
www.openpowerfoundation.org

http://openpowerfoundation.org
http://www.openpowerfoundation.org

OpenPOWER I/O Design Archi-
tecture

February 17, 2016 Revision 1.0.0

OpenPOWER Foundation ii
Workgroup Specification

Standard Track

OpenPOWER I/O Design Architecture: Version 2
Revision 1.0.0 (2016-02-17)
Copyright © 2016 OpenPOWER Foundation

All capitalized terms in the following text have the meanings assigned to them in the OpenPOWER Intellectual Property Rights Poli-
cy (the "OpenPOWER IPR Policy"). The full Policy may be found at the OpenPOWER website or are available upon request.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise ex-
plain it or assist in its implementation may be prepared, copied, published, and distributed, in whole or in part, without restriction of
any kind, provided that the above copyright notice and this section are included on all such copies and derivative works. Howev-
er, this document itself may not be modified in any way, including by removing the copyright notice or references to OpenPOWER,
except as needed for the purpose of developing any document or deliverable produced by an OpenPOWER Work Group (in which
case the rules applicable to copyrights, as set forth in the OpenPOWER IPR Policy, must be followed) or as required to translate it
into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OpenPOWER or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis AND TO THE MAXIMUM EXTENT PERMIT-
TED BY APPLICABLE LAW, THE OpenPOWER Foundation AS WELL AS THE AUTHORS AND DEVELOPERS OF THIS STAN-
DARDS FINAL DELIVERABLE OR OTHER DOCUMENT HEREBY DISCLAIM ALL OTHER WARRANTIES AND CONDITIONS,
EITHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING BUT NOT LIMITED TO, ANY IMPLIED WARRANTIES, DUTIES OR
CONDITIONS OF MERCHANTABILITY, OF FITNESS FOR A PARTICULAR PURPOSE, OF ACCURACY OR COMPLETENESS
OF RESPONSES, OF RESULTS, OF WORKMANLIKE EFFORT, OF LACK OF VIRUSES, OF LACK OF NEGLIGENCE OR NON-
INFRINGEMENT.

OpenPOWER, the OpenPOWER logo, and openpowerfoundation.org are trademarks or registered trademarks of OpenPOWER
Foundation, Inc., registered in many jurisdictions worldwide. Other company, product, and service names may be trademarks or ser-
vice marks of others.

This document is the workproduct of the OpenPOWER Foundation Hardware Architecture Workgroup.
Acknowledgement to members of the workgroup for their contributions

https://members.openpowerfoundation.org/document/dl/596

OpenPOWER I/O Design Archi-
tecture

February 17, 2016 Revision 1.0.0

OpenPOWER Foundation iii
Workgroup Specification

Standard Track

Table of Contents
Preface .. vi

1. Conventions .. vi
2. Document change history .. vi

1. About This Document .. 1
1.1. Purpose ... 1
1.2. Numbering Conventions .. 1
1.3. Reference Documentation ... 1
1.4. OpenPOWER Foundation Standards Track Work Product ... 1

2. Introduction .. 2
2.1. Conformance to this Specification ... 2
2.2. General Information .. 2

3. Design Specifics .. 6
3.1. High-Level Specifics .. 6
3.2. Lower-Level Details ... 6

A. Endpoint Partitioning .. 49
A.1. Endpoint Partitioning Overview ... 49
A.2. Endpoint Partitioning Functional Specifics ... 50

B. No-Translate Operation .. 57
B.1. No-Translate Example .. 58

C. Glossary .. 60
D. OpenPOWER Foundation overview ... 63

D.1. Foundation documentation .. 63
D.2. Technical resources .. 63
D.3. Contact the foundation ... 64

OpenPOWER I/O Design Archi-
tecture

February 17, 2016 Revision 1.0.0

OpenPOWER Foundation iv
Workgroup Specification

Standard Track

List of Figures
3.1. PE# Determination for DMA and Error Messages ... 9
3.2. PCIe Non-MSI DMA Operation Address Fields ... 15
3.3. DMA Operation High-Level Diagram - No Page Migration ... 16
3.4. I/O Address Validation and TCE Translation Implementation for 32-Bit DMA Addresses 19
3.5. I/O Address Validation and TCE Translation Implementation for 64-Bit DMA Addresses 21
3.6. Memory Migration Operation for a 64 KB Page and a 4 KB Page within the 64 KB Page 27
3.7. Source and Destination Page Address Creation for DMA to a Page Being Migrated 28
3.8. PCIe Normal DMA Operation for a Three-Level TCE Table ... 31
3.9. MSI Flow ... 37
3.10. Example Interrupt State Bit Flow ... 39
3.11. Example EOI Update Race ... 40
3.12. Example EOI Update Race Controlled with Generation Number Field 40
A.1. Example System Configurations: Partitionable Endpoint (PE) Definition 50
B.1. IODA2 TVE and PE# Determination ... 58
B.2. Example Physical Address Map with TCE Bypass Enabled for Some PEs 59

OpenPOWER I/O Design Archi-
tecture

February 17, 2016 Revision 1.0.0

OpenPOWER Foundation v
Workgroup Specification

Standard Track

List of Tables
3.1. RTE Definition ... 10
3.2. RTC Invalidate Register Definition ... 10
3.3. PELE-V Definition ... 10
3.4. Supported Errors for PCI Express Error Injectors .. 14
3.5. TVE Definition ... 23
3.6. TCE Definition ... 24
3.7. TCE Invalidate Register Definition ... 25
3.8. Migration Register Definition ... 30
3.9. DMA Read Sync Register ... 32
3.10. XIVE Definition for LSI Interrupts Only .. 33
3.11. ISE Definition for LSI Interrupts Only ... 34
3.12. MSI State Table .. 38
3.13. MSI IVE Definition ... 42
3.14. IVC Invalidate Register Definition .. 42
3.15. IVC Update Register Definition .. 43
3.16. FFI Definition ... 44
3.17. FFI Lock Definition .. 44
3.18. RBA Definition ... 46
3.19. PESE Definition ... 47
B.1. IODA2 No-Translate Operation ... 57

OpenPOWER I/O Design Archi-
tecture

February 17, 2016 Revision 1.0.0

OpenPOWER Foundation vi
Workgroup Specification

Standard Track

Preface
1. Conventions
The OpenPOWER Foundation documentation uses several typesetting conventions.

Notices
Notices take these forms:

Note

A handy tip or reminder.

Important

Something you must be aware of before proceeding.

Warning

Critical information about the risk of data loss or security issues.

Command prompts
$ prompt Any user, including the root user, can run commands that are prefixed with the $

prompt.

prompt The root user must run commands that are prefixed with the # prompt. You can also
prefix these commands with the sudo command, if available, to run them.

2. Document change history
This version of the guide replaces and obsoletes all earlier versions.

The following table describes the most recent changes:

Revision Date Summary of Changes

January 13, 2016 • Revision 1.0.0 - Workgroup Specification
• Clean-up markings and rev #.

Clean-up legal wording and added foundation info appendix

October 1, 2015 • Revision 09. - Public Review Draft
• Clean-up of typo/conversion errors.

August 21, 2015 • Revision 09. - Public Review Draft

April 23, 2015 • Creation based on IBM IODA2 Specification - revision 1.0
• Updates from Hardware Architecture WG review of original submission

OpenPOWER I/O Design Archi-
tecture

February 17, 2016 Revision 1.0.0

OpenPOWER Foundation 1
Workgroup Specification

Standard Track

1. About This Document
1.1. Purpose
The purpose of the I/O Design Architecture, version 2 (IODA2) specification is to describe the chip
architecture for key aspects of PCIe® based host bridge (PHB) designs for IBM® POWER8™ sys-
tems.

1.2. Numbering Conventions
Big-endian numbering of bytes and bits is used in this document unless otherwise indicated. In big-
endian systems, numbering of bits starts at 0 for the most significant bit and continues to the least
significant bit. Little-endian numbering might be implied by the bit-ordering sequence in figures or
text where the low-numbered bits are on the right. For example, [31:0] is little-endian ordering and
[0:31] is big-endian ordering.

1.3. Reference Documentation
For additional information, see IBM Power Architecture® Platform Requirements (PAPR).

1.4. OpenPOWER Foundation Standards Track
Work Product
This document is an OpenPOWER Foundation Standards Track Work Product, and is intended to
progress through these steps:

1. Work Group Specification Draft

2. Work Group Specification Public Review Draft

3. Work Group Specification

4. Candidate OpenPOWER Standard

5. OpenPOWER Standard

6. Approved Errata

OpenPOWER I/O Design Archi-
tecture

February 17, 2016 Revision 1.0.0

OpenPOWER Foundation 2
Workgroup Specification

Standard Track

2. Introduction
The purpose of the I/O Design Architecture, version 2 (IODA2) specification is to describe the chip
architecture for key aspects of PCIe®-based host bridge (PHB) designs for IBM® POWER8™ sys-
tems.

The following terminology is used in this document:

• The term “real” used in relationship to addresses means “processor real address.”

• The term “PCI” is used to describe the most recent versions of all forms of PCI® standards. Where
there are significant differences between individual PCI standards, the following terminology is
used to differentiate between the PCI® standards: conventional PCI®, PCI-X®, and PCI-Ex-
press®. For example, POWER8 implements PCIe Gen 3.

• The term “MSI” is used to refer to “MSI” and “MSI-X”, generically. Where there are differences, the
distinction is made in context.

• The term “implementation dependent” is used to refer to specifics beyond the scope of this archi-
tecture, which should be provided in the implementation’s specification.

For the definitions of more terms and acronyms used in this document, see the Appendix C, Glos-
sary [60].

2.1. Conformance to this Specification
Any implementation of this specification must adhere to the following set of numbered conformance
clauses to claim conformance to this specification (or any optional portion of it):

1. Hardware Requirement: The PCI host bridge (PHB) hardware must implement all the require-
ments specified as “Hardware Requirements” in this architecture, unless otherwise required by
the specific requirement.

2. Firmware Requirement: The platform firmware must implement all the requirements specified as
“Firmware Requirements” in this architecture, unless otherwise required by the specific require-
ment.

2.2. General Information
This section provides some general background on translation control entries (TCEs), message sig-
nalled interrupts (MSIs), enhanced I/O error handling (EEH), and direct memory access (DMA) or-
dering rules.

2.2.1. I/O Load/Store Address Space
 Load and Store instructions that are issued to addresses that target I/O adapter (IOA) memory or I/
O address ranges 1 are called memory mapped I/O (MMIO).

1There are three PCI address ranges: configuration, I/O, and memory. The I/O space is primarily for legacy material; its use is discouraged by
PCI-X and later versions of the architecture in favor of the memory address space. This document primarily addresses the memory address space,
as used by both MMIO and DMA. Some reference are made to the I/O space as it relates to MMIO.

OpenPOWER I/O Design Archi-
tecture

February 17, 2016 Revision 1.0.0

OpenPOWER Foundation 3
Workgroup Specification

Standard Track

2.2.2. TCEs
Translation control entries (TCEs) are to I/O what page table entries (PTEs) are to the processor.
That is, they translate from one address space to another. In particular, TCEs translate from an I/O
bus memory address to a physical system memory address. The TCEs perform the following func-
tions:

• Expand the I/O address space addressing for IOAs that cannot access all of the system memory
address space. For example, a 32-bit IOA must have its address expanded for systems with more
than 4 GB of system memory. Otherwise, such an IOA has to DMA its data to and from a buffer in
the lower address range. The processor has to move the data from and to the real target page in
memory.

• Provide indirection in addressing:

—For logical partitioning (LPAR), it is necessary to hide the real address of the memory from the
partitions.

—For dynamic logical partitioning (DLPAR) and memory migration, and for virtual partition memo-
ry, it is necessary to be able to move the physical memory transparently under the IOA from one
location to another.

—For virtual I/O, the address of the memory in the client partition must be hidden from the server
partition.

—Assist some IOAs by providing hardware scatter-gather. This provides the IOA with a contigu-
ous address space instead of one that is broken at every 4K page boundary. This can actually
improve the performance of some IOAs if the platform can perform the TCE manipulation faster
than the IOA can process scatter/gather lists.

• Provide extra protection from IOA hardware, microcode, and device driver bugs by providing read-
only and write-only (as well as read-write) protection through two control bits in the TCE.

2.2.3. MSIs
The PCI architecture allows signalling of interrupts in either of two ways:

• Through a signal pin. 2 This is called a level-signalled interrupt, or LSI.

• Through a message. This is called a message-signalled interrupt, or MSI. 3

MSIs have the advantage of pushing an IOA’s DMA data that it has previously written ahead of
it. Therefore, when the interrupt is presented, the device driver (DD) knows that the data is in the
processor’s coherency domain. That is, it is immediately available.

