
| defined in Book II.

| Assemblers should provide the extended mnemonics
| and symbols listed here, and may provide others.

| A.1 Synchronize Mnemonics

| The L field in the Synchronize instruction controls
| whether the instruction performs a “heavyweight”
| synchronization function or a “lightweight” synchroni-
| zation function. Extended mnemonics are provided
| that represent the L value in the mnemonic rather
| than requiring it to be coded as a numeric operand.

| Note: sync serves as both a basic and an extended
| mnemonic. The Assembler will recognize a sync
| mnemonic with one operand as the basic form, and a
| sync mnemonic with no operand as the extended
| form. In the extended form the L operand is omitted
| and assumed to be 0.

| sync (equivalent to: sync 0)
| lwsync (equivalent to: sync 1)

Appendix A. Assembler Extended Mnemonics 39

IBM Confidential - Feb. 24, 1999

40 PowerPC AS Virtual Environment Architecture

IBM Confidential - Feb. 24, 1999

† Appendix B. Programming Examples for Sharing Storage

This appendix gives examples of how dependencies
† and the Synchronization instructions can be used to

control storage access ordering when storage is
† shared between programs.

† Many of the examples use extended mnemonics (e.g.,
† bne, bne-, cmpw) that are defined in the Appendix
† entitled “Assembler Extended Mnemonics” in Book I,
† PowerPC AS User Instruction Set Architecture.

† Many of the examples use the Load And Reserve and
† Store Conditional instructions, in a sequence that
† begins with a Load And Reserve instruction and ends
† with a Store Conditional instruction (specifying the
† same storage location as the Load Conditional) fol-
† lowed by a Branch Conditional instruction that tests
† whether the Store Conditional instruction succeeded.

† In these examples it is assumed that contention for
† the shared resource is low; the conditional branches
† are optimized for this case by using “ + ” and “ − ” suf-
† fixes appropriately.

The examples deal with words; they can be used for
† doublewords by changing all word-specific mnemonics
† to the corresponding doubleword-specific mnemonics
† (e.g., lwarx to ldarx , cmpw to cmpd).

| In this appendix it is assumed that all shared storage
| locations are in storage that is Memory Coherence
| Required, and that the storage locations specified by
| Load And Reserve and Store Conditional instructions
| are in storage that is neither Write Through Required
| nor Caching Inhibited.

† B.1 Atomic Update Primitives

† This section gives examples of how the Load And
† Reserve and Store Conditional instructions can be
† used to emulate atomic read/modify/write operations.

† An atomic read/modify/write operation reads a
† storage location and writes its next value, which may
† be a function of its current value, all as a single

† atomic operation. The examples shown provide the
† effect of an atomic read/modify/write operation, but
† use several instructions rather than a single atomic
† instruction.

Fetch and No-op

The “Fetch and No-op” primitive atomically loads the
current value in a word in storage.

In this example it is assumed that the address of the
word to be loaded is in GPR 3 and the data loaded
are returned in GPR 4.

loop: lwarx r4,0,r3 #load and reserve
stwcx. r4,0,r3 #store old value if

still reserved
bne − loop #loop if lost reservation

Note:

1. The stwcx. , if it succeeds, stores to the target
location the same value that was loaded by the
preceding lwarx . While the store is redundant

with respect to the value in the location, its
success ensures that the value loaded by the

† lwarx is still the current value at the time the
† stwcx. is executed.

Fetch and Store

The “Fetch and Store” primitive atomically loads and
replaces a word in storage.

In this example it is assumed that the address of the
word to be loaded and replaced is in GPR 3, the new
value is in GPR 4, and the old value is returned in
GPR 5.

loop: lwarx r5,0,r3 #load and reserve
stwcx. r4,0,r3 #store new value if

still reserved
bne − loop #loop if lost reservation

Appendix B. Programming Examples for Sharing Storage 41

IBM Confidential - Feb. 24, 1999

Fetch and Add

The “Fetch and Add” primitive atomically increments
a word in storage.

