

PPE 42 & PPE 42X

Embedded Processor Core

User's Manual

Version 4.0

September 19, 2019

IBM Corporation
Systems Group
11400 Burnet Road
Austin, Texas 78758
c/o Michael Floyd, mfloyd@us.ibm.com

Don't Panic

mailto:mfloyd@us.ibm.com

© Copyright International Business Machines Corporation 2019

Printed in the United States of America September 19, 2019

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
“Copyright and trademark information” at www.ibm.com/legal/copytrade.shtml.

Other company, product, and service names may be trademarks or service marks of others.

All information contained in this document is subject to change without notice. The products described in
this document are NOT intended for use in applications such as implantation, life support, or other
hazardous uses where malfunction could result in death, bodily injury, or catastrophic property damage.
The information contained in this document does not affect or change IBM product specifications or
warranties. Nothing in this document shall operate as an express or implied license or indemnity under the
intellectual property rights of IBM or third parties. All information contained in this document was obtained
in specific environments, and is presented as an illustration. The results obtained in other operating
environments may vary.

Note: This document contains information on products in the design, sampling and/or initial production
phases of development. This information is subject to change without notice. Verify with your IBM field
applications engineer that you have the latest version of this document before finalizing a design. While the
information contained herein is believed to be accurate, such information is preliminary, and should not be
relied upon for accuracy or completeness, and no representations or warranties of accuracy or
completeness are made.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN “AS IS” BASIS. In no
event will IBM be liable for damages arising directly or indirectly from any use of the information contained
in this document.

IBM Systems and Technology Group
2070 Route 52, Bldg. 330
Hopewell Junction, NY 12533-6351

The IBM home page can be found at ibm.com®.

Version 4.0
September 19, 2019

Version 4.0

PPE 42 and 42X Embedded Processor Core

User's Manual

September 19, 2019 Page ii

Acknowledgments

This manual borrows heavily in organization, substance and style from two other public documents bearing
IBM Copyrights:

• PowerPC 405-S Embedded Processor Core, User's Manual, Version 1.2, June 16, 2010.
Available from:
https://www-01.ibm.com/chips/techlib/techlib.nsf/products/PowerPC_405_Embedded_Cores

• Power ISATM, Version 2.07, May 3, 2013. Available from http://www.power.org

We would like to acknowledge the sizable contributions made to the PPE Architecture and to this
document by Bishop Brock (https://github.com/bcbrock) while at IBM.

We also acknowledge the unattributed authors of the above for their contributions to this document.

Version 4.0

PPE 42 and 42X Embedded Processor Core

User's Manual

September 19, 2019 Page iii

http://www.power.org/
https://www-01.ibm.com/chips/techlib/techlib.nsf/products/PowerPC_405_Embedded_Cores

Table of Contents

1 Overview...12
1.1 Audience... 13
1.2 Notation... 14
2 Programming Model..16
2.1 Registers... 16
2.1.1 Programmer Visible Registers..16
2.1.2 Externally Visible Registers...17

2.2 Interface Signals... 17
2.3 Privilege Levels... 18
2.4 Memory Organization and Addressing..18
2.4.1 Data Types and Byte Ordering..18
2.4.2 Alignment.. 19

2.5 Instruction Processing... 19
2.6 Exception Processing.. 20
2.7 Branch Processing.. 22
2.7.1 Branch Target Addressing Options..22
2.7.2 Conditional Branch Operations...22
2.7.3 Fused Compare-Branch Operations...22

2.8 Precise and Imprecise Memory Accesses...23
2.9 Synchronization.. 24
2.9.1 Synchronization and Storage Ordering...24
2.9.2 Synchronization, Interrupts and Error Reporting...25

2.10 Non-Maskable Interrupts... 25
2.11 Special-Purpose Registers..26
2.11.1 Link Register – LR... 26
2.11.2 Count Register – CTR...26
2.11.3 Condition Register – CR..26
2.11.3.1 CR[CR0] Fields After Comparison Instructions..27
2.11.3.2 CR[CR0] Fields After Update-Form Instructions..27
2.11.3.3 mtcr0 and mfcr.. 28

2.11.4 Fixed-Point Exception Register – XER..28
2.11.5 Machine State Register – MSR...29
2.11.5.1 Interrupt Processing and Control...29
2.11.5.2 WAIT mode.. 30
2.11.5.3 Imprecise Mode Enable...30
2.11.5.4 SIB Error Reporting and Accumulation..30
2.11.5.5 Low-Priority Mode... 30
2.11.5.6 Instance-Specific Control..30

3 Initialization,Reset, and Starting Execution..32
3.1 Initial State.. 32
3.2 Reset Operations.. 32
3.3 Core State Subsequent to a Reset Event...33
3.4 Starting Instructions.. 34
3.5 System Reset Interrupt Handler..34
4 Interrupts and Exceptions...35
4.1 Architectural Definitions and PPE 42 Behavior...35
4.1.1 Interrupt Precision... 35

Version 4.0

PPE 42 and 42X Embedded Processor Core

User's Manual

September 19, 2019 Page iv

4.1.2 Asynchronous, Synchronous, and Machine Check Interrupts...36
4.1.3 Interrupt Address Reporting..37

4.2 Interrupt Vector Offsets... 37
4.3 Interrupt Handling... 38
4.3.1 Interrupt Masking.. 38
4.3.2 Interrupt Priority.. 38
4.3.3 Interrupt Processing.. 40
4.3.4 Interrupt Halt Semantics..41
4.3.5 Unmaskable Interrupt Promotion..41

4.4 General Interrupt Handling Registers..42
4.4.1 Machine State Register – MSR...42
4.4.2 Save/Restore Registers 0 and 1 – SRR0/1...42
4.4.3 Interrupt Vector Prefix Register – IVPR...43
4.4.4 Interrupt Status Register – ISR...43
4.4.5 Error Data Register – EDR..43

4.5 Detailed Interrupt Descriptions..43
4.5.1 Machine Check Interrupt – PPE 42 Vector x'000'; PPE 42X Vector x'020'..44
4.5.1.1 Service Interface Bus (SIB) Error Reporting and Handling...44
4.5.1.2 Instruction Machine Check Handling...45
4.5.1.3 Data Machine Check Handling for Load-Type Operations..46
4.5.1.4 Data Machine Check Handling for Store-type Operations...47
4.5.1.5 Machine Checks Promoted from Other Unmaskable Interrupts..48

4.5.2 System Reset Interrupt – Vector x'040'...49
4.5.3 Data Storage Interrupt – Vector x'060'..50
4.5.4 Instruction Storage Interrupt – Vector x'080'...51
4.5.5 External Interrupt – Vector x'0A0'..52
4.5.5.1 External Interrupt Recognition; Phantom Interrupt Avoidance...52

4.5.6 Alignment Interrupt – Vector x'0C0'...53
4.5.7 Program Interrupt – Vector x'0E0'...54
4.5.8 Decrementer (DEC) Interrupt – Vector x'100'..55
4.5.9 Fixed Interval Timer (FIT) Interrupt – Vector x'120'...56
4.5.10 Watchdog Timer (WDT) Interrupt – Vector x'140'..57

5 Timer Facilities..58
5.1 The Decrementer (DEC)... 59
5.1.1 Using DEC as a Programmable Interval Timer...59
5.1.2 Using DEC to Emulate a Timebase...60

5.2 The Fixed Interval Timer (FIT)... 60
5.3 The Watchdog Timer (WDT)... 61
5.3.1 Implications of TSR[ENW]... 62

5.4 Debug Behavior.. 62
5.5 Reset Behavior... 62
6 External Interface Registers..63
7 Debugging...66
7.1 External Debug Mode... 66
7.2 Processor Control... 66
7.3 Processor Status... 67
7.3.1 Status outputs... 67
7.3.1.1 Halted indication... 67
7.3.1.2 Watchdog Timeout indication..67
7.3.1.3 Error indications.. 67

7.4 Debug Registers... 69
7.4.1 DACR – Debug Address Compare Register...69

Version 4.0

PPE 42 and 42X Embedded Processor Core

User's Manual

September 19, 2019 Page v

7.4.2 DBCR – Debug Control Register..69
7.4.3 EDR – Error Data Register..69
7.4.4 ISR – Interrupt Status Register...69
7.4.5 XCR – External Control Register..69
7.4.6 XSR – External Status Register..69

7.5 Debug Events... 70
7.5.1 Trap Events... 70
7.5.2 Instruction-Address Comparison Events...70
7.5.3 Data-Address Comparison Events..71
7.5.4 Zero Address Comparison..71
7.5.5 Data Address Comparison and Alignment..72

7.6 Halt Processing... 72
7.6.1 Definition of Halted.. 72
7.6.2 Entering the Halted state... 72
7.6.3 Halt Conditions and Error indication..73
7.6.4 Exiting the Halted state... 73
7.6.5 Halting and Synchronization... 74

7.7 Single-Stepping and Ramming...74
7.7.1 Single-Stepping... 74
7.7.1.1 Single-stepping and Exceptions..74

7.7.2 Ramming... 75
7.8 Debugging Procedures... 77
7.8.1 Basic Debugging Procedures..77
7.8.1.1 Halting the Processor..77
7.8.1.2 Force-Halting the Processor...77
7.8.1.3 Clearing Debug Halt Status...77
7.8.1.4 Resetting the Processor..77
7.8.1.5 Restarting the Processor... 77
7.8.1.6 Single-Stepping an Instruction..78
7.8.1.7 Ramming an Instruction..78
7.8.1.8 Low-overhead Ramming... 79
7.8.1.9 Toggling XSR[TRH]... 79

7.8.2 Advanced Debugging Procedures...79
7.8.2.1 Reading Status and IAR Contents Simultaneously...79
7.8.2.2 Reading Status and SPRG0 Simultaneously..80
7.8.2.3 Writing IR and SPRG0 Simultaneously...80
7.8.2.4 Writing XCR and SPRG0 Simultaneously...80
7.8.2.5 Writing XSR and IAR Simultaneously...80
7.8.2.6 Reading CTR.. 80
7.8.2.7 Reading SRR0 and LR Simultaneously..80
7.8.2.8 Reading GPR pairs (VDRs) Simultaneously...80

8 Register Summary..81
8.1 Reserved Registers... 81
8.2 Reserved Fields.. 81
8.3 General Purpose Registers...81
8.4 Virtual Doubleword Registers..82
8.5 Machine State Register and Condition Register..83
8.6 Special Purpose Registers.. 83
8.6.1 Using SPRs as Scratch Registers...84

8.7 External Interface Registers.. 85
8.8 Simultaneous Update.. 85
8.9 Initialization and Reset.. 85
8.10 Alphabetical Listing of PPE 42 Registers..86

Version 4.0

PPE 42 and 42X Embedded Processor Core

User's Manual

September 19, 2019 Page vi

8.10.1 CR – Condition Register...87
8.10.2 CTR – Count Register... 88
8.10.3 DACR – Debug Address Compare Register...89
8.10.4 DBCR – Debug Control Register..90
8.10.5 DEC – Decrementer.. 92
8.10.6 EDR – Error Data Register.. 93
8.10.7 IAR – Instruction Address Register...94
8.10.8 IR – Instruction Register.. 95
8.10.9 ISR – Interrupt Status Register...96
8.10.10 IVPR – Interrupt Vector Prefix Register...98
8.10.11 LR – Link Register... 99
8.10.12 MSR – Machine State Register...100
8.10.13 PIR – Processor Identification Register...103
8.10.14 PVR – Processor Version Register...104
8.10.15 SPRG0 – SPR General 0..105
8.10.16 SRR0 – Save Restore Register 0..106
8.10.17 SRR1 – Save Restore Register 1..107
8.10.18 TCR – Timer Control Register...108
8.10.19 TSR – Timer Status Register...109
8.10.20 XCR – External Control Register...110
8.10.21 XER – Fixed Point Exception Register..112
8.10.22 XSR – External Status Register..113

9 Instruction Set..116
9.1 Instruction Set Origin and Portability...116
9.2 Rationale for the PPE 42 Instruction Set...118
9.2.1 PPE 42X Added Instructions...118
9.2.2 PPE 42 New Instructions... 119
9.2.3 PPE 42X New Instructions..120

9.3 Instruction Formats... 120
9.3.1 PPE 42 Specific Instruction Format...121
9.3.2 PPE 42X Specific Instruction Format..121

9.4 Alphabetical Instruction Listing..122
9.4.1 add.. 123
9.4.2 addc.. 124
9.4.3 adde.. 125
9.4.4 addi... 126
9.4.5 addic... 127
9.4.6 addic... 128
9.4.7 addis... 129
9.4.8 addme... 130
9.4.9 addze.. 131
9.4.10 and.. 132
9.4.11 andc.. 133
9.4.12 andi... 134
9.4.13 andis... 135
9.4.14 b.. 136
9.4.15 bc.. 137
9.4.16 bcctr.. 139
9.4.17 bclr.. 141
9.4.18 bnbw... 143
9.4.19 bnbwi... 145
9.4.20 clrbwbc.. 147
9.4.21 clrbwibc... 149

Version 4.0

PPE 42 and 42X Embedded Processor Core

User's Manual

September 19, 2019 Page vii

9.4.22 cmplw.. 151
9.4.23 cmplwbc.. 152
9.4.24 cmplwi... 155
9.4.25 cmpw... 156
9.4.26 cmpwbc... 157
9.4.27 cmpwi.. 160
9.4.28 cmpwibc.. 161
9.4.29 cntlzw.. 164
9.4.30 dcbf... 165
9.4.31 dcbi... 166
9.4.32 dcbq.. 167
9.4.33 dcbt... 169
9.4.34 dcbz.. 170
9.4.35 eqv.. 171
9.4.36 extsb... 172
9.4.37 extsh... 173
9.4.38 lbz... 174
9.4.39 lbzu... 175
9.4.40 lbzx.. 176
9.4.41 lcxu.. 177
9.4.42 lhz... 180
9.4.43 lhzu... 181
9.4.44 lhzx.. 182
9.4.45 lsku.. 183
9.4.46 lvd... 186
9.4.47 lvdu... 187
9.4.48 lvdx.. 188
9.4.49 lwz... 189
9.4.50 lwzu... 190
9.4.51 lwzx... 191
9.4.52 mfcr... 192
9.4.53 mfmsr.. 193
9.4.54 mfspr... 194
9.4.55 mtcr0... 195
9.4.56 mtmsr.. 196
9.4.57 mtspr... 197
9.4.58 mullhw... 198
9.4.59 mullhwu... 199
9.4.60 mulli... 200
9.4.61 mullw... 201
9.4.62 nand.. 202
9.4.63 neg.. 203
9.4.64 nor... 204
9.4.65 or... 205
9.4.66 orc... 206
9.4.67 ori.. 207
9.4.68 oris.. 208
9.4.69 rfi... 209
9.4.70 rldicl... 210
9.4.71 rldicr.. 212
9.4.72 rldimi... 213
9.4.73 rlwimi... 214
9.4.74 rlwinm.. 215
9.4.75 rlwnm.. 217

Version 4.0

PPE 42 and 42X Embedded Processor Core

User's Manual

September 19, 2019 Page viii

9.4.76 slvd.. 218
9.4.77 slw... 219
9.4.78 sraw.. 220
9.4.79 srawi.. 221
9.4.80 srvd... 222
9.4.81 srw.. 223
9.4.82 stb... 224
9.4.83 stbu... 225
9.4.84 stbx... 226
9.4.85 stcxu.. 227
9.4.86 sth... 230
9.4.87 sthu... 231
9.4.88 sthx... 232
9.4.89 stsku.. 233
9.4.90 stvd... 236
9.4.91 stvdu... 237
9.4.92 stvdx.. 238
9.4.93 stw... 239
9.4.94 stwu... 240
9.4.95 stwx... 241
9.4.96 subf... 242
9.4.97 subfc... 243
9.4.98 subfe... 244
9.4.99 subfic... 245
9.4.100 subfme.. 246
9.4.101 subfze... 247
9.4.102 sync... 248
9.4.103 tw ... 249
9.4.104 wrtee... 251
9.4.105 wrteei.. 253
9.4.106 xor... 255
9.4.107 xori.. 256
9.4.108 xoris.. 257

9.5 Instruction Set Mnemonics List...258

Version 4.0

PPE 42 and 42X Embedded Processor Core

User's Manual

September 19, 2019 Page ix

Source Documents
The latest version of this document can be accessed internal to IBM via the following URL:

https://ibm.box.com/ Link for PPE 42X Core Users Manual.pdf

The source documents for this document can be accessed internal to IBM via the following URL:

https://ibm.box.com/ Link for PPE42X Users Manual folder

Note that change bars for sub-documents of Open Office master documents are treated inconsistently by
Open Office in general, and may be lost when Open Office master documents are rendered into PDF. In
order to view change markings of sub-documents it may be necessary to view the Open Office sub-
documents directly.

Revision History

Version Date Changes Author

4.0 09/16/2019 • First “official” PPE42X Release mfloyd

Version 4.0

PPE 42 and 42X Embedded Processor Core

User's Manual

September 19, 2019 Page x

https://ibm.box.com/s/erqa6fp4yojt8xzbn49rae606c4zfypo
https://ibm.box.com/s/c6n25eccgkwcreade5quq77onjbsy40e

Cross Reference Table

The following table is included as a reference for future editing. Cross-references between sub-documents
must be inserted and named explicitly. Note that when viewing a sub-document that references another
sub-document, these cross references will appear as “Error: Reference not found” even when they are
valid references. It will be necessary to view a printed or PDF version of the document to check whether
cross-sub-document references are correct.

Table 1: Sub-document Cross Reference Table

PPE 42 Core Overview

Tag Reference

PPE 42 Core Programming Model

Tag Reference

precise and imprecise memory accesses 1.8 Precise and Imprecise Memory Accesses

MSR 1.12.5 Machine State Register - MSR

wait mode 1.12.5.2 WAIT mode

PPE 42 Core Initialization and Reset

Tag Reference

initialization and reset 1 Initialization and Reset

PPE 42 Core Interrupts and Exceptions

Tag Reference

interrupts and exceptions 1 Interrupts and Exceptions

interrupt vector offsets 1.2 Interrupt Vector Offsets

general interrupt handling registers 1.6 General Interrupt Handling Registers

PPE 42 Core Timer Facilities

Tag Reference

timer facilities 1 Timer Facilities

PPE 42 Core External Interface Registers

Tag Reference

external interface registers 1 External Interface Registers

PPE 42 Core Debugging

Tag Reference

debugging 1 Debugging

PPE 42 Core Instruction Set

Tag Reference

PPE 42 Core Register Summary

Tag Reference

register summary 1 Register Summary

virtual doubleword registers 1.4 Virtual Doubleword Registers

special purpose registers 1.6 Special Purpose Registers

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 11 of 288

1 Overview
Il semble que la perfection soit atteinte non quand il n'y a plus rien à ajouter, mais quand il n'y a
plus rien à retrancher.

It seems that perfection is attained not when there is nothing left to add, but when there is nothing
left to take away.

- Antoine de Saint-Exupéry

The Power ISA Lite Processing Engine (PPE, pronounced “peppy”) model 42 embedded processor core
implements an extended subset of the Power ISATM Version 2.07 specification. PPE 42 is a 32-bit
processor, with extensions that provide for atomic loads and stores of 64-bit data. PPE 42 implements
subsets or modified subsets of the Power ISA 32-bit User Instruction Set Architecture, Virtual Environment
Architecture and Embedded Operating Environment Architecture. PPE 42X is fully based on the PPE 42
processor and additionally implements a modified subset of the Power ISA 64-bit User Instruction Set
Architecture. PPE 42 and PPE 42X also implement several instructions and capabilities unique to each
processor.

As an extended subset of the Power ISA, PPE 42 is not Power ISA compliant, and the architectural
features specific to PPE will not be included in future Power ISA specifications. PPE 42 is derived from the
Power ISA to take advantage of the synergies of design, verification, tools and firmware development within
the IBM POWER Systems development organization that would not be realized if any other architecture for
PPE 42 had been chosen. The PPE architecture supports the PowerPC Embedded Application Binary
Interface (EABI) for 32-bit processors, which is critical to allow the modification of existing PowerPC
compiler infrastructures with minimum effort. PPE 42X adds native support for managing the stack frame
compatible with EABI Version 4.

The PPE architecture balances area-efficiency with function and performance. PPE 42 implements only 16
of the 32 Power ISA general purpose registers (GPRs) along with a selected set of special-purpose
registers (SPRs), comprising less than 1000 bits of architected state. A large subset of the 97 implemented
instructions can execute pipelined in a single cycle; other instructions execute in two or three cycles plus
any memory or synchronization delays. PPE 42X implements an additional 9 instructions as an extension
of the PPE 42 Instruction Set, consisting of 7 single cycle arithmetics and 2 new multi-cycle load and store
instructions to assist with stack frame and processor context management.

This user’s manual provides an architectural overview, programming model, and detailed functional
information about the PPE 42 and 42X embedded processor cores. The information in this user’s manual
includes details on the instruction set, registers, and the various functions and functional units of the core
including interrupts, timers and debugging infrastructure.

This manual only covers the PPE 42 and 42X processor core itself. The PPE 42 core provides interfaces
that allow it to be integrated with a variety of memory and peripheral subsystems. Therefore many aspects
of a complete embedded processing system architecture are not covered in this manual, and will be
documented with the specific instantiations of the core. These aspects include caches, memory
management, peripheral units and system-level error handling.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 12 of 288

1.1 Audience
This book is for system hardware and software engineers who are engaged in hardware development,
firmware and operating system support, and application software development. This manual assumes an
understanding of embedded processor design, embedded system design, operating systems and reduced
instruction set computing (RISC). The reader may also find it useful to refer to the Power ISA Version 2.07
specification, available from www.power.org.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 13 of 288

http://www.power.org/

1.2 Notation
The table below describes the notational conventions used in this manual.

Table 1.1: Notational Conventions

Notation Meaning

n A decimal number

x'n … n' A hexadecimal number

'n … n' A binary number

= Assignment

∧ AND logical operator

￢ NOT logical operator

∨ OR logical operator

⊕ Exclusive-OR (XOR) operator

+ Twos complement addition

- Twos complement subtraction, unary minus

× Multiplication

÷ Division yielding a quotient

% Remainder of an integer division

|| Concatenation

=, ≠ Equal, not equal relations

<, > Signed comparison results

<u, >u Unsigned comparison results

If … then … else
Conditional execution; if condition then a else b, where a and b represent one or
more pseudocode statements. Indenting indicates the ranges of a and b. If b is
null, the else does not appear.

do
Do loop. “to” and “by” clauses specify incrementing an iteration variable; “while”
and “until” clauses specify terminating conditions. Indenting indicates the scope
of a loop.

leave Leave innermost do loop or do loop specified in a leave statement.

FLD An instruction or register field

FLDb A bit in a named instruction or register field

FLDb:b A range of bits in a named instruction or register field

REGb A bit in a named register

REGb:b A range of bits in a named register

REG[FLD] A field in a named register

REG[FLD, FLD ...] A list of fields in a named register

(Rx) The contents of a GPR specified as an instruction field, where x is A, B, S or T

(RA | 0) The contents of the register RA, or 0 if RA is 0

nb The bit or bit value b replicated n times

EXTS(x) The result of extending x on the left with sign bits (high-order bits)

CIA Current instruction address; The 32-bit address of the instruction being described by a sequence of pseudocode.

NIA Next instruction address; The 32-bit address of the next instruction to be executed. In pseudocode, a successful

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 14 of 288

Notation Meaning

branch is indicated by assigning a value to NIA. For instructions that do not branch, the NIA is CIA +4.

MS(addr, n) The n bytes at the location in main storage represented by addr.

EA
Effective address; the 32-bit address, derived by applying indexing or indirect addressing rules to the specified
operand, that specifies a location in main storage.

ROTL((RS), n) Rotate left; the contents of RS are rotated left the number of bits specified by n

MASK(MB, ME) Mask having ones in positions MB through ME (wrapping if MB > ME) and zeros elsewhere.

DW(x..y) A series of Virtual Doubleword Registers or pairs of concatenated Special Purpose Registers, numbered x to y

DW(n) Doubleword register n, selected from a series of registers

GPR(r) General Purpose Register r, where 0 ≤ r ≤ 31

VDR(r) Virtual Doubleword Register r, where 0 ≤ r ≤ 31

(GPR(r)) The contents of GPR(r)

(VDR(r)) The contents of VDR(r)

(DW(n)) The contents of DW(n)

(LR) The contents of the Link Register.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 15 of 288

2 Programming Model
This sections covers aspects of the PPE 42 programming model that are not discussed elsewhere in this
manual.

2.1 Registers
The following two illustrations show the PPE 42X register programming model from either a programmer or
an external user's view.

2.1.1 Programmer Visible Registers

The programmer-visible state, which is the same for both PPE 42 and PPE42X, includes sixteen 32-bit
general-purpose registers (GPRs), and eighteen 32-bit special-purpose registers (SPRs). Pairs of
consecutively-numbered (modulo 32) GPRs can be used as virtual doubleword registers (VDRs) for 64-bit
loads and stores, in addition to selected 64-bit shift and rotate arithmetics in the PPE 42X.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 16 of 288

Illustration 1: PPE 42X Register Programming Model

GPR0
GPR1

VDR0

General-purpose registers (GPRs) and
virtual doubleword registers (VDRs)

Special-purpose registers (SPRs), the conditon
register (CR) and the machine state register (MSR)

GPR28
GPR29

VDR2

GPR30
GPR31

Programmer-visible State

VDR29

VDR31

CR
CTR

DACR
DBCR
DEC
EDR

IVPR
LR

MSR
PIR
PVR

SPRG0
SRR0
SRR1
TCR
TSR
XER

Condition Register
Count Register

Debug Control Register
Decrementer
Error Data Register

Interrupt Vector Prefix Register
Link Register
Machine State Register
Processor Identification Register
Processor Version Register
Special-purpose General Register 0
Save/Restore Register 0
Save/Restore Register 1
Timer Control Register
Timer Status Register
Fixed-point Exception Register

Debug Address Compare Register

0 31 0 31

VDR31

VDR30

ISR Interrupt Status Register

GPR2
GPR3
GPR4
GPR5
GPR6
GPR7
GPR8
GPR9

GPR10

GPR13

VDR4

VDR6

VDR8

VDR1

VDR5

VDR28

VDR7

VDR9

VDR3

2.1.2 Externally Visible Registers

External control and status is provided by 4 dedicated 32-bit external interface registers (XIRs). Two SPRs
(EDR and SPGR0) on PPE 42 are both SPRs and XIRs, with three additional XIR-accessible SPRs (CTR,
LR, and SRR0) on PPE 42X. Although architected as 32 bit registers, XIRs are always accessed as 64-bit
pairs of 32-bit registers. PPE 42X provides optional access to the even-numbered VDRs (0,2,4,6,8,28, &
30), as well as a psuedo “VDRX” consisting of the GPR10_GPR13 pair, such that all 16 GPRs are readily
visible when this feature is enabled.

2.2 Interface Signals
The table below details the major input and output signals of the PPE 42 core that bear on the
programming model. The table is not intended as a complete hardware specification, but is only included to
help clarify which operations are fully internal to the core vs. those operations controlled by and dependent
on the instance-specific environment.

Table 1.2: Selected PPE 42 Core I/O Signals

Dir. Signal Bits Notes

out inst_req_addr 32 A 32-bit, 4-byte aligned instruction address is presented to the memory interface, which returns a

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 17 of 288

Illustration 2: PPE 42X External Register Programming Model

The External Interface

External interface registers (XIRs), including SPRs that are also XIRs.
 XIRs are accessed as 64-bit virtual pairs of 32-bit registers.

*LR

IAR
IR

SPRG0

XCR
XSR

Instruction Address Register

External Control Register
External Status Register

Instruction Register

0 31

XCR *CTR
XCR SPRG0
IR SPRG0

*XSR SPRG0
IR EDR

XSR IAR

XIR pairs for external access

 0 31 32 63

*SRR0

EDR
*CTR

Special Purpose Registers
*SRR0 *LR

* added or modified for PPE 42X

GPR0 GPR1
GPR2 GPR3
GPR4 GPR5
GPR6 GPR7
GPR8 GPR9

GPR10 GPR13

GPR pairs for external access
(optional; available on PPE42X)

 0 31 32 63

GPR28 GPR29
GPR30 GPR31

Virtual Doubleword Register 0

Virtual Doubleword Register 4
Virtual Doubleword Register 6

Virtual Doubleword Register 2

Virtual Doubleword Register 8

Virtual Doubleword Register 28
Virtual Doubleword Register 30

Virtual Doubleword Register X

Dir. Signal Bits Notes

4-byte instruction.in instruction 32

out data_req_addr 32
32-bit data addresses are presented to the memory interface.
The PPE 42 core supports 8, 16, 32, and 64-bit atomic loads and stores.

in load_data 64

out store_data 64

in halt_req 1 Instance-specific logic external to the core can force the core to halt by asserting this signal.

in hreset_req 1 Instance-specific logic external to the core can force the core to reset by asserting this signal.

in timer 4 These four events can be programmably selected as the Fixed Interval Timer and Watchdog
Timer events.

in dec_timer 1 This event can be programmably selected as the decrementer event.

in ext_intr 1 Indication from instance-specific logic external to the core that causes an External Interrupt
exception event.

out arb_high_priority 1 Allows PPE code with time sensitive requirements to choose to run with heightened priority
memory accesses, if supported by the instance-specific environment.

out error 1 Pulses to indicate that the PPE is now halted due to an error condition occurring.
May be used by instance-specific logic external to the core to record status or take an action in
response to this event.

out watchdog_timeout 1 Pulses to indicating that a watchdog timeout occurred and caused the PPE to either halt or reset.
May be used by instance-specific logic external to the core to record status or take an action in
response to this event.

out halted 1 Signal indicating that the core is in a halted state (for any reason).
May be used by instance-specific logic external to the core to record status or take an action in
response to this event.

2.3 Privilege Levels
The PPE 42 architecture does not support privilege levels. All processor resources are available to all
programs at all times. For this reason the Power ISA sc (system call) instruction is neither required nor
implemented by PPE 42. It is up to the programming, external hardware and/or operating environments to
enforce code and data separation disciplines if required.

2.4 Memory Organization and Addressing
The PPE 42 architecture defines a 32-bit, 4 GB flat address space for instructions and data memory.
Almost every feature of the memory subsystem is instance specific however and will be documented with
each instance of the PPE 42 core. Instance specific features not defined by this manual include memory
maps of defined memory regions, cacheability, access restrictions, speculation, prefetching and
addressability and alignment requirements.

Regarding addressability, PPE 42 supports a byte-addressable memory subsystem. Byte addressability is
not required however, and the PPE 42 architecture specifically allows accesses to word- and/or doubleword
addressable memory spaces to appear as though they were unaligned byte-addressable accesses. The
memory subsystem may also signal exceptions for disallowed or ambiguous accesses, for example in
response to a byte store to a word-addressable control register space. Again, the interpretation of any
memory address is fully instance specific.

2.4.1 Data Types and Byte Ordering

The data types consist of bytes (8 bits), halfwords (2 bytes), words (4 bytes) and doublewords (8 bytes).
The figure below illustrates the data types, and also shows their bit and byte definitions for big-endian
representation of values. Note that PPE 42 bit numbering is reversed from industry conventions; bit 0

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 18 of 288

represents the most significant bit of a value. PPE 42 does not support little-endian byte ordering.

PPE 42 only supports the doubleword data type for loads and stores targeting virtual doubleword registers.
The concept of a virtual doubleword is described in section 8.4, Virtual Doubleword Registers. PPE 42
does not implement 64-bit arithmetic or logical instructions, however PPE 42X supports doubleword data
types for its five 64-bit shift and rotate instructions.

2.4.2 Alignment

PPE 42 instruction addresses are always presented to the memory interface 4-byte aligned. It is
architecturally impossible for the PPE 42 core to request an unaligned instruction address.

Alignment requirements for loads and stores are instance specific and will be documented with each
instance. The PPE 42 core presents effective memory addresses to the memory interface as specified with
each instruction description, and all alignment exceptions originate from the memory interface, never from
the PPE 42 core proper. The only architectural requirement for alignment exceptions is that for the dcbz
instruction, the memory interface is required to generate an alignment exception if the access is to a non-
cacheable memory area, and the memory interface itself does not emulate the dcbz instruction.

The data cache control instructions dcbf, dcbi, dcbt and dcbz are required to ignore any low-order bits of
the effective address that specify bytes within a cache block, and to treat the address of any byte within a
cache block as referring to the cache block as a whole. PPE 42 does not specify a cache block size, other
than the requirement that the cache block size be an even power of two, greater than or equal to eight.

2.5 Instruction Processing
The PPE 42 core executes instructions in sequential program order. The core supports pipelining of
arithmetic, logical and compare instructions only, as these instructions are guaranteed to complete without
exception or stalling once they have been successfully decoded. All other instructions are fully fetched,
decoded and executed before the next instruction is fetched. Instructions are never fetched speculatively,
and the PPE 42 core does not implement branch prediction.

The PPE 42 core executes instructions in two or three cycles, plus memory and synchronization delays.
Instructions are fetched and decoded in a single cycle, then most instructions are executed the following
cycle assuming no memory delays. Fused compare-branch and synchronizing instructions require a third

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 19 of 288

Doubleword0 1 2 3 4 5 6 7

0 1 2 3 Word

Byte

Byte

Bit

Bit

0 630

0 31

0 1 HalfwordByte

Bit 0 15

0 ByteByte

Bit 0 7

cycle. As mentioned previously, execution of arithmetic, logical and compare instructions can be
overlapped with the fetch and decode of the following instruction, effectively supporting single-cycle
execution for a large class of instructions.

The PPE 42 core supports memory subsystems that provide either single-cycle or delayed responses to
instruction fetches and data requests. Although the PPE 42 core implements the Harvard Architecture, with
separate interfaces for instruction and data accesses, the instruction and data interfaces are never active
on the same cycle, thus load, store and cache management instructions require a minimum of two cycles to
complete.

The following table details the instruction classes as recognized by the core microarchitecture along with
their instruction timings. The table assumes single-cycle instruction access, so does not include any latency
in the memory subsystem.

Table 1.3: PPE 42 Core Instruction Classes and Timing

Instruction
Class

Instruction(s) Issue Rate (Cycles) Notes

A
Arithmetic

Arithmetic,
logical, compare,
mfspr, mfcr,
mtcr0

1 Since these instructions always complete without exception the cycle after
being fetched and decoded, PPE 42 provides single-cycle pipelined
execution of Class A instructions.

D
Data

Load, store, dcb* 2 + memory delay These instructions potentially require blocking while waiting for a response
from the memory interface.

B
Branch

b, bc, bcctr, bclr 2 All branches are fully resolved prior to fetching the next instruction.

F
Fused

Fused compare-
branch

3 The fused compare-branch instructions execute serialized in 3 cycles.
Fused compare-branch instructions provide a code-space advantage but
not a direct performance advantage over executing the two underlying
instructions.

K
Load or Store
Stack

lsku, stsku Load = (4 to 24) + (1 to
11) memory delays).
Store = (6 to 26) + (3
to 13) memory delays).

These instructions perform multiple operations to memory to push or pop
an EABI-compliant stack frame then provide an atomic update of the stack
pointer. These instructions potentially require blocking while waiting for
responses from the memory interface.

M
Move to

mtspr, wrtee,
wrteei

2 All mtspr, wrtee and wrteei execute serialized in 2 cycles. Since many
SPRs control asynchronous exceptions, this allows the core to provide a
sequential execution model in the presence of asynchronous exceptions.
Note that neither the Power ISA nor typical programming applications
require wrtee and wrteei to be context synchronizing.

C
Context
synchronizing

mfmsr, mtmsr,
rfi

3 + context
synchronization

mfmsr, mtmsr and rfi are implemented as context synchronizing
instructions by the PPE 42 core. Execution is suspended until all preceding
instructions have reported any exceptions they might report.

S
Storage
synchronizing

sync 3 + storage
synchronization

sync stalls for storage synchronization, which extends context
synchronization in certain cases.

T
Trap Word

tw 1 trap form is never executed, but instead always causes an exception or
halt.
mark form is executed as a no-op and causes a trace marker for debug.

2.6 Exception Processing
Exceptions are processed in two machine cycles, plus any delays associated with execution
synchronization of the memory interface.

Asynchronous exceptions are implemented as occurring between instructions, specifically before the
execution of the next instruction. Synchronous exceptions are implemented as occurring during the
execution of an instruction, but before any of the effects of the instruction have been committed to the GPR

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 20 of 288

state. For further information see section 4, Interrupts and Exceptions.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 21 of 288

2.7 Branch Processing
The PPE 42 core does not implement branch prediction or any other type of speculative instruction
fetching. Whenever a conditional branch instruction is encountered, the next instruction access request to
the memory subsystem will always be the correct instruction with respect to the branch condition.

2.7.1 Branch Target Addressing Options

The unconditional branch instruction (b) carries the displacement to the branch target address as a signed
26-bit value (the 24-bit LI field right-extended with ‘00’). The displacement enables unconditional branches
to cover an address range of ±32 MB.

The conditional branch instruction (bc) carries the displacement to the branch target address as a signed
16-bit value (the 14-bit BD field right-extended with ‘00’). The displacement enables conditional branches to
cover an address range of ±32 KB.

The PPE 42 fused compare-branch instructions (bnbw, bnbwi, clrbwbc, clrbwibc, cmplwbc, cmpwbc,
and cmpwibc) carry the displacement to the branch target address as a signed 12-bit value (the 10-bit
BDX field right-extended with ‘00’). The displacement enables fused compare-branches to cover an
address range of ±2 KB.

For the relative forms of b and bc (AA is set to '0'), and for all fused compare-branch instructions, the target
address is the address of the branch instruction (CIA) plus the signed displacement.

For the absolute (AA is set to ‘1’) forms of b and bc, the target address is ‘0’ plus the signed displacement.
If the sign bit (LI[0] or BD[0]) is ‘0’, the displacement is the target address. If the sign bit is ‘1’, the
displacement is a negative value and wraps to the highest memory addresses. For example, if the
displacement of an unconditional branch is x‘3FFF FFC’ (the 26-bit representation of -4), the target
address is x‘FFFF FFFC’ (0 - 4 bytes, or 4 bytes below the top of memory).

2.7.2 Conditional Branch Operations

Conditional branch instructions can test a CR[CR0] bit. The value of the BI field specifies the bit to be
tested. The BO field controls whether the CR bit is tested.

The BO field of the conditional branch instruction specifies the conditions used to control branching, and
specifies how the branch affects the CTR. Conditional branch instructions can decrement the CTR by one,
and after the decrement, test the CTR value.

For details see the descriptions of the bc, bclr and bcctr instructions.

2.7.3 Fused Compare-Branch Operations

PPE 42 fused compare-branch instructions update CR[CR0] either as the result of a comparison
(cmplwbc, cmpwbc, cmpwibc) or as the result of a 32-bit value computation (bnbw, bnbw, clrbwbc,
clrbwibc).

For the comparison forms, the branch is taken if a bit of the resulting CR[CR0] specified by the BIX field
has the same value as the PIX field of the instruction. For the value forms, the branch is controlled by the
PIX field and the EQ bit (bit 2) of CR[CR0].

For details see the descriptions of the individual fused compare-branch instructions.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 22 of 288

2.8 Precise and Imprecise Memory Accesses
The PPE 42 core implements a hazard-free pipeline. Load-use dependencies are eliminated by requiring
all loads to complete in the GPRs before the instruction following the load is executed. This means that the
PPE 42 pipeline always stalls for loads, and all errors caused by load instructions are reported precisely.

PPE 42 provides an option to allow the memory subsystem to treat stores imprecisely. Imprecise mode
allows the memory interface to process store requests in parallel with continued instruction processing by
the core. This may increase performance, at the expense of precise error reporting and recovery.

The imprecise option is selected by setting MSR[IPE] to '1'. Whether the memory subsystem of a PPE 42
instance supports imprecise mode for any interface is instance specific, however if an instance does
support imprecise mode then imprecise stores are only allowed when MSR[IPE] = '1'.

The number of outstanding store requests, and the ordering of store completion with respect to a single
memory or multiple memories in imprecise mode is instance-specific. Since PPE 42 is an in-order core, it
can be guaranteed however that stores are always presented to the memory interface in program order.In
precise mode, all errors for loads, stores and all cache management operations are presented precisely.
This means that in the event of an error causing an interrupt, SRR0 will contain the address of the
erroneous load, store or cache management instruction.

In imprecise mode, errors from stores and all cache management operations may be presented
imprecisely. This means that in the event of an error causing a machine check interrupt, SRR0 may not
contain the address of the erroneous instruction, but instead may contain the address of a subsequent
instruction. However, the EDR will contain the data address associated with the imprecise operation that
reported the error. It is also possible that multiple imprecise errors may be reported simultaneously in
imprecise mode, and in this case it is instance-specific which of the erroneous memory addresses is
reported in the EDR.

Note that even though loads are always precise, an imprecise error for a previous imprecise store or cache
management instruction may be reported by a load instruction. In fact, imprecise errors may be reported on
any type of instruction if the instruction is interrupted by an asynchronous interrupt, and imprecise errors
are pending in the memory subsystem. Careful analysis of the EDR, ISR, SRR0 and SRR1 may be
required to diagnose and recover from errors in imprecise mode.

The processor always begins execution of interrupt handlers in precise mode. Imprecise mode is enabled
and disabled by using the mtmsr instruction to modify MSR[IPE]. Since both of these events are context
synchronizing, all imprecise errors caused by instructions previous to the entry of the interrupt handler, or
previous to the execution of the mtmsr instruction will have been reported before execution can continue.
Therefore it is never possible for the program to receive a new imprecise error if MSR[IPE] = '0'.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 23 of 288

2.9 Synchronization
The following types of synchronization are recognized:

• Execution Synchronization: This type of synchronization guarantees that all instructions
preceding the synchronizing instruction have completed in the previous context, including the
reporting of any and all exceptions the preceding instructions may report.

• Context Synchronization: Context synchronization extends execution synchronization with the
further requirement that all instructions subsequent to the synchronizing instruction execute in the
context established by the synchronizing instruction.

• Storage Synchronization: This type of synchronization extends execution synchronization with the
further requirement that all storage accesses by the preceding instructions have completed with
respect to all mechanisms that access storage.

• Sequential Execution with Respect to Asynchronous Interrupts: This type of synchronization
guarantees that if any instruction causes or unmasks an asynchronous exception, the associated
asynchronous interrupt will be taken before the next sequential instruction is executed.

The PPE 42 core guarantees sequential execution with respect to asynchronous interrupts by serializing
any instruction that might cause or unmask an asynchronous interrupt, then taking such an interrupt (or
another higher priority interrupt if also pending) prior to fetching the next sequential instruction. The
instructions implemented this way are all mtspr, wrtee and wrteei.

PPE 42 implements all synchronizing instructions as context synchronizing. This fact plus sequential
execution with respect to asynchronous interrupts means that in general, PPE 42 programs would not
require the Power ISA isync instruction, therefore PPE 42 does not implement isync. The PPE 42 context
synchronizing instructions are mfmsr, mtmsr, rfi and sync. The sync instruction is also storage
synchronizing.

2.9.1 Synchronization and Storage Ordering

The PPE 42 core never executes loads out of order, therefore loads are always completed in program
order, and any instruction following a load is never executed until the load completes.

Handling of stores is instance-specific. To guarantee store ordering and completion, two methods are
available:

1. A series of one or more stores can be followed by a sync instruction, to guarantee that all
preceding stores are complete before proceeding.

2. The processor can be placed into precise mode (MSR[IPR] = '0') prior to a sequence of stores.

As discussed earlier, in precise mode stores are required to complete up to the point of exception reporting
before the core is allowed to continue. For most anticipated memory interfaces, this type of completion is
equivalent to storage synchronization. Exceptions would include memory units like write-gathering bus
bridges that might report error-free transaction completion immediately, but not flush local buffer contents to
the final destination memory (and signal memory synchronization) until later.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 24 of 288

2.9.2 Synchronization, Interrupts and Error Reporting

All interrupts are context synchronizing. Whenever an unmasked exception is present, the interrupt taken
will always be the highest priority interrupt after execution synchronization. The MSR after execution
synchronization is saved in SRR1, and execution continues at the interrupt vector in the context of the new
MSR as defined for each interrupt. The MSR saved in SRR1 will record Service Interface Bus (SIB) status
of all instructions preceding the interrupt. Similarly, since mfmsr is context synchronizing, the value
returned by the mfmsr instruction includes the SIB status of all instructions preceding the mfmsr
instruction. See further below for a discussion of the SIB abstraction.

When an interrupt handler returns by executing an rfi, if a synchronous imprecise exception is pending in
the memory interface it will be reported as an interrupt in lieu of executing the rfi. This means that SRR0
and SRR1 will be destroyed, and the rfi instruction will not be directly recoverable in this case.

2.10 Non-Maskable Interrupts
The machine check, program, data storage, instruction storage and alignment interrupts are considered
non-maskable. These interrupts are required to either be processed as soon as they occur, or immediately
halt the processor.

The machine check interrupt is taken as an interrupt only if MSR[ME] is '1'. The other unmaskable
interrupts are taken as specified only if MSR[UIE] = '1'. However, if a non-maskable interrupt (other than a
machine check) occurs when MSR[UIE] = '0' but MSR[ME] = '1', the interrupt is promoted and taken as a
machine check interrupt. When an interrupt is promoted, all of the ISR updates of the original interrupt take
place, however execution continues at the machine check interrupt vector and ISR[MCS] is set to indicate
that the machine check interrupt was due to a promoted unmaskable interrupt.

If an unmaskable interrupt can not be taken as an interrupt due to MSR[ME] = '0', then the core processes
the interrupt up to the point that the first instruction of the interrupt vector would be fetched, and then halts.
Halts due to unmaskable interrupts are reported in the XSR as XSR[HC] = '011'.Service Interface Bus (SIB)

The PPE 42 core provides special architectural resources and error reporting for transactions on a Service
Interface Bus (SIB). It is instance-specific whether an instance of PPE 42 provides a SIB abstraction, and
how it is mapped into the flat 4 GB address space if present.

The SIB abstraction is a memory interface that provides up to 8 unique return codes for memory
transactions, where return code 0 indicates “success”. The remaining 7 return codes are not otherwise
interpreted by the PPE 42 core, however for data transactions these 7 codes can be individually enabled
and disabled from causing a machine check exception. Instruction execution from SIB memory spaces is
also supported, however non-0 return codes for SIB instruction accesses are always considered fatal errors
and cause a machine check exception.

If a SIB access returns a 0 return code, the assumption is that data loaded into GPRs is correct, and data
stored to SIB memories has been stored correctly. In the event of non-0 SIB return codes, the data loaded
into a GPR, and the effect on the environment for stores is instance specific.

SIB error control and reporting fields appear in the machine state register (MSR). For further details on SIB
support please see the following section 2.11.5, Machine State Register – MSR..

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 25 of 288

2.11 Special-Purpose Registers
All PPE 42 registers and their fields are documented in section 8, Register Summary. This section covers
Special-Purpose Registers (SPRs) that are integral to the PPE 42 programming model but not otherwise
described in detail in this manual.

2.11.1 Link Register – LR

The LR is written from a GPR using the mtspr (mtlr) instruction, and read into a GPR using the mfspr
(mflr) instruction. LR is also updated by branch instructions that have the LK bit set to 1. These branch
instructions load the LR with the address of the next instruction that follows the branch instruction. Thus,
the LR contents can be used as the return address for a subroutine that was called using the branch.

The LR contents can be used as a target address for the branch conditional to link register (bclr)
instruction. This allows branching to any address.

When the LR contents are used as an instruction address, LR30:31 are ignored and substituted with ‘00’ on
the instruction interface, as all instruction addressess must be word-aligned. However, when the LR is read
or written using an mfspr or mtspr instruction, all 32 bits are read or written.

With careful programming the LR can also be used as a 32-bit scratch register.

2.11.2 Count Register – CTR

The CTR is written from a GPR using the mtspr (mtctr) instruction, and read into a GPR using the mfspr
(mfctr) instruction.

Conditional branch instructions (bc, bclr) can optionally specify the CTR to decrement, and to use a
zero/non-zero result of the decremented CTR to control the branch.

The CTR contents can be used as a target address for the branch conditional to counter (bcctr) instruction.
This allows branching to any address.

When the CTR contents are used as an instruction address, CTR30:31 are ignored and substituted with ‘00’
on the instruction interface, as all instruction addresses must be word-aligned. However, when the CTR is
read or written using an mfspr or mtspr instruction, all 32 bits are read or written.

With careful programming the CTR can also be used as a 32-bit scratch register.

2.11.3 Condition Register – CR

The Power ISA Condition Register (CR) contains eight 4-bit fields, CR0 – CR7. PPE 42 only implements
the CR0 field, but reserves ISA features for other CR fields to ensure future compatibility.

The CR fields contain conditions detected during the execution of arithmetic and logical instructions, and
integer or logical comparison instructions, as indicated in the instruction descriptions. The CR[CR0]
contents can be used in conditional branch instructions. The CR[CR0] contents are always used by PPE 42
fused compare-branch instructions.

The CR[CR0] field can be modified in any of the following ways:

• The mtcr0 instruction sets CR[CR0] by writing to CR[CR0] from a GPR.

• The “with update” forms of arithmetic and logical instructions implicitly update CR[CR0].

• Integer comparison instructions update a specified CR field, which PPE 42 requires to be CR[CR0].

• PPE 42 fused compare-branch instructions implicitly update CR[CR0]

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 26 of 288

2.11.3.1 CR[CR0] Fields After Comparison Instructions

Comparison instructions compare two 32-bit values. The Power ISA instructions

cmplw, cmplwi, cmpw and cmpwi,

and the PPE-specific fused compare-branch instructions

cmplwbc, cmpwbc and cmpwibc

are considered comparison instructions for the purposes of the following discussion.

The two types of comparison instructions are arithmetic instructions and logical instructions. These
instructions are distinguished by the interpretation given to the 32-bit values compared. For arithmetic
comparisons, the values are considered to be signed, 2's complement integers. For logical comparisons,
the values are considered to be unsigned.

As an example, consider the comparison of 0 with x‘FFFF FFFF’. In an arithmetic comparison, 0 is larger,
because x‘FFFFFFFF’ represents -1; in a logical comparison, x‘FFFFFFFF’ is larger.

PPE 42 comparison instructions always specify an update of CR[CR0]. This is an encoding restriction for
the Power ISA comparison instructions, and implied for the PPE 42 fused compare-branch instructions. The
first data operand of a comparison instruction specifies a GPR. The second data operand specifies another
GPR, 16-bit signed immediate data derived from the IM field of the immediate instruction form, or 5-bit
unsigned (positive) immediate data derived from the UIX field of fused compare-branch immediate-form
instructions. The contents of the GPR specified by the first data operand are compared with the contents of
the GPR specified by the second data operand (or with the immediate data). See descriptions of the
comparison instructions for precise details.

The table below details how CR[CR0] is interpreted after a comparison.

Table 1.4: CR[CR0] After Comparison Instructions

CR[CR0] Bit Mnemonic Interpretation

0 LT The first operand is less than the second operand.

1 GT The first operand is greater than the second operand.

2 EQ The first operand is equal to the second operand.

3 SO Summary overflow; a copy of XER[SO]

Note that comparison instructions do not update XER[SO]. XER[SO] is copied to CR[CR03] during
comparison instructions for consistency with update-form instructions which may also update XER[SO].

2.11.3.2 CR[CR0] Fields After Update-Form Instructions

Many PPE 42 instructions optionally, explicitly or implicitly update CR[CR0] as described here. These
instructions include the optional or explict “dot” forms of arithmetic and logical instructions. The PPE 42
fused compare-branch instructions

bnbw, bnbwi, clrbwbc and clrbwibc

also behave as implicit update-form instructions with respect to CR[CR0].

Update-form instructions compute a 32-bit result. The table below details how the bits of CR[CR0] are set
by update-form instructions.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 27 of 288

Table 1.5: CR[CR0] After Update-Form Instructions

CR[CR0] Bit Mnemonic Interpretation

0 LT Less than 0; set if the most significant bit of the 32-bit result is '1'.

1 GT Greater than 0; set if the 32-bit result is non-0 and the most significant bit of the 32-bit result is '0'.

2 EQ Equal to 0; set if the 32 bit result is 0.

3 SO Summary overflow; a copy of XER[SO] at instruction completion

The CR[CR0]LT, GT, EQ subfields are set as the result of an algebraic comparison of the instruction result to 0,
regardless of the type of instruction that sets CR[CR0]. If the instruction result is ‘0’, the EQ subfield is set
to ‘1’. If the result is not 0, either LT or GT is set, depending on the value of the most-significant bit of the
result.

When updating CR[CR0], the most significant bit of an instruction result is considered a sign bit, even for
instructions that produce results that are not usually thought of as signed. For example, logical instructions
such as and., or., and xor. update CR[CR0]LT, GT, EQ using such an arithmetic comparison to 0, although the
result of such a logical operation is not actually an arithmetic result.

If an arithmetic overflow occurs, the sign of an instruction result indicated in CR[CR0]LT, GT, EQ might not
represent the true (infinitely precise) algebraic result of the instruction that set CR[CR0]. For example, if an
addc. instruction adds two large positive numbers and the magnitude of the result cannot be represented
as a 2's complement number in a 32-bit register, an overflow occurs and CR[CR0]LT, SO are set, although the
infinitely precise result of the add operation is positive.

Adding the largest 32-bit 2's-complement negative number, x‘80000000’, to itself results in an arithmetic
overflow and x‘00000000’ is recorded in the target register. CR[CR0]EQ, SO is set, indicating a result of 0, but
the infinitely precise result is negative.

The CR[CR0]SO subfield is a copy of XER[SO]. Instructions that do not alter the XER[SO] bit cannot cause
an overflow, but even for these instructions CR[CR0]SO is a copy of XER[SO].

2.11.3.3 mtcr0 and mfcr

The mtcr0 instruction sets CR[CR0] from the 4 high-order bits of a GPR. The mfcr instruction sets the 4
high-order bits of a GPR with the contents of CR[CR0], and clears the 28 low-order bits of the GPR.

2.11.4 Fixed-Point Exception Register – XER

The XER records overflow and carry conditions generated by integer arithmetic instructions. The Summary
Overflow (SO) field is set to ‘1’ when instructions cause the Overflow (OV) field to be set to ‘1’. The SO field
does not necessarily indicate that an overflow occurred on the most recent arithmetic operation, but that an
overflow occurred since the last clearing of XER[SO].

XER[OV] is set to indicate whether an instruction that updates XER[OV] produces a result that overflows
the 32-bit target register. Setting the XER[OV] bit to ‘1’ indicates an overflow. For arithmetic operations, an
overflow occurs when an operation has a carry-in to the most-significant bit of the result that does not equal
the carry-out of the most-significant bit (that is, the exclusive-or of the carry-in and the carry-out is ‘1’).

The mtspr(XER) instruction sets XER[SO] to the value of bit position 0 and XER[OV] to the value of bit
positions 1 in the source register. When set, XER[SO] is not reset until an mtspr(XER) instruction is
executed with data that explicitly puts a ‘0’ in the SO bit.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 28 of 288

Table 1.6: Instructions that Update XER[SO, OV]

Add Subtract Negate Special

addco[.]
addeo[.]
addmeo[.]
addo[.]
addzeo[.]

subfco[.]
subfeo[.]
subfmeo[.]
subfo[.]
subfzeo[.]

nego[.] mtspr (XER)

The Carry (CA) field is set to indicate whether an instruction that updates the XER[CA] bit produces a result
that has a carry-out of the most-significant bit. Setting the XER[CA] bit to ‘1’ indicates a carry. The
mtspr(XER) instruction sets XER[CA] to the value of bit position 2 in the source register.

The sraw[.] and srawi[.] instructions set XER[CA] differently. These instructions set XER[CA] to '1' if any 1-
bits are shifted out of the least-significant bit position, otherwise '0'. For more information see the instruction
description of each instruction.

Table 1.7: Instructions that Update XER[CA]

Add Subtract Shift Special

addco[.]
addeo[.]
addic
addic.
addmeo[.]
addzeo[.]

subfco[.]
subfeo[.]
subfic
subfzeo[.]

sraw[.]
srawi[.]

mtspr (XER)

2.11.5 Machine State Register – MSR

The MSR controls processor core functions, such as the enabling or disabling of interrupts. The MSR also
includes error status for SIB accesses, as well as “hint” bits that have no effect on the operation of the core,
but may affect the programming model and memory operations outside of the core. MSR fields and layout
are summarized in section 8, Register Summary.

The MSR is written from a GPR using the mtmsr instruction. The contents of the MSR can be read into a
GPR using the mfmsr instruction. MSR[EE] may also be set or cleared using the write external enable
(wrtee) or the write external enable immediate (wrteei) instructions.

2.11.5.1 Interrupt Processing and Control

The system reset interrupt and the machine check interrupt clear all fields of the MSR except MSR[SIBRC].
All other interrupts clear all fields of the MSR except for MSR[ME] (the machine check interrupt enable) and
MSR[SIBRC]. Prior to modifying the MSR during interrupt processing, the contents of the MSR are copied
to SRR1. The value of the MSR copied to SRR1 includes the reporting of any error status for all SIB
transactions outstanding prior to the interrupt.

MSR[ME] controls whether machine check interrupts are processed (MSR[ME] = '1') or cause the
processor to halt (MSR[ME] = '0'). MSR[UIE] controls whether program, alignment, data storage and
instruction storage interrupts are processed (MSR[UIE] = '1'), or cause the processor to halt (MSR[UIE] =
'0' and MSR[ME] = '0'), or are promoted to machine check interrupts (MSR[UIE] = '0' and MSR[ME] = '1').
MSR[EE] controls whether the external interrupt, decrementer, fixed-interval timer and watchdog interrupts
are processed (MSR[EE] = '1') or masked (MSR[ME] = '0').

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 29 of 288

2.11.5.2 WAIT mode

Setting MSR[WE] = '1' causes the processor to enter the wait state, in which instructions are no longer
fetched and executed. The processor remains in the wait state until an asynchronous exception occurs.
The processor also leaves the wait state in the event of a system reset, or if the processor is halted by an
external agent. Note that since the mtmsr instruction that sets MSR[WE] = '1' is context synchronizing, any
pending imprecise data machine checks will be reported prior to the processor being allowed to enter the
wait state.

2.11.5.3 Imprecise Mode Enable

MSR[IPE] controls whether memory and cache instructions execute precisely or imprecisely. Precise mode
is discussed above in section 2.8, Precise and Imprecise Memory Accesses.

2.11.5.4 SIB Error Reporting and Accumulation

The MSR[SEM] (SIB error mask) field controls whether SIB return codes 1 through 7 for data loads and
stores to SIB memory spaces are either treated as machine check exceptions or ignored for the purposes
of error reporting. A SIB return code of 0 for a SIB transaction never generates an error. Non-0 SIB return
codes for instruction fetches from SIB memory spaces always cause a machine check exception.

The return code for the last completed SIB data access can always be read from MSR[SIBRC].
MSR[SIBRC] is also updated in the event that a SIB instruction fetch causes an error. Whenever unmasked
SIB data errors or SIB instruction errors occur, MSR[SIBRC] is updated with the return code causing the
error, and the updated MSR is copied to SRR1 during error interrupt processing, which then clears other
fields of the MSR.