There is no such guarantee with an LSI. Therefore, when the DD sees an LSI, it must perform a
Load instruction targeted to its IOA. Then, it must wait for the Load data to return before being as-
sured that the previously DMAed data is available to be used. This Load is a performance penalty. In
addition, PCIe allows only four LSIs per PHB, which severely restricts usability.

2For PCIe, the LSI interrupts are not signalled by a physical pin (sometimes called out-of-band signalling), but rather through a logical pin that is
shipped across the PCIe fabric as a packet (sometimes called in-band signalling).
3The “message” for MSI is really a DMA write operation to a special address with special data, as far as the IOA and the I/O fabric are con-
cerned.

OpenPOWER I/O Design Archi-
tecture

February 17, 2016 Revision 1.0.0

OpenPOWER Foundation 4
Workgroup Specification

Standard Track

LSIs are defined by this architecture, but MSI and MSI-X are the focus. PCI defines:

• For base MSI: Up to 32 interrupts per function of the IOA. The IOA can have up to eight functions,
giving up to 256 interrupts per IOA.

• For MSI-X: Up to 2K interrupts per function of the IOA. The IOA can have up to eight functions,
giving up to 16K interrupts per IOA.

However, this flexibility comes at a cost in the scalability of the interrupt controller structure. This
architecture addresses the scalability issue by placing the interrupt vector structures and interrupt
state in system memory. It has firmware assist with the interrupt state machine during end of inter-
rupt (EOI) processing and with the processing of missed interrupts while an MSI is disabled.

2.2.4. EEH
Enhanced error handling (EEH) is a powerful technology developed by IBM to prevent I/O errors
from propagating to the system and causing unrecoverable errors, which generally bring down the
operating system. EEH is a required technology for logically partitioned systems, so that an error in
the I/O subsystem of one partition does not affect the other LPAR partitions.

EEH stops operations to and from an IOA when an error is detected with that IOA. This stopped con-
dition is called the Stopped state 4. The Stopped state has the following key requirements:

• The IOA function must be prevented from completing the I/O operation in error so that the re-
quester of the I/O operation does not use bad data.

• The Stopped state must appear to a DD to be isolated to just that DD. This implies extra hardware
or firmware to support the continuation of the I/O operation of other IOA functions when an error is
generated from another IOA function.

Exceptions:

In the following cases, the DDs for these functions must coordinate any Stopped state recovery:

• For a plug-in adapter where the EEH functionality is implemented above the physical plug-in connector and where the plug-in
adapter has multiple IOA functions on it under a PCI-to-PCI bridge

• For an IOA that has multiple functions on it, and for which there exist multiple DDs (potentially one per function)

• Software (DD or above) must not be able to introduce an error that can cause a Stopped state of
other IOA functions. That is, it must not introduce a stopped-state error to IOA functions other than
the ones controlled by the DD.

—Software might, for example, improperly set up the TCEs for an I/O operation or pass the wrong
address to its IOA. This can cause an access to a TCE that is invalid. (The TCE is not set up,
or the TCE is set to read-only for a write or to a PCI atomic operation or write-only for a read or
PCI atomic operation.) This causes a Stopped state.

—It is acceptable for a platform hardware error, but not a DD or IOA function hardware error, to af-
fect multiple IOA functions. However, the recovery from such an error must be transparent to the
DD. That is, the platform makes it appear to all IOA functions that they have encountered the er-
ror condition themselves.

4Sometimes this state is also referred to as the “freeze” state or condition. In addition, the IOA Stopped state can be broken down into the MMIO
Stopped state and the DMA Stopped state. In this document, if “MMIO” or “DMA” is not specified along with “Stopped state”, the reference is
either to the general concept or to both the MMIO and DMA Stopped states.

OpenPOWER I/O Design Archi-
tecture

February 17, 2016 Revision 1.0.0

OpenPOWER Foundation 5
Workgroup Specification

Standard Track

• The DD must be able to detect the Stopped state condition.

• The DD (and, therefore, the platform) must be able to remove its IOA function from the MMIO
Stopped state for MMIO operations, independent of other IOA functions.

—The capturing of fault information for problem determination must be allowed after the Stopped
state condition occurs.

• The DD (and, therefore, the platform) must be able to remove the IOA function from the DMA
Stopped state for DMA operations independent of other IOA functions. The DD is responsible for
bringing its IOA function to a known good state before removing it from the DMA Stopped state,
to avoid the possibility of improper operations from its IOA function. In many cases, the DD needs
to bring its IOA function back to the reset state or as close to the reset state as possible, and then
restart any incomplete operations.

• The platform must not pass along MSI interrupts from the IOA function while the IOA function is in
the DMA Stopped state.

OpenPOWER I/O Design Archi-
tecture

February 17, 2016 Revision 1.0.0

OpenPOWER Foundation 6
Workgroup Specification

Standard Track

3. Design Specifics
This chapter describes applicable design specifics as they apply to IBM POWER8™ systems. The
designs in this chapter are not the only designs that meet the Power Architecture Platform Require-
ments (PAPR). However, to enable design sharing and to prevent firmware impacts from one imple-
mentation to the next, the designs in this chapter are more or less “fixed” unless negotiation between
the hardware and firmware designers provide changes to this direction. (That is, the changes be-
come a chip I/O architecture.) Anyone making changes to these design points must ensure that the
changes allow the designs to continue to meet the architectures specified in the PAPR.

This chapter does not provide the detailed definitions (bits, bytes, and addresses) of the registers
needed to implement these designs. However, the stability of those is no less important. Designers
of chips that generate the same buses are expected to use the same register definitions whenever
possible to reduce the impact to firmware implementations.

Each implementation is expected to devise a consistent way to self-identify its capabilities. For ex-
ample, a register or set of registers, or some sort of informational header in the chip’s register space,
can be used. This document does not propose a way to do this.

3.1. High-Level Specifics
Endpoint partitioning is the concept of being able to identify operations to or from an individual par-
titionable endpoint (PE) across an I/O fabric. For more information, see Appendix A, Endpoint Parti-
tioning [49].

R1-3.1-1 Hardware Requirement:
The PCI host bridge (PHB) hardware must implement all the requirements specified as “Hardware
Requirements” in this architecture, unless otherwise required by the specific requirement.

R1-3.1-2 Firmware Requirement:
The platform firmware must implement all the requirements specified as “Firmware Requirements” in
this architecture, unless otherwise required by the specific requirement.

3.2. Lower-Level Details
3.2.1. PE# Determination, PE State, EEH, and Error Injec-
tion
The PHB hardware determines, for any given operation, the PE numbers (PE#s) to which the oper-
ation belongs. It tracks the state of that PE# so that it can stop the PE on an error and prevent fur-
ther operations after the error. It does this on a per PE# basis so that nonaffected PEs can continue
to operate while the affected PE is recovered. For more information, see Section 3.2.1.3, “PE State
and EEH” [12].

The PE# determination is made during the following operations:

OpenPOWER I/O Design Archi-
tecture

February 17, 2016 Revision 1.0.0

OpenPOWER Foundation 7
Workgroup Specification

Standard Track

• MMIO operations: The address is decoded and a range or multiple ranges of addresses are as-
signed to each PE#. This is done in an implementation-dependent way. For requirements, see
Section 3.2.1.1, “MMIO PE# Determination” [7].

• DMA or MSI operations or error message from the PCIe link: The requester ID (RID) associated
with the operation is used as an index into an RID translation table (RTT). For requirements, see
Section 3.2.1.2, “DMA and Error Message PE# Determination, RTT, RTC Invalidate, and PELT-
V” [7].

—If the operation is a DMA or MSI operation, the PE# field of the RID translation entry (RTE) indi-
cates the PE# associated with the RID.

—If the operation is an error message, the PE# field is the index of the PE lookup table (vector)
(PELT-V). When the PELT-V is accessed, the entry indicates, by a vector of bits, which PE#s
are affected by the RID. PELT-V entries are generated by firmware for all PE#s. That is, the
depth of the PELT-V is equal to the number of PEs implemented. Hierarchical RIDs, such as
switch RIDs and IOV PFs, have more than one bit set in the PE look-up entry (vector) (PELE-V).
Single RIDs, such as those for VFs, have only one bit set.

3.2.1.1. MMIO PE# Determination
PHBs are required to support MMIO address-space decoding and the assignment of PE#s to those
decodes, as specified by requirements in this section. How this is implemented is implementation de-
pendent.

R1-3.2.1.1-1 Hardware Requirement:

The PHB hardware must support the decoding of MMIO addresses, and both of the following condi-
tions must be met:

a. Enough address-space decodes must be provided to support the necessary, probably noncontigu-
ous, BAR spaces of the devices to be located below the PHB, including legacy devices that re-
quire an address programmed in their BARs that are below 4 GB.

b. The address decodes must be assigned an appropriate PE#. When multiple decodes are provid-
ed for any given function, the PE# assigned must be the same.

Hardware Implementation Note: Relative to this requirement, how the hardware chooses to implement this is outside of the
scope of this architecture. However, the hardware implementation must take special care relative to the configurations to be sup-
ported under the PHB, especially in terms of the implications of switches, IOV endpoints, and hot plug. Consideration must also be
given to the fact that devices can implement multiple sets of BARs, and implementations generally need to allow for three, poten-
tially noncontiguous, BARs per function.

R1-3.2.1.1-2 Firmware Requirement

The platform firmware must set up any chip implementation-specific address ranges appropriately.

3.2.1.2. DMA and Error Message PE# Determination, RTT, RTC Invali-
date, and PELT-V
The RTT and PELT-V tables are implemented in system memory. The most recently used RTEs are
cached in the PHB hardware for DMA performance and, optionally, for MSI performance. RTEs can
be cached for processing of PCI error messages.

OpenPOWER I/O Design Archi-
tecture

February 17, 2016 Revision 1.0.0

OpenPOWER Foundation 8
Workgroup Specification

Standard Track

DMA operations or error messages that come from the PCIe link contain a requester ID (RID) asso-
ciated with the operation. The RID is used as an index into an RID translation table (RTT). The RTT
entry (RTE) contains a PE# field.

If the operation is a DMA or MSI operation, the RTE indicates the PE# associated with the RID. If
the operation is an error message, the PE# field is the index of the PELT-V. When the PELT-V is ac-
cessed, the entry indicates, by a vector of bits, which PE#s are affected by the RID. PELT-V entries
are generated by firmware for all PE#s. That is, the depth of the PELT-V is equal to the number of
PEs implemented. Hierarchical RIDs, such as switch RIDs and IOV PFs, have more than one bit in
the PELE-V set. Single RIDs, such as VFs, have only one bit set. For DMA operations and, optional-
ly, for MSI and error message operations, the RID and PE# are stored in a cache on the PHB chip.
The cache is referenced first in the PE translation process. If the entry is not in the cache, a refer-
ence is made to the RTT in system memory.

Figure 3.1, “PE# Determination for DMA and Error Messages” [9]shows how PE#s are deter-
mined for DMA and error messages. For specific hardware and firmware requirements related to
this, see R1-3.2.1.2 [7]-1 and R1-3.2.1.2 [7]-2.

The RTT is 64K-entries deep because the RID, which is the index into the table, is 16 bits in length.
The width and depth of the PELT-V table is determined by the number of PEs implemented, with one
entry per PE and one bit width for each PE, and with the width in bytes being a power of 2.

OpenPOWER I/O Design Archi-
tecture

February 17, 2016 Revision 1.0.0

OpenPOWER Foundation 9
Workgroup Specification

Standard Track

Figure 3.1. PE# Determination for DMA and Error Messages

The definitions of the RTT, RTC Invalidate Register, and PELT-V tables are shown in Table 3.1, “RTE
Definition” [10], Table 3.2, “RTC Invalidate Register Definition” [10], and Table 3.3, “PELE-V
Definition” [10].

In the tables, [] designates optional bits or bytes. Optional bits and bytes that are not implemented
by the hardware must be ignored by the hardware. Implementations that do not implement the full
size of the field must treat unused bits and bytes the same as optional bits and bytes. Reserved bits
and bytes must be set as zeros by firmware and must be returned as written on a Load (these tables
are in system memory).

OpenPOWER I/O Design Archi-
tecture

February 17, 2016 Revision 1.0.0

OpenPOWER Foundation 10
Workgroup Specification

Standard Track

Table 3.1. RTE Definition
Bytes Bits Field Definition

0:1 All PE# The PE# or index into the PELT-V. A PE# of all ones is invalid. Therefore,
firmware must set the PE# to all ones for RIDs that are not configured.

