

P9 IPL Flow

v1.08 (05/01/17)

Copyright and Disclaimer
© Copyright International Business Machines Corporation 2017
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International
Business Machines Corp., registered in many jurisdictions worldwide. Other product and
service names might be trademarks of IBM or other companies. A current list of IBM
trademarks is available on the Web at “Copyright and trademark information” at
www.ibm.com/legal/copytrade.shtml.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or
both.

Other company, product, and service names may be trademarks or service marks of others.
All information contained in this document is subject to change without notice. The products
described in this document are NOT intended for use in applications such as implantation, life
support, or other hazardous uses where malfunction could result in death, bodily injury, or
catastrophic property damage. The information contained in this document does not affect or
change IBM product specifications or warranties. Nothing in this document shall operate as
an express or implied license or indemnity under the intellectual property rights of IBM or third
parties. All information contained in this document was obtained in specific environments, and
is presented as an illustration. The results obtained in other operating environments may vary.

While the information contained herein is believed to be accurate, such information is
preliminary, and should not be relied upon for accuracy or completeness, and no
representations or warranties of accuracy or completeness are made.

Note: This document contains information on products in the design, sampling and/or initial
production phases of development. This information is subject to change without notice.
Verify with your IBM field applications engineer that you have the latest version of this
document before finalizing a design.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN “AS IS”
BASIS. In no event will IBM be liable for damages arising directly or indirectly from any use of
the information contained in this document.

IBM Systems and Technology Group 2070 Route 52, Bldg. 330 Hopewell Junction, NY
12533-6351

The IBM home page can be found at ibm.com®.

http://www.ibm.com/legal/copytrade.shtml

1 Introduction

1.1 Description

This document will describe the high-level IPL flow for the Power servers based on P9 chips. It is not intended to contain

all low-level details, but instead is designed to illustrate the relationships between various low-level procedures. Complete

details can be found in the reference documents listed at the end of this document.

This document covers both the hardware and firmware flow required to boot a system to the hypervisor state. This includes

full energy management capability and enough resources to boot partitions. Historical procedure names will continue to be

used to identify distinct function boundaries, but actual format may vary.

Note on accuracy: All details down to the procedure call are correct and this document is considered an authoritative

reference. Any details within an individual procedure are informational only, the final authority lies within the procedures

themselves and their associated reference documents.

This version of the document will cover all POWER8 systems. Please note that this document has a lot of low level details

on the initialization of the POWER processor and it's memory subsystem. There are a lot of terms and details in here that

are very IBM and POWER centric. We attempted to put as much in the glossary as possible but please feel free to use the

mailing list for any questions.

Throughout the document you will see references to a “SP”. This stands for a service processor and when used it's

applicable to either the FSP (Flexible Service Processor – used within IBM POWER based servers) or the BMC (the

OpenPower service processor). For the most part we've tried to remove FSP specific references for the OpenPower work but

some may still remain for reference in here.

Reading over the Hostboot Programmers guide (same document repo) is reccomended prior to reading this document.

This version of the document will cover the following systems:

IBM FSP based system

Witherspoon – IBM BMC based system

Zaius – BMC based OpenPOWER system

The following diagram gives a high level overview of the IPL flow. The minute details are explained in the rest of the

document.

1.2 Terminology

• Centaur: Memory buffer chip which optimizes memory bandwidth and usage

• Cumulus: P9 variant that only can access memory via attached Centaurs

• Cronus: Lab debug tool used to control and debug the IPL

• DMI: Dynamic memory Interface bus

• IPL : Inital Program Load = Boot process. Covers time between power on and running they hypervisor

• HCODE: Hardware code – Refers to the code the EX (EC, EQ) units between the running (full power), stop

states (core power saved, cache active), and core and caches powered off states

• Hostboot: FW that initializes the memory and powerbus

• HB Runtime Services (HBRT): Portion of Host Boot that remains resident during hypervisor execution and

provides PRD functionality for CE

• istep : IPL Step defined by ecmd interface

• Nimbus: P9 variant that has direct attached memory

• Normal-mode : IPL that includes minimal diagnostics, focused on functional requirements only

• Maintenance-mode : IPL that includes extensive diagnostics to test the hardware

• OCC: On Chip Controller – PPC 405 processor that controls the power management per chip

• PCB: Pervasive Control Bus – internal processor bus that provides an out of band communication layer between

the internal logic within the chip

• PNOR: P9 Processor NOR chip. NOR flash device where all firmware, including hostboot firmware, is stored and

• from which it is loaded. It is attached to the master processor through an LPC → SPI bus connection. Called

PNOR to distinguish from other NOR chips in the system

• SBE: Self Boot Engine – A version of a PORE within each P8 chip which is used to do some basic initialization to

each chip and to load and start the Hostboot firmware

1.3 IPL Types

IPL Type SP

Power

CEC Standby

Power

CEC Logic

Power

Mainstore

Contents

Applicable

Platform

Standby POR Off ->

On

Off -> On Off Off Pegasus

Cold IPL On On Off -> On Cleared Pegasus

Warm IPL or

Warm Re-IPL

On On On Cleared Pegasus

1.4 Nomenclature/Conventions

• Items in bold-italics represent deliveries from the hardware team, either procedures or engineering data files. Ex:

p8_cfaminit.C

• Steps in italics are software only and do not interact with the hardware at all.

• istep commands in black are performed by the Service Processor (SP)

• istep commands in blue are performed by the Self Boot Engine (SBE)

• istep commands in green are performed by the host code.

o Note for multi-drawer or multi-Hostboot instances all commands are issued in parallel to all instances,

except where otherwise noted

• istep commands in black are performed by the attached service processor

2 Service Processor Power On to Standby

2.1 FSP Based

This flow starts as soon as the power supplies are plugged in and ends when the SP reaches the standby state.

 1. Base Wiring

 a) C_FSI_IN_ENA – tied to 0b1 for FSP to indicate that FSI is driven by FSI HW clock

 b) C_JTAG_TMS pin – tied to 0b0 to prevent autostart and allow BMC to select SBE/PNOR side (scratch regs)

 2. Apply AC Power

 a) Standby regulators power on from 12VCS

 b) Reset generator starts 200ms after Standby Pgoods high

 c) Standby reset feeds into FSP/DPSS/APPS. (any intelligent device). FSP/APSS running. DPSS in reset if FSP

present. If no FSP, then DPSS starts...Ckip steps 4-5.

 d) CFAM_RESET_B on all CFAMs (P9 and Centaur). Must be at least 100ms after VStandby

 3. APSS loads itself from internal flash. We can update the APSS load in the lab from an internal connector. APSS is

not updateable from FSP.

 4. FSP starts running from SPI Flash at address 0.

 5. FSP signs the DPSS load. There is only 1 – no golden image needed.

 a) Where the DPSS gets its load from the FSP

• Held in FSP flash and clocked in

 b) DPSS load is updateable from the FSP, but not from the host

 6. FSP releases DPSS reset.

 7. DPSS begins running

 a) PGOOD Reset engine holds PGOODs off

 b) Registers initialized to default safe values (e.g. fans set to high speed).

 c) Waits for “GO” from FSP or external hardware entity to start power sequencing (DIO)

 d) From FSP, DPSS can be controlled to set LEDs, override fan speed (for fans on SB, if any),

 8. FSP Machine type VPD read

 9. FSI Clocks start to P9/Centaur

 10. FSI break command sent to both slaves

 11. FSI Arbitration is performed between Redundant FSPs

 12. Read FSI Config Space

 a) Builds the device driver structure

 b) Device drivers “init”/clear engines – issues engine resets

 13. Read all VPD (includes DRAM spd)

 14. Start power process

 15. Start HWServer process. At this point HWServer must build the object model based on VPD and chip IDEC

 a) istep BuildHwModel

• This istep will build the HW model

• HWServer will read the IDEC from the shift engine and the scom engine

• During this phase (in non Reset-Reload cases) the primary FSP HWServer will force ownership of the

LPC2SPI local bus for PNOR access

 16. System now at SP Standby

At the end of this flow the SP and DPSS chip are powered on and viable. For the purposes of this discussion SP Standby is

just enough information to power on the CEC logic. SP has not issued the “GO” bit yet.

If the P9 and Centaur chip's CFAM portion is powered on and has FSI clocks.

2.2 BMC Based

 1. Base System wiring

 a) C_FSI_IN_ENA – tied to 0b1 for BMC to indicate that FSI is driven by ref clock

 b) C_JTAG_TMS pin – tied to 0b0 to prevent autostart and allow BMC to select SBE/PNOR side (scratch regs)

• If want autostart without BMC control, then tie to 0b1

 2. Apply AC Power

 a) Standby regulators power on from 12VCS

 b) Reset generator starts 200ms after Standby Pgoods high

 c) present. If no FSP, then DPSS starts...Ckip steps 4-5.

 3. APSS loads itself from internal flash. We can update the APSS load in the lab from an internal connector. APSS is

not updateable from FSP.

 4. BMC starts running from SPI Flash at address 0.

 5. BMC option to read VPD at standby voltage

 a) Ref clock enabled and toggling (based on VSB power domain)

 b) BMC would have toggle CFAM_RESET_B

 c) BMC can then use SoftFSI to read VPD

• FSI Clocks start to P9/Centaur

• FSI break command sent to both slaves

• Read FSI Config Space

• Builds the device driver structure

• Device drivers “init”/clear engines – issues engine resets

• Read all VPD

 6. BMC to power on:

 a) Enable VDN

 b) Ref clock enabled and toggling (based on VDN)

 c) Toggle CFAM_RESET_B

 d) Use SoftFSI to set CPU config/control regs (mailbox scratch registers for SBE side selection/mfg flags)

 e) Use Soft FSI to kick off Master processor chip

2.3 SPLess Based

 1. Base System wiring

 a) C_FSI_IN_ENA – tied to 0b0 to indicate that FSI is driven by ref clock

 b) C_JTAG_TMS pin – tied to 0b1 to allow autostart

 2. Apply AC Power

 a) Standby regulators power on from 12VCS – all power rails come up except VDDR

 b) Reset generator starts 200ms after Standby Pgoods high

 c) APSS loads itself from internal flash.

 d) Ref clock enabled and toggling

 e) HW Toggle CFAM_RESET_B

 f) IPL Starts

3 Cold IPL

This flow covers the steps from FSP/BMC Standby through the initial handshake with PHYP/OPAL.

0 Step 0

0.1 poweron : Power on system

0.2 startipl : Start IPL on SP

 On warm re-ipl this is the entry point to the IPL flow

 Gets SP into a state ready to IPL the CEC

0.6 set_ref_clock (no-op on BMC)

a p9_setup_clock_term.C

 Setup the clock termination correctly for system/chip type

 Since this is the first procedure run against the chips it also clears the GP write protect

 Chip reference clocks start when their voltage rails come up, this step allows for the reference clock

frequencies to be adjusted. Chip (Processor, Memory), PCIe, TOD (16Mhz)

• For low end systems this is done via local I2C commands to the reference clock chip.

0.7 proc_clock_test (no-op on BMC)

a p9_select_clock_mux.C

 Select internal clock mux to drive the memory clocks off of

 Flips all bits needed for clock routing (processor only), centaur is done later in p9_cen_ref_clk_enable.C

b p9_clock_test.C

 Test to see if the ref clock is valid. If not switch to redundant clock or terminate IPL

 This is run prior to switching the frequency. It is intended to just see if the processor/memory are getting

valid reference clocks

 NOTE: centaur doesn't have any clock logic to check for valid reference clocks, thus no procedure

0.8 proc_prep_ipl (no-op on BMC)

b p9_set_fsi_gp_shadow.C

 Corollary in BMC based system is the CFAM_RESET

 Done for all boots – some settings will change based on system type and IPL type

 Set the GP bits to default state

 Needs to take into account to not change values set up in p9_set_clock_term.C procedure

0.11 proc_select_boot_master

a p9_select_boot_master.C

 This HWP is misnamed due to historical reason, the actual selection of the master SBE is done in

p9_setup_sbe_config.C

 This HWP selects which Redundant SEEPROM to use

• This must be set only for the master processor (HB will set later for slaves) depending on current IPL

(normal or SBE update directed by Hostboot)

0.13 sbe_config_update

 On BMC systems this is done via direct writes to mbox scratch regs

b p9_setup_sbe_config.C

 See istep 2.2 for details of scratch registers and ATTR mappings

 This includes the Master/slave indication (for FSP/BMC it always sets master)

 Take the FSP/Cronus/hostboot FAPI2 ATTR and write them to the mbox scratch registers

 Data shuffling of the ATTR into an extremely compact form

 In manufacturing mode the SP may be required to update the entire seeproom image via xip_customize.

See istep TBD for details

• Note that the ring override from /nfs/ should be applied during the xip_customize flow if directly

updating the SBE

• Note to take into account the dead space between the 64KB SEEPROM images for SBE ECC

0.14 sbe_start

 Grant the LPC2SPI FSI bus to the LPC bus so the SBE and Hostboot can access the PNOR

 Done on all warm/cold IPLs under SP control.

b p9_start_cbs.C

 Set a bit to trigger the CBS on the P9 master chips. Located in FSI GP region

 CBS applies GP shadows to GP regs, causes endpoint resets

 The CBS will scan0 flush of pervasive, start clocks

 For MPIPL the CBS is not used and FSP directly triggers the SBE

1 Step 1 – Self Boot Engine OTPROM and PIBMEM

Note: release of FSI Go bit triggers SBE executing from OTPROM

 a. Processor/Mem and FSI reference clocks are stable

 b. SBE is reset to state that fetches directly from OTPROM (it is on the PIB)

• SBE instructions are parity protected, but SBE instruction parity is turned off (per VBU to make it easier for

assembler compilers), but OTPROM is ECC protected

• SEEPROM, PNOR SBE, and partition NVRAM are ECC protected

• Hostboot, PHYP are CRC protected

• OTPROM is ECC protected

• ECC checking is ON by default, scom bit to turn off ECC

• Mechanism to stop SBE prior to any instructions issued is to use the FSI GP bit

• SEEPROM is ECC protected,

• Scan chains must be ECC protected in SEEPROM, ECC protected in OTPROM/PNOR

 c. The following steps are done by the CBS. This happens regardless of the TMS line holding the SBE engine from

fetching. The CFAM_RESET or FSI GP bit triggers this.

• Apply the root_ctrl shadow registers to the effective root_ctrl registers

• Init TP chiplet – NOTE that all iVRMs are in bypass (PgP only) (done by clock controller)

• Start TP Vital – TP mesh clocks (done by clock controller)

• Scan 0 flush – SBE can't scan PRV PIB or PCB regions as it is part of pervasive itself

• Covers PCB and TP vital

• This clears all security bits in the OTPROM controller AND the SDB bit in the mailbox

• Release tholds for TP and PCB – running on the ref clock

• Pervasive clocks will be started by Clock Controller Logic; SBE itself receives these clocks and therefore

can't run before clocks are running

• Vital and PCB, not tholds to rest of TP

• PIB Bus operational now

• CBS triggers SBE start to fetch instructions

• SBE will not execute if external pin TE (Module/Wafer Manufacturing Test Enable) =0b1

1.1 proc_sbe_enable_seeprom :F,C - Select SEEPROM address

a This istep is not controllable by FW – once the CBS starts the boot sequencer the SBE will

automatically execute this istep. It is listed as an istep for documentation, but cannot be manually

controlled via istep.

b p9_sbe_enable_seeprom.C (no param) –

 Entrance into this procedure is via SBE Reset (hard) or CBS.

 Hard reset – triggered by SP (and potentially DTRM) without using the CBS

 CBS – runs scan 0 flush and clock start of PIB and NET domain (cleans up security latches) issues hard

reset to SBE

 This HWP is not FAPI2 based:

• It runs directly in OTPROM and cannot use attributes

• It is burnt into the chips OTPROM during manufacture

 Running out of the OTPROM

 Select which redundant SEEPROM to use based on MBOX Control bit

• 0b0 – use default SEEPROM (bit 17 of Self Boot Control/Status Register)

• 0b1 – use alternate SEEPROM (bit 17 of Self Boot Control/Status Register)

 Resets the I2C bus

 If scratch reg is set then it uses I2C speed from scratch, else uses default burned into OTPROM at MFG

 Check that SEEPROM is accessible and image is valid (XIP header magic check)

 Then branch to SEEPROM location –

• Magic number to address 0 (SBE) and jump point at address 0x4

• Physically on the SEEPROM this will be 0x0

2 Step 2 Self Boot Engine – Pervasive Chiplet Setup

When the SBE first jumps to the SEEPROM it will jump to a routine delivered by FW to potentially collect FFDC based on

the reset type. Then it will move to istep 2.1.

2.1 proc_sbe_ld_image :F,C - Load PIBMEM image

a This istep is not controllable by FW – once the CBS starts the boot sequencer the SBE will

automatically execute this istep. It is listed as an istep for documentation, but cannot be manually

controlled via istep.

 Not a FAPI HWP, instead raw C

• RAW one that executes on the SBE – not against FAPI (OTPROM direct content)

• Cannot use attributes

 Turn on SBE internal RISC trace via the SBE internal trace configuration register

 Performs PIBMEM repairs (via load/stores to PIB – aka scoms) only on start vector 0 (start vector 1 is used

for warm resets and PIBMEM has already been setup and contains FFDC from/for the reset)

• Data in pibmem is valid as long as previous steps did not go through scan 0 flush/clock start of PIB

domain (CBS start does the scan0 flush)

• SBE must always treat existing data in PIBMEM as FFDC only and always reload instructions

• PIBMEM repairs are not required if the SBE is not being used (ie boot via FSI2PIB path)

• For DFT if the PIBMEM repairs are needed, DFT is responsible for loading

 Loads the pib attached memory image from the SEEPROM This image contains various utilities used

throughout the SBE IPL:

• Kernel

• Base Utilities

• SBE fixed data section (aka ATTR) into PIBMEM

 Branch into SBE kernel, start executing Kernel

• Enter control loop

• After this point FW Control loop is in charge of loading/unloading chip ops and calling future HWP

• SBE code checks the scratch registers to determine if in istep mode, if so then it enters istep mode and

then waits for data on the FIFO. Otherwise it continues to boot automatically

• If in non step mode, SBE will only honor FIFO operation to query IPL status/collect FFDC until it

completes istep 5 or has an error

 All operations to the SBE are atomic from the SP perspective

 All power to the chip is on except

• Quads

• PHYs are all powered down

2.2 proc_sbe_attr_setup : F,C -Read scratch regs, update ATTR

a p9_sbe_attr_setup.C (chip target) FAPI2::ReturnCode

 If and only if scratch registers are non-zero, HWP will read the contents of the scratch registers and call

FAPI2 APIs to set the values into the corresponding SBE platform ATTR values (Mbox reg contents

PIBM ATTR)

• Scratch 7, byte 0 is a bit field that indicates validity of the other mailbox register

 In the case where HW scratch registers are zero – the values represented by the scratch registers need to be

in a fixed location (ECC aligned) of the SEEPROM Image (SEEPROM contents PIBMEM ATTR Mbox

scratch regs)

• SEEPROM image ATTR is the master, mailbox is just the overrides

• Fixed location for the ATTR and all mbox ATTRs are at the front and non moveable (can extend, but

not move)

• In this case (scratch 7, byte 0 valid bit == 0) then data in the ATTR tank data in the SBE needs to be

pushed back into the HW mailbox scratch reg for Hostboot to consume

 Hostboot will need the information in the scratch registers as well (for the slave chips, etc)

 Check the state of the SAB (Security Access Bit)

• If SBE image has ATTR_SECURITY_MODE == 0b1, then leave SAB bit as is

• Else ATTR_SECURITY_MODE == 0b0, then clear the SAB bit

• ATTR_SECUIRTY_MODE may only be 0b0 with imprint keys

• Move state of SAB into ATTR_SECURITY_ENABLE

• Rest of the SBE code to apply security restrictions based on ATTR_SECURITY_ENABLE

 Mailbox scratch 1 (CFAM 2838, SCOM 0x50038) - FW functional EQ/EC

• This register gives FW additional control over functional EQ/EC that the SBE can consider for

bootable cores. It is applied on top of the manufacturing partial good VPD

• Byte 0 EQ Gard records. Each bit position corresponds to chiplet (starting at chiplet 0x10 - 0x15) ==

ATTR_EQ_GARD (where 0x10 is bit 0 of byte 0)

• EX functional is not explicitly represented

• SBE can infer which EX (1/2 of EQ) are intended to be used based on the EC gard records

• Do NOT need to support victim caches

• Bytes 1-3 are EC Gard records. Each bit position corresponds to EC chiplet (starting at chiplet 0x20-

0x37) == ATTR_EC_GARD (where 0x20 is bit 0 of byte 1)

• This also information also need to go into the CME image

• If the bit is on then the part is non functional

 Mailbox scratch 2 (CFAM 2839, SCOM 0x50039) – SBE I2C Bus speed based, ref clock

• Bytes 0,1 are ref clock I2C bus divider consumed by code running out of OTPROM, no ATTR needed

as it is directly read. ATTR is ATTR_I2C_BUS_DIV_REF (for image customization)

• Bytes 2

• Bits 16:19 – ATTR_NDL_MESHCTRL_SETUP – Control NDL training, MeshCtrl setup

• Bits 20-23 - Reserved

• Byte 3 is open

 Mailbox scratch 3 (CFAM 283A, SCOM 0x5003A) – FW Mode/Control flags

• The HWP does not need to do anything with this scratch register as it is SBE FW control flags. These

will be stored as ATTR_BOOT_FLAGS in the ATTR tank (and by the setup mbox HWP). The SBE

FW will check the valid bit and use the mbox scratch register, else it will use the value from the ATTR

tank. The SBE FW will use these values prior to this HWP being run. Note that this is only used by

the setup_sbe_config to push the data into the mailbox register when running on an FSP (not consumed

by FAPI on SBE or as part of SBE SEEPROM customization).

• Bit 0 indicates istep IPL (0b1) (Used by SBE, HB – FW ISTEP_MODE)

• Bit 1 indicates that SBE should go directly to runtime functionality (0b1)

• Bit 2 is reserved for HB usage for the SBE to indicate an MPIPL to Hostboot. It is always 0 in the

ATTR tank and is dynamically set by the SBE at the same time the SBE sets the

ATTR_MPIPL_MODE ATTR (Used by HB, set by SBE. SBE uses S0/S1 interrupt)

• Bit 3 in this register is used to indicate FSPless (0b0), otherwise FSP attached (0b1)

• Bit 4 -- Reserved

• Bit 5 in this register indicates that the SBE should not send back internal FFDC on any ChipOp

failure response

• Bit 6 – disable security. SBE is configured to only honor this request if and only if during the

update process it was signed with a secure header flag that permits it. Hostboot checks the secure

header flag, signing server is responsible for never setting secure header flag with production keys

 Mailbox scratch 4 (CFAM 283B, SCOM 0x5003B) - Boot frequency

• Byte 0,1 -- EQ boot frequency multiplier == ATTR_BOOT_FREQ_MULT

• Greg to provide algorithm

• Bit 16 – ATTR_CP_FILTER_BYPASS – force CP filter PLL into bypass

• Bit 17 -- ATTR_SS_FILTER_BYPASS – force SS filter PLL into bypass

• Bit 18 -- ATTR_IO_FILTER_BYPASS – force IO filter PLL into bypass

• Bit 19 -- ATTR_DPLL_BYPASS – force DPLL into bypass

• Bit 20 -- ATTR_NEST_MEM_X_O_PCIE_BYPASS– force nest PLL into bypass

• Bit 21 – ATTR_OBUS_RATIO_VALUE_BIT – Holds OBUS ratio value. 0b0 == normal speed, 0b1

== half speed

• Bit 22:23 -- Reserved

• Byte 3 -- Nest PLL bucket selection == ATTR_NEST_PLL_BUCKET

• The PLL bucket number is an integer enum, with the actual frequency defined within the bucket

• Where the PLL bucket contains a simple structure of the VDN setting, the Nest I2C divider

setting, and then PLL ring, target nest frequency value in Khz (ie what system is targeted at, not

necessarily the margin bias)

• Supported buckets: 1600Mhz, 1866Mhz, 2000Mhz, 2133Mhz, 2400Mhz

 Mailbox scratch 5 (CFAM 283C, SCOM 0x5003C) – HWP Control Flags

• Bit 0 -- cache contained IPL (0b1), ATTR_SYSTEM_IPL_PHASE == CACHE_CONTAINED

• Bit 1 -- SBE should init all cores (0b1), ATTR_SYS_FORCE_ALL_CORES == TRUE

• Bit 2 – HWP/Init “risk level” enabled (b1) – ATTR_RISK_LEVEL == 0x1

• Note this is also used by Hostboot to pass to HB driven HWP

• Bit 3 – Boot loader HWP flag to not place 12K exception vectors. This flag is only applicable when

security is disabled (ATTR_DISABLE_HBBL_VECTORS == 0x1)

• Bit 4 – Memory synchronous mode (0b1), ATTR_MC_SYNC_MODE == 0x1

• Bit 5 – Slow PCI reference clock (Nimbus DD1.0 only). 0b1 ==

ENUM_ATTR_DD1_SLOW_PCI_REF_CLOCK_NORMAL (100Mhz), 0b0 ==

ENUM_ATTR_DD1_SLOW_PCI_REF_CLOCK_SLOW (94Mhz).

• Bit 6:11 – Reserved/Open

• Bit 12:31 – Debug control for clock mux settings (20 bits), ATTR_CLOCK_PLL_MUX

 Mailbox scratch 6 (CFAM 283D, SCOM 0x5003D) – Master/Slave, node/chip selection

• Bit 23 – indicates if the chip is in group pump mode (ATTR_PROC_FABRIC_PUMP_MODE)

• Bit 24 – indicates Hostboot slave bit (ie not master), 0b0 == master, 0b1 == slave

(ATTR_PROC_SBE_MASTER_CHIP has inverse polarity – ie a 0b1 when master, 0b0 when slave)

• If set as slave then this overrides the external C4 indicating master/slave

• If set as master then use the external C4 as indication of master/slave

• The default SBE image will always have bit 24 indicating master (0b0), which will allow the

board C4 pin to control master/slave

• For systems where the SP is intended to select master/slave, all module C4 pins must be tied low

(indicating master) so that bit 24 will allow the SP to control master slave selection

• Bit 25 -- Reserved

• Bits 26:28 indicate the node position in FSP based systems (unused in Spless systems)

ATTR_PROC_FABRIC_GROUP_ID

• Bits 29:31 indicate the chip position (ATTR_PROC_FABRIC_CHIP_ID)

 Mailbox scratch 7 (CFAM 283E, SCOM 0x5003E) – DRTM Payload address in MB

• Entire register used to indicate location of DRTM payload on MB boundary

• Only valid during DRTM execution

 Mailbox scratch 8 (CFAM 283F, SCOM 0x5003F)

• Byte 0 – each bit in here indicates validity of the same numbered scratch reg (bit 0 scratch 0)

• Bit 0 -- (CFAM 2838, SCOM 0x50038) - FW functional EQ/EC valid

• Bit 1 -- (CFAM 2839, SCOM 0x50039) - SBE I2C Bus speed based, ref clock valid

• Bit 2 -- (CFAM 283A, SCOM 0x5003A) - FW Mode/Control flags valid

• Bit 3 -- (CFAM 283B, SCOM 0x5003B) - Boot frequency valid

• Bit 4 -- (CFAM 283C, SCOM 0x5003C) - HWP Control Flags valid

• Bit 5 -- (CFAM 283D, SCOM 0x5003D) - Master/Slave, node/chip selection valid

• Bit 6 -- (CFAM 283E, SCOM 0x5003E) – DRTM Payload address in MB valid

• Bit 7 -- (CFAM 283F, SCOM 0x5003F) – bytes 1,2,3 (if used) valid

• This is used to know if the data should be updated from scratch to attributes

2.3 proc_sbe_tp_chiplet_init1 :F,C,D TP Chiplet Init

a p9_sbe_tp_chiplet_init1.C (chip target) FAPI2::ReturnCode

 Releases the Pervasive Control Bus (PCB) reset

 Sets TP chiplet enable

 Drops pervasive chiplet fence

2.4 proc_sbe_tp_gptr_time_initf :F,C,D – Init Perv GPTR/Time

a p9_sbe_tp_gptr_time_initf.C

 Scan init the GPTR and Time rings for the Pervasive chiplet

2.5 proc_sbe_dft_probe_setup_1 :D, - Setup DFT probe points

a p9_sbe_dft_probe_setup_1.C (chip target) FAPI2::ReturnCode

 Only run in DFT mode, no-op in normal Cronus/SBE (istep stub for common numbering)

 DFT mode is controlled with IPL option within Cronus

2.6 proc_sbe_npll_initf :F,C,D - Program Powerbus PLL

a p9_sbe_npll_initf.C (chip target) FAPI2::ReturnCode

 Apply the Nest PLL ring

 Nest PLL ring is picked off of scratch reg bucket selection

• Must run at system frequency

• Consists of compressed scan ring in SEEPROM. There are 4 buckets (1.8, 2.0, 2.13, 2.4)This image is

set via p9_xip_customize based off of the system Nest/Xbus PLL setting. There are two potential

images for each bucket:

• Normal

• Override – this is an image that can be selected to override to a custom PLL setting for the nest

• When SECURITY_ENABLE is set, scan overrides can only come from a known good scan ring

whitelist (PLLs)

 Obus, PCIe, and MC PLLs are not set (still running in bypass)

2.7 proc_sbe_npll_setup : F,C,D - Nest PLL setup

a p9_sbe_npll_setup.C (chip target) FAPI2::ReturnCode

 Clocking: set nest sector buffer strength, pulse mode and pulse mode enable (attribute dependency

Nimbus/Cumulus)

 Clocking: Apply Nest Progdly (dependency to VPD #MK) setting

 Clocking: enable Nest Progdly (set nest progdly bypass to zero)

 Get Nest running, check PLL, makes use of a glitchless mux to switch

2.8 proc_sbe_tp_switch_gears : F,C,D - Update SBE I2C config

a p9_sbe_tp_switch gears.C (chip target) FAPI2::ReturnCode

 Calls procedure to update I2C bus speed in the PIBMEM

2.9 proc_sbe_clock_test : F,C,D – Check clocks

a Noop

2.10 proc_sbe_tp_chiplet_reset : F,C,D – Reset TP Chiplet

a p9_sbe_tp_chiplet_reset.C (chip target) FAPI2::ReturnCode

 Setup hang counter for PCB slaves/master

2.11 proc_sbe_tp_repr_initf : F,C,D - TP Chiplet Repair

a p9_sbe_tp_repr_initf.C (chip target) FAPI2::ReturnCode

 Load Scan Repair for TP Chiplet

2.12 proc_sbe_tp_chiplet_init2 : F,C,D - TP Chiplet Repair

a p9_sbe_tp_chiplet_init2.C (chip target) FAPI2::ReturnCode

 Scan 0 all rings on TP – including occ, perv. This excludes the PIB, PCB, Repair, Time, and GPTR rings

(as this is where SBE is running from and were done by the Clock controller logic)

2.13 proc_sbe_setup_tp_abist g: D -- Hook for DFT to run abist on TP

a p9_sbe_tp_abist_setup.C (chip target) FAPI2::ReturnCode

 Spot for DFT to insert non zero (ie true abist) patterns

2.14 proc_sbe_tp_arrayinit :F,C,D - TP Chiplet array init

a p9_sbe_tp_arrayinit.C (chip target) FAPI2::ReturnCode

 Does not reinit PIBMEM

 Run arrayinit on TP chiplet (includes OCC)

• After this all TP arrays are initialized (including OCC SRAM tank)

 Scan flush 0 to all TP expect TP Time, GPTR, Repair rings and PIB, and PCB regions

2.15 proc_sbe_tp_initf :F,C,D - TP Chiplet scan inits

a p9_sbe_tp_initf.C (chip target) FAPI2::ReturnCode

 Apply scan overrides to TP Chiplet (includes OCC)

2.16 proc_sbe_dft_probe_setup_2 :D, - Setup DFT probe points

a p9_sbe_dft_probe_setup_2.C (chip target) FAPI2::ReturnCode

 Only run in DFT mode, no-op in normal Cronus/SBE (stub istep left for common numbering)

2.17 proc_sbe_tp_chiplet_init3 :F,C,D - TP Chiplet Start clocks

a p9_sbe_tp_chiplet_init3.C (chip target) FAPI2::ReturnCode

 Switches TP Chiplet OOB mux

 Resets PCB Master Interrupt register

 Drops pervasive and OCC2PIB fence

 Start clocks on perv region (all components of TP)

 Clear force_align in chiplet GP0

 Clear flushmode_inhibit in chiplet GP0

 Drop FSI fence so checkstop and interrupt conditions can flow – SBE has direct path, this is normal TP

chiplet path

 Pervasive Trace arrays are now available

 Check for OSC switch clock errors after switching to Nest PLLs

 Theoretically can run the OCC at this point

 If ATTR_SYSTEM_IPL_PHASE == CACHE_CONTAINED

• Tweak FIR Masks

3 Step 3 Self Boot Engine – Chiplet Setup

3.1 proc_sbe_chiplet_reset : F,C,D -Nest Chiplet Reset

a

b p9_sbe_chiplet_reset.C (chip target) FAPI2::ReturnCode

 Setup static multicast groups for all good chiplets excluding TP based on pervasive target functional state

(not ATTR_PG state)

• If ATTR_SYS_FORCE_ALL_CORES == true, then add all EQ/EC to the multicast groups

• Otherwise the EQ/EC multicast will be added late in the IPL flow by proc_select_ex or in step 15 by

Hostboot.