MSR[SIBRCA] is the SIB return code accumulator. These status bits record whether any of the SIB return
codes have been observed since the last time the bit was cleared. MSR[SIBRCA] includes a bit for SIB
return code 0, so that software can observe whether any of a set of SIB accesses succeeded, as well as
observing if any non-0 return code was returned by a set of accesses.

MSR[SIBRCA] fields are cleared by a direct write of the bit with 0, so normally they will be cleared by a
read-modify-write of the MSR. MSR[SIBRCA] is only updated for erroneous SIB instruction accesses.

2.11.5.5 Low-Priority Mode

The PPE 42 core asserts a priority signal to the environment whenever MSR[LP] = '0' or ISR[EP] = '1'. The
value of MSR[LP] and the state of the priority signal have no effect on the operation of the core, and the
priority signal is not required to have any effect in the environment.

This mechanism is designed to support resource-constrained environments. The assumption is that PPE
42 will be used in real-time systems where the majority of tasks have fixed deadlines, and thus demand
priority access to resources. For this reason the default value of MSR[LP] = '0'. Some tasks however may
be viewed as lower in priority, and can elect to set MSR[LP] = '1' to signal lower priority to the environment.

ISR[EP] = '1' also asserts priority to the external environment to help avoid priority inversion. If a task is
running with MSR[LP] = '1' and an asynchronous interrupt is also pending, the assumption is that the
interrupt needs to be handled with priority, but the low-priority task has interrupts temporarily disabled.
Therefore priority is asserted to help enable the low-priority task to complete its critical section as quickly as
possible so that the interrupt can be taken. Taking the interrupt re-establishes priority when MSR[LP] is set
to '0' during interrupt processing.

2.11.5.6 Instance-Specific Control

The PPE 42 MSR provides 4 uninterpreted control fields, MSR[IS0, IS1, IS2, IS3]. The fields have no effect

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 30 of 288

on the operation of the core itself, and the behavior they control (if any) is fully defined by the instance-
specific environment. Like most other MSR fields, these Instance Specific fields are cleared by all
interrupts, restored from SRR1 during execution of rfi instructions, and may also be written directly using
the mtmsr instruction.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 31 of 288

3 Initialization,Reset, and Starting Execution
This section covers the initial (power-on, scan-flush) state of the core,state transitions that occur during
internal and external resets, as well as how to start executing instructions.

3.1 Initial State
The initial power-on (scan-flush) state of all bits of all architected general-purpose registers (GPRs),
special-purpose registers (SPRs) and external interface registers (XIRs) is '0', except for XSR[HCP] which
initializes to '1', and the processor control state (observable as XSR[SMS]) which initializes consistent with
the core being halted. In other words, the PPE 42 core initializes to the halted state. An instantiation of the
PPE 42 core may provide instance-specific means to override these defaults, which will be documented
with each instance.

3.2 Reset Operations
The PPE 42 core can be reset in one of four ways:

• By the environment asserting the external hreset_req signal for one or more cycles;

• By a second watchdog timer (WDT) event when TCR[WRC] is either '01' or '10';

• By writing DBCR[RST] with either '01' or '10';

• By writing XCR[CMD] with either '101' or '110'.

Two types of reset are supported. A soft reset is initiated by a second WDT event when TCR[WRC] = '01' or
by writing DBCR[RST] with '01' or by writing XCR[CMD] with '101'. A hard reset is initiated by the active
level of the external hreset_req signal, a second WDT event when TCR[WRC] = '10',by writing DBCR[RST]
with '01' or by writing XCR[CMD] with '110'. The differences between soft and hard resets are instance
specific in the memory subsystem and will be documented with each instance of the PPE 42 core. Resets
initiated by the hreset_req signal also have unique behavior as documented below. In the event that
both a hard and soft reset are asserted simultaneously, the hard reset takes priority.

All resets are implemented as interrupts to the processor and cause it to take a system reset interrupt. As a
by-product of taking the system reset interrupt, SRR0 and SRR1 will contain the IAR and MSR current at
the time of the reset when the system reset vector begins execution. Resets that occur when the processor
is halted do not cause instructions to start executing, except for the external hreset_req which also
clears the halted state.

Note that if the processor is not halted when the reset occurs, the instruction addressed by SRR0 may be
unexecuted, partially executed or fully executed with respect to the processor state at the time of the reset.
Resets are truly asynchronous events that are handled immediately, aborting any in-flight instruction in
execution at the time of the reset event. However a core reset can not complete until the memory
subsystem has also acknowledged the reset, which means that reset operations may be delayed or hang.
If a reset operation is hung, the only debugging option may be to force-halt the processor by writing
XCR[CMD] = '111' as described in the Debugging Procedures chapter.

Also note that if the reset is initiated externally by the hreset_req signal, the processor will effectively
remain in the reset state (neither running nor halted) until the hreset_req signal is deasserted, at which
time the reset-specific state changes are made and instructions start executing at the system reset interrupt
vector as soon as the memory subsystem acknowledges the hard reset. How the hreset_req is handled
by the memory subsystem is instance specific but must always cause it to acknowledge the resultant reset
request from the core.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 32 of 288

3.3 Core State Subsequent to a Reset Event
Reset operations only modify the minimum amount of state required to ensure deterministic operation after
a reset operation completes. This can aid debugging, particularly if the reset was caused by a watchdog
timeout. The DBCR is cleared to ensure that no unexpected debug halt events occur, TCR[WRC] is cleared
to ensure that no unexpected watchdog events occur, and the system reset interrupt handler can check for
a non-zero value in TSR[WRS] to determine is the reset was due to a watchdog timeout.

The table below details the register state after each type of reset. Any part of the architected state not
specifically mentioned below does not change as a result of the reset. As noted above, the GPR state and
other SPR state may or may not reflect execution of the instruction addressed by SRR0 at entry to the
system reset interrupt handler.

Table 1.8: PPE 42 Core State Subsequent to a Reset Event

Register Field
Field or Register Value by Reset Type

hreset_req WDT reset DBCR[RST] XCR[CMD]

DBCR DBCR ← x'0000 0000'

IAR IAR ← IVPR || 0x040 (System Reset Vector)

ISR SRSMS Set to the core state machine state, current on the first cycle reset was asserted

MSR MSR[SIBRC] is unchanged; All other MSR fields are reset to 0

SRR0 SRR0 ← IAR at the time of the reset

SRR1 SRR1 ← MSR at the time of the reset

TCR WRC TCR[WRC] ← '00'

TSR WRS Unchanged TSR[WRS] ← TCR[WRC] Unchanged Unchanged

XSR HCP XSR[HCP] ← '0' Unchanged Unchanged Unchanged

HC XSR[HC] ← '000'

RIP XSR[RIP] ← '0'

SIP XSR[SIP] ← '0'

The programmer will observe the reset state described in the above table at the entry to the system reset
interrupt handler. Technically, the state changes described above occur as follows:

• Whenever the processor enters the RESET state from a non-RESET state, the current state
machine state is copied to ISR[SRSMS].

• Whenever a second watchdog timeout occurs with TCR[WRC] not equal to '00', TSR[WRS] takes
the value of TCR[WRC].

• The processor enters the RESET state for at least one cycle while waiting for the memory
subsystem to acknowledged the reset. The state changes to the DBCR, TCR and XSR occur during
this time.

• The changes to the MSR, SRR0 and SRR1 occur during processing of the system reset interrupt,
which occurs immediately after the memory subsystem has acknowledged the reset.

Note that only the assertion of the external hreset_req input clears XSR[HCP], which means that the
processor will always begin execution after this event. As a debugging aid, the other reset conditions do not
modify XSR[HCP]. This allows the processor to be reset but remain halted, which supports debugging
applications from their initial state.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 33 of 288

3.4 Starting Instructions
The processor will start executing instructions from a Halted state at the location stored in the IAR from an
initial or reset state, unless an external interrupt is pending which is only possible if the PPE has been
halted while running. Prior to starting instructions, the IAR can be written directly by the XIR interface. The
IAR can also be set to the system reset interrupt vector (IVPR || 0x040) by requesting a reset using one of
the above indicated methods.

If the processor is initially powered-on or was reset from a bad state, the IVPR should also be initialized
such that any subsequent interrupts fetch from the correct memory location prior to starting instructions. In
addition, the XIR interface can optionally be used to RAM registers necessary to define the desired starting
machine state, unless relying on software to set those registers on a System Reset as described in the next
section.

Otherwise, if the processor experienced a debug halt condition while running, XCR[CMD] should be written
with “000” to clear the debug-related XSR fields prior to starting instructions.

Once the desired starting processor state has been established, the XIR interface can be used to to start
instructions as follows (using the XIR interface):

1. Write XCR[CMD] with '010'.

2. Optionally check that XSR[HS] = '0', which should be true immediately after step 1 completes.

Instructions can also be started by asserting then deasserting the hreset_req, for instances that connect
that input, as described in the previous section.

3.5 System Reset Interrupt Handler
Upon the System Reset interrupt taken after being reset, software may want to first save away any debug
state of the processor before it gets modified by executing future instructions. This includes a subset of the
SPRs such as the TSR, SRR0, SRR1, SPRG0, ISR, LR, and EDR registers which may hold clues of what
was happening at the time of the reset.

In the System Reset interrupt handler, software must establish the desired execution behavior, starting from
the core state described in the previous section. This involves setting the TCR, DBCR, and MSR to their
desired values, then clearing the TSR (since the TSR[WSR] does not get reset and so must rely on
software to clear it).

Although not required, it is recommended for cleanliness and subsequent debug for software to also clear
the SRR0, SRR1, SPRG0, LR, and EDR registers after receiving a System Reset.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 34 of 288

4 Interrupts and Exceptions
An interrupt is the action in which the processor saves its old context (MSR and instruction pointer) and
begins execution at a predetermined interrupt-handler address, with a modified MSR. Exceptions are
events that, if enabled, cause the processor to take an interrupt. Exceptions are generated by signals from
external peripherals, instructions, internal timer facilities, debug events, or error conditions.

Section 4.2, Interrupt Vector Offsets lists the interrupts that the PPE 42 core handles in the order of
interrupt vector offsets. Detailed descriptions of each interrupt follow, in the same order.

Several registers support interrupt handling and control. Section 4.4, General Interrupt Handling Registers
describes the general interrupt handling registers:

• Error Data Register (EDR)

• Interrupt Status Register (ISR)

• Interrupt Vector Prefix Register (IVPR)

• Machine State Register (MSR)

• Save/Restore Registers (SRR0, SRR1)

4.1 Architectural Definitions and PPE 42 Behavior
The default behavior of the PPE 42 core is to handle interrupts precisely. An imprecise mode is available by
setting MSR[IPE] = '1'. In imprecise mode, data machine checks for store operations may be imprecise.
Note that the terminology used to describe interrupts in the PPE 42 architecture differs slightly from the
Power ISA specification.

4.1.1 Interrupt Precision

In the PPE 42 architecture, an interrupt is said to be precise if the following conditions are met:

• The saved instruction pointer must be either the address of the excepting instruction or the address
of the next sequential instruction.

• All instructions before the one whose address is reported to the interrupt handling routine in the
save/restore register have completed execution. All storage accesses generated by these
preceding instructions have also completed to the point that any and all exceptions they might
report have been reported.

• All load operations generated by these preceding instructions have completed with respect to the
PPE 42 GPRs, including the address updates for update-form addressing.

• All store operations generated by these preceding operations have completed from the point of
view of the PPE 42 core. This does not guarantee that these stores have completed with respect to
all mechanisms that access storage.

• No subsequent instruction has begun execution, including the instruction whose address is
reported to the interrupt handling routine.

• The instruction having its address reported to the interrupt handler has not executed or partially
executed with respect to the PPE 42 core architected state, other than updates to error reporting

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 35 of 288

SPRs. This does not guarantee that state outside of the PPE 42 core has not been modified by any
attempted or partial execution of the instruction.

In the PPE 42 architecture, the following conditions are true for imprecise interrupts:

• The saved instruction pointer holds the address of an instruction that has not been executed. This
instruction may or may not be the cause of the interrupt.

• All instructions before the one whose address is reported to the interrupt handling routine in the
save/restore register have completed execution with respect to the PPE 42 core architected state.

• Storage accesses generated by these preceding instructions may or may not have completed,
however any exceptions they might report have been reported.

• All load operations generated by these preceding instructions have completed with respect to the
PPE 42 GPRs, including the address updates for update-form addressing.

• No subsequent instruction has begun execution, including the instruction whose address is
reported to the interrupt handling routine.

• The instruction having its address reported to the interrupt handler has not executed or partially
executed with respect to the PPE 42 core architected state, other than updates to error reporting
SPRs. This does not guarantee that state outside of the PPE 42 core has not been modified by any
attempted or partial execution of the instruction.

The system reset interrupt is a special form of unmaskable interrupt that is imprecise, but can not be
guaranteed to satisfy all of the above conditions. All that can be guaranteed about the system reset
interrupt is that the saved instruction address and saved MSR were current at the time of the system reset
event, and no state changes or exceptions from instructions previous to or contemporary with the saved
instruction address will take place or be reported respectively after the system reset interrupt is taken.

4.1.2 Asynchronous, Synchronous, and Machine Check Interrupts

Asynchronous interrupts are caused by events that are independent of instruction execution. In the PPE 42
architecture the External interrupt and all timer interrupts are asynchronous, precise interrupts.
Asynchronous interrupts effectively occur between instructions, and the address reported in SRR0 is
always the address of the next sequential (unexecuted) instruction. Technically, asynchronous interrupts
are recognized before the execution of the next instruction, rather than after the execution of the current
instruction. This distinction is only significant when single-stepping instructions during debugging.

Synchronous interrupts are caused directly by the execution or attempted execution of instructions.
Synchronous interrupts can be either precise or imprecise. In the PPE 42 architecture instruction storage,
data storage, alignment and program interrupts are synchronous, precise interrupts. Instruction machine
check interrupts, all data machine check interrupts for loads, and data machine check interrupts for stores
when MSR[IPE] = '0' are also synchronous, precise interrupts. Data machine check interrupts for stores
when MSR[IPE] = '1' are synchronous, imprecise interrupts.

Instruction-side machine check interrupts are errors that occur during an attempt to fetch an instruction
from an instruction cache (if present) or from external memory. If any fetched instruction is associated with
an exception, an interrupt occurs upon attempted execution of the instruction, not when the instruction is
brought into the instruction cache (if any). Although such an interrupt is asynchronous to the erroneous
memory access, it is handled synchronously with respect to the attempted execution from the erroneous
address.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 36 of 288

Data-side machine checks for stores may be either precise (MSR[IPE] = '0') or imprecise (MSR[IPE] = '1').
Because the PPE 42 core pipeline is hazard-free, all data-side machine checks for loads are precise.

4.1.3 Interrupt Address Reporting

Synchronous, precise interrupts always report the address of the instruction causing the exception in
SRR0. Synchronous, imprecise interrupts typically report the address of an instruction subsequent to the
instruction causing the exception. In either case, all instructions preceding the instruction at the reported
address have been executed, and the instruction at the reported address has not been executed.

4.2 Interrupt Vector Offsets
The Interrupt Vector Prefix Register (IVPR) identifies a 512-byte aligned memory address where the initial
code sequences of interrupt handlers are stored. The IVPR is read-only to the PPE 42 core, however an
instance of the PPE 42 core may provide a means to modify the IVPR as a memory-mapped register. The
PPE 42 IVPR and interrupt vector offsets are defined slightly differently than the Power ISA Book III-E
architecture.

Each interrupt vector is 32 bytes (8 instructions). Interrupt vector offsets are 9 bits. When an interrupt is
taken, the first instruction address executed by the interrupt handler is

(IVPR)0:22 || <Interrupt Vector Offset>

The interrupt vector offsets are defined in the table below. The table also contains a reference to a detailed
description of the interrupt.

Table 1.9: PPE 42 Interrupt Vector Offsets

Offset Interrupt Page

x'000' PPE42: Machine check (all)
PPE42X: Reserved

44

x'020' PPE42: Reserved
PPE42X: Machine check (all)

x'040' System Reset 49

x'060' Data Storage 50

x'080' Instruction Storage 51

x'0A0' External 52

x'0C0' Alignment 53

x'0E0' Program 54

x'100' Decrementer 55

x'120' Fixed Interval Timer 56

x'140' Watchdog Timer 57

X'160' - x'1E0' Reserved

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 37 of 288

4.3 Interrupt Handling
The PPE 42 core handles only one interrupt at a time. Assuming the interrupt types are enabled, multiple
simultaneous interrupts are handled in the priority order shown in Table 1.10: PPE 42 Interrupt and
Exception Priorities and Conditions.

Multiple exceptions can exist simultaneously, each of which requires the generation of an interrupt. The
PPE 42 architecture does not provide for simultaneously reporting more than one interrupt of the same
class, except that multiple data machine checks of different types may be reported concurrently as a single
machine check interrupt. Therefore, interrupts are ordered with respect to each other.

4.3.1 Interrupt Masking

A masking mechanism is available for certain persistent interrupt types. When an interrupt type is masked,
and an event causes an exception which would normally generate an interrupt of that type, the exception
persists as a status bit in a register. However, no interrupt is generated. Later, if the interrupt type is
enabled (unmasked), and the exception status has not been cleared by software, the interrupt that results
from the original exception event is finally generated.

The PPE 42 core provides an external interrupt input signal. The external interrupt is maskable by way of
MSR[EE], however masking the external interrupt also masks the internal timer interrupts.

The machine check, alignment, instruction storage, data storage and program interrupts can not be
masked. If these interrupts are the highest priority pending interrupt, then these interrupts must either be
taken immediately as a branch to an interrupt handler, or the processor halts. Machine check interrupts are
taken when MSR[ME] = '1', and the other unmaskable interrupts are taken when MSR[UIE] = '1'. If an
interrupt controlled by MSR[UIE] would have otherwise been taken, but MSR[UIE] = '0' and MSR[ME] = '1',
the interrupt is promoted to a machine check interrupt and taken as a machine check interrupt. Interrupt
promotion is discussed below in section 4.3.5, Unmaskable Interrupt Promotion.

The system reset action is also unmaskable, and processed as an interrupt. If a system reset interrupt
resets a running processor, then at the entry of the interrupt vector the save/restore registers will contain
the contents of the IAR and the MSR current at the time of the system reset event.

4.3.2 Interrupt Priority

PPE 42 interrupt priorities do not strictly follow the Power ISA Book III-E specification. In particular, all
asynchronous interrupts are prioritized below all synchronous interrupts. Since PPE 42 maintains a
minimum of state, and only implements the single SRR0/SRR1 register pair, it is necessary to order
interrupts and define MSR updates by interrupts in a way that maintains a reasonable priority but precludes
back-to-back interrupts, which are unrecoverable if SRR0/SRR1 are destroyed by a subsequent interrupt
before a first interrupt handler can save SRR0 and SRR1.

Section 4.3.4, Interrupt Halt Semantics details conditions under which the interrupt condition will actually
halt the processor. Note that processor halts due to debug events and halts due to writing XCR[CMD] are
not treated as interrupts and halt the processor immediately. These debug halts effectively have the
highest priority of any exceptional condition other than system reset, including unmaskable interrupts that
may also halt the processor.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 38 of 288

Table 1.10: PPE 42 Interrupt and Exception Priorities and Conditions

Priority Interrupt /Exception Type Cause and/or Interrupt Conditions Halt, Reset and Promotion Conditions

1 System reset
External reset signal;
Writing DBCR[RST] to '01' or '10';
Writing XCR[RST] to '01' or '10'.

Always associated with reset

2 Machine check – data
Attempted load, store or cache operation which
an external memory interface reported as an
error.

Halt if MSR[ME] = '0'.

3 Machine check – instruction
Attempted fetch of an instruction which an
external memory interface reported as an error

Halt if MSR[ME] = '0'.

4 Instruction storage

An instance-specific error associated with an
instruction address, determined before the
address is presented on an external memory
interface.

Halt if MSR[UIE] = '0' and MSR[ME] = '0'.

Promoted to machine check if MSR[UIE] =
'0' and MSR[ME] = '1'.

5 Program
Illegal instruction encoding;
trap instruction when DBCR[TRAP] = '0'

Halt if MSR[UIE] = '0'.

Promoted to machine check if MSR[UIE] =
'0' and MSR[ME] = '1'.

trap halts the processor if DBCR[TRAP] =
'1'.

6 Data Storage
An instance-specific error associated with a data
address, determined before the address is
presented on an external memory interface.

Halt if MSR[UIE] = '0'.

Promoted to machine check if MSR[UIE] =
'0' and MSR[ME] = '1'.

7 Alignment

An instance-specific error associated with the
data address of a load, store or cache
management instruction, determined before the
address is presented on an external memory
interface.

Halt if MSR[UIE] = '0'.

Promoted to machine check if MSR[UIE] =
'0' and MSR[ME] = '1'.

8 Watchdog Timer (WDT)
TCR[WIE] = '1' and TSR[WIS] = '1' for the first
timeout.

The following actions are taken when an
event that would otherwise set TSR[WIS]
occurs, and TSR[WIS] is already '1':

• If TCR[WRC] = '11' the processor
is force-halted.

• If TCR[WRC] = '01' or '10' the
watchdog reset action is taken.

9 External interrupt input Interrupts external to the PPE 42 core N/A

10 Fixed Interval Timer (FIT) TCR[FIE] = '1' and TSR[FIS] = '1' N/A

11 Decrementer (DEC) TCR[DIE] = '1' and TSR[DIS] = '1' N/A

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 39 of 288

4.3.3 Interrupt Processing

The following high-level description of instruction processing with respect to interrupts provides a practical
view of interrupt signaling and priorities.

1. Before beginning processing of the next instruction, if an asynchronous exception is pending and
not masked the processor will take an interrupt.

2. If the address of the next instruction to be executed causes an instruction address compare debug
event, the processor will immediately halt before presenting the instruction address to the storage
subsystem.

3. Fetching the instruction may lead to an instruction machine check exception, or an instruction
storage exception.

4. Decoding the instruction may cause a program exception, which may cause an interrupt or
immediately halt the processor for trap debug events.

5. If the instruction is either a load, store or cache management instruction, the load or store address
may trigger a debug data address compare exception, which may cause the processor to halt
immediately before the address is presented to the memory subsystem.

6. If the instruction is either a load, store or cache management instruction, the load or store address
may trigger a data storage or alignment exception which is taken as an interrupt. Note that both
errors may present simultaneously, and if so the data storage interrupt takes priority.

7. Executing a load, store or cache management instruction may cause a precise data machine check
exception, or may uncover pending imprecise machine check exceptions.

8. Having reached this point without exception, the result of executing the instruction is committed to
the architected state of the core, and the sequence repeats with the next instruction.

Whenever an exception is taken as an interrupt (other than the system reset interrupt), the core must
synchronize execution before proceeding. This specifically means that the core must wait until all memory
operations by preceding instructions have completed to the point that any imprecise data machine checks
that may be reported by the preceding instructions have been reported. This execution synchronization
phase is where interrupt priorities are actually resolved. For example:

• Imprecise data machine checks uncovered here may take priority over the interrupt causing
execution synchronization.

• An asynchronous interrupt that becomes newly pending here may take priority over the interrupt
causing execution synchronization.

The system reset interrupt is a special case with regard to synchronization. Any memory synchronization is
performed during the reset operation, not during interrupt handling. For further details see section 3,
Initialization,Reset, and Starting Execution.

Finally note that if an instruction is interrupted, none of the effects of executing the instruction have been
committed to the architected GPR and SPR state of the core, with the exception of MSR and ISR status bit
changes, EDR updates for certain interrupts, and the GPRs and SPRs whose values had already been
successfully read from memory for the lcxu and lsku instructions. It is also possible that temporary or
permanent error status, or other state changes may be logged in the storage subsystem even if an
interrupted instruction is never executed by the core. From the point of view of the PPE 42 GPR
programming model, however, the interrupted instruction may always be re-fetched and re-executed.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 40 of 288

4.3.4 Interrupt Halt Semantics

If a machine check interrupt occurs with MSR[ME] = '0' the processor will halt. Similarly, if any of the other
unmaskable interrupts occurs (program, alignment, instruction storage or data storage interrupts) with
MSR[UIE] = '0' and MSR[ME] = '0', the processor will halt. These events are treated as normal interrupt
events, except that the processor halts at the interrupt vector address instead of continuing execution at the
interrupt vector address. This means:

• The processor synchronizes execution as normal before taking the highest priority interrupt.

• MSR, ISR, EDR, SRR0 and SRR1 are updated as specified for the interrupt.

• In the case of machine check interrupts, all ISR machine check status will be updated to record the
cause of the most recent machine check.

• In the case of other unmaskable interrupts promoted to machine check interrupts, ISR status for
both the original interrupt and the promoted machine check interrupt will be updated.

• The processor will halt with the interrupt vector address in the IAR.

• XSR[HC] is set to '011' to indicate a halt due to an unmaskable interrupt.

Note that debug events are not treated as interrupts and halt the processor immediately. These debug
halts effectively have the highest priority of any exceptional condition other than system reset, including
unmaskable interrupts that may also halt the processor. Debug halt semantics are discussed in section 7,
Debugging.

The presence of a halt condition, XSR[HCP] = '1', is treated as the lowest-priority exceptional condition,
and causes the processor to halt after completing the current instruction. If the instruction in-flight when
XSR[HCP] becomes '1' causes or unmasks an asynchronous interrupt, the interrupt is not taken but
remains pending. If the instruction in-flight when XSR[HCP] becomes '1' causes a synchronous interrupt,
the interrupt is taken and the processor halts with the IAR addressing the interrupt vector.

4.3.5 Unmaskable Interrupt Promotion

The PPE 42 architecture allows unmaskable interrupts (other than the machine check interrupt) to be
promoted to machine check interrupts if they occur when MSR[UIE] = '0' and MSR[ME] = '1'. This feature
supports the ability for software to attempt to recover or fail gracefully if unmaskable exceptions occur in
contexts where MSR[UIE] = '0', for example, in the interrupt handlers of unmaskable exceptions. When the
machine check interrupt handler is entered, both MSR[UIE] and MSR[ME] will be '0', and any subsequent
unmaskable interrupt will immediately halt the processor.

During interrupt prioritization, the highest priority pending interrupt is selected for execution. If this is either
a program, instruction storage, alignment or data storage interrupt, and MSR[UIE]= '0' and MSR[ME] = '1'
the following actions occur:

• ISR[PTR] is set or cleared (for program interrupts)

• ISR[ST] is set or cleared (for data storage and alignment interrupts)

• The EDR is updated (for data storage and alignment interrupts)

• ISR[MFE] is cleared

• ISR[MCS] is set to indicate that an unmaskable interrupt has been promoted to a machine check

• SRR0/SRR1 are updated as for a machine check interrupt

• Execution continues at the machine check interrupt vector

The machine check interrupt handler can use ISR[MCS] to determine the cause of the machine check and

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 41 of 288

take appropriate action.

4.4 General Interrupt Handling Registers
The general interrupt handling registers are the MSR, SRR0, SRR1, IVPR, ISR and EDR. Full register field
descriptions of these registers appear in section 8, Register Summary.

4.4.1 Machine State Register – MSR

The MSR is a 32-bit register that holds the current context of the PPE 42 core. When an interrupt is taken,
the MSR contents are first synchronized. In particular this means that the contents of MSR[SIBRC] and
MSR[SIBRCA] are both up-to-date with respect to all previous SIB accesses, including a SIB accesses
causing an interrupt, before the MSR is written into SRR1.

Once synchronized, the MSR is written to SRR1, and the MSR is modified in an interrupt-specific way.
When an rfi instruction is executed, the contents of the MSR are loaded from SRR1.

The MSR contents can be read into a General Purpose Register (GPR) using an mfmsr instruction. The
contents of a GPR can be written to the MSR using an mtmsr instruction. The MSR[EE] bit can be set or
cleared atomically using the write to external enable (wrtee) or the write to external enable immediate
(wrteei) instructions.

4.4.2 Save/Restore Registers 0 and 1 – SRR0/1

SRR0 and SRR1 are 32-bit registers that hold the interrupted machine context when an interrupt is
processed. On interrupt, SRR0 is set to the current or next instruction address, depending on the interrupt
type, and the contents of the MSR are written to SRR1. When an rfi instruction is executed at the end of
the interrupt handler, the program counter is restored from SRR0. Likewise, the contents of the MSR are
restored from SRR1.

The contents of SRR0 and SRR1 can be read from and written to GPRs with the mfspr and mtspr
instructions respectively.

Unlike the Power ISA Book III-E architecture, PPE 42 only implements a single pair of save/restore
registers, SRR0 and SRR1, that are used for all interrupts. This restriction means that if an interrupt
handler is interrupted before saving SRR0 and SRR1, the original interrupted context is unrecoverable. The
PPE 42 architecture generally considers this as an unrecoverable error event.

Every taken interrupt clears MSR[EE] and MSR[UIE], and machine check interrupts also clear MSR[ME] to
protect against such back-to-back interrupts. External interrupts can not be taken in these modes, and any
unmaskable interrupts either halt the processor or are promoted to machine check interrupts rather than
continuing with a silently corrupted state. If an application enables both MSR[UIE] = '1' and MSR[ME] = '1',
then the machine check interrupt handler may need to analyze ISR[MCS] and the MSR saved in SRR1 to
determine if an unmaskable interrupt handler has been corrupted by taking the machine check interrupt.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 42 of 288

Several strategies for managing the single SRR0/SRR1 pair are possible:

• Applications running with MSR[EE, ME, UIE] all set to '0' do not need to define interrupt vectors at
all (other than for system reset) and may simply poll for timer and external exceptions. In this mode
all unmaskable interrupts will halt the processor.

• Applications can chose to halt on all unmaskable interrupts by leaving MSR[ME, UIE] = '0'
throughout, while handling maskable interrupts.

• Applications can leave MSR[EE, UIE] = '0' (and MSR[ME] = '0') in all interrupt handlers, but with
other settings in normal application code, especially if unmaskable exceptions should never occur
in interrupt handlers.

• Interrupt handlers can save SRR0/SRR1 to memory and then re-enable MSR[EE] = '1' and/or
MSR[UIE] = '1' and/or MSR[ME] = '1' as appropriate.

4.4.3 Interrupt Vector Prefix Register – IVPR

The Interrupt Vector Prefix Register (IVPR) identifies a 512-byte aligned memory address where the initial
code sequences of interrupt handlers are stored. The IVPR is read-only to the PPE 42 core using the
mfspr instruction. Instances of the PPE 42 core may provide a means to modify the IVPR as a memory-
mapped register.

When an interrupt is taken, the first instruction address executed by the interrupt handler is

(IVPR)0:22 || <Interrupt Vector Offset>

The interrupt vector offsets are defined above in Table 1.9: PPE 42 Interrupt Vector Offsets.

4.4.4 Interrupt Status Register – ISR

The ISR contains several status bits that record information associated with unmaskable interrupts. The
ISR can be read and written using mfspr and mtspr respectively. Note that ISR status bit are guaranteed
to be up-to-date and unambiguous at the entry points of interrupt handlers. Therefore in general there is no
need for interrupt handlers to clear the ISR, although doing so may help avoid confusion when debugging.

4.4.5 Error Data Register – EDR

The EDR is updated when program, data storage, alignment and data machine check exceptions are taken
as interrupts, as noted in the detailed description of the register and the detailed descriptions of the
interrupts. The EDR can be read and written using mfspr and mtspr respectively. The EDR is also read-
only as an XIR, to support external error diagnosis.

4.5 Detailed Interrupt Descriptions
The following sections describe the PPE 42 interrupts in the order of their interrupt vector offsets.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 43 of 288

4.5.1 Machine Check Interrupt – PPE 42 Vector x'000'; PPE 42X Vector x'020'

The Power ISA Book III-E architecture leaves the details of the causes of, and actions taken in response to
machine check interrupts as implementation-dependent. This section describes the PPE 42 implementation
of machine checks.

PPE 42 recognizes instruction and data machine check exceptions. Both types are reported by the
machine check interrupt. A true machine check normally indicates an unrecoverable error in the memory
subsystem, such as an illegal address or uncorrectable memory error. Machine checks may be precise or
imprecise. The PPE 42 also provides for other unmaskable interrupts to be promoted to machine check
interrupts when MSR[UIE] = '0'.

The machine check interrupt is an unmaskable interrupt. If a machine check interrupt is taken with
MSR[ME] = '0', the machine check interrupt makes all of the register updates specified for the machine
check type and then halts the processor with the IAR addressing the first instruction of the machine check
interrupt vector.

Status bits in the ISR are set based on the type of the most recent machine check(s). The type may be
plural because multiple imprecise machine checks may be reported simultaneously.

To aid in program debug, PPE 42X relocates the Machine Check Interrupt Vector from offset x'000' to
previously reserved vector offset x'020', such that instruction fetches to an address offset of zero are
distinguishable from a Machine Check. Programs intended to run on both PPE 42 and 42X should place a
“b 0x20” instruction at the address given by (IVPR)0:22 || x'000' with the first instruction of the Machine
Check interrupt handler at (IVPR)0:22 || x'020'.

4.5.1.1 Service Interface Bus (SIB) Error Reporting and Handling

In the PPE 42 architecture, non-0 Service Interface Bus (SIB) return codes for data accesses will cause
machine check exceptions unless masked by MSR[SEM]. Non-zero SIB return codes may or may not be
recoverable, depending on their instance-specific interpretation. Both masked and unmasked SIB return
codes for SIB data accesses are reported in MSR[SIBRC] and accumulated in MSR[SIBRCA].

Instruction machine checks for instruction fetches from SIB memory areas are not maskable by MSR[SEM].
Any SIB instruction fetch returning a non-0 return code causes an instruction machine check. SIB return
codes for SIB instruction fetches are only reported in MSR[SIBRC] when they cause an instruction machine
check. SIB return codes for SIB instruction accesses are never accumulated in MSR[SIBRCA].

Whenever any interrupt is taken, the SIB return code and SIB return code accumulation in the MSR are
considered part of the interrupted context, not the context of the interrupt handler. The MSR is updated with
SIB return code status before being saved in SRR1, and MSR[SIBRCA] is always set to 0 when an
interrupt is taken.

To support external debugging, MSR[SIBRC] is mirrored in the XSR, and is not cleared by any interrupt. In
general, programmers can disambiguate whether MSR[SIBRC] is from an access in the current context or
the previous context by nothing whether MSR[SIBRCA] contains any set bits. The exception to this rule is
at entry to the machine check interrupt handler when ISR[MCS] = '000' (instruction machine check). In this
case, if the instruction address held in SRR0 is a SIB address, then MSR[SIBRC] is the SIB return code of
the failed SIB instruction fetch.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 44 of 288

4.5.1.2 Instruction Machine Check Handling

Table 1.11: Register Settings During Machine Check-Instruction Interrupts

Register Setting

MSR SEM, IS0, LP, WE, IS1, UIE, EE, ME, IS2, IS3, IPE, SIBRCA ← 0
SIBRC unchanged

SRR0 Written with the address that caused the machine check – instruction interrupt

SRR1 Written with the contents of the MSR, noting that
SIBRC and SIBRCA are unchanged for non-SIB instruction machine checks
SIBRC ← SIB return code, and SIBRCA accumulates status for SIB instruction machine checks

ISR MFE ← '0'
MCS ← '000'
Other fields unchanged

EDR Unchanged

PC PPE 42X: (IVPR)0:22 || x'020'

PPE 42: (IVPR)0:22 || x'000'

Instruction machine checks occur when an error is associated with an instruction fetch, and are always
synchronous and precise. This exception is only signaled when the erroneous instruction is fetched by the
PPE 42 core. This exception is not signaled when an error occurs on an instruction cache line fill. Any error
status on a cache line fill must be held by the instruction cache and only reported to the core on an
attempted fetch from that line. An instruction cache is required to invalidate any cache line after returning
an error for a fetch from that line.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 45 of 288

4.5.1.3 Data Machine Check Handling for Load-Type Operations

Table 1.12: Register Settings During Machine Check-Data, Load-Type Interrupts

Register Setting

MSR SEM, IS0, LP, WE, IS1, UIE, EE, ME, IS2, IS3, IPE, SIBRCA ← 0
SIBRC unchanged

SRR0 Written with the address that caused the machine check – data interrupt

SRR1 Written with the contents of the MSR

ISR MFE ← '0',
MCS ← '001'
Other fields unchanged

EDR Written with the (a) data address causing the error.

PC PPE 42X: (IVPR)0:22 || x'020'

PPE 42: (IVPR)0:22 || x'000'

Data machine checks for loads are always synchronous and precise. The PPE 42 core always waits for
loads to compete before continuing with the next instruction. A data machine check exception for loads is
only signaled when the erroneous data is loaded by the PPE 42 core. This exception is not signaled when
an error occurs on a data cache line fill. Any error status on a cache line fill must be held by the data cache
and only reported to the core on an attempted load from that line. The data cache is required to invalidate
any cache line that returns an error for a load from that line.

Note that the dcbt instruction explicitly hints at a data cache line fill. As per the preceding paragraph, any
errors associated with the data cache line fill are not reported until the core attempts to load from the line.
PPC 42 storage subsystems should not require the core to wait for dcbt to complete in the data cache
before continuing with the next instruction, however if MSR[IPE] = '0', the storage subsystem must report
any errors from a cache line flush caused by dcbt before allowing the core to proceed.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 46 of 288

4.5.1.4 Data Machine Check Handling for Store-type Operations

Table 1.13: Register Settings During Machine Check-Data, Store-Type Interrupts

Register Setting

MSR SEM, IS0, LP, WE, IS1, UIE, EE, ME, IS2, IS3, IPE, SIBRCA ← 0
SIBRC unchanged

SRR0 Written with the address of the instruction causing (precise) or associated with (imprecise) the machine check interrupt

SRR1 Written with the contents of the MSR

ISR MFE ← '0', MCS ← '010' if a single precise machine check is reported
MFE ← '0', MCS ← '011' if a single imprecise machine check is reported
MFE ← '1', MCS ← '011' if multiple imprecise machine checks are reported
Other fields unchanged

EDR Written with the (a) data address causing the error

PC PPE 42X: (IVPR)0:22 || x'020'

PPE 42: (IVPR)0:22 || x'000'

Characteristics of data machine checks for stores are controlled by MSR[IPE]. When MSR[IPE] = '0' all
data machine checks for stores are synchronous and precise. In this mode the PPE 42 core waits for
stores to complete in the memory subsystem, at least up to the point at which any possible errors
associated with the store have been or would have been reported.

If MSR[IPE] = '1' the storage subsystem is allowed to process stores asynchronously with respect to
program execution. In this mode data machine checks for stores may be imprecise, and machine checks
for multiple stores may be reported concurrently. Imprecise store handling is not a requirement. An instance
of PPE 42 may elect to handle all stores precisely, as documented with each instance of PPE 42.

If a machine check is imprecise, the instruction whose address is written to SRR0 is not necessarily the
instruction causing the machine check. Although architecturally this instruction has not been executed and
can be re-executed against the current state, it may be difficult or impossible for a machine check handler
to determine whether the current instruction, or which previous instruction or instructions failed in order to
correctly recover the application.

Note that loads from cacheable addresses, as well as the dcbt and dcbf instructions may indirectly cause
the store of a modified cache line from the data cache. If MSR[IPE] = '0', execution of loads from cacheable
addresses, dcbt and dcbf stall execution until any errors have been or would have been reported from any
associated data cache writeback. Thus it is possible that the error address loaded into the EDR in the event
of a data machine check for a load may be the address of a flushed cache line, not the load, dcbt or dcbf
address. This type of machine check will be reported as a store error.

The multiple-fault error (ISR[MFE] = '1') can only be reported for imprecise store operations. This error
indicates that error recovery information may have been irrevocably lost from the hardware state. In
particular, the EDR will only report one of the data addresses responsible for the multiple machine checks.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 47 of 288

4.5.1.5 Machine Checks Promoted from Other Unmaskable Interrupts

Table 1.14: Register Settings During Promoted Machine Check Interrupts

Register Setting

MSR SEM, IS0, LP, WE, IS1, UIE, EE, ME, IS2, IS3, IPE, SIBRCA ← 0
SIBRC unchanged

SRR0 Written with the address of the instruction causing the promoted machine check interrupt

SRR1 Written with the contents of the MSR

ISR The contents or ISR[PTR, ST] are updated (or not) precisely as if the underlying unmaskable interrupt had been taken
ISR[MFE] ← '0'
ISR[MCS] ← '100' for program interrupts
ISR[MCS] ← '101' for instruction storage interrupts
ISR[MCS] ← '110' for alignment interrupts
ISR[MCS] ← '111' for data storage interrupts
Other fields unchanged

EDR Updated precisely as if the underlying unmaskable interrupt had been taken

PC PPE 42X: (IVPR)0:22 || x'020'

PPE 42: (IVPR)0:22 || x'000'

Program, instruction storage, alignment and data storage interrupts are taken as machine check interrupts
if the interrupt would have otherwise been taken as the highest priority interrupt, but MSR[UIE] = '0' and
MSR[ME] = '1'. All of the state changes take place as for the original interrupt, and are then extended by
the changes specified for machine check interrupts. Execution continues at the machine check interrupt
vector.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 48 of 288

4.5.2 System Reset Interrupt – Vector x'040'

Table 1.15: Register Settings During System Reset Interrupts

Register Setting

MSR SEM, IS0, LP, WE, IS1, UIE, EE, ME, IS2, IS3, IPE, SIBRCA ← 0
SIBRC unchanged

SRR0 Written with the instruction address interrupted by the system reset interrupt

SRR1 Written with the contents of the MSR at the time of the system reset interrupt

ISR SRSMS ← The PPE 42 core state machine state at the time of the system reset
Other fields unchanged

EDR Unchanged

PC (IVPR)0:22 || x'040'

All reset actions are treated as the highest priority, unmaskable event that is immediately taken as an
interrupt.

Treating system reset as an interrupt may aid debugging. For example, if a watchdog reset action resets
the processor, the contents of SRR0 and SRR1 after the reset may be helpful in determining why the
application missed the watchdog deadline. The system reset forces an immediate reset however, and there
is no indication as to whether the instruction whose address is written to SRR0 has executed or partially
executed, and SRR1 is not necessarily up to date with respect to previous instructions that may have
caused exceptions. Programmers with access to PPE 42 core hardware design information may be able to
glean more information from the contents of ISR[SRSMS], which is updated with the PPE 42 core state
machine state at the time of the system reset.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 49 of 288

4.5.3 Data Storage Interrupt – Vector x'060'

Table 1.16: Register Settings During Data Storage Interrupts

Register Setting

MSR SEM, IS0, LP, WE, IS1, UIE, EE, IS2, IS3, IPE, SIBRCA ← 0
SIBRC, ME unchanged

SRR0 Written with the address of the instruction responsible for the data storage interrupt

SRR1 Written with the contents of the MSR

ISR ST ← 1 for store-type operations
ST ← 0 otherwise
Other fields unchanged

EDR Written with the data address responsible for the data storage interrupt

PC (IVPR)0:22 || x'060'

The data storage interrupt is an unmaskable interrupt. If a data storage interrupt is taken with MSR[UIE] =
'1', all of the actions in the above table occur.

If a data storage interrupt is taken with MSR[UIE] = '0', then the processor first makes the specified ISR
updates. If MSR[ME] is also '0', the processor then makes the remainder of the register updates and halts
with the IAR addressing the first instruction of the data storage interrupt vector. If MSR[ME] = '1' however,
the interrupt is taken as a machine check interrupt as specified in section 4.3.5, Unmaskable Interrupt
Promotion.

The conditions causing the data storage interrupt are instance-specific, and will be documented with each
instance of the PPE 42 core. The intention is that a data storage interrupt indicates an attempted data
memory access that has been determined to be invalid or illegal before the (translated) address is
presented on an external memory bus. For example:

• Attempt to access an unimplemented memory space

• Attempt to access an address without a valid memory translation

• Access mode violations, such as writing to read-only memory spaces

The memory subsystem must signal data storage exceptions with higher priority than alignment exceptions.

ISR[ST] is set to '1' if a data storage interrupt is caused by a store, or a store-type data cache operation.
The following table details how instructions are classified for the purposes of the data storage interrupt.

Table 1.17: Instruction Treatment by Data Storage Interrupts

Instruction
Type

Treated
As

All loads Load

All Stores Store

dcbf Load

dcbi Store

dcbq Load

dcbt Load

dcbz Store

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 50 of 288

4.5.4 Instruction Storage Interrupt – Vector x'080'

Table 1.18: Register Settings During Instruction Storage Interrupts

Register Setting

MSR SEM, IS0, LP, WE, IS1, UIE, EE, IS2, IS3, IPE, SIBRCA ← 0
SIBRC, ME unchanged

SRR0 Written with the address of the instruction responsible for the instruction storage interrupt

SRR1 Written with the contents of the MSR

ISR Unchanged

EDR Unchanged

PC (IVPR)0:22 || x'080'

The instruction storage interrupt is an unmaskable interrupt. If an instruction storage interrupt is taken with
MSR[UIE] = '1', all of the actions in the above table occur.

If a data storage interrupt is taken with MSR[UIE] = '0', then the processor first makes the specified ISR
updates. If MSR[ME] is also '0', the processor then makes the remainder of the register updates and halts
with the IAR addressing the first instruction of the instruction storage interrupt vector. If MSR[ME] = '1'
however, the interrupt is taken as a machine check interrupt as specified in section 4.3.5, Unmaskable
Interrupt Promotion.

The conditions causing the instruction storage interrupt are instance-specific, and will be documented with
each instance of the PPE 42 core. The intention is that an instruction storage interrupt indicates an
attempted instruction fetch that has been determined to be invalid or illegal before the (translated) address
is presented on an external memory bus. For example:

• Attempt to fetch from an unimplemented memory space

• Attempt to fetch from an address without a valid memory translation

• Access mode violations, such as an attempted fetch from a non-executable memory space

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 51 of 288

4.5.5 External Interrupt – Vector x'0A0'

Table 1.19: Register Settings During External Interrupts

Register Setting

MSR SEM, IS0, LP, WE, IS1, UIE, EE, IS2, IS3, IPE, SIBRCA ← 0
SIBRC, ME unchanged

SRR0 Written with the address of the next sequential instruction

SRR1 Written with the contents of the MSR

ISR Unchanged

EDR Unchanged

PC (IVPR)0:22 || x'0A0'

External interrupts are triggered by active levels on the external interrupt input. All external interrupting
events are presented to the processor as a single external interrupt.

External interrupts are enabled or disabled by MSR[EE]. MSR[EE] also enables Watchdog Timer (WDT),
Fixed Interval Timer (FIT) and Decrementer (DEC) interrupts. However for timer interrupts, control passes
to different interrupt vectors than for the interrupts discussed in the preceding paragraph. Timer interrupt
handling is described further below for each particular timer interrupt.

4.5.5.1 External Interrupt Recognition; Phantom Interrupt Avoidance

Conceptually, whenever an instruction is about to be fetched and executed, or whenever an instruction
causes an exception, or whenever a timer exception is outstanding, the PPE core observes the value of the
external interrupt signal, and if MSR[EE] = '1', includes the external interrupt in the set of interrupts to
prioritize after execution synchronization. If the external interrupt is the highest priority interrupt outstanding
then the external interrupt is taken. If the external interrupt signal is not active or MSR[EE] = '0' in the cases
described above, the external interrupt is not considered for prioritization.

The above description of external interrupt processing means that it is acceptable for the external interrupt
signal to the PPE 42 core to arbitrarily change value while MSR[EE] = '0'. It is typically not acceptable for
the external interrupt signal to change from an active value to an inactive value when MSR[EE] = '1', as the
processor may erroneously begin processing an external interrupt that has subsequently been masked or
is no longer active.

Software must take care to avoid this type of “phantom” interrupt, for example by only manipulating
hardware related to external interrupt presentation while MSR[EE] = '0', and then issuing a sync instruction
to insure that all previous operations are complete, prior to setting MSR[EE] = '1'. Depending on the
hardware design it may also be necessary to further delay setting MSR[EE] = '1' to allow time for the
external interrupt input to settle.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 52 of 288

4.5.6 Alignment Interrupt – Vector x'0C0'

Table 1.20: Register Settings During Alignment Interrupts

Register Setting

MSR SEM, IS0, LP, WE, IS1, UIE, EE, IS2, IS3, IPE, SIBRCA ← 0
SIBRC, ME unchanged

SRR0 Written with the address of the instruction causing the alignment interrupt

SRR1 Written with the contents of the MSR

ISR ST ← 1 for stores and dcbz
ST ← 0 otherwise
Other fields unchanged

EDR Written with the data address responsible for the alignment interrupt

PC (IVPR)0:22 || x'0C0'

The alignment interrupt is an unmaskable interrupt. If an alignment interrupt is taken with MSR[UIE] = '1',
all of the actions in the above table occur.

If an alignment interrupt is taken with MSR[UIE] = '0', then the processor first makes the specified ISR
updates. If MSR[ME] is also '0', the processor then makes the remainder of the register updates and halts
with the IAR addressing the first instruction of the alignment interrupt vector. If MSR[ME] = '1' however, the
interrupt is taken as a machine check interrupt as specified in section 4.3.5, Unmaskable Interrupt
Promotion.

The conditions causing the alignment interrupt are instance-specific, and will be documented with each
instance of the PPE 42 core. The intention is that an alignment interrupt indicates an attempted data
access that the memory subsystem can not perform as specified, but may be emulatable by the alignment
interrupt handler. For example:

• An attempt to load or store an unaligned address might be emulated with multiple loads and/or
stores.

• A dcbz instruction targeting a noncaheable memory area might be emulated by storing 0 bytes to
that location.

ISR[ST] is set to '1' if an alignment interrupt is caused by a store or a dcbz instruction.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 53 of 288

4.5.7 Program Interrupt – Vector x'0E0'

Table 1.21: Register Settings During Program Interrupts

Register Setting

MSR SEM, IS0, LP, WE, IS1, UIE, EE, IS2, IS3, IPE, SIBRCA ← 0
SIBRC, ME unchanged

SRR0 Written with the address of the instruction responsible for the program interrupt

SRR1 Written with the contents of the MSR

ISR PTR ← 0 if the program interrupt is caused by an illegal instruction encoding
PTR ← 1 if the program interrupt is caused by a trap instruction
Other fields unchanged

EDR Written with the putative instruction responsible for the program interrupt

PC (IVPR)0:22 || x'0E0'

The program interrupt is an unmaskable interrupt. If a program interrupt is taken with MSR[UIE] = '1', all of
the actions in the above table occur.

If a program interrupt is taken with MSR[UIE] = '0', then the processor first makes the specified ISR
updates. If MSR[ME] is also '0', the processor then makes the remainder of the register updates and halts
with the IAR addressing the first instruction of the program interrupt vector. If MSR[ME] = '1' however, the
interrupt is taken as a machine check interrupt as specified in section 4.3.5, Unmaskable Interrupt
Promotion.

Program interrupts are caused by attempting to execute any of the following instructions:

• An illegal instruction encoding for the PPE 42 core

• A trap instruction when DBCR[TRAP] = '0'

When the program interrupt is taken, the putative instruction causing the program interrupt is written to the
EDR. If the program interrupt is caused by a trap, this will be a trap instruction (special form of tw). The
EDR value can be used to to aid emulation of unimplemented instruction encodings, or as a debugging aid
to validate that the putative instruction in the EDR is the actual data held at the address written to SRR0.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 54 of 288

4.5.8 Decrementer (DEC) Interrupt – Vector x'100'

Table 1.22: Register Settings During Decrementer Interrupts

Register Setting

MSR SEM, IS0, LP, WE, IS1, UIE, EE, IS2, IS3, IPE, SIBRCA ← 0
SIBRC, ME unchanged

SRR0 Written with the address of the next sequential instruction

SRR1 Written with the contents of the MSR

ISR Unchanged

EDR Unchanged

PC (IVPR)0:22 || x'100'

The decrementer (DEC) interrupt occurs when TSR[DIS] = '1', TCR[DIE] = '1', MSR[EE] = '1' and the
decrementer interrupt is the highest priority pending interrupt. For a description of PPE 42 timers, including
interrupt causing conditions and interrupt handling procedures, see section 5, Timer Facilities.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 55 of 288

4.5.9 Fixed Interval Timer (FIT) Interrupt – Vector x'120'

Table 1.23: Register Settings During Fixed Interval Timer (FIT) Interrupts

Register Setting

MSR SEM, IS0, LP, WE, IS1, UIE, EE, IS2, IS3, IPE, SIBRCA ← 0
SIBRC, ME unchanged

SRR0 Written with the address of the next sequential instruction

SRR1 Written with the contents of the MSR

ISR Unchanged

EDR Unchanged

PC (IVPR)0:22 || x'120'

The Fixed Interval Timer (FIT) interrupt occurs when TSR[FIS] = '1', TCR[FIE] = '1', MSR[EE] = '1' and the
FIT interrupt is the highest priority pending interrupt. For a description of PPE 42 timers, including interrupt
causing conditions and interrupt handling procedures, see section 5, Timer Facilities.`

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 56 of 288

4.5.10 Watchdog Timer (WDT) Interrupt – Vector x'140'

Table 1.24: Register Settings During Watchdog Timer (WDT) Interrupts

Register Setting

MSR SEM, IS0, LP, WE, IS1, UIE, EE, IS2, IS3, IPE, SIBRCA ← 0
SIBRC, ME unchanged

SRR0 Written with the address of the next sequential instruction

SRR1 Written with the contents of the MSR

ISR Unchanged

EDR Unchanged

PC (IVPR)0:22 || x'140'

The watchdog timer (WDT) exception occurs when TSR[WIS] = '1' and TCR[WIE] = '1'. If TCR[WRC] = '00'
and MSR[EE] = '1', this exception causes a watchdog interrupt if the watchdog interrupt is the highest
priority pending interrupt.

If TCR[WRC] is not '00', then a watchdog timer timeout when TSR[WIS] = '1' causes a watchdog reset or
halt action, and pulses the Watchdog Timeout output. For a description of PPE 42 timers, including
interrupt causing conditions, interrupt handling procedures and watchdog timer protocols and actions, see
section 5, Timer Facilities.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 57 of 288

5 Timer Facilities
The PPE 42 core provides 3 timer facilities: A 32-bit decrementer (DEC), a fixed interval timer (FIT) and a
watchdog timer (WDT). These facilities are modeled after the Power ISA Book III-E timer specification, with
several modifications specific to the PPE 42 architecture.

PPE 42 core timer facilities include the following registers:

• The decrementer (DEC)

• The Timer Control Register (TCR)

• The Timer Status Register (TSR)

The DEC is implemented as a special-purpose register (SPR). The FIT and WDT are not actually timers in
the PPE 42 core, but instead simply record the occurrence of events that occur outside of the core. The FIT
and WDT events are represented by the TSR[FIS] and TSR[WIS] fields respectively. The sources of the
DEC, FIT and WDT are selected by TCR[DS], TCR[FP] and TCR[WP] fields respectively.

The diagram below shows the operation of PPE 42 timer facilities schematically. The time sources
dec_timer and timer[0:3] originate outside of the PPE 42 core.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 58 of 288

Illustration 3: PPE 42 Timer Facilities

timer_clk = ppe_clk ∧
 (XSR[TRH] ∨ ¬XSR[HCP]) ∧
 ¬(DBCR[HDFT] ∧ XSR[HS] ∧ XSR[HC]

0:1
≠'00')

timer[0]

timer[1]

timer[2]

timer[3]

TCR[WP]

TSR[WIS]
setclear

timer_clk

TSR[WIS]←'1'

TSR[ENW]='1'

0 1 2 3

TSR[FIS]
setclear

timer_clk

TSR[FIS]←'1'

timer[0]

timer[1]

timer[2]

timer[3]

TCR[FP] 0 1 2 3

DEC

timer_clk

0 31

dec_timer

'1'

timer[1]

timer[3]

TCR[DS] 0 1 2 3TSR[DIS]
set clear

TSR[DIS]←'1'DEC[0]:'0'→'1'

The availability, frequency and frequency stability of any external time source is instance specific, and will
be specified with each instance of PPE 42. An instantiation of the PPE 42 core may also define the DEC,
FIT and/or WDT events as general-purpose events rather than timed events. There is no requirement that
any of the time sources be provided in order for the PPE 42 core to correctly execute instructions, or to
correctly perform any other function not specifically related to the timer facilities.

Timer interrupts are individually enabled by TCR[DIE, FIE, WIE] for the DEC, FIT and WDT interrupts
respectively. Timer interrupts are masked by MSR[EE]. If MSR[EE] = '1' and any timer interrupt or external
interrupt is pending, these events will be handled in the following priority order:

• WDT interrupts

• External interrupts

• FIT interrupts

• DEC interrupts

The interrupt handler for timer interrupts must either clear the timer interrupt status by writing the
appropriate TSR timer interrupt status bit with '1', or clearing the appropriate TCR interrupt enable bit
before re-enabling external interrupts.

5.1 The Decrementer (DEC)
The DEC register is a 32-bit SPR that decrements on any cycle that the decrement condition is true. PPE
42X increases the TCR[DS] field to two bits, where DS[1] was previously reserved on PPE 42. If TCR[DS]
= '00', then the DEC decrements every cycle. If TCR[DS] = '10', then the DEC decrements on any cycle
that the external dec_timer input is active. Otherwise, the DEC decrements on any cycle the timer[1]
or timer[3] input is active, as selected by TCR[DS] = '01' or '11' respectively.

If the DEC contains 0 when the decrementer event occurs the DEC underflows to x'FFFF FFFF'. The DEC
is read using the mfspr (mfdec) instruction, and written using the mtspr (mtdec) instruction.

Decrementer interrupt status, TSR[DIS], is set on any cycle that DEC0 transitions from 0 to 1, including
transitions due to mtspr instructions that update DEC. If TSR[DIS] = '1', TCR[DIE] = '1' and MSR[EE] = '1',
then a decrementer interrupt will be taken if the decrementer interrupt is the highest priority pending
interrupt.

Decrementer interrupt status is cleared by writing TSR[DIS] with '1'. Clearing TSR[DIS] this way takes
precedence over a simultaneous set of TSR[DIS] from the hardware. Note that the DEC is implemented in
lieu of the Programmable Interval Timer (PIT) register that can be found in other embedded Power
processors.

5.1.1 Using DEC as a Programmable Interval Timer

The DEC can be used as a programmable interval timer. The following procedure details how to program
the DEC for this application. This procedure must be executed with external interrupts disabled (MSR[EE] =
'0'), and assumes that any preexisting or soon-to-be-existing decrementer interrupt status may be ignored.

1. Write DEC with x'FFFFFFFF'.

2. Write TSR[DIS] with '1' to clear any pending DEC interrupt status.

3. Write DEC with the desired timeout.

4. Write TCR[DIE] with '1'

This procedure guarantees that the next DEC interrupt will be the result of the programmed timeout.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 59 of 288

5.1.2 Using DEC to Emulate a Timebase

PPE 42 does not implement the Power ISA 64-bit timebase facility. However the semantics of the PPE 42
DEC allow it to be used with simple software procedures to emulate a timebase. The following procedures
detail how to use the DEC for this application. These procedures must be executed with external interrupts
disabled (MSR[EE] = '0').

To initialize timebase emulation:

• Initialize a 64-bit global variable to 0 or another appropriate value. This global variable will be
referred to as the timebase.