Table 3.2. RTC Invalidate Register Definition
Bits Field Definition

0 Invalidate All 0: Invalidate the entry in the RTC specified by the Requester ID field.
1: Invalidate all entries in the RTC regardless of the value in the Requester ID field.

1:15 Reserved Reserved

16:31 Requester ID (0:15) The 16-bit Requester ID field of the RTC entry to invalidate when the Invalidate All bit is set
to a zero.

32:63 Reserved Reserved

Table 3.3. PELE-V Definition
Bytes Bits Field Definition

0:[n] [All] PE Array An array of bits, one bit per PE, that indicates which PEs are affected. An im-
plementation only needs to support the number of bits necessary to support
the number of PEs that it supports. Unused bits are at the highest bit numbers
(bit 0 of byte 0 corresponds to the first PE#, bit 1 to the second, and so on).
The number of bytes implemented is a power of 2.

R1-3.2.1.2-1 Hardware Requirement

The PHB hardware must take all of the following actions:

a. Implement the RTT in system memory, with the entries defined by Table 3.1, “RTE Defini-
tion” [10], and provide a register that firmware can set to point to the starting address of that ta-
ble.

b. Implement a BAR to point to the start of the RTT (RTT BAR), loadable by the firmware.

c. Implement the PELT-V in system memory, with entries defined by Table 3.3, “PELE-V Defini-
tion” [10], and provide a register that firmware can set to point to the starting address that ta-
ble.

d. Implement a BAR to point to the start of the PELT-V (PELT-V BAR), loadable by the firmware.

e. Provide an RID translation cache (RTC) for caching RTEs used for DMA operations, optionally for
MSI operations and for error message operations.

Hardware Implementation Notes:
1. Appropriate sizing of the RTC is necessary to have a high probability of a cache hit during DMA. Currently, no performance anal-

ysis has been done, and no rule-of-thumb can be provided. However, the target size for the first implementation of this architec-
ture is a number of entries in the RTC equal to one-fourth of the number of PEs.

2. In part e of this requirement, it is best for the optional caching for MSI operations to be controllable on a per-PHB basis by a con-
figuration bit setting.

f. Provide an RTC Invalidate Register, as defined by Table 3.2, “RTC Invalidate Register Defini-
tion” [10], for invalidating individual cached RTEs or all RTEs. The hardware must stop using

OpenPOWER I/O Design Archi-
tecture

February 17, 2016 Revision 1.0.0

OpenPOWER Foundation 11
Workgroup Specification

Standard Track

the entry when firmware indicates the invalidate, but can wait until the RTC entry is used once
by a DMA operation. A Store to this register must perform the specified invalidation operation. A
Load from this register must return the last value Stored to this register.

Hardware Implementation Notes:
Relative to requirement part f, the hardware is required to provide firmware a way to clean up cache entries when they are no
longer needed or when the RID to PE# might have changed. This is done during firmware clean-up operations, for example on hot
plug or partition shutdown. The firmware might also need to be able to invalidate all entries in the RTC, for example if the RTC BAR
is to be changed. The RTC Invalidate register format is not defined by this architecture.

g. During RID translation, if the RID is in the RTC, use the cached value.

h. During RID translation, if the RID is not in the RTC, use the RID as an index into the RTT for the
PHB, and read the RTE. Cache the entry if this is a DMA operation, optionally cache it for MSI
operations, and optionally cache it for error messages. For error messages, if the PE# is not all
ones, use the PE# field in the RTE as a PELT-V index. Access the PELT-V entry and use the bit
array obtained as the array of PE#s that are affected by the error.

Architecture Notes
DMAs from entities like PCIe IOV PFs, and MSIs from PFs, and switch RIDs have only one PE# associated with them. Error mes-
sages from PFs and switch RIDs are likely to point to multiple PE#s in the PELT-V.

i. When accessing the RTT, if the RTE is all ones, an invalid RID has been received. The hardware
must set the appropriate error bit in the PHB, store the RID information, and interrupt the firmware
for processing of the error.

R1-3.2.1.2-2 Firmware Requirement:
The platform firmware must take all of the following actions:

a. Set up the RTT BAR and PELT-V BAR to point to the start of those structures in contiguous real
system memory, with a size that is a power of 2 and with an address alignment on an integer mul-
tiple of the size of the table.

b. To change the RTT BAR or PELT-V BAR while DMA operations might be in progress, the
firmware must first create the new table and change the BAR. Then, firmware must make sure
that all DMA operations that are queued in the PHB (DMA write/read and MSIs) are completed
before reusing the system memory locations that were previously used by the table.

c. For RIDs that do DMA or which issue MSIs, set up the PE# in the RTT to the PE# that is associat-
ed with the RID. There might be more than one RID associated with the same PE#.

d. For each PE#, create an entry in the PELT-V with an offset equal to the PE#. That entry must con-
tain the appropriate bits set for each PE that might be affected by an error against the RID associ-
ated with the PE#.

e. For invalid RIDs (that is, ones that are not configured in the PCIe hierarchy), set the RTE to all
ones.

f. Manage the RTT and PELT-V entries in system memory and the RTC on the PHB chip, appropri-
ately, at all times, including during hot plug and DLPAR operations.

OpenPOWER I/O Design Archi-
tecture

February 17, 2016 Revision 1.0.0

OpenPOWER Foundation 12
Workgroup Specification

Standard Track

3.2.1.3. PE State and EEH

The PE state includes, but is not limited to, the following items:

• The EEH Enablement state: Indicates whether EEH is enabled for the PE or not.

• The MMIO Stopped state: Indicates whether MMIO operations are frozen for the PE or not. If
MMIO is stopped for the PE, the PE is said to have its MMIO Stopped state set or to be in the
MMIO Stopped state.

• The DMA Stopped state: Indicates whether DMA (and MSI) operations are frozen for the PE or
not. If DMA is stopped for the PE, the PE is said to have its DMA Stopped state set or to be in the
DMA Stopped state.

Note: For EEH-enabled DDs, on the detection that their PE is in the Stopped state (all ones on a Load when not expected followed
by a query call to firmware), the normal progression is as follows:

1. Remove their PE from the MMIO Stopped state (that is, reset that state).

2. Issue a series of Load/Stores to determine the problem.

3. Clear it either by a hardware reset to the PE or by separately removing the IOA function from the DMA Stopped state. The latter
approach might not be possible for some IOA functions or under certain circumstances.

R1-3.2.1.3-1 Hardware Requirement:

Each PE’s MMIO Stopped state and DMA Stopped state must be independent of each other. The
hardware must give the firmware a way to set and clear the DMA Stopped state and the MMIO
Stopped state:

• Independently from each other

• Independent for those Stopped states for other PEs

• Atomically with any other errors that might be occurring at the time

R1-3.2.1.3-2 Hardware Requirement:

The PHB hardware must take all of the following actions:

a. For any detected failure to/from a PE, set both the MMIO Stopped and DMA Stopped states for
the PE.

Exception: Not required if the error that caused the failure can be reported to the IOA function in a way that enables it to report the
error to its device driver while avoiding any data corruption.

b. If an I/O fabric consists of a hierarchy of components, when a failure is detected in the fabric and
that failure cannot be isolated to a single PE, put all PEs that are downstream of the failure into
the MMIO Stopped and DMA Stopped states if they might be affected by the failure.

c. From the time that the MMIO Stopped state is entered for a PE, prevent the PE from respond-
ing to Load and Store operations including the operation that caused the PE to enter the MMIO
Stopped state. A Load operation must return all ones with no error indication and a Store opera-

OpenPOWER I/O Design Archi-
tecture

February 17, 2016 Revision 1.0.0

OpenPOWER Foundation 13
Workgroup Specification

Standard Track

tion must be discarded until the firmware directs the hardware otherwise or until the PHB chip is
reset. That is, Load and Store operations are treated as if they received a conventional PCI mas-
ter abort error,

d. From the time that the DMA Stopped state is entered for a PE, prevent the PE from initiating a
new DMA request or completing a DMA request that caused the PE to enter the DMA Stopped
state, including MSI or MSI-X DMA operations, until the firmware directs the hardware otherwise
or until the PHB chip is reset. DMA requests that were started before the DMA Stopped state is
entered can be completed. DMA requests requiring a response that are discarded due to the PE
being in the DMA Stopped state (for example, a read request or an atomic request), return a UR
to the requester. DMA read response data that is returned to the PHB after the setting of the DMA
Stopped state must be returned to the requester with a Completer Abort status, if possible. Oth-
erwise, discard the response; for example, a link down condition is a case where return of a re-
sponse is not possible.

e. Provide the capability to the firmware to determine, on a per-PE basis, that a failure occurred
which caused the PE to be put into the MMIO Stopped and DMA Stopped states and to read the
actual state information (MMIO Stopped state and DMA Stopped state).

f. Provide the capability of separately enabling and resetting the DMA Stopped and MMIO Stopped
states for a PE without disturbing other PEs on the platform. The hardware must provide this ca-
pability without requiring a PE reset and must do so through normal processor Storeinstructions.
Firmware enabling of MMIO or DMA Stopped states must have the same, and immediate, effect
as if a PHB-detected error set those states.

g. Provide the capability to the firmware to deactivate all provided resets (hot reset, fundamental re-
set), independent of other resets. The hardware must provide the proper controls on the reset
transitions to prevent failures from being introduced into the platform by the changing of the reset.

h. Provide the capability to the firmware to activate all provided resets (hot reset, fundamental reset),
independent of other resets. The hardware must provide the proper controls on the reset transi-
tions to prevent failures from being introduced into the platform by the changing of the reset.

i. When a PE is put into the MMIO Stopped and DMA Stopped states, do so in a way that does not
introduce failures that might corrupt other parts of the platform.

j. Allow firmware access to internal PHB and I/O fabric PCI configuration registers when any or all of
the PEs are in the MMIO Stopped state.

Harware Implementation Notes:
1. The type of error information trapped by the hardware when a PE is placed into the MMIO Stopped and DMA Stopped states is

implementation dependent and is beyond the scope of this architecture.

2. A DMA operation (Read or Write) that was initiated before a Load, Store, or DMA error, does not necessarily need to be blocked
because it was not a result of the Load, Store, or DMA that failed. The normal PCI Express ordering rules require that an
ERR_FATAL or ERR_NONFATAL from a failed Store or DMA error, or a Load Completion with error status must reach the PHB
before any DMA that might have been kicked off in error as a result of a failed Load or Store or a Load or Store that follows a
failed Load or Store. This means that as long as the PHB processes an ERR_FATAL, ERR_NONFATAL, or Load Completion
that indicates a failure, before processing any more DMA operations or Load Completions, and puts the PE into the MMIO and
Stopped DMA Stopped states, implementations can block DMA operations that were kicked off after a failing DMA operation
and allow DMA operations that were kicked off before a failing DMA operation without violating the normal PCI Express ordering
rules.

OpenPOWER I/O Design Archi-
tecture

February 17, 2016 Revision 1.0.0

OpenPOWER Foundation 14
Workgroup Specification

Standard Track

3.2.1.4. Error-Injection Hardware Requirements

The error-injection hardware is defined primarily to test enhanced error-recovery software. As imple-
mented in the I/O bridge, this option is used to test the software that implements the recovery that is
enabled by the EEH option in that bridge. Specifically, the PAPR ioa-bus-error and ioa-bus-error-64
functions of the ibm,errinjct RTAS call are used to inject errors onto each PE primary bus. This, in
turn, causes certain actions on the bus and certain actions by the PE, the EEH logic, and by the er-
ror recovery software.

The type of errors and the injection qualifiers place the following additional requirements on the hard-
ware for this option.

R1-3.2.1.4-1 Hardware Requirement:

The PHB hardware must take all of the following actions:

a. Provide a way to inject the required errors for each PE primary bus. The errors must be injectable
independently without affecting the operations on the other buses in the platform.

b. Provide a way to set up for the injection of the required errors without disturbing operations to oth-
er buses outside the PE.

c. Provide firmware with a way to set up the following information for the error injection operation by
normal processor Load and Store instructions:

• Address at which to inject the error

• Address mask to mask off any combination of the least-significant 24 (64 for the ioa-bus-er-
ror-64 function) bits of the address

• PE primary bus number that is to receive the error

• Type of error to be injected

d. Provide the capability of selecting the errors specified in Table 3.4, “Supported Errors for PCI Ex-
press Error Injectors” [14]and an indication of when that error is appropriate for the platform
configuration.

e. Provide a way to inject the errors in Table 3.4, “Supported Errors for PCI Express Error
Injectors” [14]in a non-persistent manner (that is, at most one injection for each invocation of
the ibm,errinjct RTAS call).

R1-3.2.1.4-2 Firmware Requirement:

The firmware must limit the injection of errors that are inappropriate for the given platform configura-
tion.