• Step 3 can't use the multicast for all non-nest chiplets (ie EQ/EC)

 For all good chiplets including EQ/EC

• Setup chiplet net control regs

• Reset PCB Slave to default state

• Set chiplet enable on all all good chiplets

 Clocking: setup chiplet sector buffer strength, pulse mode and pulse mode enable (attribute dependency

Nimbus/Cumulus)

 Setup of hang counters including EQ/EC

 For all enabled good chiplets excluding EQ/EC

• Start vital clocks and release endpoint reset

• PCB Slave error register Reset

3.2 proc_sbe_gptr_time_initf: Init GPTR, Time rings for chiplets

a p9_sbe_gptr_time_initf.C

 Scan initalize all rings and initialize REPR on all enabled chiplets (except for TP, EP and EC)

3.3 proc_sbe_chiplet_pll_initf : PLL Initfile for X, O, PCIe, DMI, MCA

a p9_sbe_chiplet_pll_initf.C

 PLL rings are stored in SBE image

 Included tune bits, frequency

 Includes issuing the set pulse

3.4 proc_sbe_chiplet_pll_setup : Setup PLL for O, X, PCIe, DMI, MCA

a p9_sbe_chiplet_pll_setup.C

 Clocking: MC Chiplet only, Setup DCC and Progdlys

• Progdlys (Nimbus two entries), dependency to VPD #MK field

• Progdly (Cumulus one entry), dependency to VPD #MK field

• DCC attribute dependency Nimbus/Cumulus

 Clocking: drop DCC and Progdly bypass signals

 Checks that the PLL locked

 Start the VAR OSCs / Config the TANK PLLs & lock

 In certain configs these chiplets are potentially not used

 Must run at system frequency

 If in async mode the MCA PLLs are locked to default PLL chain (mem PLL bucket for 2Ghz)

 Else if in sync mode then MCA PLLs are not enabled because the MCAs are driven from the nest PLLs

3.5 proc_sbe_repr_initf : F,C,D -Chiplet Repair

a p9_sbe_repr_initf.C (chip target) FAPI2::ReturnCode

 For all enabled chiplets

• Scan 0 all rings on all enabled chiplets (except for TP)

• Load Repair, Time and GPTR rings for all enabled chiplets

• All chip customization data is within the Repair and Time rings – array repair, DTS settings

3.6 proc_sbe_chiplet_init : F,C,D -Chiplet Init

a p9_sbe_chiplet_init.C (chip target) FAPI2::ReturnCode

 For all enabled chiplets

• Scan 0 all rings (except time, repair, gptr) on all enabled chiplets

3.7 proc_sbe_abist_setup : D -- Hook for DFT to run abist

a p9_sbe_abist_setup.C (chip target) FAPI2::ReturnCode

 Stub for DFT – requirement is not to be compiled into real SBE/CME/GPE image – only an istep

placeholder

 Spot for DFT to insert non zero (ie true abist) patterns

3.8 proc_sbe_arrayinit : Chiplet array init

a p9_sbe_arrayinit.C

 Run arrayinit on all enabled chiplets

 Scan flush 0 to all rings except GPTR, Time, Repair on all enabled chiplets

3.9 proc_sbe_lbist :D -- Hook for DFT to run lbist

a p9_sbe_lbist.C

 Stub for DFT – requirement is not to be compiled into real SBE/CME/GPE image – only an istep

placeholder

 Run lbist on all enabled chiplets

 Scan flush 0 to all rings except GPTR, Time, Repair on all enabled chiplets

3.10 proc_sbe_tp_enable_ridi : Put Enable pervasive RIDI

a p9_sbe_tp_enable_ridi.C (chip target) FAPI2::ReturnCode

 Drop RI/DI for the AVS bus

 Drop RI/DI for TP logics

3.11 proc_sbe_setup_boot_frequency : Setup boot frequency

a p9_sbe_setup_boot_frequency.C

 Read core frequency ATTR and write to the Quad PPM

3.12 proc_sbe_initf : Apply any scan overrides

a p9_sbe_nest_initf.C

 Initfiles in procedure defined on VBU ENGD wiki

 Apply scan overrides to all enabled chiplets

 Generated via “traditional” initfile, but stored as compressed RS4 scan rings

 Spot to put all differences from scan flush 0

• Intended only for config independent settings “patches”. Chip team goal is to flush to the correct state

• Cannot contain system configuration differences, but can contain chip customization settings (ie DMI

vs EDI personalization)

 Primary debug mechanism is to use Cronus/FSP putspy commandline to modify ring images directly in the

chip (ie istep, then putspy).

• Doesn’t cover core

• Need to know when in the IPL you can perform the scan ring

• Doesn’t cover system test (ie non script/interactive mode)

 Secondary mechanism is to build an RS4 overlay and have a mechanism/location for the SBE to pick-up

various overlays and apply

• Required for core

• Mechanism to provide system test with patches

• identify storage tank for overlays, RS4 is self-describing, put hook into SBE to walk rings and

look for nest/MC chiplet overlays

3.13 proc_sbe_nest_startclocks : Start PB and nest clocs

a p9_sbe_nest_startclocks.C

 Drop fences and tholds on PB Chiplets

 Start nest chiplets with N3 as the master, rest as the slave

 Note that although the MCS logic is started (part of the Nest),

 If in async mode the MCA/ memory chiplets are not are started here.

 Else if in sync mode the MCA/memory chiplets are started here.

 In either case the MCA has the PLL/grid running, but not necessarily the functional clocks (in async mode)

3.14 proc_sbe_nest_enable_ridi : Enable nest RI/DI

a p9_sbe_nest_enable_ridi.C

 Drop RI/DI for nest -- LPC and PSI IOs

3.15 proc_sbe_io_initf : Apply inits to chipl IOs

a p9_sbe_io_initf.C

 Apply init file for chiplet IOs

3.16 proc_sbe_startclock_chiplets : Start clocks on O, X, PCIe

a p9_sbe_startclock_chiplets.C

 Start Xbus, Obus, PCIe clocks

 Start Mem chiplet if it is in synchronous mode

 Start clocks on configured chiplets

3.17 proc_sbe_scominit : SBE Nest scominits

a p9_sbe_scominit.C (processor chip)

 Apply any scom inits to nest chiplets

 If ATTR_SYSTEM_IPL_PHASE == CACHE_CONTAINED

• Tweak FIR Masks

3.18 proc_sbe_lpc : Init the LPC master

a p9_sbe_lpc_init.C

 Requirement from the bootloader is that it only uses MMIOs to LPC master, not Xscom

 Perform scoms to setup LPC bus

• Move the LPC clock to external input

 Pull the LPC unit out of reset

 Set LPC BAR – hardcoded like Xscom BAR

3.19 proc_sbe_fabricinit : Init fabric(PB) for island mode

a p9_sbe_fabricinit.C

 Send fabric command and check result

• Chip will scan flush to SMP island mode

 This initializes PgP chip in “island” fabric mode and allows the core access to the PIB

 Pbus will flush to a state where all chiplets come up as good configured and disconnected – logic in

powerbus respond to snoop with NULL response (traditional way of handling STOP)

• In single chip mode Obus and Xbus, memory units come up fenced

 As chiplets come online then fabric must be “connected” to the chiplet

• EX – controlled by winkle

• Xbus, Abus – Hot add operation

• memory units – nest facing MCS logic is in N1/N3, already initialized

• What about PCIe chiplets -- nest facing PCIe logic is in N2, already initialized

• Chiplets that are not used (deconfigured) are left in this state

3.20 proc_sbe_check_master : Determine if master chip

a At this point the SBE must use the internal bolt-on register to toggle TPM Reset line

b Determine if this is master SBE

 SBE FW checks bit 24 of the Scratch register (stored in ATTR) –

 if set then this is a slave chip, load /enable runtime chipOps

 else master and continue

3.21 proc_sbe_mcs_setup : Setup MCS to allow EX contained

 This step needs to be a no-op on MPIPL/DRTM flow

b p9_sbe_mcs_setup.C

 If

• ATTR_SYSTEM_IPL_PHASE == CACHE_CONTAINED this step is a no-op

 Else:

• Open the MCS BAR to allow Hostboot to dcbz the contents of cache.

• Also disable speculative pre-fetch to prevent PBA reads from triggering operations to MCS

3.22 proc_sbe_select_ex : Select Hostboot core

a p9_sbe_select_ex.C

 FW will have correctly set the target functional state(s). HWP uses functional states as master record

(doesn’t need to read PG data, gard, etc)

 If ATTR_SYS_FORCE_ALL_CORES is set

• then force select to ALL

• Multicast groups are already setup by istep 3.1

• Else single “master core”

• the first functional EC/EQ is the master core. Note that in this mode no EQ/ECs have been added

to any multicast group before this point

• need to add master EC to multicast group 0, 1, 3

• need to add master EQ to multicast group 0, 4 (and EX to 5, 6 as needed)

 Write selected (single/all) EQ/Core mask into OCC complex

 This is the “master record“ of the enabled cores/quad in the system

 This is only for during the IPL (will be updated later in step 15)

4 Step 4 Self Boot Engine – EX Init

Note: Master chip (attached PNOR) inits EX unit for Hostboot execution image. Slave chips patiently wait.

 Issue isteps detailed in EQ and EC section

• These are common to STOP images

• Execution will return here afterwards

 Does NOT start instructions on core

Cache Initialization

This flow covers the steps that are used to initialize the Cache chiplet. Although it is inserted in the mainline IPL flow, it is

executed both in the IPL (to bring up the cache associated with the HostBoot core) and for the STOP GPE execution used

during run-time. After this flow is done, the flow (once appropriate core multicast groups are established) described in Core

Initialization can be executed.

All cache initialization is done using Multicast Group 6. Therefore, the caches (i.e. cache chiplets) that are to participate

need to have that group number set into one of the PCBS Multicast registers prior to invoking this flow. For IPL, the number

of caches is dependent on the the number of cache chiplet specific sets of information that will fit into the SEEPROM

(minimum: one but can be more); for STOP, this can be any combination of cache chiplets (subsetted by partial good and

gard settings) as all good (from manufacturing) caches will have chiplet specific information (i.e. repair ring data) in the

HOMER region.

4.1 proc_hcd_cache_poweron : Cache Chiplet Power-on

a p9_hcd_cache_poweron.C

 Command the cache PFET controller to power-on

 Check for valid power on completion

• Polled Timeout: 100us

 For Nimbus DD1.0 only enable Vdd PFETS, do not enable Vcs PFETS – controlled by feature ATTR

4.2 proc_hcd_cache_chiplet_reset : Cache Chiplet Reset

a p9_hcd_cache_chiplet_reset.C

 Reset quad chiplet logic

 Clocking: setup cache sector buffer strength, pulse mode and pulsed mode enable values (attribute

dependency Nimbus/Cumulus)

 Clocking: Drop glsmux async reset

 Scan0 flush entire cache chiplet

4.3 proc_hcd_cache_chiplet_l3_dcc_setup : Cache Chiplet DCC Setup

a p9_hcd_cache_chiplet_l3_dcc_setup.C

 Clocking: Setup L3 DCC (scan with setpulse, scan region = ANEP), attribute dependency

Nimbus/Cumulus

 Clocking : drop L3 DCC bypass

4.4 proc_hcd_cache_gptr_time_initf : GPTR and Time for EX non core

a p9_hcd_cache_gptr_time_initf.C

 Initfiles in procedure defined on VBU ENGD wiki to produce #G VPD contents

 Check for the presence of core override GPTR ring from image (this is new for P9)

 if found, apply; if not, apply core GPTR from image

 Check for the presence of core override TIME ring from image;

 if found, apply; if not, apply core base TIME from image

4.5 proc_hcd_cache_dpll_initf : Quad DPLL Setup

a p9_hcd_cache_dpll_initf.C

 Initfiles in procedure defined on VBU ENGD wiki

 DPLL tune bits are not dependent on frequency

 Put DPLL into bypass

 Set DPLL syncmux sel

 Set clock controller scan ratio to 1:1 as this is done at refclk speeds

 Load the EX DPLL scan ring

 Set clock controller scan ratio to 8:1 for future scans

4.6 proc_hcd_cache_dpll_setup : Quad DPLL Setup

a p9_hcd_cache_dpll_setup.C

 Frequency is controlled by the Quad PPM

• Actual frequency value for boot is stored into the Quad PPM by p9_hcd_setup_evid.C in istep 2

• In real cache STOP exit, the frequency value is persistent

 Enable the DPLL in the correct mode

• non-dynamic

• Slew rate established per DPLL team

 Take the cache glitchless mux out of reset

 Remove DPLL bypass

 Drop DPLL Tholds

 Check for DPLL lock

• Timeout: 200us

 Switch cache glitchless mux to use the DPLL

4.7 proc_hcd_cache_dcc_skewadjust_setup : Quad DCC skew adjusts

a p9_hcd_cache_dcc_skewadjust_setup.C

 Start Clocks clock region = AN only

 Drop DCCs reset

 Setup 6 DCCs in parallel (commands over scan with setpulse, scan region = ANEP), dependency to VPD

field #MK

 Drop DCCs bypass

 Additional DCC setup step (commands over scan with setpulse, scan region = ANEP)

 Drop SkewAdjust reset

 Setup Skewadjust (commands over scan with setpulse, scan region = ANEP), dependency to VPD field #??

 Drop SkewAdjust bypass

 Additional SkewAdjust setup step (commands over scan with setpulse, scan region = ANEP)

4.8 proc_hcd_cache_chiplet_init : EX Flush/Initialize

a p9_hcd_cache_chiplet_init.C

 Scan0 flush all configured chiplet rings except Vital, GPTR, TIME and DPLL

4.9 proc_hcd_cache_repair_initf : Repair ring for EX non core

a p9_hcd_cache_repair_initf.C

 This HWP is run serialized per EQ (most others are done in multicast)

 Load cache ring images from MVPD

• These rings must contain ALL chip customization data. This includes the following: Repair Power

headers, and DTS

• Historically this was stored in MVPD keywords are #R, #G. Still stored in MVPD, but SBE image is

customized with rings for booting cores

4.10 proc_hcd_cache_arrayinit : EX Initialize arrays

a p9_hcd_cache_arrayinit.C

 Use ABIST engine to zero out all arrays

 Upon completion, scan0 flush all rings except Vital, Repair, GPTR, TIME and DPLL

4.11 proc_hcd_cache_abist : DFT hook for abist

a p9_hcd_cache_abistabist.C

 Stub for DFT – requirement is not to be compiled into real SBE/CME/GPE image – only an istep

placeholder

 Upon completion, scan0 flush all rings except Vital, Repair, GPTR, TIME and DPLL

4.12 proc_hcd_cache_lbist : DFT hook for lbist

a p9_hcd_cache_lbist.C

 Stub for DFT – requirement is not to be compiled into real SBE/CME/GPE image – only an istep

placeholder

• Use LBIST engine to run tests

• Upon completion, scan0 flush all rings except Vital, Repair, GPTR, TIME and DPLL

4.13 proc_hcd_cache_initf :EX (non core) scan init

a p9_hcd_cache_initf.C

 Initfiles in procedure defined on VBU ENGD wiki

 Call putring on EQ rings

• Putring checks for the presence of cache FUNC override/cache contained/risk level/etc rings from

image;

• if found, apply; if not, apply cache base FUNC rings from image

 Note: FASTINIT ring (eg CMSK ring) is setup at this point to limit the stumps that participate in FUNC

ring scanning (this is new for P9).

 Note: all caches that are in the Cache Multicast group will be initialized to the same values via multicast

scans

• Note that this is done 2X – once for even EX in EQ and once for odd EX in EQ

4.14 proc_hcd_cache_startclocks : Quad Clock Start

a If ATTR_SYSTEM_IPL_PHASE == CACHE_CONTAINED then skip (platform check)

b p9_hcd_cache_startclocks.C

 Set (to be sure they are set under all conditions) core logical fences (new for P9)

 Drop pervasive thold

 Setup L3 EDRAM/LCO

 Drop pervasive fence

 Reset abst clock muxsel, sync muxsel

 Set fabric node/chip ID from the nest version

 Clear clock controller scan register before start

 Start arrays + nsl regions

 Start sl + refresh clock regions

 Check for clocks started

• If not, error

 Clear force align

 Clear flush mode

 Drop the chiplet fence to allow PowerBus traffic

4.15 proc_hcd_cache_scominit : Cache SCOM Inits

a If ATTR_SYSTEM_IPL_PHASE == CACHE_CONTAINED then skip (platform check)

b p9_hcd_cache_scominit.C

 Apply any SCOM initialization to the cache

 Setup L3 configuration mode (LCO)

 Configure Trace Stop on Xstop

 DTS Initialization sequence

4.16 proc_hcd_cache_scom_customize : Cache Customization SCOMs

a If ATTR_SYSTEM_IPL_PHASE == CACHE_CONTAINED then skip (platform check)

b p9_hcd_cache_scomcust.C

 Dynamically built (and installed) routine that is inserted by the “XIP Customization” process. (New for

P9)

 Dynamically built pointer where a NULL is checked before execution

 If NULL (a potential early value); return

 Else call the function at the pointer; pointer is filled in by XIP Customization

 Customization items:

• Epsilon settings scan flush to super safe

• Customize Epsilon settings for system config

• LCO setup (chiplet specific)

• FW setups up based victim caches

• Powerbus (MCD) and L3 BAR settings

From this point on, all data added to the image is for run-time modifications for STOP

4.17 proc_hcd_cache_ras_runtime_scom : EX Runtime Scom Init

a p9_hcd_cache_ras_runtime_scom.C

 Not consumed by SBE (empty istep); SGPE only

 Run-time updates from Host based PRD, etc that are put on the core image by STOP API calls

 Dynamically built pointer where a NULL is checked before execution

 If NULL (the SBE case), return

 Up to three separate sections – normal scom, L2 repair, and L3 repair

 Else call the function at the pointer; pointer is filled in by STOP image build

• Runtime FIR mask updates from PRD

• L2/L3 repairs

4.18 proc_hcd_cache_occ_runtime_scom : EX OCC runtime SCOMS

a p9_hcd_cache_occ_runtime_scom.C

 Not consumed by SBE (empty istep); SGPE only

 Run-time updates from OCC code that are put here

 OCC FW sets up value in the TBD SCOM section

 Placeholder at this point

Note: this flow does NOT do anything with any of the cores attached to the caches that were just initialized. Also, this

portion of the flow does also NOT initialize the CMEs in the cache chiplet as this cannot be done when this flow is run as a

part of istep 4.

Core Initialization

This flow covers the steps that are used to initialize the Core chiplet. It is covered prior to the mainline IPL flow as it is a

separate image that is executed both in the IPL (to bring up the HostBoot core) and for the CME STOP execution. The

running of this initialization flow REQUIRES the flow described in Cache Initialization to have been previously executed. In

the Cache flow, the PCBS for the cores are endpoint reset but nothing behind the PCBS is affected (eg the EPS components

as the power to these are not yet on).

4.19 proc_hcd_exit_mode : Determine which Cores to process

 Stub for SBE (empty istep)

 SGPE/CME have logic here to determine which cores should be acted upon

4.20 proc_hcd_core_pcb_arb : Core Chiplet PCB Arbitration

a p9_hcd_core_pcb_arb.C

 If CME, request PCB Mux.

• Poll for PCB Mux grant

 Else (SBE)

• Nop (as the CME is not running in bringing up the first Core)

4.21 proc_hcd_core_poweron : Core Chiplet Power-on

a p9_hcd_core_poweron.C

 Command the core PFET controller to power-on

 Check for valid power on completion

• Polled Timeout: 100us

4.22 proc_hcd_core_chiplet_reset : Core Chiplet Reset

a p9_hcd_core_chiplet_reset.C

 Reset chiplet logic

 Clocking: setup core sector buffer strength, pulse mode and pulsed mode enable values,), attribute

dependency Nimbus/Cumulus

 Clocking: Drop glsmux async reset

 Scan0 flush entire core chiplet

4.23 proc_hcd_core_gptr_time_initf : Load Core GPTR and Time rings

a p9_hcd_core_gptr_time_initf.C

 Initfiles in procedure defined on VBU ENGD wiki to produce #G VPD contents

 GPTR is common between cores (ie multicast / PCB muxing)

 Check for the presence of core override GPTR ring from image (this is new for P9)

• if found, apply; if not, apply core GPTR from image

 Check for the presence of core override TIME ring from image;

• if found, apply; if not, apply core base TIME from image

4.24 proc_hcd_core_chiplet_init : Core Flush/Initialize

a p9_hcd_core_chiplet_init.C

 Switch the core glitchless mux to allow DPLL clocks on the clock grid

 Clocking: setup controls based on DPLL frequency

 Clocking: assert PM sync_enable (4x core, 2 x L2), DCCs and SkewAdjust starts aligning clocks

 Scan0 flush all chiplet rings except VITAL, GPTR and TIME

4.25 proc_hcd_core_repair_initf : Load Repair ring for core

a p9_hcd_core_repair_initf.C

 This step is run individually per core (serialized)

 Load core ring images from that came from MVPD into the image

• These rings must contain ALL chip customization data. This includes the following: Array Repair

and DTS calibration settings

• Historically this was stored in MVPD keywords are #R, #G. Still stored in MVPD, but SBE image is

customized with rings for booting cores at build time

4.26 proc_hcd_core_arrayinit : Core Initialize arrays

a p9_hcd_core_arrayinit.C

 Use ABIST engine to zero out all arrays

 Upon completion, scan0 flush all rings except Vital, Repair, GPTR, and TIME

4.27 proc_hcd_core_abist : DFT hook for abist

a p9_hcd_core_abist.C

 Stub for DFT – requirement is not to be compiled into real SBE/CME/GPE image – only an istep

placeholder

 Upon completion, scan0 flush all rings except Vital, Repair, GPTR, TIME and DPLL

4.28 proc_hcd_core_lbist : DFT hook for lbist

a p9_hcd_core_lbist.C

 Stub for DFT – requirement is not to be compiled into real SBE/CME/GPE image – only an istep

placeholder

 Use LBIST engine to run tests

 Upon completion, scan0 flush all rings except Vital, Repair, GPTR, TIME and DPLL

4.29 proc_hcd_core_initf :Core scan init

a p9_hcd_core_initf.C

 Initfiles in procedure defined on VBU ENGD wiki

 Check for the presence of core FUNC override rings from image;

 if found, apply; if not, apply core base FUNC rings from image

 Note: FASTINIT ring (eg CMSK ring) is setup at this point to limit the stumps that participate in FUNC

ring scanning (this is new for P9).

 Note : if in fused mode, both core rings will be initialized to the same values via multicast scans

4.30 proc_hcd_core_startclocks : Core Clock Start

a If ATTR_SYSTEM_IPL_PHASE == CACHE_CONTAINED then skip (platform check)

b p9_hcd_core_startclocks.C

 Drop pervasive thold

 Drop pervasive fence

 Reset abst clock muxsel, sync muxsel

 Clear clock controller scan register before start

 Start arrays + nsl regions

 Start sl + refresh clock regions

 Check for clocks started

• If not, error

 Clear force align

 Drop the core to cache logical fence

4.31 proc_hcd_core_scominit : Core SCOM Inits

a If ATTR_SYSTEM_IPL_PHASE == CACHE_CONTAINED then skip (platform check)

b p9_hcd_core_scominit.C

 Apply any coded SCOM initialization to core

4.32 proc_hcd_core_scom_customize :Core Customization SCOMS

a If ATTR_SYSTEM_IPL_PHASE == CACHE_CONTAINED then skip (platform check)

b p9_hcd_core_scomcust.C

 Dynamically built (and installed) routine that is inserted by the “XIP Customization” process. (New for

P9)

 Dynamically built pointer where a NULL is checked before execution

 If NULL (a potential early value); return

 Else call the function at the pointer; pointer is filled in by XIP Customization

From this point on, all data added to the image is for run-time modifications for STOP

4.33 proc_hcd_core_ras_runtime_scom : EX Runtime Scom Init

a p9_hcd_core_ras_runtime_scom.C

 Not consumed by SBE (istep is placeholder); CME only

 Run-time updates from Host based PRD, etc that are put on the core image by STOP API calls

 Dynamically built pointer where a NULL is checked before execution

 If NULL (the SBE case), return

Else call the function at the pointer; pointer is filled in by STOP image build

4.34 proc_hcd_core_occ_runtime_scom : Core OCC runtime SCOMS

a p9_hcd_core_occ_runtime_scom.C

 Not consumed by SBE (istep placeholder); CME only

 Run-time updates from OCC code that are put here

 OCC FW sets up value in the TBD SCOM section. This was not leverage in P8 with the demise of CPMs

 Placeholder at this point

Note: for STOP image wakeup (eg istep 4), there is no explicit instruction start here. In Cronus mode this was left up to

the user, in FW the instruction control is managed in step 5. However for true STOP usage the CME blocks interrupts to

core, puts HRMOR in place to point the Core to HOMER and issues an SRESET to all threads. The threads goes into

HOMER, and do SPR restoration. Then slave threads end at STOP level 15, master thread waits for slaves to complete

(reach STOP15) then switches to “real” HRMOR and other SPRs and then enters STOP15. When CME sees all threads at

STOP15, it unblocks interrupts, which allows normal execution to commence.

5 Step 5 Self Boot Engine – Load Hostboot

Note: Master chip (attached PNOR) loads Host boot image. Slave chips patiently wait. Master SBE fetches Hostboot code

from PNOR and places in target EX

5.1 proc_sbe_load_bootloader

a p9_pm_ocb_indir_setup_linear.C

 Setup OCB channel 3 to linear mode

b p9_sbe_load_bootloader.C

 Setup PBA to target specific cache (L3 tank)

 SBE fetches bootloader, security algorithm, and hash of HW public keys from SEEPROM

• SEEPROM Image is ECC protected

• Design is still in discussion, but each of the items above are independent (ie the key hash and bootload,

security code will want to be updated from HB independently). They are NOT part of SBE xip

customize image (but SBE knows how to find)

 Places bootloader at specific address

• 0x 08200000 + 12KB (HRMOR of 130MB, ie 2MB into 10MB cache) – tentative bootloader address

 SBE fetches signature validation code from SEEPROM, places at specific address

 SBE fetches hash of HW public keys from SEEPROM, places at specific address

 SBE creates POWER interrupt table (12K)

• Done by SBE code because we don’t want to waste 12K of SEEPROM space

• Current idea is a branch absolute to 12KB

 SBE does not open an unsecure memory window -- Host has to indicate to SBE what the unsecure memory

window is

• In other words SBE Chip Ops won't let PBA/ADU traffic in until SBE receives a command to open the

unsecure window from the host

• Note that the SBE will use PBA bar 2

 Set HRMOR to point node address + 130MB

5.2 proc_sbe_instruct_start

a p9_sbe_instruct_start.C

 Start instructions on one core, one thread

 Thread 0 will be started at CIA scan flush value of 0x0

• With HRMOR this is address 130MB

 Instruction start on one core, one thread. After executing this istep the SBE will load its runtime ChipOps

6 Step 6 Hostboot – Master Init, discovery

6.1 host_bootloader (non-steppable istep)

 Boot loader needs the following information:

• LPC base address

• Xscom base address

• Which PNOR side it is booting from

 Perform any LPC setup (via MMIO only)

 Boot loader finds the FFS partition table in PNOR, locates the HBB partition

 Performs dcbz of HBB destination (128MB) for 512KB

 Loads HBB w/ECC to secure memory (4MB relative)

 Remove ECC to secure memory (5MB relative)

 Uses signature validation code to validate (@ 5MB relative)

 Copy down verified image to 128MB

 Copy down security algorithm, hash of the HW keys, HBB header

 Starts executing at 128MB (sets HRMOR and jumps)

 If any of the above steps fail – bootloader will checkstop the system

6.2 host_setup (non-steppable istep): Setup host environment

 If in secure boot the bootloader has already validated image

 Select primary thread (only thread running)

 Purge the L3 of all areas except for hostboot base image

 Dcbz in the Hostboot memory footprint

 Initial setup

• stacks

• MSR

• execution environment

• Thread control structures

• Memory Management setup

 Ready for execution

• Tracing

• Device Drivers

• Xscom (Scom)

• Mailbox (Scom)

• I2C (Scom)

• LPC

• FSI (Scom)

 At this point the HWPF is alive and active

 p9_thread_control.C

• Start and release all other threads on core (1-3)

 Hostboot will pull appropriate scratch register data and write into ATTR

• Specifically the next bucket and boot flags (maybe share some code with SBE HWP?)