• Write the DEC with x'FFFFFFFF', clear TSR[DIS] and set TCR[DIE].

In the event of a DEC interrupt:

• Add x'100000000' to the timebase and clear TSR[DIS].

To compute the current time:

• Return the sum of the timebase plus the difference ((DEC) – x'FFFFFFFF'). If TSR[DIS] = '1', also
add x'100000000' to the returned value.

Assuming that all DEC interrupts are processed in a timely manner, the current times computed by the
procedure should always reflect an absolute time as measured by the DEC time source, modulo the small
amount of time required to perform the calculation.

If the DEC is being used both as a programmable interval timer and for timebase emulation, the above
procedures can be generalized as follows:

• Whenever the DEC is written, add one plus the difference of the current contents of DEC minus the
last value written to DEC to the timebase.

• Whenever a DEC interrupt occurs, add one plus the last value written to DEC to the timebase.

• To compute the current time, return the sum of the timebase plus the difference of the current
contents of DEC minus the last value written to DEC to the timebase, performing the analogous
compensation if TSR[DIS] = '1'.

If the DEC is being used as a programmable interval timer, then the emulated timebase will likely drift with
respect to an absolute time reference. Part of this drift may be compensated by modifying the timebase
updates for the time required to execute the updates, however if high fidelity is required it may be
necessary to periodically synchronize the emulated timebase with an external source.

5.2 The Fixed Interval Timer (FIT)
The FIT simply records the occurrence of one of four external events represented by active levels of the
timer[0:3] inputs of the PPE 42 core. The timer event selected as the FIT is programmed by setting
TCR[FP].

FIT interrupt status, TSR[FIS], is set on any cycle that the selected time source is active. If TSR[FIS] = '1',
TCR[FIE] = '1' and MSR[EE] = '1', then a FIT interrupt will be taken if the FIT interrupt is the highest priority
pending interrupt.

FIT interrupt status is cleared by writing TSR[FIS] with '1'. Clearing TSR[FIS] this way takes precedence
over a simultaneous set of TSR[FIS] from the hardware.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 60 of 288

5.3 The Watchdog Timer (WDT)
The WDT simply records the occurrence of one of four external events represented by active levels of the
timer[0:3] inputs of the PPE 42 core. The timer event selected as the WDT is programmed by setting
TCR[WP].

If a watchdog event occurs when TSR[ENW] = '0', then the only action is to set TSR[ENW] = '1'.

WDT interrupt status, TSR[WIS], is set when a watchdog event occurs and TSR[ENW] (enable next
watchdog) is '1'. If TSR[WIS] = '1', TCR[WIE] = '1' and MSR[EE] = '1', then a WDT interrupt will be taken if
the WDT interrupt is the highest priority pending interrupt.

WDT interrupt status is cleared by writing TSR[WIS] with '1'. Clearing TSR[WIS] this way takes precedence
over a simultaneous set of TSR[WIS] from the hardware.

If a watchdog event occurs while TSR[WIS] is set to ‘1’ and TSR[ENW] is set to ‘1’, a hardware reset or halt
occurs if enabled by a nonzero value of TCR[WRC]. In other words, a reset or halt can occur if a watchdog
event occurs while a previous watchdog interrupt is pending. The assumption is that TSR[WIS] has not
been cleared because the processor cannot execute the watchdog handler, leaving reset or halt as the only
way to restart or debug the system. Whenever a WDT reset or halt occurs, the contents of TCR[WRC] are
copied to TSR[WRS], and TCR[WRC] is cleared.

The following table summarizes WDT behavior.

Table 1.25: Action in Response to the WDT Event

Current State Action in response to WDT event

TSR[ENW] TSR[WIS]

0 0 TSR[ENW] ← '1'

0 1 TSR[ENW] ← '1'

1 0 TSR[WIS] ← '1', which will cause a WDT interrupt if TCR[WIE] = '1', MSR[EE] = '1' and the WDT interrupt is
the highest priority pending interrupt.

1 1 The action specified by TCR[WRC] will occur:

00 No action
01 Soft reset
10 Hard reset
11 Force-halt the core

In the event of a reset or halt action, TCR[WRC] is copied to TSR[WRS], and TCR[WRC] is cleared.

The controls described in the above table imply three different modes of operation that a programmer might
select for the WDT. Each of these modes assumes that TCR[WRC] has been set to allow reset or halt by
the WDT facility:

1. Always take the WDT interrupt when pending, and never attempt to prevent its occurrence. In this mode,
the WDT interrupt caused by a first event is used to clear TSR[WIS] so a second event does not cause a
reset or halt. TSR[ENW] is not cleared, thereby allowing the next event to cause another interrupt.

2. Always take the WDT interrupt when pending, but avoid when possible. In this mode a recurring code
loop of reliable duration (or perhaps a periodic interrupt handler such as the FIT interrupt handler) is used
to repeatedly clear TSR[ENW] such that a first event exception is avoided, and thus no WDT interrupt
occurs. Once TSR[ENW] has been cleared, software has between one and two full WDT periods before a
WDT event will be posted in TSR[WIS]. If this occurs before the software is able to clear TSR[ENW] again,
a WDT interrupt will occur. In this case, the WDT interrupt handler will then clear both TSR[ENW] and

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 61 of 288

TSR[WIS], in order to (hopefully) avoid the next WDT interrupt.

3. Never take the WDT interrupt. In this mode, WDT interrupts are disabled (via TCR[WIE] = '0'), and the
system depends upon a recurring code loop of reliable duration (or perhaps a periodic interrupt handler
such as the FIT interrupt handler) to repeatedly clear TSR[WIS] such that a second event is avoided, and
thus no reset or halt occurs. TSR[ENW] is not cleared, thereby allowing the next event to set TSR[WIS]
again. The recurring code loop must have a period which is less than one WDT period in order to
guarantee that a WDT reset or halt will not occur.

5.3.1 Implications of TSR[ENW]

The TSR[ENW] field allows an operating environment to set up the WDT actions in TCR[WRC] very early in
the initialization process. If TSR[ENW, WIS] are cleared before setting TCR[WRC], TSR[ENW] gives
initialization code between one and two full WDT periods to perform system setup before the first possible
WDT interrupt. On the other hand, if the WDT interrupt is also used as a generic timer event, then the first
event will be similarly delayed by between one and two full WDT periods.

5.4 Debug Behavior
The XCR[TRH] (timers run while halted) field controls the behavior of timer facilities whenever the PPE 42
core reports a halt condition is present, that is whenever XSR[HCP] = '1'. If XCR[TRH] = '0', then the timer
facilities are “frozen” while the halt condition is present. This means that the decrementer does not
decrement, no new timer events will be registered in TSR[FIS, WIS, ENW], and no new WDT reset or halt
actions will occur. This does not imply that external timer events do not occur, only that if they occur they do
not cause any changes to the architected state of the core. This mode of operation is designed for general
debugging, with the caveat that discontinuities in the passage of time (as recorded by timer facilities) may
lead to unexpected behaviors if the core is restarted after debugging.

If XCR[TRH] = '1', then the decrementer continues to decrement, new timer events are registered in
TSR[FIS, WIS, ENW], and new WDT reset or halt actions may occur, even though the core is otherwise
halted. This mode of operation gives high-speed external agents the ability to halt, manipulate, and restart
the core in a way that minimally perturbs the running application.

All of the fields of the TSR are specified with write-1-to-clear semantics. However, if the processor is halted
and an mttsr Rx instruction is rammed, then all defined fields of the TSR are updated directly from the
contents of the GPR Rx. This allows debugging code to directly set timer interrupt status, and/or restore the
TSR to an original state after debugging.

5.5 Reset Behavior
PPE 42 core reset behavior is documented in section 3, Initialization,Reset, and Starting Execution. To
summarize the changes to the timer subsystem, every reset clears TCR[WRC], to insure that unintended
WDT events do not occur. If a second watchdog timeout resets or halts the processor, TCR[WRC] is copied
to TSR[WRS]. The TCR and TSR are not otherwise modified by any other reset. The DEC is not modified
by any reset and continues to decrement, potentially allowing the application to timestamp the occurrence
of a WDT reset, and/or maintain a consistent emulated timebase across WDT resets.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 62 of 288

6 External Interface Registers
The PPE 42 core defines six External Interface Registers, or XIRs. PPE 42X adds three additional XIRs.
Four of the XIRs are outside of the programmer-visible architected state, and are only accessible by
system elements external to the core. Two of the XIRs (five on PPE 42X) are also SPRs, and are visible
both internally and externally. The table below summarizes the PPE 42 XIRs.

Table 1.26: PPE 42X External Interface Registers

Mnemonic Register Name Programmer-Visible?
(Access)

XIR Access

EDR Error Data Register Yes (Read/Write) Read-only

IAR Instruction Address Register No Read/Write

IR Instruction Register No Read/Write

SPRG0 SPR General 0 Yes (Read/Write) Read/Write

XCR External Control Register No Write-only

XSR External Status Register No PPE42: Read-only
PPE42X: Read/Write

CTR Link Register Yes (Read/Write) PPE42X: Read-only

SRR0 Link Register Yes (Read/Write) PPE42X: Read-only

LR Link Register Yes (Read/Write) PPE42X: Read-only

Although the XIRs are architected as 32-bit registers, the XIR interface implemented by the PPE 42 core is
a 64-bit data interface. Therefore, XIRs are always accessed as 64-bit pairs of 32-bit registers. Six XIR
pairs are defined as documented in the table on the following page. The XIR pairings are defined in a way
that allows accelerated debugging by reducing the number of XIR accesses required by certain debugging
procedures.

The XIR pairing scheme also supports 32-bit hardware environments. External agents that can only
generate 32-bit accesses can be easily accommodated, as each writable XIR is paired with a read-only
XIR, and none of the XIRs have read side-effects. Pairings are supported such that when the hardware
converts a 32-bit external access to a 64-bit XIR access, the other 32 bits of write data are irrelevant, and
the other 32-bits of read data can be discarded. Pairings suitable for 32-bit access are noted in the
following table.

The methods and addressing conventions for accessing XIR pairs is instance specific. The XIR pair
numbers in the table are for reference only, and may not correspond to register addresses in any PPE
instance.

To guarantee robust and predictable operation, many types of XIR access are considered illegal, and the
PPE 42 core discards illegal XIR accesses and returns an Invalid Access error return code on the XIR bus.
In general, attempts to write registers, other than certain encodes to XCR, via XIRs are only accepted by
the PPE when it is in a Halted State and the XIR is not read-only. Reads to XIRs are accepted irregardless
of the Halted State, unless it is write-only XIR.

Access restrictions for XIR accesses are also documented in the following table.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 63 of 288

 Table 1.27: PPE 42 XIR Pairs and Access Restrictions

XIR Pair Access Word 0
(Bits 0:31)

Word 1
(Bits 32:63)

Notes Usage

0 XCR_CTR PPE42:
Write-only
PPE42X:
Read/Write

XCR PPE42:
N/A
PPE42X:
CTR

a, g, h, i, j, f ,n Write to processor control with no other side effects.
On PPE42X, also allows reading of CTR for debug.
This register allows writes to the XCR when PPE is not
in a Halted State.

1 XCR_SPRG0 Write-only XCR SPRG0 b, g, h, i, j, k, l A single write of XCR_SPRG0 can be used to both
restore SPRG0 and continue execution after single-
stepping or ramming.

2 IR_SPRG0 Write-only IR SPRG0 b, g, k A single write of IR_SPRG0 can be used to update
SPRG0, and also ram a mfsprg0 instruction to set the
value of a GPR to the new value of SPRG0.

3 XSR_SPRG0 Read/Write XSR SPRG0 c, f, k, m After ramming or single stepping, reading XSR_SPRG0
returns both the processor status and the current value
of SPRG0, for example after ramming a mtsprg0
instruction to read the value of a GPR.

4 IR_EDR Read/Write IR EDR d, f, k Allows simultaneous reading of IR and EDR for
diagnosing error and debug halts.

5 XSR_IAR Read/Write XSR IAR e, k, m Allows simultaneous reading of XSR and IAR for
diagnosing error and debug halts, as well as for
profiling the PPE state during runtime.
Allows writes to modify the IAR and on PPE42X to
restore the XSR after ramming.

6 SRR0_LR PPE42X:
Read-only

SRR0 LR g On PPE42X, allows reading of the most recent
procedure call return address from LR and the
instruction address at the time of the most recent
interrupt from SRR0.

Notes for 32-bit Environments

a. This register provides 32-bit, write-only access to the XCR, and on PPE42X 32-bit read access to the CTR via this register.
b. This register must not be used for 32-bit writes due to the unspecified, simultaneous update of both 32-bit registers. Note that there is
no error indication from the PPE core hardware itself if this register is written in a 32-bit environment.
c. This register provides 32-bit read access to the XSR, and 32-bit read/write access to SPRG0.
d. This register provides 32-bit read access to the EDR, and 32-bit read/write access to the IR.
e. This register provides 32-bit read/write access to the IAR, and on PPE42X 32-bit read/write access to the XSR.

Notes for all Environments

f. Any data written to the read-only CTR, LR, SRR0, and EDR is discarded. This includes the read-only XSR on PPE42.

Access Restrictions

g. Attempted reads of write-only XIR pairs, or writes of read-only XIR pairs, are not accepted by the PPE core. On PPE42, writes to
SRR0_LR and reads to XCR_CTR are not accepted.

h. Any write of XCR[CMD] = '000' (clear debug status) is only accepted by the PPE core if the processor is in the halted state (XSR[HS] =
'1').

i. Any write of XCR[CMD] = '010' (resume from halted state) is only accepted by the PPE core if the processor is either in the halted state
(XSR[HS] = '1'), or if no halt condition is present (XSR[HCP] = '0').

j. Any write of XCR[CMD] = '011' (single-step) is only accepted by the PPE core if the processor is in the halted state (XSR[HS] = '1').

k. Writes to the IR, IAR, and SPRG0 are only accepted by the PPE core if the processor is in the halted state (XSR[HS] = '1').

l. Writes to XCR_SPRG0 must satisfy the constraints for both registers, otherwise the write is not accepted and neither register is updated.

m. On PPE42, any data written to the read-only XSR is discarded. On PPE42X, writes will modify XSR bits 1:3, 7:8, and 12:13, but only in
the Halted State (XSR[HS] = '1') otherwise thewrite is not accepted.

n. Reads to the XCR return all zeroes.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 64 of 288

XIR Pair Access Word 0
(Bits 0:31)

Word 1
(Bits 32:63)

Notes Usage

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 65 of 288

7 Debugging
The debug facilities of the PPE 42 core include support for debugging during hardware and software
development, and debug events that allow developers to control the debug process. Debug registers
control debug events and report debug status. The debug registers are accessed through software running
on the processor, or through a set of external interface registers (XIRs). Methods to access the XIRs are
instance-specific.

PPE 42 debugging facilities are modeled after the capabilities architected in the Power ISA Book III-E
specification, but are only compliant with the Power ISA architecture to the extent practical, in keeping with
the overall goals of the PPE 42 core.

7.1 External Debug Mode
The PPE 42 core supports only a single debug mode. This mode is similar to the External Debug Mode
capabilities specified by the Power ISA Book III-E. External debug mode provides access to architected
processor resources and supports stopping, starting, and stepping the processor. It also supports setting
hardware and software breakpoints and monitoring processor status. In this mode, debug events cause the
processor to halt, that is to become architecturally frozen. While the processor is halted, normal instruction
execution stops and architected processor resources can be accessed and altered. External bus activity
continues in external debug mode.

By using XIRs, external debugging tools and procedures can pass instructions to the processor for
execution (colloquially known as ramming instructions), allowing a debugger to display and alter processor
resources, including memory. The processor can also be single-stepped while halted.

7.2 Processor Control
The following table details the debug functions for processor control supported by the PPE 42 core.

Function Notes

Single-step When halted, the processor can be stepped one instruction at a time via commands issued through the XCR.

Ramming When halted, any instruction can be executed by writing the instruction to the IR.

Halt The processor can be halted by way of an external signal, by an explicit write of DBCR[RST] to '11' from the program,
by the occurrence of a debug event, by a watchdog timeout, by an unmaskable interrupt or by writing XCR[CMD] =
'001'.

Reset The processor can be reset by way of an external signal, by an explicit write of DBCR[RST] to '01' or '10' from the
program, or by writing XCR[CMD] to '101' or '110'. Both soft and hard resets are provided.

Debug Events Debug events are enabled in the DBCR, set debug status bits in the XSR, and halt the processor when they occur.

Freeze Timers Normally, no new timer events are allowed to occur while the processor is halted. A mode is provided to allow timer
events to continue while the processor is halted (XSR[TRH] = '1'). XSR[TRH] is toggled (inverted) by writing '100' to
XCR[CMD]. Similarly, DBCR[HDFT] prevents new timer events when the processor is halted by a debug event,
allowing visibility to timer values present at the time of the halt condition.

Freeze
Asynchronous
Interrupts

DBCR[HDFI] prevents change in the external interrupt event state when the processor is halted by a debug event,
allowing visibility to asynchronous interrupts present at the time of the halt condition.

trap Instruction The trap instruction can be enabled as a debug event to implement breakpoints.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 66 of 288

7.3 Processor Status
The following table details the debug functions for processor status supported by the PPE 42 core.

Function Notes

Execution Status All interrupt status fields from the ISR are mirrored externally via the XSR to simplify external debugging and
diagnosis. XSR[SMS] indicates the current microarchitectural state of the PPE 42 core, and MSR[LP, EP, WE,
SIBRC] are also mirrored in the XSR. The XCR allows external debugging tools to control the run/halt/reset state
of the processor.

Exception Status ISR[EP] (also mirrored as XSR[EP]) indicates the presence of a pending asynchronous interrupt. The EDR is also
visible externally as an XIR.

7.3.1 Status outputs

The PPE 42 core provides seven outputs that summarize the state of the PPE and whether error conditions
have occurred.

7.3.1.1 Halted indication

The Halted output follows the value of XSR[HS]. This indication may be used as a debug aid, where the
user may then check XSR[HC] to determine the reason.

7.3.1.2 Watchdog Timeout indication

The Watchdog Timeout output pulses if the watchdog timer is enabled and a watchdog timeout occurs that
causes the processor to halt or reset (meaning that the WCR != “00”). This indication may be used as a
debug aid.

7.3.1.3 Error indications

Unanticipated events that occur during runtime are considered errors and must be serviced externally to
the PPE. These events cause the PPE to immediately enter the Halted state and will cause an Error output
to pulse indicating the type of error that occurred. In addition, the PPE can be configured to intentionally
halt for certain scenarios as a breakpoint for aiding hardware or code debug.

There are 4 types of events that will halt the PPE and assert a unique error output:

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 67 of 288

 Output Type Description

0 Internal State Error PPE detected an invalid logic event inside the processor not caused by an external interface.
Specifically:

1. State machine entered into invalid (other than defined) state
2. Internal interrupt state latches having non zero value in other than

"reset, exception, or vector" states
3. More than one write port active for a particular GPR on the same cycle
4. More than one write path active for an SPR on the same cycle (including IAR updates)
5. PPE fetching instruction from MIB when IR is being used as the decode source

(e.g. for RAM) instead of the MIB interface (mib_ppe_instruction)
6. Both Instruction and data request valid are simultaneously being driven active by the

PPE (ppe_mib_data_req_v_int and ppe_mib_inst_req_v_int)

1 External Interface Error PPE detected an invalid sequence or state on it inputs that is not allowed by an interface protocol.
Specifically

1. Instruction ack without a PPE instruction request valid
(mib_ppe_inst_ack and not(ppe_mib_inst_req_v_int))

2. Data ack without PPE data request
(mib_ppe_data_ack and not(ppe_mib_data_req_v_int))

3. Instruction Error without instruction ACK
(mib_ppe_inst_err and not(mib_ppe_inst_ack))

4. Data Error without Data ACK
(mib_ppe_data_err and not(mib_ppe_data_ack)

5. reset ack without PPE reset valid request
(mib_ppe_reset_mem_ack and not(ppe_mib_reset_mem);

6. XIR request with more than one xir_addr_valid asserted
(mib_ppe_xir_req and popcount(mib_ppe_xir_addr_v) > "001")

7. Memory interface driving data_multi_err along with non imprecise error type

2 Forward Progress Error Either:
• Watchdog Timeout occurred and was configured to halt (instead of interrupt or reset),

indicating that the PPE is no longer making forward progress.
or:

• a a Machine Check occurred, or another interrupt was promoted to a machine check
by MSR[UIE], when MSR[ME]=0

Note: XSR[HC] will indicate which occurred.

3 Debug/Code Breakpoint Either:
• code running on the processor requested a halt by writing DBCR[RST] = “11”,

e.g. software detected a a debug scenario, an unexpected state, or erroneous condition
or:

• a Debug Breakpoint event halted the processor,
i.e. a trap instruction or an address match when enabled in the DBCR as halt conditions

Note: XSR[HC] will indicate which ocurred, and in the case of a Debug breakpoint, XSR[7:13] will
contain the exact event that caused the hardware breakpoint.

Table 1.28: Error Output Definitions

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 68 of 288

7.4 Debug Registers
Several registers control debugging modes and behaviors, and allow the internal and external observation
of debug status. Full descriptions of all PPE 42 registers and their fields appear in section 8, Register
Summary. The debugging registers are only described briefly here.

7.4.1 DACR – Debug Address Compare Register

PPE 42 implements a single address comparison register, the DACR, used for both instruction- and data-
address comparison. If DBCR[IACE] = '1', the DACR is used for instruction address comparison. The
DACR is used for data-address comparison if DBCR[DACE] is non-0. Note that the DACR may be used on
PPE42X simultaneously by IACE and DACE, and also at the same time as a compare against an address
of all zeroes if DBCR[ZACE] = '1'.

7.4.2 DBCR – Debug Control Register

The DBCR controls debugging events. Debug events are enabled by writing non-0 values to DBCR[TRAP],
DBCR[ZACE], DBCR[IACE] and/or DBCR[DACE].

Writing a non-0 value to DBCR[RST] causes either a soft or hard reset, or causes the processor to halt, as
described with the detailed register field descriptions.

7.4.3 EDR – Error Data Register

In the event of data machine check, data storage or alignment interrupts, the EDR contains the data
address associated with the exception. In the event of a program interrupt, the EDR contains the putative
instruction responsible for the program interrupt.

7.4.4 ISR – Interrupt Status Register

The PPE 42 ISR consolidates analogous functions from two Power ISA Book III-E SPRs:

• The ISR includes exception status for program, alignment and data storage exceptions, similar to
the Power ISA ESR (Exception Syndrome Register), in the PTR and ST fields.

• The ISR includes machine-check exception status, similar to the Power ISA MCSR (Machine Check
Syndrome Register), in the MFE and MCS fields.

The ISR[EP, SRSMS] fields are specific to the PPE 42 architecture.

Strictly speaking it is not necessary to clear interrupt status from the ISR, however debugging may be
easier in some cases if the ISR is cleared during interrupt processing.

7.4.5 XCR – External Control Register

The XCR gives external debugging tools and procedures the ability to start, stop, single-step, ram and
reset the processor. Procedures involving XCR for debugging operations are documented later in this
section.

7.4.6 XSR – External Status Register

Debug events are recorded in the XSR[TRAP, IAC, DACR, DACW] fields. These fields only record debug
events that halt the processor, they do not cause the processor to halt. Strictly speaking it is not necessary
to clear debug event status from the XSR, however debugging may be easier in some cases if debugging
event status is cleared by debugging procedures. Debug event status is cleared by writing XCR[CMD] =

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 69 of 288

'000' on a halted processor.

The XSR also mirrors the contents of the ISR externally, in order to simplify debugging and diagnosis. The
XSR also includes several other status fields that allow an external debugging agent to determine the
run/wait/halt state of the processor, and determine in many cases exactly why a halted processor halted.

7.5 Debug Events
The PPE 42 core implements debug events for trap instructions, and instruction- and data-address
comparisons. The trap and instruction address compare events can be used for software and hardware
breakpoints respectively. Data address compare events are used to capture loads and/or stores to a
specific address.

If an enabled debug event occurs, the processor will halt. Debug halt events are the highest priority
exceptional conditions, higher than all interrupt types other than system reset events.

7.5.1 Trap Events

Trap debug events are associated with the execution of a trap instruction, and are enabled by setting
DBCR[TRAP] = '1'. The following table details the behavior of the PPE 42 core in response to the execution
of a trap instruction.

Table 1.29: PPE 42 trap Instruction Handling

DBCR[TRAP] Action

0 A program exception is signaled, and a program interrupt will be taken if the program interrupt is the highest
priority pending interrupt. If a program interrupt is taken, ISR[PTR] ← '1'.

1 Immediate Halt; XSR[TRAP] ← '1'

If the execution of a trap instruction causes a program interrupt, then ISR[PTR] is set to '1'. The execution
of a trap instruction is disambiguated from an illegal instruction in the program interrupt handler by
observing that ISR[PTR] = '1' for trap, and ISR[PTR] = '0' for an illegal instruction.

Note that architecturally, trap instructions are never executed, but always treated as exceptional conditions.
In other words, there is no way to disable the trap instruction from causing an exceptional event.

Several strategies for dealing with trap instructions and their non-executable nature are possible, including:

• An operating environment may elect to ignore any or all trap instructions unless they are enabled to
cause a debug halt, or unless they are enabled to perform a debug action by a software mode. In
this mode the program interrupt handler for trap could simply increment SRR0 by 4 (to bypass the
trap instruction), and then execute an rfi instruction.

• External debuggers can bypass trap instructions by rewriting the IAR with IAR + 4 before
continuing execution from a debug halt due to a trap, in order to bypass the trap instruction.

• In some debugging schemes the trap instruction replaces an original program instruction, and upon
the occurrence of a trap, the debugger re-installs the original instruction at the IAR before
continuing.

7.5.2 Instruction-Address Comparison Events

Every time a new instruction is about to be fetched, the instruction address is compared with the contents

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 70 of 288

of the DACR. If the instruction address is equal to the DACR and DBCR[IACE] = '1', or is equal to all
zeroes and DBCR[ZACE] = '1', an instruction-address comparison (IAC) event occurs, XSR[IAC] is set to
'1' and the processor immediately halts prior to executing the instruction. Architecturally, the instruction has
neither been fetched nor decoded in this case, so no other exceptions that might have otherwise been
reported by the instruction will be reported. The processor will halt with the IAR containing the instruction
address.

Executing through the instruction causing an IAC debug halt will require a procedure similar to the
following:

1. Read-modify write the DBCR to set DBCR[IACE] = '0'

2. Single step the instruction at the IAR

3. Restore the original DBCR

4. Write XCR[CMD] = '000' to clear debug status from the XSR (optional)

Note that the DACR is a full 32-bit register, and PPE 42 instruction addresses are always 4-byte aligned.
Therefore IAC debug events can only occur if DACR30:31 = '00'.

7.5.3 Data-Address Comparison Events

Every time a data address is ready to be presented to the memory interface, the data address (for loads,
store and most data cache management instructions), or the query address (for dcbq) is compared with
the contents of the DACR. If the data address is equal to the DACR and DBCR[DACE] is not '00', or is
equal to all zeroes and DBCR[ZACE] = '1', a data-address comparison (DAC) event occurs. DBCR[DACE]
allows debug event selection for loads and stores either individually or together. The XSR[RDAC] and
XSR[WDAC] fields report DAC debug events for loads (reads) and stores (writes) respectively. The table
below details how the different instruction forms that can cause DAC debug events are treated.

Table 1.30: Instruction Treatment With Respect to DAC Debug Events

Instruction
Form

All Loads All Stores dcbf dcbi dcbq dcbt dcbz

Treated as Load Store Store Store Load Load Store

Whenever a DAC debug event occurs, the processor immediately halts prior to performing the load, store
or data cache management phase of the current instruction address (CIA). Architecturally, the instruction at
the CIA has been fetched and decoded in this case, and any fetch or decode phase exceptions caused by
the instruction would have already been reported. No data phase (data storage or machine check)
exceptions will have been reported, and no GPR updates for update-form addressing will have taken place.
In other words, the instruction has effectively not been executed. The processor will halt with the IAR
containing the CIA.

Executing through the instruction causing a DAC debug halt will require a procedure similar to the
following:

1. Read-modify write the DBCR to set DBCR[DACE] = '00'

2. Single step the instruction at the IAR

3. Restore the original DBCR

4. Write XCR[CMD] = '000' to clear debug status from the XSR (optional)

7.5.4 Zero Address Comparison

PPE42X adds the capability to trigger a debug event (and therefore halt) on an all zero instruction or data

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 71 of 288

address via DBCR[ZACE], which allows the DACR facility to simultaneously compare on a non-zero
instruction and/or data address. An example usage would be to always trap on a non-zero address since
those are typically only generated by a bug in the code or data being processed by that code, e.g. an all-
zero pointer. The DACR could then be used with DBCR[DACE] to simultaneously detect stack overflow
conditions, or with the DBCR[IACE] to detect instruction fetches from a defined data region of memory.
Both checks can now be enabled during runtime by default to expedite debug of these scenarios, when the
DACR is not being used for another more specific debug situation.

7.5.5 Data Address Comparison and Alignment

The PPE42 core neither recognizes nor enforces alignment constraints on any data or data cache access.
The memory subsystem attached to the PPE core returns alignment errors for any unsupported accesses.
Therefore, it is possible for the debug facilities to “miss” the access of a 4-byte aligned data address if that
address is targeted indirectly by an 8-byte virtual doubleword load or store. Also, since by specification the
low-order bits of addresses for the data cache management instruction are ignored, it is also possible to
miss debug events for these instructions if the generated address is not equal to the DACR in every bit
position, even though the generated address and the contents of the DACR effectively address the same
data cache block.

7.6 Halt Processing

7.6.1 Definition of Halted

The PPE 42 core is said to be in the halted state when the core is halted and all instruction processing has
completed. The core is in the halted state if and only if XSR[HS] = '1'. At the implementation level, the
halted state is identified with a particular state of the processor core. Whenever the processor is in the
halted state, the IAR addresses the instruction that will be executed when leaving the halted state, or if an
asynchronous interrupt is pending when leaving the halted state, the value that will be written to SRR0
when the interrupt is taken on exit from the halted state.

The XSR[HC] field details the last condition or event that caused the processor to halt. This field is only
valid if XSR[HS] is '1', that is, when the processor is in the halted state.

7.6.2 Entering the Halted state

The PPE enters the halted state after there is a Halt Condition Pending, as reflected in the XSR[HCP]. The
processor will halt as soon as possible, subject to the completion of any in-flight instructions. When the
processor halts, the state of the core will be the precise state produced by executing all instructions
preceding the instruction addressed by the IAR.

XCR[CMD] can be written with '001' to halt the processor at any time. Writing XCR[CMD] with '001' sets
XSR[HCP] (halt condition pending). XSR[HCP] will also change autonomously to '1' if the processor halts
for any other reason:

• An enabled debug event;

• An unmaskable interrupt with MSR[UIE] = '0' ;

• A second watchdog timeout when TCR[WRC] = '11';

• The program writing DBCR[RST] with '11';

• An unrecoverable hardware failure;

• An active level on the halt_req input to the core. The conditions that cause the halt_req signal
to be active are instance specific, and will be documented with each instantiation of the PPE 42

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 72 of 288

core.

The PPE core treats XSR[HCP] similar to an exception condition that causes it to halt instead of taking an
interrupt. A processor reporting XSR[HCP] = '1' may also be executing an instruction:

• If an instruction is in flight when XSR[HCP] becomes '1'

• If a halted processor is in the process of single-stepping an instruction

• If a halted processor is in the process of ramming an instruction

The processor can be force-halted by writing XCR[CMD] to '111'. A second watchdog timeout with
TCR[WRC] = '11' also force-halts the processor. A force-halted core also reports XSR[HCP] = '1'.

Force-halting bypasses the completion of any in-flight instructions or synchronization or reset operations,
and immediately puts the processor into the halted state (see below). Force-halting is designed to be used
in cases where the processor will not or may not halt normally due to errors (hangs) in the memory
subsystem. A system that had been force-halted may not be recoverable without a hard reset.

7.6.3 Halt Conditions and Error indication

Certain Halt conditions are considered errors and will cause the Error output to be asserted. The below
table describes the seven Halt conditions and which four also cause the Error output to be asserted.

HCR[HC] Meaning Asserts Error
Output?

Reason

000 None N N/A

001 XCR[CMD]
written '111'

N Intended for external code (IPL or lab tools) to control the PPE, access its
architected state, and instruction step for code debug.

010 Watchdog Timeout Y Watchdog Halt condition. PPE can be configured to halt if a second watchdog
event occurs while the previous interrupt is still pending, meaning it is not making
forward progress and is therefore in a hang situation.

011 Machine Check Error Y Machine Check occurred when MSR[ME] = '0''. If a second machine check
happens while trying to service a previous machine check error. Note this can
also occur if an unmaskable interrupt occurs when both MSR[UIE] = '0' and
MSR[ME]='0', since this case is promoted to a machine check.

100 Debug halt N Conditions listed in the XSR, e.g. either trap instruction or an instruction address
match or data address match were configured to halt.

101 DBCR induced halt Y Code running on PPE requested a halt condition. By convention this only used
for error cases where code is unable to recover or make forward progress.

110 Halt Request input
active

N Halt on trigger event was enabled, halt on system checkstop was enabled, or the
halt_req input activated. Used for lab debug only.

111 Hardware failure
(invalid state)

Y Logic detected that the PPE core state machine entered an invalid state, which
should never happen with good hardware.

7.6.4 Exiting the Halted state

The processor exits the halted state whenever.

1. The core is reset

2. XCR[CMD] is written with '010'

3. XSR[HS] = '1' and XCR[CMD] is written with '011' to initiate single-stepping

4. XSR[HS] = '1' and the IR is written with an instruction encoding to initiate ramming

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 73 of 288

In case 1 above, the core re-enters the halted state after the reset unless the reset is caused by the
hreset_req input. If the PPE 42 core is reset using the external hreset_req signal, then XSR[HCP] is
reset to 0. This means that a halted core will no longer be halted if the core is reset externally, but instead
will begin execution at the system reset vector. If the core is reset by an external write to XCR[CMD],
XSR[HCP] is not reset, and a halted core will remain halted after the reset. A program writing to
DBCR[RST], or externally ramming DBCR[RST] do not modify the XSR[HCP].

In cases 3 and 4 above the core will re-enter the halted state once the single-stepped or rammed
instruction completes.

Specific procedures are provided to halt the processor, single-step and ram instructions, and exit the halted
state.

7.6.5 Halting and Synchronization

The PPE 42 core does not halt with “hidden state” related to synchronous exceptions. Any imprecise
machine check exceptions pending at the time of any halt remain pending in the memory interface (not the
PPE 42 core). If the in-flight instruction at the time of a halt, or a single-stepped or rammed instruction
causes or uncovers a synchronous exception, the interrupt will be processed and the core will then halt at
the first instruction of the interrupt vector. If the processor halts due to an unmaskable interrupt halt, the
normal interrupt prioritization and synchronization takes place and the core will also halt at the first
instruction of the interrupt vector.

7.7 Single-Stepping and Ramming
Single-stepping and ramming first require halting the processor. Specific procedures for entering into,
exiting from and operating in single-stepping and ramming modes are provided. Single-stepping and
ramming are intended for different but complementary purposes, and therefore have very different
behaviors.

7.7.1 Single-Stepping

Single-stepping is designed for software debugging. The processor is halted, and the application is then
stepped instruction-by-instruction to observe its behavior. Register state can be observed and modified
during single-stepping by ramming.

During single-stepping, instructions are fetched and executed normally, except that the processor returns to
the halted state after each instruction is executed. If a single-stepped instruction triggers a debug halt
event, the processor will return to the halted state before executing the instruction. Because all PPE 42
debug halts are specified to halt before executing the instruction causing the event, in general it will be
necessary to modify the DBCR before a single-stepped program can make progress through the instruction
causing a debug halt.

7.7.1.1 Single-stepping and Exceptions

If a single-stepped instruction causes a precise synchronous exception, or uncovers an imprecise
synchronous exception, the processor will take the interrupt, all state changes associated with the interrupt
will occur, and the processor will halt at the interrupt vector address formed by the IVPR and the associated
interrupt vector offset. Further single-stepping will then step through the interrupt handling code.

If an asynchronous interrupt is pending prior to single-stepping, the processor will take the interrupt and
halt at the associated interrupt vector offset. In this case no instruction is actually executed, and the single-
stepping operation simply causes the state transitions specified for taking the asynchronous interrupt.

If a single-stepped instruction causes or unmasks an asynchronous interrupt, no action is taken

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 74 of 288

immediately. As specified above, a subsequent single-step operation will cause the asynchronous interrupt
to be taken, assuming that no intervening action (ramming, changes in the environment) has removed or
masked the asynchronous interrupt.

7.7.2 Ramming

Ramming will also be used during software debugging since ramming procedures allow the GPR and SPR
values to be observed and modified externally. Ramming loads and stores also provides the programmer a
view of memory as seen by the PPE 42 core, which may be different from the contents of external
memories if caches are present, and may also involve address translation if supported by the instantiation.

However ramming is also used for hardware debugging, and for this application it is critical to be able to
gather as much information as possible from the core, even if the external environment is faulty or a
memory interface is hung.

The table below details various instruction forms and conditions, and the behavior of ramming in these
cases.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 75 of 288

Table 1.31: PPE 42 Ramming Behavior

Instruction(s),
Condition(s) or Side-

effects

Notes

IAR updates IAR updates associated with instruction fetch are suppressed while ramming. Ramming branches will modify
the IAR if the branch is taken, and ramming rfi will update the IAR from SRR0. However, the simplest way to
modify the IAR while halted is via a direct write, not by ramming branches. Note that if a relative branch
instruction is rammed and the branch is taken, the IAR serves as the CIA for the relative branch target
computation.

mfsprg0, mtsprg0 SPRG0 is an XIR used indirectly to read (mtsprg0) and write (mfsprg0) GPRs by ramming the respective
instruction. These instructions change no architected state other than the GPR targeted by mfsprg0.

mfspr, mfcr, mtcr0,
wrtee, wrteei,
arithmetic and logical
instructions

Ramming these instructions do not cause state changes other than the GPR updates, CR updates for mtcr0,
MSR[EE] updates for wrtee and wrteei, and side-effects to CR and XER from certain arithmetic and logical
instructions.

mfmsr, mtmsr, rfi In ramming mode, mfmsr, mtmsr and rfi do not synchronize the memory interface for outstanding exceptions,
as this could hang the processor if the memory interface is hung. This allows the MSR to be read and written
externally regardless of the state of the memory interface. If synchronization is required before mfmsr, mtmsr
or rfi an explicit sync should be rammed.

sync sync behaves normally, establishing execution and storage synchronization before completing. This operation
may hang if the memory interface is hung.

mttsr In ramming mode, all write-1-to-clear fields of the TSR are directly writable. This behavior supports ramming
timer status bits for test and debug purposes, and also to restore the original states of the TSR, since the
register contents may have been modified by side effects of rammed instructions, single-stepped instructions
or external or internal events.

mtspr other than mttsr These SPR updating instructions behave as normal. However, as noted below, any asynchronous interrupts
they cause or uncover are completely ignored while ramming.

trap Ramming a trap instruction when DBCR[TRAP] = '0' causes a program interrupt, which will be handled as
described below under interrupts. If DBCR[TRAP] = '1', then the only effects of ramming a trap will be to set
XSR[TRAP] = '1' and XSR[HC] = '100' since the processor is already always halted while ramming.

Interrupts Asynchronous interrupts are completely ignored while ramming, even if the asynchronous interrupt is caused
or unmasked by a rammed instruction. However pending asynchronous interrupts will be taken if the processor
is later single-stepped or restarted.

Since no instruction is fetched while ramming, ramming instructions can never cause instruction storage or
instruction machine check exceptions and interrupts.

Other synchronous interrupts are processed while ramming. For example, if a rammed load or store causes a
precise data machine check or uncovers an imprecise data machine check, the core will process the interrupt,
including all EDR and ISR state changes, then halt with the IAR addressing the first instruction of the interrupt
vector. Similarly, ramming an illegal instruction encoding or trap will effectively cause a program interrupt to be
handled.

Note that interrupt prioritization for synchronous interrupts works as normal while ramming. For example, if a
processor is halted with pending imprecise machine checks, and an otherwise legal load or store is rammed,
the core will not execute the rammed instruction, but will instead take a machine check interrupt. In general it
may be best to always ram a sync instruction prior to ramming loads and stores, in order to clear up any
pending imprecise exceptions.

Debug events In ramming mode, IAC and DAC debug events are suppressed. This means it is possible to ram instructions
even if the IAR or data address matches the DACR, and the XSR will not record these events even if they are
otherwise enabled in the DBCR. Ramming a trap will cause the normal behavior, modulo ramming-mode
interrupt handling.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 76 of 288

7.8 Debugging Procedures
Several important debugging procedures are described here at a high level. Debugging procedure require
manipulation of the PPE 42 XIRs. As described in section 6, External Interface Registers, XIRs are always
accessed as 64-bit pairs of 32-bit registers, however pairings are provided that always provide safe, 32-bit
access to each XIR, as some instances of the PPE 42 core may not support 64-bit access for all external
agents. For simplicity, basic debugging procedures are first described in terms of 32-bit XIR operations.
Next, some accelerated debugging procedures are described that take advantage of 64-bit XIR pairs, for
those instances that support 64-bit access to XIRs.

7.8.1 Basic Debugging Procedures

7.8.1.1 Halting the Processor

To safely halt the processor from any state:

1. Write XCR[CMD] with '001'.

2. Poll the XSR until XSR[HS] = '1'.

7.8.1.2 Force-Halting the Processor

If the previous procedure for halting the processor does not terminate in a reasonable amount of time, it
may be necessary to force-halt the processor. Note that force-halting the processor may leave the system
in an unrecoverable or inconsistent state. Prior to force halting the processor it may be useful to make note
of the contents of XSR[SMS], as this may help diagnose why force-halting is required.

To force-halt the processor from any state:

1. Write XCR[CMD] with '111'.

After step 1 above, the processor will report halted status (XSR[HS] = '1') in at most two machine cycles.

7.8.1.3 Clearing Debug Halt Status

To avoid confusion while debugging, it may be helpful for debugging procedures to clear debug halt status
fields from the XSR prior to restarting a halted processor. To clear debug status from the halted state:

1. Write XCR[CMD] = '000'.

The PPE 42 core neither implements nor acknowledges a request to clear debug status bits unless the
processor is halted (XSR[HS] = '1').

7.8.1.4 Resetting the Processor

The processor can be reset from any state. Two types of reset are supported, the so-called soft and hard
resets. The differences and effects of the hard and soft reset are instance specific. To reset the processor:

1. Write XCR[CMD] = '101' (for a soft reset) or '110' (for a hard reset).

Note that resetting the processor via the XCR does not clear XSR[HCP], that is, a halted processor
remains halted after an XCR-controlled reset. A subsequent processor restart will then fetch the System
Reset interrupt vector with the previous IAR placed in SRR1.

7.8.1.5 Restarting the Processor

The processor can be restarted after halting, regardless of whether the halt was due to an internal event or

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 77 of 288

an external command. Restarting a processor that was force halted, however, may not produce meaningful
results. Also, if the processor is halted due to an active level on the halt_req input to the core, instance-
specific procedures may also be necessary to deassert halt_req prior to restarting the processor.

When the processor is restarted from the halted state, the next instruction fetched and executed is the
instruction addressed by the IAR, unless an asynchronous interrupt is pending when the processor is
restarted, in which case an interrupt will be taken immediately and the IAR will be copied to SRR0.

To restart the processor

1. Write XCR[CMD] with '010'.

2. Optionally check that XSR[HS] = '0', which should be true immediately after step 1 completes.

The PPE 42 core neither implements nor acknowledges a restart request unless the processor is either
halted (XSR[HS] = '1') or already running (XSR[HCP] = '0').

7.8.1.6 Single-Stepping an Instruction

The processor can single-step instructions from the halted state. Single-stepping may not produce
meaningful results after force-halting the processor.

The instruction that will be single-stepped is the instruction addressed by the IAR whenever the processor
is in the halted state. This is normally the next sequential instruction. If the debugging task requires single
stepping another section of code, the IAR can be modified to address the other section of code prior to
single-stepping.

Note that the PPE 42 core does not require an instruction cache, nor does it provide any modes to control
instruction cacheability for instances that include caches. Therefore, whether or not a single-stepped
instruction represents the contents of an instruction cache or the contents of memory is instance-specific.

To single-step an instruction:

1. Halt the processor using the procedure provided.

2. Modify the IAR if required.

3. Write XCR[CMD] = '011'.

4. Poll the XSR until XSR[HS] = '1'.

Repeat steps 2 through 4 to single-step multiple instructions. Note that the PPE 42 core neither implements
nor acknowledges writes to the IAR nor the single-step command unless the processor is halted (XSR[HS]
= '1').

7.8.1.7 Ramming an Instruction

The processor can ram instructions from the halted state. Ramming is also possible after force-halting the
processor, subject to the previous caveats with respect to ramming various types of instructions.

Ramming branches and rfi can be used to to modify the IAR, however if the debugging task requires
restarting or single stepping another section of code, it is simpler to directly write the IAR to address the
other section of code prior to restarting or single-stepping.

The GPRs and may SPRs in the PPE core are only directly accessible external to the PPE core by
ramming a particular sequence of instructions. The SPRG0 register may be used as an externally-
accessible intermediate location in which to read data from, or write data into, other GPRs or SPRs in the
PPE core via the ram mechanism.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 78 of 288

To ram an instruction:

1. Halt the processor using the procedure provided, unless it is already halted as indicated in the
XSR.(Optional) Selectively read and save any state, such as SPRG0 and any other SPRs or GPRs,
that may be overwritten during the RAM operation. Beginning with PPE 42X, this includes the
XSR.

2. (If needed) Write SPRG0 with any data needed by the instruction being rammed, e.g. when altering
the contents of other SPRs or the GPRs.

3. Write the IR with the instruction to be executed.

4. Poll the XSR until XSR[HS] = '1'.

5. (If needed) Read SPRG0 to obtain the data result of the rammed instruction, e.g. when extracting
the contents of other SPRs or the GPRs.

6. (Optional) Restore any state, such as SPRG0 and XSR, that may have been modified. Additional
ram operations may be needed to restore the state of selected SPRs and GPRs.

Repeat steps 2 and 3 to ram multiple instructions. Note that the PPE 42 core neither implements nor
acknowledges writes to the IR unless the processor is halted (XSR[HS] = '1').

PPE 42X adds the ability to restore the debug halt information in XSR that is cleared by the act of ramming
by making the XSR writable.

7.8.1.8 Low-overhead Ramming

When ramming, all non-synchronizing, non-memory and non-cache management instructions are
guaranteed to complete in at most 3 cycles after being rammed by writing the instruction to the IR.
Debugging procedures may elect to reduce overhead by forgoing the polling of XSR[HS] after ramming
arithmetic, compare and move from/to instructions, assuming that writes of the IR can be guaranteed to be
paced at least 4 cycles apart. If maintaining the state of the processor is not important, the optional save
and restore steps listed may also be skipped.

7.8.1.9 Toggling XSR[TRH]

The field XSR[TRH] controls whether timer facilities continue to run while the processor is halted.
XSR[TRH] is not modified directly, instead an XCR command is provided to toggle (invert) the value of
XSR[TRH].

To set the value of XSR[TRH]:

1. Observe the current value of XSR[TRH].

2. If the value of XSR[TRH] is not the desired value, write XCR[CMD] = '100' to toggle (invert) the
current value.

7.8.2 Advanced Debugging Procedures

The following take advantage of simultaneous 64-bit (doubleword) XIR accesses, requiring fewer
operations to be performed for debug state extraction. This is especially useful for more efficient ramming
operations.

7.8.2.1 Reading Status and IAR Contents Simultaneously

Reading the XSR_IAR pair allows debug status and the current value of the IAR to be read from the PPE
42 core with a single transaction. This pairing is useful because for most types of debug halts, the value of
the IAR at the time of the halt is a critical piece of information required to diagnose the halt.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 79 of 288

7.8.2.2 Reading Status and SPRG0 Simultaneously

Reading the XSR_SPRG0 pair allows debug status and the current value of SPRG0 to be read from the
PPE 42 core with a single transaction. This pairing is useful because ramming procedures will always use
SPRG0 as a conduit for reading GPR and SPR data out of the core, and XSR[HS] indicates or guarantees
that a previous ramming operation is complete.

7.8.2.3 Writing IR and SPRG0 Simultaneously

Writing the IR_SPRG0 pair allows a value to be written to SPRG0 while simultaneously ramming mfsprg0
Rx to cause the new SPRG0 value to be placed into a GPR Rx.

7.8.2.4 Writing XCR and SPRG0 Simultaneously

Writing the XCR_SPRG0 pair allows a value to be deposited into SPRG0 (to restore its value after a
ramming sequence) and simultaneously restart the processor.

7.8.2.5 Writing XSR and IAR Simultaneously

Beginning with PPE 42X, the XSR_IAR pair is writeable, allowing the XSR to be restored to the debug halt
state present in the XSR prior to the ramming operation. Of course, the XSR and IAR must first be saved
prior to the ram operation.

7.8.2.6 Reading CTR

Beginning with PPE 42X, the CTR is readable via the lower word of XIR0, which previously only provided
write-only access to the XCR. The CTR value may be useful in certain debug scenarios, especially when
the CTR contains a branch target address.

7.8.2.7 Reading SRR0 and LR Simultaneously

Beginning with PPE 42X, XIR6 allows reading the SRR0_LR pair with a single transaction. This is useful for
debug, since the most recent procedure call return address is in the LR and the instruction address at the
time of the most recent interrupt is in the SRR0. Both are critical pieces of information typically needed to
diagnose a halt or misbehaving code.

7.8.2.8 Reading GPR pairs (VDRs) Simultaneously

Beginning with PPE 42X, the GPRs are available to be read via XIR. Enablement of this capability is
optional since this visibility may result in a security exposure for certain PPE processor applications. GPRs
are otherwise only available via the ramming procedure which requires a series of operations including an
XIR write, which is also a security exposure in some PPE processor applications.

When this feature is enabled, the even-numbered VDRs (0,2,4,6,8,28, & 30) are available, as well as a
psuedo “VDRX” consisting of the GPR10_GPR13 pair, such that all 16 GPRs are readily visible.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 80 of 288

8 Register Summary
All registers contained in the PPE 42 core are architected as 32-bits. PPE 42 also supports 64 bit
operations targeting a pair of consecutive General Purpose Registers referred to as a Virtual Doublewords.
This section summarizes the registers and the bit-field usage within the registers.

The registers are grouped into categories, based on access mode: General Purpose Registers (GPRs),
Virtual Doubleword Registers (VDRs), Special Purpose Registers (SPRs), External Interface Registers
(XIRs), the Machine State Register (MSR) and the Condition Register (CR).

Each instantiation of the PPE 42 core will also likely define and document a number of memory-mapped
I/O registers (MMIO) and/or memory-mapped control registers (MMCR). Instance-specific MMIO and
MMCR will be documented with each instantiation of the PPE 42 core.

8.1 Reserved Registers
Any register numbers not listed in the tables which follow are reserved, and should be neither read nor
written. These reserved register numbers may be used for additional functions in future processors. Any
attempt to execute an instruction referring to a reserved register will cause an illegal instruction exception.
XIRs do not have register numbers as no specific instructions are provided to access XIRs.

8.2 Reserved Fields
For all registers having fields marked as reserved, the reserved fields should be written as zero and read
as undefined. That is, when writing to a reserved field, write a 0 to the field. When reading from a reserved
field, ignore the field.

As a matter of completeness however all reserved fields of PPE 42 architected registers are defined to
return 0 when read.

It is good coding practice to perform the initial write to a register with reserved fields as described in the
preceding paragraph, and to perform all subsequent writes to the register using a read-modify-write
strategy: read the register, alter desired fields with logical instructions, and then write the register.

8.3 General Purpose Registers
The PPE 42 core provides 16 General Purpose Registers (GPRs), selected from the 32 GPRs architected
in the Power ISA. The contents of these registers can be loaded from memory using load instructions and
stored to memory using store instructions. GPRs are also addressed by all integer instructions.

The table below documents the PPE 42 GPRs. The ABI notes refer to register usage as defined by the
PowerPC System V Application Binary Interface (ABI), and its extension the PowerPC Embedded
Application Binary Interface (EABI) for 32-bit processors. The assumption in selecting the Power ISA GPR
subset to implement in PPE 42 was that the majority of PPE applications would be developed consistent
with these ABIs. In particular, GPRs 0:1, 3:10 and 30:31 are critical to allow PPE 42 assembly code to be
generated from current PowerPC compiler infrastructures with minimum effort. The PPC 42 GPR set is
sufficient to support all ABI parameter passing mechanisms including variadic functions, allowing code
libraries compiled for PPE 42 (without PPE 42 specific instructions) to execute correctly on 32-bit Power
ISA platforms. Internal studies also show that the volatile/nonvolatile GPR ratio implemented by PPE 42
represents a good tradeoff for a variety of embedded application routines compiled with a modern
optimizing compiler.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 81 of 288

Table 1.32: PPE 42 General Purpose Registers

Mnemonic
Register
 Name

GPR Number
ABI Notes

Decimal Hexadecimal

R0 GPR 0 0 x'0' Volatile register which may be modified during subroutine linkage. R0 is also
treated as containing 0 by many instructions.

R1 GPR 1 1 x'1' The stack frame pointer

R2 GPR 2 2 X'2' Defined as system-reserved by the ABI. Defined to contain the base address of
the ELF sections named .sdata2 and .sbss2 by the EABI.

R3 GPR 3 3 x'3' Volatile register used for parameter passing and return values

R4 GPR 4 4 x'4' Volatile register used for parameter passing and return values

R5 GPR 5 5 x'5' Volatile register used for parameter passing

R6 GPR 6 6 x'6' Volatile register used for parameter passing

R7 GPR 7 7 x'7' Volatile register used for parameter passing

R8 GPR 8 8 x'8' Volatile register used for parameter passing

R9 GPR 9 9 x'9' Volatile register used for parameter passing

R10 GPR 10 10 x'a' Volatile register used for parameter passing

R13 GPR 13 13 x'd' Defined to contain the base address of the ELF sections named .sdata and .sbss
by the ABI and EABI.

R28 GPR 28 28 x'1c' Non-volatile register used for local variables

R29 GPR 29 29 x'1d' Non-volatile register used for local variables

R30 GPR 30 30 x'1e' Non-volatile register used for local variables

R31 GPR 31 31 x'1f' Non-volatile register used for local variables

8.4 Virtual Doubleword Registers
PPE 42 supports 64-bit operations to pairs of consecutive GPRs known as Virtual Doubleword Registers
(VDRs). To the PPE 42 core, instructions targeting virtual doublewords are atomic operations; however the
handling of virtual doubleword load and store operations by the memory interface is instance-specific.

A VDR is designated in the instruction encodings by the GPR number of the GPR containing the high-order
32 bits of the VDR. The next consecutive GPR (modulo 32) contains the low-order 32-bits of the VDR.
Loading and storing a VDR always operates on both GPRs atomically, and in no way alters the ability to
independently operate on either GPR either before, during or after its use as part of a VDR.

The sixteen PPE 42 GPRs can also be used as fourteen VDRs as described in the table below. GPRs 10
and 13 can not be used to designate a VDR as PPE 42 does not define the next consecutive GPR (modulo
32) for these GPRs. Note that use of several of the VDRs (for example, D0, D1, D2 and D31) will be
precluded in most cases by ABI considerations.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 82 of 288

Table 1.33: PPE 42 Virtual Doubleword Registers

Mnemonic Register Name
GPRs VDR Number

High Order Low Order Decimal Hexadecimal

D0 VDR 0 GPR 0 GPR 1 0 x'0'

D1 VDR 1 GPR 1 GPR 2 1 x'1'

D2 VDR 2 GPR 2 GPR 3 2 x'2'

D3 VDR 3 GPR 3 GPR 4 3 x'3'

D4 VDR 4 GPR 4 GPR 5 4 x'4'

D5 VDR 5 GPR 5 GPR 6 5 x'5'

D6 VDR 6 GPR 6 GPR 7 6 x'6'

D7 VDR 7 GPR 7 GPR 8 7 x'7'

D8 VDR 8 GPR 8 GPR 9 8 x'8'

D9 VDR 9 GPR 9 GPR 10 9 x'9'

D28 VDR 28 GPR 28 GPR 29 28 x'1c'

D29 VDR 29 GPR 29 GPR 30 29 x'1d'

D30 VDR 30 GPR 30 GPR 31 30 x'1e'

D31 VDR 31 GPR 31 GPR 0 31 x'1f'

8.5 Machine State Register and Condition Register
Because these registers are accessed using special instructions, they do not require addressing. The
mfmsr/mtmsr and mfcr/mtcr0 instructions are used to access the MSR and CR[CR0] respectively.

8.6 Special Purpose Registers
Special Purpose Registers (SPRs) are used for subroutine linkage and iteration, and control the use of the
debug facilities, timers, interrupts, and other architected processor resources. SPRs are accessed using
the move to special purpose register (mtspr) and move from special purpose register (mfspr) instructions.
The CTR and LR are also implicitly read and written by several instructions. All SPRs may be read by any
PPE 42 program, and most may be written by any PPE 42 program. A subset of SPRs are read-only to all
programs.

PPE 42 SPRs are modeled after Power ISA BOOK I and Book III-E architected SPRs that serve an
identical or analogous function, and PPE 42 borrows Power ISA Book I and Book III-E SPR names for
many SPRs, and Power ISA Book I and Book III-E SPR numbers for all SPRs. This convention does not
mean that PPE 42 implements the Power ISA specification for like-named or numbered SPRs; This manual
provides the full specification of PPE 42 SPRs.

The table below shows the mnemonics, names, and numbers of the PPE 42 SPRs. All SPR numbers that
are not listed are reserved and must be neither read nor written. The SPRN columns list the register
numbers used as operands in assembler language coding of the mfspr and mtspr instructions. The
translation of the SPRN into the SPRF field of the mfspr and mtspr instructions is documented with those
instructions. The analogous Power ISA Book I or Book III-E SPR is also indicated.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 83 of 288

Table 1.34: PPE 42 Special Purpose Registers

Mnemonic Register Name
SPRN

Access
Power ISA Book I or

Book III-E AnalogDecimal Hexadecimal

CTR Count Register 9 x'009' Read/Write CTR

DACR Debug Address Compare Register 316 x'13c' Read/Write DAC1

DBCR Debug Control Register 308 x'134' Read/Write DBCR0

DEC Decrementer 22 x'016' Read/Write DEC

EDR Error Data Register 61 x'03d' Read/Write DEAR

ISR Interrupt Status Register 62 x'03e' Read/Write ESR/MCSR

IVPR Interrupt Vector Prefix Register 63 x'03f' Read-only IVPR

LR Link Register 8 X'008' Read/Write LR

PIR Processor Identification Register 286 x'11e' Read-only PIR

PVR Processor Version Register 287 x'11f' Read-only PVR

SPRG0 SPR General 0 272 x'110' Read/Write SPRG0

SRR0 Save/Restore Register 0 26 x'01a' Read/Write SRR0

SRR1 Save/Restore Register 1 27 x'01b' Read/Write SRR1

TCR Timer Control Register 340 x'154' Read/Write TCR

TSR Timer Status Register 336 x'150' Read/Write TSR

XER Fixed-Point Exception Register 1 x'001' Read/Write XER

8.6.1 Using SPRs as Scratch Registers

Due to the limited number of GPRs provided by PPE 42, there may be cases where it is expedient to use
an SPR as a scratch register in application code, rather than saving and restoring temporary values to
memory. Several SPRs implement all 32 bits and can potentially be used this way, as detailed in the
following table.