Table 3.4. Supported Errors for PCI Express Error Injectors

Operation PCI Address Spaces Errors Other Requirements

Load Memory, I/O, Config TLP ECRC Error

Store Memory, I/O, Config TLP ECRC Error

The TLP ECRC covers the address and data bits of a TLP.
Therefore, you cannot determine if the integrity error resides in
the address or data portion of a TLP.

OpenPOWER I/O Design Archi-
tecture

February 17, 2016 Revision 1.0.0

OpenPOWER Foundation 15
Workgroup Specification

Standard Track

Operation PCI Address Spaces Errors Other Requirements

TLP ECRC Error The TLP ECRC covers the address and data bits of a TLP.
Therefore, you cannot determine if the integrity error resides in
the address or data portion of a TLP.

DMA Read Memory

Completer Abort or
Unsupported Request

Inject the error that is injected on a TCE page fault.

DMA Write Memory TLP ECRC Error The TLP ECRC covers the address and data bits of a TLP.
Therefore, you cannot determine if the integrity error resides in
the address or data portion of a TLP.

3.2.2. DMA Design,TVEs, and TCEs
This section describes the constructs for DMA operations, except when those DMA operation are for
MSI. For 64-bit MSI operations, the bits 61:60 in the address are set to 0b01. For 32-bit MSI opera-
tions, the bits 31:16 are set to 0xFF. For information about MSI operations, see Section 3.2.4, “MSI
Design” [35].

The DMA address for non-MSI operations (that is, for normal DMA operations), is broken up into
fields as shown in Figure 3.2, “PCIe Non-MSI DMA Operation Address Fields” [15]. The size of
the fields in the address, the number of levels of a TCE table (in the case of the multilevel TCE ta-
ble), the I/O page size, and the TCE table size are defined by the fields of the TVE (see Table 3.5,
“TVE Definition” [23]).

Figure 3.2. PCIe Non-MSI DMA Operation Address Fields

 Figure 3.2, “PCIe Non-MSI DMA Operation Address Fields” [15]shows that multiple levels of TCE
tables are possible (that is, multiple TCE index levels are shown). Details of single-level tables, for
which there exists only the final (direct TCE level) table, are shown in the following sections:

• Section 3.2.2.1, “DMA Design Details: No Page Migration” [16].

OpenPOWER I/O Design Archi-
tecture

February 17, 2016 Revision 1.0.0

OpenPOWER Foundation 16
Workgroup Specification

Standard Track

• Section 3.2.2.2, “Additional DMA Design Details: Page Migration” [25].

The differences for multilevel tables are described in Section 3.2.2.3, “Additional DMA Design De-
tails: Multilevel TCE Tables” [30].

3.2.2.1. DMA Design Details: No Page Migration

 Figure 3.3, “DMA Operation High-Level Diagram - No Page Migration” [16]shows the general
flow of an I/O DMA operation through the system: the address validation, address translation (via
TCEs), and caching of the TCEs and data. The description of this figure follows the figure.

Figure 3.3. DMA Operation High-Level Diagram - No Page Migration

OpenPOWER I/O Design Archi-
tecture

February 17, 2016 Revision 1.0.0

OpenPOWER Foundation 17
Workgroup Specification

Standard Track

Referring to Figure 3.3, “DMA Operation High-Level Diagram - No Page Migration” [16]:

1. The IOA function places the DMA address and RID on the I/O bus.

• The low-order bits indicate the offset into the page (the page offset). For example, for 4K pages,
this is the low-order 12 bits.

• The bits immediately above the Page Offset are the index into the TCE table (TCE Index). The
number of TCE Index bits is determined by the size of the TCE table (that is, the number of
TCEs) that is accessible by the RID (not the total size of the TCE table).

• The RID ties the requester to a particular PE#.

2. The PE# is determined from lookup in the RTC. If it is not in the RTC, it is accessed from the RTT
and placed in the RTC.

3. If the PE# is in the DMA Stopped state, abort the operation (see Section 3.2.1.3, “PE State and
EEH” [12]).

• If the operation is a DMA Read Request, return a UR error to the requester.

• If the operation is a DMA Write, discard the data.

4. The PE# and one or more high-order address bits are used to access the correct TVE for the PE.

• Bit 59 is used at a minimum. Implementations can allow more bits to be used as an option (for
example, bit 59 or bits 59:55). PHBs operate bi-modally relative to the whole PHB, using either
one bit or more than one bit, but not both (operation with bit 59 is required).

• 32-bit DMAs are essentially 64-bit DMAs with the high-order 32-bits set to all zeros. Therefore,
for the purpose of TVE selection, all zeros are used for the address selection bits. Thus, only
one TVE is available for addresses below 4G.

5. The DMA address is validated to make sure that the RID is allowed to access that I/O bus ad-
dress. Otherwise, the operation is denied to the IOA function. This is done by the parameters in
the TVE in one of two ways:

• For translate mode, the I/O Page Size and the TCE Table Size are used.

• For no-translate mode, the address range for no-translate, a base/bounds, is used. See also
Appendix B, No-Translate Operation [57].

6. A determination is made about the address of the TCE translation table (TTA from the TVE) to be
used to translate the address and the route to the TCE table.

Note

This step might follow the next step (determination of whether TCE is already cached)
in some implementations.

7. A determination is made about whether the needed TCE is already cached. The caching algo-
rithm must take into consideration the I/O Page Size.

OpenPOWER I/O Design Archi-
tecture

February 17, 2016 Revision 1.0.0

OpenPOWER Foundation 18
Workgroup Specification

Standard Track

8. If the TCE is not already cached, it is fetched. If it is valid for the operation, it is cached.

• In the following cases, abort the operation and set the MMIO and DMA Stopped states for the
PE:
• The TCE is invalid (the read-valid and write-valid Page Mapping and Control bits are both 0).
• The operation is a write and the write-valid bit is off.
• The operation is a read and the read-valid bit is 0.

9. The PCIe bus address is translated using the information from the TCE and the DMA bus ad-
dress.

• The address is translated by using the page offset from the DMA bus address as the low-order
bits of the translated address in the TCE.

Note

The number of page offset bits is determined by the I/O Page Size. The I/O Page
Size is specified in the I/O Page Size field of the TVE (see Table 3.5, “TVE Defini-
tion” [23]).

• The high-order bits are obtained from the Real Page Number (RPN) in the TCE.

For more information, see:

• Figure 3.4, “I/O Address Validation and TCE Translation Implementation for 32-Bit DMA Address-
es” [19], which shows how the translation from I/O address to system memory address works
for 32-bit I/O addresses

• Figure 3.5, “I/O Address Validation and TCE Translation Implementation for 64-Bit DMA Address-
es” [21], which shows how the translation from I/O address to system memory address works
for 64-bit I/O addresses

OpenPOWER I/O Design Archi-
tecture

February 17, 2016 Revision 1.0.0

OpenPOWER Foundation 19
Workgroup Specification

Standard Track

Figure 3.4. I/O Address Validation and TCE Translation Implementation for 32-Bit
DMA Addresses

OpenPOWER I/O Design Archi-
tecture

February 17, 2016 Revision 1.0.0

OpenPOWER Foundation 20
Workgroup Specification

Standard Track

 Notes on Figure 3.4, “I/O Address Validation and TCE Translation Implementation for 32-Bit
DMA Addresses” [19]and Figure 3.5, “I/O Address Validation and TCE Translation Imple-
mentation for 64-Bit DMA Addresses” [21]:

1. The Number of Page Offset bits is determined by the I/O Page Size. That is, the boundary be-
tween the TCE Index field and the Page Offset field slides right and left depending on the I/O
Page Size. This architecture does not require hardware verification of I/O page sizes of anything
other than 4 KB for 32-bit DMA operations (that is, for DMAs with an address less than 4 GB).

2. The TCE Index field size is based on the number of pages to which the IOA function has access.

3. The Number of TTA bits used in the least-significant bits is determined by the TCE Index field
size. The number of TTA bits implemented in the most-significant bits is dependent on the maxi-
mum size of system memory to be supported by the platform.

4. The number of most significant RPN bits implemented in the TCE is dependent on the maximum
size of system memory to be supported by the platform. The number of least significant RPN bits
used depends on the number of Page Offset bits (that is, on the size of the page mapped by the
TCE, as determined from the I/O Page Size field in the TVE). Also, if the I/O Page Size is ze-
ro in the TVE, the I/O Bus Address is used untranslated to access the system. For more infor-
mation, see the definition for the “Address range for no translate” field in Table 3.5, “TVE Defini-
tion” [23].

5. An implementation can choose to check that the DMA address bits (63:62) are 0b00, that bits
61:60 are not 0b10 or 0b11, and that unused TVE select bits (per mode) are all zero. If any of
these conditions are not true, an implementation can choose to abort the operation and set the
MMIO and DMA Stopped states for the PE. However, the implementation is not required to do so.

OpenPOWER I/O Design Archi-
tecture

February 17, 2016 Revision 1.0.0

OpenPOWER Foundation 21
Workgroup Specification

Standard Track

Figure 3.5. I/O Address Validation and TCE Translation Implementation for 64-Bit
DMA Addresses

OpenPOWER I/O Design Archi-
tecture

February 17, 2016 Revision 1.0.0

OpenPOWER Foundation 22
Workgroup Specification

Standard Track

When the TVE entry has an I/O Page Size other than zero, the TVE associates a DMA address
range, which is based on the high-order address bits used with the PE# to select the TVE, with a
TCE table starting address (TTA), TCE table size, and an I/O page size. When the TVE entry has
an I/O Page Size of zero, TCE translation is not performed, and the TTA field becomes an address
range check.

R1-3.2.2.1-1 Hardware Requirement:
The PHB hardware must take all of the following actions:

a. Implement the TVE table, as defined by Table 3.5, “TVE Definition” [23], with the TVT being lo-
cated on the PHB chip.

b. Implement the TCE table, with entries as defined by Table 3.6, “TCE Definition” [24], with the
TCE table being in system memory and cached on the PHB chip.

c. Provide a TCE Invalidate Register, as defined in Table 3.7, “TCE Invalidate Register Defini-
tion” [25], for invalidating cached TCEs, all TCEs for a particular PE, or the entire cache of
TCEs. The hardware must stop using the entry when firmware indicates the invalidate, but it can
wait until the TCE is used once by a DMA operation. A Store to this register causes the specified
operation. Issuing a Load to this register causes the last value Stored to be returned.

d. Implement the DMA flows as shown in Figure 3.3, “DMA Operation High-Level Diagram - No
Page Migration” [16], Figure 3.4, “I/O Address Validation and TCE Translation Implementation
for 32-Bit DMA Addresses” [19], and Figure 3.5, “I/O Address Validation and TCE Translation
Implementation for 64-Bit DMA Addresses” [21].

R1-3.2.2.1-1 Firmware Requirement:
The firmware must take all of the following actions:

a. Set up the TVEs appropriately.

b. Access the TVE table with 8-byte Loads and Stores, naturally aligned.

c. Set up the TCEs appropriately.

d. Maintain the coherency between the system memory TCE value and the cached TCE value by
using the TCE Invalidate Register to invalidate cached TCEs whenever it changes the value of a
TCE.

In Table 3.5, “TVE Definition” [23], [] designates optional bits and bytes. Optional bits and bytes
that are not implemented must be ignored by that implementation on a Store and must be returned
as zeros on a Load, even when the entire field is not implemented. Implementations that do not
implement the full size of the field must treat unused bits and bytes the same as optional bits and
bytes. Reserved bits and bytes must be ignored on a Store and must be returned as zeros on a
Load.

Note
A nonzero TCE Table Size field indicates a valid TVE.

OpenPOWER I/O Design Archi-
tecture

February 17, 2016 Revision 1.0.0

OpenPOWER Foundation 23
Workgroup Specification

Standard Track

Table 3.5. TVE Definition
Bytes Bits Field Definition

0:5 All TTA

or

Address range for no translate

When the I/O Page Size field is nonzero and the TVE is valid (TCE Table Size
is nonzero), this field is the TCE Table Address (TTA). Bit 0 of the TVE aligns
with system address bit 4, bit 1 with system address bit 5, and so on. TCE ta-
bles must be aligned on a boundary that is an integer multiple of their size,
and, therefore, depend on the size of the table and the TCE size. Some of
the low-order bits of this field might not be needed and must be set to zero by
the software. Hardware pads this field with zeros, if necessary, in the case of
large I/O page sizes where the TCE table is smaller than 4 KB. Likewise, only
enough high-order bits need to be implemented by the hardware to match the
largest real address in the platform. The minimum alignment is at least 4 KB.