 HB mechanism to read/write to PNOR

• Host writes to LPC ↔ SPI NOR controller to read/write

• SBE uses NOR at lowest frequency, Hostboot will use flash config info to speedup to full frequency

6.3 host_istep_enable (non-steppable istep): Hostboot istep ready

 Hostboot checks PNOR/SIO registers (BMC) for istep attribute, if set Hostboot “halts” and waits for

commands from SP

 Only isteps after this point can be issued to Hostboot

 At this point communication can be performed with the SP

6.4 host_init_bmc_pcie : Setup the PCIE to the BMC chip

 This chip is a no-op and is left as a placeholder if PCIe logic is desired early in the boot

 Required that System topology has BMC attached to master processor, otherwise this step cannot be done.

6.5 host_init_fsi : Setup the FSI links to slave chips

 It is expected that the following steps have already been done by SP – Hostboot will just use FSI bus

• Configure FSI master (HUB and Cascade)

• Send break commands to FSI slaves

• Configure the slaves

• Force lbus

 Setup Scom device drivers

• Read ID/EC levels

 Reset all I2C engines/slaves on the P8 Master Chip and all FSI I2C Masters (P8 slaves, centaurs)

• Can't reset the scom only I2C master on the P8 Slave chips (see 8.44)

6.6 host_set_ipl_parms : Build ipl parameters

 Sets the IPL parameters for this boot

6.7 host_discover_targets : Builds targeting

 Determines what targets are present and functional

 This is the step where the host “configures” itself and builds its present/functional map of the targets

• Uses FSI presence to detect processors and memory buffers

• Reads dimm VPD from PNOR/I2C to determine what dimms are present

 For OpenPower systems Hostboot will push the IPMI FRU inventory to the BMC

• Must push for all present parts

• Must update FRU present/functional state

6.8 host_update_master_tpm : Update the Master TPM

 If redundant TPM this step must enforce that master/alt-master use their local respective TPM

• If the master proc’s TPM is not functional, force a reboot to the Alt Master

 Perform the TPM Initialization

 Extend TPM with measurements and configuration data

• SBE, Hash of HW public keys, HBB, HBI, etc

• See/update with list in Tim’s Doc

6.9 host_gard : Do Gard

 Run PRD analysis of previous boot FIRDATA if present to see if something needs to be

deconfigured/garded

 Apply repeat-gard records and deconfigure hardware

 Initialize PRD

 At the end of this step ATTN/PRD will start polling for errors on the master chip

6.10 host_revert_sbe_mcs_setup : Clean up MCS regs

a p9_revert_sbe_mcs_setup.C

 Clean up the MCS BARs that were used by SBE and Hostboot to cleanly load/purge the L3 cache

 Re-enable speculative reads

6.11 host_start_occ_xstop_handler : Start OpenPOWER xstop

 Image is loaded from PNOR

 Put a very small bootloader into mainstore

 FIR Master/FIR DATA is updated directly into SRAM

 OCC is started (occ_control)

6.12 host_voltage_config : Calculate correct chip voltage

 This step will compute and store all of the various system frequencies and voltages – specifically the

powerbus and core frequency based on MRW wattage/powerbus frequency settings

 The programmable voltages for each P9 socket in the system (VCS, VDN, VDD) will also be calculated.

The VDN and VDD rails are always on the AVS bus because the OCC needs to dynamically manipulate

for Workload Optimized Frequency, but the VCS can be connected differently based on system type.

b p9_setup_evid.C (COMPUTE)

• Use VPD backed attributes (from #V) to calculate VDD, VCS and VDN for this socket

• These need to be stored to ATTR_*_VAL (VCS, VDD, VDN)

 Note that none of the settings are written to hardware – this is done later in the boot.

7 Step 7 Hostboot – MC Config

Note that the “FW Reconfig” loop starts here (since it doesn't touch HW). Any reconfig during step 7 will loop back to this

step

7.1 host_mss_attr_cleanup : Spot to clean up ATTR

a p9_mss_attribute_cleanup.C (list of all mcs)

 Called on all present memory buffers (Nimbus and Centaur)

 Hook to clean up attributes on reconfig loop (set to known state) if needed

7.2 mss_volt : Calc dimm voltage

a p9c_mss_volt.C (vector of centaurs)

b p9_mss_volt.C (list of functional mcs)

 Procedure is called all the dimms on a voltage rail

 Calculate rail Voltage and updates rail system attribute

 Save settings in variables (saved in framework/cache)

 Procedure handles checking overrides

c p9c_mss_volt_avdd_offset.C (vector of centaurs)

d p9c_mss_volt_vcs_offset.C (vector of centaurs)

e p9c_mss_volt_vdd_offset.C (vector of centaurs)

f p9c_mss_volt_vddr_offset.C (vector of centaurs)

g p9c_mss_volt_vpp_offset.C (vector of centaurs)

7.3 mss_freq : Calc dimm frequency

a p9c_mss_freq.C (centaur)

 Called on each centaur

b p9_mss_freq.C (functional mcs)

 Procedure is called on each MCS in the system

 Looks at voltage and dimm functionality

 Takes a system ATTR that defines the allowable dimm frequencies for the system

 Bound frequency base on plug rules

 Calculate per memory controller frequency from attributes – picks the frequency bucket to use

 Save settings in variables (saved in framework/cache)

 Procedure handles checking overrides

c p9_mss_freq_system.C (all functional mcbists) -- Nimbus only

 Determine the optimal system nest frequency, synchronous mode is preferred

• All dimms must be at same frequency as system

• Otherwise move nest to max frequency defined by system and run in async mode

• Outputs a synchronous mode ATTR and desired nest freq

 FW examines current synchronous mode and nest freq and will customize the SBE and reboot if necessary

on the master only (slaves get data via mbox scratch registers)

• p9_xip_customize.C

- Cronus may output error and stop if freqs don’t match

7.4 mss_eff_config : Determine effective config

a p9c_mss_eff_config.C (mba) -- loop over all functional mba

b p9_mss_eff_config.C (mcs) -- loop over all functional mcs

 Decode SPD

• getDimmSPD(DIMM)

• getVPD (MCS, MR, <freq>) – need effective dimm freq for this mcs

• getVPD (MCS, MT, <numranks for dimm0, numranks for dimm1>)

• need number of ranks for dimms behind this mcs (effective) (dimm0=outside dimm,

dimm1=inside dimm)

c mss_eff_mb_interleave.C (Cumulus only)

 Called on each centaur target.

 This sets up the MBA interleaving internal to the centaur

d p9c_mss_eff_config_thermal.C (mba) -- loop over all functional mba

e p9_mss_eff_config_thermal.C (mcs)

• getVPD(MCS, MV, ???like MT???)

• getVPD(MCS, MW, ???like MT???)

• Perform thermal calculations for the effective config

f p9_mss_eff_grouping.C (proc chip) – loop over all functional (Cumulus and Nimbus both)

 Called on each P9 target.

 Maps memory behind each chip

7.5 mss_attr_update :MSS ATTR Overrides

a p9_mss_attr_update.C

 Called per MC

 Stub HWP for FW to override attributes programmatically

8 Step 8 Hostboot – Nest Chiplets

8.1 host_slave_sbe_config

 Need to run this from master processor to all slave processors for Secureboot hole (need to ensure that SP

didn't leave compromised P8 Slave.

b p9_setup_sbe_config.C

 Update SBE config data area with any configs/parameters required by SBE (see step 0 for more details)

 This includes the nest (and memory frequency if in synchronous mode)

 Configuration flags (MPIPL, etc)

8.2 host_setup_sbe

a p9_set_fsi_gp_shadow.C

 Done for all boots – some settings will change based on system type and IPL type

 Set the GP bits to default state

 Needs to take into account to not change values set up in p9_set_clock_term.C procedure

8.3 host_cbs_start

a p9_start_cbs.C

 Set a bit to start the SBE engine on master chips. Located in FSI GP region

 This same bit performs the scan0 flush of pervasive

8.4 proc_check_slave_sbe_seeprom_complete : Check Slave SBE Complete

 Check to make sure that the slave SBE engines have completed their IPL

 FW will poll for up to 1 second to see if the “done” signature is in the status reg (not tied to istep number)

 If “done” signature is not found then FW must extract FFDC from the SBE

b p9_get_sbe_msg_register.C

 Read the SBE state reg

c p9_extract_sbe_rc.C -soft_err

 Called on slave chips to look for any correctable errors on the PNOR and/or SEEPROM

 The soft_error flag just tells the procedure to not generate an error if no HW issue

d Reset all scom only I2C engines/slaves on the P8 Slave Chips

8.5 host_attnlisten_proc : Start attention poll for P9(s)

 Enable hostboot to start including all processor attentions in its post istep analysis

 Enable OCC to collect FIR data on all processors if master processor checkstops

 From this point on ATTN/PRD will listen (“poll”) for powerbus attentions after each named istep

8.6 host_p9_fbc_eff_config : Determine Powerbus config

a p9_fbc_eff_config.C (None)

 Sets system wide attributes derived from MRW and system topology

• Epsilon settings

• Processor floor frequency

 Does not access the HW

8.7 host_p9_eff_config_links : Powerbus link config

a p9_fbc_eff_config_links.C (None)

 Determines the Sets system wide attributes derived from MRW and system topology

• Epsilon settings

• Processor floor frequency

8.8 proc_attr_update :Proc ATTR Update

a p9_attr_update.C

 Called per processor

 Stub HWP for FW to override attributes programmatically

8.9 proc_chiplet_scominit : Scom inits to all chiplets (sans Quad)

a p9_chiplet_fabric_scominit.C

 Initfiles in procedure defined on VBU ENGD wiki

 Apply scom overrides to all chiplets necessary to init the powerbus

• p9.fbc.no_hp.scom.initfile

• p9.fbc.ioe_dl.scom.initfile

• p9.fbc.ioe_tl.scom.initfile

• p9.fbc.ioo_dl.scom.initfile

• p9.fbc.ioo_tl.scom.initfile

8.10 proc_xbus_scominit : Apply scom inits to Xbus

a p9_xbus_scominit.C

 Each instance of bus must have unique id set for it – personalize it

 Must set present and valid bits based on topology (Attributes indicate present and valid)

8.11 proc_chiplet_enable_ridi : Enable RI/DI for xbus

a p9_xbus_enable_ridi.C

 Drop RI/DI for xbus chiplets being used

 Any other chip wide RI/DI

9 Step 9 Hostboot – EDI+ and Electrical O-Bus Initialization

9.1 fabric_erepair : Restore Fabric Bus eRepair data

a p9_io_restore_erepair.C (O, X bus target pairs)

 Restore/preset bad lanes on electrical O and X buses from VPD (in drawer)

 Applies powerbus repair data from module vpd (#ER keyword in VRML VWML)

 Runtime detected fails that were written to VPD are restored here

 NOOP for Cronus

9.2 fabric_io_dccal : Calibrate Fabric interfaces

a io_dccal.C (O, X bus target pairs passed in)

 Will be called per bus target pair

 Calibration of TX impedance, RX offset for O and X busses

 Needs to be quiet on the bus – drivers are quiesced and driving 0s – O, X buses

 Must be complete on ALL chips before starting O, X bus training

 Expect to use a calculation (floating point)

 At end of offset calibration there may be a lane that is bad

• FW must record bad lane and write to VPD for future eRepair (handled when PRD starts)

• Must generate error log, procedure will mark lane bad in HW (which future procedure take advantage

of)

9.3 fabric_pre_trainadv : Advanced pre training

a p9_io_pre_trainadv.C (called on each O and X bus target pair)

 Debug routine for IO Characterization

 Nothing in it

9.4 fabric_io_run_training : Run training on internal buses

a p9_io_xbus_linktrain.C (called on each OO and X bus target pair)

 Hostboot will run training on all intra node buses. For Nimbus this is all X buses. For Cumulus this is run

by the SP in a later step

 Wiretest, Deskew, Eye Optimization, and repair

• Option to run extend bit patterns in optimization phase (replaces RDT)

• Repairable fails are left for PRD to analyze and move data into VPD

• PRD will use io_eRepair_read.C to perform this

• Fatal bus training errors are handled by procedure, must return error and FFDC (written to VPD)

• Expected that fatal error passes returncode back to HWPF, FW then looks up returncode and

determines what to do based off of FFDC

9.5 fabric_post_trainadv : Advanced post EI/EDI training

a p9_io_post_trainadv.C (called on each O and X bus target pair)

• Debug routine for IO Characterization

• Nothing in it

9.6 proc_smp_link_layer : Start SMP link layer

a p9_smp_link_layer.C (called on processor chip)

 Reads logical A/X link configuration attributes, trains the DL/TL layers of selected links

 Set scom on both sides of the bus to trigger Data link layer training

 DLL sends training packets, sets link up FIR bit when done

 FIR done bit launches the Transaction Layer (TL)

 FIR bit in nest domain to indicate training done

 After this point the mailbox register are available to communicate

• Xstop would prevent mailbox communication

 Bus is NOT part of the SMP coherency

 Only performed on trained, valid buses

9.7 proc_fab_iovalid : Lower functional fences on local SMP

a p9_fab_iovalid.C (chip target)

 Reads logical A/X link config, sets iovalid for selected links

 Only performed on trained, valid buses

 After this point a checkstop on a slave will checkstop master

 Reads the A/X link delays for later HWP to pick best link for coherent traffic

9.8 host_fbc_eff_config_aggregate : Pick link(s) for coherency

a p9_fbc_eff_config_aggregate.C (chip target)

 Reads attributes from previous HWP and determines per-link address/data capabilities

 Sets up attributes for build SMP

10 Step 10 Hostboot – Activate PowerBus

10.1 proc_build_smp : Integrate P9 Islands into SMP

a p9_build_smp.C (vector of all chips to include in SMP)

 Look for checkstops

 Use the fabric concurrent maintenance operation to merge P9 PB islands into the SMP

 Fabric config between IO/CAPI are set here – only can set once, must be known by this point in time

 After this point the SMP is built for normal mode

 Runs initfiles to set current/next values for full config in slaves, setup master next value

• p9.fbc.ab_hp.scom.initfile

• p9.fbc.cd_hp.scom.initfile

 Trigger fabric quiesce/switch/init on the master

10.2 host_slave_sbe_update

 On systems that support Alt Master Processors then code will attempt to read the TOC of the Alt Master

PNOR to check for connection problems. If an error is detected it will be logged, but this does not stop the

IPL (except when in manufacturing mode)

 Hostboot must update SEEPROM because the SP cannot because of secureboot. It is at this step in the IPL

so it can be updated via Xscom (trusted path) on all chips in the system

b p9_customize_image.C

• If needed build a custom SEEPROM image for each chip in the system off of the base IPL SEEPROM

image

• This set will update all SEEPROM images in the HB “node”. All needed attributes are written from

the host into the SBE image via this HWP.

• In addition if the override section from the PNOR is not empty then it needs to be appended to the SBE

image prior to customization.

 If the SEEPROM was updated then Hostboot will request a reipl at this point

10.3 host_set_voltages : Set correct chip voltage(s)

 This step will apply the voltages calculated earlier in the IPL. It is done here so all chips can be

programmed at one spot.

b p9_setup_evid.C (APPLY_AVS)

• Via the AVS bus the HWP will program always program VDN and VDD. The specific combination of

AVS bus and rail select are indicated by ATTR_*_BUS_CTL (which AVS bus) and

ATTR_*_BUS_SELECT (which select).

• The VCS voltage will be programed if ATTR_VCS_BUS_CTL indicates an AVS bus (taking into

account the rail select as well), but if set to I2C or SP then it is not programmed.

 If ATTR_VCS_BUS_CTL indicates that it is programed via non AVS bus means then Hostboot then needs

to use the value in ATTR_VCS_VAL to program (via direct I2C or message to FSP/BMC). The Attributes

needed for these Hostboot operations (I2C bus information, FSP control) are assumed to be part of the

MRW

10.4 proc_cen_ref_clk_enable : Setup centaur ref clocks

a p9_cen_ref_clk_enable.C (Cumulus only)

 Enable the ref clocks to centaur

10.5 proc_enable_osclite

a p9_enable_osclite.C

 Cumulus only

 Turn off the power-pon-reset to osclite macro

 Setup oscillator mode based on istep 0 setup

 Check that osclite matches expected output (if not returns an error for FW to trigger reconfig)

10.6 proc_chiplet_scominit : Scom inits to all chiplets (sans Quad)

a p9_chiplet_scominit.C

 Initfiles in procedure defined on VBU ENGD wiki

 Apply scom overrides to all good chiplets (except EX and MC)

• p9.fbc.no_hp.scom.initfile

b p9_psi_scominit.C

 Each instance of bus must have unique id set for it – personalize it

 Must set present and valid bits based on topology (Attributes indicate present and valid)

10.7 proc_abus_scominit : Apply scom inits to Abus

a p9_abus_scominit.C

 Each instance of bus must have unique id set for it – personalize it

 Must set present and valid bits based on topology (Attributes indicate present and valid)

10.8 proc_obus_scominit : Apply scom inits to Obus

a p9_obus_scominit.C

 Each instance of bus must have unique id set for it – personalize it

 This is where the O to A/NVlink linkage is setup in HW

10.9 proc_npu_scominit : Apply scom inits to NPU

a p9_npu_scominit.C

 Each instance of NPU bus must have unique id set for it – personalize it

10.10 proc_pcie_scominit : Apply scom inits to PCIe chiplets

a p9_pcie_scominit.C

 Initfiles in procedure defined on VBU ENGD wiki

 Perform the PCIe Phase 1 Inits 1-8

• Sets the lane config based on MRW attributes

• Sets the swap bits based on MRW attributes

• Sets valid PHBs, remove from reset

• Performs any needed overrides (should flush correctly) – this is where initfile may be used

• Set the IOP program complete bit

• This is where the dSMP versus PCIE is selected in the PHY Link Layer

10.11 proc_scomoverride_chiplets : Apply sequenced scom inits

a p9_scomoverride_chiplets.C

 Apply any sequence driven scom overrides to chiplets – Should be NONE

10.12 proc_chiplet_enable_ridi : Enable RI/DI chip wide

a p9_chiplet_enable_ridi.C

 Drop RI/DI for all chiplets being used (A, O, PCIe, DMI)

 Any other chip wide RI/DI

10.13 host_rng_bist : Trigger Built In Self Test for RNG

a p9_rng_init_phase1.C

 Trigger the Random Number Generator Built In Self Test (BIST). Results are checked later in step 16

when RNG is secured

10.14 host_update_redundant_tpm : Update the Alt Master TPM

 Perform hostimprint of both master/alt-master TPM/SEEPROM if needed

• If non-functional TPM during hostimprint then fail IPL

• Must clear both redundant TPM before updating SEEPROMs

• When hash of HW public keys is updated in SEEPROM, must clear the software root key in TPMs

• If imprint is done then reboot

 Replay information from master TPM into alternate TPM

b p9_update_security_ctrl.C

 This HWP will set the SUL security bit so that SBE image cannot be updated

 This will also make the SAB security bit read only

 If a TPM is non functional, set the TDP (TPM Deconfig Protection) to prevent attack vector

11 Step 11 Hostboot Centaur Init

The following steps are part of the Centaur initialization. Unlike P8, individual sub-steps can be done in both Hostboot and

Cronus.

Hostboot will check for HW reconfig loop after the end of each named istep. For P9 Scale Out if a reconfig loop is detected

then Hostboot will request a reboot from the service processor during any step except for istep 7. For P9 Scale Up if a

reconfig request happens in 11,12,13, or 14 it will go back to the beginning of step 7, then redo steps 11,12,13 (known as HW

reconfig loop). If it fails in step 7 it will go back to the beginning of step 7 (FW reconfig loop).

Note that this is the step for HW Reconfig to restart on Centaur or dimm training/init fails

11.1 host_prd_hwreconfig : Hook to handle HW reconfig

 This step is always called

 Move all Centaur's inband scom back to FSI scom

 Call PRD to allow them to rebuild model to remove non-functional Centaurs

 Protect Centaur from SP operations during initialization

• Set the CFP Security bit. This will prevent the SP from performing FSI operations to the Centaur

while it is being initialized

 Used for HW reconfig path. FW's strategy is to perform the reconfig on ALL functional Centaurs/MCS's in

the system.

 The following procedures must be called:

b p9_switch_cfsim.C (proc target)

 Call on all present processors

 Move all Centaur’s inband scom back to FSI scom

c p9_enable_reconfig.C (MCS, DMI, MCA/MBuf)

d Call on all present MCS targets

 Enables HW for reconfig loop

 Cumulus/Centaur:

• Attribute (ATTR_CEN_MSS_INIT_STATE) to each Centaur to track where the Reconfig loop got to:

• Clocks on (can do fir masking) – set after step 11

• DMI bus up (inject special bit) – set after framelock

• Turn's on special bit that allows the MCS DMI to get errors and not get into a hang condition

• Mask a bunch of FIRs on processor

• Mask a bunch FIRs on centaur (HWP will check clock state)

• Injects a fail on the DMI bus (only if DMI bus is alive)

• Clears IO/MCS FIRs

• Turns off special bit

 Nimbus

• Raise the MCU chiplet fences

• Stop clocks

• Scan 0 flush the MCU chiplet each and everytime through this loop

• How do we cleanup the nest portion of the MCS?

The following steps are for Cumulus only. They are not defined/applicable for P9 Nimbus

11.2 cen_tp_chiplet_init1 : Centaur TP chiplet init, stage #1

a cen_tp_chiplet_init1.C (MemBuf)

 Flush all GP registers content to default state

 Drop fences, check VDD, start VITL clocks

 Scan 0 PLL GPTR/BNDY/FUNC rings.

11.3 cen_pll_initf : Program Nest PLL

a cen_pll_initf.C

• Apply the TP BNDY PLL ring with setpulse. This includes settings for NEST/MEM/DMI (cleanup) PLLs

 Final frequency is known at this point – DDR is @ 1600

 Nest freq: 2400MHz

11.4 cen_pll_setup : Setup Nest PLL

a cen_pll_setup.C (MemBuf)

 Performs PLL checking

 The memory PLL (ie DDR4) are set to the correct speeds for both DDR3 and DDR4 (1600)

 Establish Nest PLLs (feeds TP chiplet) and MEM PLL

11.5 cen_tp_chiplet_init2 : Centaur TP chiplet init, stage #2

a cen_tp_chiplet_init2.C (MemBuf)

• Scan 0 init TP unit flush

• Start PIB/NET clock

• Invoke Repair Loader

• Writing FSI GP3 to switch mux

• No repair/timing for TP chiplet (i.e. fuses).

11.6 cen_tp_arrayinit : Centaur TP chiplet array init

a cen_tp_arrayinit.C (MemBuf)

 Run arrayinit on TP chiplet, when done, all arrays are initialized

 Scan flush 0 to all rings except GPTR, Time, and Repair

11.7 cen_tp_chiplet_init3 : Centaur TP chiplet init, stage #3

a cen_tp_chiplet_init3.C (MemBuf)

 Start clock on PERV region

 Enable PIB trace mode,

 When done, the TP chiplet can be used to init the rest of the chip. All access now go through TP chiplet

The following steps are to initialize the Centaur chip logic (Host Chiplet Setup)

11.8 cen_chiplet_init : Centaur chiplet init

a cen_chiplet_init.C (MemBuf)

 Identify good chiplets then for each good chiplet:

• Setup multicast groups

• Scan 0 all rings

• If repair ring is present, kick off the fuse repair algorithm (load repair ring)

• DTS calibration via repair loader. Repairs are loaded from OTPROM fuse.

• Pulls data from OTPROM and puts into repair ring (series of Scoms)

• No actual ring content from VPD

11.9 cen_arrayinit : Centaur chiplet array init

a cen_arrayinit.C (MemBuf)

 Run arrayinit on all good chiplets, except for TP chiplet. After this, all chiplet arrays are initialized

 Scan flush 0 to all rings, except GPTR, Time, and Repair.

Note:

 If LBIST was to be run, it should be run after this step, prior to the next step

The following sections are to initialize the Centaur chip logic (Host Chiplet Initialization)

11.10 cen_initf : Centaur Scan overrides

a cen_initf.C (MemBuf)

 Perform any scan overrides for Centaur

• May not have any config dependent scans

 Does not include the pervasive region

11.11 cen_do_manual_inits : Manual Centaur Scans

a cen_do_manual_inits.C (MemBuf)

 Currently empty (Thermal Init has been moved to cen_initf.C. Disabling cache has been moved to repair

loader)

 Perform any non-initfile scan overrides for Centaur

 Should be avoid, place holder for workaround only.

The following sections are to initialize the Centaur chip Scom logic

11.12 cen_startclocks : Start Centaur Nest/MEM clocks

a cen_startclocks.C (MemBuf)

 Starts Centaurs’ NEST and MEM chiplet clocks. This includes the L4, DMI, DDR, and MBA clocks.

 Deassert the memrst_b GP bit to activate the reset_OE signal

 Enable driver and receivers (set appropriate GP bits)

 Lower RI and DI inhibits

11.13 cen_scominits : Perform Centaur SCOM inits

a cen_scominits.C (MemBuf)

 Currently empty.

 Any needed scom initializations – no config dependent settings allowed

12 Step 12 Hostboot – DMI Training

The following steps are for Cumulus only. They are not defined/applicable for P9 Nimbus

12.1 mss_getecid : Read out ECID of all Centaurs

a p9c_mss_cen_getecid.C (Centaur)

 Sets ATTR_CEN_MSS_INIT_STATE to “clocks on”

 Read the ECID for each centaur and store away for callouts.

 Decode ECID and set other ECID related attributes for later operations on Centaurs

12.2 dmi_attr_update : Update DMI related attributes

a p9_io_dmi_attr_update.C (void)

 Currently empty.

 Attribute targets: MCS/MemBuf

 Stub HWP for FW to override attributes programmatically.

12.3 proc_dmi_scom_init : DMI Scom setup on Cumulus DMI

a p9_io_dmi_scominit.C (DMI)

 Perform scom inits for DMIs on the processor.

12.4 cen_dmi_scominit : DMI Scom setup on Centaur

a p9_io_cen_scominit.C (MemBuf)

 Perform scom inits for DMI on Centaur.

12.5 dmi_erepair : Restore EDI Bus eRepair data

 Bad lanes are preset on the receive side.

b p9_io_dmi_restore_erepair.C (DMI, vector of RX bad lanes, vector of TX bad lanes)

 Procedure that perform repairs on DMI bus (P9 side)

c p9_io_cen_restore_erepair.C (centaur, vector of RX bad lanes, vector of TX bad lanes)

 Applies centaur data from planar prom (planar centaurs), centaur dimm

 Runtime detected fails that were written to VPD are restored here

12.6 dmi_io_dccal : Calibrate DMI interfaces

a p9_io_dmi_dccal.C (DMI target)

 Calibration of TX impedance, RX offset for memory buses

• Needed for EDI buses on p9

 Needs to be quiet on the bus – drivers are quiesced and driving 0s – EDI buses

 Must be complete on ALL Centaurs for this PgP island before starting next EDI training (host based sync

point)

 At end of offset calibration there may be a lane that is bad

• FW must record bad lane and write to VPD for future eRepair (handled when PRD starts)

b p9_io_cen_dccal.C (Centaur target)

 Calibration of TX impedance, RX offset for memory buses

• Needed for EDI buses on Centaur

 Needs to be quiet on the bus – drivers are quiesced and driving 0s – EDI buses

 Must be complete on ALL Centaurs for this PgP island before starting next EDI training (host based sync

point)

 At end of offset calibration there may be a lane that is bad

• FW must record bad lane and write to VPD for future eRepair (handled when PRD starts)

12.7 dmi_pre_trainadv : Advanced pre-DMI training

a p9_io_dmi_pre_trainadv.C (DMI/ Centaur pair)

 Currently empty

 Debug routine for IO Characterization

12.8 dmi_io_run_training : Run training on MC buses

a p9_io_dmi_linktrain.C (DMI/Centaur pair)

 Train internal DMI bus

 Wiretest, Deskew, Eye Optimization, and repair

• Option to run extend bit patterns in Optimization phase (replace RDT)

• Wiretest fails are left for PRD to analyze and store data into VPD

• Fatal bus training errors are handled by HWP and written to VPD

12.9 dmi_post_trainadv

a p9_io_dmi_post_trainadv.C (DMI/Centaur pair)

 Currently empty

 Debug routine for IO Characterization

12.10 proc_cen_framelock : Initialize EDI Frame

a p9_cen_framelock.C (DMI/Centuar pair)

 Raise IO Valid – Allow link init traffic (scrambled patterns) on EDI bus

 P9 Centaur initial frame lock

• Starts listening automatically after IOValid raised

• Started on the P9 logic

• If a bit error (CRC) in the middle need to re-FrameLock

 Round trip delay calculation

• Host code can trigger and check

 When done, Inband accesses are now viable

 Hardware xmitting idle frames

 Enabled CRC checking

 EDI is at runtime state

 If successful, set ATTR_MSS_INIT_STATE to DMI active on Centaur

12.11 host_startprd_dmi : Load PRD for DMI domain

 Currently empty

12.12 host_attnlisten_memb : Start attention poll for membuf

 Currently empty

 Expand Host PRD to include memory buffers (as well as powerbus)

 Enable OCC to collect FIR data on all memory buffers if master processor checkstops

12.13 cen_set_inband_addr : Set the Inband base addresses

a p9c_set_inband_addr.C (proc Chip Target)

 Any initializations to setup Inband access path.

• MI – Scom base address for each contained DMI bus

• Centaur – any other settings

 ALL ACCESES from this point on in are Inband access for Centaur unless otherwise specified

13 Step 13 Hostboot – DRAM Training

13.1 host_disable_memvolt : Disable VDDR on Warm Reboots

a Power off dram – VDDR and vPP. Must drop VDDR first, then VPP.