In this example it is assumed that the address of the
word to be incremented is in GPR 3, the increment is
in GPR 4, and the old value is returned in GPR 5.

loop: lwarx r5,0,r3 #load and reserve
add r0,r4,r5 #increment word
stwcx. r0,0,r3 #store new value if

still reserved
bne − loop #loop if lost reservation

Fetch and AND

The “Fetch and AND” primitive atomically ANDs a
value into a word in storage.

In this example it is assumed that the address of the
word to be ANDed is in GPR 3, the value to AND into
it is in GPR 4, and the old value is returned in GPR 5.

loop: lwarx r5,0,r3 #load and reserve
and r0,r4,r5 #AND word
stwcx. r0,0,r3 #store new value if

still reserved
bne − loop #loop if lost reservation

Note:

1. The sequence given above can be changed to
perform another Boolean operation atomically on
a word in storage, simply by changing the and
instruction to the desired Boolean instruction (or,
xor, etc.).

Test and Set

This version of the “Test and Set” primitive atom-
ically loads a word from storage, sets the word in
storage to a nonzero value if the value loaded is zero,

† and sets the EQ bit of CR Field 0 to indicate whether
the value loaded is zero.

In this example it is assumed that the address of the
word to be tested is in GPR 3, the new value
(nonzero) is in GPR 4, and the old value is returned in
GPR 5.

loop: lwarx r5,0,r3 #load and reserve
cmpwi r5,0 #done if word
bne − $+12 # not equal to 0
stwcx. r4,0,r3 #try to store non-0
bne − loop #loop if lost reservation

Compare and Swap

The “Compare and Swap” primitive atomically com-
pares a value in a register with a word in storage, if
they are equal stores the value from a second reg-
ister into the word in storage, if they are unequal
loads the word from storage into the first register,

† and sets the EQ bit of CR Field 0 to indicate the result
of the comparison.

In this example it is assumed that the address of the
word to be tested is in GPR 3, the comparand is in
GPR 4 and the old value is returned there, and the
new value is in GPR 5.

loop: lwarx r6,0,r3 #load and reserve
cmpw r4,r6 #1st 2 operands equal?
bne − exit #skip if not
stwcx. r5,0,r3 #store new value if

still reserved
bne − loop #loop if lost reservation

exit: mr r4,r6 #return value from storage

Notes:

1. The semantics given for “Compare and Swap”
above are based on those of the IBM System/370
Compare and Swap instruction. Other architec-
tures may define a Compare and Swap instruction
differently.

2. “Compare and Swap” is shown primarily for ped-
agogical reasons. It is useful on machines that
lack the better synchronization facilities provided
by lwarx and stwcx. . A major weakness of a
System/370-style Compare and Swap instruction
is that, although the instruction itself is atomic, it
checks only that the old and current values of the
word being tested are equal, with the result that
programs that use such a Compare and Swap to
control a shared resource can err if the word has
been modified and the old value subsequently
restored. The sequence shown above has the
same weakness.

3. In some applications the second bne- instruction
and/or the mr instruction can be omitted. The
bne- is needed only if the application requires
that if the EQ bit of CR Field 0 on exit indicates
“not equal” then (r4) and (r6) are in fact not
equal. The mr is needed only if the application
requires that if the comparands are not equal
then the word from storage is loaded into the reg-
ister with which it was compared (rather than into
a third register). If either or both of these
instructions is omitted, the resulting Compare and
Swap does not obey System/370 semantics.

42 PowerPC AS Virtual Environment Architecture

IBM Confidential - Feb. 24, 1999

† B.2 Lock Acquisition and Release, and Related Techniques

† This section gives examples of how dependencies and
† the Synchronization instructions can be used to imple-

† ment locks, import and export barriers, and similar
† constructs.

B.2.1 Lock Acquisition and Import
Barriers

An “import barrier” is an instruction or sequence of
instructions that prevents storage accesses caused by
instructions following the barrier from being per-
formed before storage accesses that acquire a lock
have been performed. An import barrier can be used
to ensure that a shared data structure protected by a
lock is not accessed until the lock has been acquired.

† A sync instruction can be used as an import barrier,
but the approaches shown below will generally yield
better performance because they order only the rele-
vant storage accesses.