When the I/O Page Size field is zero (no translate case) and the TVE is valid
(TVE[byte 6, bit 3] = 1), then if

PCI Express address [bits 49:24] ≥ (TVE[byte 6, bits 4:5] concatenated with
TVE[bytes 0:2])

and

PCI Express address [bits 49:24] < (TVE[byte 6, bits 6:7] concatenated with
TVE[bytes 3:5]),

then use the PCI Express address [bits 49:0], untranslated, as the DMA ad-
dress.

 Notes:

1. The no-translate case is not valid for 32-bit PCI Express addresses.

2. The no translate and translate cases have different alignment require-
ments. For the translate case, the size of the area translated by the TCE
table dictates the alignment requirements; it must be aligned on an integer
multiple of the size. However, for the no translate case, the alignment is 16
MB or larger.

3. See also Appendix B, No-Translate Operation [57].

6 0:2 Number of TCE Table Levels This field indicates the number of indirect TCE table levels for operations
using this TVE, which is the total number of TCE table levels (including the
last level) minus 1. When this field is zero, there are no indirect levels. See
also Section 3.2.2.3, “Additional DMA Design Details: Multilevel TCE Ta-
bles” [30].

The following values are defined by this architecture:

000 - Only one level (direct level)
001 - One indirect level, one direct level
010 - Two indirect levels, one direct level
011 - Three indirect levels, one direct level
100 - Four indirect levels, one direct level
101-111 Reserved

6 3:7 TCE Table Size A value of zero in this field indicates that the TVE is invalid.

When the I/O Page Size field is nonzero (translate case) and the TVE is valid
(that is, this field is nonzero), the value of this field defines the number of
DMA I/O bus address bits that are used for the TCE index field or fields (see
Figure 3.2, “PCIe Non-MSI DMA Operation Address Fields” [15]). The
hardware uses the value of this field, along with the Number of TCE Table
Levels and I/O Page Size fields of this TVE, to validate the range of the DMA
I/O address. That is, it validates that the appropriate number of high-order bits
in the DMA I/O bus address are zero. It also uses the value of this field to pre-
vent an IOA function from accessing outside of its address range.

Value of 0: Invalid TVE
Value of 1: 9 TCE Index bits, 4 KB table size
Value of 2: 10 TCEIndex bits, 8 KB table size

OpenPOWER I/O Design Archi-
tecture

February 17, 2016 Revision 1.0.0

OpenPOWER Foundation 24
Workgroup Specification

Standard Track

Bytes Bits Field Definition
Value of 3: 11 TCEIndex bits, 16 KB table size
Value of 4: 12 TCEIndex bits, 32 KB table size
Value of 5: 13 TCEIndex bits, 64 KB table size
Value of 6: 14 TCEIndex bits, 128 KB table size
Value of 7: 15 TCEIndex bits, 256 KB table size
Value of 8: 16 TCEIndex bits, 512 KB table size
Value of 9: 17 TCEIndex bits, 1 MB table size
Value of 10: 18 TCEIndex bits, 2 MB table size
Value of 11: 19 TCEIndex bits, 4 MB table size
Value of 12: 20 TCEIndex bits, 8 MB table size
Value of 13: 21 TCEIndex bits, 16 MB table size
Value of 14: 22 TCEIndex bits, 32 MB table size
Value of 15: 23 TCEIndex bits, 64 MB table size
Value of 16: 24 TCEIndex bits, 128 MB table size
Value of 17: 25 TCE Index bits, 256 MB table size
Value of 18: 26 TCE Index bits, 512 MB table size
Value of 19: 27 TCE Index bits, 1 GB table size
Value of 20: 28 TCE Index bits, 2 GB table size
Value of 21: 29 TCE Index bits, 4 GB table size
Value of 22: 30 TCE Index bits, 8 GB table size
Value of 23: 31 TCE Index bits, 16 GB table size
Value of 24: 32 TCE Index bits, 32 GB table size
Value of 25: 33 TCE Index bits, 64 GB table size
Value of 26: 34 TCE Index bits, 128 GB table size
Value of 27: 35 TCE Index bits, 256 GB table size
Value of 28: 36 TCE Index bits, 512 GB table size
Value of 29: 37 TCE Index bits, 1 TB table size
Value of 30: 38 TCE Index bits, 2 TB table size
Value of 31: 39 TCE Index bits, 4 TB table size

When the I/O Page Size field is zero (no translate case) and the TVE is valid
(that is, this field is non-zero), this indicates that the TVE bytes [0:5] are to be
used to validate the PCI Express address (see the definition for the “Address
range for no translate” field of this table).

[0:2] Reserved Reserved7

3:7 I/O Page Size The number of low-order I/O bus address bits to be used as the page offset
(see Page Offset field in Figure 3.2, “PCIe Non-MSI DMA Operation Address
Fields” [15]) is the value of this field plus 11.

Zero has a special meaning of no translate.

Value of 0: No address translation (see the definition for the “Address range
for no translate” field of this table).

Other examples:
Value of 1: Use 11 + 1 = 12 bits (4 KB I/O page size)
Value of 5: Use 11 + 5 = 16 bits (64 KB I/O page size)
Value of 17: Use 11 + 17 = 28 bits (256 MB I/O page size)

All page sizes that are supported by the processor used with this PHB must
be supported as I/O page sizes, but validation can include only the page sizes
that the implementation expects to be used. This architecture does not require
hardware verification of I/O page sizes of anything other than 4 KB for 32-bit
DMA operations (that is, for DMAs with an address less than 4 GB).

Table 3.6. TCE Definition

Bits Field Definition

0:51 RPN If the Number of TCE Table Levels field of the TVE is zero, or if it is nonzero and this is the final
TCE table level to be accessed, and if the Page Mapping and Control field of this TCE is some-
thing other than page fault, then these bits contain the RPN to which the bus address is mapped
in the system address space. In certain PHB implementations, all of these bits might not be re-
quired. However, enough bits must be implemented to match the largest real address in the plat-
form.

OpenPOWER I/O Design Archi-
tecture

February 17, 2016 Revision 1.0.0

OpenPOWER Foundation 25
Workgroup Specification

Standard Track

Bits Field Definition
If the Number of TCE Table Levels field of the TVE is zero, or if it is nonzero and this is the final
TCE table level to be accessed, and if the Migration Descriptor Pointer is non-zero, then this is
the RPN for the source page. The destination page RPN comes from the Migration Register point-
ed to by the Migration Descriptor Pointer.

If the Number of TCE Table Levels field of the TVE is nonzero, and this is not the final TCE ta-
ble level to be accessed, and if the Page Mapping and Control field of this TCE is something oth-
er than page fault, then these bits contain the address for the start of the next level of TCE table.
For more information, see Section 3.2.2.3, “Additional DMA Design Details: Multilevel TCE Ta-
bles” [30].

52:55 Migration Pointer Used during a migration operation. The meaning is as follows:

0b0000 A migration is not in process for this page.
nonzero A migration is in progress, and the value of this field points to which Migration Regis-

ter in the PHB is used for the operation.

For more information, see Section 3.2.2.2, “Additional DMA Design Details: Page Migra-
tion” [25].

56:61 Reserved Reserved

62:63 Page Mapping
and Control

These bits define page mapping and read-write authority. They are coded as follows:

00 Page fault (no access)
01 System address space (read only)
10 System address space (write only)
11 System address space (read/write)

Code point 0b00 signifies that the page is not mapped. It must be used to indicate a page fault er-
ror. Hardware must not change its state based on the value in the remaining bits of a TCE when
code point 0b00 is set in this field of the TCE.

For accesses to system address space with an invalid operation (a write or PCI Atomic operation
to a read-only page or a read or PCI Atomic operation to a write-only page), the HB generates an
error. For more information, see the “Error and Event Notification” chapter in the PAPR.

Table 3.7. TCE Invalidate Register Definition

Bits Field Definition

0:2 Invalidate Operation Specifies the scope of the invalidate operation. The following values are valid, where “x” is
a don’t care bit:

0b1xx: Invalidate the entire TCE cache.
0b01x: Invalidate all TCEs for the specified PE#.
0b001: Invalidate the TCE for the specified PCIe bus address and PE#.

3 Reserved Reserved

4:51 Invalidate Address PCIe address for the specified PE# for which the corresponding direct TCE is to be invali-
dated, I/O page aligned. Register bit 4 aligns with bit 59 of the PCIe address, and register
bit 51 aligns with bit 12 of the PCIe address. Because this field is I/O page aligned, some of
the low-order bits of this field must be 0 for I/O page sizes larger than 4 KB. This field is re-
quired for Invalidate Operation 0b001, and not required for 0b01x or 0b1xx.

52:55 Reserved Reserved

56:63 PE# PE# of the cache entry or entries to invalidate. This field is required for Invalidate Opera-
tions 0b01x and 0b001, and not required for 0b1xx.

3.2.2.2. Additional DMA Design Details: Page Migration

The page migration facilities in the PHB hardware give the firmware the tools necessary to keep
DMA operations going while copying a memory page from a source location to the target location.
These facilities consist of the following components:

OpenPOWER I/O Design Archi-
tecture

February 17, 2016 Revision 1.0.0

OpenPOWER Foundation 26
Workgroup Specification

Standard Track

• A Migration Pointer field in the TCE. When nonzero, it indicates that a page migration is in
progress from the page pointed to by the TCE (called the source page). It also points to one of the
Migration Registers in the PHB hardware.

• Migration Register in the PHB hardware. It specifies:

—Target RPN: A field specifying the page number of the destination page to which the source
page is being moved (called the target page).

—Target Page Size: A field specifying the I/O page size of the target page, which might be greater
than or equal to the source page size. The I/O page size of the source page is in the TVE.

The Migration Register provides the capability to have one migration descriptor that describes
the target, regardless of how many different pages of different sizes are mapped to the source
page.

For example, a 64 KB I/O page with multiple 4 KB I/O pages mapped into that 64 KB I/O page.

—Read Target: A bit specifying the page to use as the source of DMA data for a DMA read re-
quest; it can be the source page or the target page.

On a DMA operation, the hardware does what is specified in Hardware Requirement R1-3.2.2.2-1 (p.
25).

A graphical representation of the memory migration operation is shown in Figure 3.6, “Memory Mi-
gration Operation for a 64 KB Page and a 4 KB Page within the 64 KB Page” [27]. A graphical
representation of the address translation is shown in Figure 3.7, “Source and Destination Page Ad-
dress Creation for DMA to a Page Being Migrated” [28].

The target page address translation of “Bits 4:(63-N) of the Migration Register || TCE-translated
source page address bits (64-N):63”, as described in Hardware Requirement R1-3.2.2.2-1 (p. 25),
can also be described in a different way, as indicated in Figure 3.6, “Memory Migration Operation for
a 64 KB Page and a 4 KB Page within the 64 KB Page” [27]and Figure 3.7, “Source and Destina-
tion Page Address Creation for DMA to a Page Being Migrated” [28], and as described, below:

• If the Target Page Size in the Migration Register is the same as the TVE I/O Page Size field for the
operation, replace the RPN bits from the TCE in the source page address with the corresponding
address bits from the Target RPN bits in the Migration Register.

• If the Target Page Size in the Migration Register is larger than the TVE I/O Page Size field for the
operation, keep the low-order bits from the RPN from the TCE that represent the source page off-
set within the target page. Replace the remaining RPN bits from the TCE in the TCE Translated
PCIe Address with the corresponding address bits from the Target RPN bits in the Migration Reg-
ister.

OpenPOWER I/O Design Archi-
tecture

February 17, 2016 Revision 1.0.0

OpenPOWER Foundation 27
Workgroup Specification

Standard Track

Figure 3.6. Memory Migration Operation for a 64 KB Page and a 4 KB Page within
the 64 KB Page

OpenPOWER I/O Design Archi-
tecture

February 17, 2016 Revision 1.0.0

OpenPOWER Foundation 28
Workgroup Specification

Standard Track

Figure 3.7. Source and Destination Page Address Creation for DMA to a Page
Being Migrated

R1-3.2.2.2-1 Hardware Requirement:
The PHB hardware must take all of the following actions:

a. Implement a set of Migration Registers, with the definition in Table 3.8, “Migration Register Defi-
nition” [30]. The number of registers implemented is implementation dependent, but the mini-
mum number is 7.

b. Use the Page Mapping and Control field from the TCE for both source page and target page oper-
ations.

c. Implement the Migration Pointer field of the TCE, as specified in Table 3.6, “TCE Def-
inition” [24]. When that field is nonzero, perform the operations described by parts
d [28]through i [29] of this requirement.

d. Access the TCE for the operation, as for a normal DMA operation (that is, as per Section 3.2.2.1,
“DMA Design Details: No Page Migration” [16]). Calculate the source page address as usual.

e. Calculate the migration target page address. If N is the value in the Migration Register Target
Page Size field, the address is generated by:

Bits 4:(63 - N) of the Migration Register || TCE-translated source page address bits (64 - N):63

f. If the operation is a DMA Read and the Read Target bit in the Migration Register = 0, access at
the Migration Source page address in the translation page address.