Table 1.35: SPRs Implementing All 32 Bits, Potentially Usable as Scratch Registers

SPR Notes and Caveats

CTR These registers are considered part of the programmer state and should always be saved and restored across interrupts. The
CTR would be the first choice for use as a scratch register, since the CTR is not required to be saved and restored across
subroutine calls in standard Power ISA ABI specifications, whereas the LR must be.LR

SPRG0 An operating environment may or may not save these registers across interrupts, meaning they could only potentially be used
when interrupts are disabled. However it is also possible that SPRG0 has a specific use and will not be allowed to be modified.
The EDR could only be used if interrupts that set the EDR are considered unrecoverable to the code using the EDR as
scratch.

EDR

DACR It is possible, but unlikely that the DACR could be used as a scratch register, since this would require limiting the types of
debugging that could be performed on the application.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 84 of 288

8.7 External Interface Registers
External interface registers (XIRs) are used to control and observe the state of the PPE 42 core from
outside of the core. XIRs are architected 32-bit registers that are not necessarily part of the PPE 42
programming model, but some registers may be both XIRs and SPRs.

The way that XIRs are accessed will vary with each instantiation of the PPE 42 core. Each PPE 42
instance will document register addressing and access conventions for PPE 42 XIRs, for example an
instance of PPE 42 may allow programs to access XIRs as MMCRs.

Although the XIRs are architected as 32-bit registers, XIRs are always read and written externally as 64-bit
pairs of 32-bit registers. XIR access and pairing is fully documented in section 6, External Interface
Registers.

8.8 Simultaneous Update
Certain SPRs contain writable fields that also change asynchronously with respect to program execution.
Unless otherwise explicitly specified, if the modification of a field of an SPR from a PPE program is
simultaneous with an update from the underlying hardware, the update from the PPE program always takes
precedence.

Note that the preceding paragraph refers to fields of registers. For register fields that are specified with the
write-1-to-clear semantics, writing a 0 to the field does not inhibit a simultaneous asynchronous update to
the field.

Certain XIRs also contain writable fields that similarly change asynchronously with respect to the external
environment. The PPE 42 only core only allows updates to XIRs in processor states where there is no
possibility of simultaneous access.

8.9 Initialization and Reset
Initialization and reset of the PPE 42 core register state is fully covered in section 3, Initialization,Reset,
and Starting Execution.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 85 of 288

8.10 Alphabetical Listing of PPE 42 Registers
The following pages list the registers available in the PPE 42 core. For each register, the following
information is supplied:

• Register mnemonic and name

• Register access information, including the register type and number if appropriate and allowed
access modes

• A table describing the register fields giving each field mnemonic, field bit location and a brief
description of the function of the field

Unless an entire register is read/write or read-only, the register description tables include specific access
modes for individual register fields. Access mode abbreviations are described in the table below.

Table 1.36: Register Field Access Modes

Mode Description

RW Read/Write

RWX Read/Write, with updates also possible from the underlying hardware

RO Read-only; Any write to the register field is ignored.

W1TC Write-1-to-clear; These SPR fields represent status set by the underlying hardware. Writing a '1' to the field clears the field to '0'.
Writing a '0 to the field does not change the value of the field. However, note that ramming an mtspr instruction targeting the SPR
allows the fields to be directly written from the contents of a GPR.

WO Write-only; These fields exist for side-effect only. Writing values to the field may cause a side effect, however reading the field
always returns 0.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 86 of 288

8.10.1 CR – Condition Register

Register Access: mtcr0 and mfcr instructions

Table 1.37: CR – Condition Register

Bits Field Description Notes

0:3 CR0 Bit 0: Less Than (LT)
Bit 1: Greater Than (GT)
Bit 2: Equal (EQ)
Bit 3: Summary Overflow (SO)

PPE 42 only implements CR[CR0] of the Power ISA specification.

4:31 Reserved Ignored by mtcr0; Always read as 0 by mfcr

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 87 of 288

8.10.2 CTR – Count Register

Register Access: SPR 9, Read/Write; PPE42X: XIR, Read-only

Table 1.38: CTR – Count Register

Bits Field Description

0:31 CTR The CTR simplifies iteration by way of conditional branch instruction forms predicated on the value of the decremented
CTR.

The CTR holds the targets of indirect branches for the bcctr[l] instruction. Note that the branch target for bcctr[l] is

specified as (CTR)0:29 || 20.

With careful programming the CTR may also be used as a 32-bit scratch register.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 88 of 288

8.10.3 DACR – Debug Address Compare Register

Register Access: SPR 316, Read/Write

Table 1.39: DACR – Debug Address Compare Register

Bits Field Description

0:31 DACR DACR holds the 32-bit address used to generate debug events for both instruction address comparison (DBCR[IACE]
= '1') and data address comparison (DBCR[DACE] ≠ '00').

Note:
For PPE42, all 32 bits of DACR are implemented and compared. When comparing instruction addresses, bits 30:31 of
the instruction address must be configured as '00' for the comparison to succeed.

For PPE42X, DBCR[ACS] chooses which 32 bits of DACR to use in the comparison, to select a byte, word,
doubleword, or octword region. Note that the byte compare selection instead does word compare for instruction
addresses.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 89 of 288

8.10.4 DBCR – Debug Control Register

Register Access: SPR 308, Read/Write

Table 1.40: DBCR – Debug Control Register

Bits Field Description Mode Notes

0:1 Reserved

2:3 RST Reset
00 No Action
01 Soft Reset
10 Hard Reset
11 Halt

WO Writing this field to a non-0 value immediately causes the
specified action. The effect of reset on the PPE 42 core is
define in section 3, Initialization,Reset, and Starting
Execution. The effect of resetting the environment is specific
to each instantiation of PPE 42.

Writing the '11' (halt) command sets XSR[HCP] to '1'. This
event will halt the processor with the IAR containing the
address of the instruction following the mtdbcr instruction that
wrote this field to '11'.

Reading this field always returns the value '00'.

4:6 Reserved

7 TRAP Trap Instruction Enable
0 Disabled
1 Enabled

RW If disabled, the trap instruction causes a program exception.

If enabled, the trap instruction sets XSR[TRAP] = '1' and
causes the processor to halt.

8 IACE Instruction Address Compare Enable
0 Disabled
1 Enabled

RW If enabled, then if the instruction address matches the DACR,
XSR[IAC] is set to '1' and the processor halts prior to fetching
the instruction.

9:11 Reserved

12:13 DACE Data Address Compare Enable
00 Disabled
01 Compare store addresses
10 Compare load addresses
11 Compare store and load addresses

RW If DBCR[DACE] ≠ '00',and a load and/or store address
matches the DACR as selected by DBCR[DACE], then the
processor halts before executing the load, store or cache
control instruction. See the notes for XSR[RDAC] and
XSR[WDAC] for a description of how XSR is updated by this
debug event.
PPE42: also requires DBCR[IACE] = '0', a restriction removed
by PPE42X.

14:23 Reserved

24:25 ACS Address Compare Size
00 Data: Compare all bits (byte address)
 Instruction: ignore two lsb (word address)
01 Ignore two lsb (word address)
10 Ignore three lsb (doubleword address)
11 Ignore five lsb (octword address)

RW PPE42: Reserved.
PPE42x: Chooses which bits of the DACR to include in the
address comparison when IACE or DACE are non-zero.
Omits selected least significant bits of the address from the
comparison, to allow for any instruction or data accesses to a
word (4 byte) doubleword (8 byte) or octword (32 byte cache
line) regions.
Note that encode 00 actually performs word, not byte, address
comparisons for instruction addresses, same as the 01
encode.

26:28 Reserved

29 ZACE Zero Address Compare Enable RW PPE42: Reserved.
PPE42x: when set and either the instruction or data address
to be accessed all zero, the processor halts prior to fetching or
executing the instruction. Setting this bit is equivalent to
enabling both DBCR[IACE]='1' and DBCR[DACE]='11' and
DBCR[ACS]='00' and DACR to all zeroes. However, when

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 90 of 288

Bits Field Description Mode Notes

this bit is set, the DACR can simultaneously compare on a
non-zero instruction and/or data address.

30 HDFI Halt Debug Freeze Interrupts RW PPE42: Reserved.
PPE42x: when set, Halt Conditions other than XCR[CMD] will
freeze the state of External Interrupts for debug. Specifically,
whenever this bit is set and XSR[HC] is greater than 0x1, the
XSR[EP], the TSR, and the state of any interrupts feeding the
external interrupt pin of the PPE core are frozen for debug.

31 HDFT Halt Debug Freeze Timers RW PPE42: Reserved.
PPE42x: when set, Halt Conditions other than XCR[CMD] will
freeze the state of the PPE Timers for debug. Specifically,
whenever this bit is set and XSR[HC] is greater than 0x1, the
Decrementer, Fixed Interval Timer, and Watchdog Timer are
frozen. Note that is mode is similar to XSR[TRH] except that
mode includes XSR[HC]==0x1, and is intended for instruction
stepping.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 91 of 288

8.10.5 DEC – Decrementer

Register Access: SPR 22, Read/Write

Table 1.41: DEC – Decrementer

Bits Field Description

0:31 DEC The decrementer is a free-running 32-bit decrementer. The decrementer counts down by 1 on each clock cycle that the
decrement condition is true (as controlled by TCR[DS]), underflowing to x'FFFF FFFF' if the current contents of DEC
are 0 when this is true.

Decrementer interrupt status (TSR[DIS]) is set to '1' on any cycle that (DEC)0 transitions from '0' to '1', including

transitions caused by mtspr instructions targeting DEC.

The decrementer does not decrement if a halt condition is present (XSR[HCP] = '1') unless XSR[TRH] = '1' (timers run
while halted).

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 92 of 288

8.10.6 EDR – Error Data Register

Register Access: SPR 61, Read/Write; XIR, Read-only

Table 1.42: EDR – Data Error Register

Bits Field Description

0:31 EDR The EDR holds data associated with certain types of exceptions. The EDR is updated when the exception is taken as
an interrupt, and remains unchanged until the next EDR-updating interrupt occurs or until the EDR is explicitly
overwritten. The following table details the information placed in the EDR based on the type of interrupt.

Table 1.43: EDR Contents by Interrupt

Interrupt EDR Contents

Data storage
The data address responsible for the exception.

Alignment

Data Machine Check

Program The 32-bit value being decoded as an instruction at the time of the exception. For
Program Exceptions caused by trap instructions, this will be a trap instruction.

The EDR is also accessible read-only as an XIR.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 93 of 288

8.10.7 IAR – Instruction Address Register

Register Access: XIR, Read/Write

Table 1.44: IAR – Instruction Address Register

Bits Field Description

0:29 IAR When the processor is fully halted (XSR[HS] = '1'), reading the IAR returns the address of the next instruction that
will be executed when the processor is returned to the running state, or single-stepped. Architecturally, the
instruction addressed by the IAR has not been executed.

If the processor is halted in the wait-enable state (XSR[HS] = '1' and XSR[WS] = '1'), the IAR contains the address
of the instruction following the mtmsr instruction that set MSR[WE], however this instruction is not executed upon
resumption as a core in the wait-enable state remains in that state until an asynchronous exception occurs.

If the processor halts due to a machine check occurring with MSR[ME] = '0', or due to an unmaskable interrupt
when MSR[UIE] = '0' and MSR[ME] = '0', the IAR will contain the address of the interrupt vector associated with the
interrupt.

If the processor is halted due to a debug event then the IAR contains the address of the instruction associated with
the event. For trap debug halts this is the address of the trap instruction. For instruction-address compare debug
halts this is the address contained in DACR. For data-address compare debug halts this is the address of the
instruction that would perform the load or store to the address contained in DACR.

When the processor is running, single-stepping or ramming(XSR[HS] = '0'), reading the IAR can be used to gauge
program progress, however the interpretation of the IAR with respect to other observable state is not specified here.
Although the values observed in the IAR during execution are always instruction addresses generated by the
program flow, there is no guarantee that the instruction addressed by the IAR has been or will be executed.

The IAR is read/write as an XIR. When single-stepping, the IAR is updated by the effects of each instruction as it
executes, and by asynchronous interrupts processed during single-stepping. When ramming, the IAR is not
modified unless either a taken branch or rfi is explicitly rammed, or ramming causes or uncovers a precise or
imprecise synchronous exception. Asynchronous exceptions are ignored while ramming.

The IAR can only be written when the processor is halted (XSR[HS] = '1').

30:31 Reserved Always read as '00'.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 94 of 288

8.10.8 IR – Instruction Register

Register Access: XIR, Read/Write

Table 1.45: IR – Instruction Register

Bits Field Description

0:31 IR The IR can be read at any time, but can only be written when the processor is halted.

When the processor is halted (XSR[HS] = '1'), writing the IR initiates ramming, that is, the processor executes the
instruction written to the IR and then returns to the halted state.

During normal execution the IR is only updated when the memory interface acknowledges an instruction fetch. In
other words, whenever the processor halts the IR contains the last instruction fetched (but not necessarily
executed). This fact may be useful for debugging.

The IR is also copied to the EDR whenever a program interrupt is taken.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 95 of 288

8.10.9 ISR – Interrupt Status Register

Register Access: SPR 62, Read/Write and Read-only

Table 1.46: ISR – Interrupt Status Register

Bits Field Description Mode Notes

0:15 Reserved

16:19 SRSMS System Reset State Machine State. RW This field records the value of the PPE 42 core state
machine state at the time of the most recent system reset.
The interpretation of this field is documented with the PPE
42 core hardware design. This field is implemented to
assist debugging of watchdog timer resets.

Should a reset event occur simultaneously with the
execution of an mtisr instruction, the field will be updated
according to the reset semantics.

20 Reserved

21 EP MSR[EE] Maskable Event Pending
0 No event maskable by MSR[EE] is pending
1 An event maskable by MSR[EE] is pending

RO This field reads as '1' whenever any of the following
conditions are satisfied, otherwise '0':

• The external interrupt input of the PPE 42 core
is active

• TCR[DIE] = '1' and TSR[DIS] = '1'
• TCR[FIE] = '1' and TSR[FIS] = '1'
• TCR[WIE] = '1' and TSR[WIS] = '1'

Note that the value of XSR[EP] is not predicated on the
value of MSR[EE] or any other architected state not
mentioned above.

22:23 Reserved

24 PTR Program Interrupt from trap
0 Program interrupt caused by illegal instruction
1 Program interrupt caused by trap instruction

RW This field is updated by the hardware whenever a program
interrupt is either taken directly, taken as a machine check
interrupt, or causes a processor halt. If '0', then the
program interrupt was caused by an illegal instruction. If
'1', then the program interrupt was caused by execution of
a trap instruction.

25 ST Data Interrupt Caused by a Store
0 Data interrupt caused by a load
1 Data interrupt caused by a store

RW This field is updated by the hardware whenever a data
storage or alignment interrupt is either taken directly, taken
as a machine check interrupt, or causes a processor halt.
Under these conditions the field will be set if the operation
causing the exception was either a store, or a store-type
data cache operation (dcbf, dcbi or dcbz), otherwise the
field will be cleared.

26:27 Reserved

Continued next page

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 96 of 288

Bits Field Description Mode Notes

28 MFE Multiple Fault Error
0 A single machine check is reported
1 Multiple imprecise store-type machine checks
are reported as one

RW This field is valid whenever a machine check interrupt is
either taken or causes a processor halt, including the case
of other unmaskable interrupts promoted to machine
checks. If set, it indicates either that the memory interface
reported multiple imprecise store-type machine checks
simultaneously, or that a second (or multiple) imprecise
store machine check(s) was (were) reported during
synchronization and prioritization following the occurrence
of a first imprecise store machine check.

If ISR[MFE] = '1', ISR[MCS] will always read as '011'
indicating that multiple imprecise store errors are being
reported.

To clarify further, this field is read as '1' only if multiple
imprecise store-type machine checks are reported
simultaneously; it does not indicate that machine checks of
different types are being reported simultaneously. For
example, if an instruction machine check or data machine
check for a load occurs, and synchronization and
prioritization then uncovers (an) imprecise store machine
check(s) pending, only the imprecise store machine
check(s) will be reported. The instruction or load data
machine checks will then be rediscovered in the event that
software recovers and resumes execution at the excepting
instruction.

The multiple-fault error indicates that error recovery
information may have been irrevocably lost from the
hardware state. In particular, the EDR will only report one of
the data addresses responsible for the multiple machine
checks.

29:31 MCS Machine Check Status
000 – Instruction machine check
001 – Data machine check – load
010 – Data machine check – precise store
011 – Data machine check – imprecise store
100 – Program interrupt , promoted
101 – Instruction storage interrupt, promoted
110 – Alignment interrupt, promoted
111 – Data storage interrupt, promoted

RW This field is valid whenever a machine check interrupt is
either taken, or causes a processor halt. This field details
the cause of the most recent machine check.

Unmaskable interrupts are taken and reported as machine
check interrupts whenever MSR[UIE] = '0' and MSR[ME] =
'1'. Note that a program interrupt taken as a machine check
will still update ISR[PTR], and data storage and alignment
interrupts taken as a machine check will still update
ISR[ST].

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 97 of 288

8.10.10 IVPR – Interrupt Vector Prefix Register

Register Access: SPR 63, Read-only

Table 1.47: IVPR – Interrupt Vector Prefix Register

Bits Field Description

0:22 IVPR The IVPR holds the base address of the 512-byte aligned interrupt vector area in memory.

Although the IVPR is read-only as an SPR, an instantiation of the PPE 42 core may provide write access to IVPR as
an MMCR.

23:31 Reserved Always read as '0000000000'

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 98 of 288

8.10.11 LR – Link Register

Register Access: SPR 8, Read/Write; Also updated by branch with link instruction forms;
PPE42X: XIR, Read-only

Table 1.48: LR – Link Register

Bits Field Description

0:31 LR The LR is updated with the address of the next sequential instruction whenever a Power ISA branch or PPE fused
compare-branch instruction specifying LK = '1' is executed, regardless of whether the branch is taken or not taken.

The LR also holds the targets of indirect branches for the bclr[l] instruction. Note that the branch target for bclr[l] is

specified as (LR)0:29 || 20.

With careful programming the LR may also be used as a 32-bit scratch register.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 99 of 288

8.10.12 MSR – Machine State Register

Register Access: Written by mtmsr, wrtee and wrteei; Read by mfmsr

Table 1.49: MSR – Machine State Register

Bits Field Description Notes

0 Reserved

1:7 SEM Service Interface Bus (SIB) Error Mask
Bit 0: Mask for SIB return code 1
Bit 1: Mask for SIB return code 2
Bit 2: Mask for SIB return code 3
Bit 3: Mask for SIB return code 4
Bit 4: Mask for SIB return code 5
Bit 5: Mask for SIB return code 6
Bit 6: Mask for SIB return code 7

The bits of MSR[SEM] individually mask Service Interface Bus (SIB)
return codes 1 through 7 respectively for data accesses. Return
code 0 is always interpreted to indicate successful completion, and
never generates an error. Return codes of 0 are accumulated in
MSR[SIBRCA], however.

If a bit in the mask is '0' and a SIB data access returns the associated
code, a data machine check exception is generated. If a bit in the
mask is '1' and a SIB data access returns the associated code then
the contents of the GPR or VDR target of a load and the effect of a
store on the targeted component are implementation dependent.

Regardless, the contents of MSR[SIBRC] are always updated with
the return code of the most recently completed SIB data access, and
the corresponding bit of MSR[SIBRCA] is set.

Note that non-0 return codes on instruction fetches can not be
masked from SIB memory spaces, and always generate an
instruction machine check.

8 IS0 Instance-specific Field 0 The state of this field has no effect on the operation of the PPE 42
core. The contents of the field are simply presented to the
environment as context-specific information for instance-specific
control purposes.

9:11 SIBRC Last SIB Return Code This field contains the Service Interface Bus (SIB) return code for the
most recently completed SIB data access, regardless of whether the
access was successful or caused an error. Note that in imprecise
mode (MSR[IPE] = '1'), the value observed is the value of the last SIB
access that completed, which is not necessarily the value of the last
SIB access that was executed.

This field is also updated for instruction fetches from SIB memory
areas but only if the instruction fetch causes a machine check due to
a non-zero SIB return code.

Note that this is the only field of the MSR that is not cleared by any
interrupt. MSR[SIBRC] is visible externally as XSR[SIBRC].

12 LP Low Priority
0 Context requests high priority
1 Context requests low priority

The PPE 42 core asserts a priority signal to the environment
whenever MSR[LP] = '0' or ISR[EP] = '1'. The value of MSR[LP] and
the state of the priority signal have no effect on the operation of the
core, and the priority signal is not required to have any effect in the
environment. MSR[LP] is visible externally as XSR[LP].

13 WE Wait Enable
0 Processor is not in WAIT state
1 Processor is in WAIT state

If MSR[WE] = '1' and the processor is not halted, then the processor
is in the wait state, and no instructions are fetched and/or executed.
The processor exits the wait state on any enabled asynchronous
interrupt. MSR[WE] is visible externally as XSR[WS].

14 IS1 Instance-specific Field 1 The state of this field has no effect on the operation of the PPE 42
core. The contents of the field are simply presented to the
environment as context-specific information for instance-specific
control purposes.

Continued next page

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 100 of 288

MSR - Machine State Register – Continued from preceding page

Bits Field Description Notes

15 UIE Unmaskable Interrupt Enable
0 Unmaskable interrupts are
handled specially
1 Unmaskable interrupts are
taken normally

This field controls whether the unmaskable interrupts (other than the machine check
interrupt) are allowed to be taken. The interrupts controlled by this field are the
program interrupt, alignment interrupt, data storage interrupt and instruction storage
interrupt.

If this field is '1', then the controlled interrupts are taken and processed normally. If
this field is '0' and a controlled interrupt is pending and the highest priority interrupt,
then there are two cases:

1. If MSR[ME] = '1', then the controlled interrupt is taken as a machine check
interrupt. Any ISR updates associated with the controlled interrupt take
place, however ISR[MCS] is also set to indicate a controlled interrupt has
been promoted to a machine check, and control transfers to the machine
check interrupt vector.

2. If MSR[ME] = '0', then the controlled interrupt immediately halts the
processor. Once halted (XSR[HS] = '1'), the processor state is consistent
with the processor having taken the controlled interrupt but halted before
executing the first instruction at the controlled interrupt vector address.

16 EE External Enable
0 External exceptions are
disabled
1 External exceptions are
enabled

The following conditions will cause the associated interrupt to occur if and only if
MSR[EE] = '1', and the associated interrupt is the highest priority interrupt pending.

Table 1.50: Interrupts Controlled by MSR[EE]

Condition Interrupt

The environment drives an active value on
the external interrupt input

External Interrupt

TSR[WIS] = '1' and TCR[WIE] = '1' Watchdog Timer Interrupt

TSR[FIS] = '1' and TCR[FIE] = '1' Fixed Interval Timer Interrupt

TSR[DIS] = '1' and TSR[DIE] = '1' Decrementer Interrupt

17:18 Reserved

19 ME Machine Check Enable
0 Machine Check interrupts
halt the processor
1 Machine Check interrupts
are taken

If MSR[ME] = '0' then any machine check interrupt immediately halts the processor.
Once halted (XSR[HS] = '1'), the processor state is consistent with the processor
having taken the machine check interrupt but halted before executing the first
instruction at the machine check interrupt vector address.

If MSR[ME] = '1' then any machine check immediately generates a machine check
interrupt, as the machine check interrupt is the highest priority interrupt. The ISR
fields recording the cause of the machine check will be valid at the entry point of the
machine check interrupt handler.

MSR[ME] also controls the behavior of MSR[UIE] (which see).

20 IS2 Instance-specific Field 2 The state of this field has no effect on the operation of the PPE 42 core. The contents
of the field are simply presented to the environment as context-specific information
for instance-specific control purposes.

21 IS3 Instance-specific Field 3 The state of this field has no effect on the operation of the PPE 42 core. The contents
of the field are simply presented to the environment as context-specific information
for instance-specific control purposes.

22 Reserved

23 IPE Imprecise Mode Enable
0 Imprecise mode is disabled

This field controls whether the storage subsystem must report store errors to the
PPE 42 core precisely (IPE = '0'), or may report store errors imprecisely (IPE = '1').

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 101 of 288

MSR - Machine State Register – Continued from preceding page

1 Imprecise mode is enabled
Imprecise mode provides a potential performance improvement as the PPE 42 core
may continue execution with one or more stores pending in the storage subsystem.

24:31 SIBRCA SIB Return Code Accumulator
Bit 0: SIB code 0 observed
Bit 1: SIB code 1 observed
Bit 2: SIB code 2 observed
Bit 3: SIB code 3 observed
Bit 4: SIB code 4 observed
Bit 5: SIB code 5 observed
Bit 6: SIB code 6 observed
Bit 7: SIB code 7 observed

The bits of MSR[SIBRCA] individually accumulate Service Interface Bus (SIB) return
codes 0 through 7 respectively for data accesses and unsuccessful instruction
accesses.

Whenever a SIB data access completes, the corresponding bit of MSR[SIBRCA] is
set depending on the return code, regardless of whether it causes a machine check
as configured in MSR[SEM]. Instruction accesses to SIB memory spaces only
update MSR[SIBRCA] if they experience a non-zero return code and thereby cause a
machine check. Successful instruction fetches to SIB do not update this field.

MSR[SIBRCA] can be cleared by writing the field with mtmsr, and the field is always
cleared by taking any interrupt.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 102 of 288

8.10.13 PIR – Processor Identification Register

Register Access: SPR 286, Read-only

Table 1.51: PIR – Processor Identification Register

Bits Field Description

0:15 Reserved

16:31 PIR The PPE 42 PIR is architected as 16 bits. The contents of the PIR are specific to each instantiation of the PPE 42
core, however the intention is that the PIR uniquely identifies an instance of the PPE 42 core in a multi-core system.

Although the PIR is read-only as an SPR, the contents of the PIR originate outside of the PPE 42 core, and it is
possible that an instantiation of the PPE 42 core may provide a method to modify the PIR.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 103 of 288

8.10.14 PVR – Processor Version Register

Register Access: SPR 287, Read-only

Table 1.52: PVR – Processor Version Register

Bits Field Description

0:7 CMN
x'42'

Core Model Number
This field always contains the value x'42' for a PPE 42 core.

8:11 CVN Core Version Number
PPE 42 (Original) = 0x0
PPE 42X (Extensions) = 0x1

12:31 ISVI Instance-Specific Version Information
The contents of this field will be documented with each instance of the PPE 42 core. Although the PVR is read-only
as an SPR, the contents of PVR[ISVI] originate outside of the PPE 42 core, and it is possible that an instantiation of
the PPE 42 core may provide a method to modify this field.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 104 of 288

8.10.15 SPRG0 – SPR General 0

Register Access: SPR 272, Read/Write; XIR, Read/Write

Table 1.53: SPRG0 – SPR General 0

Bits Field Description

0:31 SPRG0 SPRG0 is a 32-bit scratch register.

SPRG0 is architected both as an SPR and an XIR. Each PPE 42 instance will document the method to access
SPRG0 as an XIR.

SPRG0 can only be written as an XIR when the processor is halted (XSR[HS] = '1'). .

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 105 of 288

8.10.16 SRR0 – Save Restore Register 0

Register Access: SPR 26, Read/Write; PPE42X: XIR, Read-only

Table 1.54: SRR0 – Save Restore Register 0

Bits Field Description

0:29 SRR0 Taking an interrupt sets SRR0 to the current instruction address, if the current instruction did not complete due to
the interrupt. Interrupts taken after the current instruction completes will set SRR0 to the address of the next
sequential instruction.

Executing an rfi instruction updates the value of the IAR (the NIA) from SRR0.

30:31 Reserved Ignored on write; Always read as '00'

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 106 of 288

8.10.17 SRR1 – Save Restore Register 1

Register Access: SPR 27, Read/Write

Table 1.55: SRR1 – Save Restore Register 1

Bits Field Description

0:32 SRR1 SRR1 is an image of the Machine State Register (MSR). All fields marked reserved in the MSR are also marked
reserved in SRR1. For details of MSR fields see section 8.10.12, MSR – Machine State Register.

Taking an interrupt sets SRR1 to the current value of the MSR, after all instructions preceding the interrupt have
completed to the point of reporting any exceptions they might possibly report, but before any interrupt-specific
changes have been made to the MSR.

Executing an rfi instruction updates the value of the MSR from SRR1.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 107 of 288

8.10.18 TCR – Timer Control Register

Register Access: SPR 340, Read/Write

Table 1.56: TCR – Timer Control Register

Bits Field Description Notes

0:1 WP Watchdog Timer (WDT) Period
00 WDT uses timer[0]
01 WDT uses timer[1]
10 WDT uses timer[2]
11 WDT uses timer[3]

This field selects which of 4 external timebase inputs
timer[0:3] causes TSR[WIS] to be set. The presence and
frequency of any external timebase is instance specific.

2:3 WRC Watchdog Timer Reset Control
00 No WDT reset will occur
01 WDT reset action is a soft reset
10 WDT reset action is a hard reset
11 WDT reset action force-halts the PPE core

If TCR[WRC] is not '00', TSR[WIS] is '1' and the external
timebase input selected by TCR[WP] is asserted then the
associated watchdog action will occur. The effect of resetting the
PPE 42 core is described in section 3, Initialization,Reset, and
Starting Execution. The effect of resetting the environment will
be documented with each instantiation of the PPE 42 core.

If a watchdog action halts the core, the core is force-halted. This
means that normal halt processing is bypassed and the core
immediately (within two cycles) enters the halted state.

In the event of a WDT reset or halt action, TCR[WRC] is copied
to TSR[WRS]. TCR[WRC] is cleared by all resets.

4 WIE Watchdog Interrupt Enable
0 Watchdog interrupt is disabled
1 Watchdog interrupt is enabled

A watchdog interrupt occurs when TCR[WIE] = '1', TSR[WIS] =
'1', MSR[EE] = '1' and the watchdog interrupt is the highest
priority interrupt pending. However if TCR[WRC] is not '00', then
a watchdog timeout with TSR[WIS] = '1' causes the action
specified by TCR[WRC].

5 DIE Decrementer Interrupt Enable
0 Decrementer interrupt is disabled
1 Decrementer interrupt is enabled

A decrementer interrupt occurs when TCR[DIE] = '1', TSR[DIS]
= '1', MSR[EE] = '1' and the decrementer interrupt is the highest
priority interrupt pending.

6:7 FP Fixed Interval Timer (FIT) Period
00 FIT uses timer[0]
01 FIT uses timer[1]
10 FIT uses timer[2]
11 FIT uses timer[3]

This field selects which of 4 external timebase inputs causes
TSR[FIS] to be set. The presence and frequency of any external
timebase is instance specific.

8 FIE Fixed Interval Timer (FIT) Interrupt Enable
0 FIT interrupt is disabled
1 FIT interrupt is enabled

A FIT interrupt occurs when TCR[FIE] = '1', TSR[FIS] = '1',
MSR[EE] = '1' and the FIT interrupt is the highest priority
interrupt pending.

9:10 DS Decrementer (DEC) Select
00 DEC decrements every cycle
01 DEC decrements when timer[1] active
10 DEC decrements when dec_timer is active
11 DEC decrements when timer[3] active

This field selects whether the decrementer decrements every
processor cycle (TCR[DS] = '00'), or only on cycles that the
external timer[1], dec_timer, or timer[3] inputs are
active. Note that DS bit 1 is reserved in PPE42 and
implemented on PPE42X.

11:31 Reserved

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 108 of 288

8.10.19 TSR – Timer Status Register

Register Access: SPR 336, All Fields Read/Write 1 to Clear (Normal Operation) or Direct
Write (Ramming)

Table 1.57: TSR – Timer Status Register

Bits Field Description Notes

0 ENW Enable Next Watchdog
0 See notes
1 See notes

If TSR[ENW] = '0', then the watchdog event simply
sets TSR[ENW] = '1'. If TSR[ENW] = '1', then the
watchdog event either generates a watchdog
exception or a watchdog reset action.

1 WIS Watchdog Timer Interrupt Status
0 No new watchdog timer event has occurred
1 A watchdog timer event has occurred

If TSR[ENW] = '1', then TSR[WIS] is set on any
clock cycle in which the external timebase input
selected by TCR[WP] is asserted.

2:3 WRS Watchdog Timer Reset Status
00 No watchdog timer reset has occurred
01 Last watchdog action was a soft reset
10 Last watchdog action was a hard reset
11 Last watchdog action halted the processor

 These two bits are set to the contents of TCR[WRC]
when a reset or halt is caused by the Watchdog
Timer mechanism. These bits are unchanged if the
processor is reset by any mechanism other than the
Watchdog Timer mechanism. Software is
responsible for clearing these bits after a reset or
Watchdog timeout event.

4 DIS Decrementer Interrupt Status
0 No new decrementer event has occurred
1 A decrementer event has occurred

TSR[DIS] is set on any cycle that changes (DEC)0

from '0' to '1', including by mtspr instructions
targeting DEC. A decrementer interrupt occurs when
TCR[DIE] = '1', TSR[DIS] = '1', MSR[EE] = '1' and
the decrementer interrupt is the highest priority
interrupt pending.

5 FIS Fixed Interval Timer (FIT) Interrupt Status
0 No new FIT event has occurred
1 A FIT event has occurred

This field is set on any clock cycle in which the
external timebase input selected by TCR[FP] is
asserted. A FIT interrupt occurs when TCR[FIE] =
'1', TSR[FIS] = '1', MSR[EE] = '1' and the FIT
interrupt is the highest priority interrupt pending.

6:31 Reserved

Note:
If the processor is halted and an mttsr Rx instruction is rammed, then all defined fields of the TSR are
updated directly from the contents of the GPR Rx. This allows debugging code to directly set timer interrupt
status, and/or restore the TSR to an original state after debugging.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 109 of 288

8.10.20 XCR – External Control Register

Register Access: XIR; Write-only

Table 1.58: XCR – External Control Register

Bits Field Description Mode Notes

0 Reserved

1:3 CMD Command
000 Clear Debug Status
001 Halt
010 Resume
011 Single-step
100 Toggle XSR[TRH]
101 Soft Reset
110 Hard Reset
111 Force Halt

WO All external commands to the processor are consolidated into a single field of the write-
only XCR.

000 – Clear Debug Status

This command clears XSR[TRAP, IAC, RDAC, WDAC] to '0'. This command is only
implemented and acknowledged when XSR[HS] = '1' (the processor is halted).

001 – Halt

This command sets XSR[HCP], which requests the processor to halt after the execution
of the current instruction (if any) is complete. A processor reporting XSR[HCP] = '1' may
still be executing a single previously in-flight, single-stepped or rammed instruction.
XSR[HS] = '1' indicates that the processor is both halted and not executing an
instruction. Executing this command when XSR[HCP] is already '1' has no effect on the
operation of the core.

010 – Resume

This command causes a halted processor to resume execution by clearing XSR[HCP].
This command is only implemented and acknowledged when either XSR[HCP] = '0' (the
processor is already running), or XSR[HS] = '1' (the processor is truly halted).

011 – Single-step

This command causes a halted processor to fetch and execute the single instruction
addressed by the IAR, unless an asynchronous exception is pending, in which case no
instruction is executed and asynchronous interrupt processing takes place as controlled
by the MSR. This command is only implemented and acknowledged when XSR[HS] = '1'
(the processor is truly halted).

100 – Toggle XSR[TRH]

This command toggles (inverts) the value of XSR[TRH].

101 – Soft Reset
110 – Hard Reset

The '101' and '110' commands initiate a hard or soft reset respectively.

Note that there is no provision for holding a PPE 42 core in a reset state. However, if
either of these commands is issued and XSR[HCP] is also '1', then the processor will
execute the reset sequence and then halt with the IAR addressing the system reset
interrupt vector. Issuing the '010' (resume) command in this state will then cause the
processor to resume execution.

111 – Force Halt

This command forces the core to transition immediately (within two cycles) to the halted
state, without necessarily completing the current instruction, and without synchronizing
with the memory subsystem.

Force-halting is a method of last resort, and halts the core from any state, including hung
memory access and reset states. A force-halted core is guaranteed to be able to correctly
ram any instruction other than a load, store, cache management instruction or sync. It
may be necessary to reset the system in order to single-step, ram a memory access
instruction or sync, or synchronize after ramming or single-stepping.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 110 of 288

Bits Field Description Mode Notes

4:31 Reserved

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 111 of 288

8.10.21 XER – Fixed Point Exception Register

Register Access: SPR 1, Read/Write

Table 1.59: XER – Fixed Point Exception Register

Bits Field Description Notes

0 SO Summary Overflow
0 No overflow has occurred
1 Overflow has occurred

The PPE 42 core only partially implements the XER as architected by the Power
ISA.

1 OV Overflow
0 No overflow has occurred
1 Overflow has occurred

2 CA Carry
0 Carry has not occurred
1 Carry has occurred

3:31 Reserved

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 112 of 288

8.10.22 XSR – External Status Register

Register Access: XIR; PPE42: Read-only, PPE42X: Read/Write

Table 1.60: XSR – External Status Register

Bits Field Description Notes

0 HS Halted State
0 Processor not in halted state
1 Processor in halted state

This bit reads as '0' whenever the processor is in the process of executing
instructions, including normal instruction execution and halted execution of
single-stepped and rammed instructions.

This bit reads as '1' if the processor is in the halted state. The processor is in the
halted state whenever XSR[HCP] = '1' and the processor is not executing an
instruction that was in-flight when XSR[HSR] became '1', and is not executing a
single-stepped or rammed instruction.

Whenever XSR[HS] = '1', the XSR[HC] field details the most recent condition that
caused the processor to halt.

1:3 HC Halt Condition
000 None of the below
001 XCR[CMD] written '111'
010 WDT halt
011 Unmaskable interrupt halt
100 Debug halt
101 DBCR halt
110 halt_req input active
111 Hardware failure

This field summarizes the last condition that caused the processor to halt, and is
only valid when XSR[HS] = '1'.

The processor may have halted due to the following conditions:
• XCR[CMD] was written with '001', or XSR[HCP] remains '1' during

single-stepping or ramming. This is the “none of the below” case.
• XCR[CMD] was written with '111' to force-halt the processor.
• A second watchdog timer (WDT) event occurred while TCR[WRC] =

'11'.
• A machine check interrupt occurred with MSR[ME] = '0', or a program,

instruction storage, data storage or alignment interrupt occurred with
MSR[UIE] = '0' and MSR[ME] = '0'. The cause can be further
diagnosed using other bits in XSR along with the value of the IAR,
which will address the associated interrupt vector.

• An enabled debug event occurred. The event can be further
diagnosed using XSR bits 7:8,and 12:13,.

• The executing program wrote DBCR[RST] with '11' to halt the
processor.

• The external halt_req input was active.
• An unrecoverable hardware failure was detected by the processor.

This field is cleared during all processor resets, whenever XCR[CMD] is written
with '010' (resume) or '011' (single-step), or whenever an instruction is rammed
by writing the IR on a halted processor. While single-stepping and ramming,
XCR[HC] remains '000' unless one of the other enumerated conditions occurs.

In the case that two or more halt conditions become active on the same cycle,
then the condition with the highest priority is reported, where “none of the below”
is the lowest priority and a hardware failure is the highest priority condition. Once
XSR[HC] takes on a non-zero value it becomes “locked”, and subsequently
occurring halt conditions will not be reported until after the field has been cleared
as described above. This means, for example, that if the processor is already
halted when XCR[CMD] is externally written with '001', then the original halt
condition can still be recovered.

4 HCP Halt Condition Present
0 No halt condition present
1 Halt condition is present

If this field is read as '1', it indicates that a halt condition is present, and the
processor is either truly halted (if XSR[HS] = '1'), or the processor will halt after
the current in-flight instruction (which may be a single-stepped or rammed
instruction) completes execution.

Writing XCR[CMD] with '001' (halt) sets XSR[HCP]. Processor halts due to all
other conditions (the external halt_req signal, MSR-controlled unmaskable
interrupt halts, watchdog timeout halts, DBCR[RST] halts, unrecoverable
hardware errors and halts due to debug events) also set XSR[HCP].

Continued next page

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 113 of 288

XSR – External Status Register – Continued from previous page

Bits Field Description Notes

5 RIP Ramming In progress
0 Unspecified
1 Ramming in progress

This field is set when a ramming operation is initiated by writing the IR on a
halted processor, and cleared during the processing of the rammed instruction.
Programmers should always use the condition XSR[HS] = '1' to determine
when the rammed instruction has completed, not this field.

This field is also cleared during all processor resets and forced halts.

6 SIP Single-step In Progress
0 Unspecified
1 Single-step in progress

This bit is set when a single-step is initiated on a halted processor by writing
XCR[CMD] = '011' (single-step), and cleared during processing of the single-
stepped instruction (e.g. when the hardware either completes the instruction or
detects an exception that has modified the state of the processor to take an
interrupt instead). This field is also cleared during all processor resets and
forced halts.

However, programmers should always use the condition XSR[HS] = '1' to
determine when the single-stepped instruction has completed, not this field.

7 TRAP trap Instruction Debug Event
0 Event did not occur
1 Event occurred

This bit is set if a trap instruction is executed when DBCR[TRAP] = '1'. The
occurrence of this event also causes the processor to halt. This bit is cleared
by writing XCR[CMD] = '000' on a halted processor.

8 IAC Instruction Address Compare
Debug Event
0 Event did not occur
1 Event occurred

This bit is set if DBCR[IACE] = '1' and the current instruction address matches
the contents of the DACR. The occurrence of this event also causes the
processor to halt. This bit is cleared by writing XCR[CMD] = '000' on a halted
processor.

Note that the IAC debug halt is implemented while single-stepping. This
means that if the event conditions hold, the instruction at the IAR is not fetched
and not executed. The IAC debug halt is not implemented while ramming.

9:11 SIBRC SIB Return Code This field provides external, read-only access of the current value of the like-
named field of the MSR.

12 RDAC Read Data Address Compare
Debug Event
0 Event did not occur
1 Event occurred

This bit is set if either DBCR[DACE] = '10' or DBCR[DACE] = '11', and a load-
type data address matches the DACR, or if DBCR[ZACE] = '1' and a load-type
data address is all zeroes. The occurrence of this event causes the processor
to halt. This bit is cleared by writing XCR[CMD] = '000' on a halted processor.

Load-type instructions consist of all loads, dcbq and dcbt.

Note that the RDAC debug halt is implemented while single-stepping. This
means that if the event conditions hold, the instruction at the IAR will be
fetched but not executed. The RDAC debug halt is not implemented while
ramming. Also note PPE 42X removes the restriction that DBCR[IACE] = '0',

13 WDAC Write Data Address Compare
Debug Event
0 Event did not occur
1 Event occurred

This bit is set if either DBCR[DACE] = '01' or DBCR[DACE] = '11', and a store-
type data address matches the DACR, or if DBCR[ZACE] = '1' and a store-
type data address is all zeroes.. The occurrence of this event causes the
processor to halt. This bit is cleared by writing XCR[CMD] = '000' on a halted
processor.

Store-type instructions consist of all stores, dcbf, dcbi and dcbz.

Note that the WDAC debug halt is implemented while single-stepping. This
means that if the event conditions hold, the instruction at the IAR will be
fetched but not executed. The WDAC debug halt is not implemented while
ramming. Also note PPE 42X removes the restriction that DBCR[IACE] = '0',

Continued next page

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 114 of 288

XSR – External Status Register – Continued from previous page

Bits Field Description Notes

14 WS Wait State This field provides external, read-only access to the current
value of MSR[WE].

Note that unlike all other bits mirrored from the MSR and ISR,
this field appears in a different location and with a different name
 in the XSR vs. the MSR.

15 TRH Timers Run While Halted
0 Timers freeze when halted
1 Timers run when halted

If this field is '0', then all external time sources are disabled
whenever the halt condition is present (XSR[HCP] = '1'). This
means that the decrementer (DEC) does not decrement, and no
new Fixed Interval Timer (FIT) or Watchdog Timer (WDT) events
will become pending.

If this field is '1' then all external time sources are active, and all
time-based events and actions will occur as expected, even if
the halt condition is present. Note in particular that WDT reset
and halt actions may occur even on an otherwise “halted” core if
TCR[WRC] is not '00'.

XSR[TRH] is not written directly. Instead, writing XCR[CMD] with
'100' toggles (inverts) the current value of the field.

16:19 SMS State Machine State For details please see PPE 42 core hardware design
documentation.

20 LP Low Priority This field provides external, read-only access of the current
value of the like-named field of the MSR.

21 EP MSR[EE] Maskable Event Pending For PPE42, this field provides external, read-only access of the
current value of the like-named field of the ISR.
For PPE42X, this field freezes state whenever XCR[HC] is
greater than 0x1 and DBCR[HDFI]==1.

22 EE Value of MSR[EE] Reserved for PPE42.
For PPE42X, this field provides external, read-only access to
the value of MSR[EE].

23 Reserved

24 PTR Program Interrupt from trap These fields provides external, read-only access of the current
value of the like-named fields of the ISR.

25 ST Data Interrupt Caused by a Store

26:27 Reserved

28 MFE Multiple Fault Error These fields provides external, read-only access of the current
value of the like-named fields of the ISR.

29:31 MCS Machine Check Status

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 115 of 288

9 Instruction Set
PPE 42 implements an extended subset of the 32-bit Power ISA V2.07 specification. This section details
the PPE 42 instruction set.

9.1 Instruction Set Origin and Portability
The PPE 42 core implements the large majority of the instructions defined in the Power ISA User
Instruction Set Architecture (Book I) for 32-bit processors, including two instructions from the Legacy
Integer Multiply-Accumulate Instructions category. PPE 42 also implements a subset of the cache
management instructions defined in the Power ISA Virtual Environment Architecture (Book II), as well as a
subset of instructions defined in the Power ISA Operating Architecture – Embedded (Book III-E). Finally,
PPE 42 defines a number of implementation-specific instructions that are not part of any standard.

Although a subset of PPE 42 programs will execute on Power ISA platforms, strict compatibility was not a
requirement driving the architecture. The primary benefits of modeling PPE 42 after the Power ISA are to
take advantage of the well-developed Power ISA ecosystem, and the breadth of user experience in
programming the Power ISA, in a way that provides an area-efficient core today with the opportunity to
expand capability in the future while maintaining backwards compatibility.

PPE 42 is not Power ISA compliant, and programs optimized for PPE 42 will not be portable in binary form.
However, many PPE 42 binary programs originating from source code written or compiled without use of
PPE 42 specific instructions will execute correctly on 32-bit Power ISA platforms that utilize standard
PowerPC application binary interfaces (ABIs). This feature allows the development of libraries that can be
shared between PPE and other Power ISA platforms. In particular, PPE 42 programs that only use the
subset of instructions defined by the Power ISA User Instruction Set Architecture (other than the Legacy
Multiply-Accumulate instructions, and instructions referencing special-purpose registers) would be portable
to other Power ISA platforms. PPE 42 programs using Power ISA cache-management instructions may
also be portable with the caveat that PPE 42 allows certain behaviors not specified by the Power ISA.

PPE 42 programs will execute correctly on the PPE 42X, with the only exception being the Machine Check
vector. Programs written or compiled with the use of PPE 42X specific instructions will cause program
execeptions when executed on the PPE 42, allowing the added intructions to be emulated if desired.

PPE 42 programs must be modified to either:

1. add a "b -32" instruction at interrupt vector 0x020

2. move the machine check code to vector 0x020 and put "b 32" instruction at interrupt vector 0x000

In many cases the Power ISA provides that all or part of the behavior of certain instruction forms is
undefined in the architecture. This manual fully defines the behavior of almost every instruction with respect
to the state of the PPE 42 core, either by specifying that certain instruction forms are illegal, and/or by fully
specifying register contents after instruction execution. Programmers should be aware of the impact this
may have on portability as documented with each such instruction. PPE 42 also specifies synchronization
behavior for certain instructions that is not part of or extends the Power ISA specification. Portable
programs should not make use of these behaviors. Only the PPE 42 specific dcbq instruction leaves
certain GPR contents in an instance-specific state after execution.

The specification origins of PPE 42 instructions are captured in the tables below. The fact that an
instruction originates from the Power ISA does not always imply that it is fully compliant with the Power ISA;
See each individual instruction description for details.

In the tables, the syntax “[o]” indicates that an instruction has an overflow-enabled form, which updates the
XER[SO,OV] fields, and a non-overflow-enabled form. The syntax “[.]” indicates that an instruction has a

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 116 of 288

recording form, which updates CR[CR0], whereas the non-recording form does not. The instructions
marked with “*” are actually assembler extended mnemonics for the PPE 42 restricted forms of more
general Power ISA instructions.

Table 1.61: Power ISA User Instruction Set Architecture (Book I, Base) Instructions

add[o][.]
addc[o][.]
adde[o][.]
addi
addic
addic.
addis
addme[o][.]
addze[o][.]

and[.]
andc[.]
andi.
andis.
b
bc
bcctr
bclr

cmplw*
cmplwi*
cmpw*
cmpwi*
cntlzw[.]
eqv[.]
extsb[.]
extsh[.]

lbz
lbzu
lbzx
lhz
lhzu
lhzx
lwz
lwzu
lwzx

mfcr
mfspr
mtcr0*
mtspr
nand[.]
neg[o][.]
nor[.]
or[.]
orc[.]
ori
oris

rlwimi[.]
rlwinm[.]
rlwnm[.]
slw[.]
srw[.]
sraw[.]
srawi[.]

stb
stbu
stbx
sth
sthu
sthx
stw
stwu
stwx

subf[o][.]
subfc[o][.]
subfe[o][.]
subfic
subfme[o][.]
subfze[o][.]

tw*
xor[.]
xori
xoris

Table 1.62: Power ISA User Instruction Set Architecture (Book I, Legacy Integer Multiply-Accumulate)
Instructions

mullhw[.]
mullhwu[.]

PPE42X (not PPE42):
mulli
mullw[o][.]

Table 1.63: Power ISA User Instruction Set Architecture (Book I, 64-bit Fixed-Point Rotate) Instructions

PPE42X (not PPE42):
rldicl[.]
rldicr[.]
rldimi[.]

Table 1.64: Power ISA Virtual Environment (Book II) Instructions

dcbf
dcbt
dcbz

sync

Table 1.65: Power ISA Operating Environment Architecture – Embedded (Book III-E) Instructions

dcbi
mfmsr
mtmsr

rfi
wrtee
wrteei

Table 1.66: PPE 42 Architecture-Specific Instructions

bnbw
bnbwi
clrbwbc
clrbwibc

cmplwbc
cmpwbc
cmpwibc

dcbq lvd
lvdu
lvdx

stvd
stvdu
stvdx

Table 1.67: PPE 42X Architecture-Specific Instructions

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 117 of 288

lsku
stsku

slvd
srvd

9.2 Rationale for the PPE 42 Instruction Set
The overriding goal of the PPE 42 architecture is to balance required functionality and good performance
against area and complexity, both in the PPE 42 core and in compatible memory subsystems.
Implementing an extended subset of the Power ISA Books I, II and III-E allows synergies of design,
verification, tools and firmware development within the IBM POWER Systems organization that would not
be realized if any other architecture for PPE 42 had been chosen.

The target applications of the PPE 42 core require atomic access to 64-bit control registers in a flat 32-bit
address space encompassing both control registers and normal memory. However it is rare for these
applications to perform computations requiring full 64-bit arithmetic (other than shift and rotate operations
which are implemented by PPE 42X). Therefore PPE 42 is architected as a 32-bit machine, and the virtual
doubleword load and store instructions provide the required 64-bit access. PPE 42 implements the majority
of Power ISA 32-bit load and store instructions.

For design simplicity PPE 42 does not implement instructions that would require multiple execution states
or “microcode”. Therefore multiple-word, string word, 32-bit multiply and divide instructions are omitted. The
16 x 16 hardware multiply is sufficient for simple scaling of sensor data, and can also be used to implement
32 x 32 multiplies with a few instructions in software. PPE 42X implements 32-bit low word multiply
instructions since they are occasionally used by the compiler to index into multi-dimensional array-type
data structures. The lack of multiple-word and string-word instructions is mitigated somewhat by the
presence of virtual doubleword load and store instructions. Sign-extended halfword loads and the rarely
used update-indexed load and store forms are also omitted, but are easily and faithfully emulated by a
single additional instruction.

Also for simplicity PPE 42 only implements CR[CR0], similar to other small microcontrollers that maintain a
single set of condition codes. Since only a single CR field is defined there is no need for CR logical
instructions, and the rarely used mcrxr instruction is also omitted. Note that CR manipulation code that
executes correctly on PPE 42 will also execute correctly on a Power ISA platform since no legal PPE 42
instruction can modify a CR field not defined by PPE 42.

PPE 42 implements the sync instruction as there is otherwise no generic mechanism to differentiate
execution synchronization from a memory barrier. Since the PPE 42 core is not aggressively pipelined and
executes in-order, the Power ISA eieio and isync instruction can be emulated with sync if required. Since
PPE 42 does not implement privilege levels there is no need for the system call sc, which can be easily
emulated with a normal subroutine call.

The initial instantiations of PPE 42 were designed with at most a small instruction buffer, therefore no I-
cache management instructions are provided. The data caches in these instantiations support software
management however, leading to the requirement for several D-cache management instructions. Finally,
although the Power ISA architects the dcread instruction for querying the data cache for debugging, the
dcread instruction requires two extra SPRs to function. PPE 42 defines the implementation-specific dcbq
instruction to simplify the architecture.

9.2.1 PPE 42X Added Instructions

PPE 42X implements two instructions (mulli and mullw), previously omitted from the original PPE42, for
more efficient compiled code. Only the two 32-bit multiplies yielding the low order word of the product are
included to allow the compiler to index into data structures without unnecessary emulation using 16-bit
multiply instructions.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 118 of 288

PPE 42X also implements three of the six arithmetic rotate instructions (rldimi, rldicr, rldicl) from the 64-
bit Power ISA for more efficient processing of bit fields within virtual doublewords as they are used to
access 64-bit control registers. The remaining three (rldic, rldcl, rldcr) are not implemented due to lack of
anticipated usage, and the behavior of these can be emulated by PPE 42X using a combination of two
instructions, a 64-bit shift and rotate-then-clear immediate. Additionally, adding these MDS-form
instructions would require definition of new virtual doubleword opcodes unique to PPE.

9.2.2 PPE 42 New Instructions

PPE 42 defines fourteen new instructions that are not part of the Power ISA, to support virtual doubleword
operations, code-space efficient compare-and-branch, and a simplified form of data cache query. A primary
requirement for PPE 42 is the ability to perform loads and stores of virtual doublewords using base plus
immediate displacement addressing to any 32-bit address, regardless of address alignment. Since this
instruction form requires a full 16-bit immediate displacement, PPE 42 claims four currently unused or
reserved Power ISA primary opcodes for lvd, lvdu, stvd and stvdu. It is possible that these primary
opcodes will be specified by the Power ISA in the future, and if so, it may not be possible to even emulate
(by way of a program interrupt) PPE 42 code on future Power ISA platforms.

The PPE 42 architecture also claims the currently illegal Power ISA primary opcode 1 for a set of fused
compare and branch instructions, implementing a special form of extended opcode. Five types of fused
compare-branch operations are encoded on opcode 1:

• Register-register arithmetic compare and conditional branch
• Register-register logical compare and conditional branch
• Register-short-immediate arithmetic compare and conditional branch
• Conditional branch on a bit 0 or non-0, with the bit number specified either as an immediate or in a

register
• Clearing a bit, followed by a branch on whether the resulting register value is 0 or non-0, with the bit

number specified either as an immediate or in a register

Fusing compare-and-branch operations into a single instruction can reduce code space requirements,
sometimes dramatically. Fusing compare-and-branch also potentially increases performance by reducing
the number of instructions fetched and reducing I-cache misses, even though the fused compare-branch
does not actually execute in fewer cycles than the two underlying instructions. Also note that non-
destructive bit testing is not supported by the Power ISA, and clearing a bit by an index held in a register is
requires multiple instructions in the Power ISA, requiring at least one other register to be destroyed.

The three remaining new instructions are defined as extended opcodes for primary opcode 31. The
extended opcodes used are all currently undefined in the Power ISA, and were selected to simplify
decoding. Again, if future Power ISA specifications define these extended opcodes it may not be possible to
even emulate PPE 42 code on future Power ISA platforms.

Table 1.68: PPE 42 Architecture-Specific Opcodes

Mnemonic Primary
Opcode

Extended
Opcode

bnbw
bnbwi
clrbwbc
clrbwibc
cmplwbc
cmpwbc
cmpwibc

1 Special; See
each
instruction

dcbq 31 406

lvd 5 N/A

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 119 of 288

Mnemonic Primary
Opcode

Extended
Opcode

lvdu 9 N/A

lvdx 31 17

stvd 6 N/A

stvdu 22 N/A

stvdx 31 145

9.2.3 PPE 42X New Instructions

The PPE42X implements two instructions slightly modified from the 64-bit Power ISA, to define 64-bit
virtual doubleword shift operations, where the shift amount is instead specified in a 32-bit (single word)
register. Therefore, sld and srd are instead defined as slvd and srvd.

The PPE42X defines two new instructions that are not part of the Power ISA, to allow faster execution of
interrupts and function calls. These instructions are similar to load and store multiple register instructions
defined in the Power ISA (but not implemented by the PPE) except they include a fixed subset of General
Purpose Registers and may also include a subset of Special Purpose Registers as well. A single
instruction causes a stack frame in EABI format to be either pushed to (stsku) or popped from (lsku) a
specified region of memory with the address register updated with the resultant stack pointer. These
instructions are a slightly modified DS-form where the lower bit of the DS field has a special meaning as
described in PPE 42X Specific Instruction Format.

Table 1.69: PPE 42X Architecture-Specific Opcodes

Mnemonic Primary
Opcode

Extended
Opcode

lsku 58 3

slvd 31 59

srvd 31 571

stsku 62 3

9.3 Instruction Formats
Instructions are four bytes long, and instruction addresses are always word-aligned. It is architecturally
impossible for the PPE 42 core to generate an unaligned instruction address.

Since the PPE 42 architecture largely derives from the Power ISA, readers seeking a detailed introduction
to Power ISA instruction formats and instruction field usage are referred to the Power ISA specification.
Briefly, instruction bits 0 through 5 always contain the primary opcode. Many instructions have an extended
opcode in another field. The remaining instruction bits contain additional fields. All instruction fields belong
to one of the following categories:

• Defined: These instruction fields contain values, such as opcodes and extended opcodes, that
cannot be altered. The instruction format diagrams specify the values of defined fields.

• Variable: These fields contain operands, such as general purpose register selectors and immediate
values, that can vary from instance to instance. The instruction format diagrams specify the
operands in variable fields. Some variable fields only support a limited range of values.

• Reserved: Bits in a reserved field should be set to ‘0’. In the instruction format diagrams, reserved
fields are shaded.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 120 of 288

If any bit in a defined field does not contain the expected value, of if a variable field contains an illegal
value, the instruction is not valid, and an illegal instruction exception occurs.