B.2.1.1 Acquire Lock and Import Shared
Storage

If lwarx and stwcx. instructions are used to obtain the
lock, an import barrier can be constructed by placing
an isync instruction immediately following the loop
containing the lwarx and stwcx. . The following

† example uses the “Compare and Swap” primitive to
acquire the lock.

In this example it is assumed that the address of the
lock is in GPR 3, the value indicating that the lock is
free is in GPR 4, the value to which the lock should be
set is in GPR 5, the old value of the lock is returned in
GPR 6, and the address of the shared data structure
is in GPR 9.

loop: lwarx r6,0,r3 #load lock and reserve
cmpw r4,r6 #skip ahead if
bne − wait # lock not free
stwcx. r5,0,r3 #try to set lock
bne − loop #loop if lost reservation
isync #import barrier
lwz r7,data1(r9) #load shared data
.
.

wait: ... #wait for lock to free

The second bne- does not complete until CR0 has
been set by the stwcx. . The stwcx. does not set CR0
until it has completed (successfully or unsuccessfully).
The lock is acquired when the stwcx. completes suc-
cessfully. Together, the second bne- and the subse-
quent isync create an import barrier that prevents the
load from “data1” from being performed until the
branch has been resolved not to be taken.

| If the shared data structure is in storage that is
| neither Write Through Required nor Caching Inhibited,
| an lwsync instruction can be used instead of the isync
| instruction. If lwsync is used, the load from “data1”
| may be performed before the stwcx. . But if the
| stwcx. fails, the second branch is taken and the lwarx
| is reexecuted. If the stwcx. succeeds, the value
| returned by the load from “data1” is valid even if the
| load is performed before the stwcx. , because the
| lwsync ensures that the load is performed after the
| instance of the lwarx that created the reservation
| used by the successful stwcx. .

B.2.1.2 Obtain Pointer and Import
Shared Storage

If lwarx and stwcx. instructions are used to obtain a
pointer into a shared data structure, an import barrier
is not needed if all the accesses to the shared data
structure depend on the value obtained for the
pointer. The following example uses the “Fetch and

† Add” primitive to obtain and increment the pointer.

In this example it is assumed that the address of the
pointer is in GPR 3, the value to be added to the
pointer is in GPR 4, and the old value of the pointer is
returned in GPR 5.

loop: lwarx r5,0,r3 #load pointer and reserve
add r0,r4,r5 #increment the pointer
stwcx. r0,0,r3 #try to store new value
bne − loop #loop if lost reservation
lwz r7,data1(r5) #load shared data

The load from “data1” cannot be performed until the
pointer value has been loaded into GPR 5 by the

† lwarx . The load from “data1” may be performed
before the stwcx. . But if the stwcx. fails, the branch
is taken and the value returned by the load from
“data1” is discarded. If the stwcx. succeeds, the
value returned by the load from “data1” is valid even

† if the load is performed before the stwcx. , because
the load uses the pointer value returned by the
instance of the lwarx that created the reservation
used by the successful stwcx. .

An isync instruction could be placed between the bne-
and the subsequent lwz , but no isync is needed if all
accesses to the shared data structure depend on the
value returned by the lwarx .

Appendix B. Programming Examples for Sharing Storage 43

IBM Confidential - Feb. 24, 1999

B.2.2 Lock Release and Export
Barriers

An “export barrier” is an instruction or sequence of
instructions that prevents the store that releases a
lock from being performed before stores caused by
instructions preceding the barrier have been per-
formed. An export barrier can be used to ensure that
all stores to a shared data structure protected by a
lock will be performed with respect to any other

| processor before the store that releases the lock is
performed with respect to that processor.

B.2.2.1 Export Shared Storage and
Release Lock

† A sync instruction can be used as an export barrier
independent of the storage control attributes (e.g.,
presence or absence of the Caching Inhibited attri-

| bute) of the storage containing the shared data struc-
| ture. Because the lock must be in storage that is
| neither Write Through Required nor Caching Inhibited,
† if the shared data structure is in storage that is Write
† Through Required or Caching Inhibited a sync instruc-

tion must be used as the export barrier.