OpenPOWER I/O Design Archi-
tecture

February 17, 2016 Revision 1.0.0

OpenPOWER Foundation 29
Workgroup Specification

Standard Track

g. If the operation is a DMA Read and the Read Target bit in the Migration Register = 1, access at
the Migration Target page address.

h. If the operation is a DMA Write, write the data to the source page at the TCE-translated page ad-
dress. After this first write is visible to all other processors and mechanisms, write the data to tar-
get page address.

i. Prevent a PCIe atomic operation that targets a page being migrated from being performed until
the migration operation is completed against the page being targeted by the PCIe atomic opera-
tion (that is, until the Migration Pointer in the TCE for the page is set to 0). Perform this atomic op-
eration blocking without blocking DMA Read and DMA write requests.

R1-3.2.2.2-1 Firmware Requirement:

The firmware must take the following actions during a page migration, in basically the following or-
der:

a. Allocate a Migration Descriptor Register in each PHB with TCE accessibility to the source page,
for use in the migration.

b. Build the Migration Descriptor Register content for the physical page of the memory area to be mi-
grated, and set the Read Target bit to 0. If there are multiple page mappings that map the physical
page, there only needs to be one Migration Descriptor Register set up for all the page mappings
(for example, a 64 KB page migration with multiple 4 KB pages mapped within that 64 KB page).
However, firmware must assure that the Target Page Size field in the Migration Register is equal
to the largest I/O page size being migrated.

c. Store the contents built in part b of this requirement into the Migration Descriptor Register allocat-
ed in part a of this requirement.

d. Redirect all TCEs pointing to the memory area to be migrated to relevant Migration Descriptor
Registers. Then use the TCE Invalidate facility to invalidate any cached versions of the TCE (as
per the usual TCE change process).

e. Copy data from the source to the destination memory region. For each atomically writable quan-
tum of memory:
• Read quantum from the migration source page.
• Write quantum to the corresponding offset in the migration destination page.
• Reread quantum from the migration source page.
• Compare the first and second reads (this catches a DMA write race).
• If not equal, branch back and copy again.
• Else, loop to the next quantum.

f. Set the Read Target Bit to 1 in each Migration Descriptor Register allocated in part a of this re-
quirement.

g. Adjust all TCEs changed in part d of this requirement to directly access their migration destination
pages. Set the Migration Pointer in those TCEs to 0. Then, use the TCE Invalidate facility to invali-
date any cached versions of the TCE (as per the usual TCE change process).

OpenPOWER I/O Design Archi-
tecture

February 17, 2016 Revision 1.0.0

OpenPOWER Foundation 30
Workgroup Specification

Standard Track

Table 3.8. Migration Register Definition

Bits Field Definition

0 Valid 0: Invalid. Attempts to use causes the PE to be put into the EEH Stopped
1: Valid

1:3 Reserved Reserved

4:51 Target RPN The Page Mapping and Control field is inherited from the TCE for the source page. If the
Page Mapping and Control field is something other than a page fault, these bits contain the
RPN used for the target page translation. In certain PHB implementations, all of these bits
might not be required. However, enough bits must be implemented to match the largest re-
al address in the platform.

52:56 Reserved

57 Read Target 0: DMA Read operations are made to the source page.
1: DMA Read operations are made to the target page.

58:63 Target Page Size The target page size is 2Contents of this field. The values allowed are implementation depen-
dent, but correspond to the same I/O page sizes that are implemented for the I/O Page
Size field of the TVE (see Table 3.5, “TVE Definition” [23]).

3.2.2.3. Additional DMA Design Details: Multilevel TCE Tables

This section defines the changes to typical DMA operations described previously when there are
multiple levels of TCE tables; that is, when the Number of TCE Table Levels field of the TVE is
nonzero.

The following terms are used in the description of multilevel TCE tables:

Direct TCE table Contains direct TCEs.

Direct TCE A direct TCE contains the real page number (RPN) that points to the page that the DMA operation
is trying to access.

Indirect TCE table Contains indirect TCEs.

Indirect TCE An indirect TCE is a TCE for which the RPN contains a pointer to the starting address for the next
level of the TCE table. This pointer is used along with the TCE Index for the next level of table to
access the next TCE in the chain of TCEs. The TCE Index is obtained from the PCIe address, as
shown in Figure 3.2, “PCIe Non-MSI DMA Operation Address Fields” [15]. For a description of
the use of the indirect TCE, see Section 3.2.2.3.1, “Multilevel Table TCE Fetching” [30].

3.2.2.3.1. Multilevel Table TCE Fetching

When the Number of TCE Table Levels field of the TVE is nonzero, multiple TCE fetches are made
by the hardware when that TVE is used. The number of fetches is equal to the Number of TCE Table
Levels field of the TVE plus 1, unless one of the TCEs indicates a page fault. In that case, the oper-
ation is marked in error and the fetching stops. All but the last level of tables contains what is called
indirect TCEs, and the last level contains direct TCEs. The PHB uses the RPN field of indirect TCEs
to point to the start of the next level of TCE table. The TCE index is obtained from the PCIe address
as shown in Figure 3.2, “PCIe Non-MSI DMA Operation Address Fields” [15]. An example of this
process for a three-level table is shown in Figure 3.8, “PCIe Normal DMA Operation for a Three-Lev-
el TCE Table” [31].

OpenPOWER I/O Design Archi-
tecture

February 17, 2016 Revision 1.0.0

OpenPOWER Foundation 31
Workgroup Specification

Standard Track

Figure 3.8. PCIe Normal DMA Operation for a Three-Level TCE Table

R1-3.2.2.3-1 Hardware Requirement:

The PHB hardware must take all of the following actions:

a. Implement multilevel TCE tables as defined by Section 3.2.2.3, “Additional DMA Design Details:
Multilevel TCE Tables” [30].

b. Implement the Number of TCE Table Levels field according to the definition in Table 3.5, “TVE
Definition” [23]. Use this value to determine when an indirect TCE table is being accessed and
when a direct TCE table is being accessed.

c. Treat a Page Fault setting (0b00) of the TCE Page Mapping and Control field the same for both
direct and indirect TCEs. That is, fail the operation and set the EEH Stopped state for the PE.

d. Except for the Page Fault setting (0b00) of the TCE Page Mapping and Control field, ignore any
read-only or write-only setting for these bits in indirect TCEs. That is, the values of 0b01, 0b10,
and 0b11 are to be treated the same for indirect TCEs; they are all valid states for any DMA oper-
ation.

e. Treat the TCE Table Size of the TVE as the size of each level of TCE table being accessed by the
TTA of the TVE or by the RPN of an indirect TCE.

OpenPOWER I/O Design Archi-
tecture

February 17, 2016 Revision 1.0.0

OpenPOWER Foundation 32
Workgroup Specification

Standard Track

f. Validate that the All-0’s field of the PCIe address, shown in Figure 3.8, “PCIe Normal DMA Oper-
ation for a Three-Level TCE Table” [31], is all zeros, based on the TCE Table Size, Number of
TCE Table Levels, and I/O Page Size fields of the TVE.

R1-3.2.2.3-2 Firmware Requirement:

The firmware must take all of the following actions:

a. Set up the Number of TCE Table Levels field appropriately for each TVE.

b. Set up the indirect TCE tables appropriately such that each indirect TCE points to the start of the
next level TCE table to be accessed. Set the Page Mapping and Control field for used indirect
TCEs to something other than the Page Fault (0b00) setting.

3.2.2.3.2. Multilevel Table TCE Caching

To enable the cache to match on accesses from the same device to the same I/O page, the PCIe ad-
dress must be in the cache, and not the address of the direct TCE itself. By doing this, no intermedi-
ate (indirect) fetches are made if the PCIe address hits a cached entry.

Implementations might also want to consider caching other levels. However, the performance gained
must be traded off against the silicon area and based on the expected workload.

3.2.2.4. DMA Read Sync Register

The DMA Read Sync Register shown in Table 3.9, “DMA Read Sync Register” [32]is provided to
assist firmware in determining when all currently outstanding (in progress relative to the PHB’s state
machine) DMA read operations are complete. For example, it can be used during a memory-migra-
tion operation or during PE-reset operations to assure that in-flight DMAs are complete.

Table 3.9. DMA Read Sync Register

Bits Field Access Mode Definition

0 Start Synchronization Write only Writing a 0 to this bit has no effect.

Writing a 1 to this bit starts the DMA read synchronization process. Writ-
ing a 1 to this bit sets the Synchronization Complete bit (bit 1 of this regis-
ter) to a 0 at least until the hardware determines if there are currently any
incomplete DMA read operations.

Reading this bit returns a 0.

1 Synchroniza-
tion Complete

Read only 0: One or more DMA read operations, which were incomplete
(outstanding)a when the Start Synchronization bit (bit 0 of this regis-
ter) was last written to a 1, are still not complete.

1: All DMA read operations, which were incomplete (outstanding)a

when the Start Synchronization bit (bit 0 of this register) was written
to a 1, if any, have been completed.

Writes to this bit are ignored.

2:63 Reserved - Reserved
aA DMA Read operation is considered to be incomplete (outstanding) if processing on it has been started by the PHB’s state machine, such that
the address translation process has started and cannot be aborted. For example, if the PHB has started the operation to read the TCE from system
memory, the DMA read operation is considered outstanding at that point if the operation cannot be stopped and restarted. The operation remains
outstanding (and the Synchronization Complete bit remains at 0) until the DMA Read operation data (not just the TCE data) is received by the
PHB from system memory.

OpenPOWER I/O Design Archi-
tecture

February 17, 2016 Revision 1.0.0

OpenPOWER Foundation 33
Workgroup Specification

Standard Track

R1-3.2.2.4-1 Hardware Requirement:

The PHB hardware must provide the DMA Read Sync register, as defined in Table 3.9, “DMA Read
Sync Register” [32].

3.2.3. LSI Design
When an LSI is signalled by the Assert_INTx message request (where x is A, B, C, and D for respec-
tive PCI interrupt signals) and when that interrupt was not previously signalled, the PHB selects one
of four XIVEs from the LSI XIVT to determine the appropriate interrupt to assert 1 to the system. (IN-
TA selects the first entry, INTB the second, and so on.) The interrupt state is also presented in one
of four interrupt state entries (ISEs) in the LSI interrupt state table (IST), which is associated with
the LSI XIVT. See Section 3.2.3.1, “LSI XIVE Definition” [33]and Section 3.2.3.2, “LSI ISE Defini-
tion” [34].

Use of LSI interrupts in systems has the following implications for firmware and hardware:

• There are only four LSIs per PHB, and any specific interrupt cannot be shared across PEs. This
limitation is enforced by firmware. Therefore, this limit severely restricts the hardware configura-
tions available.

• No validation is done on the Assert_INTx message requests that come in to the PHB. See also
Requirement R1-3.2.3.1- c.

Unlike MSI interrupts, when the PE is in the DMA Stopped state, LSI operations from that PE are not
prevented. The firmware can disable the interrupts on detection of an EEH event. On detection of the
event, the DD should also disable its IOA function’s interrupt in its function’s PCI configuration space.

3.2.3.1. LSI XIVE Definition
The external interrupt vector tables (XIVTs), which contain the external interrupt vector entries
(XIVEs), are located in the PHB chip.

In Table 3.10, “XIVE Definition for LSI Interrupts Only” [33], [] designates optional bits and bytes.
Optional bits and bytes that are not implemented must be ignored by that implementation on a Store
and must be returned as zeros on a Load even when the entire field is not implemented. Implemen-
tations that do not implement the full size of the field must treat unused bits and bytes the same as
optional bits and bytes. Reserved bits and bytes must be ignored on a Store and must be returned
as zeros on a Load.

Table 3.10. XIVE Definition for LSI Interrupts Only
Bytes Bits Field Definition

0:2 All Server # The number of bits implemented is implementation dependent. At a minimum,
it is necessary to have one server per processor thread for a global queue
and one server per processor thread for a local queue, plus some room for
growth. The suggested minimum is 20 bits. The maximum is 24 bits. It is use-
ful for this field to be writable independent of other fields in XIVE.

3 All Interrupt Priority A value of 0x00 is the highest priority, and a value of 0xFE is the lowest priori-
ty. A value of 0xFF means the interrupt is disabled and should not be present-
ed at the current time.