 Turned off here to handle reconfig loop for dimm failure

 Only really issued if VDDR/VPP is on

13.2 mem_pll_reset : Reset PLL for MCAs in async

a p9_mem_pll_reset.C (proc chip)

 This step is a no-op on cumulus as the centaur is already has its PLLs setup in step 11

 This step is a no-op if memory is running in synchronous mode since the MCAs are using the nest PLL,

HWP detect and exits

 If in async mode then this HWP will put the PLL into bypass, reset mode

 Disable listen_to_sync for MEM chiplet, whenever MEM is not in sync to NEST

13.3 mem_pll_initf : PLL Initfile for MBAs

a p9_mem_pll_initf.C (proc chip)

 This step is a no-op on cumulus

 This step is a no-op if memory is running in synchronous mode since the MCAs are using the nest PLL,

HWP detect and exits

 MCA PLL setup –

• Note that Hostboot doesn't support twiddling bits, Looks up which “bucket” (ring) to use from

attributes set during mss_freq

• Then request the SBE to scan ringId with setPulse

• SBE needs to support 5 RS4 images

• Data is stored as a ring image in the SBE that is frequency specific

• 5 different frequencies (1866, 2133, 2400, 2667, EXP)

13.4 mem_pll_setup : Setup PLL for MBAs

a p9_mem_pll_setup.C (proc chip)

 This step is a no-op on cumulus

 This step is a no-op if memory is running in synchronous mode since the MCAs are using the nest PLL,

HWP detect and exits

 MCA PLL setup

• Moved PLL out of bypass(just DDR)

 Performs PLL checking

13.5 proc_mcs_skewadjust : Update clock mesh deskew

a This step is a no-op

13.6 mem_startclocks : Start clocks on MBA/MCAs

a p9_mem_startclocks.C (proc chip)

 This step is a no-op on cumulus

 This step is a no-op if memory is running in synchronous mode since the MCAs are using the nest PLL,

HWP detect and exits

 Drop fences and tholds on MBA/MCAs to start the functional clocks

13.7 host_enable_memvolt : Enable the VDDR3 Voltage Rail

a Bring power to dram rails VDDR and VPP. VPP must be enabled prior to VDDR

 BMC based systems – this is a no-op

 Send message to FSP to turn on voltages

• Message must have accounted for voltage/current tweaking based on number of plugged dimms

(Dynamic VID)

• Pulled from HWPF attributes per voltage rail

• FSP

• Trigger voltage ramp to DPSS via I2C

• Wait for min 200 ms ramp, must be stable 500us after DPSS claims Pgood

 Wait for ack message from FSP – confirms that voltage is on and ready

13.8 mss_scominit : Perform scom inits to MC and PHY

a p9_mss_scominit.C (mcbist) -- Nimbus

b p9c_mss_scominit.C (membuf) -- Cumulus

 HW units included are MCBIST, MCA/PHY (Nimbus) or membuf, L4, MBAs (Cumulus)

 Does not use initfiles, coded into HWP

 Uses attributes from previous step

 Pushes memory extent configuration into the MBA/MCAs

• Addresses are pulled from attributes, set previously by mss_eff_config

• MBA/MCAs always start at address 0, address map controlled by proc_setup_bars below

13.9 mss_ddr_phy_reset : Soft reset of DDR PHY macros

a p9_mss_ddr_phy_reset.C (mcbist) -- Nimbus

b p9c_mss_ddr_phy_reset.C (mba) -- Cumulus

 Lock DDR DLLs

• Already configured DDR DLL in scaninit

 Sends Soft DDR Phy reset

 Kick off internal ZQ Cal

 Perform any config that wasn't scanned in (TBD)

• Nothing known here

13.10 mss_draminit : Dram initialize

a p9_mss_draminit.C (mcbist) -- Nimbus

b p9c_mss_draminit.C (mba)-- Cumulus

 RCD parity errors are checked before logging other errors – HWP will exit with RC

 De-assert dram reset

 De-assert bit (Scom) that forces mem clock low – dram clocks start

 Raise CKE

 Load RCD Control Words

 Load MRS – for each dimm pair/ports/rank

• ODT Values

• MR0-MR6

c Check for attentions (even if HWP has error)

 FW

• Call PRD

• If finds and error, commit HWP RC as informational

• Else commit HWP RC as normal

• Trigger reconfig loop is anything was deconfigured

13.11 mss_draminit_training : Dram training

a p9_mss_draminit_training.C (mcbist)-- Nimbus

b p9c_mss_draminit_training.C (mba) -- Cumulus

 Prior to running this procedure will apply known DQ bad bits to prevent them from participating in

training. This information is extracted from the bad DQ attribute and applied to Hardware

• Marks the calibration fail array

 External ZQ Calibration

 Execute initial dram calibration (7 step – handled by HW)

 This procedure will update the bad DQ attribute for each dimm based on its findings

13.12 mss_draminit_trainadv : Advanced dram training

a p9_mss_draminit_training_advanced.C (mcbist target) -- Nimbus

b p9c_mss_draminit_training_advanced.C (mba target) -- Cumulus

 Prior to running this procedure will apply known DQ bad bits to prevent them from participating in

training. This information is extracted from the bad DQ attribute and applied to Hardware

• Marks the MCBist mask

 This step will contain any algorithms to improve data eye post training

• At the moment this is a no-op for P9 Nimbus

• For P9 Cumulus the VREF calibration will be done here

 Also will contain some characterization (mfg only) tests

• There will be a FAPI interface for dumping characterization data, platform implementation is TBD

(dump to console, memory, PNOR)

 This procedure will update the bad DQ attribute for each dimm based on its findings

13.13 mss_draminit_mc : Hand off control to MC

a p9_mss_draminit_mc.C (mcbist) -- Nimbus

b p9c_mss_draminit_mc.C (membuf) -- Cumulus

 P9 Cumulus -- Set IML complete bit in centaur

 Start main refresh engine

 Refresh, periodic calibration, power controls

 Turn on ECC checking on memory accesses

 Note at this point memory FIRs can be monitored by PRD

14 Step 14 Hostboot – DRAM Initialization

14.1 mss_memdiag : Mainstore Pattern Testing

 The following step documents the generalities of this step

• In FW PRD will control mem diags via interrupts. It doesn't use mss_memdiags.C directly but the

HWP subroutines

• In cronus it will execute mss_memdiags.C directly

b p9_mss_memdiags.C (mcbist)--Nimbus

c p9_mss_memdiags.C (mba) -- Cumulus

 Prior to running this procedure will apply known DQ bad bits to prevent them from participating in

training. This information is extracted from the bad DQ attribute and applied to Hardware

 Nimbus uses the mcbist engine

• Still supports superfast read/init/scrub

 Cumulus/Centaur uses the scrub engine

 Modes:

• Minimal: Write-only with 0's

• Standard: Write of 0’s followed by a Read

• Medium: Write-followed by Read, 4 patterns, last of 0's

• Max: Write-followed by Read, 9 patterns, last of 0's

 Run on the host

 This procedure will update the bad DQ attribute for each dimm based on its findings

 At the end of this procedure sets FIR masks correctly for runtime analysis

 All subsequent repairs are considered runtime issues

14.2 mss_thermal_init : Initialize the thermal sensor

a mss_thermal_init.C – Cumulus/Centaur only

 Called on Centaur target,

 NOTE: On Nimbus OCC has to directly read the thermals via the I2C Masters (shared with Host code)

• Use lock HW and FW algorithm between OCC, Hostboot/OPAL/PHYP

 Setup and configure I2C thermal sensor on dimms

 Configure and start centaur thermal cache

 Configure and start the OCC cache

 Disable safe mode throttles

• Will cause memory to go to runtime emergency throttles

• When OCC starts polling OCC cache will revert to runtime settings

b p9_throttle_sync.C

 Must be issued on all P9s, can only be issued after ALL centaurs on given p9 have thermal init complete

(can also loop at the end of all centaurs)

 Same HWP interface for both Nimbus and Cumulus, input target is TARGET_TYPE_PROC_CHIP; HWP

is to figure out if target is a Nimbus (MCS) or Cumulus (MI) internally.

 Triggers sync command from MCS to actually load the throttle values into the MBA/MCA

14.3 proc_pcie_config : Configure the PHBs

a p9_pcie_config.C

 Called on all chips, target is per PHB

 Procedural based – will call initfile if need be

 Covers PCIe Phase 2 Inits 18-30

• Setup config regs

• Command and Data credits

• Clear FIRs (if needed)

• Unmask PCIe FIRs

14.4 mss_power_cleanup : Clean up any MCS/Centaurs

a p9_mss_power_cleanup.C (mcbist) --Nimbus

b p9c_mss_power_cleanup.C (centaur, mbas) -- Cumulus

 NO-OP for Nimbus

 Called on all present Centaurs and MBAs for Cumulus

 Called on all present MCBIST for Nimbus

 Cleans up and powers down unused cenaturs/mcs/DMI

• Hostboot will start to flow out to memory in the next step

• Any memory errors after this point are considered “runtime errors”

• All errors from this point on have to be a no deconfig and gard OR terminate the IPL (and let the SP do

the reconfig)

• If user attempts to do a deconfig outside the loop – then attempt to fail

14.5 proc_setup_bars : Setup Memory BARs

a p9_mss_setup_bars.C (proc chip) -- Nimbus

b p9c_mss_setup_bars.C (proc chip) -- Cumulus

 Same HWP interface for both Nimbus and Cumulus, input target is TARGET_TYPE_PROC_CHIP; HWP

is to figure out if target is a Nimbus (MCS) or Cumulus (MI) internally.

 Prior to setting the memory bars on each processor chip, this procedure needs to set the centaur security

protection bit –

• TCM_CHIP_PROTECTION_EN_DC is SCOM Addr 0x03030000

• TCN_CHIP_PROTECTION_EN_DC is SCOM Addr 0x02030000

• Both must be set to protect Nest and Mem domains

 Based on system memory map

• Each MCS has its mirroring and non mirrored BARs

• Set the correct checkerboard configs. Note that chip flushes to checkerboard

• need to disable memory bar on slave otherwise base flush values will ack all memory accesses

c p9_setup_bars.C

 Sets up Powerbus/MCD, L3 BARs on running core

• Other cores are setup via winkle images

 Setup dSMP and PCIe Bars

• Setup PCIe outbound BARS (doing stores/loads from host core)

• Addresses that PCIE responds to on powerbus (PCI init 1-7)

• Informing PCIe of the memory map (inbound)

• PCI Init 8-15

 Set up Powerbus Epsilon settings

• Code is still running out of L3 cache

• Use this procedure to setup runtime epsilon values

• Must be done before memory is viable

14.6 proc_htm_setup : Setup HTM allocations

a p9_htm_setup. C

 Setup any BARs and inits to enable hardware in memory trace

 TBD – where does CHTM go? DD2.0 feature.

14.7 proc_exit_cache_contained : Execution from memory

a p9_exit_cache_contained. C

 Allow execution to flow out to memory

 Data rolls out to memory

14.8 host_mpipl_service : Perform MPIPL tasks

 This is a no-op for warm/cold IPLs. See description in REF LOC for full details

15 Step 15 Hostboot – Build STOP Images

15.1 proc_set_pba_homer_bar :Set HOMER location in OCC

a p9_pm_set_homer_bar.C(uint64_t p_homer_region, …)

 Called for each processor chip.

 Parameter: Physical address within HOMER image where OCC code will be loaded; STOPGPE image is

this value + 1MB (not a pointer address, it cannot be dereferenced)

• NOTE: HOMER is a 4MB region that is allocated to start 1MB before the value passed to this

procedure!! This done to allow the OCC boot from the 0 offset of the PBA BAR0 value (which has a

granularity of 1MB while the Core Self-Store portion must be aligned to a 2MB boundary.

Additionally, the OCC complex has no need to address the first 1MB of HOMER --- only the last

3MB.

 Parameters: PBA BAR number, OCC complex HOMER image size(3MB), STOPGPE image location

(default: mem; others: L3)

 p9_pm_pba_bar_config.C (called as subroutine)

• Set BAR address

15.2 host_build_stop_image : Build runtime STOP images

 Pull Reference Image from PNOR

• Run through secure boot algorithm

b p9_hcode_image_build.C (void* reference_image, void* v_homer_region, enum image_bld)

FAPI2::ReturnCode

 HOMER – Hardware Offload Microcode Engine Region

 Called for each processor chip.

 Parameter: Pointer to Reference image.

 Parameter: Pointer to Output HOMER location (virtual address). The procedure places the respective

images (eg SGPE, CME) into HOMER at the appropriate offsets

• This is any Hostboot specified mainstore location (does not have to be attached to the processor being

STOPped).

• When PHYP is loaded, the HOMER region will be trampled, PHYP will call

p9_hcode_image_build.C to recreate them in a PHYP specified location in mainstore (each image will

probably be placed in mainstore local to its associated processor for performance).

• OPAL keeps same location, requires that it is at the top of memory

 Parameter: image_bld – which images to update – either PSTATE, STOP, or both

 Fused vs Normal

• System ATTR defines, TBD on mechanism

• Greg to work out details, likely two different rings in reference image or some RS4 merge capability

 Customize image with data for each core

• Scan rings – Time, GPTR, Repair

• Tweak to make runtime acceptable – expect to be only scom registers

 Write image to the appropriate offset based on the output pointer parameter

c Cronus will load the images via putmemproc

d p9_stop_gen_cpu_reg(void* v_homer_region, …)

 API that updates a STOP image with various core state registers (MSR, HRMOR, LPCR)

• The core registers are set to these values on STOP 15 exit

 This will only be called by Hostboot. Cronus will not use it. Hence separate from

p9_hcode_image_build.C .

15.3 host_start_stop_engine : Initialize the STOPGPE engine

a p9_pm_stopgpe_init(chip_target, ENUM:PM_INIT) FAPI2::ReturnCodeCalled for each

processor chip

 Parameters: PM_INIT (to perform initialization vs PM_RESET that is used during the OCC reset flow)

 Starts the Stop GPE engine

• Bootloader runs from HOMER OCC offset + 1MB (2MB from HOMER base)

• Copies STOP image from HOMER to OCC SRAM

• Restarts from OCC SRAM

• PK initialization -> STOP Thread(s) started

• Sets flag in OCC Flag reg that initialization is complete for HWP to poll on

 Loop over all functional cache chiplets

• p9_pfet_init.C (cache target, PM_INIT) (called as a subroutine)

• Initialize PFET controller parameters (delays

• Note: this the default of the PFETs is OFF and this action will have them remain off.

 Loop over all functional core chiplets

• p9_pfet_init.C (core target, PM_INIT) (called as a subroutine)

• Initialize PFET controller parameters (delays)

• Note: this the default of the PFETs is OFF and this action will have them remain off.

• NOTE: CME initialization is performed upon STOP exit of the cache chiplet by the STOPGPE so as

to allow the wake up of any core within a Quad. This is NOT done via HWPs.

15.4 host_establish_ex_chiplet : Select Hostboot core

a p9_update_ec_eq_state.C ()

 Need to update multicast groups for all cores beyond the master core

• need to add each EC multicast group 0, 1

• need to add each EQ to multicast group 0

 Use the functional state to find all good cores

 Write all EQ/Core good mask into OCC complex

 This is the “master record“ of the enabled cores/quad in the system for runtime

16 Step 16 Hostboot – Core Activate

16.1 host_activate_master : Activate master core

 Hostboot sends a message to the SBE to enter the deadman loop for exit STOP15 (passes a parameter to

indicate the wait time)

• Hostboot will block and wait for PSU SBE interface return

• Hostboot command will trigger the SBE to run the following HWP in its Chip OP thread (this will

block SP chipOp until it either passes or triggers the checkstop)

• SBE Deadman timer starts upon receiving the ChipOp (SBE FW handling of deadman message)

• SBE starts timer based on ChipOp parameters

• SBE FW will repeatedly call the following HWP to check for STOP 15 state

• p9_sbe_check_master_stop15.C (passed in time(from PIBMEM or via Cronus)

• Monitor master STOP 15. It can return three different values:

• Checks for STOP 15 entered (completely entered)

• STOP 15 reached (success) – FAPI2 SUCCESS

• STOP 15 not reached, but no error HW state (still in progress) -- STOP15_PENDING

• STOP 15 not reached, but HW error (failure) – any other FAPI2 RC

• The RC and FFDC from this HWP needs to be saved by the SBE into async ChipOp FFDC space

• SBE will set an “async FFDC” bit in the SBE status register. When the SP recognizes that the

master STOP cycle failed, it can then request the “async FFDC”

• On success SBE FW will trigger STOP 15 exit on thread 0 on the master core using . the PSU

Interrupt (Separate bit in PSU doorbell)

• In addition p9_block_wakeup_intr.C –clear must also be called to allow the core to actually

receive the interrupt (order between the unblock and interrupt generation doesn’t matter)

• Note that even after triggering Hostboot, SBE must continue deadman timer to check that

Hostboot recovers from the master STOP15 cycle. If Hostboot does not stop deadman timer in X

seconds (passed in as parameter), SBE must checkstop system. The X seconds is the full time

• On failure the SBE FW will trigger a checkstop

• On pending if the timer has expired then trigger a checkstop.

 p9_trigger_stop15 – Hostboot path (Hostboot running)

• Hostboot function, not a HW Procedure

• p9_block_wakeup_intr.C -set

• This will prevent all interrupts/wake up sources to the core, thus allowing the next step (STOP

15) to work

• Hostboot sets up interrupt presenter so OCC ISC port in PSIHB to interrupt master core thread 0

• If we are in fused – there always be even/odd pair – SBE should have chosen the EVEN EC as the

master – responsibility for HB to enforce config

• Thus HB will always interrupt the same thread 0 PIR in fused/normal mode

• Hostboot sets up the stop exit LPCR, HRMOR, MSR values in HOMER based on PIR

• If in fused mode need to set SPR values into 0,2,4,6 if on even EC (or 1,3,5,7 if on odd EC)

• Issue system call to cause all threads to enter STOP 15. Core will then enter STOP 15 state

• Clear LPCR (cover not entering due to external interrupts)

• Write PSSCR with Level = 15,

• Issue stop instruction typ

 p9_trigger_stop15_exit – Cronus path only (Hostboot not running)

• Since Hostboot is not running (cores are all in STOP 15 by default) this procedure will force all cores

to exit STOP 15

• Greg to think about state of the cores after step 4-5

• This procedure is a NO-OP when the real SBE is executing. It is hook to allow the Cronus to

trigger the STOP 15 exit – ie resume execution of the STOP15 flow

 Hostboot sends a message to the SBE to exit the deadman loop for exit STOP15

• Hostboot runs when active, otherwise Cronus will have to execute

• Stops the deadman timer

 Hostboot must issue its own IPIs to threads 1-3 (normal) or 1-7 (fused)

16.2 host_activate_slave_cores : Activate slave cores

 Hostboot active:

• Setup stack space for all slave core threads –

• Wake up all threads on all cores via IPI commands

• Cores are sitting in a STOP15 state (flush that way)

• Issue IPI to all slave threads/cores to force winkle exit. Will start executing at SRESET vector

(0x100). Bring them into Hostboot collective

• Enable OCC to collect FIR data on all cores on checkstop

• If the slave cores fail to report call p9_dump_stop_info.C to collect FFDC

 Hostboot not running:

• Cores come alive and into maintenance mode (LPCR not set)

• p9_activate_stop15_cores.C – Cronus path only (Hostboot not running)

• Called on a core target

• SP/Cronus issue IPIs to all cores/threads in system except for those on master core

16.3 host_secure_rng : Secure the random number

a p9_rng_init_phase2.C

 This HWP will check the result of the Random number generator (RNG) diagnostics

 It will also set the RNL security bit to prevent the RNG from being reprogramed via Xscom by the

hypervisor

16.4 mss_scrub : Start background scrub

a p9_mss_scrub.C (mcbist) – Nimbus

b p9c_mss_scrub.C(mba) -- Cumulus

 Note that this is not executed directly by Hostboot (instead triggered by PRD), Cronus will execute HWP

directly

 Start background scrubbing in a continous 12h scrub cycle

 Currently Hostboot will not wait (block) before flowing out to memory

 The completion of the scrub commands must be handled by Host based PRD

 HostPRD will not be called after this point (not called for this step)

16.5 host_load_io_ppe : Load various IO PPEs on each chip

a p9_io_obus_image_build.C(obus pervasive chiplet target, pointer to HCODE ref image)

 For each functional obus load the Nvlink image into the PPE SRAM (32KB image)

• Sequence of scoms

• Can load regardless of Nvlink/OpenCAPI. Will sit “idle” until triggered by NVLink DD

• No planned usage of image for OpenCAPI

 This may be done in parallel for all o/x bus units for a performance optimization

 After the image is loaded this HWP will start the PPE and check that it is running

b p9_io_xbus_image_build.C(xbus pervasive chiplet target, pointer to HCODE ref image)

 For each functional xbus chiplet load an image into the PPE SRAM (64KB image)

• Sequence of scoms

• No planned usage for product, lab usage only

 This may be done in parallel for all o/x bus units for a performance optimization

 After the image is loaded this HWP will start the PPE and check that it is running

16.6 host_ipl_complete : Notify SP drawer ipl complete

 Stop hostPRD (in anticipation that HBRT will take over PRD responsibilities)

b Sends a message to SP that drawer IPL is complete

 Pushes down all attributes

 Hostboot enters a “quiesced” state

 Setup any data structures/locks for potential drawer merge

 Sends asynchronous trigger message to the SP indicating that this step is done on this drawer and SP should

proceed with the IPL. This message is not sent in istep mode

 At this point the SP takes over the IPL

17 Step 17 SP – Init PSI

18 Step 18 Establish System SMP & TOD

18.11 proc_tod_setup

 On FSP Based systems this is run on the FSP, BMC based systems this is run in Hostboot

 FW owns algorithm of TOD topology, HWP pushes values into HW

b p9_tod_setup.C

 FW passes in a topology tree, which TOD oscillator to use, and primary/secondary topology

 HWP determines delay values from attributes (MRW)

 HWP programs HW

 HWP outputs register values needed for PHYP and PRD analysis

18.12 proc_tod_init

 On FSP Based systems this is run on the FSP, BMC based systems this is run in Hostboot

 Performed to init the TOD network. Done during the FW IPL due to AVPs, note that it will be done again

by PHYP when they start

b p9_tod_init.C

 Setup EX chiplet TOD

19 Step 19 SP – Prepare for Host

20 Step 20 Hostboot – Load Payload

20.1 host_load_payload : Load payload

 build_host_data : Build the host data areas

• This step builds the HDAT data areas from attributes, VPD, etc

 Load payload. This can either be directly from PNOR (controlled by attribute) or via the SP

• PNOR path – just loads what is in payload section on flash

• SP path

• When the Host sent the complete IPL message for host_ipl_complete part of the payload is the

address to load PHYP at (along with a size)

• For initial BU (non secure mode) PHYP will be loaded via raw DMAs

• For secureboot PHYP must be loaded via TCEs

• Payload will be placed in memory based on Hostboot attributes

• Base address is defined by ATTR_PAYLOAD_BASE When Payload is started this is the

HRMOR

• Starting address is defined by ATTR_PAYLOAD_ENTRY

• HDAT is placed at well known address off of the image start address

• All addresses must be security checked by Hostboot before starting payload

• Hostboot then performs verification on the payload

21 Step 21 Hostboot – Start Payload

21.1 host_runtime_setup

 Note that this step is only issued to master HB instance

 Take down any/all TCE setup

 Loop through attributes and write them to predefined memory area inside of the HDAT structures

• Note: HB master issues IPC to HB slaves for them to update their sections

 Append the TPM log to HDAT structures

• Note: HB master issues IPC to HB slaves for them to update their sections

 In AVP mode Hostboot will load the OCC and start it here. If the load/start fails then HB will send a

errorlog to the SP and the SP will terminate the IPL

• OCC must monitor for the broadcast scom read (OR) of EX scratch register 7 for the removal of the

payload started signature before using the FSI2Host mailbox for ATTN traffic. Note that OCCs on

non master chips will never have to wait (as Hostboot only uses the FSI2Host mailbox on the master

chip)

21.2 host_verify_hdat

 Only issued to master HB instance

• If needed IPC to slaves to perform their tasks

 Secureboot verification of PHYP/AVP image load

21.3 host_start_payload

 Prior to starting shutdown sequence Hostboot must write hostboot (ASCII) to scratch register 7 on the

master core. All other cores on the master chip must be written to same value or 0s. This value will be

polled by the SP in the next step to ensure that hostboot has truly quiesced

 Hostboot enters shutdown sequence

• Quiesce mailbox and all DMAs

• Flush data to PNOR

• Disable interrupts

• Send sync message to SP (or respond to istep)

• Enter Kernel

• Prepare to jump to payload – at this point hostboot must not TI

• Clear scratch register 7 on master core

 Payload is started by

• switching HRMOR to desired address and jumping to entry point

• Note that master thread must be the last one to jump

• payload cannot start until all threads have been transitionedFor multi-node systems the HB master does

the following:

• Issue slave node shutdown request via IPC

• HB master polls the “Hostboot done scratch reg” for all slave nodes to enter payload

• HB Master issues own shutdown

 No Hostboot code is reused, only mechanism is data passed in HDAT areas. Hostboot runtime is a separate

binary image

4 Host Services

The following are not IPL time procedures, but functions called by PHYP/OPAL on Hostboot to perform various tasks. The

numbering has been kept common (for convention), but they are not guaranteed to run in this order

State at this point

• PHYP/OPAL running

• Memory is initialized

• SMP alive

• All cores have gone through winkle and are running

22 Enable STOP15

This step is controlled and issued by PHYP when they are ready to build the STOP image. It is required that the STOP image

be present in memory prior to loading and starting the OCC.

22.1 host_build_winkle : Build runtime winkle images

 Pull Reference Image from SP or PNOR

• Run through secure boot algorithm

b P9_hcd_image_build.C

 Called for each processor chip.

 Parameter: Pointer to Reference image.

 Parameter: Pointer to Output HOMER location. The procedure places the respective images (eg SGPE,

CME) into HOMER at the appropriate offsets.

• This is any Hostboot specified mainstore location (does not have to be attached to the processor being

STOPed

 When PHYP is loaded, the HOMER will be trampled, PHYP will call p9_hcd_image_build to recreate

them in a PHYP specified location in mainstore (each image will probably be placed in mainstore local to

its associated processor for performance).

 Customize image with data for each core

• Scan rings – Time, GPTR, Repair

• Tweak to make runtime acceptable – expect to be only scom registers

 Write image to output pointer parameter

22.2 proc_set_homer_bar : Tell OCC complex HOMER loc

a p9_set_homer_bar.C

 Called for each processor chip.

• Parameter: Physical address within HOMER image where OCC code will be loaded; STOPGPE

image is this value + 1MB (not a pointer address, it cannot be dereferenced)

• NOTE: HOMER is a 4MB region that is allocated to start 1MB before the value passed to this

procedure!! This done to allow the OCC boot from the 0 offset of the PBA BAR0 value (which

has a granularity of 1MB while the Core Self-Store portion must be aligned to a 2MB boundary.

Additionally, the OCC complex has no need to address the first 1MB of HOMER --- only the last

3MB.

• Parameters: PBA BAR number, OCC Complex HOMERimage size, STOPGEimage location (default:

mem; others: L3, SRAM)

 p9_pm_pba_bar_config.C (called as subroutine)

• Set BAR address

22.3 p9_stop_gpe_init -init : Initialize the STOPGPE

a p9_pm_stopgpe_init.C chip_target, ENUM:PM_INIT) -> FAPI2::ReturnCode

 Called for each processor chip

 Parameters: PM_INIT (to perform initialization vs PM_RESET that is used during the OCC reset flow)

 Bootloader runs from HOMER OCC offset + 1MB (2MB from HOMER base)

• Copies STOP image from HOMER to OCC SRAM

• Restarts from OCC SRAM

• PK initialization -> STOP Thread(s) started

 Sets flag in OCC Flag reg that initialization is complete for HWP to poll on

 Loop over all functional cache chiplets

• p9_pm_pfet_init.C (cache target, PM_INIT) (called as a subroutine)

• Initialize PFET controller parameters (delays)

 Loop over all functional core chiplets

• p9_pm_pfet_init.C (core target, PM_INIT) (called as a subroutine)

• Initialize PFET controller parameters (delays)

 NOTE: CME initialization is performed upon STOP exit of the cache chiplet by the STOPGPE as to allow

the wake up of any core within a Quad. This is NOT done via HWPs.

 p9_stop_gen_cpu_reg() will be called by PHYP prior to stopping any core

• API that updates a STOP image with various chip state registers (MSR, HRMOR, LPCR)

• The chip registers are set to these values on STOP exit

• This will only be called directly by PHYP at their discretion. Hence separate from

p9_hcd_image_build.

23 Reset and Initialize OCC

This step will run each of the substeps to each chip within a physical node (an OCC boundary) before proceeding to

the next step. This is done as a regular process in looking to the “start_occ” step whereby the OCCs will start in

reasonable time proximity (one followed by the next via singular XSCOM to each chip) to minimize OCC startup

timeouts.

23.1 Setup OCC bars : Establish legal addressing

a p9_pm_pba_bar_config.C chiptarget, address

 Address dictated by PHYP

 Called once for each of 4 BARs

 Place image in EM Nodal Region at offset 0

23.2 power_management_reset : Reset Power Management

(includes clearing any latent errors that may be pending; done for the case of OCC reset)

a p9_pm_init.C – reset, chiptarget

• p9_pm_firinit & i_chip_target, ENUM:PM_RESET : Save the current FIR mask setting for later

restoration and then set all masks to keep errors from occurring during the reset and initialization

• p9_pm_ppm_firinit.C &i_chip_target, ENUM: RESET

• For all configured EC chiplets, save and set all FIR Masks

• For all configured EQ chiplets, save and set all FIR Masks

• p9_pm_occ_firinit.C &i_chip_target, ENUM: RESET

• save and set all FIR Masks

• p9_pm_pba_firinit.C &i_chip_target ENUM: RESET

• save and set all FIR Masks

• p9_pm_occ_control.C chiptarget, ENUM:OCC_HALT

• OCC PPC405 is halted to allow for a clean stop

• Will cause HW heartbeats to cease and HW will enter safe mode (quiese pStateGPE) – expect to

take less than 10 ms

• p9_pm_occ_control.C *chiptarget, ENUM:OCC_STOP

• OCC PPC405 put into reset

• For all configured cores, p9_cpu_special_wakeup.C *ectarget, ENUM:ENABLE –entity

ENUM:OCC

• Not used by PHYP – custom procedure used

• Uses the OCC special wake-up bit.

• Doesn't collide with FSP/PHYP bits.

• Takes the SGPE, CME, OCI and PBA out of the equation

• Take PPM PFET controller out of the equation

• Poll for completion.

• If timeout, indicates that restart of OCC is to not occur via fapi::ReturnCode

• RC_PROCPM_SPC_WAKEUP_TIMEOUT

• PRD effect: Mark chiplet for garding

• Note: SGPE detected errors (which includes CMEs as well) will produce malfunctions alerts to

PHYP whereby the set of events defined in p9_stop_recovery.C occur to deal with getting the idle

handling complex recovered for use.

• p9_pm_stop_gpe_init.C *chiptarget, ENUM:PM_RESET

• Halt 24x7 processing

• Halt STOP GPE engine

• With Special Wake-up in place, this engine is not being used.