† In this example it is assumed that the shared data
† structure is in storage that is Caching Inhibited, the

address of the lock is in GPR 3, the value indicating
that the lock is free is in GPR 4, and the address of
the shared data structure is in GPR 9.

stw r7,data1(r9) #store shared data (last)
sync #export barrier
stw r4,lock(r3) #release lock

The sync ensures that the store that releases the lock
will not be performed with respect to any other
processor until all stores caused by instructions pre-
ceding the sync have been performed with respect to
that processor.

† B.2.2.2 Export Shared Storage and
† Release Lock using eieio or lwsync

† If the shared data structure is in storage that is
neither Write Through Required nor Caching Inhibited,
an eieio instruction can be used as the export barrier.
Using eieio rather than sync will yield better perform-
ance in most systems.

† In this example it is assumed that the shared data
† structure is in storage that is neither Write Through

Required nor Caching Inhibited, the address of the
lock is in GPR 3, the value indicating that the lock is
free is in GPR 4, and the address of the shared data
structure is in GPR 9.

stw r7,data1(r9) #store shared data (last)
eieio #export barrier
stw r4,lock(r3) #release lock

The eieio ensures that the store that releases the lock
will not be performed with respect to any other
processor until all stores caused by instructions pre-
ceding the eieio have been performed with respect to
that processor.

† However, for storage that is neither Write Through
Required nor Caching Inhibited, eieio orders only
stores and has no effect on loads. If the portion of
the program preceding the eieio contains loads from
the shared data structure and the stores to the
shared data structure do not depend on the values
returned by those loads, the store that releases the
lock could be performed before those loads. If it is
necessary to ensure that those loads are performed

| before the store that releases the lock, lwsync should
| be used instead of eieio . Alternatively, the technique
† described in Section B.2.3 can be used.

B.2.3 Safe Fetch

If a load must be performed before a subsequent
store (e.g., the store that releases a lock protecting a
shared data structure), a technique similar to the fol-
lowing can be used.

In this example it is assumed that the address of the
storage operand to be loaded is in GPR 3, the con-
tents of the storage operand are returned in GPR 4,
and the address of the storage operand to be stored
is in GPR 5.

lwz r4,0(r3) #load shared data
cmpw r4,r4 #set CR0 to "equal"
bne − $−8 #branch never taken
stw r7,0(r5) #store other shared data

† An alternative is to use a technique similar to that
† described in Section B.2.1.2, by causing the stw to

depend on the value returned by the lwz and omitting
the cmpw and bne- . The dependency could be
created by ANDing the value returned by the lwz with
zero and then adding the result to the value to be

| stored by the stw . If both storage operands are in
| storage that is neither Write Through Required nor
| Caching Inhibited, another alternative is to replace
| the cmpw and bne- with an lwsync instruction.

44 PowerPC AS Virtual Environment Architecture

IBM Confidential - Feb. 24, 1999

B.3 List Insertion

† This section shows how the lwarx and stwcx.
instructions can be used to implement simple
insertion into a singly linked list. (Complicated list
insertion, in which multiple values must be changed
atomically, or in which the correct order of insertion
depends on the contents of the elements, cannot be
implemented in the manner shown below and requires
a more complicated strategy such as using locks.)

The “next element pointer” from the list element after
which the new element is to be inserted, here called
the “parent element”, is stored into the new element,
so that the new element points to the next element in
the list; this store is performed unconditionally. Then
the address of the new element is conditionally stored
into the parent element, thereby adding the new
element to the list.

In this example it is assumed that the address of the
parent element is in GPR 3, the address of the new
element is in GPR 4, and the next element pointer is
at offset 0 from the start of the element. It is also
assumed that the next element pointer of each list

† element is in a reservation granule separate from
that of the next element pointer of all other list ele-

† ments.

loop: lwarx r2,0,r3 #get next pointer
stw r2,0(r4) #store in new element

| eieio #order stw before stwcx.
stwcx. r4,0,r3 #add new element to list
bne − loop #loop if stwcx. failed

| In the preceding example, lwsync can be used instead
| of eieio .

In the preceding example, if two list elements have
next element pointers in the same reservation
granule then, in a multiprocessor, “l ivelock” can
occur. (Livelock is a state in which processors
interact in a way such that no processor makes

† forward progress.)