[4:7] All Reserved Reserved

1Unless the Interrupt Priority field in the XIVE is 0xFF, which means that the interrupt is disabled.

OpenPOWER I/O Design Archi-
tecture

February 17, 2016 Revision 1.0.0

OpenPOWER Foundation 34
Workgroup Specification

Standard Track

R1-3.2.3.1-1 Hardware Requirement:

The PHB hardware must implement the XIVT for LSI interrupts, and the entries in this table must be
as defined in Table 3.10, “XIVE Definition for LSI Interrupts Only” [33].

R1-3.2.3.1-2 Firmware Requirement:
The firmware must take all of the following actions:

a. Access the XIVT for LSI interrupts with 8-byte Loads and Stores, naturally aligned.

b. Not allow interrupts to be shared between PEs.

c. Prevent a partition from setting up an LSI on an IOA owned by it, if that LSI is not owned by that
partition.

3.2.3.2. LSI ISE Definition

The interrupt state tables (ISTs), which contain the interrupt state entries (ISEs), are located in the
PHB chip.

There is one ISE per XIVE. ISEs are organized in the IST, with the first ISE corresponding to the first
XIVE, the second ISE corresponding to the second XIVE, and so on.

In Table 3.11, “ISE Definition for LSI Interrupts Only” [34], [] designates optional bits and bytes.
Optional bits and bytes that are not implemented must be ignored by that implementation on a Store
and must be returned as zeros on a Load even when the entire field is not implemented. Implemen-
tations that do not implement the full size of the field must treat unused bits and bytes the same as
optional bits and bytes. Reserved bits and bytes must be ignored on a Store and must be returned
as zeros on a Load.

Table 3.11. ISE Definition for LSI Interrupts Only

Bytes Bits Field Definition

[0:6] All Reserved Reserved

7 [0:3] Reserved Reserved

7 4 Reserved Reserved

7 5 Interrupt Rejected Hardware sets this bit to a 1 when the interrupt that was presented to the rout-
ing layer is rejected (Interrupt Return). It sets this bit to 0 on power-on reset
and on an EOI for the interrupt corresponding to this bit.

The Rejected bit does not affect the internal state of the interrupt. It is used as
a status bit to indicate that the interrupt was rejected at least once.

Firmware can set this bit to a 0.

1: Interrupt was sent to the routing layer but was rejected at least once.
0: Interrupt might be pending or presented but not rejected.

7 6 Interrupt Presented Hardware sets this bit to a 1 when the interrupt is presented to the routing lay-
er. It sets this bit to a 0 on power-on reset and on an EOI or interrupt return for
the interrupt corresponding to this bit.

Firmware can set this bit to a 0.

Setting the XIVE’s priority to 0xFF is the mechanism for disabling an interrupt.

OpenPOWER I/O Design Archi-
tecture

February 17, 2016 Revision 1.0.0

OpenPOWER Foundation 35
Workgroup Specification

Standard Track

Bytes Bits Field Definition
Interrupts are remembered if the Interrupt Pending bit is set to 1 (interrupt re-
ceived) while the priority for the interrupt received is set to 0xFF. If firmware
changes the priority field to non-0xFF while the Interrupt Pending bit is a 1,
the remembered interrupt is presented if not previously presented (if this bit
is 0). This bit is then set to 1. If the Interrupt Pending bit is deasserted (set to
0) before the priority is changed, this bit is not set to 1 and the interrupt is not
presented.

A state of Interrupt Presented = 0 and Interrupt Pending = 1 indicates that the
interrupt request was not sent, but is waiting to be sent. This can be the re-
sult if the interrupt was presented but was returned or if the interrupt is pend-
ing but is disabled. In the disabled case, the interrupt is presented and the
Interrupt Presented bit is set to 1 when the interrupt priority is changed to
non-0xFF. In the interrupt return case, the Interrupt Presented bit is set to a 1
after the interrupt re-present timer elapses or when (in legacy mode) an inter-
rupt reissue command is received for the interrupt.

1: Interrupt presented.
0: Interrupt not presented.

7 7 Interrupt Pending For an LSI interrupt, if this bit has a value of 1, it means that the interrupt sig-
nal is active (Assert_INTx was received but not Deassert_INTx).

Hardware sets this bit to a 0 on power-on reset.

Firmware can set this bit to a 0. Firmware might want to correct for the hard-
ware not presenting a Deassert_INTx (that is, in error recovery clean-up).
Firmware might also set this bit to a 1 to generate interrupts for testing pur-
poses.

Hardware sets this bit to a 0 for LSI interrupts only when the Deassert_INTx
message for the interrupt is received. If an EOI for the interrupt corresponding
to this bit is received for an LSI interrupt and the Interrupt Pending bit is set to
a 1, another interrupt is presented to the routing layer. The Interrupt Present-
ed bit is set to a 1 in this case as well.

1: Interrupt pending.
0: Interrupt not pending.

R1-3.2.3.2-1 Hardware Requirement:

The PHB hardware must implement the IST for LSI interrupts, and the entries in this table must be
as defined in Table 3.11, “ISE Definition for LSI Interrupts Only” [34].

R1-3.2.3.2-2 Firmware Requirement:

The firmware must access the IST for LSI interrupts, with 8-byte Loads and Stores, naturally aligned.

3.2.3.3. LSI Interrupt Source Number Definition
The interrupt source number is passed to the interrupt presentation layer. How the interrupt source
number is generated for LSIs is implementation specific and is beyond the scope of this architecture.

3.2.4. MSI Design
This section gives the requirements for the MSI interrupt source controller that is implemented by the
PHB. The term “MSI” is used to refer to “MSI” and “MSI-X”, generically. In cases where there are dif-
ferences, the distinction will be made in context.

Most per-interrupt information (such as priority and server number) and state information (such as in-
terrupt presented, interrupt queued, and interrupt rejected) is in system memory for scalability rea-

OpenPOWER I/O Design Archi-
tecture

February 17, 2016 Revision 1.0.0

OpenPOWER Foundation 36
Workgroup Specification

Standard Track

sons. The processing of the interrupt states in system memory is a joint effort between the hardware
and the firmware.

The difference between 32-bit MSIs and 64-bit MSIs is how the MSI address range is decoded.

• 64-bit I/O DMA addresses. Bits 61:60 are allocated in the address to indicate, when 0b01, that the
address is for an MSI.

• 32-bit I/O DMA addresses. When 32-bit MSIs are enabled, MSI addresses are determined by de-
coding bus address bits 31:16 as 0xFFFF (a 64 KB region, which limits 32-bit MSIs to the first 4K
IVEs PHB). Chip designs can disable 32-bit MSIs by default, but must allow a way for the platform
to enable this decode. This allows the platform to control the 64 KB hole in the address space,
based on whether 32-bit MSI support is desired or not.

When the PE is in the DMA Stopped state, additional MSI operations that are presented from the
PE after the PE enters the Stopped state are blocked by the PHB. This can happen naturally, when
the hardware treats the MSI operation as a normal DMA write; that is, the DMA Stopped state is
checked before an MSI decode of address is made. A DD determines that its IOA function is stopped
by timing operation completions and timing out when its IOA function fails to signal completion after
a reasonable period of time. MSI operations that were presented by a PE to the PHB before that PE
entered the Stopped state can be presented after the PE enters the Stopped state. For example, an
initial presentation was rejected by the presentation layer, and the PHB presents the same interrupt
after it was rejected.

 Figure 3.9, “MSI Flow” [37]shows the general flow from receipt of an MSI to the generation of the
information necessary to present to the system. The details of how this information gets presented to
the system is implementation dependent and is beyond the scope of this document. In this figure and
section, the following terms and constructs are defined:

• IVE – An entry in the interrupt vector table. It is similar to an XIVE except that it contains state bits
and exists in system memory. See also Table 3.13, “MSI IVE Definition” [42].

• IVC – Interrupt vector cache. A cache of IVEs.

• P bit – Presented. There is one P bit per interrupt source. This bit indicates that an interrupt was
presented and has not yet returned an EOI. It resides in the IVE for the interrupt source, in a byte
of the IVE with only the “G” bits.

• G[0:1] The Generation bits are used to control races in the software cache coherence protocol.

• Q bit – Interrupt requested/queued. There is one Q bit per interrupt source. It resides in the IVE for
the interrupt source, in a byte of IVE with no other bits. This bit indicates one of two things (both
require firmware to queue up a new interrupt using the firmware force interrupt (FFI) facility:

—Indicates that an MSI was received after the previous interrupt was presented and before the P
bit is cleared.

—Indicates that an MSI was received when the IVE priority was 0xFF (that is, when the interrupt
was disabled).

Architecture Note: The P and Q bits are placed into separate bytes for coherency management reasons because the P and Q bits
are set by the hardware and cleared by the firmware.

• R bit – Rejected. There is one R bit per interrupt source. It indicates that an interrupt that was
previously presented has been returned or rejected by the interrupt presentation layer. It resides

OpenPOWER I/O Design Archi-
tecture

February 17, 2016 Revision 1.0.0

OpenPOWER Foundation 37
Workgroup Specification

Standard Track

in the R bit array (RBA). Processing of the RBA is done by the PHB hardware, but the firmware
might need to clean up bits in the RBA during certain clean-up procedures.

• Firmware force interrupt (FFI) facility - This facility provides firmware with a way to force an inter-
rupt for a given source. It produces the same PHB state change. If the P bit was initially 0, it issues
an interrupt to the system just as if the interrupt came from the PCIe link.

Figure 3.9. MSI Flow

Referring to Figure 3.9, “MSI Flow” [37], after the determination is made that this is an MSI oper-
ation, the PCIe address and data are combined to form the IVE index. The IVE is read from system
memory or the IVC. The PE# is compared to the PE# generated from the RID (see Section 3.2.1.2,
“DMA and Error Message PE# Determination, RTT, RTC Invalidate, and PELT-V” [7]). If the PE#
in the IVE does not match the PE# generated from the RID, or if the IVE index causes the access to
be past the end of the IVE table (as determined by the IVT Length register), the PE# is in error; the
PE is placed into the error state (MMIO Stopped and DMA Stopped states). If the PE#s match, the
processing continues as described in Table 3.12, “MSI State Table” [38], and as illustrated by ex-
ample in Figure 3.10, “Example Interrupt State Bit Flow” [39].

OpenPOWER I/O Design Archi-
tecture

February 17, 2016 Revision 1.0.0

OpenPOWER Foundation 38
Workgroup Specification

Standard Track

Table 3.12. MSI State Table

P:Q State Firmware Action During EOIa PHB Actionb

00 Done with EOI. • For IVE priority not 0xFF: On receipt of an interrupt from
the PCI or from the FFI register, hardware sets P = 1b

and sends the interrupt to the system.

• For IVE priority 0xFF (interrupt disabled): On receipt of
an interrupt from the PCI or from the FFI register, hard-
ware sets Q = 1b.

01

(Q bit pro-
cessing
state)

Firmware sets Q = 0a; that is, it transitions to 00. It then
uses the FFI registers in PHB to force a hardware inter-
rupt. Firmware first reads the FFI Lock Register until a 0 is
returned, which indicates that the thread can use the facil-
ity. It then writes the FFI registers. Hardware releases the
lock when the interrupt-force operation is complete.

Drop new interrupts for this source. Do not write to Q.

• Hardware can reliably drop new interrupts because it
knows that the firmware has seen the Q bit set. Other-
wise, the P bit would not be 0.

10 Firmware sets P = 0a; that is, it transitions to 00. It then
does a cache-inhibited (CI) Load to force out any PHB
write to Q.

It might transition to state 00 or 01, or it might transition to
10 or 11 if new interrupts come in and hardware sees P =
0 before a CI Loadand next step is done.

If P:Q is 01 after the previous action, it then goes to state
01. Otherwise, it is done with an EOI.

On receipt of an interrupt from the PCI or from the FFI
register, hardware sets Q = 1b.

11 Firmware sets P = 0a. It then goes to state 01. Drop new interrupts for this source. Do not write to Q.
aWhen firmware changes an IVE in system memory, it is required to synchronize any cached version of that IVE in the IVC in the PHB by us-
ing the IVC Update Register in the PHB (see Table 3.15, “IVC Update Register Definition” [43]). Note that there exists an intrinsic race in
this synchronization process. Between the time that the firmware changes an IVE and firmware can command an update of the associated IVC
entry, the hardware might have fetched and updated the new IVE value due to an incoming interrupt (see Figure 3.11, “Example EOI Update
Race” [40]). To assist firmware in controlling this race, the IVE contains a Generation field. Incrementing the Generation field during the
EOI process allows the firmware to condition the IVC updates to cache entries with only the old value of the Generation field (see Figure 3.12,
“Example EOI Update Race Controlled with Generation Number Field” [40]). This way, the IVC update does not overwrite the values for
the next generation of the interrupt state. The change of the IVE in system memory is flushed out of the processor to system memory, by use of a
sync instruction, before issuing the CI Store to the IVC Update Register.
bWhen the PHB updates a P or Q bit in a cached copy of an IVE, it is required to DMA that change to that IVE in system memory, thus synchro-
nizing both copies.