• p9_pm_pstate_gpe_init.C *chiptarget, ENUM:PM_SAFE_MODE

• Command the Pstate GPE engine to put the chip into Safe mode

• If PGPE is operational,

• Clears “SAFE_MODE_COMPLTE” and sets “SAFE_MODE_IN_PROGRESS” in

OCC Flag Register (this gives this procedure positive feedback that PGPE is acting

no this request)

• Use existing Pstate protocols (eg CME Quad Manager assumed operational) to move

to nominal frequency and voltage (PGPE has the VPD points to it know where that

is).

• PGPE

• Else if PGPE is not operational (SAFE_MODE_IN_PROGRESS not set in 10ms timeout

or SAFE_MODE is not set in 500ms timeout --- the latter can occur if CMEs are not

responsive)

• Read present external voltage using O2S Bridge B

• If voltage is above the safe voltage (eg the voltage need for the safe frequency), read

all EQ FREQ_CNTL_REG to determine the present DPLL frequencies.

• If all are at or below the SAFE frequency, leave;

• p9_pm_pstate_gpe_init.C *chiptarget, ENUM:PM_RESET

• Halt Pstate GPE engine

• With PPC405 stopped and safe mode in place, this engine is not being used.

• Halt the engine via XCR[CMD] = “halt”

• Note: this will engage the PPM “OCC Heartbeat” which will cause the CMEs to move to

it's safe frequency

• p9_pm_occ_gpe_init.C *chiptarget, ENUM:PM_RESET

• Halt both OCC GPE engines

• Set OCC Flags to request a graceful halt, after timeout will force

• If forced off, then need to relinquish I2C engines (if owned by OCC) and send

interrupt via OCC_MISC

• With PPC405 stopped and safe mode in place, this engine is not being used.

• Halt the engine via XCR[CMD] = “halt”

• Note that when the OCC GPEs stop, the Nimbus/Cumulus memory will throttle into safe

mode due to lack of polling

• p9_pm_corequad_init.C chiptarget, ENUM:PM_RESET

• For all configured EC chiplets

• Place holder at this time

• For all configured EQ chiplets

• Force OCC SPR Mode in each CME to remove OPAL communication path

• Adjust clock grid for the safe frequency to allow for HOMER updates of clock grid

parameters

• Check that DPLLs are at the safe frequency. If not, move them there

• Disable (into bypass) the Quad IVRMs to allow for HOMER updates of iVRM

parameters

• OCC Heartbeat disable

• Will be enabled by pstateGPE Hcode (not FAPI)

• p9_pm_pba_init.C *chiptarget, ENUM:PM_RESET

• Issue resets to all 4 PBA Slaves; poll for completion

• This does not touch the PBA BARs

• p9_pm_occ_sram_init.C *chiptarget, ENUM:PM_RESET

• Placeholder

• p9_pm_ocb_init .C *chiptarget, ENUM:PM_RESET

• Disable all OCB indirect channels and return them to their power-on state

• Note, may need to leave one of the channels enabled for SBE<->Host comm

• p9_pm_pss_init .C *chiptarget ENUM:PM_RESET

• See that any outstanding operations have finished in ADC engine

• See that any outstanding operations have finished in P2S engine

• p9_pm_init.C *chiptarget, ENUM:PM_INIT

• p9_pm_corequad_init.C *chiptarget, ENUM:PM_INIT

• Placeholder

• p9_pm_ocb_init.C *chiptarget, ENUM:PM_INIT

• Put registers back to their initial settings

• p9_pm_pss_init.C *chiptarget, ENUM:PM_INIT

• Setup PSS Configuration (PSS Frequency (attribute) to PSS macro settings)

• p9_pm_pba_init.C *chiptarget, ENUM:PM_INIT

• “PowerBus Slave” buffer set configuration. Assigns slaves to OCI masters for runtime (vs

IPL time for HBI loading)

• PBA Configuration

• Hang pulse dividers

• Drop priority (MRWB attribute - TBD)

• Overcommit counter settings (MRWB attribute - TBD)

• p9_pm_firinit.C : Set the FIR masks and action bits per RAS FIR spreadsheet; done as FAPIs vs

scom.initfiles to be supportable under PHYP

• p9_pm_ppm_firinit.C *chiptarget, ENUM:PM_INIT

• Put registers back to their initial settings For all configured EC chiplets, sets FIR Masks

and actions registers (first time takes on initial mask value; subsequent calls restores the

value saved during ENUM:PM_RESET into an attribute

• For all configured EQ chiplets, sets FIR Masks and actions registers (first time takes on

initial mask value; subsequent calls restores the value saved during ENUM:PM_RESET

into an attribute

• p9_pm_occ_firinit.C *chiptarget, ENUM:PM_INIT

• sets FIR Masks and actions registers (first time takes on initial mask value;

subsequent calls restores the value saved during ENUM:PM_RESET into an

attribute

• p9_pm_pba_firinit.C *chiptarget, ENUM:PM_INIT

• sets FIR Masks and actions registers (first time takes on initial mask value;

subsequent calls restores the value saved during ENUM:PM_RESET into an

attribute

24 Load OCC

24.1 load_occ : Place OCC image into memory

 For each chip in a physical node

 There are two divergent paths to load the OCC code image. The first is lab/Cronus only without FW. In

this case the HWP is run. In the second case FW controls building up the image at the direction of PHYP

b p9_occ_load.C CRONUS ONLY, mimics what FW does

 Load image in memory from PNOR at an address that is passed to this procedure

c occ_load: FW

 There are four different scenarios where this will get run:

• PHYP: calls HBRT Adjunct

• OPAL with FSP: HBRT directly within OPAL

• OPAL openPOWER: Hostboot calls this prior to starting OPAL

• AVP mode: Hostboot call this prior to loading AVP

 HBRT called with memory region to place the HOMER image

• HBRT obtains OCC, reference image

• FSP based systems via lidmgr

• OpenPOWER systems via PNOR

• Entity that loads the image verify signature through secure algorithm

• Lidmanager PHYP

• PNOR HBRT

 HBRT will create the STOP image from the reference image (see step 15 of IPL)

• HBRT will recreate the whole image each time (both OCC/PState,

• p9_hcode_image_build.C (void* reference_image, void* v_homer_region, ALL)

• This includes the SGPE, PGPE, CME.

• Step 15 built the SGPE and CME components (STOP function)

• The PGPE is tied to the OCC function

• Manufacturing request to allow biasing

• Build Pstate Parameter Block (PPB)

• Good cores come via the deconfig register

 HBRT will place OCC initial startup information into HOMER image

• Nest Frequency

• Interrupt type – FSI2Host mailbox(TMGT) or via PSIHB(HTMGT)

• FIR Master

• FIR Capture Data (generated by HBRT) – non FSP based systems

• Processor map, and FIR register to read

 HBRT places STOP and OCC images as directed by caller. Here is an overview of a completed HOMER

layout:

25 Start OCC

25.1 start_occ : Start OCC

a p9_pm_stop_gpe_init *chiptarget, ENUM:INIT

 Sets the IAR to the SGPE bootloader in HOMER.

• HOMER base (PBABAR0 + 1MB) + 16B

 Starts the SGPE and polls OCC Flag bit for HCode init completion

• Starting the SGPE will cause a “reboot” of active CMEs

• SGPE will cause Block Copy Engine to pull CPMR code, common quad rings and Core Pstate

Parameter Block into CME SRM

• This will start both STOP and HiPFV(Safety/WOF) and QuadManager (Pstate) threads

• QM thread will send a PCB Interrupt to PGPE to indicate “ready”

• SGPE checks that CME STOP functions have started as part of the HCode init complete

• HiPFV(Safety/WOF) and QuadManager (Pstate) check will be done by PGPE upon Pstate

protocol start

b p9_pm_pstate_gpe_init *chiptarget, ENUM:INIT

 Sets the IAR to the PGPE bootloader in HOMER.

• HOMER base (PBABAR0 + 3MB) + 16B

 Starts the PGPE and polls OCC Flag bit for HCode init completion

• Will scoreboard the receive QM ready messages to known which CMEs have QMs

• Will NOT start Pstate Protocol until commanded by OCC FW

c p9_pm_occ_control.C *chiptarget, ENUM:OCC_START

• Starts OCC load by releasing the reset to the PPC405

• OCC code boot loads itself from Memory into SRAM tank

26 Config OCC

26.1 config_occ : Load OCC config

(H)TMGT now builds the OCC config data and uses its communication path to OCC to give pass

config information

a OCC FW sends OCC IPI to PGPE to start Pstate Protocol

• PGPE reads Pstate Parameter Block (PBB) from HOMER, installs in OCC SRAM, and starts the

Pstate Protocol with the CMEs.

	1 Introduction
	1.1 Description
	1.2 Terminology
	1.3 IPL Types
	1.4 Nomenclature/Conventions

	2 Service Processor Power On to Standby
	2.1 FSP Based
	2.2 BMC Based
	2.3 SPLess Based

	3 Cold IPL
	0 Step 0
	0.1 poweron : Power on system
	a
	
	
	
	

	
	

	
	
	
	
	
	
	
	

	
	

	0.2 startipl : Start IPL on SP
	 On warm re-ipl this is the entry point to the IPL flow
	 Gets SP into a state ready to IPL the CEC
	b
	
	

	0.3
	
	

	0.4
	
	
	

	0.5
	
	
	

	0.6 set_ref_clock (no-op on BMC)
	a p9_setup_clock_term.C
	 Setup the clock termination correctly for system/chip type
	 Since this is the first procedure run against the chips it also clears the GP write protect
	 Chip reference clocks start when their voltage rails come up, this step allows for the reference clock frequencies to be adjusted. Chip (Processor, Memory), PCIe, TOD (16Mhz)
	 For low end systems this is done via local I2C commands to the reference clock chip.
	

	0.7 proc_clock_test (no-op on BMC)
	a p9_select_clock_mux.C
	 Select internal clock mux to drive the memory clocks off of
	 Flips all bits needed for clock routing (processor only), centaur is done later in p9_cen_ref_clk_enable.C

	b p9_clock_test.C
	 Test to see if the ref clock is valid. If not switch to redundant clock or terminate IPL
	 This is run prior to switching the frequency. It is intended to just see if the processor/memory are getting valid reference clocks
	 NOTE: centaur doesn't have any clock logic to check for valid reference clocks, thus no procedure

	0.8 proc_prep_ipl (no-op on BMC)
	
	
	b p9_set_fsi_gp_shadow.C
	 Corollary in BMC based system is the CFAM_RESET
	 Done for all boots – some settings will change based on system type and IPL type
	 Set the GP bits to default state
	 Needs to take into account to not change values set up in p9_set_clock_term.C procedure

	0.9
	
	
	

	
	

	0.10
	

	0.11 proc_select_boot_master
	a p9_select_boot_master.C
	 This HWP is misnamed due to historical reason, the actual selection of the master SBE is done in p9_setup_sbe_config.C
	 This HWP selects which Redundant SEEPROM to use
	 This must be set only for the master processor (HB will set later for slaves) depending on current IPL (normal or SBE update directed by Hostboot)

	0.12
	
	
	

	
	
	
	

	0.13 sbe_config_update
	 On BMC systems this is done via direct writes to mbox scratch regs
	b p9_setup_sbe_config.C
	 See istep 2.2 for details of scratch registers and ATTR mappings
	 This includes the Master/slave indication (for FSP/BMC it always sets master)
	 Take the FSP/Cronus/hostboot FAPI2 ATTR and write them to the mbox scratch registers
	 Data shuffling of the ATTR into an extremely compact form
	 In manufacturing mode the SP may be required to update the entire seeproom image via xip_customize. See istep TBD for details
	 Note that the ring override from /nfs/ should be applied during the xip_customize flow if directly updating the SBE
	 Note to take into account the dead space between the 64KB SEEPROM images for SBE ECC

	0.14 sbe_start
	 Grant the LPC2SPI FSI bus to the LPC bus so the SBE and Hostboot can access the PNOR
	 Done on all warm/cold IPLs under SP control.
	b p9_start_cbs.C
	 Set a bit to trigger the CBS on the P9 master chips. Located in FSI GP region
	 CBS applies GP shadows to GP regs, causes endpoint resets
	 The CBS will scan0 flush of pervasive, start clocks
	 For MPIPL the CBS is not used and FSP directly triggers the SBE

	0.15
	
	

	0.16
	
	

	1 Step 1 – Self Boot Engine OTPROM and PIBMEM
	1.1 proc_sbe_enable_seeprom :F,C - Select SEEPROM address
	a This istep is not controllable by FW – once the CBS starts the boot sequencer the SBE will automatically execute this istep. It is listed as an istep for documentation, but cannot be manually controlled via istep.
	b p9_sbe_enable_seeprom.C (no param) –
	 Entrance into this procedure is via SBE Reset (hard) or CBS.
	 Hard reset – triggered by SP (and potentially DTRM) without using the CBS
	 CBS – runs scan 0 flush and clock start of PIB and NET domain (cleans up security latches) issues hard reset to SBE
	 This HWP is not FAPI2 based:
	 It runs directly in OTPROM and cannot use attributes
	 It is burnt into the chips OTPROM during manufacture

	 Running out of the OTPROM
	 Select which redundant SEEPROM to use based on MBOX Control bit
	 0b0 – use default SEEPROM (bit 17 of Self Boot Control/Status Register)
	 0b1 – use alternate SEEPROM (bit 17 of Self Boot Control/Status Register)

	 Resets the I2C bus
	 If scratch reg is set then it uses I2C speed from scratch, else uses default burned into OTPROM at MFG
	 Check that SEEPROM is accessible and image is valid (XIP header magic check)
	 Then branch to SEEPROM location –
	 Magic number to address 0 (SBE) and jump point at address 0x4
	 Physically on the SEEPROM this will be 0x0

	2 Step 2 Self Boot Engine – Pervasive Chiplet Setup
	2.1 proc_sbe_ld_image :F,C - Load PIBMEM image
	a This istep is not controllable by FW – once the CBS starts the boot sequencer the SBE will automatically execute this istep. It is listed as an istep for documentation, but cannot be manually controlled via istep.
	 Not a FAPI HWP, instead raw C
	 RAW one that executes on the SBE – not against FAPI (OTPROM direct content)
	 Cannot use attributes

	 Turn on SBE internal RISC trace via the SBE internal trace configuration register
	 Performs PIBMEM repairs (via load/stores to PIB – aka scoms) only on start vector 0 (start vector 1 is used for warm resets and PIBMEM has already been setup and contains FFDC from/for the reset)
	 Data in pibmem is valid as long as previous steps did not go through scan 0 flush/clock start of PIB domain (CBS start does the scan0 flush)
	 SBE must always treat existing data in PIBMEM as FFDC only and always reload instructions
	 PIBMEM repairs are not required if the SBE is not being used (ie boot via FSI2PIB path)
	 For DFT if the PIBMEM repairs are needed, DFT is responsible for loading

	 Loads the pib attached memory image from the SEEPROM This image contains various utilities used throughout the SBE IPL:
	 Kernel
	 Base Utilities
	 SBE fixed data section (aka ATTR) into PIBMEM

	 Branch into SBE kernel, start executing Kernel
	 Enter control loop
	 After this point FW Control loop is in charge of loading/unloading chip ops and calling future HWP
	 SBE code checks the scratch registers to determine if in istep mode, if so then it enters istep mode and then waits for data on the FIFO. Otherwise it continues to boot automatically
	 If in non step mode, SBE will only honor FIFO operation to query IPL status/collect FFDC until it completes istep 5 or has an error

	 All operations to the SBE are atomic from the SP perspective
	 All power to the chip is on except
	 Quads
	 PHYs are all powered down

	2.2 proc_sbe_attr_setup : F,C -Read scratch regs, update ATTR
	a p9_sbe_attr_setup.C (chip target) FAPI2::ReturnCode
	 If and only if scratch registers are non-zero, HWP will read the contents of the scratch registers and call FAPI2 APIs to set the values into the corresponding SBE platform ATTR values (Mbox reg contents PIBM ATTR)
	 Scratch 7, byte 0 is a bit field that indicates validity of the other mailbox register

	 In the case where HW scratch registers are zero – the values represented by the scratch registers need to be in a fixed location (ECC aligned) of the SEEPROM Image (SEEPROM contents PIBMEM ATTR Mbox scratch regs)
	 SEEPROM image ATTR is the master, mailbox is just the overrides
	 Fixed location for the ATTR and all mbox ATTRs are at the front and non moveable (can extend, but not move)
	 In this case (scratch 7, byte 0 valid bit == 0) then data in the ATTR tank data in the SBE needs to be pushed back into the HW mailbox scratch reg for Hostboot to consume

	 Hostboot will need the information in the scratch registers as well (for the slave chips, etc)
	 Check the state of the SAB (Security Access Bit)
	 If SBE image has ATTR_SECURITY_MODE == 0b1, then leave SAB bit as is
	 Else ATTR_SECURITY_MODE == 0b0, then clear the SAB bit
	 ATTR_SECUIRTY_MODE may only be 0b0 with imprint keys

	 Move state of SAB into ATTR_SECURITY_ENABLE
	 Rest of the SBE code to apply security restrictions based on ATTR_SECURITY_ENABLE

	 Mailbox scratch 1 (CFAM 2838, SCOM 0x50038) - FW functional EQ/EC
	 This register gives FW additional control over functional EQ/EC that the SBE can consider for bootable cores. It is applied on top of the manufacturing partial good VPD
	 Byte 0 EQ Gard records. Each bit position corresponds to chiplet (starting at chiplet 0x10 - 0x15) == ATTR_EQ_GARD (where 0x10 is bit 0 of byte 0)
	 EX functional is not explicitly represented
	 SBE can infer which EX (1/2 of EQ) are intended to be used based on the EC gard records
	 Do NOT need to support victim caches

	 Bytes 1-3 are EC Gard records. Each bit position corresponds to EC chiplet (starting at chiplet 0x20-0x37) == ATTR_EC_GARD (where 0x20 is bit 0 of byte 1)
	 This also information also need to go into the CME image
	 If the bit is on then the part is non functional

	 Mailbox scratch 2 (CFAM 2839, SCOM 0x50039) – SBE I2C Bus speed based, ref clock
	 Bytes 0,1 are ref clock I2C bus divider consumed by code running out of OTPROM, no ATTR needed as it is directly read. ATTR is ATTR_I2C_BUS_DIV_REF (for image customization)
	 Bytes 2
	 Bits 16:19 – ATTR_NDL_MESHCTRL_SETUP – Control NDL training, MeshCtrl setup
	 Bits 20-23 - Reserved

	 Byte 3 is open

	 Mailbox scratch 3 (CFAM 283A, SCOM 0x5003A) – FW Mode/Control flags
	 The HWP does not need to do anything with this scratch register as it is SBE FW control flags. These will be stored as ATTR_BOOT_FLAGS in the ATTR tank (and by the setup mbox HWP). The SBE FW will check the valid bit and use the mbox scratch regis...
	 Bit 0 indicates istep IPL (0b1) (Used by SBE, HB – FW ISTEP_MODE)
	 Bit 1 indicates that SBE should go directly to runtime functionality (0b1)
	 Bit 2 is reserved for HB usage for the SBE to indicate an MPIPL to Hostboot. It is always 0 in the ATTR tank and is dynamically set by the SBE at the same time the SBE sets the ATTR_MPIPL_MODE ATTR (Used by HB, set by SBE. SBE uses S0/S1 interrupt)
	 Bit 3 in this register is used to indicate FSPless (0b0), otherwise FSP attached (0b1)
	 Bit 4 -- Reserved
	 Bit 5 in this register indicates that the SBE should not send back internal FFDC on any ChipOp failure response
	 Bit 6 – disable security. SBE is configured to only honor this request if and only if during the update process it was signed with a secure header flag that permits it. Hostboot checks the secure header flag, signing server is responsible for neve...

	 Mailbox scratch 4 (CFAM 283B, SCOM 0x5003B) - Boot frequency
	 Byte 0,1 -- EQ boot frequency multiplier == ATTR_BOOT_FREQ_MULT
	 Greg to provide algorithm

	 Bit 16 – ATTR_CP_FILTER_BYPASS – force CP filter PLL into bypass
	 Bit 17 -- ATTR_SS_FILTER_BYPASS – force SS filter PLL into bypass
	 Bit 18 -- ATTR_IO_FILTER_BYPASS – force IO filter PLL into bypass
	 Bit 19 -- ATTR_DPLL_BYPASS – force DPLL into bypass
	 Bit 20 -- ATTR_NEST_MEM_X_O_PCIE_BYPASS– force nest PLL into bypass
	 Bit 21 – ATTR_OBUS_RATIO_VALUE_BIT – Holds OBUS ratio value. 0b0 == normal speed, 0b1 == half speed
	 Bit 22:23 -- Reserved
	 Byte 3 -- Nest PLL bucket selection == ATTR_NEST_PLL_BUCKET
	 The PLL bucket number is an integer enum, with the actual frequency defined within the bucket
	 Where the PLL bucket contains a simple structure of the VDN setting, the Nest I2C divider setting, and then PLL ring, target nest frequency value in Khz (ie what system is targeted at, not necessarily the margin bias)
	 Supported buckets: 1600Mhz, 1866Mhz, 2000Mhz, 2133Mhz, 2400Mhz

	 Mailbox scratch 5 (CFAM 283C, SCOM 0x5003C) – HWP Control Flags
	 Bit 0 -- cache contained IPL (0b1), ATTR_SYSTEM_IPL_PHASE == CACHE_CONTAINED
	 Bit 1 -- SBE should init all cores (0b1), ATTR_SYS_FORCE_ALL_CORES == TRUE
	 Bit 2 – HWP/Init “risk level” enabled (b1) – ATTR_RISK_LEVEL == 0x1
	 Note this is also used by Hostboot to pass to HB driven HWP

	 Bit 3 – Boot loader HWP flag to not place 12K exception vectors. This flag is only applicable when security is disabled (ATTR_DISABLE_HBBL_VECTORS == 0x1)
	 Bit 4 – Memory synchronous mode (0b1), ATTR_MC_SYNC_MODE == 0x1
	 Bit 5 – Slow PCI reference clock (Nimbus DD1.0 only). 0b1 == ENUM_ATTR_DD1_SLOW_PCI_REF_CLOCK_NORMAL (100Mhz), 0b0 == ENUM_ATTR_DD1_SLOW_PCI_REF_CLOCK_SLOW (94Mhz).
	 Bit 6:11 – Reserved/Open
	 Bit 12:31 – Debug control for clock mux settings (20 bits), ATTR_CLOCK_PLL_MUX

	 Mailbox scratch 6 (CFAM 283D, SCOM 0x5003D) – Master/Slave, node/chip selection
	 Bit 23 – indicates if the chip is in group pump mode (ATTR_PROC_FABRIC_PUMP_MODE)
	 Bit 24 – indicates Hostboot slave bit (ie not master), 0b0 == master, 0b1 == slave (ATTR_PROC_SBE_MASTER_CHIP has inverse polarity – ie a 0b1 when master, 0b0 when slave)
	 If set as slave then this overrides the external C4 indicating master/slave
	 If set as master then use the external C4 as indication of master/slave
	 The default SBE image will always have bit 24 indicating master (0b0), which will allow the board C4 pin to control master/slave
	 For systems where the SP is intended to select master/slave, all module C4 pins must be tied low (indicating master) so that bit 24 will allow the SP to control master slave selection

	 Bit 25 -- Reserved
	 Bits 26:28 indicate the node position in FSP based systems (unused in Spless systems) ATTR_PROC_FABRIC_GROUP_ID
	 Bits 29:31 indicate the chip position (ATTR_PROC_FABRIC_CHIP_ID)

	 Mailbox scratch 7 (CFAM 283E, SCOM 0x5003E) – DRTM Payload address in MB
	 Entire register used to indicate location of DRTM payload on MB boundary
	 Only valid during DRTM execution

	 Mailbox scratch 8 (CFAM 283F, SCOM 0x5003F)
	 Byte 0 – each bit in here indicates validity of the same numbered scratch reg (bit 0 scratch 0)
	 Bit 0 -- (CFAM 2838, SCOM 0x50038) - FW functional EQ/EC valid
	 Bit 1 -- (CFAM 2839, SCOM 0x50039) - SBE I2C Bus speed based, ref clock valid
	 Bit 2 -- (CFAM 283A, SCOM 0x5003A) - FW Mode/Control flags valid
	 Bit 3 -- (CFAM 283B, SCOM 0x5003B) - Boot frequency valid
	 Bit 4 -- (CFAM 283C, SCOM 0x5003C) - HWP Control Flags valid
	 Bit 5 -- (CFAM 283D, SCOM 0x5003D) - Master/Slave, node/chip selection valid
	 Bit 6 -- (CFAM 283E, SCOM 0x5003E) – DRTM Payload address in MB valid
	 Bit 7 -- (CFAM 283F, SCOM 0x5003F) – bytes 1,2,3 (if used) valid

	 This is used to know if the data should be updated from scratch to attributes

	2.3 proc_sbe_tp_chiplet_init1 :F,C,D TP Chiplet Init
	a p9_sbe_tp_chiplet_init1.C (chip target) FAPI2::ReturnCode
	 Releases the Pervasive Control Bus (PCB) reset
	 Sets TP chiplet enable
	 Drops pervasive chiplet fence

	2.4 proc_sbe_tp_gptr_time_initf :F,C,D – Init Perv GPTR/Time
	a p9_sbe_tp_gptr_time_initf.C
	 Scan init the GPTR and Time rings for the Pervasive chiplet

	2.5 proc_sbe_dft_probe_setup_1 :D, - Setup DFT probe points
	a p9_sbe_dft_probe_setup_1.C (chip target) FAPI2::ReturnCode
	 Only run in DFT mode, no-op in normal Cronus/SBE (istep stub for common numbering)
	 DFT mode is controlled with IPL option within Cronus

	2.6 proc_sbe_npll_initf :F,C,D - Program Powerbus PLL
	a p9_sbe_npll_initf.C (chip target) FAPI2::ReturnCode
	 Apply the Nest PLL ring
	 Nest PLL ring is picked off of scratch reg bucket selection
	 Must run at system frequency
	 Consists of compressed scan ring in SEEPROM. There are 4 buckets (1.8, 2.0, 2.13, 2.4)This image is set via p9_xip_customize based off of the system Nest/Xbus PLL setting. There are two potential images for each bucket:
	 Normal
	 Override – this is an image that can be selected to override to a custom PLL setting for the nest
	 When SECURITY_ENABLE is set, scan overrides can only come from a known good scan ring whitelist (PLLs)

	 Obus, PCIe, and MC PLLs are not set (still running in bypass)

	2.7 proc_sbe_npll_setup : F,C,D - Nest PLL setup
	a p9_sbe_npll_setup.C (chip target) FAPI2::ReturnCode
	 Clocking: set nest sector buffer strength, pulse mode and pulse mode enable (attribute dependency Nimbus/Cumulus)
	 Clocking: Apply Nest Progdly (dependency to VPD #MK) setting
	 Clocking: enable Nest Progdly (set nest progdly bypass to zero)
	 Get Nest running, check PLL, makes use of a glitchless mux to switch

	2.8 proc_sbe_tp_switch_gears : F,C,D - Update SBE I2C config
	a p9_sbe_tp_switch gears.C (chip target) FAPI2::ReturnCode
	 Calls procedure to update I2C bus speed in the PIBMEM

	2.9 proc_sbe_clock_test : F,C,D – Check clocks
	a Noop
	

	2.10 proc_sbe_tp_chiplet_reset : F,C,D – Reset TP Chiplet
	a p9_sbe_tp_chiplet_reset.C (chip target) FAPI2::ReturnCode
	 Setup hang counter for PCB slaves/master

	2.11 proc_sbe_tp_repr_initf : F,C,D - TP Chiplet Repair
	a p9_sbe_tp_repr_initf.C (chip target) FAPI2::ReturnCode
	 Load Scan Repair for TP Chiplet

	2.12 proc_sbe_tp_chiplet_init2 : F,C,D - TP Chiplet Repair
	a p9_sbe_tp_chiplet_init2.C (chip target) FAPI2::ReturnCode
	 Scan 0 all rings on TP – including occ, perv. This excludes the PIB, PCB, Repair, Time, and GPTR rings (as this is where SBE is running from and were done by the Clock controller logic)

	2.13 proc_sbe_setup_tp_abist g: D -- Hook for DFT to run abist on TP
	a p9_sbe_tp_abist_setup.C (chip target) FAPI2::ReturnCode
	 Spot for DFT to insert non zero (ie true abist) patterns

	2.14 proc_sbe_tp_arrayinit :F,C,D - TP Chiplet array init
	a p9_sbe_tp_arrayinit.C (chip target) FAPI2::ReturnCode
	 Does not reinit PIBMEM
	 Run arrayinit on TP chiplet (includes OCC)
	 After this all TP arrays are initialized (including OCC SRAM tank)

	 Scan flush 0 to all TP expect TP Time, GPTR, Repair rings and PIB, and PCB regions

	2.15 proc_sbe_tp_initf :F,C,D - TP Chiplet scan inits
	a p9_sbe_tp_initf.C (chip target) FAPI2::ReturnCode
	 Apply scan overrides to TP Chiplet (includes OCC)

	2.16 proc_sbe_dft_probe_setup_2 :D, - Setup DFT probe points
	a p9_sbe_dft_probe_setup_2.C (chip target) FAPI2::ReturnCode
	 Only run in DFT mode, no-op in normal Cronus/SBE (stub istep left for common numbering)

	2.17 proc_sbe_tp_chiplet_init3 :F,C,D - TP Chiplet Start clocks
	a p9_sbe_tp_chiplet_init3.C (chip target) FAPI2::ReturnCode
	 Switches TP Chiplet OOB mux
	 Resets PCB Master Interrupt register
	 Drops pervasive and OCC2PIB fence
	 Start clocks on perv region (all components of TP)
	 Clear force_align in chiplet GP0
	 Clear flushmode_inhibit in chiplet GP0
	 Drop FSI fence so checkstop and interrupt conditions can flow – SBE has direct path, this is normal TP chiplet path
	 Pervasive Trace arrays are now available
	 Check for OSC switch clock errors after switching to Nest PLLs
	 Theoretically can run the OCC at this point
	 If ATTR_SYSTEM_IPL_PHASE == CACHE_CONTAINED
	 Tweak FIR Masks

	3 Step 3 Self Boot Engine – Chiplet Setup
	3.1 proc_sbe_chiplet_reset : F,C,D -Nest Chiplet Reset
	a
	b p9_sbe_chiplet_reset.C (chip target) FAPI2::ReturnCode
	 Setup static multicast groups for all good chiplets excluding TP based on pervasive target functional state (not ATTR_PG state)
	 If ATTR_SYS_FORCE_ALL_CORES == true, then add all EQ/EC to the multicast groups
	 Otherwise the EQ/EC multicast will be added late in the IPL flow by proc_select_ex or in step 15 by Hostboot.
	 Step 3 can't use the multicast for all non-nest chiplets (ie EQ/EC)