In keeping with the Power ISA architectural direction for embedded processors, the PPE 42 core ignores all
bits in reserved fields. Ignoring reserved fields allows upward compatibility to later implementations that
may define the reserved fields to specify extended semantics for instructions, as long as the base
semantics of the instruction remains unchanged.

9.3.1 PPE 42 Specific Instruction Format

PPE 42 defines one new instruction format for the fused compare-branch instructions encoded on primary
opcode 1. This instruction format is illustrated below.

Table 1.70: PPE 42 Specific FCB Instruction Format

0 5 6 7 8 9 10 11 15 16 20 21 30 31

OPCODE FCBXO PX BIX RA RB BDX LK

OPCODE FCBXO PX BIX RA UIX BDX LK

OPCODE FCBXO PX BBXO RA RB BDX LK

OPCODE FCBXO PX BBXO RA BNX BDX LK

Field Description

OPCODE The primary opcode, always 1 for PPE 42 fused compare-branch forms

FCBXO An extended opcode for all fused compare-branch forms

PX Polarity selection for comparison against a CR[CR0] bit

BIX CR[CR0] field selection for word comparison forms

BBXO A secondary extended opcode for bit comparison forms

RA, RB GPR specifiers

UIX A 5-bit unsigned immediate for cmpwibc

BNX An immediate big-endian bit number for immediate bit forms

BDX A 10-bit encoding of a signed, word-aligned 12-bit branch displacement

LK Branch with link option field

9.3.2 PPE 42X Specific Instruction Format

PPE 42X defines one new instruction format DD-form, which is a slightly modified DS-form.
This format can also be represented as a DS-form with DS = DD || CX.

Table 1.71: PPE 42X Specific DD Instruction Format

0 5 6 10 11 15 16 28 29 30 31

OPCODE RS RA DD CX XO

OPCODE RT RA DD CX XO

Field Description

OPCODE The primary opcode

XO An extended opcode for all DD forms. This is always 3 for PPE 42X.

RS, RT, RA GPR specifiers. These must reference the same register (typically 1) in PPE 42X.

DD Immediate field used to specify a 13-bit signed two’s complement integer which is concatenated
on the right with 0b000 and sign-extended to 32 bits.

CX Context save/restore specifier.
When 1, specifies 10 doubleword memory accesses.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 121 of 288

When 0, specifies 0,1,or 2 doubleword memory accesses dependent on the value of DD.

9.4 Alphabetical Instruction Listing
Descriptions of the PPE 42 core instructions implemented in hardware follow, in alphabetical order. Each
description contains the following elements:

• Instruction names (mnemonic and full)

• Instruction syntax

• Instruction format diagram

• Pseudocode description

• Prose description

• Registers altered

• PPE 42 Restrictions

• Architecture notes identifying the associated Power ISA Architecture component and other
information

Where appropriate, instruction descriptions list invalid instruction forms and exceptions, and provide
programming notes. Following the Power ISA, the PPE 42 assembler provides numerous extended
mnemonics for many instruction forms, and these extended mnemonics are documented with the
instruction and are also summarized in Instruction Set Mnemonics List.

Each instruction description lists the registers altered by the instruction. Some register changes are
explicitly detailed in the instruction description (for example, the target register of a load instruction). In
other cases registers are changed, but the details of the change are not included in the instruction
description. This category frequently includes the Condition Register (CR) and the Fixed-Point Exception
Register (XER). For discussions of the semantics of the CR and XER see section 2, Programming Model.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 122 of 288

9.4.1 add

Add

add RT, RA, RB OE = '0', Rc = '0'
add. RT, RA, RB OE = '0', Rc = '1'
addo RT, RA, RB OE = '1', Rc = '0'
addo. RT, RA, RB OE = '1', Rc = '1'

0 5 6 10 11 15 16 20 21 22 30 31

31 RT RA RB OE 266 Rc

(RT) ← (RA) + (RB)

The sum of the contents of register RA and register RB is placed into register RT.

Restrictions
The registers RT, RA and RB must be defined in the PPE 42 core architecture, otherwise an illegal
instruction exception occurs.

Registers Altered
• RT

• CR[CR0]LT, GT, EQ, SO if Rc contains a ‘1’

• XER[SO, OV] if OE contains a ‘1’

Architecture Note
This instruction is part of the Power ISA User Instruction Set Architecture.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 123 of 288

9.4.2 addc

Add Carrying

addc RT, RA, RB OE = '0', Rc = '0'
addc. RT, RA, RB OE = '0', Rc = '1'
addco RT, RA, RB OE = '1', Rc = '0'
addco. RT, RA, RB OE = '1', Rc = '1'

0 5 6 10 11 15 16 20 21 22 30 31

31 RT RA RB OE 10 Rc

(RT) ← (RA) + (RB)
if (RA) + (RB) >u 232 – 1 then

XER[CA] ← 1
else

XER[CA] ← 0

The sum of the contents of register RA and register RB is placed into register RT.

XER[CA] is set to a value determined by the unsigned magnitude of the result of the add operation.

Restrictions
The registers RT, RA and RB must be defined in the PPE 42 core architecture, otherwise an illegal
instruction exception occurs.

Registers Altered
• RT

• XER[CA]

• CR[CR0]LT, GT, EQ, SO if Rc contains a ‘1’

• XER[SO, OV] if OE contains a ‘1’

Architecture Note
This instruction is part of the Power ISA User Instruction Set Architecture.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 124 of 288

9.4.3 adde

Add Extended

adde RT, RA, RB OE = '0', Rc = '0'
adde. RT, RA, RB OE = '0', Rc = '1'
addeo RT, RA, RB OE = '1', Rc = '0'
addeo. RT, RA, RB OE = '1', Rc = '1'

0 5 6 10 11 15 16 20 21 22 30 31

31 RT RA RB OE 138 Rc

(RT) ← (RA) + (RB) + XER[CA]
if (RA) + (RB) + XER[CA] >u 232 – 1 then

XER[CA] ← 1
else

XER[CA] ← 0

The sum of the contents of register RA, register RB and XER[CA] is placed into register RT.

XER[CA] is set to a value determined by the unsigned magnitude of the result of the add operation.

Restrictions
The registers RT, RA and RB must be defined in the PPE 42 core architecture, otherwise an illegal
instruction exception occurs.

Registers Altered
• RT

• XER[CA]

• CR[CR0]LT, GT, EQ, SO if Rc contains a ‘1’

• XER[SO, OV] if OE contains a ‘1’

Architecture Note
This instruction is part of the Power ISA User Instruction Set Architecture.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 125 of 288

9.4.4 addi

Add Immediate

addi RT, RA, SI

0 5 6 10 11 15 16 31

14 RT RA SI

(RT) ← (RA|0) + EXTS(SI)

If the RA field is 0, the SI field, sign-extended to 32 bits, is placed into register RT.

If the RA field is nonzero, the sum of the contents of register RA and the contents of the SI field, sign-
extended to 32 bits, is placed into register RT.

Restrictions
The registers RT and RA must be defined in the PPE 42 core architecture, otherwise an illegal instruction
exception occurs.

Registers Altered
• RT

Architecture Note
This instruction is part of the Power ISA User Instruction Set Architecture.

Extended Mnemonics
The addi instruction can be used to load an immediate value into a register. An extended mnemonic is
provided to convey the idea that no addition is being performed but merely data movement from the
immediate field of the instruction to a register.

Load a 16-bit signed immediate value into register Rx.

li RT, value (equivalent to: addi RT, 0, value)

An extended mnemonic is also provided to subtract an immediate value from a register.

subi RT, RA, value (equivalent to addi RT, RA, -value)

The la (load address) extended mnemonic is another form of addi with a syntax suggesting the generation
of a base plus displacement (signed offset) address.

la RT, offset(RA) (equivalent to addi RT, RA, offset)

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 126 of 288

9.4.5 addic

Add Immediate Carrying

addic RT, RA, SI

0 5 6 10 11 15 16 31

12 RT RA SI

(RT) ← (RA) + EXTS(SI)
If (RA) + EXTS(SI) >u 232 – 1 then

XER[CA] ← 1
else

XER[CA] ← 0

The sum of the contents of register RA and the contents of the SI field, sign-extended to 32 bits, is placed
into register RT.

XER[CA] is set to a value determined by the unsigned magnitude of the result of the add operation.

Restrictions
The registers RT and RA must be defined in the PPE 42 core architecture, otherwise an illegal instruction
exception occurs.

Registers Altered
• RT

• XER[CA]

Architecture Note
This instruction is part of the Power ISA User Instruction Set Architecture.

Extended Mnemonics
An extended mnemonic is also provided to subtract an immediate value from a register with carrying.

subic RT, RA, value (equivalent to addic RT, RA, -value)

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 127 of 288

9.4.6 addic.

Add Immediate Carrying and Record

addic. RT, RA, SI

0 5 6 10 11 15 16 31

13 RT RA SI

(RT) ← (RA) + EXTS(SI)
If (RA) + EXTS(SI) >u 232 – 1 then

XER[CA] ← 1
else

XER[CA] ← 0

The sum of the contents of register RA and the contents of the SI field, sign-extended to 32 bits, is placed
into register RT.

XER[CA] is set to a value determined by the unsigned magnitude of the result of the add operation.

Restrictions
The registers RT and RA must be defined in the PPE 42 core architecture, otherwise an illegal instruction
exception occurs.

Registers Altered
• RT

• XER[CA]

• CR[CR0]LT, GT, EQ, SO

Architecture Note
This instruction is part of the Power ISA User Instruction Set Architecture.

Extended Mnemonics
An extended mnemonic is also provided to subtract an immediate value from a register with carrying and
recording.

subic. RT, RA, value (equivalent to addic. RT, RA, -value)

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 128 of 288

9.4.7 addis

Add Immediate Shifted

addis RT, RA, SI

0 5 6 10 11 15 16 31

15 RT RA SI

(RT) ← (RA|0) + (SI || 160)

If the RA field is 0, the SI field is concatenated on its right with sixteen 0-bits and placed into register RT.

If the RA field is nonzero, the contents of register RA are added to the contents of the extended SI field.
The sum is stored into register RT.

Restrictions
The registers RT and RA must be defined in the PPE 42 core architecture, otherwise an illegal instruction
exception occurs.

Registers Altered
• RT

Architecture Note
This instruction is part of the Power ISA User Instruction Set Architecture.

Programming Note
An addis instruction followed by an ori instruction stores an arbitrary 32-bit value in a GPR, as shown in
the following example:

addis RT, 0, high 16 bits of value

ori RT, RT, low 16 bits of value

Extended Mnemonics
The addis instruction can be used to load an immediate value into a register. An extended mnemonic is
provided to convey the idea that no addition is being performed but merely data movement from the
immediate field of the instruction to a register.

Load a 16-bit signed immediate value, shifted left by 16 bits, into register Rx.

lis RT,value (equivalent to: addis RT, 0, value)

An extended mnemonic is also provided to subtract an immediate value from a register.

subis RT, RA, value (equivalent to addis RT, RA, -value)

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 129 of 288

9.4.8 addme

Add to Minus One Extended

addme RT, RA OE = '0', Rc = '0'
addme. RT, RA OE = '0', Rc = '1'
addmeo RT, RA OE = '1', Rc = '0'
addmeo. RT, RA OE = '1', Rc = '1'

0 5 6 10 11 15 16 20 21 22 30 31

31 RT RA OE 234 Rc

(RT) ← (RA) + XER[CA] + (-1)
if (RA) + XER[CA] + (-1) >u 232 – 1 then

XER[CA] ← 1
else

XER[CA] ← 0

The sum of the contents of register RA, XER[CA] and -1 is placed into register RT.

XER[CA] is set to a value determined by the unsigned magnitude of the result of the add operation.

Restrictions
The registers RT and RA must be defined in the PPE 42 core architecture, otherwise an illegal instruction
exception occurs.

Registers Altered
• RT

• XER[CA]

• CR[CR0]LT, GT, EQ, SO if Rc contains a ‘1’

• XER[SO, OV] if OE contains a ‘1’

Architecture Note
This instruction is part of the Power ISA User Instruction Set Architecture.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 130 of 288

9.4.9 addze

Add to Zero Extended

addze RT, RA OE = '0', Rc = '0'
addze. RT, RA OE = '0', Rc = '1'
addzeo RT, RA OE = '1', Rc = '0'
addzeo. RT, RA OE = '1', Rc = '1'

0 5 6 10 11 15 16 20 21 22 30 31

31 RT RA OE 202 Rc

(RT) ← (RA) + XER[CA]
if (RA) + XER[CA] >u 232 – 1 then

XER[CA] ← 1
else

XER[CA] ← 0

The sum of the contents of register RA and XER[CA] is placed into register RT.

XER[CA] is set to a value determined by the unsigned magnitude of the result of the add operation.

Restrictions
The registers RT and RA must be defined in the PPE 42 core architecture, otherwise an illegal instruction
exception occurs.

Registers Altered
• RT

• XER[CA]

• CR[CR0]LT, GT, EQ, SO if Rc contains a ‘1’

• XER[SO, OV] if OE contains a ‘1’

Architecture Note
This instruction is part of the Power ISA User Instruction Set Architecture.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 131 of 288

9.4.10 and

AND

and RA, RS, RB Rc = '0'
and. RA, RS, RB Rc = '1'

0 5 6 10 11 15 16 20 21 30 31

31 RS RA RB 28 Rc

(RA) ← (RS) (RB)∧

The contents of register RS are ANDed with the contents of register RB. The result is placed into register
RA.

Restrictions
The registers RS, RA and RB must be defined in the PPE 42 core architecture, otherwise an illegal
instruction exception occurs.

Registers Altered
• RA

• CR[CR0]LT, GT, EQ, SO if Rc contains a ‘1’

Architecture Note
This instruction is part of the Power ISA User Instruction Set Architecture.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 132 of 288

9.4.11 andc

AND with Complement

andc RA, RS, RB Rc = '0'
andc. RA, RS, RB Rc = '1'

0 5 6 10 11 15 16 20 21 30 31

31 RS RA RB 60 Rc

(RA) ← (RS) ∧ ¬(RB)

The contents of register RS are ANDed with the complement of the contents of register RB. The result is
placed into register RA.

Restrictions
The registers RS, RA and RB must be defined in the PPE 42 core architecture, otherwise an illegal
instruction exception occurs.

Registers Altered
• RA

• CR[CR0]LT, GT, EQ, SO if Rc contains a ‘1’

Architecture Note
This instruction is part of the Power ISA User Instruction Set Architecture.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 133 of 288

9.4.12 andi.

AND Immediate

andi. RA, RS, UI

0 5 6 10 11 15 16 31

28 RS RA UI

(RA) ← (RS) (∧ 160 || UI)

The UI field is extended to 32 bits by concatenating 16 0-bits on its left. The contents of register RS are
ANDed with the extended UI field. The result is placed into register RA.

Restrictions
The registers RS and RA must be defined in the PPE 42 core architecture, otherwise an illegal instruction
exception occurs.

Registers Altered
• RA

• CR[CR0]LT, GT, EQ, SO

Programming Note
The andi. Instruction can test whether any of the 16 least-significant bits in a GPR are 1-bits.

Architecture Note
This instruction is part of the Power ISA User Instruction Set Architecture.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 134 of 288

9.4.13 andis.

AND Immediate Shifted

andis. RA, RS, UI

0 5 6 10 11 15 16 31

29 RS RA UI

(RA) ← (RS) (UI || ∧ 160)

The UI field is extended to 32 bits by concatenating 16 0-bits on its right. The contents of register RS are
ANDed with the extended UI field. The result is placed into register RA.

Restrictions
The registers RS and RA must be defined in the PPE 42 core architecture, otherwise an illegal instruction
exception occurs.

Registers Altered
• RA

• CR[CR0]LT, GT, EQ, SO

Programming Note
The andis. Instruction can test whether any of the 16 most-significant bits in a GPR are 1-bits.

Architecture Note
This instruction is part of the Power ISA User Instruction Set Architecture.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 135 of 288

9.4.14 b

Branch

b target AA = '0', LK = '0'
bl target AA = '0', LK = '1'
ba target AA = '1', LK = '0'
bla target AA = '1', LK = '1'

0 5 6 29 30 31

18 LI AA LK

If AA = '1' then
NIA ← EXTS(LI || 20)

else
NIA ← CIA + EXTS(LI || 20)

if LK = 1 then
(LR) ← CIA + 4

PC ← NIA

The NIA is the effective address of the branch. The NIA is formed by adding a displacement to a base
address. The displacement is obtained by concatenating two 0-bits to the right of the LI field and sign-
extending the result to 32 bits.

If the AA field contains a '1' then the base address is 0. If the AA field is a '0' then the base address is the
address of the branch instruction, which is also the current instruction address (CIA).

Program flow is transferred to the NIA.

If the LK field contains a '1' then (CIA + 4) is placed into the LR.

Registers Altered
• LR if LK contains a '1'

Architecture Note
This instruction is part of the Power ISA User Instruction Set Architecture.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 136 of 288

9.4.15 bc

Branch Conditional

bc BO, BI, target AA = '0', LK = '0'
bcl BO, BI, target AA = '0', LK = '1'
bca BO, BI, target AA = '1', LK = '0'
bcla BO, BI, target AA = '1', LK = '1'

0 5 6 10 11 13 14 15 16 29 30 31

16 BO 0 BI BD AA LK

If BO2 = 0 then
CTR ← CTR – 1

if (BO2 = 1 ((CTR = 0) = BO∨ 3)) (BO∧ 0 = 1 (CR[CR0]∨ BI = BO1)) then
If AA = '1' then

NIA ← EXTS(BD || 20)
else

NIA ← CIA + EXTS(BD || 20)
else

NIA ← CIA + 4

if LK = 1 then
(LR) ← CIA + 4

PC ← NIA

If bit 2 of the BO field contains a '0' then the Count Register (CTR) decrements.

The BO field controls options that determine when program flow is transferred to the NIA. The BI field
specifies a bit of CR[CR0] to be used as the condition of the branch.

The NIA is the effective address of the branch. The NIA is formed by adding a displacement to a base
address. The displacement is obtained by concatenating two 0-bits to the right of the BD field and sign-
extending the result to 32 bits.

If the AA field contains a '1' then the base address is 0. If the AA field is a '0' then the base address is the
address of the branch instruction, which is also the current instruction address (CIA).

If the LK field contains a '1' then (CIA + 4) is placed into the LR, regardless of whether the branch is taken
or not taken.

Registers Altered
• CTR if BO2 contains a '0'

• LR if LK contains a '1'

Architecture Note
This instruction is part of the Power ISA User Instruction Set Architecture. Since PPE 42 only defines
CR[CR0], PPE 42 requires that bits 11:13 of the instruction be explicitly set as '000', otherwise an illegal
instruction exception occurs.

The Power ISA provides for branch prediction hints to be encoded in the BO field. These hints are ignored
by the PPE 42 core.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 137 of 288

Extended Mnemonics
The BO and BI fields of conditional branch instructions control whether the branch is taken, and specify
other side effects. It is rare for programmers to code conditional branches by explicitly specifying BO and
BI. Instead programmers typically use one of the numerous extended mnemonic forms for conditional
branches.

Providing an extended mnemonic for every possible combination of the BO and BI fields would be neither
useful nor practical. The most generally useful extended mnemonics for conditional branches are listed in
the tables below. For complete information on extended mnemonics for branches please refer to the Power
ISA specification.

Because PPE 42 only implements CR[CR0], it is never necessary to specify a CR field when coding
conditional branch instructions for PPE 42 using the extended mnemonics listed below. Instead one can
simply program for example

blt target

for a conditional branch if less than to the target.

Any conditional branch extended mnemonic can be extended with optional “l” and “a” suffixes to specify
with LR update and absolute addressing respectively. If an LR update + absolute form branch is required
then the suffix “la” must be used.

Table 1.72: Conditional Branch Extended Mnemonics Incorporating Conditions

Branch Semantics bc bcl bca bcla

Branch if less than blt bltl blta bltla

Branch if less than or equal ble blel blea blela

Branch if greater than bgt bgtl bgta bgtla

Branch if greater than or equal bge bgel bgea bgela

Branch if equal beq beql beqa beqla

Branch if not equal bne bnel bnea bnela

Branch is summary overflow bso bsol bsoa bsola

Branch if not summary overflow bns bnsl bnsa bnsla

Table 1.73: Conditional Branch Extended Mnemonics With CTR Decrement

Branch Semantics bc bcl bca bcla

Decrement CTR, branch if CTR nonzero bdnz bdnzl bdnza bdnzla

Decrement CTR, branch if CTR zero bdz bdzl bdza bdzla

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 138 of 288

9.4.16 bcctr

Branch Conditional to Count Register

bcctr BO, BI LK = '0'
bcctrl BO, BI LK = '1'

0 5 6 10 11 13 14 15 16 20 21 30 31

19 BO 0 BI 528 LK

if (BO2 = 1 ((CTR = 0) = BO∨ 3)) (BO∧ 0 = 1 (CR[CR0]∨ BI = BO1)) then
NIA ← CTR0:29 || 20

else
NIA ← CIA + 4

if LK = 1 then
(LR) ← CIA + 4

PC ← NIA

The BO field controls options that determine when program flow is transferred to the NIA. The BI field
specifies a bit of CR[CR0] to be used as the condition of the branch.

The NIA is the effective address of the branch. The NIA is formed by concatenating the 30 most significant
bits of CTR with two 0-bits on the right.

If the LK field contains a '1' then (CIA + 4) is placed into the LR, regardless of whether the branch is taken
or not taken.

Restrictions
If BO2 = 0 then an illegal instruction exception is generated. Also see the Architecture Note below.

Registers Altered
• LR if LK contains a '1'

Architecture Note
This instruction is part of the Power ISA User Instruction Set Architecture. Since PPE 42 only defines
CR[CR0], PPE 42 requires that bits 11:13 of the instruction be explicitly set as '000', otherwise an illegal
instruction exception occurs.

The Power ISA specifies that if bit 2 of the BO field contains a '0' then the instruction form is invalid. The
PPE 42 core generates an illegal instruction exception in this case.

The Power ISA provides for branch prediction hints to be encoded in the BO field, and in bits 19:20 of the
instruction. These hints are ignored by the PPE 42 core.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 139 of 288

Extended Mnemonics
The BO and BI fields field of bcctr and bcctrl control whether the branch is taken, and specify other side
effects. It is rare for programmers to code bcctr and bcctrl by explicitly specifying BO and BI. Instead
programmers typically use one of the numerous extended mnemonics.

Providing an extended mnemonic for every possible combination of the BO and BI fields would be neither
useful nor practical. The most generally useful extended mnemonics for bcctr and bcctrl are listed in the
tables below. For complete information on extended mnemonics for branches please refer to the Power ISA
specification.

Because PPE 42 only implements CR[CR0], it is never necessary to specify a CR field when coding bcctr
and bcctrl instructions for PPE 42 using the extended mnemonics listed below. Instead one can simply
program for example

bctr

for an unconditional branch to the CTR, and

bltctr

for a conditional branch if less than to the CTR.

Any bcctr extended mnemonic can be extended with an optional “l” suffix to specify with LR update.

Table 1.74: bcctr and bcctrl Extended Mnemonics

Branch Semantics (Branch to CTR) bctr bctrl

Unconditional branch bctr bctrl

Branch if less than bltctr bltctrl

Branch if less than or equal blectr blectrl

Branch if greater than bgtctr bgtctrl

Branch if greater than or equal bgectr bgectrl

Branch if equal beqctr beqctrl

Branch if not equal bnectr bnectrl

Branch is summary overflow bsoctr bsoctrl

Branch if not summary overflow bnsctr bnsctrl

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 140 of 288

9.4.17 bclr

Branch Conditional to Link Register

bclr BO, BI LK = '0'
bclrl BO, BI LK = '1'

0 5 6 10 11 13 14 15 16 20 21 30 31

19 BO 0 BI 16 LK

If BO2 = 0 then
CTR ← CTR – 1

if (BO2 = 1 ((CTR = 0) = BO∨ 3)) (BO∧ 0 = 1 (CR[CR0]∨ BI = BO1)) then
NIA ← (LR)0:29 || 20

else
NIA ← CIA + 4

if LK = 1 then
(LR) ← CIA + 4

PC ← NIA

If bit 2 of the BO field contains a '0' then the Count Register (CTR) decrements.

The BO field controls options that determine when program flow is transferred to the NIA. The BI field
specifies a bit of CR[CR0] to be used as the condition of the branch.

The NIA is the effective address of the branch. The NIA is formed by concatenating the 30 most significant
bits of LR with two 0-bits on the right.

If the LK field contains a '1' then (CIA + 4) is placed into the LR, regardless of whether the branch is taken
or not taken.

Registers Altered
• CTR if BO2 contains a '0'

• LR if LK contains a '1'

Architecture Note
This instruction is part of the Power ISA User Instruction Set Architecture. Since PPE 42 only defines
CR[CR0], PPE 42 requires that bits 11:13 of the instruction be explicitly set as '000', otherwise an illegal
instruction exception occurs.

The Power ISA provides for branch prediction hints to be encoded in the BO field, and in bits 19:20 of the
instruction. These hints are ignored by the PPE 42 core.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 141 of 288

Extended Mnemonics
The BO and BI fields field of bclr and bclrl control whether the branch is taken, and specify other side
effects. It is rare for programmers to code bclr and bclrl by explicitly specifying BO and BI. Instead
programmers typically use one of the numerous extended mnemonics.

Providing an extended mnemonic for every possible combination of the BO and BI fields would be neither
useful nor practical. The most generally useful extended mnemonics for bclr and bclrl are listed in the
tables below. For complete information on extended mnemonics for branches please refer to the Power ISA
specification.

Because PPE 42 only implements CR[CR0], it is never necessary to specify a CR field when coding bclr
and bclr instructions for PPE 42 using the extended mnemonics listed below. Instead one can simply
program for example

blr

for an unconditional branch to the LR, and

bltlr

for a conditional branch if less than to the LR.

Any bclr extended mnemonic can be extended with an optional “l” suffix to specify with LR update.

Table 1.75: bclr and bclrl Extended Mnemonics Involving Conditions

Branch Semantics (Branch to LR) bclr bclrl

Unconditional branch blr blrl

Branch if less than bltlr bltlrl

Branch if less than or equal blelr blelrl

Branch if greater than bgtlr bgtlrl

Branch if greater than or equal bgelr bgelrl

Branch if equal beqlr beqlrl

Branch if not equal bnelr bnelrl

Branch is summary overflow bsolr bsolrl

Branch if not summary overflow bnslr bnslrl

Table 1.76: bclr and bclrl Extended Mnemonics With CTR Decrement

Branch Semantics (Branch to LR) bclr bclrl

Decrement CTR, branch if CTR nonzero bdnzlr bdnzlrl

Decrement CTR, branch if CTR zero bdzlr bdzlrl

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 142 of 288

9.4.18 bnbw

Branch on Not Bit Word

bnbw PX, RA, RB, target LK = '0'
bnbwl PX, RA, RB, target LK = '1'

0 5 6 7 8 9 10 11 15 16 20 21 30 31

1 3 PX 1 RA RB BDX LK

m ← MASK((RB)27:31, (RB)27:31)
r ← ((RA) m)∧

CR[CR00] ← r0

CR[CR01] ← ¬r0 ¬(r = 0)∧
CR[CR02] ← (r = 0)
CR[CR03] ← XER[SO]

if PX = CR[CR02] then
NIA ← CIA + EXTS(BDX || 20)

else
NIA ← CIA + 4

if LK = 1 then
(LR) ← CIA + 4

A mask is generated having a single 1-bit at the bit position specified by bits 27:31 of RB. The contents of
register RA are ANDed with the generated mask. CR[CR0] is updated to reflect the results of the AND
operation and the value of XER[SO] is placed into CR[CR03]. The result of the AND operation is discarded.

The branch is taken if PX = CR[CR02]. Since (CR[CR02] = '1') = ((RA)(RB[27:31]) = 0), the PX field specifies
the inverted polarity of the bit being tested.

The NIA is the effective address of the branch. The NIA is formed by adding a displacement to a base
address. The displacement is obtained by concatenating two 0-bits to the right of the BDX field and sign-
extending the result to 32 bits. The base address is the address of the branch instruction, which is also the
CIA.

If the LK field contains a '1' then (CIA + 4) is placed into the LR, regardless of whether the branch is taken
or not taken.

Restrictions
The registers RA and RB must be defined in the PPE 42 core architecture, otherwise an illegal instruction
exception occurs.

Registers Altered
• CR[CR0]LT, GT, EQ, SO

• LR if LK contains a '1'

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 143 of 288

Architecture Note
This instruction is specific to the PPE 42 architecture.

CR[CR0] is updated as if the instruction being executed were

rlwinm. Rx, RA, 0, MB, ME

where MB = ME = (RB)27:31, without the update of Rx.

Programming Note
Programmers should take care to distinguish bnbwi[l] from bnbw[l], including the extended mnemonic
forms. In general, the assembler can not distinguish an immediate bit number specified for bnbwi[l] from a
GPR number specified for bnbw[l], and will not be able to detect a programming error where the two
mnemonics are confused.

Extended Mnemonics
Extended mnemonics are provided to allow specification of the bit value to test for embedded in the
mnemonic. For example:

bb0w RA, RB, target (equivalent to bnbw 1, RA, RB, target)

Table 1.77: Extended Mnemonics for bnbw[l]

Branch Semantics bnbw bnbwl

Branch on bit zero word bb0w bb0wl

Branch on bit one word bb1w bb1wl

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 144 of 288

9.4.19 bnbwi

Branch on Not Bit Word Immediate

bnbwi PX, RA, BNX, target LK = '0'
bnbwil PX, RA, BNX, target LK = '1'

0 5 6 7 8 9 10 11 15 16 20 21 30 31

1 3 PX 0 RA BNX BDX LK

m ← MASK(BNX, BNX)
r ← ((RA) m)∧

CR[CR00] ← r0

CR[CR01] ← ¬r0 ¬(r = 0)∧
CR[CR02] ← (r = 0)
CR[CR03] ← XER[SO]

if PX = CR[CR02] then
NIA ← CIA + EXTS(BDX || 20)

else
NIA ← CIA + 4

if LK = 1 then
(LR) ← CIA + 4

A mask is generated having a single 1-bit at the bit position specified in the BNX field. The contents of
register RA are ANDed with the generated mask. CR[CR0] is updated to reflect the results of the AND
operation and the value of XER[SO] is placed into CR[CR03]. The result of the AND operation is discarded.

The branch is taken if PX = CR[CR02]. Since (CR[CR02] = '1') = ((RA)BNX = 0), the PX field specifies the
inverted polarity of the bit being tested.

The NIA is the effective address of the branch. The NIA is formed by adding a displacement to a base
address. The displacement is obtained by concatenating two 0-bits to the right of the BDX field and sign-
extending the result to 32 bits. The base address is the address of the branch instruction, which is also the
CIA.

If the LK field contains a '1' then (CIA + 4) is placed into the LR, regardless of whether the branch is taken
or not taken.

Restrictions
The register RA must be defined in the PPE 42 core architecture, otherwise an illegal instruction exception
occurs.

Registers Altered
• CR[CR0]LT, GT, EQ, SO

• LR if LK contains a '1'

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 145 of 288

Architecture Note
This instruction is specific to the PPE 42 architecture.

CR[CR0] is updated as if the instruction being executed were

rlwinm. Rx, Ra, 0, BNX, BNX

without the update of Rx.

Programmers should take care to distinguish bnbwi[l] from bnbw[l], including the extended mnemonic
forms. In general, the assembler can not distinguish an immediate bit number specified for bnbwi[l] from a
GPR number specified for bnbw[l], and will not be able to detect a programming error where the two
mnemonics are confused.

Extended Mnemonics
Extended mnemonics are provided to allow specification of the bit value to test for embedded in the
mnemonic. For example:

bb0wi RA, n, target (equivalent to bnbwi 1, RA, n, target)

Table 1.78: Extended Mnemonics for bnbwi[l]

Branch Semantics bnbwi bnbwil

Branch on bit zero word immediate bb0wi bb0wil

Branch on bit one word immediate bb1wi bb1wil

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 146 of 288

9.4.20 clrbwbc

Clear Bit Word and Branch Conditional

clrbwbc PX, RA, RB, target LK = '0'
clrbwbcl PX, RA, RB, target LK = '1'

0 5 6 7 8 9 10 11 15 16 20 21 30 31

1 3 PX 3 RA RB BDX LK

m ← MASK((RB)27:31, (RB)27:31)
r ← ((RA) ¬m)∧
(RA) ← r

CR[CR00] ← r0

CR[CR01] ← ¬r0 ¬(r = 0)∧
CR[CR02] ← (r = 0)
CR[CR03] ← XER[SO]

if PX = CR[CR02] then
NIA ← CIA + EXTS(BDX || 20)

else
NIA ← CIA + 4

if LK = 1 then
(LR) ← CIA + 4

A mask is generated having a single 1-bit at the bit position specified by bits 27:31 of RB. The contents of
register RA are ANDed with the complement of the generated mask. CR[CR0] is updated to reflect the
results of the AND operation and the value of XER[SO] is placed into CR[CR03]. The result of the AND
operation is placed into RA.

The branch is taken if PX = CR[CR02], that is, based on whether the value placed into RA is either 0
(PX = '1') or non-0 (PX = '0').

The NIA is the effective address of the branch. The NIA is formed by adding a displacement to a base
address. The displacement is obtained by concatenating two 0-bits to the right of the BDX field and sign-
extending the result to 32 bits. The base address is the address of the branch instruction, which is also the
CIA.

If the LK field contains a '1' then (CIA + 4) is placed into the LR, regardless of whether the branch is taken
or not taken.

Restrictions
The registers RA and RB must be defined in the PPE 42 core architecture, otherwise an illegal instruction
exception occurs.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 147 of 288

Registers Altered
• RA

• CR[CR0]LT, GT, EQ, SO

• LR if LK contains a '1'

Architecture Note
This instruction is specific to the PPE 42 architecture.

CR[CR0] is updated as if the instruction being executed were

rlwinm. RA, RB, 0, MB, ME

where MB = ((RB)27:31 + 1) % 31, and ME = ((RB)27:31 – 1) % 31.

Programming Note
Programmers should take care to distinguish clrbwibc[l] from clrbwbc[l], including the extended
mnemonic forms. In general, the assembler can not distinguish an immediate bit number specified for
clrbwibc[l] from a GPR number specified for clrbwbc[l], and will not be able to detect a programming
error where the two mnemonics are confused.

The clrbwbc instruction supports time and code-space efficient iteration over sparse bit vectors, where the
bits to process are identified using cntlzw. For example, assume R28 contains a bit vector to process:

bwz R28, done # No bits to process
loop:

cntlzw R3, R28
 … Process based on bit number held in R3
 clrbwbnz R28, R3, loop # Clear bit; Iterate until no more bits
done:

In general, the most efficient way to simply clear a bit whose index is held in a register is to use the clrbw.
extended mnemonic.

Extended Mnemonics
Extended mnemonics are provided consistent with the way that other zero and non-zero branches are
named. For example:

clrbwbz RA, RB, target (equivalent to clrbwbc 1, RA, RB, target)

Table 1.79: Extended Mnemonics for clrbwbc[l]

Branch Semantics clrbwbc clrbwbcl

Branch if final result is 0 clrbwbz clrbwbzl

Branch if final result is not zero clrbwbnz clrbwbnzl

The most efficient way to simply clear a bit whose index is held in a register is to use the clrbwbc
instruction with a redundant branch to the next sequential instruction. The clrbw. extended mnemonic is
provided for this purpose. The mnemonic includes the '.' (dot) prefix since the true nature of the operation
(a compare that sets CR[CR0] followed by a branch) is hidden.

clrbw. RA, RB (equivalent to clrbwbz RA, RB, $ + 4)

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 148 of 288

9.4.21 clrbwibc

Clear Bit Word Immediate and Branch Conditional

clrbwibc PX, RA, BNX, target LK = '0'
clrbwibcl PX, RA, BNX, target LK = '1'

0 5 6 7 8 9 10 11 15 16 20 21 30 31

1 3 PX 2 RA BNX BDX LK

m ← MASK(BNX, BNX)
r ← ((RA) ¬m)∧
(RA) ← r

CR[CR00] ← r0

CR[CR01] ← ¬r0 ∧ ¬(r = 0)
CR[CR02] ← (r = 0)
CR[CR03] ← XER[SO]

if PX = CR[CR02] then
NIA ← CIA + EXTS(BDX || 20)

else
NIA ← CIA + 4

if LK = 1 then
(LR) ← CIA + 4

A mask is generated having a single 1-bit at the bit position specified in the BNX field. The contents of
register RA are ANDed with the complement of the generated mask. CR[CR0] is updated to reflect the
results of the AND operation and the value of XER[SO] is placed into CR[CR03]. The result of the AND
operation is placed into RA.

The branch is taken if PX = CR[CR02], that is, based on whether the value placed into RA is either 0
(PX = '1') or non-0 (PX = '0').

The NIA is the effective address of the branch. The NIA is formed by adding a displacement to a base
address. The displacement is obtained by concatenating two 0-bits to the right of the BDX field and sign-
extending the result to 32 bits. The base address is the address of the branch instruction, which is also the
CIA.

If the LK field contains a '1' then (CIA + 4) is placed into the LR, regardless of whether the branch is taken
or not taken.

Restrictions
The register RA must be defined in the PPE 42 core architecture, otherwise an illegal instruction exception
occurs.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 149 of 288

Registers Altered
• RA

• CR[CR0]LT, GT, EQ, SO

• LR if LK contains a '1'

Architecture Note
This instruction is specific to the PPE 42 architecture.

CR[CR0] is updated as if the instruction being executed were

rlwinm. RA, RA, 0, (BNX + 1) % 32, (BNX – 1) % 32.

Programming Note
Programmers should take care to distinguish clrbwibc[l] from clrbwbc[l], including the extended
mnemonic forms. In general, the assembler can not distinguish an immediate bit number specified for
clrbwibc[l] from a GPR number specified for clrbwbc[l], and will not be able to detect a programming
error where the two mnemonics are confused.

Unless a branch on the result is required, clearing a bit from a register based on an immediate bit number
is most efficiently encoded using the clrbwi extended mnemonic.

Extended Mnemonics
Extended mnemonics are provided consistent with the way that other zero and non-zero branches are
named. For example:

clrbwibz RA, n, target (equivalent to clrbwibc 1, RA, n, target)

Table 1.80: Extended Mnemonics for clrbwibc[l]

Branch Semantics clrbwibc clrbwibcl

Branch if final result is 0 clrbwibz clrbwibzl

Branch if final result is not zero clrbwibnz clrbwibnzl

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 150 of 288

9.4.22 cmplw

Compare Logical Word

cmplw RA, RB

0 5 6 8 9 10 11 15 16 20 21 30 31

31 0 0 RA RB 32

CR[CR0] ← 0
if (RA) <u (RB) then CR[CR00] ← 1
if (RA) >u (RB) then CR[CR01] ← 1
if (RA) = (RB) then CR[CR02] ← 1
CR[CR03] ← XER[SO]

The contents of register RA are compared with the contents of register RB using a 32-bit unsigned
compare. CR[CR0] is updated to reflect the results of the compare and the value of XER[SO] is placed into
CR[CR03].

Restrictions
The registers RA and RB must be defined in the PPE 42 core architecture, otherwise an illegal instruction
exception occurs. Also see the Architecture Note below.

Registers Altered
• CR[CR0]LT, GT, EQ, SO

Architecture Note
cmplw is actually an assembler extended mnemonic for the more general cmpl instruction of the Power
ISA User Instruction Set Architecture. PPE 42 only supports word comparisons (instruction bit 10 = 0) with
update of CR[CR0] (instruction bits 6:8 = 0). Any other form of the cmpl instruction will cause an illegal
instruction exception.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 151 of 288

9.4.23 cmplwbc

Compare Logical Word and Branch Conditional

cmplwbc PX, BIX, RA, RB, target LK = '0'
cmplwbcl PX, BIX, RA, RB, target LK = '1'

0 5 6 7 8 9 10 11 15 16 20 21 30 31

1 1 PX BIX RA RB BDX LK

CR[CR0] ← 0
if (RA) <u (RB) then CR[CR00] ← 1
if (RA) >u (RB) then CR[CR01] ← 1
if (RA) = (RB) then CR[CR02] ← 1
CR[CR03] ← XER[SO]

if ((BIX ≠ 3) ∧ (PX = CR[CR0BIX])) ∨ ((BIX = 3) ∧ (PX = CR[CR02])) then
NIA ← CIA + EXTS(BDX || 20)

else
NIA ← CIA + 4

If BIX = 3 then

(RA) ← ¬(RB) + (RA) + 1

if LK = 1 then
(LR) ← CIA + 4

The contents of register RA are compared with the contents of register RB using a 32-bit unsigned
compare. CR[CR0] is updated to reflect the results of the compare and the value of XER[SO] is placed into
CR[CR03].

The BIX field specifies a bit of CR[CR0] to be used as the condition of the branch, and the PX field
specifies the polarity of the CR[CR0] bit used to determine if the branch is taken or untaken.

The NIA is the effective address of the branch. The NIA is formed by adding a displacement to a base
address. The displacement is obtained by concatenating two 0-bits to the right of the BDX field and sign-
extending the result to 32 bits. The base address is the address of the branch instruction, which is also the
CIA.

If BIX = 3 then the 32-bit value computed to generate CR[CR00:2] is placed into RA, regardless of whether
the branch is taken or not taken.

If the LK field contains a '1' then (CIA + 4) is placed into the LR, regardless of whether the branch is taken
or not taken.

Restrictions
The registers RA and RB must be defined in the PPE 42 core architecture, otherwise an illegal instruction
exception occurs.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 152 of 288

Registers Altered
• CR[CR0]LT, GT, EQ, SO

• LR if LK contains a '1'

• RA if BIX = 3

Architecture Note
This instruction is specific to the PPE 42 architecture.

This instruction modifies CR[CR0] identically to the Power ISA cmplw instruction, including the update of
CR[CR03] with XER[SO]. This instruction does not modify XER[SO] or XER[OV] however; only the “o”
forms of arithmetic instructions modify XER[SO, OV]. Therefore the BIX = 3 form is used to implement an
equal test with GPR writeback rather than a test for XER[SO].

Note that the subtraction performed as the underlying comparison is RA – RB, not RB – RA as per the PPE
42 subf* instructions.

Programming Note
The cmplwbc instruction can be used both as a side-effect free compare-and-branch (BIX < 3), as well as
to compute and store a difference, and branch on the original equality of RA and RB (BIX = 3). The latter
form allows cmplwbc to be used to control iteration terminating with RA = RB, that is, with a final difference
of 0.

Note however that the BIX = 2 and BIX = 3 forms of cmplwbc (for branches based on equality) behave
identically to cmpwbc with BIX = 2 or BIX = 3 respectively, unless the intention is to use the CR after the
initial compare-and-branch, and a CR recording a logical comparison is required.

Extended Mnemonics
The PX and BIX fields of the cmplwbc[l] instruction control whether the branch is taken, and whether the
comparison result is stored back into RB. It not necessary for programmers to code cmplwbc by explicitly
specifying PX and BIX however. Instead, programmers typically use one of the numerous extended
mnemonic forms.

The first set of extended mnemonics support using cmplwbc as a side-effect-free compare and branch
instruction for logical comparisons.

For example,

cmplwble RA, RB, target (equivalent to cmplwbc 0, 1, RA, RB, target)

Table 1.81: cmplwbc[l] Extended Mnemonics for Side-Effect-Free Compare-and-Branch

Branch Semantics cmplwbc cmplwbcl

Branch if less than cmplwblt cmplwbltl

Branch if less than or equal cmplwble cmplwblel

Branch if greater than cmplwbgt cmplwbgtl

Branch if greater than or equal cmplwbge cmplwbgel

Branch if equal cmplwbeq cmplwbeql

Branch if not equal cmplwbne cmplwbnel

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 153 of 288

The second set of extended mnemonics are used for the forms of cmplwbc that provide a 0/non-0 test and
also update RA with the difference of RA and RB. For example:

sublwbz RA, RB, target (equivalent to cmplwbc 1, 3, RA, RB, target)

Table 1.82: cmplwbc[l] Extended Mnemonics for Compare-and-Branch with Update

Branch Semantics cmplwbc cmplwbcl

Subtract and branch if zero sublwbz sublwbzl

Subtract and branch if not zero sublwbnz sublwbnzl

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 154 of 288

9.4.24 cmplwi

Compare Logical Word Immediate

cmplwi RA, UI

0 5 6 8 9 10 11 15 16 31

10 0 0 RA UI

CR[CR0] ← 0
if (RA) <u 160 || UI then CR[CR00] ← 1
if (RA) >u 160 || UI then CR[CR01] ← 1
if (RA) = 160 || UI then CR[CR02] ← 1
CR[CR03] ← XER[SO]

The UI field is zero extended on the left to 32 bits. The contents of register RA are compared with the
extended UI field using a 32-bit unsigned compare. CR[CR0] is updated to reflect the results of the
compare and the value of XER[SO] is placed into CR[CR03].

Restrictions
The register RA must be defined in the PPE 42 core architecture, otherwise an illegal instruction exception
occurs. Also see the Architecture Note below.

Registers Altered
• CR[CR0]LT, GT, EQ, SO

Architecture Note
cmplwi is actually an assembler extended mnemonic for the more general cmpli instruction of the Power
ISA User Instruction Set Architecture. PPE 42 only supports word comparisons (instruction bit 10 = 0) with
update of CR[CR0] (instruction bits 6:8 = 0). Any other form of the cmpli instruction will cause an illegal
instruction exception.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 155 of 288

9.4.25 cmpw

Compare Word

cmpw RA, RB

0 5 6 8 9 10 11 15 16 20 21 30 31

31 0 0 RA RB 0

CR[CR0] ← 0
if (RA) < (RB) then CR[CR00] ← 1
if (RA) > (RB) then CR[CR01] ← 1
if (RA) = (RB) then CR[CR02] ← 1
CR[CR03] ← XER[SO]

The contents of register RA are compared with the contents of register RB using a 32-bit signed compare.
CR[CR0] is updated to reflect the results of the compare and the value of XER[SO] is placed into
CR[CR03].

Restrictions
The registers RA and RB must be defined in the PPE 42 core architecture, otherwise an illegal instruction
exception occurs. Also see the Architecture Note below.

Registers Altered
• CR[CR0]LT, GT, EQ, SO

Architecture Note
cmpw is actually an assembler extended mnemonic for the more general cmp instruction of the Power ISA
User Instruction Set Architecture. PPE 42 only supports word comparisons (instruction bit 10 = 0) with
update of CR[CR0] (instruction bits 6:8 = 0). Any other form of the cmp instruction will cause an illegal
instruction exception.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 156 of 288

9.4.26 cmpwbc

Compare Word and Branch Conditional

cmpwbc PX, BIX, RA, RB, target LK = '0'
cmpwbcl PX, BIX, RA, RB, target LK = '1'

0 5 6 7 8 9 10 11 15 16 20 21 30 31

1 0 PX BIX RA RB BDX LK

CR[CR0] ← 0
if (RA) < (RB) then CR[CR00] ← 1
if (RA) > (RB) then CR[CR01] ← 1
if (RA) = (RB) then CR[CR02] ← 1
CR[CR03] ← XER[SO]

if ((BIX ≠ 3) ∧ (PX = CR[CR0BIX])) ∨ ((BIX = 3) ∧ (PX = CR[CR02])) then
NIA ← CIA + EXTS(BDX || 20)

else
NIA ← CIA + 4

If BIX = 3 then

(RA) ← ¬(RB) + (RA) + 1

if LK = 1 then
(LR) ← CIA + 4

The contents of register RA are compared with the contents of register RB using a 32-bit signed compare.
CR[CR0] is updated to reflect the results of the compare and the value of XER[SO] is placed into
CR[CR03].

The BIX field specifies a bit of CR[CR0] to be used as the condition of the branch, and the PX field
specifies the polarity of the CR[CR0] bit used to determine if the branch is taken or untaken.

The NIA is the effective address of the branch. The NIA is formed by adding a displacement to a base
address. The displacement is obtained by concatenating two 0-bits to the right of the BDX field and sign-
extending the result to 32 bits. The base address is the address of the branch instruction, which is also the
CIA.

If BIX = 3 then the 32-bit value computed to generate CR[CR00:2] is placed into RA, regardless of whether
the branch is taken or not taken.

If the LK field contains a '1' then (CIA + 4) is placed into the LR, regardless of whether the branch is taken
or not taken.

Restrictions
The registers RA and RB must be defined in the PPE 42 core architecture, otherwise an illegal instruction
exception occurs.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 157 of 288

Registers Altered
• CR[CR0]LT, GT, EQ, SO

• LR if LK contains a '1'

• RA if BIX = 3

Architecture Note
This instruction is specific to the PPE 42 architecture.

This instruction modifies CR[CR0] identically to the Power ISA cmpw instruction, including the update of
CR[CR03] with XER[SO]. This instruction does not modify XER[SO] or XER[OV] however; only the “o”
forms of arithmetic instructions modify XER[SO, OV]. Therefore the BIX = 3 form is used to implement an
equal test with GPR writeback rather than a test for XER[SO].

Note that the subtraction performed as the underlying comparison is RA – RB, not RB – RA as per the PPE
42 subf* instructions.

Programming Note
The cmpwbc instruction can be used both as a side-effect free compare-and-branch (BIX < 3), as well as
to compute and store a difference, and branch on the original equality of RA and RB (BIX = 3). The latter
form allows cmpwbc to be used to control iteration terminating with RA = RB, that is, with a final difference
of 0.

Extended Mnemonics
The PX and BIX fields of the cmpwbc[l] instruction control whether the branch is taken, and whether the
comparison result is stored back into RA. It not necessary for programmers to code cmpwbc by explicitly
specifying PX and BIX however. Instead, programmers typically use one of the numerous extended
mnemonic forms.

The first set of extended mnemonics support using cmpwbc as a side-effect-free compare and branch
instruction for signed comparisons. For example,

cmpwbeq RA, RB, target (equivalent to cmpwbc 1, 2, RA, RB, target)

Table 1.83: cmpwbc[l] Extended Mnemonics for Side-Effect-Free Compare-and-Branch

Branch Semantics cmpwbc cmpwbcl

Branch if less than cmpwblt cmpwbltl

Branch if less than or equal cmpwble cmpwblel

Branch if greater than cmpwbgt cmpwbgtl

Branch if greater than or equal cmpwbge cmpwbgel

Branch if equal cmpwbeq cmpwbeql

Branch if not equal cmpwbne cmpwbnel

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 158 of 288

The second set of extended mnemonics are used for the forms of cmpwbc that provide a 0/non-0 test and
also update RA with the difference of RA and RB. For example:

subwbz RA, RB, target (equivalent to cmpwbc 1, 3, RA, RB, target)

Table 1.84: cmpwbc[l] Extended Mnemonics for Compare-and-Branch with Update

Branch Semantics cmpwbc cmpwbcl

Subtract and branch if zero subwbz subwbzl

Subtract and branch if not zero subwbnz subwbnzl

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 159 of 288

9.4.27 cmpwi

Compare Word Immediate

cmpwi RA, SI

0 5 6 8 9 10 11 15 16 31

11 0 0 RA SI

CR[CR0] ← 0
if (RA) < EXTS(SI) then CR[CR00] ← 1
if (RA) > EXTS(SI) then CR[CR01] ← 1
if (RA) = EXTS(SI) then CR[CR02] ← 1
CR[CR03] ← XER[SO]

The SI field is sign extended to 32 bits. The contents of register RA are compared with the extended SI field
using a 32-bit signed compare. CR[CR0] is updated to reflect the results of the compare and the value of
XER[SO] is placed into CR[CR03].

Restrictions
The register RA must be defined in the PPE 42 core architecture, otherwise an illegal instruction exception
occurs. Also see the Architecture Note below.

Registers Altered
• CR[CR0]LT, GT, EQ, SO

Architecture Note
cmpwi is actually an assembler extended mnemonic for the more general cmpi instruction of the Power
ISA User Instruction Set Architecture. PPE 42 only supports word comparisons (instruction bit 10 = 0) with
update of CR[CR0] (instruction bits 6:8 = 0). Any other form of the cmpi instruction will cause an illegal
instruction exception.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 160 of 288

9.4.28 cmpwibc

Compare Word Immediate and Branch Conditional

cmpwibc PX, BIX, RA, UIX, target LK = '0'
cmpwibcl PX, BIX, RA, UIX, target LK = '1'

0 5 6 7 8 9 10 11 15 16 20 21 30 31

1 2 PX BIX RA UIX BDX LK

CR[CR0] ← 0
if (RA) < 270 || UIX then CR[CR00] ← 1
if (RA) > 270 || UIX then CR[CR01] ← 1
if (RA) = 270 || UIX then CR[CR02] ← 1
CR[CR03] ← XER[SO]

if ((BIX ≠ 3) ∧ (PX = CR[CR0BIX])) ∨ ((BIX = 3) ∧ (PX = CR[CR02])) then
NIA ← CIA + EXTS(BDX || 20)

else
NIA ← CIA + 4

If BIX = 3 then

(RA) ← ¬(270 || UIX) + (RA) + 1

if LK = 1 then
(LR) ← CIA + 4

The UIX field is zero-extended on the left to 32 bits. The contents of register RA are compared with the
extended UIX field using a 32-bit signed compare. CR[CR0] is updated to reflect the results of the compare
and the value of XER[SO] is placed into CR[CR03].

The BIX field specifies a bit of CR[CR0] to be used as the condition of the branch, and the PX field
specifies the polarity of the CR[CR0] bit used to determine if the branch is taken or untaken.

The NIA is the effective address of the branch. The NIA is formed by adding a displacement to a base
address. The displacement is obtained by concatenating two 0-bits to the right of the BDX field and sign-
extending the result to 32 bits. The base address is the address of the branch instruction, which is also the
CIA.

If BIX = 3 then the 32-bit value computed to generate CR[CR00:2] is placed into RA, regardless of whether
the branch is taken or not taken.

If the LK field contains a '1' then (CIA + 4) is placed into the LR, regardless of whether the branch is taken
or not taken.

Restrictions
The register RA must be defined in the PPE 42 core architecture, otherwise an illegal instruction exception
occurs.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 161 of 288

Registers Altered
• CR[CR0]LT, GT, EQ, SO

• LR if LK contains a '1'

• RA if BIX = 3

Architecture Note
This instruction is specific to the PPE 42 architecture.

This instruction modifies CR[CR0] identically to the cmpwi instruction, including the update of CR[CR03]
with XER[SO]. This instruction does not modify XER[SO] or XER[OV] however; only the “o” forms of
arithmetic instructions modify XER[SO, OV]. Therefore the BIX = 3 form is used to implement an equal test
with GPR writeback rather than a test for XER[SO].

Programming Note
The cmpwibc instruction can be used both as a side-effect free compare-and-branch (BIX < 3), as well as
to compute and store a difference, and branch on the original equality of RA and UIX (BIX = 3). The latter
form allows cmpwibc to be used to control iteration terminating with RA = UIX, that is, with a final
difference of 0.

Note that standard Power ISA application binary interfaces (ABIs) specify that the CTR is a volatile register,
that is, the value of CTR need not be saved and restored by a subroutine. When iterating over code
sequences that include subroutine calls, it will be more time and code-space efficient to iterate with the
subwib[n]z extended mnemonic targeting a non-volatile GPR, rather than iterating with the CTR and
saving and restoring the CTR across subroutine calls.

Although cmpwibc can be used to compare a GPR against 0, in general this only provides an advantage
immediately after a load, or when comparing the values of subroutine arguments. In general it is more
efficient to use recording forms of arithmetic instructions (if available) followed by a conditional branch,
rather than using non-recording forms followed by cmpwibc with a 0 immediate value. For example, to test
an n-bit field of a word for a zero value, the sequence

extrwi. RA, RS, n, b
beq target

executes in 3 cycles, while the equivalent

extrwi RA, RS, n, b
bwz RA, target

executes in 4 cycles in the PPE 42 core.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 162 of 288

Extended Mnemonics
The PX and BIX fields of the cmpwibc[l] instruction control whether the branch is taken, and whether the
comparison result is stored back into RA. It not necessary for programmers to code cmpwibc by explicitly
specifying PX and BIX however. Instead, programmers typically use one of the numerous extended
mnemonic forms.

One set of extended mnemonics support using cmpwibc as a side-effect-free compare and branch
instruction. For example,

cmpwibeq RA, n, target (equivalent to cmpwibc 1, 2, RA, n, target)

Table 1.85: cmpwibc[l] Extended Mnemonics for Side-effect-free Compare-and-branch

Branch Semantics cmpwibc cmpwibcl

Branch if less than cmpwiblt cmpwibltl

Branch if less than or equal cmpwible cmpwiblel

Branch if greater than cmpwibgt cmpwibgtl

Branch if greater than or equal cmpwibge cmpwibgel

Branch if equal cmpwibeq cmpwibeql

Branch if not equal cmpwibne cmpwibnel

Since comparison against 0 is such a common operation, extended mnemonics are also provided for side-
effect-free compare-and-branch against an implicit 0 value. For example:

bwz RA, target (Branch on Word Zero; equivalent to cmpwibc 1, 2, RA, 0, target)

Table 1.86: cmpwibc[l] Extended Mnemonics for Side-effect-free Compare-and-branch against 0

Branch Semantics cmpwibc cmpwibcl

Branch if less than 0 bwltz bwltzl

Branch if less than or equal to 0 bwlez bwlezl

Branch if greater than 0 bwgtz bwgtzl

Branch if greater than or equal to 0 bwgez bwgezl

Branch if equal to 0 bwz bwzl

Branch if not equal to 0 bwnz bwnzl

The final set of extended mnemonics are provided for the forms of cmpwibc that provide a 0/non-0 test
and also update RA with the difference of RA and UIX. For example:

subwibz RA, n, target (equivalent to cmpwibc 1, 3, RA, n, target)

Table 1.87: cmpwibc[l] Extended Mnemonics for Compare-and-Branch with Update

Branch Semantics cmpwibc cmpwibcl

Subtract and branch if zero subwibz subwibzl

Subtract and branch if not zero subwibnz subwibnzl

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 163 of 288

9.4.29 cntlzw

Count Leading Zeros Word

cntlzw RA, RS Rc = '0'
cntlzw. RA, RS Rc = '1'

0 5 6 10 11 15 16 20 21 30 31

31 RS RA 26 Rc

n ← 0
do while n < 32

if (RS)n = 1 then leave
n ← n + 1

(RA) ← n

The consecutive leading 0 bits in register RS are counted. The count is placed into register RA.

The count ranges from 0 through 32, inclusive.

Restrictions
The registers RS and RA must be defined in the PPE 42 core architecture, otherwise an illegal instruction
exception occurs.

Registers Altered
• RA

• CR[CR0]LT, GT, EQ, SO if Rc contains a ‘1’

Architecture Note
This instruction is part of the Power ISA User Instruction Set Architecture.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 164 of 288

9.4.30 dcbf

Data Cache Block Flush

dcbf RA, RB

0 5 6 10 11 15 16 20 21 31

31 RA RB 86

EA ← (RA | 0) + (RB)
DCBF(EA)

An EA is formed by adding an index to the base address in register RA. The index is the contents of
register RB. The base address is 0 if the RA field is 0 and is the contents of RA otherwise.