If it is not possible to allocate list elements such that
each element's next element pointer is in a different
reservation granule, then livelock can be avoided by
using the following, more complicated, sequence.

lwz r2,0(r3) #get next pointer
loop1: mr r5,r2 #keep a copy

stw r2,0(r4) #store in new element
sync #order stw before stwcx.

| # and before lwarx
loop2: lwarx r2,0,r3 #get it again

cmpw r2,r5 #loop if changed (someone
bne − loop1 # else progressed)
stwcx. r4,0,r3 #add new element to list
bne − loop2 #loop if failed

† In the preceding example, livelock is avoided by the
† fact that each processor reexecutes the stw only if
† some other processor has made forward progress.

B.4 Notes

†

1. To increase the likelihood that forward progress
is made, it is important that looping on
lwarx /stwcx. pairs be minimized. For example, in

† the “Test and Set” sequence shown in Section
† B.1, this is achieved by testing the old value

before attempting the store; were the order
reversed, more stwcx. instructions might be exe-
cuted, and reservations might more often be lost
between the lwarx and the stwcx. .

2. The manner in which lwarx and stwcx. are com-
municated to other processors and mechanisms,

† and between levels of the storage hierarchy
† within a given processor, is implementa-

tion-dependent. In some implementations per-
formance may be improved by minimizing looping
on a lwarx instruction that fails to return a
desired value. For example, in the “Test and

† Set” sequence shown in Section B.1, if the pro-
grammer wishes to stay in the loop until the word
loaded is zero, he could change the “bne- $ + 1 2 ”
to “bne- loop”. However, in some implementa-
tions better performance may be obtained by
using an ordinary Load instruction to do the initial
checking of the value, as follows.

loop: lwz r5,0(r3) #load the word
cmpwi r5,0 #loop back if word
bne − loop # not equal to 0
lwarx r5,0,r3 #try again, reserving
cmpwi r5,0 # (likely to succeed)
bne − loop
stwcx. r4,0,r3 #try to store non-0
bne − loop #loop if lost reserv'n

† 3. In a multiprocessor, livelock is possible if there is
† a Store instruction (or any other instruction that
† can clear another processor's reservation; see
† Section 1.7.2.1) between the lwarx and the stwcx.
† of a lwarx /stwcx. loop and any byte of the
† storage location specified by the Store is in the
† reservation granule. For example, the first code

sequence shown in Section B.3 can cause livelock
if two list elements have next element pointers in
the same reservation granule.

|

Appendix B. Programming Examples for Sharing Storage 45

IBM Confidential - Feb. 24, 1999

46 PowerPC AS Virtual Environment Architecture

IBM Confidential - Feb. 24, 1999

Appendix C. Cross-Reference for Changed POWER
Mnemonics

The following table lists the POWER instruction mne-
monics that have been changed in the PowerPC AS
Virtual Environment Architecture, sorted by POWER
mnemonic.

To determine the PowerPC AS mnemonic for one of
these POWER mnemonics, find the POWER mnemonic

in the second column of the table: the remainder of
the line gives the PowerPC AS mnemonic and the
page on which the instruction is described, as well as
the instruction names.

POWER mnemonics that have not changed are not
listed.

Page
POWER PowerPC AS

Mnemonic Instruction Mnemonic Instruction

19 dclz Data Cache Line Set to Zero dcbz Data Cache Block set to Zero
† 25† dcs† Data Cache Synchronize† sync† Synchronize

21 ics Instruction Cache Synchronize isync Instruction Synchronize

Appendix C. Cross-Reference for Changed POWER Mnemonics 47

IBM Confidential - Feb. 24, 1999

48 PowerPC AS Virtual Environment Architecture

IBM Confidential - Feb. 24, 1999

Appendix D. New Instructions

The following instructions in the PowerPC AS Virtual
Environment Architecture are new: they are not in the

| POWER Architecture. The eciwx and ecowx
instructions are optional.

|
dcbf Data Cache Block Flush
dcbst Data Cache Block Store
dcbt Data Cache Block Touch
dcbtst Data Cache Block Touch for Store
eciwx External Control In Word Indexed
ecowx External Control Out Word Indexed
eieio Enforce In-order Execution of I/O
icbi Instruction Cache Block Invalidate