	 For all good chiplets including EQ/EC
	 Setup chiplet net control regs
	 Reset PCB Slave to default state
	 Set chiplet enable on all all good chiplets

	 Clocking: setup chiplet sector buffer strength, pulse mode and pulse mode enable (attribute dependency Nimbus/Cumulus)
	 Setup of hang counters including EQ/EC
	 For all enabled good chiplets excluding EQ/EC
	 Start vital clocks and release endpoint reset
	 PCB Slave error register Reset

	3.2 proc_sbe_gptr_time_initf: Init GPTR, Time rings for chiplets
	a p9_sbe_gptr_time_initf.C
	 Scan initalize all rings and initialize REPR on all enabled chiplets (except for TP, EP and EC)

	3.3 proc_sbe_chiplet_pll_initf : PLL Initfile for X, O, PCIe, DMI, MCA
	a p9_sbe_chiplet_pll_initf.C
	 PLL rings are stored in SBE image
	 Included tune bits, frequency
	 Includes issuing the set pulse

	3.4 proc_sbe_chiplet_pll_setup : Setup PLL for O, X, PCIe, DMI, MCA
	a p9_sbe_chiplet_pll_setup.C
	 Clocking: MC Chiplet only, Setup DCC and Progdlys
	 Progdlys (Nimbus two entries), dependency to VPD #MK field
	 Progdly (Cumulus one entry), dependency to VPD #MK field
	 DCC attribute dependency Nimbus/Cumulus

	 Clocking: drop DCC and Progdly bypass signals
	 Checks that the PLL locked
	 Start the VAR OSCs / Config the TANK PLLs & lock
	 In certain configs these chiplets are potentially not used
	 Must run at system frequency
	 If in async mode the MCA PLLs are locked to default PLL chain (mem PLL bucket for 2Ghz)
	 Else if in sync mode then MCA PLLs are not enabled because the MCAs are driven from the nest PLLs

	3.5 proc_sbe_repr_initf : F,C,D -Chiplet Repair
	a p9_sbe_repr_initf.C (chip target) FAPI2::ReturnCode
	 For all enabled chiplets
	 Scan 0 all rings on all enabled chiplets (except for TP)
	 Load Repair, Time and GPTR rings for all enabled chiplets
	 All chip customization data is within the Repair and Time rings – array repair, DTS settings

	3.6 proc_sbe_chiplet_init : F,C,D -Chiplet Init
	a p9_sbe_chiplet_init.C (chip target) FAPI2::ReturnCode
	 For all enabled chiplets
	 Scan 0 all rings (except time, repair, gptr) on all enabled chiplets

	3.7 proc_sbe_abist_setup : D -- Hook for DFT to run abist
	a p9_sbe_abist_setup.C (chip target) FAPI2::ReturnCode
	 Stub for DFT – requirement is not to be compiled into real SBE/CME/GPE image – only an istep placeholder
	 Spot for DFT to insert non zero (ie true abist) patterns

	3.8 proc_sbe_arrayinit : Chiplet array init
	a p9_sbe_arrayinit.C
	 Run arrayinit on all enabled chiplets
	 Scan flush 0 to all rings except GPTR, Time, Repair on all enabled chiplets

	3.9 proc_sbe_lbist :D -- Hook for DFT to run lbist
	a p9_sbe_lbist.C
	 Stub for DFT – requirement is not to be compiled into real SBE/CME/GPE image – only an istep placeholder
	 Run lbist on all enabled chiplets
	 Scan flush 0 to all rings except GPTR, Time, Repair on all enabled chiplets

	3.10 proc_sbe_tp_enable_ridi : Put Enable pervasive RIDI
	a p9_sbe_tp_enable_ridi.C (chip target) FAPI2::ReturnCode
	 Drop RI/DI for the AVS bus
	 Drop RI/DI for TP logics

	3.11 proc_sbe_setup_boot_frequency : Setup boot frequency
	a p9_sbe_setup_boot_frequency.C
	 Read core frequency ATTR and write to the Quad PPM

	3.12 proc_sbe_initf : Apply any scan overrides
	a p9_sbe_nest_initf.C
	 Initfiles in procedure defined on VBU ENGD wiki
	 Apply scan overrides to all enabled chiplets
	 Generated via “traditional” initfile, but stored as compressed RS4 scan rings
	 Spot to put all differences from scan flush 0
	 Intended only for config independent settings “patches”. Chip team goal is to flush to the correct state
	 Cannot contain system configuration differences, but can contain chip customization settings (ie DMI vs EDI personalization)

	 Primary debug mechanism is to use Cronus/FSP putspy commandline to modify ring images directly in the chip (ie istep, then putspy).
	 Doesn’t cover core
	 Need to know when in the IPL you can perform the scan ring
	 Doesn’t cover system test (ie non script/interactive mode)

	 Secondary mechanism is to build an RS4 overlay and have a mechanism/location for the SBE to pick-up various overlays and apply
	 Required for core
	 Mechanism to provide system test with patches
	 identify storage tank for overlays, RS4 is self-describing, put hook into SBE to walk rings and look for nest/MC chiplet overlays

	3.13 proc_sbe_nest_startclocks : Start PB and nest clocs
	a p9_sbe_nest_startclocks.C
	 Drop fences and tholds on PB Chiplets
	 Start nest chiplets with N3 as the master, rest as the slave
	 Note that although the MCS logic is started (part of the Nest),
	 If in async mode the MCA/ memory chiplets are not are started here.
	 Else if in sync mode the MCA/memory chiplets are started here.
	 In either case the MCA has the PLL/grid running, but not necessarily the functional clocks (in async mode)

	3.14 proc_sbe_nest_enable_ridi : Enable nest RI/DI
	a p9_sbe_nest_enable_ridi.C
	 Drop RI/DI for nest -- LPC and PSI IOs

	3.15 proc_sbe_io_initf : Apply inits to chipl IOs
	a p9_sbe_io_initf.C
	 Apply init file for chiplet IOs

	3.16 proc_sbe_startclock_chiplets : Start clocks on O, X, PCIe
	a p9_sbe_startclock_chiplets.C
	 Start Xbus, Obus, PCIe clocks
	 Start Mem chiplet if it is in synchronous mode
	 Start clocks on configured chiplets

	3.17 proc_sbe_scominit : SBE Nest scominits
	a p9_sbe_scominit.C (processor chip)
	 Apply any scom inits to nest chiplets
	 If ATTR_SYSTEM_IPL_PHASE == CACHE_CONTAINED
	 Tweak FIR Masks

	3.18 proc_sbe_lpc : Init the LPC master
	a p9_sbe_lpc_init.C
	 Requirement from the bootloader is that it only uses MMIOs to LPC master, not Xscom
	 Perform scoms to setup LPC bus
	 Move the LPC clock to external input

	 Pull the LPC unit out of reset
	 Set LPC BAR – hardcoded like Xscom BAR

	3.19 proc_sbe_fabricinit : Init fabric(PB) for island mode
	a p9_sbe_fabricinit.C
	 Send fabric command and check result
	 Chip will scan flush to SMP island mode

	 This initializes PgP chip in “island” fabric mode and allows the core access to the PIB
	 Pbus will flush to a state where all chiplets come up as good configured and disconnected – logic in powerbus respond to snoop with NULL response (traditional way of handling STOP)
	 In single chip mode Obus and Xbus, memory units come up fenced

	 As chiplets come online then fabric must be “connected” to the chiplet
	 EX – controlled by winkle
	 Xbus, Abus – Hot add operation
	 memory units – nest facing MCS logic is in N1/N3, already initialized
	 What about PCIe chiplets -- nest facing PCIe logic is in N2, already initialized
	 Chiplets that are not used (deconfigured) are left in this state

	3.20 proc_sbe_check_master : Determine if master chip
	a At this point the SBE must use the internal bolt-on register to toggle TPM Reset line
	b Determine if this is master SBE
	 SBE FW checks bit 24 of the Scratch register (stored in ATTR) –
	 if set then this is a slave chip, load /enable runtime chipOps
	 else master and continue

	3.21 proc_sbe_mcs_setup : Setup MCS to allow EX contained
	 This step needs to be a no-op on MPIPL/DRTM flow
	b p9_sbe_mcs_setup.C
	 If
	 ATTR_SYSTEM_IPL_PHASE == CACHE_CONTAINED this step is a no-op

	 Else:
	 Open the MCS BAR to allow Hostboot to dcbz the contents of cache.
	 Also disable speculative pre-fetch to prevent PBA reads from triggering operations to MCS

	3.22 proc_sbe_select_ex : Select Hostboot core
	a p9_sbe_select_ex.C
	 FW will have correctly set the target functional state(s). HWP uses functional states as master record (doesn’t need to read PG data, gard, etc)
	 If ATTR_SYS_FORCE_ALL_CORES is set
	 then force select to ALL
	 Multicast groups are already setup by istep 3.1

	 Else single “master core”
	 the first functional EC/EQ is the master core. Note that in this mode no EQ/ECs have been added to any multicast group before this point
	 need to add master EC to multicast group 0, 1, 3
	 need to add master EQ to multicast group 0, 4 (and EX to 5, 6 as needed)

	 Write selected (single/all) EQ/Core mask into OCC complex
	 This is the “master record“ of the enabled cores/quad in the system
	 This is only for during the IPL (will be updated later in step 15)

	4 Step 4 Self Boot Engine – EX Init
	 Issue isteps detailed in EQ and EC section
	 These are common to STOP images
	 Execution will return here afterwards

	 Does NOT start instructions on core
	4.1 proc_hcd_cache_poweron : Cache Chiplet Power-on
	a p9_hcd_cache_poweron.C
	 Command the cache PFET controller to power-on
	 Check for valid power on completion
	 Polled Timeout: 100us

	 For Nimbus DD1.0 only enable Vdd PFETS, do not enable Vcs PFETS – controlled by feature ATTR

	4.2 proc_hcd_cache_chiplet_reset : Cache Chiplet Reset
	a p9_hcd_cache_chiplet_reset.C
	 Reset quad chiplet logic
	 Clocking: setup cache sector buffer strength, pulse mode and pulsed mode enable values (attribute dependency Nimbus/Cumulus)
	 Clocking: Drop glsmux async reset
	 Scan0 flush entire cache chiplet

	4.3 proc_hcd_cache_chiplet_l3_dcc_setup : Cache Chiplet DCC Setup
	a p9_hcd_cache_chiplet_l3_dcc_setup.C
	 Clocking: Setup L3 DCC (scan with setpulse, scan region = ANEP), attribute dependency Nimbus/Cumulus
	 Clocking : drop L3 DCC bypass

	4.4 proc_hcd_cache_gptr_time_initf : GPTR and Time for EX non core
	a p9_hcd_cache_gptr_time_initf.C
	 Initfiles in procedure defined on VBU ENGD wiki to produce #G VPD contents
	 Check for the presence of core override GPTR ring from image (this is new for P9)
	 if found, apply; if not, apply core GPTR from image
	 Check for the presence of core override TIME ring from image;
	 if found, apply; if not, apply core base TIME from image

	4.5 proc_hcd_cache_dpll_initf : Quad DPLL Setup
	a p9_hcd_cache_dpll_initf.C
	 Initfiles in procedure defined on VBU ENGD wiki
	 DPLL tune bits are not dependent on frequency
	 Put DPLL into bypass
	 Set DPLL syncmux sel
	 Set clock controller scan ratio to 1:1 as this is done at refclk speeds
	 Load the EX DPLL scan ring
	 Set clock controller scan ratio to 8:1 for future scans

	4.6 proc_hcd_cache_dpll_setup : Quad DPLL Setup
	a p9_hcd_cache_dpll_setup.C
	 Frequency is controlled by the Quad PPM
	 Actual frequency value for boot is stored into the Quad PPM by p9_hcd_setup_evid.C in istep 2
	 In real cache STOP exit, the frequency value is persistent

	 Enable the DPLL in the correct mode
	 non-dynamic
	 Slew rate established per DPLL team

	 Take the cache glitchless mux out of reset
	 Remove DPLL bypass
	 Drop DPLL Tholds
	 Check for DPLL lock
	 Timeout: 200us

	 Switch cache glitchless mux to use the DPLL

	4.7 proc_hcd_cache_dcc_skewadjust_setup : Quad DCC skew adjusts
	a p9_hcd_cache_dcc_skewadjust_setup.C
	 Start Clocks clock region = AN only
	 Drop DCCs reset
	 Setup 6 DCCs in parallel (commands over scan with setpulse, scan region = ANEP), dependency to VPD field #MK
	 Drop DCCs bypass
	 Additional DCC setup step (commands over scan with setpulse, scan region = ANEP)
	 Drop SkewAdjust reset
	 Setup Skewadjust (commands over scan with setpulse, scan region = ANEP), dependency to VPD field #??
	 Drop SkewAdjust bypass
	 Additional SkewAdjust setup step (commands over scan with setpulse, scan region = ANEP)

	4.8 proc_hcd_cache_chiplet_init : EX Flush/Initialize
	a p9_hcd_cache_chiplet_init.C
	 Scan0 flush all configured chiplet rings except Vital, GPTR, TIME and DPLL

	4.9 proc_hcd_cache_repair_initf : Repair ring for EX non core
	a p9_hcd_cache_repair_initf.C
	 This HWP is run serialized per EQ (most others are done in multicast)
	 Load cache ring images from MVPD
	 These rings must contain ALL chip customization data. This includes the following: Repair Power headers, and DTS
	 Historically this was stored in MVPD keywords are #R, #G. Still stored in MVPD, but SBE image is customized with rings for booting cores

	4.10 proc_hcd_cache_arrayinit : EX Initialize arrays
	a p9_hcd_cache_arrayinit.C
	 Use ABIST engine to zero out all arrays
	 Upon completion, scan0 flush all rings except Vital, Repair, GPTR, TIME and DPLL

	4.11 proc_hcd_cache_abist : DFT hook for abist
	a p9_hcd_cache_abistabist.C
	 Stub for DFT – requirement is not to be compiled into real SBE/CME/GPE image – only an istep placeholder
	 Upon completion, scan0 flush all rings except Vital, Repair, GPTR, TIME and DPLL

	4.12 proc_hcd_cache_lbist : DFT hook for lbist
	a p9_hcd_cache_lbist.C
	 Stub for DFT – requirement is not to be compiled into real SBE/CME/GPE image – only an istep placeholder
	 Use LBIST engine to run tests
	 Upon completion, scan0 flush all rings except Vital, Repair, GPTR, TIME and DPLL

	4.13 proc_hcd_cache_initf :EX (non core) scan init
	a p9_hcd_cache_initf.C
	 Initfiles in procedure defined on VBU ENGD wiki
	 Call putring on EQ rings
	 Putring checks for the presence of cache FUNC override/cache contained/risk level/etc rings from image;
	 if found, apply; if not, apply cache base FUNC rings from image

	 Note: FASTINIT ring (eg CMSK ring) is setup at this point to limit the stumps that participate in FUNC ring scanning (this is new for P9).
	 Note: all caches that are in the Cache Multicast group will be initialized to the same values via multicast scans
	 Note that this is done 2X – once for even EX in EQ and once for odd EX in EQ

	4.14 proc_hcd_cache_startclocks : Quad Clock Start
	a If ATTR_SYSTEM_IPL_PHASE == CACHE_CONTAINED then skip (platform check)
	b p9_hcd_cache_startclocks.C
	 Set (to be sure they are set under all conditions) core logical fences (new for P9)
	 Drop pervasive thold
	 Setup L3 EDRAM/LCO
	 Drop pervasive fence
	 Reset abst clock muxsel, sync muxsel
	 Set fabric node/chip ID from the nest version
	 Clear clock controller scan register before start
	 Start arrays + nsl regions
	 Start sl + refresh clock regions
	 Check for clocks started
	 If not, error

	 Clear force align
	 Clear flush mode
	 Drop the chiplet fence to allow PowerBus traffic

	4.15 proc_hcd_cache_scominit : Cache SCOM Inits
	a If ATTR_SYSTEM_IPL_PHASE == CACHE_CONTAINED then skip (platform check)
	b p9_hcd_cache_scominit.C
	 Apply any SCOM initialization to the cache
	 Setup L3 configuration mode (LCO)
	 Configure Trace Stop on Xstop
	 DTS Initialization sequence

	4.16 proc_hcd_cache_scom_customize : Cache Customization SCOMs
	a If ATTR_SYSTEM_IPL_PHASE == CACHE_CONTAINED then skip (platform check)
	b p9_hcd_cache_scomcust.C
	 Dynamically built (and installed) routine that is inserted by the “XIP Customization” process. (New for P9)
	 Dynamically built pointer where a NULL is checked before execution
	 If NULL (a potential early value); return
	 Else call the function at the pointer; pointer is filled in by XIP Customization
	 Customization items:
	 Epsilon settings scan flush to super safe
	 Customize Epsilon settings for system config

	 LCO setup (chiplet specific)
	 FW setups up based victim caches

	 Powerbus (MCD) and L3 BAR settings

	4.17 proc_hcd_cache_ras_runtime_scom : EX Runtime Scom Init
	a p9_hcd_cache_ras_runtime_scom.C
	 Not consumed by SBE (empty istep); SGPE only
	 Run-time updates from Host based PRD, etc that are put on the core image by STOP API calls
	 Dynamically built pointer where a NULL is checked before execution
	 If NULL (the SBE case), return
	 Up to three separate sections – normal scom, L2 repair, and L3 repair
	 Else call the function at the pointer; pointer is filled in by STOP image build
	 Runtime FIR mask updates from PRD
	 L2/L3 repairs

	4.18 proc_hcd_cache_occ_runtime_scom : EX OCC runtime SCOMS
	a p9_hcd_cache_occ_runtime_scom.C
	 Not consumed by SBE (empty istep); SGPE only
	 Run-time updates from OCC code that are put here
	 OCC FW sets up value in the TBD SCOM section
	 Placeholder at this point

	4.19 proc_hcd_exit_mode : Determine which Cores to process
	 Stub for SBE (empty istep)
	 SGPE/CME have logic here to determine which cores should be acted upon

	4.20 proc_hcd_core_pcb_arb : Core Chiplet PCB Arbitration
	a p9_hcd_core_pcb_arb.C
	 If CME, request PCB Mux.
	 Poll for PCB Mux grant

	 Else (SBE)
	 Nop (as the CME is not running in bringing up the first Core)

	4.21 proc_hcd_core_poweron : Core Chiplet Power-on
	a p9_hcd_core_poweron.C
	 Command the core PFET controller to power-on
	 Check for valid power on completion
	 Polled Timeout: 100us

	4.22 proc_hcd_core_chiplet_reset : Core Chiplet Reset
	a p9_hcd_core_chiplet_reset.C
	 Reset chiplet logic
	 Clocking: setup core sector buffer strength, pulse mode and pulsed mode enable values,), attribute dependency Nimbus/Cumulus
	 Clocking: Drop glsmux async reset
	 Scan0 flush entire core chiplet

	4.23 proc_hcd_core_gptr_time_initf : Load Core GPTR and Time rings
	a p9_hcd_core_gptr_time_initf.C
	 Initfiles in procedure defined on VBU ENGD wiki to produce #G VPD contents
	 GPTR is common between cores (ie multicast / PCB muxing)
	 Check for the presence of core override GPTR ring from image (this is new for P9)
	 if found, apply; if not, apply core GPTR from image

	 Check for the presence of core override TIME ring from image;
	 if found, apply; if not, apply core base TIME from image

	4.24 proc_hcd_core_chiplet_init : Core Flush/Initialize
	a p9_hcd_core_chiplet_init.C
	 Switch the core glitchless mux to allow DPLL clocks on the clock grid
	 Clocking: setup controls based on DPLL frequency
	 Clocking: assert PM sync_enable (4x core, 2 x L2), DCCs and SkewAdjust starts aligning clocks
	 Scan0 flush all chiplet rings except VITAL, GPTR and TIME

	4.25 proc_hcd_core_repair_initf : Load Repair ring for core
	a p9_hcd_core_repair_initf.C
	 This step is run individually per core (serialized)
	 Load core ring images from that came from MVPD into the image
	 These rings must contain ALL chip customization data. This includes the following: Array Repair and DTS calibration settings
	 Historically this was stored in MVPD keywords are #R, #G. Still stored in MVPD, but SBE image is customized with rings for booting cores at build time

	4.26 proc_hcd_core_arrayinit : Core Initialize arrays
	a p9_hcd_core_arrayinit.C
	 Use ABIST engine to zero out all arrays
	 Upon completion, scan0 flush all rings except Vital, Repair, GPTR, and TIME

	4.27 proc_hcd_core_abist : DFT hook for abist
	a p9_hcd_core_abist.C
	 Stub for DFT – requirement is not to be compiled into real SBE/CME/GPE image – only an istep placeholder
	 Upon completion, scan0 flush all rings except Vital, Repair, GPTR, TIME and DPLL

	4.28 proc_hcd_core_lbist : DFT hook for lbist
	a p9_hcd_core_lbist.C
	 Stub for DFT – requirement is not to be compiled into real SBE/CME/GPE image – only an istep placeholder
	 Use LBIST engine to run tests
	 Upon completion, scan0 flush all rings except Vital, Repair, GPTR, TIME and DPLL

	4.29 proc_hcd_core_initf :Core scan init
	a p9_hcd_core_initf.C
	 Initfiles in procedure defined on VBU ENGD wiki
	 Check for the presence of core FUNC override rings from image;
	 if found, apply; if not, apply core base FUNC rings from image
	 Note: FASTINIT ring (eg CMSK ring) is setup at this point to limit the stumps that participate in FUNC ring scanning (this is new for P9).
	 Note : if in fused mode, both core rings will be initialized to the same values via multicast scans

	4.30 proc_hcd_core_startclocks : Core Clock Start
	a If ATTR_SYSTEM_IPL_PHASE == CACHE_CONTAINED then skip (platform check)
	b p9_hcd_core_startclocks.C
	 Drop pervasive thold
	 Drop pervasive fence
	 Reset abst clock muxsel, sync muxsel
	 Clear clock controller scan register before start
	 Start arrays + nsl regions
	 Start sl + refresh clock regions
	 Check for clocks started
	 If not, error

	 Clear force align
	 Drop the core to cache logical fence

	4.31 proc_hcd_core_scominit : Core SCOM Inits
	a If ATTR_SYSTEM_IPL_PHASE == CACHE_CONTAINED then skip (platform check)
	b p9_hcd_core_scominit.C
	 Apply any coded SCOM initialization to core

	4.32 proc_hcd_core_scom_customize :Core Customization SCOMS
	a If ATTR_SYSTEM_IPL_PHASE == CACHE_CONTAINED then skip (platform check)
	b p9_hcd_core_scomcust.C
	 Dynamically built (and installed) routine that is inserted by the “XIP Customization” process. (New for P9)
	 Dynamically built pointer where a NULL is checked before execution
	 If NULL (a potential early value); return
	 Else call the function at the pointer; pointer is filled in by XIP Customization

	4.33 proc_hcd_core_ras_runtime_scom : EX Runtime Scom Init
	a p9_hcd_core_ras_runtime_scom.C
	 Not consumed by SBE (istep is placeholder); CME only
	 Run-time updates from Host based PRD, etc that are put on the core image by STOP API calls
	 Dynamically built pointer where a NULL is checked before execution
	 If NULL (the SBE case), return

	4.34 proc_hcd_core_occ_runtime_scom : Core OCC runtime SCOMS
	a p9_hcd_core_occ_runtime_scom.C
	 Not consumed by SBE (istep placeholder); CME only
	 Run-time updates from OCC code that are put here
	 OCC FW sets up value in the TBD SCOM section. This was not leverage in P8 with the demise of CPMs
	 Placeholder at this point

	5 Step 5 Self Boot Engine – Load Hostboot
	5.1 proc_sbe_load_bootloader
	a p9_pm_ocb_indir_setup_linear.C
	 Setup OCB channel 3 to linear mode

	b p9_sbe_load_bootloader.C
	 Setup PBA to target specific cache (L3 tank)
	 SBE fetches bootloader, security algorithm, and hash of HW public keys from SEEPROM
	 SEEPROM Image is ECC protected
	 Design is still in discussion, but each of the items above are independent (ie the key hash and bootload, security code will want to be updated from HB independently). They are NOT part of SBE xip customize image (but SBE knows how to find)

	 Places bootloader at specific address
	 0x 08200000 + 12KB (HRMOR of 130MB, ie 2MB into 10MB cache) – tentative bootloader address

	 SBE fetches signature validation code from SEEPROM, places at specific address
	 SBE fetches hash of HW public keys from SEEPROM, places at specific address
	 SBE creates POWER interrupt table (12K)
	 Done by SBE code because we don’t want to waste 12K of SEEPROM space
	 Current idea is a branch absolute to 12KB

	 SBE does not open an unsecure memory window -- Host has to indicate to SBE what the unsecure memory window is
	 In other words SBE Chip Ops won't let PBA/ADU traffic in until SBE receives a command to open the unsecure window from the host
	 Note that the SBE will use PBA bar 2

	 Set HRMOR to point node address + 130MB

	5.2 proc_sbe_instruct_start
	a p9_sbe_instruct_start.C
	 Start instructions on one core, one thread
	 Thread 0 will be started at CIA scan flush value of 0x0
	 With HRMOR this is address 130MB

	 Instruction start on one core, one thread. After executing this istep the SBE will load its runtime ChipOps

	6 Step 6 Hostboot – Master Init, discovery
	6.1 host_bootloader (non-steppable istep)
	 Boot loader needs the following information:
	 LPC base address
	 Xscom base address
	 Which PNOR side it is booting from

	 Perform any LPC setup (via MMIO only)
	 Boot loader finds the FFS partition table in PNOR, locates the HBB partition
	 Performs dcbz of HBB destination (128MB) for 512KB
	 Loads HBB w/ECC to secure memory (4MB relative)
	 Remove ECC to secure memory (5MB relative)
	 Uses signature validation code to validate (@ 5MB relative)
	 Copy down verified image to 128MB
	 Copy down security algorithm, hash of the HW keys, HBB header
	 Starts executing at 128MB (sets HRMOR and jumps)
	 If any of the above steps fail – bootloader will checkstop the system

	6.2 host_setup (non-steppable istep): Setup host environment
	 If in secure boot the bootloader has already validated image
	 Select primary thread (only thread running)
	 Purge the L3 of all areas except for hostboot base image
	 Dcbz in the Hostboot memory footprint
	 Initial setup
	 stacks
	 MSR
	 execution environment
	 Thread control structures
	 Memory Management setup

	 Ready for execution
	 Tracing
	 Device Drivers
	 Xscom (Scom)
	 Mailbox (Scom)
	 I2C (Scom)
	 LPC
	 FSI (Scom)

	 At this point the HWPF is alive and active
	 p9_thread_control.C
	 Start and release all other threads on core (1-3)

	 Hostboot will pull appropriate scratch register data and write into ATTR
	 Specifically the next bucket and boot flags (maybe share some code with SBE HWP?)

	 HB mechanism to read/write to PNOR
	 Host writes to LPC ↔ SPI NOR controller to read/write
	 SBE uses NOR at lowest frequency, Hostboot will use flash config info to speedup to full frequency

	6.3 host_istep_enable (non-steppable istep): Hostboot istep ready
	 Hostboot checks PNOR/SIO registers (BMC) for istep attribute, if set Hostboot “halts” and waits for commands from SP
	 Only isteps after this point can be issued to Hostboot
	 At this point communication can be performed with the SP

	6.4 host_init_bmc_pcie : Setup the PCIE to the BMC chip
	 This chip is a no-op and is left as a placeholder if PCIe logic is desired early in the boot
	 Required that System topology has BMC attached to master processor, otherwise this step cannot be done.

	6.5 host_init_fsi : Setup the FSI links to slave chips
	 It is expected that the following steps have already been done by SP – Hostboot will just use FSI bus
	 Configure FSI master (HUB and Cascade)
	 Send break commands to FSI slaves
	 Configure the slaves
	 Force lbus

	 Setup Scom device drivers
	 Read ID/EC levels

	 Reset all I2C engines/slaves on the P8 Master Chip and all FSI I2C Masters (P8 slaves, centaurs)
	 Can't reset the scom only I2C master on the P8 Slave chips (see 8.44)

	6.6 host_set_ipl_parms : Build ipl parameters
	 Sets the IPL parameters for this boot

	6.7 host_discover_targets : Builds targeting
	 Determines what targets are present and functional
	 This is the step where the host “configures” itself and builds its present/functional map of the targets
	 Uses FSI presence to detect processors and memory buffers
	 Reads dimm VPD from PNOR/I2C to determine what dimms are present

	 For OpenPower systems Hostboot will push the IPMI FRU inventory to the BMC
	 Must push for all present parts
	 Must update FRU present/functional state

	6.8 host_update_master_tpm : Update the Master TPM
	 If redundant TPM this step must enforce that master/alt-master use their local respective TPM
	 If the master proc’s TPM is not functional, force a reboot to the Alt Master

	 Perform the TPM Initialization
	 Extend TPM with measurements and configuration data
	 SBE, Hash of HW public keys, HBB, HBI, etc
	 See/update with list in Tim’s Doc

	6.9 host_gard : Do Gard
	 Run PRD analysis of previous boot FIRDATA if present to see if something needs to be deconfigured/garded
	 Apply repeat-gard records and deconfigure hardware
	 Initialize PRD
	 At the end of this step ATTN/PRD will start polling for errors on the master chip

	6.10 host_revert_sbe_mcs_setup : Clean up MCS regs
	a p9_revert_sbe_mcs_setup.C
	 Clean up the MCS BARs that were used by SBE and Hostboot to cleanly load/purge the L3 cache
	 Re-enable speculative reads

	6.11 host_start_occ_xstop_handler : Start OpenPOWER xstop
	 Image is loaded from PNOR
	 Put a very small bootloader into mainstore
	 FIR Master/FIR DATA is updated directly into SRAM
	 OCC is started (occ_control)

	6.12 host_voltage_config : Calculate correct chip voltage
	 This step will compute and store all of the various system frequencies and voltages – specifically the powerbus and core frequency based on MRW wattage/powerbus frequency settings
	 The programmable voltages for each P9 socket in the system (VCS, VDN, VDD) will also be calculated. The VDN and VDD rails are always on the AVS bus because the OCC needs to dynamically manipulate for Workload Optimized Frequency, but the VCS can be...
	b p9_setup_evid.C (COMPUTE)
	 Use VPD backed attributes (from #V) to calculate VDD, VCS and VDN for this socket
	 These need to be stored to ATTR_*_VAL (VCS, VDD, VDN)
	 Note that none of the settings are written to hardware – this is done later in the boot.