If the data block containing the byte addressed by EA is in the data cache and marked as modified (stored
into), the data block is copied back to main storage and then marked invalid in the data cache. If the data
block is not marked as modified, it is marked invalid in the data cache. The operation is performed whether
or not the EA is marked as cacheable.

If the data block at the EA is not in the data cache, no operation is performed.

Restrictions
The registers RA and RB must be defined in the PPE 42 core architecture, otherwise an illegal instruction
exception occurs.

Registers Altered
• None

Exceptions
A data storage exception is signaled if a load of the EA would signal a data storage exception.

This instruction is considered a “store” with respect to DACR debug exceptions.

Architecture Note
The dbcf instruction is part of the Power ISA Book II specification. PPE 42 does not support the hint bits
(instruction bits 9:10) specified by the Power ISA, which may affect the portability of programs using this
instruction.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 165 of 288

9.4.31 dcbi

Data Cache Block Invalidate

dcbi RA, RB

0 5 6 10 11 15 16 20 21 31

31 RA RB 470

EA ← (RA | 0) + (RB)
DCBI(EA)

An EA is formed by adding an index to the base address in register RA. The index is the contents of
register RB. The base address is 0 if the RA field is 0 and is the contents of RA otherwise.

If the data block containing the byte addressed by EA is in the data cache, the data block is marked invalid,
regardless of whether the EA is marked as cacheable. If modified data existed in the data block before the
operation of this instruction, that data is lost.

If the data block containing the byte addressed by EA is not in the data cache, no operation is performed.

Restrictions
The registers RA and RB must be defined in the PPE 42 core architecture, otherwise an illegal instruction
exception occurs.

Registers Altered
• None

Exceptions
A data storage exception is signaled if a store to the EA would signal a data storage exception.

This instruction is considered a “store” with respect to DACR debug exceptions.

Architecture Note
The dcbi instruction is part of the Power ISA Book III-E specification.

The Power ISA allows implementations to implement dcbi in such a way that modified data in the cache
line is first flushed back to memory before invalidating the line. PPE 42 requires that the data cache not
flush modified data, but simply invalidate the line.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 166 of 288

9.4.32 dcbq

Data Cache Block Query

dcbq RT, RA, RB

0 5 6 10 11 15 16 20 21 31

31 RT RA RB 406

QA ← (RA | 0) + (RB)
B ← DCBQ(QA)

if CacheBlockDefined(B) CacheBlockValid(B) then∧
(RT)0:TagSize–1 ← CacheTag(B)
(RT)TagSize:28 ← Instance Specific

(RT)29 ← CacheBlockError(B)
(RT)30 ← CacheBlockModified(B)
(RT)31 ← CacheBlockValid(B)

else
(RT)0:30 ← Instance Specific
(RT)31 ← 0

A query address QA is formed by adding an index to the base address in register RA. The index is the contents
of register RB. The base address is 0 if the RA field is 0 and is the contents of RA otherwise.

The QA identifies a cache block in the data cache to be queried. The format of the query address is instance-
specific, and will be documented with each instantiation of the PPE 42 core.

The storage subsystem converts the QA into a cache block descriptor B. If B is a legal descriptor for a data
cache block, and the cache block is valid then

• The high order bits of register RT are set to the cache tag of cache block B.

• Bit 29 of RT is set to '1' if the cache block B is marked as being in error, otherwise '0'.

• Bit 30 of RT is set to '1' if the cache block B is marked as modified, otherwise to '0'.

• Bit 31 of RT is set to '1'.

• All other bits of RT not covered by the above specifications take on an instance-specific value.

If a data cache is present and B is not a valid descriptor for a cache block, then the storage subsystem signals a
load-type data storage exception. If a data cache is not present then the storage subsystem responds to all
dcbq requests with a value that sets (RT)31 to 0 (invalid).

Restrictions
The registers RT, RA and RB must be defined in the PPE 42 core architecture, otherwise an illegal
instruction exception occurs.

Registers Altered
• RT

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 167 of 288

Exceptions
The storage subsystem signals a load-type data storage exception if a data cache is present and the QA
specifies an invalid cache block descriptor B.

This instruction is considered a “load” with respect to DAC debug exceptions. The “load” address in this
case is the query address QA.

Architecture Note
The dbcq instruction is specific to the PPE 42 specification. If a data cache is present then PPE 42
requires a minimum cache block size of 8 bytes in order to implement dcbq.

Programming Notes
The dcbq instruction supports cache invalidation, cache restoration and examining data cache contents. If
the data cache block referred to by QA is in a valid state, then the value returned by dcbq is a valid EA of a
byte in the cache block regardless of how the implementation sets implementation-specific bits. This EA
can be used as-is for a subsequent dcbi, dcbf, dcbt or dcbz operation, or suitably masked as an EA for
loads and stores.

The data cache is not required to synchronize outstanding operations before responding to a dcbq request
from the core, which means that the data cache tag and contents may change after the dcbq is executed.
Programs using dcbq should always do so with interrupts disabled, and always issue a sync instruction
prior to using dcbq to guarantee that the data cache contents are stable.

To invalidate the entire data cache a program can iterate over all valid query addresses and perform a
sequence similar to the following, after first issuing a sync instruction to guarantee that the contents of the
data cache are stable:

. . . # Compute next QA into R3
dcbq R4, R0, R3 # Load query result into R4
bb0wi R4, 31, 1f # Ignore invalid lines
dcbi R0, R4 # Invalidate the block

1:

To copy the contents of a data cache block to another location (for example as a debugging procedure) a
sequence like the following could be used. The example assumes a 32-byte cache line.

. . . # QA is in R3, target address in R4
dcbq R5, R0, R3 # Load query result into R5
bb0wi R5, 31, 1f # Ignore invalid lines
clrrwi R3, R5, 5 # Compute cache block base address into R3
subi R3, R3, 8 # Prepare to index by 8 bytes

Copy 4 * 8 bytes
lvdu D28, R3, 8
stvdu D28, R4, 8
lvdu D28, R3, 8
stvdu D28, R4, 8
lvdu D28, R3, 8
stvdu D28, R4, 8
lvdu D28, R3, 8
stvdu D28, R4, 8

1: .

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 168 of 288

9.4.33 dcbt

Data Cache Block Touch

dcbt RA, RB

0 5 6 10 11 15 16 20 21 31

31 RA RB 278

EA ← (RA | 0) + (RB)
DCBT(EA)

An EA is formed by adding an index to the base address in register RA. The index is the contents of
register RB. The base address is 0 if the RA field is 0 and is the contents of RA otherwise.

If the data block containing the byte addressed by the EA is not in the data cache and the EA is marked as
cacheable, the block is read from main storage into the data cache. If the data block at the EA is in the data
cache, or if the EA is marked as non-cacheable, no operation is performed.

Note that the dcbt instruction may complete before the data is partially or fully loaded into the data cache.
Execution of a dcbt instruction may cause a modified cache block to be written back to storage in order to
make room for the new block.

Restrictions
The registers RA and RB must be defined in the PPE 42 core architecture, otherwise an illegal instruction
exception occurs.

Registers Altered
• None

Exceptions and Synchronization
The storage subsystem signals a data storage exception if a load of the EA would signal a data storage
exception.

This instruction is considered a “load” with respect to DACR debug exceptions.

PPE 42 allows the storage subsystem to include the completion of cache line fills hinted by dcbt in the
criteria for completion of the sync instruction. The precise behavior of dcbt with respect to exceptions and
synchronization will be documented with each instantiation of the PPE 42 core.

Architecture Note
The dbct instruction is part of the Power ISA Book II specification. The PPE 42 implementation of dbct
differs from the Power ISA specification in several ways, including synchronization and lack of support for
the hint bits (instruction bits 6:10), which may affect the portability of programs using this instruction.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 169 of 288

9.4.34 dcbz

Data Cache Block Zero

dcbz RA, RB

0 5 6 10 11 15 16 20 21 31

31 RA RB 1014

EA ← (RA | 0) + (RB)
DCBZ(EA)

An EA is formed by adding an index to the base address in register RA. The index is the contents of
register RB. The base address is 0 if the RA field is 0 and is the contents of RA otherwise.

If the data block containing the byte addressed by the EA is in the data cache and the EA is marked as
cacheable, the data in the cache block is set to 0.

If the data block at the EA is not in the data cache and the EA is marked as cacheable, a cache block is
established and set to 0. Note that nothing is read from main storage, as described in the programming
note. Execution of a dcbz instruction may cause a modified cache block to be written back to storage in
order to make room for the new block.

If the storage subsystem does not signal an alignment exception when presented with a dcbz request for a
non-cacheable EA, then the storage subsystem must emulate the instruction by setting all bytes in the
putative cache block containing the byte addressed by EA to 0. Otherwise the alignment exception handler
may emulate the operation if required.

Restrictions
The registers RA and RB must be defined in the PPE 42 core architecture, otherwise an illegal instruction
exception occurs.

Registers Altered
• None

Exceptions
An alignment exception is signaled if the EA is non-cacheable and the storage subsystem does not emulate
the operation.

A data storage exception is signaled if a store to the EA would signal a data storage exception.

This instruction is considered a “store” with respect to DACR debug exceptions.

Architecture Note
The dbcz instruction is part of the Power ISA Book II specification.

Programming Notes
Because the dcbz instruction can establish an address in the data cache without copying the contents of
that address from main storage, the address established might be invalid with respect to the storage
subsystem. A subsequent operation can cause the cached data at the invalid address to be copied back to
main storage, for example, to make room for a new cache block; a machine check exception can occur
under these circumstances.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 170 of 288

9.4.35 eqv

Equivalent

eqv RA, RS, RB Rc = '0'
eqv. RA, RS, RB Rc = '1'

0 5 6 10 11 15 16 20 21 30 31

31 RS RA RB 284 Rc

(RA) ← ¬((RS) (RB))⊕

The contents of register RS are XORed with the contents of register RB. The complemented result is
placed into register RA.

Restrictions
The registers RS, RA and RB must be defined in the PPE 42 core architecture, otherwise an illegal
instruction exception occurs.

Registers Altered
• RA

• CR[CR0]LT, GT, EQ, SO if Rc contains a ‘1’

Architecture Note
This instruction is part of the Power ISA User Instruction Set Architecture.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 171 of 288

9.4.36 extsb

Extend Sign Byte

extsb RA, RS Rc = '0'
extsb. RA, RS Rc = '1'

0 5 6 10 11 15 16 20 21 30 31

31 RS RA 954 Rc

s ← (RS)24

RA0:23 ← 24s
RA24:31 ← (RS)24:31

Bits 24:31 of register RS are copied to bits 24:31 of register RA, and bits 0:23 of RA are filled with a copy of
bit 24 of RS.

Restrictions
The registers RS and RA must be defined in the PPE 42 core architecture, otherwise an illegal instruction
exception occurs.

Registers Altered
• RS

• CR[CR0]LT, GT, EQ, SO if Rc contains a ‘1’

Architecture Note
This instruction is part of the Power ISA User Instruction Set Architecture.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 172 of 288

9.4.37 extsh

Extend Sign Halfword

extsh RA, RS Rc = '0'
extsh. RA, RS Rc = '1'

0 5 6 10 11 15 16 20 21 30 31

31 RS RA 922 Rc

s ← (RS)16

RA0:15 ← 16s
RA16:31 ← (RS)16:31

Bits 16:31 of register RS are copied to bits 16:31 of register RA, and bits 0:15 of RA are filled with a copy of
bit 16 of RS.

Restrictions
The registers RS and RA must be defined in the PPE 42 core architecture, otherwise an illegal instruction
exception occurs.

Registers Altered
• RS

• CR[CR0]LT, GT, EQ, SO if Rc contains a ‘1’

Architecture Note
This instruction is part of the Power ISA User Instruction Set Architecture.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 173 of 288

9.4.38 lbz

Load Byte and Zero

lbz RT, D(RA)

0 5 6 10 11 15 16 31

34 RT RA D

EA ← (RA | 0) + EXTS(D)
(RT) ← 240 || MS(EA, 1)

An EA is formed by adding a displacement to a base address. The displacement is obtained by sign-
extending the 16-bit D field to 32 bits. The base address is 0 if the RA field is 0 and is the contents of
register RA otherwise.

The byte at the EA is loaded into RT24:31. RT0:23 are set to 0.

Restrictions
The registers RT and RA must be defined in the PPE 42 core architecture, otherwise an illegal instruction
exception occurs.

Registers Altered
• RT

Architecture Note
This instruction is part of the Power ISA User Instruction Set Architecture.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 174 of 288

9.4.39 lbzu

Load Byte and Zero with Update

lbzu RT, D(RA)

0 5 6 10 11 15 16 31

35 RT RA D

EA ← (RA) + EXTS(D)
(RA) ← EA
(RT) ← 240 || MS(EA, 1)

An EA is formed by adding a displacement to the base address in register RA. The displacement is
obtained by sign-extending the 16-bit D field to 32 bits. The EA is placed into register RA.

The byte at the EA is loaded into RT24:31. RT0:23 are set to 0.

Restrictions
The registers RT and RA must be defined in the PPE 42 core architecture and the instruction form must be
valid (see below), otherwise an illegal instruction exception occurs.

Registers Altered
• RT

• RA

Invalid Instruction Forms
• RA = RT

• RA = 0

Architecture Note
This instruction is part of the Power ISA User Instruction Set Architecture.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 175 of 288

9.4.40 lbzx

Load Byte and Zero Indexed

lbzx RT, RA, RB

0 5 6 10 11 15 16 20 21 31

31 RT RA RB 87

EA ← (RA | 0) + (RB)
(RT) ← 240 || MS(EA, 1)

An EA is formed by adding an index to the base address in register RA. The index is the contents of register RB.
The base address is 0 if the RA field is 0 and is the contents of RA otherwise.

The byte at the EA is loaded into RT24:31. RT0:23 are set to 0.

Restrictions
The registers RT, RA and RB must be defined in the PPE 42 core architecture, otherwise an illegal
instruction exception occurs.

Registers Altered
• RT

Architecture Note
This instruction is part of the Power ISA User Instruction Set Architecture.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 176 of 288

9.4.41 lcxu

Load stack Context with Update

lcxu RT, DD(RA)

0 5 6 10 11 15 16 28 29 30 31

58 RT RA DD 1 3

EA ← (RA) + EXTS(DD || 30)
(EDR) ← EA

DW(1..10) = VDR30, VDR28, SRR0 || SRR1, XER || CTR, VDR(9,7,5,3,0), CR || SPRG0
i ← 1
do while i ≤ 10
 (DW(i)) ← MS(EA - (i || 30), 8)
 i ← i + 1

(LR) ← MS(EA + 4, 4)
(RA) ← EA

An EA is formed by adding a displacement to the base address in register RA. The 32-bit displacement is
obtained by sign-extending the 13-bit DD field to 32 bits after concatenating 3 0-bits on its right.

The contents of ten doublewords are loaded from consecutively descending memory locations starting at
(EA - 8) into the following series of registers: VDR30, VDR28, (SRR0 and SRR1), (XER and CTR), VDR
registers (9,7,5,3,0), and (CR and SPRG0).

The word at (EA + 4) is placed into the Link Register. The EA is then placed into register RA.

Restrictions
The registers RT and RA must be the same and defined in the PPE 42 core architecture, the displacement
must be a positive number no greater than 32 kilobytes and must specify at least 1 doubleword, and the
instruction form must be valid (see below), otherwise an illegal instruction exception occurs.

Registers Altered
• RA

• EDR

Invalid Instruction Forms
• RA = 0

• RT ≠ RA

• (DD0 = '1') ∨ (DD1:12 < x'00B')

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 177 of 288

Exceptions
An alignment exception is signaled if the address in register RA is not doubleword-aligned, regardless if an
unaligned operation is supported by the memory subsystem.

Synchronous exceptions caused by the execution of this instruction or a previously executed imprecise
store must suppress update of RT and LR. The EDR reflects the address of the word or doubleword being
accessed when the memory subsystem raised this exception. Only the GPRs and SPRs whose values had
been successfully read from memory before this exception was signaled are updated.

Like other PPE 42 instructions, asynchronous exceptions that occur during the execution of this instruction
are held pending until all registers altered by this instruction have been updated.

Architecture Notes
This instruction is implemented by PPE 42X, is specific to the PPE architecture, and is not part of the
original PPE 42 Instruction Set. This instruction is a modified DS-Form, where DS is defined as DD || 1.
The similar lsku instruction provides a subset of this instruction's function.

The EDR is used as a “scratch pad” to store the new Stack Pointer address during execution of this
instruction and will be overwritten if this instruction experiences a precise or imprecise synchronous
exception.

Unlike other load with update forms, RT is not updated from memory. Update of the register specified by
RA is suppressed when its VDR doubleword is read from memory, such that the Stack Pointer is not
modified if a synchronous exception occurs during execution of this instruction.

Programming Note
Although the DD field specifies the number of doublewords, assemblers should instead support the
specification of a byte offset for programming consistency with other instruction forms, discarding the three
rightmost bits of the offset when forming the DD field of the assembled instruction.

Usage Notes
This instruction is intended to be used to pop the a subset of the PPE's GPR and SPR context from a stack
in memory, in a format compatible with the PowerPC EABI used for the call stack, with a single instruction
and to be used in concert with the corresponding stcxu instruction. To ensure the stack pointer update is
an atomic operation that cannot be interrupted, a load-with-update instruction form is used. Note that this
instruction does not check for consistency that the Back Pointer word located in memory at EA, written by a
previous stack push operation, is equal to the updated stack pointer that will be written into RA, since the
Back Pointer is included in the EABI only for stack debug.

Registers RT and RA must point to the same GPR, which contains the current stack pointer, and the
updated stack pointer is written into register RT. The call stack pointer is typically kept in GPR(1) as per
the EABI. For context switches due to interrupts, the programmer may choose to share the call stack by
using GPR(1) or to create a separate machine stack using a different GPR. In practice, RA will be less
than 14 to honor the non-volatile definition in the EABI.

The immediate field DD contains the number of doublewords of the stack frame being read and must be a
positive number specifying no more than 32 kilobytes and at least 11 doublewords, one of which contains
the stack frame header. The full context data contains all PPE-defined GPRs except R2 and R13, and a
subset of the PPE-defined SPRs: CR, SPRG0, XER, CTR, SRR0, and SRR1. If DD specifies more than 11
doublewords, previous instructions should have already restored additional context from the extra room
that had been left in the stack frame.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 178 of 288

The lcxu instruction may be emulated by the following sequence of instructions, where the stack pointer is
not updated until the end, in case an interrupt occurs during the sequence:

lwz Ry,0(RA) # Read Back chain
lwz Rx,4(Ry) # Read Link register
mtlr Rx # Restore Link register
lvd CONTEXT[0..9],-8..80(Ry) # Restore 10 doublewords of context
mr RT, Ry # Move Stack Pointer

The PPE context is read (“popped”) off the stack as follows:

Stack Address Size (bytes) Content Read by lcxu

Stack
Data (if any)

X X X

Stack
Frame Header

SP+4 4 Read into LR

New Stack Pointer SP = (RA) + D
(written into RA)

4 [ignore previous back pointer]

Previous Stack
Frame Data

SP-8 8
Read into R31 (if RA !=31)
Read into R30 (if RA !=30)

SP-16 8
Read into R29 (if RA !=29)
Read into R28 (if RA !=28)

SP-24 8
Read into SRR1
Read into SRR0

SP-32 8
Read into CTR
Read into XER

SP-40 8
Read into R10 (if RA !=10)
Read into R9 (if RA !=9)

SP-48 8
Read into R8 (if RA !=8)
Read into R7 (if RA !=7)

SP-56 8
Read into R6 (if RA !=6)
Read into R5 (if RA !=5)

SP-64 8
Read into R4 (if RA !=4)
Read into R3 (if RA !=3)

SP-72 8
Read into R1 (if RA !=1)
Read into R0 (if RA !=0)

SP-80 8
Read into SPRG0
Read into CR

optional, if D>88
SP-88
...
(RA)+8

D-88 [ignore Variable Context]

Previous Stack
Frame Header

(RA)+4 4 [ignore next LR placeholder]

Previous Stack Pointer = (RA) 4 [ignore Back Pointer]

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 179 of 288

9.4.42 lhz

Load Halfword and Zero

lhz RT, D(RA)

0 5 6 10 11 15 16 31

40 RT RA D

EA ← (RA | 0) + EXTS(D)
(RT) ← 160 || MS(EA, 2)

An EA is formed by adding a displacement to a base address. The displacement is obtained by sign-
extending the 16-bit D field to 32 bits. The base address is 0 if the RA field is 0 and is the contents of
register RA otherwise.

The halfword at the EA is loaded into RT16:31. RT0:15 are set to 0.

Restrictions
The registers RT and RA must be defined in the PPE 42 core architecture, otherwise an illegal instruction
exception occurs.

Registers Altered
• RT

Architecture Note
This instruction is part of the Power ISA User Instruction Set Architecture.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 180 of 288

9.4.43 lhzu

Load Halfword and Zero with Update

lhzu RT, D(RA)

0 5 6 10 11 15 16 31

41 RT RA D

EA ← (RA) + EXTS(D)
(RA) ← EA
(RT) ← 160 || MS(EA, 2)

An EA is formed by adding a displacement to the base address in register RA. The displacement is
obtained by sign-extending the 16-bit D field to 32 bits. The EA is placed into register RA.

The halfword at the EA is loaded into RT16:31. RT0:15 are set to 0.

Restrictions
The registers RT and RA must be defined in the PPE 42 core architecture and the instruction form must be
valid (see below), otherwise an illegal instruction exception occurs.

Registers Altered
• RT

• RA

Invalid Instruction Forms
• RA = RT

• RA = 0

Architecture Note
This instruction is part of the Power ISA User Instruction Set Architecture.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 181 of 288

9.4.44 lhzx

Load Halfword and Zero Indexed

lhzx RT, RA, RB

0 5 6 10 11 15 16 20 21 31

31 RT RA RB 279

EA ← (RA | 0) + (RB)
(RT) ← 160 || MS(EA, 2)

An EA is formed by adding an index to the base address in register RA. The index is the contents of
register RB. The base address is 0 if the RA field is 0 and is the contents of RA otherwise.

The halfword at the EA is loaded into RT16:31. RT0:15 are set to 0.

Restrictions
The registers RT, RA and RB must be defined in the PPE 42 core architecture, otherwise an illegal
instruction exception occurs.

Registers Altered
• RT

Architecture Note
This instruction is part of the Power ISA User Instruction Set Architecture.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 182 of 288

9.4.45 lsku

Load Stack frame with Update

lsku RT, DD(RA)

0 5 6 10 11 15 16 28 29 30 31

58 RT RA DD 0 3

EA ← (RA) + EXTS(DD || 30)
(EDR) ← EA

n ← DD-1
if n > 0 then
 (VDR30) ← MS(EA - 8, 8)
if n > 1 then
 (VDR28) ← MS(EA -16, 8)

(LR) ← MS(EA + 4, 4)
(RA) ← EA

An EA is formed by adding a displacement to the base address in register RA. The 32-bit displacement is
obtained by sign-extending the 13-bit DD field to 32 bits after concatenating 3 0-bits on its right.

The number of doublewords to read n is determined by the value of in the DD field minus 1.
If n is greater than zero, the doubleword at (EA – 8) is loaded into VDR30.
If n is greater than one, the doubleword at (EA -16) is loaded into VDR28.

The word at (EA + 4) is placed into the Link Register. The EA is then placed into register RA.

Restrictions
The registers RT and RA must be the same and defined in the PPE 42 core architecture, the displacement
must be a positive number no greater than 32 kilobytes and must specify at least 1 doubleword, and the
instruction form must be valid (see below), otherwise an illegal instruction exception occurs.

Registers Altered
• RA

• EDR

Invalid Instruction Forms
• RA = 0

• RT ≠ RA

• (DD0 = '1') ∨ (DD1:12 = 120)

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 183 of 288

Exceptions
An alignment exception is signaled if the address in register RA is not doubleword-aligned, regardless if an
unaligned operation is supported by the memory subsystem.

Synchronous exceptions caused by the execution of this instruction or a previously executed imprecise
store must suppress update of RT and LR. The EDR reflects the address of the word or doubleword being
accessed when the memory subsystem raised this exception. Only the GPRs and SPRs whose values had
been successfully read from memory before this exception was signaled are updated.

Like other PPE 42 instructions, asynchronous exceptions that occur during the execution of this instruction
are held pending all registers altered by this instruction have been updated.

Architecture Notes
This instruction is implemented by PPE 42X, is specific to the PPE architecture, and is not part of the
original PPE 42 Instruction Set. This instruction is a modified DS-Form, where DS is defined as DD || 0.
The similar lcxu instruction provides a superset of this instruction's function.

The EDR is used as a “scratch pad” to store the new Stack Pointer address during execution of this
instruction and will be overwritten if this instruction experiences a precise or imprecise synchronous
exception.

Unlike other load with update forms, RT is not updated from memory. Update of the register specified by
RA from memory is suppressed, such that the Stack Pointer is not modified if an intermediate exception
occurs during execution of this instruction.

Programming Note
Although the DD field specifies the number of doublewords, assemblers should instead support the
specification of a byte offset for programming consistency with other instruction forms, discarding the three
rightmost bits of the offset when forming the DD field of the assembled instruction.

Usage Notes
This instruction is intended to be used to pop the a subset of the PPE's GPR and SPR context from a stack
in memory, in a format compatible with the PowerPC EABI used for the call stack, with a single instruction
and to be used in concert with the corresponding stsku instruction. To ensure the stack pointer update is
an atomic operation that cannot be interrupted, a load-with-update instruction form is used. Note that this
instruction does not check for consistency that the Back Pointer word located in memory at EA, written by a
previous stack push operation, is equal to the updated stack pointer that will be written into RA, since the
Back Pointer is included in the EABI only for stack debug.

Registers RT and RA must point to the same GPR, which contains the current stack pointer, and the
updated stack pointer is written into register RT. The call stack pointer is typically kept in GPR(1) as per
the EABI. For context switches due to interrupts, the programmer may choose to share the call stack by
using GPR(1) or to create a separate machine stack using a different GPR. In practice, RA will be less
than 14 to honor the non-volatile definition in the EABI.

The immediate field DD contains the number of doublewords of the stack frame being read and must be a
positive number specifying no more than 32 kilobytes and at least 1 doubleword, which is the stack frame
header. The full context data contains all PPE-defined GPRs except R2 and R13, and a subset of the
PPE-defined SPRs: CR, SPRG0, XER, CTR, SRR0, and SRR1. If DD specifies more than 3 doublewords,
previous instructions should have already restored additional context from the extra room that had been left
in the stack frame.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 184 of 288

The lsku instruction may be emulated by the following sequence of instructions, where the stack pointer is
not updated until the end, in case an interrupt occurs during the sequence:

lwz Ry,0(RA) # Read Back chain
lwz Rx,4(Ry) # Read Link register
mtlr Rx # Restore Link register
lvd CONTEXT[0..1],-8..16(Ry) # Restore 0,1,2 doublewords of context
mr RT, Ry # Move Stack Pointer

The context is read (“popped”) off the stack as follows:

Stack Address Size (bytes) Content Read by lsku

Stack
Data (if any)

X X X

Stack
Frame Header

SP+4 4 Read into LR

New Stack Pointer SP = (RA) + D
(written into RA)

4 [ignore previous back pointer]

Previous Stack
Frame Data

 SP-8 (if D>8) 8
Read into R31 (if RA !=31)
Read into R30 (if RA !=30)

 SP-16 (if D>16) 8
Read into R29 (if RA !=29)
Read into R28 (if RA !=28)

optional, if D>24
SP-24
...
(RA)+8

D-24 [ignore Variable Context]

Previous Stack
Frame Header

(RA)+4 4 [ignore next LR placeholder]

Previous Stack Pointer = (RA) 4 [ignore Back Pointer]

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 185 of 288

9.4.46 lvd

Load Virtual Doubleword

lvd DT, D(RA)

0 5 6 10 11 15 16 31

5 DT RA D

EA ← (RA | 0) + EXTS(D)
(DT) ← MS(EA, 8)

An EA is formed by adding a displacement to a base address. The displacement is obtained by sign-
extending the 16-bit D field to 32 bits. The base address is 0 if the RA field is 0 and is the contents of
register RA otherwise.

The doubleword at the EA is placed into virtual doubleword register DT.

Restrictions
The registers DT and RA must be defined in the PPE 42 core architecture, and DT must specify a valid
virtual doubleword register, otherwise an illegal instruction exception occurs.

Registers Altered
• DT

Architecture Note
This instruction is specific to the PPE 42 architecture.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 186 of 288

9.4.47 lvdu

Load Virtual Doubleword with Update

lvdu DT, D(RA)

0 5 6 10 11 15 16 31

9 DT RA D

EA ← (RA) + EXTS(D)
(RA) ← EA
(DT) ← MS(EA, 8)

An EA is formed by adding a displacement to the base address in register RA. The displacement is
obtained by sign-extending the 16-bit D field to 32 bits. The EA is placed into register RA.

The doubleword at the EA is placed into the virtual doubleword register DT.

Restrictions
The registers DT and RA must be defined in the PPE 42 core architecture, DT must specify a valid virtual
doubleword register and the instruction form must be valid (see below), otherwise an illegal instruction
exception occurs.

Registers Altered
• DT

• RA

Invalid Instruction Forms
• RA = DT

• RA = (DT + 1) % 32

• RA = 0

Architecture Note
This instruction is specific to the PPE 42 architecture.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 187 of 288

9.4.48 lvdx

Load Virtual Doubleword Indexed

lvdx DT, RA, RB

0 5 6 10 11 15 16 20 21 31

31 DT RA RB 17

EA ← (RA | 0) + (RB)
(DT) ← MS(EA, 8)

An EA is formed by adding an index to the base address in register RA. The index is the contents of register RB.
The base address is 0 if the RA field is 0 and is the contents of RA otherwise.

The doubleword at the EA is placed into virtual doubleword register DT.

Restrictions
The registers DT, RA and RB must be defined in the PPE 42 core architecture, and DT must specify a valid
virtual doubleword register, otherwise an illegal instruction exception occurs.

Registers Altered
• DT

Architecture Note
This instruction is specific to the PPE 42 architecture.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 188 of 288

9.4.49 lwz

Load Word and Zero

lwz RT, D(RA)

0 5 6 10 11 15 16 31

32 RT RA D

EA ← (RA | 0) + EXTS(D)
(RT) ← MS(EA, 4)

An EA is formed by adding a displacement to a base address. The displacement is obtained by sign-
extending the 16-bit D field to 32 bits. The base address is 0 if the RA field is 0 and is the contents of
register RA otherwise.

The word at the EA is placed into register RT.

Restrictions
The registers RT and RA must be defined in the PPE 42 core architecture, otherwise an illegal instruction
exception occurs.

Registers Altered
• RT

Architecture Note
This instruction is part of the Power ISA User Instruction Set Architecture.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 189 of 288

9.4.50 lwzu

Load Word and Zero with Update

lwzu RT, D(RA)

0 5 6 10 11 15 16 31

33 RT RA D

EA ← (RA) + EXTS(D)
(RA) ← EA
(RT) ← MS(EA, 4)

An EA is formed by adding a displacement to the base address in register RA. The displacement is
obtained by sign-extending the 16-bit D field to 32 bits. The EA is placed into register RA.

The word at the EA is placed into register RT.

Restrictions
The registers RT and RA must be defined in the PPE 42 core architecture and the instruction form must be
valid (see below), otherwise an illegal instruction exception occurs.

Registers Altered
• RT

• RA

Invalid Instruction Forms
• RA = RT

• RA = 0

Architecture Note
This instruction is part of the Power ISA User Instruction Set Architecture.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 190 of 288

9.4.51 lwzx

Load Word and Zero Indexed

lwzx RT, RA, RB

0 5 6 10 11 15 16 20 21 31

31 RT RA RB 23

EA ← (RA | 0) + (RB)
(RT) ← MS(EA, 4)

An EA is formed by adding an index to the base address in register RA. The index is the contents of register RB.
The base address is 0 if the RA field is 0 and is the contents of RA otherwise.

The word at the EA is placed into register RT.

Restrictions
The registers RT, RA and RB must be defined in the PPE 42 core architecture, otherwise an illegal
instruction exception occurs.

Registers Altered
• RT

Architecture Note
This instruction is part of the Power ISA User Instruction Set Architecture.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 191 of 288

9.4.52 mfcr

Move From Condition Register

mfcr RT

0 5 6 10 11 12 19 20 21 30 31

31 RT 0 19

(RT)0:3 ← CR[CR0]
(RT)4:31 ← 280

The contents of CR[CR0] are copied to the four high-order bits of RS. The twenty-eight low-order bits of RT
are cleared.

Restrictions
The register RT must be defined in the PPE 42 core architecture, otherwise an illegal instruction exception
occurs. Also see the Architecture Note below.

Registers Altered
• RT

Architecture Note
This instruction is part of the Power ISA User Instruction Set Architecture. Since PPE 42 only defines
CR[CR0], the other Power ISA CR fields are treated by this instruction as if they contained 0.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 192 of 288

9.4.53 mfmsr

Move from Machine State Register

mfmsr RT

0 5 6 10 11 20 21 30 31

31 RT 83

(RT) ← (MSR)

The contents of the MSR are placed into RT.

Restrictions
The register RT must be defined in the PPE 42 core architecture, otherwise an illegal instruction exception
occurs.

Registers Altered
• RT

Architecture Note
The mfmsr instruction is defined in the Power ISA Book III-E specification.

The mfmsr instruction is context synchronizing under normal conditions, but is not context synchronizing
when rammed. For more information on ramming and single-stepping semantics see section 7, Debugging.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 193 of 288

9.4.54 mfspr

Move From Special Purpose Register

mfspr RT, SPRN

0 5 6 10 11 20 21 30 31

31 RT SPRF 339

SPRN ← SPRF5:9 || SPRF0:4

(RT) ← (SPR(SPRN))

The contents of the SPR specified by the SPRF field are placed into register RT. See section 8.6, Special
Purpose Registers for a listing of SPR mnemonics and corresponding SPRN values.

Restrictions
The register RT must be defined in the PPE 42 core architecture, and the SPRN (SPRF) field must specify
a valid SPR number, otherwise an illegal instruction exception occurs.

Registers Altered
• RT

Programming Note
The SPRN value specified in the assembler language coding of the mfspr instruction refers to an SPR
number. The assembler handles the unusual register number encoding to generate the SPRF field.

Although MSR and CR are considered special-purpose registers, they do not have SPR numbers and can
not be read using mfspr. To read the MSR use mfmsr. To read the CR[CR0] field use mfcr.

Architecture Note
This instruction is part of the Power ISA User Instruction Set Architecture. Unlike the Power ISA, PPE 42
does not implement processor-mode based access restrictions on SPRs, although PPE 42 does implement
a small set of SPRs that are read-only to all programs.

Extended Mnemonics
Either the assembler or an assembler programming header file will typically define extended mnemonics or
macros respectively to encode mfspr for every valid PPE 42 SPR. The expected extended mnemonics
and/or macro names are listed in the table below.

Table 1.88: Extended Mnemonics for mfspr

mfctr
mfdacr
mfdbcr
mfdec
mfedr
mfisr
mfivpr
mflr

mfpir
mfpvr
mfsprg0
mfsrr0
mfsrr1
mftcr
mftsr
mfxer

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 194 of 288

9.4.55 mtcr0

Move to CR[CR0]

mtcr0 RS

0 5 6 10 11 12 19 20 21 30 31

31 RS 0 128 144

CR[CR0] ← (RS)0:3

The four high-order bits of RS are copied to CR[CR0].

Restrictions
The register RS must be defined in the PPE 42 core architecture, otherwise an illegal instruction exception
occurs. Also see the Architecture Note below.

Registers Altered
• CR[CR0]

Architecture Note
mtcr0 is actually an assembler extended mnemonic for the more general mtcrf instruction of the Power
ISA User Instruction Set Architecture. PPE 42 only supports updating CR[CR0] as specified by instruction
bits 12:19 = 128. Any other form of the mtcrf instruction will cause an illegal instruction exception.

Although mtocrf (bit 11 = '1') is the new preferred form of the legacy mtcrf instruction, PPE 42 implements
the legacy form for compatibility with older IBM embedded processor architectures. Note that CR
manipulation code that executes correctly on PPE 42 will also execute correctly on a Power ISA platform
since no legal PPE 42 instruction can modify a CR field not defined by PPE 42.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 195 of 288

9.4.56 mtmsr

Move to Machine State Register

mtmsr RS

0 5 6 10 11 20 21 30 31

31 RS 146

(MSR) ← (RS)

If the processor is not halted then
If a pending interrupt is enabled then

NIA ← Address of highest priority interrupt
(SRR0)0:29 ← ((CIA) + 4)0:29

(SRR1) ← (MSR)
(MSR) ← (MSR) modified by the taking of the interrupt

else if MSR[WE] = '1' then
WAIT()

The contents of SRR1 are placed into the MSR. If the processor is halted, that is, if the mtmsr instruction is
being single-stepped or rammed, then no other state change occurs (apart from the normal update of the
IAR during single-stepping). The following description covers the case that the processor is not halted.

If the new MSR value enables one or more pending interrupts, then the highest priority interrupt is taken.
The value placed into SRR0 by the interrupt processing mechanism is the address of the instruction that
would have been executed next had the interrupt not occurred (that is, the address of the instruction
following mtmsr), the MSR is placed into SRR1, and the MSR is then modified by the taking of the interrupt
as described in section 4, Interrupts and Exceptions.

Otherwise, if the new MSR value includes MSR[WE] = '1', then the processor enters the WAIT state. The
WAIT state is described in section 2.11.5.2, WAIT mode.

If the new MSR value does not enable any pending interrupts or cause the WAIT state to be entered, then
execution continues under control of the new MSR value.

Restrictions
The register RS must be defined in the PPE 42 core architecture, otherwise an illegal instruction exception
occurs.

Registers Altered
• MSR

Architecture Note
The mtmsr instruction is defined in the Power ISA Book III-E specification.

The mtmsr instruction is context synchronizing under normal conditions, but is not context synchronizing
when rammed. For more information on ramming and single-stepping semantics see section 7, Debugging.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 196 of 288

9.4.57 mtspr

Move To Special Purpose Register

mtspr SPRN, RS

0 5 6 10 11 20 21 30 31

31 RS SPRF 467

SPRN ← SPRF5:9 || SPRF0:4

(SPR(SPRN)) ← (RS)

The contents of register RS are placed into the SPR specified by the SPRF field. See section 8.6, Special
Purpose Registers for a listing of SPR mnemonics and corresponding SPRN values.

Restrictions
The register RS must be defined in the PPE 42 core architecture, and the SPRN (SPRF) field must specify
a valid, writable SPR number otherwise an illegal instruction exception occurs. The read-only SPRs are the
IVPR, PIR and PVR.

Registers Altered
• RT

Programming Note
The SPRN value specified in the assembler language coding of the mtspr instruction refers to an SPR
number. The assembler handles the unusual register number encoding to generate the SPRF field.

Although MSR and CR are considered special-purpose registers, they do not have SPR numbers and can
not be set using mtspr. To set the MSR use mtmsr. To set the CR[CR0] field use mtcr0.

Architecture Note
This instruction is part of the Power ISA User Instruction Set Architecture. Unlike the Power ISA, PPE 42
does not implement processor-mode based access restrictions on SPRs, although PPE 42 does implement
a small set of SPRs that are read-only to all programs.

The PPE 42 architecture guarantees that mtspr for all SPRs is fully executed prior to fetching the
subsequent instruction. This means that if the effect of mtspr is to cause or unmask an interrupt, the next
instruction executed after the mtspr will be the instruction at the associated interrupt vector address.

Extended Mnemonics
Either the assembler or an assembler programming header file will typically define extended mnemonics or
macros respectively to encode mtspr for every valid, writable PPE 42 SPR. The expected extended
mnemonics and/or macro names are listed in the table below.

Table 1.89: Extended Mnemonics for mtspr

mtctr
mtdacr
mtdbcr

 mtdec
 mtedr
 mtisr

mtlr
mtsprg0
mtsrr0
mtsrr1

mttcr
mttsr
mtxer

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 197 of 288

9.4.58 mullhw

Multiply Low Halfword to Word Signed

mullhw RT, RA, RB Rc = '0'
mullhw. RT, RA, RB Rc = '1'

0 5 6 10 11 15 16 20 21 30 31

4 RT RA RB 424 Rc

(RT)0:31 ← (RA)16:31 x (RB)16:31 signed

The low-order halfword of RA is multiplied by the low-order halfword of RB. The resulting signed product
replaces the contents of RT.

Restrictions
The registers RT, RA and RB must be defined in the PPE 42 core architecture, otherwise an illegal
instruction exception occurs.

Registers Altered
• RT

• CR[CR0]LT, GT, EQ, SO if Rc contains a ‘1’

Architecture Note
This instruction is part of the Power ISA User Instruction Set Architecture, Legacy Integer Multiply-
Accumulate Instructions, and as such will not be portable to every Power ISA system.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 198 of 288

9.4.59 mullhwu

Multiply Low Halfword to Word Unsigned

mullhwu RT, RA, RB Rc = '0'
mullhwu. RT, RA, RB Rc = '1'

0 5 6 10 11 15 16 20 21 30 31

4 RT RA RB 392 Rc

(RT)0:31 ← (RA)16:31 x (RB)16:31 unsigned

The low-order halfword of RA is multiplied by the low-order halfword of RB. The resulting unsigned product
replaces the contents of RT.

Restrictions
The registers RT, RA and RB must be defined in the PPE 42 core architecture, otherwise an illegal
instruction exception occurs.

Registers Altered
• RT

• CR[CR0]LT, GT, EQ, SO if Rc contains a ‘1’

Architecture Note
This instruction is part of the Power ISA User Instruction Set Architecture, Legacy Integer Multiply-
Accumulate Instructions, and as such will not be portable to every Power ISA system.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 199 of 288

9.4.60 mulli

Multiply Low Immediate

mulli RT, RA, IM

0 5 6 10 11 15 16 31

7 RT RA IM

prod0:47 ← (RA) x EXTS(IM)
(RT) ← prod16:47

The 48-bit product of register RA and the sign-extended IM field is formed. Both register RA and the IM field
are interpreted as signed quantities. The least significant 32 bits of the product are placed into register RT.

Restrictions
The registers RT and RA must be defined in the PPE 42 core architecture, otherwise an illegal instruction
exception occurs.

Registers Altered
• RT

Programming Note
The least significant 32 bits of the product are correct, regardless of whether register RA and field IM are
interpreted as signed or unsigned numbers.

Architecture Notes
This instruction is part of the Power ISA User Instruction Set Architecture.

This instruction is implemented by PPE 42X and is not part of the original PPE 42 Instruction Set.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 200 of 288

9.4.61 mullw

Multiply Low Word

mullw RT, RA, RB OE = '0', Rc = '0'
mullw. RT, RA, RB OE = '0', Rc = '1'
mullwo RT, RA, RB OE = '1', Rc = '0'
mullwo. RT, RA, RB OE = '1', Rc = '1'

0 5 6 10 11 15 16 20 21 22 30 31

31 RT RA RB OE 235 Rc

prod0:63 ← (RA) x (RB) signed
(RT) ← prod32:63

The 64-bit signed product of register RA and register RB is formed. The least significant 32 bits of the result
is placed into register RT.

If the signed product cannot be represented in 32 bits and OE = 1, XER[SO, OV] are set to ‘1’.

Restrictions
The registers RT, RA and RB must be defined in the PPE 42 core architecture, otherwise an illegal
instruction exception occurs.

Registers Altered
• RT

• CR[CR0]LT, GT, EQ, SO if Rc contains a ‘1’

• XER[SO, OV] if OE contains a ‘1’

Programming Note
The least significant 32 bits of the product are correct, regardless of whether register RA and register RB
are interpreted as signed or unsigned numbers. The overflow indication is correct only if the operands are
regarded as signed numbers.

Architecture Notes
This instruction is part of the Power ISA User Instruction Set Architecture.

This instruction is implemented by PPE 42X and is not part of the original PPE 42 Instruction Set.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 201 of 288

9.4.62 nand

NAND

nand RA, RS, RB Rc = '0'
nand. RA, RS, RB Rc = '1'

0 5 6 10 11 15 16 20 21 30 31

31 RS RA RB 476 Rc

(RA) ← ¬((RS) (RB))∧

The contents of register RS are ANDed with the contents of register RB. The complement of the result is
placed into register RA.

Restrictions
The registers RS, RA and RB must be defined in the PPE 42 core architecture, otherwise an illegal
instruction exception occurs.

Registers Altered
• RA

• CR[CR0]LT, GT, EQ, SO if Rc contains a ‘1’

Architecture Note
This instruction is part of the Power ISA User Instruction Set Architecture.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 202 of 288

9.4.63 neg

Negate

neg RT, RA OE = '0', Rc = '0'
neg. RT, RA OE = '0', Rc = '1'
nego RT, RA OE = '1', Rc = '0'
nego. RT, RA OE = '1', Rc = '1'

0 5 6 10 11 15 16 20 21 22 30 31

31 RT RA OE 104 Rc

(RT) ← ¬(RA) + 1

The sum of the complement of the contents of register RA and 1 is placed into register RT.

Restrictions
The registers RT and RA must be defined in the PPE 42 core architecture, otherwise an illegal instruction
exception occurs.

Registers Altered
• RT

• CR[CR0]LT, GT, EQ, SO if Rc contains a ‘1’

• XER[SO, OV] if OE contains a ‘1’

Architecture Note
This instruction is part of the Power ISA User Instruction Set Architecture.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 203 of 288

9.4.64 nor

NOR

nor RA, RS, RB Rc = '0'
nor. RA, RS, RB Rc = '1'

0 5 6 10 11 15 16 20 21 30 31

31 RS RA RB 124 Rc

(RA) ← ¬((RS) (RB))∨

The contents of register RS are ORed with the contents of register RB. The complement of the result is
placed into register RA.

Restrictions
The registers RS, RA and RB must be defined in the PPE 42 core architecture, otherwise an illegal
instruction exception occurs.

Registers Altered
• RA

• CR[CR0]LT, GT, EQ, SO if Rc contains a ‘1’

Architecture Note
This instruction is part of the Power ISA User Instruction Set Architecture.

Extended Mnemonics
The not mnemonic copies the complement of register Ry to register Rx. This mnemonic can be coded with
a final “.” to cause the Rc bit to be set in the underlying instruction.

not Rx,Ry (equivalent to: nor Rx,Ry,Ry)

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 204 of 288

9.4.65 or

OR

or RA, RS, RB Rc = '0'
or. RA, RS, RB Rc = '1'

0 5 6 10 11 15 16 20 21 30 31

31 RS RA RB 444 Rc

(RA) ← (RS) (RB)∨

The contents of register RS are ORed with the contents of register RB. The result is placed into register
RA.

Restrictions
The registers RS, RA and RB must be defined in the PPE 42 core architecture, otherwise an illegal
instruction exception occurs.

Registers Altered
• RA

• CR[CR0]LT, GT, EQ, SO if Rc contains a ‘1’

Architecture Note
This instruction is part of the Power ISA User Instruction Set Architecture.

Extended Mnemonics
Several Power ISA instructions can be coded in a way such that they simply copy the contents of one
register to another. An extended mnemonic is provided to convey the idea that no computation is being
performed but merely data movement (from one register to another).

The mr mnemonic copies the contents of register Ry to register Rx. This mnemonic can be coded with a
final “.” to cause the Rc bit to be set in the underlying instruction.

mr Rx,Ry (equivalent to: or Rx,Ry,Ry)

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 205 of 288

9.4.66 orc

OR with Complement

orc RA, RS, RB Rc = '0'
orc. RA, RS, RB Rc = '1'

0 5 6 10 11 15 16 20 21 30 31

31 RS RA RB 412 Rc

(RA) ← (RS) ∨ ¬(RB)

The contents of register RS are ORed with the complement of the contents of register RB. The result is
placed into register RA.

Restrictions
The registers RS, RA and RB must be defined in the PPE 42 core architecture, otherwise an illegal
instruction exception occurs.

Registers Altered
• RA

• CR[CR0]LT, GT, EQ, SO if Rc contains a ‘1’

Architecture Note
This instruction is part of the Power ISA User Instruction Set Architecture.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 206 of 288

9.4.67 ori

OR Immediate

ori RA, RS, UI

0 5 6 10 11 15 16 31

24 RS RA UI

(RA) ← (RS) (∨ 160 || UI)

The UI field is extended to 32 bits by concatenating 16 0-bits on its left. The contents of register RS are
ORed with the extended UI field. The result is placed into register RA.

Restrictions
The registers RS and RA must be defined in the PPE 42 core architecture, otherwise an illegal instruction
exception occurs.

Registers Altered
• RA

Architecture Note
This instruction is part of the Power ISA User Instruction Set Architecture.

Extended Mnemonics
Many Power ISA instructions can be coded in a way such that, effectively, no operation is performed. An
extended mnemonic is provided for the preferred form of no-op, however the PPE 42 core does not
perform any run-time optimization related to no-ops.

nop (equivalent to: ori 0,0,0)

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 207 of 288

9.4.68 oris

OR Immediate Shifted

oris RA, RS, UI

0 5 6 10 11 15 16 31

25 RS RA UI

(RA) ← (RS) (UI || ∨ 160)

The UI field is extended to 32 bits by concatenating 16 0-bits on its right. The contents of register RS are
ORed with the extended UI field. The result is placed into register RA.

Restrictions
The registers RS and RA must be defined in the PPE 42 core architecture, otherwise an illegal instruction
exception occurs.

Registers Altered
• RA

Architecture Note
This instruction is part of the Power ISA User Instruction Set Architecture.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 208 of 288

9.4.69 rfi

Return from Interrupt

rfi

0 5 6 20 21 30 31

19 50

(IAR) ← (SRR0)0:29 || 20
(MSR) ← (SRR1)

If the processor is not halted then
If a pending interrupt is enabled then

NIA ← Address of highest priority interrupt
(SRR0)0:29 ← (IAR)0:29

(SRR1) ← (MSR)
(MSR) ← (MSR) modified by the taking of the interrupt

else if MSR[WE] = '1' then
WAIT()

else
NIA ← (IAR)

The rfi instruction is used to return from an interrupt, or as a means of simultaneously establishing a new
context and synchronizing on that new context.

The contents of SRR0 are placed into the IAR, and the contents of SRR1 are placed into the MSR. If the
processor is halted, that is, if the rfi instruction is being single-stepped or rammed, then no other state
change occurs (other than the normal update of the IAR during single-stepping). The following description
covers the case that the processor is not halted.

If the new MSR value enables one or more pending interrupts, then the highest priority interrupt is taken. In
this case the value placed into SRR0 by the interrupt processing mechanism is the address of the
instruction that would have been executed next had the interrupt not occurred, that is, the address in SRR0
is effectively unmodified. The MSR is placed into SRR1 and the MSR is then modified by the taking of the
interrupt as described in section 4, Interrupts and Exceptions.

Otherwise, if the new MSR value does not enable any pending exceptions but includes MSR[WE] = '1',
then the processor enters the WAIT state. The WAIT state is described in section 2.11.5.2, WAIT mode.

If the new MSR value does not enable any pending interrupts and includes MSR[WE] = '0', then the next
instruction is fetched, under control of the new MSR value, from the address contained in SRR0.

Registers Altered
• MSR

Architecture Note
The rfi instruction is defined in the Power ISA Book III-E specification.

The rfi instruction is context synchronizing under normal conditions, but is not context synchronizing when
rammed. For more information on ramming and single-stepping semantics see section 7, Debugging.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 209 of 288

9.4.70 rldicl

Rotate Left Doubleword Immediate then Clear Left

rldicl DA, DS, SH, MB Rc = '0'
rldicl. DA, DS, SH, MB Rc = '1'

0 5 6 10 11 15 16 20 21 26 27 30 31

30 DS DA sh0:4 mb 0 sh5 Rc

n ← sh5 || sh0:4

r ← ROTL64((DS), n)
b ← mb5 || mb0:4

m ← MASK(b, 63)
(DA) ← r m∧

The contents of register DS are rotated left by the number of bit positions specified in the SH field. A mask
is generated, having 1-bits starting at the bit position specified in the MB field and ending in bit position 63,
with 0-bits elsewhere. The rotated data is ANDed with the generated mask and the result is placed into
register DA.

Restrictions
The registers DS and DA must be defined in the PPE 42 core architecture, otherwise an illegal instruction
exception occurs.

Registers Altered
• DA

• CR[CR0]LT, GT, EQ, SO if Rc contains a ‘1’

Architecture Notes
This instruction is part of the 64-bit Power ISA User Instruction Set Architecture.

This instruction is implemented by PPE 42X and is not part of the original PPE 42 Instruction Set.

Extended Mnemonics
The extended mnemonics for rldicl can all be coded with an optional “.” to specify the recording form that
updates CR[CR0].

Table 1.90: Extended Mnemonics for rldicl

Mnemonic Equivalent Description

clrldi[.] DA, DS, n rldicl[.] DA, DS, 0, n Clear left doubleword immediate. (n < 64)

(DA)0:n-1← n0

(DA)n:64 ← (DS)n:64

extrdi[.] DA, DS, n, b rldicl[.] DA, DS, b+n, 64-n Extract and right justify doubleword immediate. (n > 0)
(DA)64-n:63 ← (DS)b:b+n-1

(DA)0:63-n ← 64-n0

srdi[.] DA, DS, n rldicl[.] DA, DS, 64-n, n Shift right doubleword immediate. (n < 64)
(DA)n:63 ← (DS)0:63-n

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 210 of 288

(DA)0:n-1 ← n0

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 211 of 288

9.4.71 rldicr

Rotate Left Doubleword Immediate then Clear Right

rldicr DA, DS, SH, ME Rc = '0'
rldicr. DA, DS, SH, ME Rc = '1'

0 5 6 10 11 15 16 20 21 26 27 30 31

30 DS DA sh0:4 me 1 sh5 Rc

n ← sh5 || sh0:4

r ← ROTL64((DS), n)
e ← me5 || me0:4

m ← MASK(0, e)
(DA) ← r m∧

The contents of register DS are rotated left by the number of bit positions specified in the SH field. A mask
is generated, having 1-bits starting at bit 0 and ending in bit position specified in the ME field, with 0-bits
elsewhere. The rotated data is ANDed with the generated mask and the result is placed into register DA.

Restrictions
The registers DS and DA must be defined in the PPE 42 core architecture, otherwise an illegal instruction
exception occurs.

Registers Altered
• DA

• CR[CR0]LT, GT, EQ, SO if Rc contains a ‘1’

Architecture Notes
This instruction is part of the 64-bit Power ISA User Instruction Set Architecture.

This instruction is implemented by PPE 42X and is not part of the original PPE 42 Instruction Set.

Extended Mnemonics
The extended mnemonics for rldicr can all be coded with an optional “.” to specify the recording form that
updates CR[CR0].

Table 1.91: Extended Mnemonics for rldicr

Mnemonic Equivalent Description

clrrdi[.] RA, RS, n rldicr[.] RA, RS, 0, 63-n Clear right doubleword immediate. (n < 64)

(DA)64-n:63 ← n0

(DA)0:n-1 ← (DS)0:n-1

extldi[.] DA, DS, n, b rldicr[.] DA, DS, b, n-1 Extract and left justify doubleword immediate. (n >0)
(DA)0:n-1 ← (DS)b:b+n-1

(DA)n:63 ← 64-n0

sldi[.] DA, DS, n rldicr[.] DA, DS, n, 63-n Shift left doubleword immediate. (n < 64)
(DA)0:63-n ← (DS)n:63

(DA)64-n:63 ← n0

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 212 of 288

9.4.72 rldimi

Rotate Left Doubleword Immediate then Mask Insert

rldimi DA, DS, SH, MB Rc = '0'
rldimi. DA, DS, SH, MB Rc = '1'

0 5 6 10 11 15 16 20 21 26 27 30 31

30 DS DA sh0:4 mb 3 sh5 Rc

n ← sh5 || sh0:4

r ← ROTL64((DS), n)

m ← MASK(mb5 || mb0:4, ¬n)

(DA) ← (r m) ((DA) ∧ ∨ ∧¬m)

The contents of register DS are rotated left by the number of bit positions specified in the SH field. A mask
is generated, having 1-bits starting at the bit position specified in the MB field and ending in the bit position
specified by 63-SH, with 0-bits elsewhere. The rotated data is inserted into register DA, in positions
corresponding to the bit positions in the mask that contain a 1-bit.

If the starting point of the mask is at a higher bit position than the ending point, the 1-bits portion of the
mask wraps from the highest bit position back around to the lowest. The rotated data is inserted into
register DA, in positions corresponding to the bit positions in the mask that contain a 1-bit.

Restrictions
The registers DS and DA must be defined in the PPE 42 core architecture, otherwise an illegal instruction
exception occurs.

Registers Altered
• DA

• CR[CR0]LT, GT, EQ, SO if Rc contains a ‘1’

Architecture Note
This instruction is part of the 64-bit Power ISA User Instruction Set Architecture.

This instruction is implemented by PPE 42X and is not part of the original PPE 42 Instruction Set.

Extended Mnemonics
The extended mnemonics for rldimi can all be coded with an optional “.” to specify the recording form that
updates CR[CR0].

Table 1.92: Extended Mnemonics for rldimi

Mnemonic Equivalent Description

insrdi[.] DA, DS, n, b rldimi[.] DA, DS, 64–b-n, b Insert from right doubleword immediate. (n > 0)
(DA)b:b+n–1 ← (DS)64–n:63

Other bits of DA are unchanged.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 213 of 288

9.4.73 rlwimi

Rotate Left Word Immediate then Mask Insert

rlwimi RA, RS, SH, MB, ME Rc = '0'
rlwimi. RA, RS, SH, MB, ME Rc = '1'

0 5 6 10 11 15 16 20 21 25 26 30 31

20 RS RA SH MB ME Rc

r ← ROTL((RS), SH)
m ← MASK(MB, ME)

(RA) ← (r m) ((RA) ∧ ∨ ∧¬m)

The contents of register RS are rotated left by the number of bit positions specified in the SH field. A mask
is generated, having 1-bits starting at the bit position specified in the MB field and ending in the bit position
specified by the ME field, with 0-bits elsewhere.

If the starting point of the mask is at a higher bit position than the ending point, the 1-bits portion of the
mask wraps from the highest bit position back around to the lowest. The rotated data is inserted into
register RA, in positions corresponding to the bit positions in the mask that contain a 1-bit.

Restrictions
The registers RS and RA must be defined in the PPE 42 core architecture, otherwise an illegal instruction
exception occurs.

Registers Altered
• RA

• CR[CR0]LT, GT, EQ, SO if Rc contains a ‘1’

Architecture Note
This instruction is part of the Power ISA User Instruction Set Architecture.

Extended Mnemonics
The extended mnemonics for rlwimi can all be coded with an optional “.” to specify the recording form that
updates CR[CR0].