† ldarx Load Doubleword And Reserve Indexed
† lwarx Load Word And Reserve Indexed

mftb Move From Time Base
† stdcx. Store Doubleword Conditional Indexed
† stwcx. Store Word Conditional Indexed

|

Appendix D. New Instructions 49

IBM Confidential - Feb. 24, 1999

50 PowerPC AS Virtual Environment Architecture

IBM Confidential - Feb. 24, 1999

Appendix E. PowerPC AS Virtual Environment Instruction Set

Form
Opcode Mode

Dep.1 Page Mnemonic Instruction
Primary Extend

||
X 31 86 20 dcbf Data Cache Block Flush
X 31 54 20 dcbst Data Cache Block Store
X 31 278 18 dcbt Data Cache Block Touch
X 31 246 18 dcbtst Data Cache Block Touch for Store
X 31 1014 19 dcbz Data Cache Block set to Zero
X 31 310 34 eciwx External Control In Word Indexed
X 31 438 34 ecowx External Control Out Word Indexed
X 31 854 27 eieio Enforce In-order Execution of I/O
X 31 982 17 icbi Instruction Cache Block Invalidate
XL 19 150 21 isync Instruction Synchronize

† X† 31† 84† 23† ldarx† Load Doubleword And Reserve Indexed
† X† 31† 20† 23† lwarx† Load Word And Reserve Indexed

XFX 31 371 30 mftb Move From Time Base
† X† 31† 214† 24† stdcx.† Store Doubleword Conditional Indexed
† X† 31† 150† 24† stwcx.† Store Word Conditional Indexed
† X† 31† 598† 25† sync† Synchronize
||

1Key to Mode Dependency Column

† Except as described in the section entitled “Effective
† Address Calculation” in Book I, all instructions in the
† PowerPC AS Virtual Environment Architecture are
† independent of whether the processor is in 32-bit or
† 64-bit mode and of whether the processor is in tags
† active or tags inactive mode.

Appendix E. PowerPC AS Virtual Environment Instruction Set 51

IBM Confidential - Feb. 24, 1999

52 PowerPC AS Virtual Environment Architecture

IBM Confidential - Feb. 24, 1999

Index

A

aliasing 6
alignment

effect on performance 13, 37
atomic operation 9
atomicity 3

single-copy 3

B

block 2

C

cache management instructions 16, 35
cache model 4
cache parameters 15
Caching Inhibited 5
consistency 6

D

data cache instructions 18, 35
data storage 1
dcbf 20
dcbst 20
dcbt 18, 35
dcbtst 18
dcbz 19

E

eciwx instruction 33, 34
ecowx instruction 33, 34
eieio 6, 27
extended mnemonics 39

F

forward progress 11

G

Guarded 6

I

icbi 17
instruction cache instructions 17
instruction restart 14
instruction storage 1
instructions

dcbf 20
dcbst 20
dcbt 18, 35
dcbtst 18
dcbz 19
eciwx 33, 34
ecowx 33, 34
eieio 27
icbi 17
isync 21
ldarx 9, 23
lwarx 9, 23
lwsync 25
stdcx. 9, 24
storage control 15, 35
stwcx. 9, 24
sync 25

isync 21

L

ldarx 23
lwarx 23
lwsync 6, 25

M

main storage 1
memory barrier 6
Memory Coherence Required 5

Index 53

IBM Confidential - Feb. 24, 1999

O

optional instructions 33
dcbt 35
eciwx 34
ecowx 34

P

page 2
performed 1
program order 1

Q

quadword atomicity 3

R

registers
Time Base 29

S

single-copy atomicity 3
stdcx. 24
storage

access order 6
atomic operation 9
instruction restart 14
order 6
ordering 6, 25, 27
quadword atomicity 3
reservation 10
shared 6

storage access 1
definitions

program order 1
storage access ordering 41
storage control attributes 4
storage control instructions 15, 35
stwcx. 24
sync 6, 25

T

TB 29
TBL 29
TBU 29
Time Base 29

V

virtual storage 2

W

Write Through Required 4

54 PowerPC AS Virtual Environment Architecture

IBM Confidential - Feb. 24, 1999

Last Page - End of Document

Last Page - End of Document 55