	7 Step 7 Hostboot – MC Config
	7.1 host_mss_attr_cleanup : Spot to clean up ATTR
	a p9_mss_attribute_cleanup.C (list of all mcs)
	 Called on all present memory buffers (Nimbus and Centaur)
	 Hook to clean up attributes on reconfig loop (set to known state) if needed

	7.2 mss_volt : Calc dimm voltage
	a p9c_mss_volt.C (vector of centaurs)
	b p9_mss_volt.C (list of functional mcs)
	 Procedure is called all the dimms on a voltage rail
	 Calculate rail Voltage and updates rail system attribute
	 Save settings in variables (saved in framework/cache)
	 Procedure handles checking overrides

	c p9c_mss_volt_avdd_offset.C (vector of centaurs)
	d p9c_mss_volt_vcs_offset.C (vector of centaurs)
	e p9c_mss_volt_vdd_offset.C (vector of centaurs)
	f p9c_mss_volt_vddr_offset.C (vector of centaurs)
	g p9c_mss_volt_vpp_offset.C (vector of centaurs)

	7.3 mss_freq : Calc dimm frequency
	a p9c_mss_freq.C (centaur)
	 Called on each centaur

	b p9_mss_freq.C (functional mcs)
	 Procedure is called on each MCS in the system
	 Looks at voltage and dimm functionality
	 Takes a system ATTR that defines the allowable dimm frequencies for the system
	 Bound frequency base on plug rules
	 Calculate per memory controller frequency from attributes – picks the frequency bucket to use
	 Save settings in variables (saved in framework/cache)
	 Procedure handles checking overrides

	c p9_mss_freq_system.C (all functional mcbists) -- Nimbus only
	 Determine the optimal system nest frequency, synchronous mode is preferred
	 All dimms must be at same frequency as system
	 Otherwise move nest to max frequency defined by system and run in async mode
	 Outputs a synchronous mode ATTR and desired nest freq

	 FW examines current synchronous mode and nest freq and will customize the SBE and reboot if necessary on the master only (slaves get data via mbox scratch registers)
	 p9_xip_customize.C

	7.4 mss_eff_config : Determine effective config
	a p9c_mss_eff_config.C (mba) -- loop over all functional mba
	b p9_mss_eff_config.C (mcs) -- loop over all functional mcs
	 Decode SPD
	 getDimmSPD(DIMM)
	 getVPD (MCS, MR, <freq>) – need effective dimm freq for this mcs
	 getVPD (MCS, MT, <numranks for dimm0, numranks for dimm1>)
	 need number of ranks for dimms behind this mcs (effective) (dimm0=outside dimm, dimm1=inside dimm)

	c mss_eff_mb_interleave.C (Cumulus only)
	 Called on each centaur target.
	 This sets up the MBA interleaving internal to the centaur

	d p9c_mss_eff_config_thermal.C (mba) -- loop over all functional mba
	e p9_mss_eff_config_thermal.C (mcs)
	 getVPD(MCS, MV, ???like MT???)
	 getVPD(MCS, MW, ???like MT???)
	 Perform thermal calculations for the effective config

	f p9_mss_eff_grouping.C (proc chip) – loop over all functional (Cumulus and Nimbus both)
	 Called on each P9 target.
	 Maps memory behind each chip

	7.5 mss_attr_update :MSS ATTR Overrides
	a p9_mss_attr_update.C
	 Called per MC
	 Stub HWP for FW to override attributes programmatically

	8 Step 8 Hostboot – Nest Chiplets
	8.1 host_slave_sbe_config
	 Need to run this from master processor to all slave processors for Secureboot hole (need to ensure that SP didn't leave compromised P8 Slave.
	b p9_setup_sbe_config.C
	 Update SBE config data area with any configs/parameters required by SBE (see step 0 for more details)
	 This includes the nest (and memory frequency if in synchronous mode)
	 Configuration flags (MPIPL, etc)

	8.2 host_setup_sbe
	a p9_set_fsi_gp_shadow.C
	 Done for all boots – some settings will change based on system type and IPL type
	 Set the GP bits to default state
	 Needs to take into account to not change values set up in p9_set_clock_term.C procedure

	8.3 host_cbs_start
	a p9_start_cbs.C
	 Set a bit to start the SBE engine on master chips. Located in FSI GP region
	 This same bit performs the scan0 flush of pervasive

	8.4 proc_check_slave_sbe_seeprom_complete : Check Slave SBE Complete
	 Check to make sure that the slave SBE engines have completed their IPL
	 FW will poll for up to 1 second to see if the “done” signature is in the status reg (not tied to istep number)
	 If “done” signature is not found then FW must extract FFDC from the SBE
	b p9_get_sbe_msg_register.C
	 Read the SBE state reg

	c p9_extract_sbe_rc.C -soft_err
	 Called on slave chips to look for any correctable errors on the PNOR and/or SEEPROM
	 The soft_error flag just tells the procedure to not generate an error if no HW issue

	d Reset all scom only I2C engines/slaves on the P8 Slave Chips

	8.5 host_attnlisten_proc : Start attention poll for P9(s)
	 Enable hostboot to start including all processor attentions in its post istep analysis
	 Enable OCC to collect FIR data on all processors if master processor checkstops
	 From this point on ATTN/PRD will listen (“poll”) for powerbus attentions after each named istep

	8.6 host_p9_fbc_eff_config : Determine Powerbus config
	a p9_fbc_eff_config.C (None)
	 Sets system wide attributes derived from MRW and system topology
	 Epsilon settings
	 Processor floor frequency

	 Does not access the HW

	8.7 host_p9_eff_config_links : Powerbus link config
	a p9_fbc_eff_config_links.C (None)
	 Determines the Sets system wide attributes derived from MRW and system topology
	 Epsilon settings
	 Processor floor frequency

	8.8 proc_attr_update :Proc ATTR Update
	a p9_attr_update.C
	 Called per processor
	 Stub HWP for FW to override attributes programmatically

	8.9 proc_chiplet_scominit : Scom inits to all chiplets (sans Quad)
	a p9_chiplet_fabric_scominit.C
	 Initfiles in procedure defined on VBU ENGD wiki
	 Apply scom overrides to all chiplets necessary to init the powerbus
	 p9.fbc.no_hp.scom.initfile
	 p9.fbc.ioe_dl.scom.initfile
	 p9.fbc.ioe_tl.scom.initfile
	 p9.fbc.ioo_dl.scom.initfile
	 p9.fbc.ioo_tl.scom.initfile

	8.10 proc_xbus_scominit : Apply scom inits to Xbus
	a p9_xbus_scominit.C
	 Each instance of bus must have unique id set for it – personalize it
	 Must set present and valid bits based on topology (Attributes indicate present and valid)

	8.11 proc_chiplet_enable_ridi : Enable RI/DI for xbus
	a p9_xbus_enable_ridi.C
	 Drop RI/DI for xbus chiplets being used
	 Any other chip wide RI/DI

	9 Step 9 Hostboot – EDI+ and Electrical O-Bus Initialization
	9.1 fabric_erepair : Restore Fabric Bus eRepair data
	a p9_io_restore_erepair.C (O, X bus target pairs)
	 Restore/preset bad lanes on electrical O and X buses from VPD (in drawer)
	 Applies powerbus repair data from module vpd (#ER keyword in VRML VWML)
	 Runtime detected fails that were written to VPD are restored here
	 NOOP for Cronus

	9.2 fabric_io_dccal : Calibrate Fabric interfaces
	a io_dccal.C (O, X bus target pairs passed in)
	 Will be called per bus target pair
	 Calibration of TX impedance, RX offset for O and X busses
	 Needs to be quiet on the bus – drivers are quiesced and driving 0s – O, X buses
	 Must be complete on ALL chips before starting O, X bus training
	 Expect to use a calculation (floating point)
	 At end of offset calibration there may be a lane that is bad
	 FW must record bad lane and write to VPD for future eRepair (handled when PRD starts)
	 Must generate error log, procedure will mark lane bad in HW (which future procedure take advantage of)

	9.3 fabric_pre_trainadv : Advanced pre training
	a p9_io_pre_trainadv.C (called on each O and X bus target pair)
	 Debug routine for IO Characterization
	 Nothing in it

	9.4 fabric_io_run_training : Run training on internal buses
	a p9_io_xbus_linktrain.C (called on each OO and X bus target pair)
	 Hostboot will run training on all intra node buses. For Nimbus this is all X buses. For Cumulus this is run by the SP in a later step
	 Wiretest, Deskew, Eye Optimization, and repair
	 Option to run extend bit patterns in optimization phase (replaces RDT)
	 Repairable fails are left for PRD to analyze and move data into VPD
	 PRD will use io_eRepair_read.C to perform this

	 Fatal bus training errors are handled by procedure, must return error and FFDC (written to VPD)
	 Expected that fatal error passes returncode back to HWPF, FW then looks up returncode and determines what to do based off of FFDC

	9.5 fabric_post_trainadv : Advanced post EI/EDI training
	a p9_io_post_trainadv.C (called on each O and X bus target pair)
	 Debug routine for IO Characterization
	 Nothing in it

	9.6 proc_smp_link_layer : Start SMP link layer
	a p9_smp_link_layer.C (called on processor chip)
	 Reads logical A/X link configuration attributes, trains the DL/TL layers of selected links
	 Set scom on both sides of the bus to trigger Data link layer training
	 DLL sends training packets, sets link up FIR bit when done
	 FIR done bit launches the Transaction Layer (TL)
	 FIR bit in nest domain to indicate training done
	 After this point the mailbox register are available to communicate
	 Xstop would prevent mailbox communication

	 Bus is NOT part of the SMP coherency
	 Only performed on trained, valid buses

	9.7 proc_fab_iovalid : Lower functional fences on local SMP
	a p9_fab_iovalid.C (chip target)
	 Reads logical A/X link config, sets iovalid for selected links
	 Only performed on trained, valid buses
	 After this point a checkstop on a slave will checkstop master
	 Reads the A/X link delays for later HWP to pick best link for coherent traffic

	9.8 host_fbc_eff_config_aggregate : Pick link(s) for coherency
	a p9_fbc_eff_config_aggregate.C (chip target)
	 Reads attributes from previous HWP and determines per-link address/data capabilities
	 Sets up attributes for build SMP

	10 Step 10 Hostboot – Activate PowerBus
	10.1 proc_build_smp : Integrate P9 Islands into SMP
	a p9_build_smp.C (vector of all chips to include in SMP)
	 Look for checkstops
	 Use the fabric concurrent maintenance operation to merge P9 PB islands into the SMP
	 Fabric config between IO/CAPI are set here – only can set once, must be known by this point in time
	 After this point the SMP is built for normal mode
	 Runs initfiles to set current/next values for full config in slaves, setup master next value
	 p9.fbc.ab_hp.scom.initfile
	 p9.fbc.cd_hp.scom.initfile

	 Trigger fabric quiesce/switch/init on the master

	10.2 host_slave_sbe_update
	 On systems that support Alt Master Processors then code will attempt to read the TOC of the Alt Master PNOR to check for connection problems. If an error is detected it will be logged, but this does not stop the IPL (except when in manufacturing mode)
	 Hostboot must update SEEPROM because the SP cannot because of secureboot. It is at this step in the IPL so it can be updated via Xscom (trusted path) on all chips in the system
	b p9_customize_image.C
	 If needed build a custom SEEPROM image for each chip in the system off of the base IPL SEEPROM image
	 This set will update all SEEPROM images in the HB “node”. All needed attributes are written from the host into the SBE image via this HWP.
	 In addition if the override section from the PNOR is not empty then it needs to be appended to the SBE image prior to customization.
	 If the SEEPROM was updated then Hostboot will request a reipl at this point

	10.3 host_set_voltages : Set correct chip voltage(s)
	 This step will apply the voltages calculated earlier in the IPL. It is done here so all chips can be programmed at one spot.
	b p9_setup_evid.C (APPLY_AVS)
	 Via the AVS bus the HWP will program always program VDN and VDD. The specific combination of AVS bus and rail select are indicated by ATTR_*_BUS_CTL (which AVS bus) and ATTR_*_BUS_SELECT (which select).
	 The VCS voltage will be programed if ATTR_VCS_BUS_CTL indicates an AVS bus (taking into account the rail select as well), but if set to I2C or SP then it is not programmed.
	 If ATTR_VCS_BUS_CTL indicates that it is programed via non AVS bus means then Hostboot then needs to use the value in ATTR_VCS_VAL to program (via direct I2C or message to FSP/BMC). The Attributes needed for these Hostboot operations (I2C bus infor...

	10.4 proc_cen_ref_clk_enable : Setup centaur ref clocks
	a p9_cen_ref_clk_enable.C (Cumulus only)
	 Enable the ref clocks to centaur

	10.5 proc_enable_osclite
	a p9_enable_osclite.C
	 Cumulus only
	 Turn off the power-pon-reset to osclite macro
	 Setup oscillator mode based on istep 0 setup
	 Check that osclite matches expected output (if not returns an error for FW to trigger reconfig)

	10.6 proc_chiplet_scominit : Scom inits to all chiplets (sans Quad)
	a p9_chiplet_scominit.C
	 Initfiles in procedure defined on VBU ENGD wiki
	 Apply scom overrides to all good chiplets (except EX and MC)
	 p9.fbc.no_hp.scom.initfile

	b p9_psi_scominit.C
	 Each instance of bus must have unique id set for it – personalize it
	 Must set present and valid bits based on topology (Attributes indicate present and valid)

	10.7 proc_abus_scominit : Apply scom inits to Abus
	a p9_abus_scominit.C
	 Each instance of bus must have unique id set for it – personalize it
	 Must set present and valid bits based on topology (Attributes indicate present and valid)

	10.8 proc_obus_scominit : Apply scom inits to Obus
	a p9_obus_scominit.C
	 Each instance of bus must have unique id set for it – personalize it
	 This is where the O to A/NVlink linkage is setup in HW

	10.9 proc_npu_scominit : Apply scom inits to NPU
	a p9_npu_scominit.C
	 Each instance of NPU bus must have unique id set for it – personalize it

	10.10 proc_pcie_scominit : Apply scom inits to PCIe chiplets
	a p9_pcie_scominit.C
	 Initfiles in procedure defined on VBU ENGD wiki
	 Perform the PCIe Phase 1 Inits 1-8
	 Sets the lane config based on MRW attributes
	 Sets the swap bits based on MRW attributes
	 Sets valid PHBs, remove from reset
	 Performs any needed overrides (should flush correctly) – this is where initfile may be used
	 Set the IOP program complete bit
	 This is where the dSMP versus PCIE is selected in the PHY Link Layer

	10.11 proc_scomoverride_chiplets : Apply sequenced scom inits
	a p9_scomoverride_chiplets.C
	 Apply any sequence driven scom overrides to chiplets – Should be NONE

	10.12 proc_chiplet_enable_ridi : Enable RI/DI chip wide
	a p9_chiplet_enable_ridi.C
	 Drop RI/DI for all chiplets being used (A, O, PCIe, DMI)
	 Any other chip wide RI/DI

	10.13 host_rng_bist : Trigger Built In Self Test for RNG
	a p9_rng_init_phase1.C
	 Trigger the Random Number Generator Built In Self Test (BIST). Results are checked later in step 16 when RNG is secured

	10.14 host_update_redundant_tpm : Update the Alt Master TPM
	 Perform hostimprint of both master/alt-master TPM/SEEPROM if needed
	 If non-functional TPM during hostimprint then fail IPL
	 Must clear both redundant TPM before updating SEEPROMs

	 When hash of HW public keys is updated in SEEPROM, must clear the software root key in TPMs
	 If imprint is done then reboot

	 Replay information from master TPM into alternate TPM
	b p9_update_security_ctrl.C
	 This HWP will set the SUL security bit so that SBE image cannot be updated
	 This will also make the SAB security bit read only
	 If a TPM is non functional, set the TDP (TPM Deconfig Protection) to prevent attack vector

	11 Step 11 Hostboot Centaur Init
	11.1 host_prd_hwreconfig : Hook to handle HW reconfig
	 This step is always called
	 Move all Centaur's inband scom back to FSI scom
	 Call PRD to allow them to rebuild model to remove non-functional Centaurs
	 Protect Centaur from SP operations during initialization
	 Set the CFP Security bit. This will prevent the SP from performing FSI operations to the Centaur while it is being initialized

	 Used for HW reconfig path. FW's strategy is to perform the reconfig on ALL functional Centaurs/MCS's in the system.
	 The following procedures must be called:
	b p9_switch_cfsim.C (proc target)
	 Call on all present processors
	 Move all Centaur’s inband scom back to FSI scom

	c p9_enable_reconfig.C (MCS, DMI, MCA/MBuf)
	d Call on all present MCS targets
	 Enables HW for reconfig loop
	 Cumulus/Centaur :
	 Attribute (ATTR_CEN_MSS_INIT_STATE) to each Centaur to track where the Reconfig loop got to:
	 Clocks on (can do fir masking) – set after step 11
	 DMI bus up (inject special bit) – set after framelock
	 Turn's on special bit that allows the MCS DMI to get errors and not get into a hang condition
	 Mask a bunch of FIRs on processor
	 Mask a bunch FIRs on centaur (HWP will check clock state)
	 Injects a fail on the DMI bus (only if DMI bus is alive)
	 Clears IO/MCS FIRs
	 Turns off special bit

	 Nimbus
	 Raise the MCU chiplet fences
	 Stop clocks
	 Scan 0 flush the MCU chiplet each and everytime through this loop
	 How do we cleanup the nest portion of the MCS?

	11.2 cen_tp_chiplet_init1 : Centaur TP chiplet init, stage #1
	a cen_tp_chiplet_init1.C (MemBuf)
	 Flush all GP registers content to default state
	 Drop fences, check VDD, start VITL clocks
	 Scan 0 PLL GPTR/BNDY/FUNC rings.

	11.3 cen_pll_initf : Program Nest PLL
	a cen_pll_initf.C
	 Apply the TP BNDY PLL ring with setpulse. This includes settings for NEST/MEM/DMI (cleanup) PLLs
	 Final frequency is known at this point – DDR is @ 1600
	 Nest freq: 2400MHz

	11.4 cen_pll_setup : Setup Nest PLL
	a cen_pll_setup.C (MemBuf)
	 Performs PLL checking
	 The memory PLL (ie DDR4) are set to the correct speeds for both DDR3 and DDR4 (1600)
	 Establish Nest PLLs (feeds TP chiplet) and MEM PLL

	11.5 cen_tp_chiplet_init2 : Centaur TP chiplet init, stage #2
	a cen_tp_chiplet_init2.C (MemBuf)
	 Scan 0 init TP unit flush
	 Start PIB/NET clock
	 Invoke Repair Loader
	 Writing FSI GP3 to switch mux
	 No repair/timing for TP chiplet (i.e. fuses).

	11.6 cen_tp_arrayinit : Centaur TP chiplet array init
	a cen_tp_arrayinit.C (MemBuf)
	 Run arrayinit on TP chiplet, when done, all arrays are initialized
	 Scan flush 0 to all rings except GPTR, Time, and Repair

	11.7 cen_tp_chiplet_init3 : Centaur TP chiplet init, stage #3
	a cen_tp_chiplet_init3.C (MemBuf)
	 Start clock on PERV region
	 Enable PIB trace mode,
	 When done, the TP chiplet can be used to init the rest of the chip. All access now go through TP chiplet

	11.8 cen_chiplet_init : Centaur chiplet init
	a cen_chiplet_init.C (MemBuf)
	 Identify good chiplets then for each good chiplet:
	 Setup multicast groups
	 Scan 0 all rings
	 If repair ring is present, kick off the fuse repair algorithm (load repair ring)
	 DTS calibration via repair loader. Repairs are loaded from OTPROM fuse .
	 Pulls data from OTPROM and puts into repair ring (series of Scoms)
	 No actual ring content from VPD

	11.9 cen_arrayinit : Centaur chiplet array init
	a cen_arrayinit.C (MemBuf)
	 Run arrayinit on all good chiplets, except for TP chiplet. After this, all chiplet arrays are initialized
	 Scan flush 0 to all rings, except GPTR, Time, and Repair.
	 If LBIST was to be run, it should be run after this step, prior to the next step

	11.10 cen_initf : Centaur Scan overrides
	a cen_initf.C (MemBuf)
	 Perform any scan overrides for Centaur
	 May not have any config dependent scans

	 Does not include the pervasive region

	11.11 cen_do_manual_inits : Manual Centaur Scans
	a cen_do_manual_inits.C (MemBuf)
	 Currently empty (Thermal Init has been moved to cen_initf.C. Disabling cache has been moved to repair loader)
	 Perform any non-initfile scan overrides for Centaur
	 Should be avoid, place holder for workaround only.

	11.12 cen_startclocks : Start Centaur Nest/MEM clocks
	a cen_startclocks.C (MemBuf)
	 Starts Centaurs’ NEST and MEM chiplet clocks. This includes the L4, DMI, DDR, and MBA clocks.
	 Deassert the memrst_b GP bit to activate the reset_OE signal
	 Enable driver and receivers (set appropriate GP bits)
	 Lower RI and DI inhibits

	11.13 cen_scominits : Perform Centaur SCOM inits
	a cen_scominits.C (MemBuf)
	 Currently empty.
	 Any needed scom initializations – no config dependent settings allowed

	12 Step 12 Hostboot – DMI Training
	12.1 mss_getecid : Read out ECID of all Centaurs
	a p9c_mss_cen_getecid.C (Centaur)
	 Sets ATTR_CEN_MSS_INIT_STATE to “clocks on”
	 Read the ECID for each centaur and store away for callouts.
	 Decode ECID and set other ECID related attributes for later operations on Centaurs

	12.2 dmi_attr_update : Update DMI related attributes
	a p9_io_dmi_attr_update.C (void)
	 Currently empty.
	 Attribute targets: MCS/MemBuf
	 Stub HWP for FW to override attributes programmatically.

	12.3 proc_dmi_scom_init : DMI Scom setup on Cumulus DMI
	a p9_io_dmi_scominit.C (DMI)
	 Perform scom inits for DMIs on the processor.

	12.4 cen_dmi_scominit : DMI Scom setup on Centaur
	a p9_io_cen_scominit.C (MemBuf)
	 Perform scom inits for DMI on Centaur.

	12.5 dmi_erepair : Restore EDI Bus eRepair data
	 Bad lanes are preset on the receive side.
	b p9_io_dmi_restore_erepair.C (DMI, vector of RX bad lanes, vector of TX bad lanes)
	 Procedure that perform repairs on DMI bus (P9 side)

	c p9_io_cen_restore_erepair.C (centaur, vector of RX bad lanes, vector of TX bad lanes)
	 Applies centaur data from planar prom (planar centaurs), centaur dimm
	 Runtime detected fails that were written to VPD are restored here

	12.6 dmi_io_dccal : Calibrate DMI interfaces
	a p9_io_dmi_dccal.C (DMI target)
	 Calibration of TX impedance, RX offset for memory buses
	 Needed for EDI buses on p9

	 Needs to be quiet on the bus – drivers are quiesced and driving 0s – EDI buses
	 Must be complete on ALL Centaurs for this PgP island before starting next EDI training (host based sync point)
	 At end of offset calibration there may be a lane that is bad
	 FW must record bad lane and write to VPD for future eRepair (handled when PRD starts)

	b p9_io_cen_dccal.C (Centaur target)
	 Calibration of TX impedance, RX offset for memory buses
	 Needed for EDI buses on Centaur

	 Needs to be quiet on the bus – drivers are quiesced and driving 0s – EDI buses
	 Must be complete on ALL Centaurs for this PgP island before starting next EDI training (host based sync point)
	 At end of offset calibration there may be a lane that is bad
	 FW must record bad lane and write to VPD for future eRepair (handled when PRD starts)

	12.7 dmi_pre_trainadv : Advanced pre-DMI training
	a p9_io_dmi_pre_trainadv.C (DMI/ Centaur pair)
	 Currently empty
	 Debug routine for IO Characterization

	12.8 dmi_io_run_training : Run training on MC buses
	a p9_io_dmi_linktrain.C (DMI/Centaur pair)
	 Train internal DMI bus
	 Wiretest, Deskew, Eye Optimization, and repair
	 Option to run extend bit patterns in Optimization phase (replace RDT)
	 Wiretest fails are left for PRD to analyze and store data into VPD
	 Fatal bus training errors are handled by HWP and written to VPD

	12.9 dmi_post_trainadv
	a p9_io_dmi_post_trainadv.C (DMI/Centaur pair)
	 Currently empty
	 Debug routine for IO Characterization

	12.10 proc_cen_framelock : Initialize EDI Frame
	a p9_cen_framelock.C (DMI/Centuar pair)
	 Raise IO Valid – Allow link init traffic (scrambled patterns) on EDI bus
	 P9 Centaur initial frame lock
	 Starts listening automatically after IOValid raised
	 Started on the P9 logic
	 If a bit error (CRC) in the middle need to re-FrameLock

	 Round trip delay calculation
	 Host code can trigger and check

	 When done, Inband accesses are now viable
	 Hardware xmitting idle frames
	 Enabled CRC checking
	 EDI is at runtime state
	 If successful, set ATTR_MSS_INIT_STATE to DMI active on Centaur

	12.11 host_startprd_dmi : Load PRD for DMI domain
	 Currently empty

	12.12 host_attnlisten_memb : Start attention poll for membuf
	 Currently empty
	 Expand Host PRD to include memory buffers (as well as powerbus)
	 Enable OCC to collect FIR data on all memory buffers if master processor checkstops

	12.13 cen_set_inband_addr : Set the Inband base addresses
	a p9c_set_inband_addr.C (proc Chip Target)
	 Any initializations to setup Inband access path.
	 MI – Scom base address for each contained DMI bus
	 Centaur – any other settings

	 ALL ACCESES from this point on in are Inband access for Centaur unless otherwise specified

	13 Step 13 Hostboot – DRAM Training
	13.1 host_disable_memvolt : Disable VDDR on Warm Reboots
	a Power off dram – VDDR and vPP. Must drop VDDR first, then VPP.
	 Turned off here to handle reconfig loop for dimm failure
	 Only really issued if VDDR/VPP is on

	13.2 mem_pll_reset : Reset PLL for MCAs in async
	a p9_mem_pll_reset.C (proc chip)
	 This step is a no-op on cumulus as the centaur is already has its PLLs setup in step 11
	 This step is a no-op if memory is running in synchronous mode since the MCAs are using the nest PLL, HWP detect and exits
	 If in async mode then this HWP will put the PLL into bypass, reset mode
	 Disable listen_to_sync for MEM chiplet, whenever MEM is not in sync to NEST

	13.3 mem_pll_initf : PLL Initfile for MBAs
	a p9_mem_pll_initf.C (proc chip)
	 This step is a no-op on cumulus
	 This step is a no-op if memory is running in synchronous mode since the MCAs are using the nest PLL, HWP detect and exits
	 MCA PLL setup –
	 Note that Hostboot doesn't support twiddling bits, Looks up which “bucket” (ring) to use from attributes set during mss_freq
	 Then request the SBE to scan ringId with setPulse
	 SBE needs to support 5 RS4 images
	 Data is stored as a ring image in the SBE that is frequency specific
	 5 different frequencies (1866, 2133, 2400, 2667, EXP)

	13.4 mem_pll_setup : Setup PLL for MBAs
	a p9_mem_pll_setup.C (proc chip)
	 This step is a no-op on cumulus
	 This step is a no-op if memory is running in synchronous mode since the MCAs are using the nest PLL, HWP detect and exits
	 MCA PLL setup
	 Moved PLL out of bypass(just DDR)

	 Performs PLL checking

	13.5 proc_mcs_skewadjust : Update clock mesh deskew
	a This step is a no-op

	13.6 mem_startclocks : Start clocks on MBA/MCAs
	a p9_mem_startclocks.C (proc chip)
	 This step is a no-op on cumulus
	 This step is a no-op if memory is running in synchronous mode since the MCAs are using the nest PLL, HWP detect and exits
	 Drop fences and tholds on MBA/MCAs to start the functional clocks

	13.7 host_enable_memvolt : Enable the VDDR3 Voltage Rail
	a Bring power to dram rails VDDR and VPP. VPP must be enabled prior to VDDR
	 BMC based systems – this is a no-op
	 Send message to FSP to turn on voltages
	 Message must have accounted for voltage/current tweaking based on number of plugged dimms (Dynamic VID)
	 Pulled from HWPF attributes per voltage rail
	 FSP
	 Trigger voltage ramp to DPSS via I2C
	 Wait for min 200 ms ramp, must be stable 500us after DPSS claims Pgood

	 Wait for ack message from FSP – confirms that voltage is on and ready

	13.8 mss_scominit : Perform scom inits to MC and PHY
	a p9_mss_scominit.C (mcbist) -- Nimbus
	b p9c_mss_scominit.C (membuf) -- Cumulus
	 HW units included are MCBIST, MCA/PHY (Nimbus) or membuf, L4, MBAs (Cumulus)
	 Does not use initfiles, coded into HWP
	 Uses attributes from previous step
	 Pushes memory extent configuration into the MBA/MCAs
	 Addresses are pulled from attributes, set previously by mss_eff_config
	 MBA/MCAs always start at address 0, address map controlled by proc_setup_bars below

	13.9 mss_ddr_phy_reset : Soft reset of DDR PHY macros
	a p9_mss_ddr_phy_reset.C (mcbist) -- Nimbus
	b p9c_mss_ddr_phy_reset.C (mba) -- Cumulus
	 Lock DDR DLLs
	 Already configured DDR DLL in scaninit

	 Sends Soft DDR Phy reset
	 Kick off internal ZQ Cal
	 Perform any config that wasn't scanned in (TBD)
	 Nothing known here

	13.10 mss_draminit : Dram initialize
	a p9_mss_draminit.C (mcbist) -- Nimbus
	b p9c_mss_draminit.C (mba)-- Cumulus
	 RCD parity errors are checked before logging other errors – HWP will exit with RC
	 De-assert dram reset
	 De-assert bit (Scom) that forces mem clock low – dram clocks start
	 Raise CKE
	 Load RCD Control Words
	 Load MRS – for each dimm pair/ports/rank
	 ODT Values
	 MR0-MR6

	c Check for attentions (even if HWP has error)
	 FW
	 Call PRD
	 If finds and error, commit HWP RC as informational
	 Else commit HWP RC as normal

	 Trigger reconfig loop is anything was deconfigured

	13.11 mss_draminit_training : Dram training
	a p9_mss_draminit_training.C (mcbist)-- Nimbus
	b p9c_mss_draminit_training.C (mba) -- Cumulus
	 Prior to running this procedure will apply known DQ bad bits to prevent them from participating in training. This information is extracted from the bad DQ attribute and applied to Hardware
	 Marks the calibration fail array