Table 1.93: Extended Mnemonics for rlwimi

Mnemonic Equivalent Description

inslwi[.] RA, RS, n, b rlwimi[.] RA, RS, 32–b, b, b+n+1 Insert from left word immediate. (n > 0)
(RA)b:b+1← (RS)0:n-1

Other bits of RA are unchanged.

insrwi[.] RA, RS, n, b rlwimi[.] RA, RS, 32–b-n, b, b+n+1 Insert from right word immediate. (n > 0)
(RA)b:b+n–1 ← (RS)32–n:31

Other bits of RA are unchanged.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 214 of 288

9.4.74 rlwinm

Rotate Left Word Immediate then AND with Mask

rlwinm RA, RS, SH, MB, ME Rc = '0'
rlwinm. RA, RS, SH, MB, ME Rc = '1'

0 5 6 10 11 15 16 20 21 25 26 30 31

21 RS RA SH MB ME Rc

r ← ROTL((RS), SH)
m ← MASK(MB, ME)
(RA) ← r m∧

The contents of register RS are rotated left by the number of bit positions specified in the SH field. A mask
is generated, having 1-bits starting at the bit position specified in the MB field and ending in the bit position
specified by the ME field, with 0-bits elsewhere.

If the starting point of the mask is at a higher bit position than the ending point, the 1-bits portion of the
mask wraps from the highest bit position back around to the lowest. The rotated data is ANDed with the
generated mask and the result is placed into register RA.

Restrictions
The registers RS and RA must be defined in the PPE 42 core architecture, otherwise an illegal instruction
exception occurs.

Registers Altered
• RA

• CR[CR0]LT, GT, EQ, SO if Rc contains a ‘1’

Architecture Note
This instruction is part of the Power ISA User Instruction Set Architecture.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 215 of 288

Extended Mnemonics
The extended mnemonics for rlwinm can all be coded with an optional “.” to specify the recording form that
updates CR[CR0].

Table 1.94: Extended Mnemonics for rlwinm

Mnemonic Equivalent Description

clrbwi[.] RA, RS, b rlwinm[.] RA, RS, 0, (b+1) % 31, (b-1) % 31 Clear bit from word immediate (b < 32)
(RA)X ← (RS)X for X = 0,...,31 and X ≠ b

(RA)b ← '0'

clrlwi[.] RA, RS, n rlwinm[.] RA, RS, 0, n, 31 Clear left word immediate. (n < 32)

(RA)0:n-1← n0

(RA)n:32 ← (RS)n:32

clrrwi[.] RA, RS, n rlwinm[.] RA, RS, 0, 0, 31-n Clear right word immediate. (n < 32)

(RA)32-n:31 ← n0

(RA)0:n-1 ← (RS)0:n-1

extlwi[.] RA, RS, n, b rlwinm[.] RA, RS, b, 0, n-1 Extract and left justify word immediate. (n >0)
(RA)0:n-1 ← (RS)b:b+n-1

(RA)n:31 ← 32-n0

extrwi[.] RA, RS, n, b rlwinm[.] RA, RS, b+n, 32-n, 31 Extract and right justify word immediate. (n > 0)
(RA)32-n:31 ← (RS)b:b+n-1

(RA)0:31-n ← 32-n0

rotlwi[.] RA, RS, n rlwinm[.] RA, RS, n, 0, 31 Rotate left word immediate.
(RA) ← ROTL((RS), n)

rotrwi[.] RA, RS, n rlwinm[.] RA, RS, 32-n, 0, 31 Rotate right word immediate.
(RA) ← ROTL((RS), 32-n)

slwi[.] RA, RS, n rlwinm[.] RA, RS, n, 0, 31-n Shift left word immediate. (n < 32)
(RA)0:31-n ← (RS)n:31

(RA)32-n:31 ← n0

srwi[.] RA, RS, n rlwinm[.] RA, RS, 32-n, n, 31 Shift right word immediate. (n < 32)
(RA)n:31 ← (RS)0:31-n

(RA)0:n-1 ← n0

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 216 of 288

9.4.75 rlwnm

Rotate Left Word then AND with Mask

rlwnm RA, RS, RB, MB, ME Rc = '0'
rlwnm. RA, RS, RB, MB, ME Rc = '1'

0 5 6 10 11 15 16 20 21 25 26 30 31

23 RS RA RB MB ME Rc

r ← ROTL((RS), (RB)27:31)
m ← MASK(MB, ME)
(RA) ← r m∧

The contents of register RS are rotated left by the number of bit positions specified by the contents of
register (RB)27:31. A mask is generated, having 1-bits starting at the bit position specified in the MB field and
ending in the bit position specified by the ME field, with 0-bits elsewhere.

If the starting point of the mask is at a higher bit position than the ending point, the 1-bits portion of the
mask wraps from the highest bit position back around to the lowest. The rotated data is ANDed with the
generated mask and the result is placed into register RA.

Restrictions
The registers RS, RA and RB must be defined in the PPE 42 core architecture, otherwise an illegal
instruction exception occurs.

Registers Altered
• RA

• CR[CR0]LT, GT, EQ, SO if Rc contains a ‘1’

Architecture Note
This instruction is part of the Power ISA User Instruction Set Architecture.

Extended Mnemonics
The extended mnemonics for rlwnm can all be coded with an optional “.” to specify the recording form that
updates CR[CR0].

Table 1.95: Extended Mnemonics for rlwnm

Mnemonic Equivalent Description

rotlw[.] RA, RS, RB rlwnm[.] RA, RS, RB, 0, 31 Rotate left word
(RA) ← ROTL((RS), (RB)27:31)

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 217 of 288

9.4.76 slvd

Shift Left Virtual Doubleword

slvd DA, DS, RB Rc = '0'
slvd. DA, DS, RB Rc = '1'

0 5 6 10 11 15 16 20 21 30 31

31 DS DA RB 59 Rc

n ← (RB)26:31

r ← ROTL((DS), n)
if (RB)25 = 0 then

m ← MASK(0, 63 − n)
else

m ← 640
(DA) ← r m∧

The contents of register DS are shifted left by the number of bits specified by the contents of register
RB26:31. Bits shifted left out of the most significant bit are lost, and 0-bits fill vacated bit positions on the right.
The result is placed into register DA.

If RB25 = ‘1’, register DA is set to zero.

In other words, slvd shifts the contents of DS by the contents of RB modulo 64 bits.

Restrictions
The registers DS, DA and RB must be defined in the PPE 42 core architecture, otherwise an illegal
instruction exception occurs.

Registers Altered
• DA

• CR[CR0]LT, GT, EQ, SO if Rc contains a ‘1’

Architecture Notes
This instruction is similar to sld of the 64-bit Power ISA User Instruction Set Architecture, where RB is
instead defined as a 64-bit register.

This instruction is implemented by PPE 42X and is not part of the original PPE 42 Instruction Set.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 218 of 288

9.4.77 slw

Shift Left Word

slw RA, RS, RB Rc = '0'
slw. RA, RS, RB Rc = '1'

0 5 6 10 11 15 16 20 21 30 31

31 RS RA RB 24 Rc

n ← (RB)27:31

r ← ROTL((RS), n)
if (RB)26 = 0 then

m ← MASK(0, 31 − n)
else

m ← 320
(RA) ← r m∧

The contents of register RS are shifted left by the number of bits specified by the contents of register
RB27:31. Bits shifted left out of the most significant bit are lost, and 0-bits fill vacated bit positions on the right.
The result is placed into register RA.

If RB26 = ‘1’, register RA is set to zero.

In other words, slw shifts the contents of RS by the contents of RB modulo 64 bits.

Restrictions
The registers RS, RA and RB must be defined in the PPE 42 core architecture, otherwise an illegal
instruction exception occurs.

Registers Altered
• RA

• CR[CR0]LT, GT, EQ, SO if Rc contains a ‘1’

Architecture Note
This instruction is part of the Power ISA User Instruction Set Architecture.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 219 of 288

9.4.78 sraw

Shift Right Algebraic Word

sraw RA, RS, RB Rc = '0'
sraw. RA, RS, RB Rc = '1'

0 5 6 10 11 15 16 20 21 30 31

31 RS RA RB 792 Rc

n ← (RB)27:31

r ← ROTL((RS), 32 - n)
if (RB)26 = 0 then

m ← MASK(n, 31)
else

m ← 320
s ← (RS)0

(RA) ← (r m) (∧ ∨ 32s ∧¬m)

XER[CA] ← s ((r ∧ ∧¬m) ≠ 0)

The contents of register RS are shifted right by the number of bits specified by the contents of register
RB27:31. Bits shifted right out of the most significant bit are lost. Bit RS0 is replicated to fill the vacated bit
positions on the left. The result is placed into register RA.

If register RS contains a negative number and any 1-bits were shifted out of the least-significant bit
position, XER[CA] is set to 1. Otherwise XER[CA] is set to 0.

If RB26 = ‘1’, register RA and XER[CA] are set to RS0.

In other words, sraw shifts the contents of RS by the contents of RB modulo 64 bits.

Restrictions
The registers RS, RA and RB must be defined in the PPE 42 core architecture, otherwise an illegal
instruction exception occurs.

Registers Altered
• RA

• XER[CA]

• CR[CR0]LT, GT, EQ, SO if Rc contains a ‘1’

Architecture Note
This instruction is part of the Power ISA User Instruction Set Architecture.

Programming Note
An sraw instruction followed by addze can be used to quickly divide a signed integer (RS) by 2(RB) % 64.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 220 of 288

9.4.79 srawi

Shift Right Algebraic Word Immediate

srawi RA, RS, SH Rc = '0'
srawi. RA, RS, SH Rc = '1'

0 5 6 10 11 15 16 20 21 30 31

31 RS RA SH 824 Rc

n ← SH
r ← ROTL((RS), 32 - n)
m ← MASK(n, 31)
s ← (RS)0

(RA) ← (r m) (∧ ∨ 32s ∧¬m)

XER[CA] ← s ((r ∧ ∧¬m) ≠ 0)

The contents of register RS are shifted right by the number of bits specified by the SH field. Bits shifted
right out of the most significant bit are lost. Bit RS0 is replicated to fill the vacated bit positions on the left.
The result is placed into register RA.

If register RS contains a negative number and any 1-bits were shifted out of the least-significant bit
position, XER[CA] is set to 1. Otherwise XER[CA] is set to 0.

Restrictions
The registers RS and RA must be defined in the PPE 42 core architecture, otherwise an illegal instruction
exception occurs.

Registers Altered
• RA

• XER[CA]

• CR[CR0]LT, GT, EQ, SO if Rc contains a ‘1’

Architecture Note
This instruction is part of the Power ISA User Instruction Set Architecture.

Programming Note
An srawi instruction followed by addze can be used to quickly divide a signed integer (RS) by 2SH.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 221 of 288

9.4.80 srvd

Shift Right Virtual Doubleword

srvd DA, DS, RB Rc = '0'
srvd. DA, DS, RB Rc = '1'

0 5 6 10 11 15 16 20 21 30 31

31 DS DA RB 571 Rc

n ← (RB)26:31

r ← ROTL((DS), 64-n)
if (RB)25 = 0 then

m ← MASK(n, 63)
else

m ← 640
(DA) ← r m∧

The contents of register DS are shifted right by the number of bits specified by the contents of register
RB26:31. Bits shifted right out of the least significant bit are lost, and 0-bits fill vacated bit positions on the left.
The result is placed into register DA.

If RB25 = ‘1’, register DA is set to zero.

In other words, srvw shifts the contents of DS by the contents of RB modulo 64 bits.

Restrictions
The registers DS, DA and RB must be defined in the PPE 42 core architecture, otherwise an illegal
instruction exception occurs.

Registers Altered
• DA

• CR[CR0]LT, GT, EQ, SO if Rc contains a ‘1’

Architecture Notes
This instruction is similar to srd of the 64-bit Power ISA User Instruction Set Architecture, where RB is
instead defined as a 64-bit register.

This instruction is implemented by PPE 42X and is not part of the original PPE 42 Instruction Set.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 222 of 288

9.4.81 srw

Shift Right Word

srw RA, RS, RB Rc = '0'
srw. RA, RS, RB Rc = '1'

0 5 6 10 11 15 16 20 21 30 31

31 RS RA RB 536 Rc

n ← (RB)27:31

r ← ROTL((RS), 32 - n)
if (RB)26 = 0 then

m ← MASK(n, 31)
else

m ← 320
(RA) ← r m∧

The contents of register RS are shifted right by the number of bits specified by the contents of register
RB27:31. Bits shifted right out of the least significant bit are lost, and 0-bits fill vacated bit positions on the left.
The result is placed into register RA.

If RB26 = ‘1’, register RA is set to zero.

In other words, srw shifts the contents of RS by the contents of RB modulo 64 bits.

Restrictions
The registers RS, RA and RB must be defined in the PPE 42 core architecture, otherwise an illegal
instruction exception occurs.

Registers Altered
• RA

• CR[CR0]LT, GT, EQ, SO if Rc contains a ‘1’

Architecture Note
This instruction is part of the Power ISA User Instruction Set Architecture.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 223 of 288

9.4.82 stb

Store Byte

stb RS, D(RA)

0 5 6 10 11 15 16 31

38 RS RA D

EA ← (RA | 0) + EXTS(D)
MS(EA, 1) ← (RS)24:31

An EA is formed by adding a displacement to a base address. The displacement is obtained by sign-
extending the 16-bit D field to 32 bits. The base address is 0 if the RA field is 0 and is the contents of
register RA otherwise.

Bits 24:31 of register RS are stored into the byte addressed by the EA.

Restrictions
The registers RS and RA must be defined in the PPE 42 core architecture, otherwise an illegal instruction
exception occurs.

Registers Altered
• None

Architecture Note
This instruction is part of the Power ISA User Instruction Set Architecture.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 224 of 288

9.4.83 stbu

Store Byte with Update

stbu RS, D(RA)

0 5 6 10 11 15 16 31

39 RS RA D

EA ← (RA) + EXTS(D)
MS(EA, 1) ← (RS)24:31

(RA) ← EA

An EA is formed by adding a displacement to the base address in register RA. The displacement is
obtained by sign-extending the 16-bit D field to 32 bits.

Bits 24:31 of register RS are stored into the byte addressed by the EA.

The EA is placed into register RA.

Restrictions
The registers RS and RA must be defined in the PPE 42 core architecture and the instruction form must be
valid (see below), otherwise an illegal instruction exception occurs.

Registers Altered
• RA

Invalid Instruction Forms
• RA = 0

Architecture Note
This instruction is part of the Power ISA User Instruction Set Architecture.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 225 of 288

9.4.84 stbx

Store Byte Indexed

stbx RS, RA, RB

0 5 6 10 11 15 16 20 21 31

31 RS RA RB 215

EA ← (RA | 0) + (RB)
MS(EA, 1) ← (RS)24:31

An EA is formed by adding an index to the base address in register RA. The index is the contents of register RB.
The base address is 0 if the RA field is 0 and is the contents of RA otherwise.

Bits 24:31 of register RS are stored into the byte addressed by the EA.

Restrictions
The registers RS, RA and RB must be defined in the PPE 42 core architecture, otherwise an illegal
instruction exception occurs.

Registers Altered
• None

Architecture Note
This instruction is part of the Power ISA User Instruction Set Architecture.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 226 of 288

9.4.85 stcxu

Store stack Context with Update

stcxu RS, DD(RA)

0 5 6 10 11 15 16 28 29 30 31

62 RS RA DD 1 3

EA ← (RA)
MS(EA + 4, 4) ← (LR)
(EDR) ← (RA)

DW(1..10) = VDR30, VDR28, SRR0 || SRR1, XER || CTR, VDR(9,7,5,3,0), CR || SPRG0
 i ← 1
do while i ≤ 10
 MS(EA - (i || 30), 8) ← (DW(i))
 i ← i + 1

EA ← (RA) + EXTS(DD || 30)
MS(EA, 4) ← (RS)
(RA) ← EA

An EA is formed by the contents of register RA. The contents of the Link Register are stored into the word
at (EA + 4). The contents of ten doublewords are stored into consecutively descending memory locations
starting at (EA - 8) from the following series of registers: VDR30, VDR28, SRR0 concatenated on the left of
SRR1, XER concatenated on the left of CTR, VDR registers (9,7,5,3,0), and CR concatenated on the left of
SPRG0.

A second EA is formed by adding a displacement to the base address in register RA. The 32-bit
displacement is obtained by sign-extending the 13-bit DD field to 32 bits after concatenating 3 0-bits on its
right. The contents of register RS are stored into the word addressed by this second EA. This EA is then
placed into register RA.

Restrictions
The registers RS and RA must be the same and defined in the PPE 42 core architecture, the displacement
must be a negative number and must specify at least 11 doublewords, and the instruction form must be
valid (see below), otherwise an illegal instruction exception occurs.

Registers Altered
• RA

• EDR

Invalid Instruction Forms
• RA = 0

• RA ≠ RS

• (DD0 = '0') ∨ (DD1:12 >u x'FF5')

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 227 of 288

Exceptions
An alignment exception is signaled if the address in register RA is not doubleword aligned, regardless if an
unaligned operation is supported by the memory subsystem.

Synchronous exceptions caused by the execution of this instruction or a previously executed imprecise
store must suppress the update of RA. The EDR reflects the address of the word or doubleword being
accessed when the memory subsystem raised this exception. Only memory locations accessed before this
exception was signaled are updated.

Since this instruction is storage synchronizing, asynchronous exceptions that occur during the execution of
this instruction are held pending until all stores generated by this instruction have been completed by the
memory subsystem.

Architecture Notes
This instruction is implemented by PPE 42X, is specific to the PPE architecture, and is not part of the
original PPE 42 Instruction Set. This instruction is a modified DS-Form, where DS is defined as DD || 1,
and is storage synchronizing. The similar stsku instruction provides a subset of this instruction's function.

The EDR is used as a “scratch pad” to store the current Stack Pointer address during execution of this
instruction and will be overwritten if this instruction experiences a precise or imprecise synchronous
exception.

Programming Note
Although the DD field specifies the number of doublewords, assemblers should instead support the
specification of a byte offset for programming consistency with other instruction forms, discarding the three
rightmost bits of the offset when forming the DD field of the assembled instruction.

Usage Notes
This instruction is intended to be used to push a subset of the PPE's GPR and SPR context onto a stack in
memory, in a format compatible with the PowerPC EABI used for the call stack, with a single instruction
and to be used in concert with the corresponding lcxu instruction. To ensure the stack pointer update is an
atomic operation that cannot be interrupted, a store-with-update instruction form is used. Note that this
instruction also populates the Back Pointer word located in memory at the updated stack pointer address to
facilitate debug as per the EABI.

Registers RS and RA must point to the same GPR, which contains the current stack pointer, and the
updated stack pointer is written into register RA. The call stack pointer is typically kept in GPR(1) as per the
EABI. For context switches due to interrupts, the programmer may choose to share the call stack by using
GPR(1) or to create a separate machine stack using a different GPR.

The immediate field DD contains the number of doublewords, in 2's complement, of the stack frame being
written and must be a negative number specifying at least 11 doublewords, one of which contains the stack
frame header. The maximum stack frame size supported by this instruction is 32 kilobytes due to the
maximum stack pointer displacement that can be represented. The full context data contains all PPE-
defined GPRs except R2 and R13, and a subset of the PPE-defined SPRs: CR, SPRG0, XER, CTR,
SRR0, and SRR1. If DD specifies more than 11 doublewords, extra room is left in the stack frame for
subsequent instructions to store additional context that needs to be preserved.

The stcxu instruction may be emulated by the following sequence of instructions, where ordering is
important in case an interrupt occurs during the sequence and D is the instruction DD field multiplied by 8:

mflr Rx # Get Link register
stwu RS,D(RA) # Save Back chain and move SP atomically
stw Rx,4-D(RA) # Save Link register

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 228 of 288

stvd CONTEXT[0..9],-8..80(RS) # Save 10 doublewords of context

The specified PPE context is written (“pushed”) onto the stack as follows:

Stack Address Size (bytes) New Content Written by stcxu Old Content

Previous Stack
Data (if any)

X X [unmodified] Previous Stack Frames

Previous Stack
Frame Header

SP+4 4 LR [next LR Placeholder]

Stack Pointer SP = (RA) 4
[unmodified]
Back Pointer

Back Pointer [Previous SP]

New Stack
Frame Data

SP-8 8
R31
R30

[Undefined]

SP-16 8
R29
R28

SP-24 8
SRR1
SRR0

SP-32 8
CTR
XER

SP-40 8
R10
R9

SP-48 8
R8
R7

SP-56 8
R6
R5

SP-64 8
R4
R3

SP-72 8
R1
R0

SP-80 8
SPRG0
CR

optional, if D>88
SP-88
...
SP + D + 8

D-88
[unmodified]

 Variable Context placeholder

New Stack
Frame Header

SP + D + 4 4
[unmodified]

next LR placeholder

SP + D (written into RA) 4 Back Pointer = (RS)

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 229 of 288

9.4.86 sth

Store Halfword

sth RS, D(RA)

0 5 6 10 11 15 16 31

44 RS RA D

EA ← (RA | 0) + EXTS(D)
MS(EA, 2) ← (RS)16:31

An EA is formed by adding a displacement to a base address. The displacement is obtained by sign-
extending the 16-bit D field to 32 bits. The base address is 0 if the RA field is 0 and is the contents of
register RA otherwise.

Bits 16:31 of register RS are stored into the halfword addressed by the EA.

Restrictions
The registers RS and RA must be defined in the PPE 42 core architecture, otherwise an illegal instruction
exception occurs.

Registers Altered
• None

Architecture Note
This instruction is part of the Power ISA User Instruction Set Architecture.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 230 of 288

9.4.87 sthu

Store Halfword with Update

sthu RS, D(RA)

0 5 6 10 11 15 16 31

45 RS RA D

EA ← (RA) + EXTS(D)
MS(EA, 2) ← (RS)16:31

(RA) ← EA

An EA is formed by adding a displacement to the base address in register RA. The displacement is
obtained by sign-extending the 16-bit D field to 32 bits.

Bits 16:31 of register RS are stored into the halfword addressed by the EA.

The EA is placed into register RA.

Restrictions
The registers RS and RA must be defined in the PPE 42 core architecture and the instruction form must be
valid (see below), otherwise an illegal instruction exception occurs.

Registers Altered
• RA

Invalid Instruction Forms
• RA = 0

Architecture Note
This instruction is part of the Power ISA User Instruction Set Architecture.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 231 of 288

9.4.88 sthx

Store Halfword Indexed

sthx RS, RA, RB

0 5 6 10 11 15 16 20 21 31

31 RS RA RB 407

EA ← (RA | 0) + (RB)
MS(EA, 2) ← (RS)16:31

An EA is formed by adding an index to the base address in register RA. The index is the contents of register RB.
The base address is 0 if the RA field is 0 and is the contents of RA otherwise.

Bits 16:31 of register RS are stored into the halfword addressed by the EA.

Restrictions
The registers RS, RA and RB must be defined in the PPE 42 core architecture, otherwise an illegal
instruction exception occurs.

Registers Altered
• None

Architecture Note
This instruction is part of the Power ISA User Instruction Set Architecture.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 232 of 288

9.4.89 stsku

Store Stack frame with Update

stsku RS, DD(RA)

0 5 6 10 11 15 16 28 29 30 31

62 RS RA DD 0 3

EA ← (RA)
MS(EA + 4, 4) ← (LR)
(EDR) ← (RA)

n ← ¬ DD
if n > 0 then
 MS(EA - 8), 8) ← (VDR30)
if n > 1 then
 MS(EA -16, 8) ← (VDR28)

EA ← (RA) + EXTS(DD || 30)
MS(EA, 4) ← (RS)
(RA) ← EA

An EA is formed by the contents of register RA. The contents of the Link Register are stored into the word
at (EA + 4). The number of doublewords to store n is determined by the one's complement of the DD field.
if n is greater than zero, VDR30 is stored into the doubleword at (EA - 8). If n is greater than one, VDR28 is
stored into the doubleword at (EA -16).

A second EA is formed by adding a displacement to the base address in register RA. The 32-bit
displacement is obtained by sign-extending the 13-bit DD field to 32 bits after concatenating 3 0-bits on its
right. The contents of register RS are stored into the word addressed by this second EA. This EA is then
placed into register RA.

Restrictions
The registers RS and RA must be the same and defined in the PPE 42 core architecture, the displacement
must be a negative number, and the instruction form must be valid (see below), otherwise an illegal
instruction exception occurs.

Registers Altered
• RA

• EDR

Invalid Instruction Forms
• RA = 0

• RA ≠ RS

• DD0 = '0'

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 233 of 288

Exceptions
An alignment exception is signaled if the address in register RA is not doubleword aligned, regardless if an
unaligned operation is supported by the memory subsystem.

Synchronous exceptions caused by the execution of this instruction or a previously executed imprecise
store must suppress the update of RA. The EDR reflects the address of the word or doubleword being
accessed when the memory subsystem raised this exception. Only memory locations accessed before this
exception was signaled are updated.

Since this instruction is storage synchronizing, asynchronous exceptions that occur during the execution of
this instruction are held pending until all stores generated by this instruction have been completed by the
memory subsystem.

Architecture Notes
This instruction is implemented by PPE 42X, is specific to the PPE architecture, and is not part of the
original PPE 42 Instruction Set. This instruction is a modified DS-Form, where DS is defined as DD || 0,
and is storage synchronizing. The similar stcxu instruction provides a superset of this function.

The EDR is used as a “scratch pad” to store the current Stack Pointer address during execution of this
instruction and will be overwritten if this instruction experiences a precise or imprecise synchronous
exception.

Programming Note
Although the DD field specifies the number of doublewords, assemblers should instead support the
specification of a byte offset for programming consistency with other instruction forms, discarding the three
rightmost bits of the offset when forming the DD field of the assembled instruction.

Usage Notes
This instruction is intended to be used to push a subset of the PPE's GPR and SPR context onto a stack in
memory, in a format compatible with the PowerPC EABI used for the call stack, with a single instruction
and to be used in concert with the corresponding lsku instruction. To ensure the stack pointer update is an
atomic operation that cannot be interrupted, a store-with-update instruction form is used. Note that this
instruction also populates the Back Pointer word located in memory at the updated stack pointer address to
facilitate debug as per the EABI.

Registers RS and RA must point to the same GPR, which contains the current stack pointer, and the
updated stack pointer is written into register RA. The call stack pointer is typically kept in GPR(1) as per the
EABI.

The immediate field DD contains the number of doublewords, in 2's complement, of the stack frame being
written and must be a negative number specifying at least 1 doubleword containing the stack frame header.
The maximum stack frame size supported by this instruction is 32 kilobytes due to the maximum stack
pointer displacement that can be represented. The stack data optionally contains VDR30 and in addition
VDR28. If DD specifies more than 3 doublewords, extra room is left in the stack frame for subsequent
instructions to store additional context that needs to be preserved.

The stsku instruction may be emulated by the following sequence of instructions, where ordering is
important in case an interrupt occurs during the sequence and D is the instruction DD field multiplied by 8:

mflr Rx # Get Link register
stwu RS,D(RA) # Save Back chain and move SP atomically
stw Rx,4-D(RA) # Save Link register
stvd CONTEXT[0..1],-8..16(RS) # Save 0,1,2 doublewords of context

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 234 of 288

The specified PPE context is written (“pushed”) onto the stack as follows:

Stack Address Size (bytes) New Content Written by stsku Old Content

Previous Stack
Data (if any)

X X [unmodified] Previous Stack Frames

Previous Stack
Frame Header

SP+4 4 LR [next LR Placeholder]

Stack Pointer SP = (RA) 4
[unmodified]
Back Pointer

Back Pointer [Previous SP]

New Stack
Frame Data

SP-8 (if D>8) 8
R31
R30

[Undefined]

SP-16 (if D>16) 8
R29
R28

optional, if D>24
SP-24
...
SP + D + 8

D-24
[unmodified]

 Variable Context placeholder

New Stack
Frame Header

SP + D + 4 4
[unmodified]

next LR placeholder

SP + D (written into RA) 4 Back Pointer = (RS)

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 235 of 288

9.4.90 stvd

Store Virtual Doubleword

stvd DS, D(RA)

0 5 6 10 11 15 16 31

6 DS RA D

EA ← (RA | 0) + EXTS(D)
MS(EA, 8) ← (DS)

An EA is formed by adding a displacement to a base address. The displacement is obtained by sign-
extending the 16-bit D field to 32 bits. The base address is 0 if the RA field is 0 and is the contents of
register RA otherwise.

The contents of virtual doubleword register DS are stored into the doubleword at the EA.

Restrictions
The registers DS and RA must be defined in the PPE 42 core architecture, and DS must specify a valid
virtual doubleword register, otherwise an illegal instruction exception occurs.

Registers Altered
• None

Architecture Note
This instruction is specific to the PPE 42 architecture.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 236 of 288

9.4.91 stvdu

Store Virtual Doubleword with Update

stvdu DS, D(RA)

0 5 6 10 11 15 16 31

22 DS RA D

EA ← (RA) + EXTS(D)
MS(EA, 8) ← (DS)
(RA) ← EA

An EA is formed by adding a displacement to the base address in register RA. The displacement is
obtained by sign-extending the 16-bit D field to 32 bits.

The contents of virtual doubleword register DS are stored into the doubleword at the EA.

The EA is placed into register RA.

Restrictions
The registers DS and RA must be defined in the PPE 42 core architecture, DS must specify a valid virtual
doubleword register and the instruction form must be valid (see below), otherwise an illegal instruction
exception occurs.

Registers Altered
• RA

Invalid Instruction Forms
• RA = 0

Architecture Note
This instruction is specific to the PPE 42 architecture.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 237 of 288

9.4.92 stvdx

Store Virtual Doubleword Indexed

stvdx DS, RA, RB

0 5 6 10 11 15 16 20 21 31

31 DS RA RB 145

EA ← (RA | 0) + (RB)
MS(EA, 8) ← (DS)

An EA is formed by adding an index to the base address in register RA. The index is the contents of
register RB. The base address is 0 if the RA field is 0 and is the contents of RA otherwise.

The contents of virtual doubleword register DS are stored into the doubleword at the EA.

Restrictions
The registers DS, RA and RB must be defined in the PPE 42 core architecture, and DS must specify a valid
virtual doubleword register, otherwise an illegal instruction exception occurs.

Registers Altered
• None

Architecture Note
This instruction is specific to the PPE 42 architecture.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 238 of 288

9.4.93 stw

Store Word

stw RS, D(RA)

0 5 6 10 11 15 16 31

36 RS RA D

EA ← (RA | 0) + EXTS(D)
MS(EA, 4) ← (RS)

An EA is formed by adding a displacement to a base address. The displacement is obtained by sign-
extending the 16-bit D field to 32 bits. The base address is 0 if the RA field is 0 and is the contents of
register RA otherwise.

The contents of register RS are stored at the EA.

Restrictions
The registers RS and RA must be defined in the PPE 42 core architecture, otherwise an illegal instruction
exception occurs.

Registers Altered
• None

Architecture Note
This instruction is part of the Power ISA User Instruction Set Architecture.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 239 of 288

9.4.94 stwu

Store Word with Update

stwu RS, D(RA)

0 5 6 10 11 15 16 31

37 RS RA D

EA ← (RA) + EXTS(D)
MS(EA, 4) ← (RS)
(RA) ← EA

An EA is formed by adding a displacement to the base address in register RA. The displacement is
obtained by sign-extending the 16-bit D field to 32 bits.

The contents of register RS are stored into the word at the EA.

The EA is placed into register RA.

Restrictions
The registers RS and RA must be defined in the PPE 42 core architecture and the instruction form must be
valid (see below), otherwise an illegal instruction exception occurs.

Registers Altered
• RA

Invalid Instruction Forms
• RA = 0

Architecture Note
This instruction is part of the Power ISA User Instruction Set Architecture.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 240 of 288

9.4.95 stwx

Store Word Indexed

stwx RS, RA, RB

0 5 6 10 11 15 16 20 21 31

31 RS RA RB 151

EA ← (RA | 0) + (RB)
MS(EA, 4) ← (RS)

An EA is formed by adding an index to the base address in register RA. The index is the contents of register RB.
The base address is 0 if the RA field is 0 and is the contents of RA otherwise.

The contents of register RS are stored into the word at the EA.

Restrictions
The registers RS, RA and RB must be defined in the PPE 42 core architecture, otherwise an illegal
instruction exception occurs.

Registers Altered
• None

Architecture Note
This instruction is part of the Power ISA User Instruction Set Architecture.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 241 of 288

9.4.96 subf

Subtract From

subf RT, RA, RB OE = '0', Rc = '0'
subf. RT, RA, RB OE = '0', Rc = '1'
subfo RT, RA, RB OE = '1', Rc = '0'
subfo. RT, RA, RB OE = '1', Rc = '1'

0 5 6 10 11 15 16 20 21 22 30 31

31 RT RA RB OE 40 Rc

(RT) ← ¬(RA) + (RB) + 1

The sum of the ones complement of register RA, register RB and 1 is placed into register RT.

Restrictions
The registers RT, RA and RB must be defined in the PPE 42 core architecture, otherwise an illegal
instruction exception occurs.

Registers Altered
• RT

• CR[CR0]LT, GT, EQ, SO if Rc contains a ‘1’

• XER[SO, OV] if OE contains a ‘1’

Architecture Note
This instruction is part of the Power ISA User Instruction Set Architecture.

Extended Mnemonics
The Subtract From instructions subtract the second operand (RA) from the third (RB). Extended
mnemonics are provided that use the more “normal” order, in which the third operand is subtracted from the
second. The mnemonic can be coded with a final “o” and/or “.” to cause the OE and/or Rc bit to be set in
the underlying instruction.

sub[o][.] Rx,Ry,Rz (equivalent to: subf[o][.] Rx,Rz,Ry)

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 242 of 288

9.4.97 subfc

Subtract From Carrying

subfc RT, RA, RB OE = '0', Rc = '0'
subfc. RT, RA, RB OE = '0', Rc = '1'
subfco RT, RA, RB OE = '1', Rc = '0'
subfco. RT, RA, RB OE = '1', Rc = '1'

0 5 6 10 11 15 16 20 21 22 30 31

31 RT RA RB OE 8 Rc

(RT) ← ¬(RA) + (RB) + 1

if ¬(RA) + (RB) + 1 >u 232 – 1 then

XER[CA] ← 1
else

XER[CA] ← 0

The sum of the ones complement of register RA, register RB and 1 is placed into register RT.

XER[CA] is set to a value determined by the unsigned magnitude of the result of the subtract operation.

Restrictions
The registers RT, RA and RB must be defined in the PPE 42 core architecture, otherwise an illegal
instruction exception occurs.

Registers Altered
• RT

• XER[CA]

• CR[CR0]LT, GT, EQ, SO if Rc contains a ‘1’

• XER[SO, OV] if OE contains a ‘1’

Architecture Note
This instruction is part of the Power ISA User Instruction Set Architecture.

Extended Mnemonics
The Subtract From instructions subtract the second operand (RA) from the third (RB). Extended
mnemonics are provided that use the more “normal” order, in which the third operand is subtracted from the
second. The mnemonic can be coded with a final “o” and/or “.” to cause the OE and/or Rc bit to be set in
the underlying instruction.

subc[o][.] Rx,Ry,Rz (equivalent to: subfc[o][.] Rx,Rz,Ry)

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 243 of 288

9.4.98 subfe

Subtract From Extended

subfe RT, RA, RB OE = '0', Rc = '0'
subfe. RT, RA, RB OE = '0', Rc = '1'
subfeo RT, RA, RB OE = '1', Rc = '0'
subfeo. RT, RA, RB OE = '1', Rc = '1'

0 5 6 10 11 15 16 20 21 22 30 31

31 RT RA RB OE 136 Rc

(RT) ← ¬(RA) + (RB) + XER[CA]

if ¬(RA) + (RB) + XER[CA] >u 232 – 1 then

XER[CA] ← 1
else

XER[CA] ← 0

The sum of the ones complement of register RA, register RB and XER[CA] is placed into register RT.

XER[CA] is set to a value determined by the unsigned magnitude of the result of the subtract operation.

Restrictions
The registers RT, RA and RB must be defined in the PPE 42 core architecture, otherwise an illegal
instruction exception occurs.

Registers Altered
• RT

• XER[CA]

• CR[CR0]LT, GT, EQ, SO if Rc contains a ‘1’

• XER[SO, OV] if OE contains a ‘1’

Architecture Note
This instruction is part of the Power ISA User Instruction Set Architecture.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 244 of 288

9.4.99 subfic

Subtract From Immediate Carrying

subfic RT, RA, SI

0 5 6 10 11 15 16 31

8 RT RA SI

(RT) ← ¬(RA) + EXTS(SI) + 1

If ¬(RA) + EXTS(SI) + 1 >u 232 – 1 then

XER[CA] ← 1
else

XER[CA] ← 0

The sum of the ones complement of RA, the contents of the SI field sign-extended to 32 bits, and 1 is
placed into register RT.

XER[CA] is set to a value determined by the unsigned magnitude of the result of the subtract operation.

Restrictions
The registers RT and RA must be defined in the PPE 42 core architecture, otherwise an illegal instruction
exception occurs.

Registers Altered
• RT

• XER[CA]

Architecture Note
This instruction is part of the Power ISA User Instruction Set Architecture.

Extended Mnemonics
PPE 42 does not implement the Power ISA neg (negate) instruction, however the assembler provides a
negate-with-carry extended mnemonic.

negc RT, RA (equivalent to subfic RT, RA, 0)

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 245 of 288

9.4.100 subfme

Subtract From Minus One Extended

subfme RT, RA OE = '0', Rc = '0'
subfme. RT, RA OE = '0', Rc = '1'
subfmeo RT, RA OE = '1', Rc = '0'
subfmeo. RT, RA OE = '1', Rc = '1'

0 5 6 10 11 15 16 20 21 22 30 31

31 RT RA OE 232 Rc

(RT) ← ¬(RA) + XER[CA] + (-1)

if ¬(RA) + XER[CA] + (-1) >u 232 – 1 then

XER[CA] ← 1
else

XER[CA] ← 0

The sum of the ones complement of register RA, XER[CA] and -1 is placed into register RT.

XER[CA] is set to a value determined by the unsigned magnitude of the result of the subtract operation.

Restrictions
The registers RT and RA must be defined in the PPE 42 core architecture, otherwise an illegal instruction
exception occurs.

Registers Altered
• RT

• XER[CA]

• CR[CR0]LT, GT, EQ, SO if Rc contains a ‘1’

• XER[SO, OV] if OE contains a ‘1’

Architecture Note
This instruction is part of the Power ISA User Instruction Set Architecture.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 246 of 288

9.4.101 subfze

Subtract From Zero Extended

subfze RT, RA OE = '0', Rc = '0'
subfze. RT, RA OE = '0', Rc = '1'
subfzeo RT, RA OE = '1', Rc = '0'
subfzeo. RT, RA OE = '1', Rc = '1'

0 5 6 10 11 15 16 20 21 22 30 31

31 RT RA OE 200 Rc

(RT) ← ¬(RA) + XER[CA]

if ¬(RA) + XER[CA] >u 232 – 1 then

XER[CA] ← 1
else

XER[CA] ← 0

The sum of the ones complement of register RA and XER[CA] is placed into register RT.

XER[CA] is set to a value determined by the unsigned magnitude of the result of the subtract operation.

Restrictions
The registers RT and RA must be defined in the PPE 42 core architecture, otherwise an illegal instruction
exception occurs.

Registers Altered
• RT

• XER[CA]

• CR[CR0]LT, GT, EQ, SO if Rc contains a ‘1’

• XER[SO, OV] if OE contains a ‘1’

Architecture Note
This instruction is part of the Power ISA User Instruction Set Architecture.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 247 of 288

9.4.102 sync

Synchronize

sync

0 5 6 20 21 30 31

31 598

The sync instruction guarantees that all instructions initiated by the processor preceding the sync
instruction are completed before the sync instruction is completed, and that no subsequent instructions are
initiated by the processor until after the sync instruction is completed. When the sync instruction is
completed, all storage accesses that were initiated by the processor before the sync instruction will have
been completed with respect to all mechanisms that access storage.

Registers Altered
• None

Architecture Note
This instruction is part of the Power ISA Virtual Environment Architecture. PPE 42 does not support any the
options provided by the Power ISA instruction controlling the type of barrier provided by sync.

The sync instruction is both context synchronizing and storage synchronizing under all conditions, and is
the only way to guarantee context synchronization while ramming. For more information on ramming and
single-stepping semantics see section 7, Debugging.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 248 of 288

9.4.103 tw

Trap Word

tw TO,RA,RB

0 5 6 10 11 15 16 20 21 30 31

31 TO RA RB 4 TG

The tw instruction causes either a program exception or a debug event, that is either treated as a no-op or
halts the processor. The behavior of tw is governed by both the TO and TG fields as well as the current
setting of DBCR[TRAP] as shown in the table below.

Table 1.96: Behavior of the tw instruction

TO DBCR[TRAP] TG Behavior

0 xx 0 The tw is treated as a no-op for code marking and debug.

(TO ≠ 0) ∧
(TO ≠31)

xx 0 The tw causes a program exception.

31 0 0

31 1 0 The tw causes the processor to halt and sets XSR[TRAP] ← '1'.

x xx 1 On PPE42, the tw behaves the same as TG=0 above.
On PPE42X, tw is treated as a no-op for code marking and debug.

Restrictions
If TG = '0', the registers RA and RB must be defined in the PPE 42 core architecture, otherwise an illegal
instruction exception occurs. Also see the Architecture Note below. On PPE42X, if TG = '1' there are no
restrictions.

Registers Altered
None if PPE42X and TG = '1',
else:

• ISR (If TO = 31 and DBCR[TRAP] = '0' and the program interrupt is the highest priority interrupt.)

• EDR (If TO = 31 and DBCR[TRAP] = '0' and the program interrupt is the highest priority interrupt.)

• XSR (If TO = 31 and DBCR[TRAP] = '1').

Programming Note
This instruction is inserted into the execution stream by a debugger to implement breakpoints or trace
markers, and is not typically used by application code. Using TO = '0' or TG = '1' allows the user to “mark”
or “tag” regions of code during simulation or when collecting debug traces to collect information that can be
consumed to analyze hardware test coverage or PPE code coverage. Collecting only these mark and
marktag records in the PPE debug trace allows for collection of longer traces by effectively compressing
trace information into the just the code flow that led to the scenario of interest.

Architecture Note
The PPE 42 tw instruction only implements a subset of the instruction functionality defined in the Power
ISA User Instruction Set Architecture. The behavior of the PPE 42 tw is generally consistent with the Power

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 249 of 288

ISA Book III-E architecture, although PPE 42 implements a modification of the Book III-E debugging
infrastructure.

On PPE 42, bit 31 (now named TG) was reserved. When TG=0, PPE 42 & 42X only implements the
unconditional form of tw (all instruction bits 6:10 set to all '0' or all '1'). Any other form of the tw instruction
will cause an illegal instruction exception. For consistency and future compatibility PPE 42 requires that RA
and RB denote valid PPE 42 GPR numbers, even though the GPR contents have no effect on the behavior
of the instruction. tw instructions with invalid RA or RB fields are reported as illegal instructions, not as tw
instructions.

On PPE 42X, when TG = 1 is set, the RA and RB fields may contain any value, i.e. RA and RB are not
required to denote valid GPR numbers.

Extended Mnemonics
Unconditional debug trap instruction, to insert a breakpoint as defined by DBCR[TRAP]:

trap (equivalent to: tw 31, 0, 0 with TG=0)

twu X, Y (equivalent to: tw 31, X, Y with TG=0)

where X and Y are valid GPR numbers, used to provide encoded information in the EDR for code
workarounds and facilitate debug of detected error conditions when the code halts the PPE.

Unconditional debug mark instruction, executed as a no-op that puts a marker into the debug trace:

mark X, Y (equivalent to: tw 0, X, Y with TG=0)

where X and Y are valid GPR numbers, used to provide encoded information in the instruction stream for
debug or code flow analysis.

Unconditional debug mark tag instruction, executed as a no-op that puts a marker into the debug trace:

marktag A (equivalent to: tw (A/1024), (A/32)^x'1F', A^x'1F' with TG=1)

similar to mark except it supports only a single parameter, which can specify a value from 0 to x'7FFF',
used to provide encoded information in the instruction stream for debug or code flow analysis.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 250 of 288

9.4.104 wrtee

Write External Enable

wrtee RS

0 5 6 10 11 20 21 30 31

31 RS 131

(MSR)16 ← (RS)16

If the processor is not halted then
If a pending interrupt is enabled then

NIA ← Address of highest priority interrupt
(SRR0)0:29 ← ((CIA) + 4)0:29

(SRR1) ← (MSR)
(MSR) ← (MSR) modified by the taking of the interrupt

The MSR[EE] (bit 16) is set to the value of bit 16 of register RS. If the processor is halted, that is, if the
wrtee instruction is being single-stepped or rammed, then no other state change occurs (other than the
normal update of the IAR during single-stepping). The following description covers the case that the
processor is not halted.

If the new MSR value enables one or more pending interrupts, then the highest priority interrupt is taken.
The value placed into SRR0 by the interrupt processing mechanism is the address of the instruction that
would have been executed next had the interrupt not occurred (that is, the address of the instruction
following wrtee), the MSR is placed into SRR1 and the MSR is then modified by the taking of the interrupt
as described in section 4, Interrupts and Exceptions.

Note that if the processor executes wrtee, then by definition MSR[WE] is not set and the processor
continues executing instructions.

Restrictions
The register RS must be defined in the PPE 42 core architecture, otherwise an illegal instruction exception
occurs.

Registers Altered
• MSR

Architecture Note
This instruction is part of the Power ISA Operating Architecture Environment – Embedded (Book III-E).

The PPE 42 architecture guarantees that wrtee is fully executed prior to fetching the subsequent
instruction. This means that if the effect of wrtee is to unmask an interrupt, the next instruction executed
after the wrtee will be the instruction at the associated interrupt vector address.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 251 of 288

Programming Note
This instruction is used to provide atomic update of MSR[EE]. Typical usage is:

mfmsr Rn # Save EE in Rn[16]
wrteei 0 # Turn off EE
• # Code with EE disabled
•
•
wrtee Rn #Restore EE without affecting any MSR changes that occurred in
 #the disabled code

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 252 of 288

9.4.105 wrteei

Write External Enable Immediate

wrteei E

0 5 6 15 16 20 21 30 31

31 E 163

(MSR)16 ← E

If the processor is not halted then
If a pending interrupt is enabled then

NIA ← Address of highest priority interrupt
(SRR0)0:29 ← ((CIA) + 4)0:29

(SRR1) ← (MSR)
(MSR) ← (MSR) modified by the taking of the interrupt

The MSR[EE] (bit 16) is set to the value of bit 16 of the instruction. If the processor is halted, that is, if the
wrteei instruction is being single-stepped or rammed, then no other state change occurs. The following
description covers the case that the processor is not halted.

If the new MSR value enables one or more pending interrupts, then the highest priority interrupt is taken.
The value placed into SRR0 by the interrupt processing mechanism is the address of the instruction that
would have been executed next had the interrupt not occurred (that is, the address of the instruction
following wrteei), the MSR is placed into SRR1 and the MSR is then modified by the taking of the interrupt
as described in section 4, Interrupts and Exceptions.

Note that if the processor executes wrteei, then by definition MSR[WE] is not set and the processor
continues executing instructions.

Registers Altered
• MSR

Architecture Note
This instruction is part of the Power ISA Operating Architecture Environment – Embedded (Book III-E).

The PPE 42 architecture guarantees that wrteei is fully executed prior to fetching the subsequent
instruction. This means that if the effect of wrteei is to unmask an interrupt, the next instruction executed
after the wrteei will be the instruction at the associated interrupt vector address.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 253 of 288

Programming Note
This instruction is used to provide atomic update of MSR[EE]. Typical usage is:

mfmsr Rn # Save EE in Rn[16]
wrteei 0 # Turn off EE
• # Code with EE disabled
•
•
wrtee Rn #Restore EE without affecting any MSR changes that occurred in
 #the disabled code

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 254 of 288

9.4.106 xor

XOR

xor RA, RS, RB Rc = '0'
xor. RA, RS, RB Rc = '1'

0 5 6 10 11 15 16 20 21 30 31

31 RS RA RB 316 Rc

(RA) ← (RS) (RB)⊕

The contents of register RS are XORed with the contents of register RB. The result is placed into register
RA.

Restrictions
The registers RS, RA and RB must be defined in the PPE 42 core architecture, otherwise an illegal
instruction exception occurs.

Registers Altered
• RA

• CR[CR0]LT, GT, EQ, SO if Rc contains a ‘1’

Architecture Note
This instruction is part of the Power ISA User Instruction Set Architecture.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 255 of 288

9.4.107 xori

XOR Immediate

xori RA, RS, UI

0 5 6 10 11 15 16 31

26 RS RA UI

(RA) ← (RS) (⊕ 160 || UI)

The UI field is extended to 32 bits by concatenating 16 0-bits on its left. The contents of register RS are
XORed with the extended UI field. The result is placed into register RA.

Restrictions
The registers RS and RA must be defined in the PPE 42 core architecture, otherwise an illegal instruction
exception occurs.

Registers Altered
• RA

Architecture Note
This instruction is part of the Power ISA User Instruction Set Architecture.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 256 of 288

9.4.108 xoris

XOR Immediate Shifted

xoris RA, RS, UI

0 5 6 10 11 15 16 31

27 RS RA UI

(RA) ← (RS) (UI || ⊕ 160)

The UI field is extended to 32 bits by concatenating 16 0-bits on its right. The contents of register RS are
XORed with the extended UI field. The result is placed into register RA.

Restrictions
The registers RS and RA must be defined in the PPE 42 core architecture, otherwise an illegal instruction
exception occurs.

Registers Altered
• RA

Architecture Note
This instruction is part of the Power ISA User Instruction Set Architecture.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 257 of 288

9.5 Instruction Set Mnemonics List
The following table contains the PPE 42 core instruction set, including required extended mnemonics. A short
functional description is included for each mnemonic, as well as the instruction operands and notation. All
mnemonics are listed alphabetically, without regard to whether the mnemonic is realized in hardware or
software. When an instruction supports multiple hardware mnemonics (for example, b, ba, bl, bla are all forms
of b), the instruction is alphabetized under the root form. The hardware instructions are described in detail in
Alphabetical Instruction Listing which is also alphabetized under the root form.

Table 1.97: PPE 42 Instruction Syntax Summary

Mnemonic Operands Function
 Other

Registers
Changed

Difference
from PowerPC

405-S ISA*

add

add.

addo

addo.

RT, RA, RB
Add (RA) to (RB).
Place result in RT.

CR[CR0]

XER[SO, OV]

CR[CR0]
XER[SO, OV]

addc

addc.

addco

addco.

RT, RA, RB
Add (RA) to (RB).
Place result in RT.
Place carry-out in XER[CA].

CR[CR0]

XER[SO, OV]

CR[CR0]
XER[SO, OV]

adde

adde.

addeo

addeo.

RT, RA, RB
Add XER[CA], (RA), (RB).
Place result in RT.
Place carry-out in XER[CA].

CR[CR0]

XER[SO, OV]

CR[CR0]
XER[SO, OV]

addi RT, RA, IM
Add EXTS(IM) to (RA|0).
Place result in RT.

addic

addic.

RT, RA, IM
Add EXTS(IM) to (RA|0).
Place result in RT.
Place carry-out in XER[CA].

CR[CR0]

addis RT, RA, IM
Add (IM || 160) to (RA|0).
Place result in RT.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 258 of 288

Mnemonic Operands Function
 Other

Registers
Changed

Difference
from PowerPC

405-S ISA*

addme

addme.

addmeo

addmeo.

RT, RA
Add XER[CA], (RA), (-1).
Place result in RT.
Place carry-out in XER[CA].

CR[CR0]

XER[SO, OV]

CR[CR0]
XER[SO, OV]

addze

addze.

addzeo

addzeo.

RT, RA
Add XER[CA] to (RA).
Place result in RT.
Place carry-out in XER[CA].

CR[CR0]

XER[SO, OV]

CR[CR0]
XER[SO, OV]

and

and.
RA, RS, RB

AND (RS) with (RB).
Place result in RA.

CR[CR0]

andc

andc.
RA, RS, RB

AND (RS) with ¬(RB).
Place result in RA.

CR[CR0]

andi. RA, RS, IM
AND (RS) with (160 || IM).
Place result in RA.

CR[CR0]

andis. RA, RS, IM
AND (RS) with (IM || 160).
Place result in RA.

CR[CR0]

b

ba

bl

bla

target

Branch unconditional relative.

LI ← (target – CIA)
6:29

NIA ← CIA + EXTS(LI || 20)

Branch unconditional absolute.

LI ← target6:29

NIA ← EXTS(LI || 20)

Branch unconditional relative.

LI ← (target – CIA)
6:29

NIA ← CIA + EXTS(LI || 20)

(LR) ← CIA +
4.

Branch unconditional absolute.

LI ← target6:29

NIA ← EXTS(LI || 20)

(LR) ← CIA +
4.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 259 of 288

Mnemonic Operands Function
 Other

Registers
Changed

Difference
from PowerPC

405-S ISA*

bc

bca

bcl

bcla

BO, BI, target

Branch conditional relative.

BD ← (target – CIA)16:29

NIA ← CIA + EXTS(BD || 20)

CTR if BO2 =

‘0’.

Branch conditional absolute.

BD ← target
16:29

NIA ← EXTS(BD || 20)

CTR if BO2 =

‘0’.

Branch conditional relative.

BD ← (target – CIA)16:29

NIA ← CIA + EXTS(BD || 20)

CTR if BO2 =

‘0’.

(LR) ← CIA +
4.

Branch conditional absolute.

BD ← target
16:29

NIA ← EXTS(BD || 20)

CTR if BO2 =

‘0’.

(LR) ← CIA +
4.

BI < 4
(CR0 only)

bcctr

bcctrl

BO, BI

Branch conditional to address in CTR.
Using (CTR) at exit from instruction,

NIA ← CTR0:29 || 20.

CTR if BO2 =

‘0’.

CTR if BO2 =

‘0’.

(LR) ← CIA +
4.

BI < 4
(CR0 only)

bclr

bclrl

bctr

bctrl

BO, BI

BO, BI

Branch conditional to address in LR.
Using (LR) at entry to instruction,

NIA ← LR0:29 || 20.

CTR if BO2 =

‘0’.

CTR if BO2 =

‘0’.

(LR) ← CIA +
4.

Branch unconditionally to address in CTR.
Extended mnemonic for bcctr 20,0

Extended mnemonic for bcctrl 20,0 (LR) ← CIA +
4.

BI < 4
(CR0 only)

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 260 of 288

Mnemonic Operands Function
 Other

Registers
Changed

Difference
from PowerPC

405-S ISA*

bdnz

bdnza

bdnzl

bdnzla

bdnzlr

bdnzlrl

target

target

Decrement CTR.

Branch if CTR ≠ ‘0’. Extended mnemonic for bc 16,0,target

Extended mnemonic for bca 16,0,target

Extended mnemonic for bcl 16,0,target (LR) ← CIA +
4.

Extended mnemonic for bcla 16,0,target (LR) ← CIA +
4.

Decrement CTR.

Branch if CTR ≠ ‘0’ to address in LR. Extended
mnemonic for bclr 16,0

Extended mnemonic for bclrl 16,0 (LR) ← CIA +
4.

bdnzf
bdnzfa
bdnzfl
bdnzfla
bdnzflr
bdnzflrl
bdnzt
bdnzta
bdnztl
bdnztla
bdnztlr
bdnztlrl

cr_bit
NOT REQUIRED
Not generally useful extended mnemonic.

cr_bit < 4
(CR0 only)

bdz

bdza

bdzl

bdzla

bdzlr

bdzlrl

target

target

Decrement CTR.
Branch if CTR = ‘0’. Extended mnemonic for bc
18,0,target

Extended mnemonic for bca 18,0,target

Extended mnemonic for bcl 18,0,target (LR) ← CIA +
4.

Extended mnemonic for bcla 18,0,target (LR) ← CIA +
4.

Decrement CTR.
Branch if CTR = ‘0’ to address in LR. Extended
mnemonic for bclr 18,0

Extended mnemonic for bclrl 18,0 (LR) ← CIA +
4.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 261 of 288

Mnemonic Operands Function
 Other

Registers
Changed

Difference
from PowerPC

405-S ISA*

bdzf
bdzfa
bdzfl

bdzfla
bdzflr
bdzflrl
bdzt
bdzta
bdztl

bdztla
bdztlr
bdztlrl

cr_bit
NOT REQUIRED
Not generally useful extended mnemonic.

cr_bit < 4
(CR0 only)

beq

beqa

beql

beqla

[0,] target

Branch if equal.
Extended mnemonic for bc 12,2,target

Extended mnemonic for bca 12,2,target

Extended mnemonic for bcl 12,2,target (LR) ← CIA +
4.

Extended mnemonic for bcla 12,2,target (LR) ← CIA +
4.

CR0 only

beqctr

beqctrl

[0]

Branch if equal to address in CTR.
Extended mnemonic for bcctr 12,2

Extended mnemonic for bcctrl 12,2 (LR) ← CIA +
4.

CR0 only

beqlr

beqlrl

[0]

Branch if equal to address in LR.
Extended mnemonic for bclr 12,2

Extended mnemonic for bclrl 12,2 (LR) ← CIA +
4.

CR0 only

bf
bfa
bfl

bfla
bfctr
bfctrl
bflr
bflrl

cr_bit
NOT REQUIRED
Not generally useful extended mnemonic.

cr_bit < 4
(CR0 only)

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 262 of 288

Mnemonic Operands Function
 Other

Registers
Changed

Difference
from PowerPC

405-S ISA*

bge

bgea

bgel

bgela

[0,] target

Branch if greater than or equal.
Extended mnemonic for bc 4,0,target

Extended mnemonic for bca 4,0,target

Extended mnemonic for bcl 4,40,target (LR) ← CIA +
4.

Extended mnemonic for bcla 4,0,target (LR) ← CIA +
4.

CR0 only

bgectr

bgectrl

[0]

Branch if greater than or equal to address in CTR.
Extended mnemonic for bcctr 4,0

Extended mnemonic for bcctrl 4,0 (LR) ← CIA +
4.

CR0 only

bgelr

bgelrl

[0]

Branch if greater than or equal to address in LR.
Extended mnemonic for bclr 4,0

Extended mnemonic for bclrl 4, 0 (LR) ← CIA +
4.

CR0 only

bgt

bgta

bgtl

bgtla

[0,] target

Branch if greater than.
Extended mnemonic for bc 12,1,target

Extended mnemonic for bca 12,1,target

Extended mnemonic for bcl 12,1,target (LR) ← CIA +
4.

Extended mnemonic for bcla 12,1,target (LR) ← CIA +
4.

CR0 only

bgtctr

bgtctrl

[0]

Branch if greater than to address in CTR.
Extended mnemonic for bcctr 12,1

Extended mnemonic for bcctrl 12,1 (LR) ← CIA +
4.

CR0 only

bgtlr

bgtlrl

[0]

Branch if greater than to address in LR.
Extended mnemonic for bclr 12,1

Extended mnemonic for bclrl 12,1 (LR) ← CIA +
4.

CR0 only

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 263 of 288

Mnemonic Operands Function
 Other

Registers
Changed

Difference
from PowerPC

405-S ISA*

ble

blea

blel

blela

[0,] target

Branch if less than or equal.
Extended mnemonic for bc 4,1,target

Extended mnemonic for bca 4,1,target

Extended mnemonic for bcl 4,1,target (LR) ← CIA +
4.

Extended mnemonic for bcla 4,1,target (LR) ← CIA +
4.