	 External ZQ Calibration
	 Execute initial dram calibration (7 step – handled by HW)
	 This procedure will update the bad DQ attribute for each dimm based on its findings

	13.12 mss_draminit_trainadv : Advanced dram training
	a p9_mss_draminit_training_advanced.C (mcbist target) -- Nimbus
	b p9c_mss_draminit_training_advanced.C (mba target) -- Cumulus
	 Prior to running this procedure will apply known DQ bad bits to prevent them from participating in training. This information is extracted from the bad DQ attribute and applied to Hardware
	 Marks the MCBist mask

	 This step will contain any algorithms to improve data eye post training
	 At the moment this is a no-op for P9 Nimbus
	 For P9 Cumulus the VREF calibration will be done here

	 Also will contain some characterization (mfg only) tests
	 There will be a FAPI interface for dumping characterization data, platform implementation is TBD (dump to console, memory, PNOR)

	 This procedure will update the bad DQ attribute for each dimm based on its findings

	13.13 mss_draminit_mc : Hand off control to MC
	a p9_mss_draminit_mc.C (mcbist) -- Nimbus
	b p9c_mss_draminit_mc.C (membuf) -- Cumulus
	 P9 Cumulus -- Set IML complete bit in centaur
	 Start main refresh engine
	 Refresh, periodic calibration, power controls
	 Turn on ECC checking on memory accesses
	 Note at this point memory FIRs can be monitored by PRD

	14 Step 14 Hostboot – DRAM Initialization
	14.1 mss_memdiag : Mainstore Pattern Testing
	 The following step documents the generalities of this step
	 In FW PRD will control mem diags via interrupts. It doesn't use mss_memdiags.C directly but the HWP subroutines
	 In cronus it will execute mss_memdiags.C directly

	b p9_mss_memdiags.C (mcbist)--Nimbus
	c p9_mss_memdiags.C (mba) -- Cumulus
	 Prior to running this procedure will apply known DQ bad bits to prevent them from participating in training. This information is extracted from the bad DQ attribute and applied to Hardware
	 Nimbus uses the mcbist engine
	 Still supports superfast read/init/scrub

	 Cumulus/Centaur uses the scrub engine
	 Modes:
	 Minimal: Write-only with 0's
	 Standard: Write of 0’s followed by a Read
	 Medium: Write-followed by Read, 4 patterns, last of 0's
	 Max: Write-followed by Read, 9 patterns, last of 0's

	 Run on the host
	 This procedure will update the bad DQ attribute for each dimm based on its findings
	 At the end of this procedure sets FIR masks correctly for runtime analysis
	 All subsequent repairs are considered runtime issues

	14.2 mss_thermal_init : Initialize the thermal sensor
	a mss_thermal_init.C – Cumulus/Centaur only
	 Called on Centaur target,
	 NOTE: On Nimbus OCC has to directly read the thermals via the I2C Masters (shared with Host code)
	 Use lock HW and FW algorithm between OCC, Hostboot/OPAL/PHYP

	 Setup and configure I2C thermal sensor on dimms
	 Configure and start centaur thermal cache
	 Configure and start the OCC cache
	 Disable safe mode throttles
	 Will cause memory to go to runtime emergency throttles
	 When OCC starts polling OCC cache will revert to runtime settings

	b p9_throttle_sync.C
	 Must be issued on all P9s, can only be issued after ALL centaurs on given p9 have thermal init complete (can also loop at the end of all centaurs)
	 Same HWP interface for both Nimbus and Cumulus, input target is TARGET_TYPE_PROC_CHIP; HWP is to figure out if target is a Nimbus (MCS) or Cumulus (MI) internally.
	 Triggers sync command from MCS to actually load the throttle values into the MBA/MCA

	14.3 proc_pcie_config : Configure the PHBs
	a p9_pcie_config.C
	 Called on all chips, target is per PHB
	 Procedural based – will call initfile if need be
	 Covers PCIe Phase 2 Inits 18-30
	 Setup config regs
	 Command and Data credits
	 Clear FIRs (if needed)
	 Unmask PCIe FIRs

	14.4 mss_power_cleanup : Clean up any MCS/Centaurs
	a p9_mss_power_cleanup.C (mcbist) --Nimbus
	b p9c_mss_power_cleanup.C (centaur, mbas) -- Cumulus
	 NO-OP for Nimbus
	 Called on all present Centaurs and MBAs for Cumulus
	 Called on all present MCBIST for Nimbus
	 Cleans up and powers down unused cenaturs/mcs/DMI
	 Hostboot will start to flow out to memory in the next step
	 Any memory errors after this point are considered “runtime errors”
	 All errors from this point on have to be a no deconfig and gard OR terminate the IPL (and let the SP do the reconfig)
	 If user attempts to do a deconfig outside the loop – then attempt to fail

	14.5 proc_setup_bars : Setup Memory BARs
	a p9_mss_setup_bars.C (proc chip) -- Nimbus
	b p9c_mss_setup_bars.C (proc chip) -- Cumulus
	 Same HWP interface for both Nimbus and Cumulus, input target is TARGET_TYPE_PROC_CHIP; HWP is to figure out if target is a Nimbus (MCS) or Cumulus (MI) internally.
	 Prior to setting the memory bars on each processor chip, this procedure needs to set the centaur security protection bit –
	 TCM_CHIP_PROTECTION_EN_DC is SCOM Addr 0x03030000
	 TCN_CHIP_PROTECTION_EN_DC is SCOM Addr 0x02030000
	 Both must be set to protect Nest and Mem domains

	 Based on system memory map
	 Each MCS has its mirroring and non mirrored BARs
	 Set the correct checkerboard configs. Note that chip flushes to checkerboard
	 need to disable memory bar on slave otherwise base flush values will ack all memory accesses

	c p9_setup_bars.C
	 Sets up Powerbus/MCD, L3 BARs on running core
	 Other cores are setup via winkle images

	 Setup dSMP and PCIe Bars
	 Setup PCIe outbound BARS (doing stores/loads from host core)
	 Addresses that PCIE responds to on powerbus (PCI init 1-7)

	 Informing PCIe of the memory map (inbound)
	 PCI Init 8-15

	 Set up Powerbus Epsilon settings
	 Code is still running out of L3 cache
	 Use this procedure to setup runtime epsilon values
	 Must be done before memory is viable

	14.6 proc_htm_setup : Setup HTM allocations
	a p9_htm_setup. C
	 Setup any BARs and inits to enable hardware in memory trace
	 TBD – where does CHTM go? DD2.0 feature.

	14.7 proc_exit_cache_contained : Execution from memory
	a p9_exit_cache_contained. C
	 Allow execution to flow out to memory
	 Data rolls out to memory

	14.8 host_mpipl_service : Perform MPIPL tasks
	 This is a no-op for warm/cold IPLs. See description in REF LOC for full details

	15 Step 15 Hostboot – Build STOP Images
	15.1 proc_set_pba_homer_bar :Set HOMER location in OCC
	a p9_pm_set_homer_bar.C(uint64_t p_homer_region, …)
	 Called for each processor chip.
	 Parameter: Physical address within HOMER image where OCC code will be loaded; STOPGPE image is this value + 1MB (not a pointer address, it cannot be dereferenced)
	 NOTE: HOMER is a 4MB region that is allocated to start 1MB before the value passed to this procedure!! This done to allow the OCC boot from the 0 offset of the PBA BAR0 value (which has a granularity of 1MB while the Core Self-Store portion must ...

	 Parameters: PBA BAR number, OCC complex HOMER image size(3MB), STOPGPE image location (default: mem; others: L3)
	 p9_pm_pba_bar_config.C (called as subroutine)
	 Set BAR address

	15.2 host_build_stop_image : Build runtime STOP images
	 Pull Reference Image from PNOR
	 Run through secure boot algorithm

	b p9_hcode_image_build.C (void* reference_image, void* v_homer_region, enum image_bld) FAPI2::ReturnCode
	 HOMER – Hardware Offload Microcode Engine Region
	 Called for each processor chip.
	 Parameter: Pointer to Reference image.
	 Parameter: Pointer to Output HOMER location (virtual address). The procedure places the respective images (eg SGPE, CME) into HOMER at the appropriate offsets
	 This is any Hostboot specified mainstore location (does not have to be attached to the processor being STOPped).
	 When PHYP is loaded, the HOMER region will be trampled, PHYP will call p9_hcode_image_build.C to recreate them in a PHYP specified location in mainstore (each image will probably be placed in mainstore local to its associated processor for performan...
	 OPAL keeps same location, requires that it is at the top of memory

	 Parameter: image_bld – which images to update – either PSTATE, STOP, or both
	 Fused vs Normal
	 System ATTR defines, TBD on mechanism
	 Greg to work out details, likely two different rings in reference image or some RS4 merge capability

	 Customize image with data for each core
	 Scan rings – Time, GPTR, Repair
	 Tweak to make runtime acceptable – expect to be only scom registers

	 Write image to the appropriate offset based on the output pointer parameter

	c Cronus will load the images via putmemproc
	d p9_stop_gen_cpu_reg(void* v_homer_region, …)
	 API that updates a STOP image with various core state registers (MSR, HRMOR, LPCR)
	 The core registers are set to these values on STOP 15 exit

	 This will only be called by Hostboot. Cronus will not use it. Hence separate from p9_hcode_image_build.C .

	15.3 host_start_stop_engine : Initialize the STOPGPE engine
	a p9_pm_stopgpe_init(chip_target, ENUM:PM_INIT) FAPI2::ReturnCodeCalled for each processor chip
	 Parameters: PM_INIT (to perform initialization vs PM_RESET that is used during the OCC reset flow)
	 Starts the Stop GPE engine
	 Bootloader runs from HOMER OCC offset + 1MB (2MB from HOMER base)
	 Copies STOP image from HOMER to OCC SRAM
	 Restarts from OCC SRAM

	 PK initialization -> STOP Thread(s) started
	 Sets flag in OCC Flag reg that initialization is complete for HWP to poll on

	 Loop over all functional cache chiplets
	 p9_pfet_init.C (cache target, PM_INIT) (called as a subroutine)
	 Initialize PFET controller parameters (delays
	 Note: this the default of the PFETs is OFF and this action will have them remain off.

	 Loop over all functional core chiplets
	 p9_pfet_init.C (core target, PM_INIT) (called as a subroutine)
	 Initialize PFET controller parameters (delays)
	 Note: this the default of the PFETs is OFF and this action will have them remain off.

	 NOTE: CME initialization is performed upon STOP exit of the cache chiplet by the STOPGPE so as to allow the wake up of any core within a Quad. This is NOT done via HWPs.

	15.4 host_establish_ex_chiplet : Select Hostboot core
	a p9_update_ec_eq_state.C ()
	 Need to update multicast groups for all cores beyond the master core
	 need to add each EC multicast group 0, 1
	 need to add each EQ to multicast group 0

	 Use the functional state to find all good cores
	 Write all EQ/Core good mask into OCC complex
	 This is the “master record“ of the enabled cores/quad in the system for runtime

	16 Step 16 Hostboot – Core Activate
	16.1 host_activate_master : Activate master core
	 Hostboot sends a message to the SBE to enter the deadman loop for exit STOP15 (passes a parameter to indicate the wait time)
	 Hostboot will block and wait for PSU SBE interface return
	 Hostboot command will trigger the SBE to run the following HWP in its Chip OP thread (this will block SP chipOp until it either passes or triggers the checkstop)
	 SBE Deadman timer starts upon receiving the ChipOp (SBE FW handling of deadman message)
	 SBE starts timer based on ChipOp parameters
	 SBE FW will repeatedly call the following HWP to check for STOP 15 state
	 p9_sbe_check_master_stop15.C (passed in time(from PIBMEM or via Cronus)
	 Monitor master STOP 15. It can return three different values:
	 Checks for STOP 15 entered (completely entered)
	 STOP 15 reached (success) – FAPI2 SUCCESS
	 STOP 15 not reached, but no error HW state (still in progress) -- STOP15_PENDING
	 STOP 15 not reached, but HW error (failure) – any other FAPI2 RC
	 The RC and FFDC from this HWP needs to be saved by the SBE into async ChipOp FFDC space
	 SBE will set an “async FFDC” bit in the SBE status register. When the SP recognizes that the master STOP cycle failed, it can then request the “async FFDC”
	 On success SBE FW will trigger STOP 15 exit on thread 0 on the master core using . the PSU Interrupt (Separate bit in PSU doorbell)
	 In addition p9_block_wakeup_intr.C –clear must also be called to allow the core to actually receive the interrupt (order between the unblock and interrupt generation doesn’t matter)

	 Note that even after triggering Hostboot, SBE must continue deadman timer to check that Hostboot recovers from the master STOP15 cycle. If Hostboot does not stop deadman timer in X seconds (passed in as parameter), SBE must checkstop system. The ...
	 On failure the SBE FW will trigger a checkstop
	 On pending if the timer has expired then trigger a checkstop.

	 p9_trigger_stop15 – Hostboot path (Hostboot running)
	 Hostboot function, not a HW Procedure
	 p9_block_wakeup_intr.C -set
	 This will prevent all interrupts/wake up sources to the core, thus allowing the next step (STOP 15) to work

	 Hostboot sets up interrupt presenter so OCC ISC port in PSIHB to interrupt master core thread 0
	 If we are in fused – there always be even/odd pair – SBE should have chosen the EVEN EC as the master – responsibility for HB to enforce config
	 Thus HB will always interrupt the same thread 0 PIR in fused/normal mode

	 Hostboot sets up the stop exit LPCR, HRMOR, MSR values in HOMER based on PIR
	 If in fused mode need to set SPR values into 0,2,4,6 if on even EC (or 1,3,5,7 if on odd EC)

	 Issue system call to cause all threads to enter STOP 15. Core will then enter STOP 15 state
	 Clear LPCR (cover not entering due to external interrupts)
	 Write PSSCR with Level = 15,
	 Issue stop instruction typ

	 p9_trigger_stop15_exit – Cronus path only (Hostboot not running)
	 Since Hostboot is not running (cores are all in STOP 15 by default) this procedure will force all cores to exit STOP 15
	 Greg to think about state of the cores after step 4-5
	 This procedure is a NO-OP when the real SBE is executing. It is hook to allow the Cronus to trigger the STOP 15 exit – ie resume execution of the STOP15 flow

	 Hostboot sends a message to the SBE to exit the deadman loop for exit STOP15
	 Hostboot runs when active, otherwise Cronus will have to execute
	 Stops the deadman timer

	 Hostboot must issue its own IPIs to threads 1-3 (normal) or 1-7 (fused)

	16.2 host_activate_slave_cores : Activate slave cores
	 Hostboot active:
	 Setup stack space for all slave core threads –
	 Wake up all threads on all cores via IPI commands
	 Cores are sitting in a STOP15 state (flush that way)
	 Issue IPI to all slave threads/cores to force winkle exit. Will start executing at SRESET vector (0x100). Bring them into Hostboot collective

	 Enable OCC to collect FIR data on all cores on checkstop
	 If the slave cores fail to report call p9_dump_stop_info.C to collect FFDC

	 Hostboot not running:
	 Cores come alive and into maintenance mode (LPCR not set)
	 p9_activate_stop15_cores.C – Cronus path only (Hostboot not running)
	 Called on a core target
	 SP/Cronus issue IPIs to all cores/threads in system except for those on master core

	16.3 host_secure_rng : Secure the random number
	a p9_rng_init_phase2.C
	 This HWP will check the result of the Random number generator (RNG) diagnostics
	 It will also set the RNL security bit to prevent the RNG from being reprogramed via Xscom by the hypervisor

	16.4 mss_scrub : Start background scrub
	a p9_mss_scrub.C (mcbist) – Nimbus
	b p9c_mss_scrub.C(mba) -- Cumulus
	 Note that this is not executed directly by Hostboot (instead triggered by PRD), Cronus will execute HWP directly
	 Start background scrubbing in a continous 12h scrub cycle
	 Currently Hostboot will not wait (block) before flowing out to memory
	 The completion of the scrub commands must be handled by Host based PRD
	 HostPRD will not be called after this point (not called for this step)

	16.5 host_load_io_ppe : Load various IO PPEs on each chip
	a p9_io_obus_image_build.C(obus pervasive chiplet target, pointer to HCODE ref image)
	 For each functional obus load the Nvlink image into the PPE SRAM (32KB image)
	 Sequence of scoms
	 Can load regardless of Nvlink/OpenCAPI. Will sit “idle” until triggered by NVLink DD
	 No planned usage of image for OpenCAPI

	 This may be done in parallel for all o/x bus units for a performance optimization
	 After the image is loaded this HWP will start the PPE and check that it is running

	b p9_io_xbus_image_build.C(xbus pervasive chiplet target, pointer to HCODE ref image)
	 For each functional xbus chiplet load an image into the PPE SRAM (64KB image)
	 Sequence of scoms
	 No planned usage for product, lab usage only

	 This may be done in parallel for all o/x bus units for a performance optimization
	 After the image is loaded this HWP will start the PPE and check that it is running

	16.6 host_ipl_complete : Notify SP drawer ipl complete
	 Stop hostPRD (in anticipation that HBRT will take over PRD responsibilities)
	b Sends a message to SP that drawer IPL is complete
	 Pushes down all attributes
	 Hostboot enters a “quiesced” state
	 Setup any data structures/locks for potential drawer merge
	 Sends asynchronous trigger message to the SP indicating that this step is done on this drawer and SP should proceed with the IPL. This message is not sent in istep mode
	 At this point the SP takes over the IPL

	17 Step 17 SP – Init PSI
	17.1
	
	
	

	
	

	17.2
	
	b
	
	
	
	

	17.3
	a
	
	
	
	
	
	

	17.4
	
	
	
	
	b
	
	
	
	

	18 Step 18 Establish System SMP & TOD
	18.1
	a

	18.2
	a

	18.3
	a

	18.4
	
	
	
	

	18.5
	a

	18.6
	a

	18.7
	
	

	18.8
	a

	18.9
	a

	18.10
	
	

	18.11 proc_tod_setup
	 On FSP Based systems this is run on the FSP, BMC based systems this is run in Hostboot
	 FW owns algorithm of TOD topology, HWP pushes values into HW
	b p9_tod_setup.C
	 FW passes in a topology tree, which TOD oscillator to use, and primary/secondary topology
	 HWP determines delay values from attributes (MRW)
	 HWP programs HW
	 HWP outputs register values needed for PHYP and PRD analysis

	18.12 proc_tod_init
	 On FSP Based systems this is run on the FSP, BMC based systems this is run in Hostboot
	 Performed to init the TOD network. Done during the FW IPL due to AVPs, note that it will be done again by PHYP when they start
	b p9_tod_init.C
	 Setup EX chiplet TOD

	c

	18.13
	
	

	18.14
	
	

	18.15
	
	

	19 Step 19 SP – Prepare for Host
	19.1
	a
	
	
	

	
	
	

	20 Step 20 Hostboot – Load Payload
	20.1 host_load_payload : Load payload
	a
	 build_host_data : Build the host data areas
	 This step builds the HDAT data areas from attributes, VPD, etc

	 Load payload. This can either be directly from PNOR (controlled by attribute) or via the SP
	 PNOR path – just loads what is in payload section on flash
	 SP path
	 When the Host sent the complete IPL message for host_ipl_complete part of the payload is the address to load PHYP at (along with a size)
	 For initial BU (non secure mode) PHYP will be loaded via raw DMAs
	 For secureboot PHYP must be loaded via TCEs
	 Payload will be placed in memory based on Hostboot attributes
	 Base address is defined by ATTR_PAYLOAD_BASE When Payload is started this is the HRMOR
	 Starting address is defined by ATTR_PAYLOAD_ENTRY
	 HDAT is placed at well known address off of the image start address
	 All addresses must be security checked by Hostboot before starting payload
	 Hostboot then performs verification on the payload

	20.2
	
	
	
	

	21 Step 21 Hostboot – Start Payload
	21.1 host_runtime_setup
	 Note that this step is only issued to master HB instance
	 Take down any/all TCE setup
	 Loop through attributes and write them to predefined memory area inside of the HDAT structures
	 Note: HB master issues IPC to HB slaves for them to update their sections

	 Append the TPM log to HDAT structures
	 Note: HB master issues IPC to HB slaves for them to update their sections

	 In AVP mode Hostboot will load the OCC and start it here. If the load/start fails then HB will send a errorlog to the SP and the SP will terminate the IPL
	 OCC must monitor for the broadcast scom read (OR) of EX scratch register 7 for the removal of the payload started signature before using the FSI2Host mailbox for ATTN traffic. Note that OCCs on non master chips will never have to wait (as Hostboot...

	21.2 host_verify_hdat
	 Only issued to master HB instance
	 If needed IPC to slaves to perform their tasks

	 Secureboot verification of PHYP/AVP image load

	21.3 host_start_payload
	 Prior to starting shutdown sequence Hostboot must write hostboot (ASCII) to scratch register 7 on the master core. All other cores on the master chip must be written to same value or 0s. This value will be polled by the SP in the next step to ens...
	 Hostboot enters shutdown sequence
	 Quiesce mailbox and all DMAs
	 Flush data to PNOR
	 Disable interrupts
	 Send sync message to SP (or respond to istep)
	 Enter Kernel
	 Prepare to jump to payload – at this point hostboot must not TI
	 Clear scratch register 7 on master core

	 Payload is started by
	 switching HRMOR to desired address and jumping to entry point
	 Note that master thread must be the last one to jump
	 payload cannot start until all threads have been transitionedFor multi-node systems the HB master does the following:
	 Issue slave node shutdown request via IPC
	 HB master polls the “Hostboot done scratch reg” for all slave nodes to enter payload
	 HB Master issues own shutdown

	 No Hostboot code is reused, only mechanism is data passed in HDAT areas. Hostboot runtime is a separate binary image

	21.4
	a
	
	
	
	
	
	
	
	
	

	
	

	21.5
	a
	
	
	

	21.6
	a
	
	
	
	4 Host Services

	22 Enable STOP15
	22.1 host_build_winkle : Build runtime winkle images
	 Pull Reference Image from SP or PNOR
	 Run through secure boot algorithm

	b P9_hcd_image_build.C
	 Called for each processor chip.
	 Parameter: Pointer to Reference image.
	 Parameter: Pointer to Output HOMER location. The procedure places the respective images (eg SGPE, CME) into HOMER at the appropriate offsets.
	 This is any Hostboot specified mainstore location (does not have to be attached to the processor being STOPed

	 When PHYP is loaded, the HOMER will be trampled, PHYP will call p9_hcd_image_build to recreate them in a PHYP specified location in mainstore (each image will probably be placed in mainstore local to its associated processor for performance).
	 Customize image with data for each core
	 Scan rings – Time, GPTR, Repair
	 Tweak to make runtime acceptable – expect to be only scom registers

	 Write image to output pointer parameter

	22.2 proc_set_homer_bar : Tell OCC complex HOMER loc
	a p9_set_homer_bar.C
	 Called for each processor chip.
	 Parameter: Physical address within HOMER image where OCC code will be loaded; STOPGPE image is this value + 1MB (not a pointer address, it cannot be dereferenced)
	 NOTE: HOMER is a 4MB region that is allocated to start 1MB before the value passed to this procedure!! This done to allow the OCC boot from the 0 offset of the PBA BAR0 value (which has a granularity of 1MB while the Core Self-Store portion must ...

	 Parameters: PBA BAR number, OCC Complex HOMERimage size, STOPGEimage location (default: mem; others: L3, SRAM)

	 p9_pm_pba_bar_config.C (called as subroutine)
	 Set BAR address

	22.3 p9_stop_gpe_init -init : Initialize the STOPGPE
	a p9_pm_stopgpe_init.C chip_target, ENUM:PM_INIT) -> FAPI2::ReturnCode
	 Called for each processor chip
	 Parameters: PM_INIT (to perform initialization vs PM_RESET that is used during the OCC reset flow)
	 Bootloader runs from HOMER OCC offset + 1MB (2MB from HOMER base)
	 Copies STOP image from HOMER to OCC SRAM
	 Restarts from OCC SRAM
	 PK initialization -> STOP Thread(s) started

	 Sets flag in OCC Flag reg that initialization is complete for HWP to poll on
	 Loop over all functional cache chiplets
	 p9_pm_pfet_init.C (cache target, PM_INIT) (called as a subroutine)
	 Initialize PFET controller parameters (delays)

	 Loop over all functional core chiplets
	 p9_pm_pfet_init.C (core target, PM_INIT) (called as a subroutine)
	 Initialize PFET controller parameters (delays)

	 NOTE: CME initialization is performed upon STOP exit of the cache chiplet by the STOPGPE as to allow the wake up of any core within a Quad. This is NOT done via HWPs.
	 p9_stop_gen_cpu_reg() will be called by PHYP prior to stopping any core
	 API that updates a STOP image with various chip state registers (MSR, HRMOR, LPCR)
	 The chip registers are set to these values on STOP exit
	 This will only be called directly by PHYP at their discretion. Hence separate from p9_hcd_image_build.

	23 Reset and Initialize OCC
	23.1 Setup OCC bars : Establish legal addressing
	a p9_pm_pba_bar_config.C chiptarget, address
	 Address dictated by PHYP
	 Called once for each of 4 BARs
	 Place image in EM Nodal Region at offset 0

	23.2 power_management_reset : Reset Power Management
	a p9_pm_init.C – reset, chiptarget
	 p9_pm_firinit & i_chip_target, ENUM:PM_RESET : Save the current FIR mask setting for later restoration and then set all masks to keep errors from occurring during the reset and initialization
	 p9_pm_ppm_firinit.C &i_chip_target, ENUM: RESET
	 For all configured EC chiplets, save and set all FIR Masks
	 For all configured EQ chiplets, save and set all FIR Masks

	 p9_pm_occ_firinit.C &i_chip_target, ENUM: RESET
	 save and set all FIR Masks

	 p9_pm_pba_firinit.C &i_chip_target ENUM: RESET
	 save and set all FIR Masks

	 p9_pm_occ_control.C chiptarget, ENUM:OCC_HALT
	 OCC PPC405 is halted to allow for a clean stop
	 Will cause HW heartbeats to cease and HW will enter safe mode (quiese pStateGPE) – expect to take less than 10 ms

	 p9_pm_occ_control.C *chiptarget, ENUM:OCC_STOP
	 OCC PPC405 put into reset

	 For all configured cores, p9_cpu_special_wakeup.C *ectarget, ENUM:ENABLE –entity ENUM:OCC
	 Not used by PHYP – custom procedure used
	 Uses the OCC special wake-up bit.
	 Doesn't collide with FSP/PHYP bits.
	 Takes the SGPE, CME, OCI and PBA out of the equation
	 Take PPM PFET controller out of the equation

	 Poll for completion.
	 If timeout, indicates that restart of OCC is to not occur via fapi::ReturnCode
	 RC_PROCPM_SPC_WAKEUP_TIMEOUT
	 PRD effect: Mark chiplet for garding

	 Note: SGPE detected errors (which includes CMEs as well) will produce malfunctions alerts to PHYP whereby the set of events defined in p9_stop_recovery.C occur to deal with getting the idle handling complex recovered for use.

	24 Load OCC
	24.1 load_occ : Place OCC image into memory
	 For each chip in a physical node
	 There are two divergent paths to load the OCC code image. The first is lab/Cronus only without FW. In this case the HWP is run. In the second case FW controls building up the image at the direction of PHYP
	b p9_occ_load.C CRONUS ONLY, mimics what FW does
	 Load image in memory from PNOR at an address that is passed to this procedure

	c occ_load: FW
	 There are four different scenarios where this will get run:
	 PHYP: calls HBRT Adjunct
	 OPAL with FSP: HBRT directly within OPAL
	 OPAL openPOWER: Hostboot calls this prior to starting OPAL
	 AVP mode: Hostboot call this prior to loading AVP

	 HBRT called with memory region to place the HOMER image
	 HBRT obtains OCC, reference image
	 FSP based systems via lidmgr
	 OpenPOWER systems via PNOR
	 Entity that loads the image verify signature through secure algorithm
	 Lidmanager PHYP
	 PNOR HBRT

	 HBRT will create the STOP image from the reference image (see step 15 of IPL)
	 HBRT will recreate the whole image each time (both OCC/PState,
	 p9_hcode_image_build.C (void* reference_image, void* v_homer_region, ALL)
	 This includes the SGPE, PGPE, CME.
	 Step 15 built the SGPE and CME components (STOP function)
	 The PGPE is tied to the OCC function
	 Manufacturing request to allow biasing
	 Build Pstate Parameter Block (PPB)
	 Good cores come via the deconfig register

	 HBRT will place OCC initial startup information into HOMER image
	 Nest Frequency
	 Interrupt type – FSI2Host mailbox(TMGT) or via PSIHB(HTMGT)
	 FIR Master
	 FIR Capture Data (generated by HBRT) – non FSP based systems
	 Processor map, and FIR register to read

	 HBRT places STOP and OCC images as directed by caller. Here is an overview of a completed HOMER layout:

	25 Start OCC
	25.1 start_occ : Start OCC
	a p9_pm_stop_gpe_init *chiptarget, ENUM:INIT
	 Sets the IAR to the SGPE bootloader in HOMER.
	 HOMER base (PBABAR0 + 1MB) + 16B

	 Starts the SGPE and polls OCC Flag bit for HCode init completion
	 Starting the SGPE will cause a “reboot” of active CMEs
	 SGPE will cause Block Copy Engine to pull CPMR code, common quad rings and Core Pstate Parameter Block into CME SRM
	 This will start both STOP and HiPFV(Safety/WOF) and QuadManager (Pstate) threads
	 QM thread will send a PCB Interrupt to PGPE to indicate “ready”

	 SGPE checks that CME STOP functions have started as part of the HCode init complete
	 HiPFV(Safety/WOF) and QuadManager (Pstate) check will be done by PGPE upon Pstate protocol start

	b p9_pm_pstate_gpe_init *chiptarget, ENUM:INIT
	 Sets the IAR to the PGPE bootloader in HOMER.
	 HOMER base (PBABAR0 + 3MB) + 16B

	 Starts the PGPE and polls OCC Flag bit for HCode init completion
	 Will scoreboard the receive QM ready messages to known which CMEs have QMs
	 Will NOT start Pstate Protocol until commanded by OCC FW

	c p9_pm_occ_control.C *chiptarget, ENUM:OCC_START
	 Starts OCC load by releasing the reset to the PPC405
	 OCC code boot loads itself from Memory into SRAM tank

	26 Config OCC
	26.1 config_occ : Load OCC config
	a OCC FW sends OCC IPI to PGPE to start Pstate Protocol
	 PGPE reads Pstate Parameter Block (PBB) from HOMER, installs in OCC SRAM, and starts the Pstate Protocol with the CMEs.
	5
	5.1
	5.2
	5.3
	5.4

	6
	6.1
	6.2
	6.3

	7
	7.1
	7.2
	7.3
	7.4