CR0 only

blectr

blectrl

[0]

Branch if less than or equal to address in CTR.
Extended mnemonic for bcctr 4,1

Extended mnemonic for bcctrl 4,1 (LR) ← CIA +
4.

CR0 only

blelr

blelrl

blr

blrl

[0]

Branch if less than or equal to address in LR.
Extended mnemonic for bclr 4,1

Extended mnemonic for bclrl 4,1 (LR) ← CIA +
4.

CR0 only

Branch unconditionally to address in LR. Extended
mnemonic for bclr 20,0

Extended mnemonic for bclrl 20,0 (LR) ← CIA +
4.

blt

blta

bltl

bltla

[0,] target

Branch if less than.
Extended mnemonic for bc 12,0,target

Extended mnemonic for bca 12,0,target

Extended mnemonic for bcl 12,0,target (LR) ← CIA +
4.

Extended mnemonic for bcla 12,0,target (LR) ← CIA +
4.

CR0 only

bltctr

bltctrl

[0]

Branch if less than to address in CTR.
Extended mnemonic for bcctr 12,0

Extended mnemonic for bcctrl 12,0 (LR) ← CIA +
4.

CR0 only

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 264 of 288

Mnemonic Operands Function
 Other

Registers
Changed

Difference
from PowerPC

405-S ISA*

bltlr

bltlrl

[0]

Branch if less than to address in LR.
Extended mnemonic for bclr 12,0

Extended mnemonic for bclrl 12,0 (LR) ← CIA +
4.

CR0 only

bne

bnea

bnel

bnela

[0,] target

Branch if not equal.
Extended mnemonic for bc 4,2,target

Extended mnemonic for bca 4,2,target

Extended mnemonic for bcl 4,2,target (LR) ← CIA +
4.

Extended mnemonic for bcla 4,2,target (LR) ← CIA +
4.

CR0 only

bnectr

bnectrl

[0]

Branch if not equal to address in CTR.
Extended mnemonic for bcctr 4,2

Extended mnemonic for bcctrl 4,2 (LR) ← CIA +
4.

CR0 only

bnelr

bnelrl

[0]

Branch if not equal to address in LR.
Extended mnemonic for bclr 4,2

Extended mnemonic for bclrl 4,2 (LR) ← CIA +
4.

CR0 only

bng

bnga

bngl

bngla

[0,] target

Branch if not greater than.
Extended mnemonic for bc 4,1,target

Extended mnemonic for bca 4,1,target

Extended mnemonic for bcl 4,1,target (LR) ← CIA +
4.

Extended mnemonic for bcla 4,1,target (LR) ← CIA +
4.

CR0 only

bngctr

bngctrl

[0]

Branch if not greater than to address in CTR.
Extended mnemonic for bcctr 4,1

Extended mnemonic for bcctrl 4,1 (LR) ← CIA +
4.

CR0 only

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 265 of 288

Mnemonic Operands Function
 Other

Registers
Changed

Difference
from PowerPC

405-S ISA*

bnglr

bnglrl

[0]

Branch if not greater than to address in LR.
Extended mnemonic for bclr 4,1

Extended mnemonic for bclrl 4,1 (LR) ← CIA +
4.

CR0 only

bnl

bnla

bnll

bnlla

[0,] target

Branch if not less than.
Extended mnemonic for bc 4,0,target

Extended mnemonic for bca 4,0,target

Extended mnemonic for bcl 4,0,target (LR) ← CIA +
4.

Extended mnemonic for bcla 4,0,target (LR) ← CIA +
4.

CR0 only

bnlctr

bnlctrl

[0]

Branch if not less than to address in CTR.
Extended mnemonic for bcctr 4,0

Extended mnemonic for bcctrl 4,0 (LR) ← CIA +
4.

CR0 only

bnllr

bnllrl

[0]

Branch if not less than to address in LR.
Extended mnemonic for bclr 4,0

Extended mnemonic for bclrl 4,0 (LR) ← CIA +
4.

CR0 only

bns

bnsa

bnsl

bnsla

[0,] target

Branch if not summary overflow.
Extended mnemonic for bc 4,3,target

Extended mnemonic for bca 4,3,target

Extended mnemonic for bcl 4,3,target (LR) ← CIA +
4.

Extended mnemonic for bcla 4,3,target (LR) ← CIA +
4.

CR0 only

bnsctr

bnsctrl

[0]

Branch if not summary overflow to address in CTR.
Extended mnemonic for bcctr 4,3

Extended mnemonic for bcctrl 4,3 (LR) ← CIA +
4.

CR0 only

bnslr

bnslrl

[0]

Branch if not summary overflow to address in LR.
Extended mnemonic for bclr 4,3

Extended mnemonic for bclrl 4,3 (LR) ← CIA +
4.

CR0 only

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 266 of 288

Mnemonic Operands Function
 Other

Registers
Changed

Difference
from PowerPC

405-S ISA*

bnu
bnua
bnul
bnula
bnuctr
bnuctrl
bnulr
bnulrl

[0]
NOT REQUIRED
Not generally useful extended mnemonic.

CR0 only

bso

bsoa

bsol

bsola

[0,] target

Branch if summary overflow.
Extended mnemonic for bc 12,3,target

Extended mnemonic for bca 12,3,target

Extended mnemonic for bcl 12,3,target (LR) ← CIA +
4.

Extended mnemonic for bcla 12,3,target (LR) ← CIA +
4.

CR0 only

bsoctr

bsoctrl

[0]

Branch if summary overflow to address in CTR.
Extended mnemonic for bcctr 12,3

Extended mnemonic for bcctrl 12,3 (LR) ← CIA +
4.

CR0 only

bsolr

bsolrl

[0]

Branch if summary overflow to address in LR.
Extended mnemonic for bclr 12,3

Extended mnemonic for bclrl 12,3 (LR) ← CIA +
4.

CR0 only

bt
bta
btl

btla
btctr
btctrl
btlr
btlrl

[0]
NOT REQUIRED
Not generally useful extended mnemonic.

cr_bit < 4
(CR0 only)

bb0w

bb0wl

RA, RB,
target

Fused compare bit test and branch if not set.
Branch if the bit in (RA) as selected by (RB) is zero.
Extended mnemonic for bnbw[l] 1, RA, RB, target

CR0

CR0

(LR) ← CIA +
4.

New for
PPE 42

bb0wi

bb0wil

RA, BNX,
target

Fused compare bit test and branch if not set.
Branch if the bit in (RA) as selected by (RB) is zero.
Extended mnemonic for bnbwi[l] 1, RA, BNX, target

CR0

CR0

(LR) ← CIA +
4.

New for
PPE 42

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 267 of 288

Mnemonic Operands Function
 Other

Registers
Changed

Difference
from PowerPC

405-S ISA*

bb1w

bb1wl

RA, RB,
target

Fused compare bit test and branch if set.
Branch if the bit in (RA) as selected by (RB) is one.
Extended mnemonic for bnbw[l] 0, RA, RB, target

CR0

CR0

(LR) ← CIA +
4.

New for
PPE 42

bb1wi

bb1wil

RA, BNX,
target

Fused compare bit test and branch if set.
Branch if the bit in (RA) as selected by BNX is one.
Extended mnemonic for bnbwi[l] 0, RA, BNX, target

CR0

CR0

(LR) ← CIA +
4.

New for
PPE 42

bnbw

bnbwl

PX, RA, RB,
target

Fused compare bit test (using register) and branch.
Branch if the bit in (RA) as selected by (RB) is the
inverse of the value provided by PX. CR[CR0] is updated
as if the instruction being executed were rlwinm. Rx, RA,
0, MB, ME where MB = ME = (RB)

27:31
, without the

update of Rx.

CR0

CR0

(LR) ← CIA +
4.

New for
PPE 42

bnbwi

bnbwil

PX, RA,
BNX, target

Fused compare bit test (using immediate) and branch.
Branch if the bit in (RA) as selected by BNX is the
inverse of the value provided by PX. CR[CR0] is updated
as if the instruction being executed were rlwinm. Rx, Ra,
0, BNX, BNX without the update of Rx.

CR0

CR0

(LR) ← CIA +
4.

New for
PPE 42

bwgez

bwgezl

RA, target
Extended Mnemonics for fused compare and branch if
RA is greater than or equal to zero. Equivalent to
cmpwibc[l] 0, 0, RA, 0, target (LR) ← CIA +

4.

New for
PPE 42

bwgtz

bwgtzl

RA, target
Extended Mnemonics for fused compare and branch if
RA is greater than zero. Equivalent to
cmpwibc[l] 1, 1, RA, 0, target (LR) ← CIA +

4.

New for
PPE 42

bwlez

bwlezl

RA, target
Extended Mnemonics for fused compare and branch if
RA is less than or equal to zero. Equivalent to
cmpwibc[l] 0, 1, RA, 0, target (LR) ← CIA +

4.

New for
PPE 42

bwltz

bwltzl

RA, target
Extended Mnemonics for fused compare and branch if
RA is less than zero. Equivalent to
cmpwibc[l] 1, 0, RA, 0, target (LR) ← CIA +

4.

New for
PPE 42

bwnz

bwnzl

RA, target
Extended Mnemonics for fused compare and branch if
RA is not equal to zero. Equivalent to
cmpwibc[l] 0, 2, RA, 0, target (LR) ← CIA +

4.

New for
PPE 42

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 268 of 288

Mnemonic Operands Function
 Other

Registers
Changed

Difference
from PowerPC

405-S ISA*

bwz

bwzl

RA, target
Extended Mnemonics for fused compare and branch if
RA is equal to zero. Equivalent to
cmpwibc[l] 1, 2, RA, 0, target (LR) ← CIA +

4.

New for
PPE 42

bun
buna
bunl
bunla
bunctr
bunctrl
bunlr
bunlrl

[0]
NOT REQUIRED
Not generally useful extended mnemonic.

CR0 only

clrbw. RA, RB

Clear bit in RA whose index is contained in (RB).
Note this is only available as a “dot-form” since CR
always gets updated. Extended mnemonic for
clrbwbz RA, RB, $ + 4

CR0
New for
PPE 42

clrbwi. RA, BNX

Clear bit in RA whose index is contained in BNX.
Note this is only available as a “dot-form” since CR
always gets updated. Extended mnemonic for
clrbwbz RA, RB, $ + 4

CR0
New for
PPE 42

clrbwbz

clrbwbzl

RA, RB,
target

Fused clear bit and branch on zero result.
Clear the bit in (RA) as selected by (RB).
Branch if the result in (RA) = 0.
Extended mnemonic for clrbwbc 1, RA, RB, target

CR0

CR0

(LR) ← CIA +
4.

New for
PPE 42

clrbwibz

clrbwibzl

RA, BNX,
target

Fused clear bit and branch on zero result.
Clear the bit in (RA) as selected by BNX.
Branch if the result in (RA) = 0.
Extended mnemonic for clrbwibc 1, RA, BNX, target

CR0

CR0

(LR) ← CIA +
4.

New for
PPE 42

clrbwbnz

clrbwbnzl

RA, RB,
target

Fused clear bit and branch on non-zero result.
Clear the bit in (RA) as selected by (RB).
Branch if the result in (RA) ≠ 0.
Extended mnemonic for clrbwbc 0, RA, RB, target

CR0

CR0

(LR) ← CIA +
4.

New for
PPE 42

clrbwibnz

clrbwibnzl

RA, BNX,
target

Fused clear bit and branch on non-zero result.
Clear the bit in (RA) as selected by BNX.
Branch if the result in (RA) ≠ 0.
Extended mnemonic for clrbwibc 0, RA, BNX, target

CR0

CR0

(LR) ← CIA +
4.

New for
PPE 42

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 269 of 288

Mnemonic Operands Function
 Other

Registers
Changed

Difference
from PowerPC

405-S ISA*

clrbwbc

clrbwbcl

PX, RA, RB,
target

Fused clear bit and branch on result test.
Clear the bit in (RA) as selected by (RB).
Branch if the result in (RA) = 0 when PX=1.
Branch if the result in (RA) ≠ 0 when PX=0.
CR[CR0] is updated as if the instruction being executed
were
rlwinm. RA, RB, 0, MB, ME
where MB = ((RB)

27:31
 + 1) % 31,

 and ME = ((RB)
27:31

 – 1) % 31.

CR0

CR0

(LR) ← CIA +
4.

New for
PPE 42

clrbwibc

clrbwibcl

PX, RA,
BNX, target

Fused clear bit and branch on result test.
Clear the bit in (RA) as selected by BNX.
Branch if the result in (RA) = 0 when PX=1.
Branch if the result in (RA) ≠ 0 when PX=0.
CR[CR0] is updated as if the instruction being executed
were
rlwinm. RA, RA, 0, (BNX + 1) % 32, (BNX – 1) % 32.

CR0

CR0

(LR) ← CIA +
4.

New for
PPE 42

clrlwi

clrlwi.

RA, RS, n

Clear left immediate. (n < 32)

(RA)0:n−1 ← n0
Extended mnemonic for rlwinm RA,RS,0,n,31

Extended mnemonic for rlwinm. RA,RS,0,n,31 CR[CR0]

clrlslwi

clrlslwi.

RA, RS, b, n

Clear left and shift left immediate.

(n ≤ b < 32)

(RA)b−n:31−n ← (RS)b:31

(RA)32−n:31 ← n0

(RA)0:b−n−1 ← b−n0

Extended mnemonic for rlwinm RA,RS,n,b−n,31−n

Extended mnemonic for rlwinm. RA,RS,n,b−n,31−n CR[CR0]

clrrwi

clrrwi.

RA, RS, n

Clear right immediate. (n < 32)

(RA)32−n:31 ← n0

Extended mnemonic for rlwinm RA,RS,0,0,31−n

Extended mnemonic for rlwinm. RA,RS,0,0,31−n CR[CR0]

cmp 0, 0, RA, RB
Compare (RA) to (RB), signed.

Results in CR0. Note: only word compare.

CR0 only

cmpi 0, 0, RA, IM
Compare (RA) to EXTS(IM), signed.

Results in CR0. Note: only word compare.

CR0 only

cmpl 0, 0, RA, RB
Compare (RA) to (RB), unsigned.

Results in CR0. Note: only word compare.

CR0 only

cmpli 0, 0, RA, IM
Compare (RA) to (160 || IM), unsigned.

Results in CR0. Note: only word compare.
CR0 only

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 270 of 288

Mnemonic Operands Function
 Other

Registers
Changed

Difference
from PowerPC

405-S ISA*

cmplw [0,] RA, RB
Compare Logical Word.
Extended mnemonic for cmpl 0,0,RA,RB

CR0 only

cmplwbc

cmplwbcl

PX, BIX, RA,
RB, target

Fused Compare Logical Word and Branch Conditional.
Compare (RA) to (RB), unsigned. Results in CR0 as per
the cmplw instruction.
If BIX=3, update (RA) ← (RA) – (RB) and branch based
on equality of the operation (if PX = CR[CR0

2
]).

Otherwise, RA is unchanged and the BIX field specifies
which bit of, and the PX field specifies the polarity of, the
CR[CR0] bit used to determine if the branch is taken or
untaken.

(LR) ← CIA +
4.

New for
PPE 42

cmplwblt
cmplwble
cmplwbgt
cmplwbge
cmplwbeq
cmplwbne

cmplwbltl
cmplwblel
cmplwbgtl
cmplwbgel
cmplwbeql
cmplwbnel

RA, RB,
target

Extended Mnemonics for fused compare logical word and
branch, without modifying RA. The mnemonic
determines the value of PX and BIX to indicate when the
branch should be taken.
cmplwbc[l] PX, BIX, RA, RB, target

(LR) ← CIA +
4.

New for
PPE 42

cmplwi [0,] RA, IM
Compare Logical Word Immediate.
Extended mnemonic for cmpli 0,0,RA,IM

CR0 only

cmpw [0,] RA, RB
Compare Word.
Extended mnemonic for cmp 0,0,RA,RB

CR0 only

cmpwbc

cmpwbcl

PX, BIX, RA,
RB, target

Fused Compare Word and Branch Conditional.
Identical to cmplwbc[l] except with a signed compare.

Note: if BIX=3, RA is updated. (LR) ← CIA +
4.

New for
PPE 42

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 271 of 288

Mnemonic Operands Function
 Other

Registers
Changed

Difference
from PowerPC

405-S ISA*

cmpwblt
cmpwble
cmpwbgt
cmpwbge
cmpwbeq
cmpwbne

cmpwbltl
cmpwblel
cmpwbgtl
cmpwbgel
cmpwbeql
cmpwbnel

RA, RB,
target

Extended Mnemonics for fused compare word and
branch, without modifying RA. The mnemonic
determines the value of PX and BIX to indicate when the
branch should be taken.
cmpwbc[l] PX, BIX, RA, RB, target

(LR) ← CIA +
4.

New for
PPE 42

cmpwi [0,] RA, IM
Compare Word Immediate.
Extended mnemonic for cmpi 0,0,RA,IM

CR0 only

cmpwibc

cmpwibcl

PX, BIX, RA,
UIX, target

Fused Compare Word Immediate and Branch
Conditional.
Identical to cmpwbc[l] except with an immediate
compare value.

Note: if BIX=3, RA is updated.

(LR) ← CIA +
4.

New for
PPE 42

cmpwiblt
cmpwible
cmpwibgt
cmpwibge
cmpwibeq
cmpwibne

cmpwibltl
cmpwiblel
cmpwibgtl
cmpwibgel
cmpwibeql
cmpwibnel

RA, UIX,
target

Extended Mnemonics for fused compare word immediate
and branch, without modifying RA. The mnemonic
determines the value of PX and BIX to indicate when the
branch should be taken.
cmpwibc[l] PX, BIX, RA, RB, target (LR) ← CIA +

4.

New for
PPE 42

cntlzw

cntlzw.

RA, RS
Count leading zeros in RS.
Place result in RA.

CR[CR0]

crand
crandc

crclr
creqv

crmove
crnand
crnor
crnot
cror

crorc
crset
crxor

NOT IMPLEMENTED
No CR-logical operations (CR0 only)

X

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 272 of 288

Mnemonic Operands Function
 Other

Registers
Changed

Difference
from PowerPC

405-S ISA*

dcba NOT IMPLEMENTED X

dcbf RA, RB
Flush (store, then invalidate) the data cache block which
contains the effective address (RA|0) + (RB).

dcbi RA, RB
Invalidate the data cache block which contains the
effective address (RA|0) + (RB).

dcbq RA, RB
Query the data cache block which contains the effective
address (RA|0) + (RB).

NEW for
PPE 42

dcbst NOT IMPLEMENTED X

dcbt RA, RB
Load the data cache block which contains the effective
address (RA|0) + (RB).

dcbtst NOT IMPLEMENTED X

dcbz RA, RB
Zero the data cache block which contains the effective
address (RA|0) + (RB).

dccci NOT IMPLEMENTED X

dcread
NOT IMPLEMENTED
PPE 42 provides dcbq instead.

X

divw
divw.
divwo
divwo.
divwu
divwu.
divwuo
divwuo.

NOT IMPLEMENTED X

eieio
NOT IMPLEMENTED
Emulate with sync instruction

E

eqv

eqv.

RA, RS, RB
Equivalence of (RS) with (RB).

(RA) ← ¬((RS) ⊕ (RB))
CR[CR0]

extlwi

extlwi.

RA, RS, n, b

Extract and left justify immediate. (n > 0)

(RA)0:n−1 ← (RS)b:b+n−1

(RA)n:31 ← 32−n0

Extended mnemonic for rlwinm RA,RS,b,0,n−1

Extended mnemonic for rlwinm. RA,RS,b,0,n−1 CR[CR0]

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 273 of 288

Mnemonic Operands Function
 Other

Registers
Changed

Difference
from PowerPC

405-S ISA*

extrwi

extrwi.

RA, RS, n, b

Extract and right justify immediate. (n > 0)

(RA)32−n:31 ← (RS)b:b+n−1

(RA)0:31−n ← 32−n0

Extended mnemonic for rlwinm RA,RS,b+n,32−n,31

Extended mnemonic for rlwinm. RA,RS,b+n,32−n,31 CR[CR0]

extsb

extsb.

RA, RS Extend the sign of byte (RS)
24:31

. Place the result in RA.

CR[CR0]

extsh

extsh.

RA, RS
Extend the sign of halfword (RS)

16:31
. Place the result in

RA.
CR[CR0]

icbi
icbt
iccci

icread

NOT IMPLEMENTED
PPE 42 usage does not need instruction cache
management.

X

inslwi

inslwi.

RA, RS, n, b

Insert from left immediate. (n > 0)

(RA)b:b+n−1 ← (RS)0:n−1 Extended mnemonic for rlwimi

RA,RS,32−b,b,b+n−1

Extended mnemonic for rlwimi. RA,RS,32−b,b,b+n−1 CR[CR0]

insrwi

insrwi.

RA, RS, n, b

Insert from right immediate. (n > 0)

(RA)b:b+n−1 ← (RS)32−n:31 Extended mnemonic for

rlwimi RA,RS,32−b−n,b,b+n−1

Extended mnemonic for rlwimi. RA,RS,32−b−n,b,b+n−1 CR[CR0]

isync
NOT IMPLEMENTED
Not needed since PPE 42 is not superscalar or pipelined

X

la RT, D(RA)

Load address. (RA ≠ ‘0’)
D is an offset from a base address that is assumed to be
(RA).

(RT) ← (RA) + EXTS(D)
Extended mnemonic for addi RT,RA,D

lbz RT, D(RA)

Load byte from EA = (RA|0) + EXTS(D) and pad left with
zeroes,

(RT) ← 240 || MS(EA,1).

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 274 of 288

Mnemonic Operands Function
 Other

Registers
Changed

Difference
from PowerPC

405-S ISA*

lbzu RT, D(RA)

Load byte from EA = (RA|0) + EXTS(D) and pad left with
zeroes,

(RT) ← 240 || MS(EA,1).
Update the base address,

(RA) ← EA.

lbzux
NOT IMPLEMENTED
Emulate with addi followed by lbzx

E

lbzx RT, RA, RB

Load byte from EA = (RA|0) + (RB) and pad left with
zeroes,

(RT) ← 240 || MS(EA,1).

lcxu RT, D(RA)

PPE 42: NOT IMPLEMENTED
PPE 42X:
Load word from EA = (RA) + EXTS(D) and place in EDR.
Load 10 doublewords from memory between (RA) and EA
into VDR(30), VDR(28), (SRR0 || SRR1, XER || CTR,
VDR(9,7,5,3,0), CR || SPRG0).
Load word from EA+4 into LR.
Update the base address, (RA) ← EA.

Extended mnemonic for lsku RT, D∨4(RA)

Not supported
by PPE 42. New

for
PPE 42X

lha
lhau

lhaux
lhax

NOT IMPLEMENTED
Emulate with lhz form followed by extsh

E

lhbrx NOT IMPLEMENTED X

lhz RT, D(RA)

Load halfword from EA = (RA|0) + EXTS(D) and pad left
with zeroes,

(RT) ← 160 || MS(EA,2).

lhzu RT, D(RA)

Load halfword from EA = (RA|0) + EXTS(D) and pad left
with zeroes,

(RT) ← 160 || MS(EA,2).
Update the base address,

(RA) ← EA.

lhzux
NOT IMPLEMENTED
Emulate with addi followed by lhzx

E

lhzx RT, RA, RB
Load halfword from EA = (RA|0) + (RB) and pad left with
zeroes, (RT) ← 160 || MS(EA,2).

li RT, IM

Load immediate.

(RT) ← EXTS(IM)
Extended mnemonic for addi RT,0,value

lis RT, IM

Load immediate shifted.

(RT) ← (IM || 160)
Extended mnemonic for addis RT,0,value

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 275 of 288

Mnemonic Operands Function
 Other

Registers
Changed

Difference
from PowerPC

405-S ISA*

lmw NOT IMPLEMENTED
Emulate with lvd and lwz combination.

E

lswi
lswx

NOT IMPLEMENTED
Can be emulated with lvd, lwz, lhz, and lbz
combination.

E

lsku RT,D(RA)

PPE 42: NOT IMPLEMENTED
PPE 42X:
If D 4 = 4 then perform function described by ∧ lcxtu else
Load word from EA = (RA) + EXTS(D) and place in EDR.
Load 0,1, or 2 doublewords, dependent on the value of D,
from memory between (RA) and EA into VDR(30) and/or
VDR(28).
Load word from EA+4 into LR.
Update the base address, (RA) ← EA.

Not supported
by PPE 42. New

for
PPE 42X

lvd DT, D(RA)
Load doubleword from EA = (RA|0) + EXTS(D) and
place in DT, (DT) ← MS(EA,8).

New for
PPE 42

lvdu DT, D(RA)

Load doubleword from EA = (RA|0) + EXTS(D) and
place in DT, (DT) ← MS(EA,8).
Update the base address, (RA) ← EA.

New for
PPE 42

lvdx DT, RA, RB
Load doubleword from EA = (RA|0) + (RB) and place in
DT, (DT) ← MS(EA,8).

New for
PPE 42

lwarx
NOT IMPLEMENTED
PPE 42 usage does not require multi-processor
synchronization (reservation)

X

lwbrx NOT IMPLEMENTED X

lwz RT, D(RA)
Load word from EA = (RA|0) + EXTS(D) and place in RT,
(RT) ← MS(EA,4).

lwzu RT, D(RA)

Load word from EA = (RA|0) + EXTS(D) and place in RT,
(RT) ← MS(EA,4).

Update the base address, (RA) ← EA.

lwzux
NOT IMPLEMENTED
Emulated with addi followed by lwzx.

E

lwzx RT, RA, RB
Load word from EA = (RA|0) + (RB) and place in RT,
(RT) ← MS(EA,4).

macchw[o][s][u][.]
machhw[o][s][u][.]
maclhw[o][s][u][.]

NOT IMPLEMENTED X

mark RA, RB
Debug Mark when instruction bit 31 =0.
Extended mnemonic for tw 0,RA,RB

ISR, EDR with
program
interrupt when
RA or RB are
invalid.

Places Mark in
the debug trace
containing the
content of RA
and RB fields

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 276 of 288

Mnemonic Operands Function
 Other

Registers
Changed

Difference
from PowerPC

405-S ISA*

marktag A
Debug Mark Tag when instruction bit 31 = 1.
Extended mnemonic for tw (A/1024), (A/32)^x'1F', A^x'1F'

Places Mark in
the debug trace
containing the
content of the

TO, RA and RB
fields

mcrf
NOT IMPLEMENTED
Not needed, CR0 field only.

X

mcrxr NOT IMPLEMENTED X

mfcr RT
Move from CR to RT,

(RT) ← (CR).

mfdbsr
mfdcr

NOT IMPLEMENTED X

mfmsr RT
Move from MSR to RT,

(RT) ← (MSR).

mfdacr
mfdbcr
mfdec
mfedr
mfisr

mfivpr

RT

Move from special purpose register (SPR) SPRN.

Extended mnemonic for mfspr RT,SPRN

See Special Purpose Registers for listing of valid SPRN
values.

NEW for
PPE 42

mfctr
mflr

mfpid
mfpvr

mfsprg0
mfsrr0
mfsrr1
mftcr
mftsr
mfxer

RT

mfspr RT, SPRN
Move from SPR to RT,

(RT) ← (SPR(SPRN)).

mftb
mftbu

NOT IMPLEMENTED X

mr

mr.

RT, RS

Move register.

(RT) ← (RS)
Extended mnemonic for or RT,RS,RS

Extended mnemonic for or. RT,RS,RS CR[CR0]

mtcr
NOT IMPLEMENTED
Use legacy mtcrf form instead.

X

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 277 of 288

Mnemonic Operands Function
 Other

Registers
Changed

Difference
from PowerPC

405-S ISA*

mtcrf 128, RS

The first operand is the FXM field, which determines
which bits to move into CR. FXM0 must be ‘1’ to select

CR0, all other bits must be ‘0’. Therefore the first
operand must always be 128.

FXM = 128
(0x80) to select

only CR0

mtcr0 RS
Move bits 0:3 of RS into CR0
Extended mnemonic for mtcrf 128, RS
Note: mtocrf form is not supported.

Only CR0

mtdbsr
mtdcr

NOT IMPLEMENTED X

mtmsr RS
Move to MSR from RS,

(MSR) ← (RS).

mtdacr
mtdbcr
mtdec
mtedr
mtisr

mtivpr

RS

Move to SPR SPRN. Extended mnemonic for mtspr
SPRN,RS

See Special Purpose Registers for listing of valid SPRN
values.

NEW for
PPE 42

mtctr
mtlr

mtsprg0
mtsrr0
mtsrr1
mttcr
mttsr
mtxer

RS

mtspr SPRN, RS
Move to SPR from RS,

(SPR(SPRN)) ← (RS).

mulchw
mulchw.
mulchwu
mulchwu.
mulhhw
mulhhw.
mulhhwu
mulhhwu.

NOT IMPLEMENTED
Must compute with combination of mullhw and other
arithmetics.

X

mullhw

mullhw.
RT, RA, RB (RT)0:31 ← (RA)16:31 x (RB)16:31 signed

CR[CR0]

mullhwu

mullhwu.
RT, RA, RB (RT)16:31 ← (RA)16:31 x (RB)16:31 unsigned

CR[CR0]

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 278 of 288

Mnemonic Operands Function
 Other

Registers
Changed

Difference
from PowerPC

405-S ISA*

mulhw
mulhw.
mulhwu
mulhwu.

NOT IMPLEMENTED
Must compute with combination of mullhw and other
arithmetics.

X

mulli
RT, RA, IM

PPE 42: NOT IMPLEMENTED
Must compute with combination of mullhw and other
arithmetics.

PPE 42X:
(RT)0:31 ← least significant word (RA)0:31 x EXTS(IM)
(signed or unsigned)

X

mullw
mullw.

mullwo
mullwo.

RT, RA, RB

PPE 42: NOT IMPLEMENTED
Must compute with combination of mullhw and other
arithmetics.

PPE 42X:
(RT)0:31 ← least significant word (RA)0:31 x (RB)0:31
(signed or unsigned)

CR[CR0]

X

PPE 42: NOT IMPLEMENTED
Must compute with combination of mullhw and other
arithmetics.

PPE 42X:
(RT)0:31 ← least significant word (RA)0:31 x (RB)0:31
(signed or unsigned)

CR[CR0]
XER[SO, OV]

X

nand

nand.
RA, RS, RB

NAND (RS) with (RB).
Place result in RA.

CR[CR0]

neg

neg.

nego

nego.

RT, RA
Negative (twos complement) of RA.

(RT) ← ¬(RA) + 1

CR[CR0]

XER[SO, OV]

CR[CR0]
XER[SO, OV]

nmacchw[o][s][u][.]
nmachhw[o][s][u][.]
nmachlw[o][s][u][.]*

NOT IMPLEMENTED X

nop
Preferred no-op, triggers optimizations based on no-ops.
Extended mnemonic for ori 0,0,0

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 279 of 288

Mnemonic Operands Function
 Other

Registers
Changed

Difference
from PowerPC

405-S ISA*

nor

nor.
RA, RS, RB

NOR (RS) with (RB).
Place result in RA.

CR[CR0]

not

not.

RA, RS

Complement register.

(RA) ← ¬(RS)
Extended mnemonic for nor RA,RS,RS

Extended mnemonic for nor. RA,RS,RS CR[CR0]

or

or.
RA, RS, RB

OR (RS) with (RB).
Place result in RA.

CR[CR0]

orc

orc.

RA, RS, RB
OR (RS) with ¬(RB).
Place result in RA.

CR[CR0]

ori RA, RS, IM
OR (RS) with (160 || IM).
Place result in RA.

oris RA, RS, IM
OR (RS) with (IM || 160).
Place result in RA.

rfci NOT IMPLEMENTED X

rfi

Return from interrupt.

(PC) ← (SRR0).

(MSR) ← (SRR1).

rldicl

rldicl.

DA, DS, SH,
MB

PPE 42: NOT IMPLEMENTED
Must be emulated using using multiple 32-bit rotates
PPE 42X:Rotate left doubleword immediate, then clear left

r ← ROTL((DS), SH) m ← MASK(MB, 63)
(DA) ← r ∧ m

CR[CR0]

Not supported
by PPE 42.

New for
PPE 42X.

rldicr

rldicr.

DA, DS, SH,
ME

PPE 42: NOT IMPLEMENTED
Must be emulated using using multiple 32-bit rotates
PPE 42X:

r ← ROTL((DS), SH) m ← MASK(0, ME)
(DA) ← r ∧ m

CR[CR0]

Not supported
by PPE 42.

New for
PPE 42X.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 280 of 288

Mnemonic Operands Function
 Other

Registers
Changed

Difference
from PowerPC

405-S ISA*

rldimi

rldimi.

DA, DS, SH,
MB

PPE 42: NOT IMPLEMENTED
Must be emulated using using multiple 32-bit rotates
PPE 42X:
Rotate left doubleword immediate, then insert according to
mask.

r ← ROTL((DS), SH) m ← MASK(MB, ¬SH)
(DA) ← (r ∧ m) ∨ ((DA) ∧ ¬m)

CR[CR0]

Not supported
by PPE 42.

New for
PPE 42X.

rlwimi

rlwimi.

RA, RS, SH,
MB, ME

Rotate left word immediate, then insert according to mask.

r ← ROTL((RS), SH) m ← MASK(MB, ME)
(RA) ← (r ∧ m) ∨ ((RA) ∧ ¬m) CR[CR0]

rlwinm

rlwinm.

RA, RS, SH,
MB, ME

Rotate left word immediate, then AND with mask.

r ← ROTL((RS), SH) m ← MASK(MB, ME) (RA) ← (r ∧ m)
CR[CR0]

rlwnm

rlwnm.

RA, RS, RB,
MB, ME

Rotate left word, then AND with mask.

r ← ROTL((RS), (RB)27:31) m ← MASK(MB, ME) (RA) ←
(r ∧ m)

CR[CR0]

rotlw

rotlw.

RA, RS, RB

Rotate left.

(RA) ← ROTL((RS), (RB)27:31)
Extended mnemonic for rlwnm RA,RS,RB,0,31

Extended mnemonic for rlwnm. RA,RS,RB,0,31 CR[CR0]

rotlwi

rotlwi.

RA, RS, n

Rotate left immediate.

(RA) ← ROTL((RS), n)
Extended mnemonic for rlwinm RA,RS,n,0,31

Extended mnemonic for rlwinm. RA,RS,n,0,31 CR[CR0]

rotrwi

rotrwi.

RA, RS, n

Rotate right immediate.

(RA) ← ROTL((RS), 32−n)

Extended mnemonic for rlwinm RA,RS,32−n,0,31

Extended mnemonic for rlwinm. RA,RS,32−n,0,31 CR[CR0]

sc NOT IMPLEMENTED X

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 281 of 288

Mnemonic Operands Function
 Other

Registers
Changed

Difference
from PowerPC

405-S ISA*

slvd

slvd.

DA, DS, RB

PPE 42: NOT IMPLEMENTED
Must be emulated using using multiple 32-bit shifts
PPE 42X:

Shift left (DS) by (RB)27:31. n ← (RB)27:31.

r ← ROTL((DS), 64 – n).

if (RB)26 = 0 then m ← MASK(0, 63-n) else m ← 640.

(DA) ← r ∧ m.

CR[CR0]

Not supported
by PPE 42.

New for
PPE 42X.

slw

slw.

RA, RS, RB

Shift left (RS) by (RB)27:31. n ← (RB)27:31. r ←
ROTL((RS), n).

if (RB)26 = ‘0’ then m ← MASK(0, 31 – n) else m ← 320.

(RA) ← r ∧ m. CR[CR0]

slwi

slwi.

RA, RS, n

Shift left immediate. (n < 32)

(RA)0:31−n ← (RS)n:31

(RA)32−n:31 ← n0

Extended mnemonic for rlwinm RA,RS,n,0,31−n

Extended mnemonic for rlwinm. RA,RS,n,0,31−n CR[CR0]

sraw

sraw.

RA, RS, RB

Shift right algebraic (RS) by (RB)27:31. n ← (RB)27:31.

r← ROTL((RS), 32 – n).

if (RB)26 = ‘0’ then m ← MASK(n, 31) else m ← 320.

s← (RS)0.

(RA) ← (r ∧ m) ∨ (32s ∧ ¬m).

XER[CA] ← s ∧ ((r ∧ ¬m) ≠ ‘0’).

CR[CR0]

srawi

srawi.

RA, RS, SH

Shift right algebraic (RS) by SH. n ← SH. r ←
ROTL((RS), 32 – n). m ← MASK(n, 31). s ← (RS)0.

(RA) ← (r ∧ m) ∨ (32s ∧ ¬m).

XER[CA] ← s ∧ ((r ∧ ¬m)≠‘0’).
CR[CR0]

srvd

srvd.

DA, DS, RB

PPE 42: NOT IMPLEMENTED
Must be emulated using using muliple 32-bit shifts
PPE 42X:

Shift right (DS) by (RB)27:31. n ← (RB)27:31.

r ← ROTL((DS), 64 – n).

if (RB)26 = 0 then m ← MASK(n, 63) else m ← 640.

(DA) ← r ∧ m.

CR[CR0]

Not supported
by PPE 42.

New for
PPE 42X

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 282 of 288

Mnemonic Operands Function
 Other

Registers
Changed

Difference
from PowerPC

405-S ISA*

srw

srw.

RA, RS, RB

Shift right (RS) by (RB)
27:31

. n ← (RB)
27:31

.

r ← ROTL((RS), 32 – n).

if (RB)26 = 0 then m ← MASK(n, 31) else m ← 320.

(RA) ← r ∧ m. CR[CR0]

srwi

srwi.

RA, RS, n

Shift right immediate. (n < 32)

(RA)n:31 ← (RS)0:31−n (RA)0:n−1 ← n0

Extended mnemonic for rlwinm RA,RS,32−n,n,31

Extended mnemonic for rlwinm. RA,RS,32−n,n,31 CR[CR0]

stb RS, D(RA)
Store byte (RS)

24:31
 in memory at EA = (RA|0) +

EXTS(D).

stbu RS, D(RA)

Store byte (RS)
24:31

 in memory at EA = (RA|0) +

EXTS(D).

Update the base address,

(RA) ← EA.

stbux
NOT IMPLEMENTED
Emulate with addi followed by stbx

E

stbx RS, RA, RB Store byte (RS)
24:31

 in memory at EA = (RA|0) + (RB).

sth RS, D(RA)
Store halfword (RS)16:31 in memory at EA = (RA|0) +

EXTS(D).

sthbrx NOT IMPLEMENTED X

stcxu RS, DS(RA)

PPE 42: NOT IMPLEMENTED
PPE 42X:
EA ← (RA). Store LR into word at EA + 4.
Store 10 doublewords into memory between (RA) and EA =
(RA) + EXTS(D) from VDR(30), VDR(28), SRR0 || SRR1,
XER || CTR, VDR(9,7,5,3,0), and CR || SPRG0.
Store RS into word at (EA).
Update the base address, (RA) ← EA.

Extended mnemonic for stsku RS, DS∨4(RA)

Not supported by
PPE 42. New for

PPE 42X

sthu RS, D(RA)

Store halfword (RS)16:31 in memory at EA = (RA|0) +

EXTS(D).

Update the base address,

(RA) ← EA.

sthux
NOT IMPLEMENTED
Emulate with addi followed by sthx

E

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 283 of 288

Mnemonic Operands Function
 Other

Registers
Changed

Difference
from PowerPC

405-S ISA*

sthx RS, RA, RB Store halfword (RS)16:31 in memory at EA = (RA|0) + (RB).

stmw NOT IMPLEMENTED
Emulate with stvd and stw combination.

E

stswi
stswx

NOT IMPLEMENTED
Can be emulated with stvd, stw, sth, and stb
combination.

E

stsku RS, DS(RA)

PPE 42: NOT IMPLEMENTED
PPE 42X:

If D ∧ 4 = 4 then perform function described by stcxtu else

EA ← (RA). Store LR into word at EA + 4.
Store 0,1, or 2 doublewords, dependent on the value of D,
into memory between (RA) and EA = (RA) + EXTS(D) from
VDR(30), VDR(28), SRR0 || SRR1, XER || CTR,
VDR(9,7,5,3,0), and CR || SPRG0.
Store RS into word at (EA).
Update the base address, (RA) ← EA.

Not supported by
PPE 42. New for

PPE 42X

stvd DS, D(RA)
Store virtual doubleword (DS) in memory at EA = (RA|0) +
EXTS(D).

New for
PPE 42

stvdu DS, D(RA)

Store virtual doubleword (DS) in memory at EA = (RA|0) +
EXTS(D).

Update the base address, (RA) ← EA.

New for
PPE 42

stvdx DS, RA, RB
Store virtual doubleword (DS) in memory at EA = (RA|0)
+ (RB).

New for
PPE 42

stw RS, D(RA) Store word (RS) in memory at EA = (RA|0) + EXTS(D).

stwbrx NOT IMPLEMENTED X

stwcx.
NOT IMPLEMENTED
PPE 42 usage does not require multi-processor
synchronization (reservation)

X

stwu RS, D(RA)

Store word (RS) in memory at EA = (RA|0) + EXTS(D).
Update the base address,

(RA) ← EA.

stwux
NOT IMPLEMENTED
Emulate with addi followed by stwx

E

stwx RS, RA, RB Store word (RS) in memory at EA = (RA|0) + (RB).

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 284 of 288

Mnemonic Operands Function
 Other

Registers
Changed

Difference
from PowerPC

405-S ISA*

sub

sub.

subo

subo.

RT, RA, RB

Subtract (RB) from (RA).

(RT) ← ¬(RB) + (RA) + 1.
Extended mnemonic for subf RT,RB,RA

Extended mnemonic for subf. RT,RB,RA CR[CR0]

Extended mnemonic for subfo RT,RB,RA XER[SO, OV]

Extended mnemonic for subfo. RT,RB,RA
CR[CR0]
XER[SO, OV]

subc

subc.

subco

subco.

RT, RA, RB

Subtract (RB) from (RA).

(RT) ← ¬(RB) + (RA) + 1.
Place carry-out in XER[CA]. Extended mnemonic for
subfc RT,RB,RA

Extended mnemonic for subfc. RT,RB,RA CR[CR0]

Extended mnemonic for subfco RT,RB,RA XER[SO, OV]

Extended mnemonic for subfco. RT,RB,RA
CR[CR0]
XER[SO, OV]

subf

subf.

subfo

subfo.

RT, RA, RB
Subtract (RA) from (RB).

(RT) ← ¬(RA) + (RB) + 1.

CR[CR0]

XER[SO, OV]

CR[CR0]
XER[SO, OV]

subfc

subfc.

subfco

subfco.

RT, RA, RB

Subtract (RA) from (RB).

(RT) ← ¬(RA) + (RB) + 1.
Place carry-out in XER[CA].

CR[CR0]

XER[SO, OV]

CR[CR0]
XER[SO, OV]

subfe

subfe.

subfeo

subfeo.

RT, RA, RB
Subtract (RA) from (RB) with carry-in. (RT) ← ¬(RA) +
(RB) + XER[CA].
Place carry-out in XER[CA].

CR[CR0]

XER[SO, OV]

CR[CR0]
XER[SO, OV]

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 285 of 288

Mnemonic Operands Function
 Other

Registers
Changed

Difference
from PowerPC

405-S ISA*

subfic RT, RA, IM

Subtract (RA) from EXTS(IM).

(RT) ← ¬(RA) + EXTS(IM) + 1.
Place carry-out in XER[CA].

subfme

subfme.

subfmeo

subfmeo.

RT, RA, RB
Subtract (RA) from (–1) with carry-in. (RT) ← ¬(RA) + (–1)
+ XER[CA].
Place carry-out in XER[CA].

CR[CR0]

XER[SO, OV]

CR[CR0]
XER[SO, OV]

subfze

subfze.

subfzeo

subfzeo.

RT, RA, RB

Subtract (RA) from zero with carry-in.

(RT) ← ¬(RA) + XER[CA].
Place carry-out in XER[CA].

CR[CR0]

XER[SO, OV]

CR[CR0]
XER[SO, OV]

subi RT, RA, IM

Subtract EXTS(IM) from (RA|0).
Place result in RT.

Extended mnemonic for addi RT,RA,−IM

subic

subic.

RT, RA, IM

Subtract EXTS(IM) from (RA).
Place result in RT.
Place carry-out in XER[CA]. Extended mnemonic for addic
RT,RA,−IM

CR[CR0]

subis RT, RA, IM
Subtract (IM || 160) from (RA|0).
Place result in RT.

Extended mnemonic for addis RT,RA,−IM

subwbnz

subwbnzl

RA, RB,
target

Fused Subtract Word and Branch if Not Zero.
Extended mnemonic for:
cmpwbc[l] 0,3,RA, RB, target (LR) ← CIA +

4.

New for
PPE 42

subwbz

subwbzl

RA, RB,
target

Fused Subtract Word and Branch if Zero.
Extended mnemonic for:
cmpwbc[l] 1,3,RA, RB, target (LR) ← CIA +

4.

New for
PPE 42

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 286 of 288

Mnemonic Operands Function
 Other

Registers
Changed

Difference
from PowerPC

405-S ISA*

subwibnz

subwibnzl

RA, UIX,
target

Fused Subtract Word Immediate and Branch if Not Zero.
Extended mnemonic for:
cmpwibc[l] 0,3,RA, UIX, target (LR) ← CIA +

4.

New for
PPE 42

subwibz

subwibzl

RA, UIX,
target

Fused Subtract Word Immediate and Branch if Zero.
Extended mnemonic for:
cmpwibc[l] 1,3,RA, UIX, target (LR) ← CIA +

4.

New for
PPE 42

sync

Synchronization. All instructions that precede sync
complete before any instructions that follow sync begin.
When sync completes, all storage accesses initiated prior
to sync will have completed.

tlbia
tlbre

tlbrehi
tlbrelo
tlbsx
tlbsx.

tlbsync
tlbwe
tlbwehi
tlbwelo

NOT IMPLEMENTED X

trap
Trap unconditionally, with instruction bit 31 = 0.
Extended mnemonic for tw 31,0,0

tweq
twge
twgt
twle

twlge
twlgt
twlle
twllt

twlng
twlnl
twlt

twne
twng
twnl

NOT IMPLEMENTED
Extended mnemonics for conditional tw

X

tw TO, RA, RB

Requires instruction bit 31 = 0.

No-op with Debug mark when TO=0 or TG=1
else Trap exception is generated when TO=31, causing
either a program interrupt or a halt based on DBCR.
Other TO values cause program interrupt, unless TG=1.

XSR if
DBCR[TRAP]
= '1' and
TO=31

else ISR, EDR
with program
interrupt when
TO≠0 or when
RA or RB are
invalid.

Always
unconditional

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 287 of 288

Mnemonic Operands Function
 Other

Registers
Changed

Difference
from PowerPC

405-S ISA*

tweqi
twgei
twgti
twlei

twlgei
twlgti
twllei
twllti

twlngi
twlnli
twlti
twnei
twngi
twnli

NOT IMPLEMENTED
Extended mnemonics for conditional twi

X

twi NOT IMPLEMENTED X

twu RA, RB

Trap unconditionally.
Extended mnemonic for tw 31,RA,RB
Note: requires instruction bit 31 = 0.

XSR if
DBCR[TRAP]
= '1'

ISR, EDR with
program
interrupt when
RA or RB are
invalid.

wrtee RS Write value of RS
16

 to MSR[EE].

wrteei E Write value of E to MSR[EE].

xor

xor.

RA, RS, RB
XOR (RS) with (RB).
Place result in RA.

CR[CR0]

xori RA, RS, IM
XOR (RS) with (160 || IM).
Place result in RA.

xoris RA, RS, IM
XOR (RS) with (IM || 160).
Place result in RA.

* Notes:

X = Not implemented, no equivalent implementation in PPE 42.

E = Not implemented, can be perfectly emulated with two or more PPE 42 instructions.

Version 4.0

User's Manual

PPE 42 Embedded Processor Core

September 19, 2019 Page 288 of 288

	1 Overview
	1.1 Audience
	1.2 Notation

	2 Programming Model
	2.1 Registers
	2.1.1 Programmer Visible Registers
	2.1.2 Externally Visible Registers

	2.2 Interface Signals
	2.3 Privilege Levels
	2.4 Memory Organization and Addressing
	2.4.1 Data Types and Byte Ordering
	2.4.2 Alignment

	2.5 Instruction Processing
	2.6 Exception Processing
	2.7 Branch Processing
	2.7.1 Branch Target Addressing Options
	2.7.2 Conditional Branch Operations
	2.7.3 Fused Compare-Branch Operations

	2.8 Precise and Imprecise Memory Accesses
	2.9 Synchronization
	2.9.1 Synchronization and Storage Ordering
	2.9.2 Synchronization, Interrupts and Error Reporting

	2.10 Non-Maskable Interrupts
	2.11 Special-Purpose Registers
	2.11.1 Link Register – LR
	2.11.2 Count Register – CTR
	2.11.3 Condition Register – CR
	2.11.3.1 CR[CR0] Fields After Comparison Instructions
	2.11.3.2 CR[CR0] Fields After Update-Form Instructions
	2.11.3.3 mtcr0 and mfcr

	2.11.4 Fixed-Point Exception Register – XER
	2.11.5 Machine State Register – MSR
	2.11.5.1 Interrupt Processing and Control
	2.11.5.2 WAIT mode
	2.11.5.3 Imprecise Mode Enable
	2.11.5.4 SIB Error Reporting and Accumulation
	2.11.5.5 Low-Priority Mode
	2.11.5.6 Instance-Specific Control

	3 Initialization,Reset, and Starting Execution
	3.1 Initial State
	3.2 Reset Operations
	3.3 Core State Subsequent to a Reset Event
	3.4 Starting Instructions
	3.5 System Reset Interrupt Handler

	4 Interrupts and Exceptions
	4.1 Architectural Definitions and PPE 42 Behavior
	4.1.1 Interrupt Precision
	4.1.2 Asynchronous, Synchronous, and Machine Check Interrupts
	4.1.3 Interrupt Address Reporting

	4.2 Interrupt Vector Offsets
	4.3 Interrupt Handling
	4.3.1 Interrupt Masking
	4.3.2 Interrupt Priority
	4.3.3 Interrupt Processing
	4.3.4 Interrupt Halt Semantics
	4.3.5 Unmaskable Interrupt Promotion

	4.4 General Interrupt Handling Registers
	4.4.1 Machine State Register – MSR
	4.4.2 Save/Restore Registers 0 and 1 – SRR0/1
	4.4.3 Interrupt Vector Prefix Register – IVPR
	4.4.4 Interrupt Status Register – ISR
	4.4.5 Error Data Register – EDR

	4.5 Detailed Interrupt Descriptions
	4.5.1 Machine Check Interrupt – PPE 42 Vector x'000'; PPE 42X Vector x'020'
	4.5.1.1 Service Interface Bus (SIB) Error Reporting and Handling
	4.5.1.2 Instruction Machine Check Handling
	4.5.1.3 Data Machine Check Handling for Load-Type Operations
	4.5.1.4 Data Machine Check Handling for Store-type Operations
	4.5.1.5 Machine Checks Promoted from Other Unmaskable Interrupts

	4.5.2 System Reset Interrupt – Vector x'040'
	4.5.3 Data Storage Interrupt – Vector x'060'
	4.5.4 Instruction Storage Interrupt – Vector x'080'
	4.5.5 External Interrupt – Vector x'0A0'
	4.5.5.1 External Interrupt Recognition; Phantom Interrupt Avoidance

	4.5.6 Alignment Interrupt – Vector x'0C0'
	4.5.7 Program Interrupt – Vector x'0E0'
	4.5.8 Decrementer (DEC) Interrupt – Vector x'100'
	4.5.9 Fixed Interval Timer (FIT) Interrupt – Vector x'120'
	4.5.10 Watchdog Timer (WDT) Interrupt – Vector x'140'

	5 Timer Facilities
	5.1 The Decrementer (DEC)
	5.1.1 Using DEC as a Programmable Interval Timer
	5.1.2 Using DEC to Emulate a Timebase

	5.2 The Fixed Interval Timer (FIT)
	5.3 The Watchdog Timer (WDT)
	5.3.1 Implications of TSR[ENW]

	5.4 Debug Behavior
	5.5 Reset Behavior

	6 External Interface Registers
	7 Debugging
	7.1 External Debug Mode
	7.2 Processor Control
	7.3 Processor Status
	7.3.1 Status outputs
	7.3.1.1 Halted indication
	7.3.1.2 Watchdog Timeout indication
	7.3.1.3 Error indications

	7.4 Debug Registers
	7.4.1 DACR – Debug Address Compare Register
	7.4.2 DBCR – Debug Control Register
	7.4.3 EDR – Error Data Register
	7.4.4 ISR – Interrupt Status Register
	7.4.5 XCR – External Control Register
	7.4.6 XSR – External Status Register

	7.5 Debug Events
	7.5.1 Trap Events
	7.5.2 Instruction-Address Comparison Events
	7.5.3 Data-Address Comparison Events
	7.5.4 Zero Address Comparison
	7.5.5 Data Address Comparison and Alignment

	7.6 Halt Processing
	7.6.1 Definition of Halted
	7.6.2 Entering the Halted state
	7.6.3 Halt Conditions and Error indication
	7.6.4 Exiting the Halted state
	7.6.5 Halting and Synchronization

	7.7 Single-Stepping and Ramming
	7.7.1 Single-Stepping
	7.7.1.1 Single-stepping and Exceptions

	7.7.2 Ramming

	7.8 Debugging Procedures
	7.8.1 Basic Debugging Procedures
	7.8.1.1 Halting the Processor
	7.8.1.2 Force-Halting the Processor
	7.8.1.3 Clearing Debug Halt Status
	7.8.1.4 Resetting the Processor
	7.8.1.5 Restarting the Processor
	7.8.1.6 Single-Stepping an Instruction
	7.8.1.7 Ramming an Instruction
	7.8.1.8 Low-overhead Ramming
	7.8.1.9 Toggling XSR[TRH]

	7.8.2 Advanced Debugging Procedures
	7.8.2.1 Reading Status and IAR Contents Simultaneously
	7.8.2.2 Reading Status and SPRG0 Simultaneously
	7.8.2.3 Writing IR and SPRG0 Simultaneously
	7.8.2.4 Writing XCR and SPRG0 Simultaneously
	7.8.2.5 Writing XSR and IAR Simultaneously
	7.8.2.6 Reading CTR
	7.8.2.7 Reading SRR0 and LR Simultaneously
	7.8.2.8 Reading GPR pairs (VDRs) Simultaneously

	8 Register Summary
	8.1 Reserved Registers
	8.2 Reserved Fields
	8.3 General Purpose Registers
	8.4 Virtual Doubleword Registers
	8.5 Machine State Register and Condition Register
	8.6 Special Purpose Registers
	8.6.1 Using SPRs as Scratch Registers

	8.7 External Interface Registers
	8.8 Simultaneous Update
	8.9 Initialization and Reset
	8.10 Alphabetical Listing of PPE 42 Registers
	8.10.1 CR – Condition Register
	8.10.2 CTR – Count Register
	8.10.3 DACR – Debug Address Compare Register
	8.10.4 DBCR – Debug Control Register
	8.10.5 DEC – Decrementer
	8.10.6 EDR – Error Data Register
	8.10.7 IAR – Instruction Address Register
	8.10.8 IR – Instruction Register
	8.10.9 ISR – Interrupt Status Register
	8.10.10 IVPR – Interrupt Vector Prefix Register
	8.10.11 LR – Link Register
	8.10.12 MSR – Machine State Register
	8.10.13 PIR – Processor Identification Register
	8.10.14 PVR – Processor Version Register
	8.10.15 SPRG0 – SPR General 0
	8.10.16 SRR0 – Save Restore Register 0
	8.10.17 SRR1 – Save Restore Register 1
	8.10.18 TCR – Timer Control Register
	8.10.19 TSR – Timer Status Register
	8.10.20 XCR – External Control Register
	8.10.21 XER – Fixed Point Exception Register
	8.10.22 XSR – External Status Register

	9 Instruction Set
	9.1 Instruction Set Origin and Portability
	9.2 Rationale for the PPE 42 Instruction Set
	9.2.1 PPE 42X Added Instructions
	9.2.2 PPE 42 New Instructions
	9.2.3 PPE 42X New Instructions

	9.3 Instruction Formats
	9.3.1 PPE 42 Specific Instruction Format
	9.3.2 PPE 42X Specific Instruction Format

	9.4 Alphabetical Instruction Listing
	9.4.1 add
	9.4.2 addc
	9.4.3 adde
	9.4.4 addi
	9.4.5 addic
	9.4.6 addic.
	9.4.7 addis
	9.4.8 addme
	9.4.9 addze
	9.4.10 and
	9.4.11 andc
	9.4.12 andi.
	9.4.13 andis.
	9.4.14 b
	9.4.15 bc
	9.4.16 bcctr
	9.4.17 bclr
	9.4.18 bnbw
	9.4.19 bnbwi
	9.4.20 clrbwbc
	9.4.21 clrbwibc
	9.4.22 cmplw
	9.4.23 cmplwbc
	9.4.24 cmplwi
	9.4.25 cmpw
	9.4.26 cmpwbc
	9.4.27 cmpwi
	9.4.28 cmpwibc
	9.4.29 cntlzw
	9.4.30 dcbf
	9.4.31 dcbi
	9.4.32 dcbq
	9.4.33 dcbt
	9.4.34 dcbz
	9.4.35 eqv
	9.4.36 extsb
	9.4.37 extsh
	9.4.38 lbz
	9.4.39 lbzu
	9.4.40 lbzx
	9.4.41 lcxu
	9.4.42 lhz
	9.4.43 lhzu
	9.4.44 lhzx
	9.4.45 lsku
	9.4.46 lvd
	9.4.47 lvdu
	9.4.48 lvdx
	9.4.49 lwz
	9.4.50 lwzu
	9.4.51 lwzx
	9.4.52 mfcr
	9.4.53 mfmsr
	9.4.54 mfspr
	9.4.55 mtcr0
	9.4.56 mtmsr
	9.4.57 mtspr
	9.4.58 mullhw
	9.4.59 mullhwu
	9.4.60 mulli
	9.4.61 mullw
	9.4.62 nand
	9.4.63 neg
	9.4.64 nor
	9.4.65 or
	9.4.66 orc
	9.4.67 ori
	9.4.68 oris
	9.4.69 rfi
	9.4.70 rldicl
	9.4.71 rldicr
	9.4.72 rldimi
	9.4.73 rlwimi
	9.4.74 rlwinm
	9.4.75 rlwnm
	9.4.76 slvd
	9.4.77 slw
	9.4.78 sraw
	9.4.79 srawi
	9.4.80 srvd
	9.4.81 srw
	9.4.82 stb
	9.4.83 stbu
	9.4.84 stbx
	9.4.85 stcxu
	9.4.86 sth
	9.4.87 sthu
	9.4.88 sthx
	9.4.89 stsku
	9.4.90 stvd
	9.4.91 stvdu
	9.4.92 stvdx
	9.4.93 stw
	9.4.94 stwu
	9.4.95 stwx
	9.4.96 subf
	9.4.97 subfc
	9.4.98 subfe
	9.4.99 subfic
	9.4.100 subfme
	9.4.101 subfze
	9.4.102 sync
	9.4.103 tw
	9.4.104 wrtee
	9.4.105 wrteei
	9.4.106 xor
	9.4.107 xori
	9.4.108 xoris

	9.5 Instruction Set Mnemonics List