OpenPOWER I/O Design Archi-
tecture

February 17, 2016 Revision 1.0.0

OpenPOWER Foundation 39
Workgroup Specification

Standard Track

Figure 3.10. Example Interrupt State Bit Flow

OpenPOWER I/O Design Archi-
tecture

February 17, 2016 Revision 1.0.0

OpenPOWER Foundation 40
Workgroup Specification

Standard Track

Figure 3.11. Example EOI Update Race

Figure 3.12. Example EOI Update Race Controlled with Generation Number Field

R1-3.2.4-1 Hardware Requirement:

The PHB hardware must take all of the following actions:

OpenPOWER I/O Design Archi-
tecture

February 17, 2016 Revision 1.0.0

OpenPOWER Foundation 41
Workgroup Specification

Standard Track

a. Decode MSI operations by detecting that PCIe addresses bits 61:60 are equal to 0b01, for 64-bit
I/O DMAs, or that PCIe address bits 31:16 are equal to 0xFFFF (a 64 KB region), for 32-bit I/O
DMA addresses.

b. Disable 32-bit MSIs by default. Provide firmware with a way to enable them.

c. Implement the IVT with entries defined as in Table 3.13, “MSI IVE Definition” [42].

d. Implement IVT BAR and IVT Length registers, writable by firmware, whose contents points to the
start and length, respectively, of the IVT in system memory.

e. Create the address to access the IVE for the MSI operation by ORing together the following enti-
ties (see also Figure 3.9, “MSI Flow” [37]):

—IVT BAR

—“n” low-order PCIe address bits, where 2 n is the IVT Length, aligned with the low-order IVT
BAR bits

—PCIe data bits 4:0 aligned with PCIe address bits 8:4

Architecture Notes:
1. The IVE address generation specified in part e works for both MSI and MSI-X. It is firmware’s responsibility to set the appropri-

ate bits to 0 in the MSI address, MSI-X address and data, and IVT BARs (see Firmware Requirement R1-3.2.4-2).

2. Due to the high-order PCIe address bit truncation in the IVE address generation specified in part e, hardware does not directly
detect an address that would have accessed past the end of the IVT. However, the PE# check in part fassures that the device
only accesses MSIs assigned to its PE.

f. Access the IVE with the address generated in part e of this requirement. Then compare the PE#
field from the IVE with the PE# generated in Requirement R1-3.2.1.2-1. If they are not equal,
put the PE into the MMIO and DMA Stopped states, as defined in Section 3.2.1.3, “PE State and
EEH” [12].

g. Implement the “PHB Action” column of Table 3.12, “MSI State Table” [38].

h. On an interrupt reject (return) from the interrupt presentation layer, perform the RBA processing
defined in Section 3.2.4.2, “MSI Reject (Return) Processing by PHB, the RBA, and Reject Re-
Present Timer” [45].

i. Provide an IVC cache for caching IVEs used for MSI operations.

j. Provide an IVC Invalidate Register, as defined in Table 3.14, “IVC Invalidate Register Defini-
tion” [42], for invalidating IVC entries. The hardware must stop using the entry when firmware
indicates the invalidate. However, it can wait until any invalidated IVE is used once. A Store to this
register causes the specified IVE or all IVEs in a cache line to be invalidated. Issuing a Load to
this register causes the last value Stored to be returned.

k. Provide an IVC Update Register, as defined in Table 3.15, “IVC Update Register Defini-
tion” [43], for updating IVC entries. The hardware must do an immediate update of the entry
when firmware issues a Store to this register. Issuing a Load to this register causes the last value
Stored to be returned.

OpenPOWER I/O Design Archi-
tecture

February 17, 2016 Revision 1.0.0

OpenPOWER Foundation 42
Workgroup Specification

Standard Track

R1-3.2.4-2 Firmware Requirement:
The firmware must take all of the following actions:

a. Set up the IVT BAR and IVT Length Registers in the PHB appropriately to point to the IVT. The
IVT length must be set to a power of 2. The IVT BAR alignment must be equal to an integer multi-
ple of the size.

b. Set up the IVE for each interrupt source, including marking those not used with a Priority of 0xFF.

c. Disable interrupt sources by setting the Priority field in the IVE, for the interrupt sources to be dis-
abled, to 0xFF.

d. On an EOI, implement the “Firmware Action on EOI” column of Table 3.12, “MSI State Ta-
ble” [38].

e. When enabling an interrupt source (that is, setting the Priority in the IVE from 0xFF to something
other than 0xFF), perform the operations defined in Section 3.2.4.3, “Firmware Action on Enabling
an MSI Interrupt” [46].

f. Do not allow interrupts to be shared between PEs.

g. Maintain the coherency between the system memory IVE contents and the cached IVE contents
by using the IVC Update Register to update cached IVEs whenever it changes the value of an IVE
in system memory. Use the IVC Invalidate Register when an IVE in system memory is no longer
valid.

Firmware Implementation Note: The PHB caches the PE# along with the other IVE information in the IVC. Note that the IVC Up-
date Register does not provide a mechanism to change the PE# of an entry. If a PE# is being changed in an IVE, it is because the
interrupt source is being re-assigned. In that case, the firmware must use the IVC Invalidation Register to invalidate the entry be-
fore re-assignment.

Table 3.13. MSI IVE Definition
Bytes Field Definition

0:2 Server Number The server number for this interrupt source. The number of bits implemented is dependent
on the number of servers supported by the hardware. Unimplemented bits are on the left
end of the field.

3 Priority The priority for this interrupt source.

Bits 0:4 Reserved Written as 0.

Bits 5:6 Generation field Generation number used to control races in updates of the IVC.

4

Bit 7 P bit Interrupt Presented. See Section 3.2.4, “MSI Design” [35] for the definition.

5 Q bit Interrupt Queued. MSI received when another one has already been presented and has
not EOIed yet. That is, the P bit is still a 1. The Q bit is bit 7 of the byte, and all other bits
are Reserved (written as 0). See Section 3.2.4, “MSI Design” [35] for the definition.

6:7 PE# The number of the PE that is allowed to access this interrupt source. The number of bits
implemented is dependent on the number of PEs supported by the PHB hardware. Unim-
plemented bits are on the left end of the field.

8:15 Reserved Reserved

Table 3.14. IVC Invalidate Register Definition
Bits Field Definition

0 Invalidate All 0: Invalidate the entry in the IVC specified by the Source ID field.
1: Invalidate all entries in the IVC, regardless of the value in the Source ID field.

1:15 Reserved Reserved

OpenPOWER I/O Design Archi-
tecture

February 17, 2016 Revision 1.0.0

OpenPOWER Foundation 43
Workgroup Specification

Standard Track

Bits Field Definition

16:31 Source ID The Source ID of the IVC entry to invalidate when the Invalidate All bit is set to a 0. It is
possible that some implementations might not implement a full 16-bit Source ID. For those
implementations, some number of the high-order bits of this field can be treated as Re-
served.

32:63 Reserved Reserved

Table 3.15. IVC Update Register Definition

Bits Field Definition

0 Enable P Bit Update 0: No action against the P bit in the IVC entry specified by the Source ID field.
1: Set the P bit in the IVC entry specified by the Source ID field to the value in the P bit

field of this register.

1 Enable Q Bit Update 0: No action against the Q bit in the IVC entry specified by the Source ID field.
1: Set the Q bit in the IVC entry specified by the Source ID field to the value in the Q bit

field of this register.

2 Enable Server
Number Update

0: No action against the Server Number field in the IVC entry specified by the Source ID
field.

1: Set the Server Number field in the IVC entry specified by the Source ID field to the
value in the Server Number field of this register

3 Enable Priori-
ty Field Update

0: No action against the Priority field in the IVC entry specified by the Source ID field.
1: Set the Priority field in the IVC entry specified by the Source ID field to the value in the

Priority field of this register.

4 Enable Genera-
tion Field Update

0: No action against the Generation field in the IVC entry specified by the Source ID
Field.

1: Set the Generation field in the IVC entry specified by the Source ID field to the value
in the Generation Number field of this register.

5 Condition Updates
on Generation Match

0: The updates specified by bits 0 - 4 are performed without regard to the Generation field.

1: The updates specified by bits 0 - 4 are performed only if bits 6 - 7 match the value of the
Generation field of the IVC entry specified by the Source ID field of this register.

6:7 Generation Num-
ber to Match

8:23 Server Number See Enable Server Number Update field definition.

24:31 Priority See Enable Priority Field Update definition.

32:33 Generation Number 0:1 See Enable Generation Field Update definition

34 P Bit See Enable P Bit Update definition

35 Q Bit See Enable Q Bit Update definition

36:47 Reserved Reserved

48:63 Source ID The Source ID of the IVC entry to update, when the update field bits are set to a 1. It is
possible that some implementations might not implement a full 16-bit Source ID. For those
implementations, some number of the high-order bits of this field can be treated as Re-
served.

3.2.4.1. Firmware Force Interrupt (FFI) and FFI Lock Registers
The Firmware Force Interrupt (FFI) facility provides firmware with a way to force an interrupt for
a given source, with the same PHB state change. It issues an interrupt to the system, if the P bit
was initially 0, as if the interrupt came in from the PCIe link. The FFI facilities are provided to allow
firmware to requeue an interrupt through the PHB mechanisms. It is also possible for firmware to not
use the FFI facilities and instead queue up additional interrupts using its own algorithms.

This facility is a shared facility across all partitions that share I/O under the PHB. The use of this fa-
cility must therefore be serialized. To do this, the FFI Lock Register is provided to facilitate this lock-
ing.

OpenPOWER I/O Design Archi-
tecture

February 17, 2016 Revision 1.0.0

OpenPOWER Foundation 44
Workgroup Specification

Standard Track

The format of the FFI, as specified in Table 3.16, “FFI Definition” [44], is set up to match the PCIe
address of an MSI-X interrupt with data of 0. That is, the format is the same as an MSI-X interrupt re-
ceived from the PCIe link.

Table 3.16. FFI Definition
Bits Field Definition

0:3 0b0001

4:43

Fixed value

0

44:59 Source Number The 16-bit interrupt source number

60:63 Fixed value 0

Table 3.17. FFI Lock Definition
Bits Field Definition

0 Lock State 0: The resource lock has been acquired.
1: The resource is busy; try again.

The lock is reset by the PHB hardware when the operation defined by the Store to the FFI
register is completed. That is, the Lock state is set to 0. Normally this state is read-only, but
write access is provided for firmware clean-up operations, if necessary.

1:63 Fixed value 0

R1-3.2.4.1-1 Hardware Requirement:

The PHB hardware must take all of the following actions:

a. Implement the FFI and FFI Lock registers, as defined in Table 3.16, “FFI Definition” [44] and
Table 3.17, “FFI Lock Definition” [44].

b. On a Load to the FFI Lock register, return the value of 0 if the FFI facility is available for use. Oth-
erwise, return a value of 1.

c. After processing a Store to the FFI register (that is, after forcing the requested interrupt), and
when the facility is available for re-use, reset the Lock state in the FFI Lock register to 0.

d. Accept a Store to the FFI Lock register, setting the Lock state bit to the value specified by the
Store data.

e. When a Store is received to the FFI register, force the requested interrupt into the PCIe opera-
tion flow. Use the FFI register as the DMA address with a data value of 0, just as though the MSI
for that source had been received. Use the same ordering rules as for a received MSI. When that
forced interrupt comes to the top of the queue for processing, process it as though it was an MSI
coming in from the PCIe link.

Hardware Implementation Notes:
1. It is permissible for the hardware to ignore all data bits except the Source Number field bits, on a Store to the FFI register.

2. Interrupts presented through the FFI facility do not go through the PE Number checking. That is, there is no RID or RID-to-PE-
Number lookup associated with the FFI operation.

R1-3.2.4.1-2 Firmware Requirement:

The firmware must take all of the following actions:

OpenPOWER I/O Design Archi-
tecture

February 17, 2016 Revision 1.0.0

OpenPOWER Foundation 45
Workgroup Specification

Standard Track

a. Before Storing to the FFI register, obtain a lock on that facility by Loading the FFI Lock register un-
til a zero value is returned.

b. After obtaining the lock through the FFI Lock register, Store to the FFI register as soon as possible
to prevent FFI register resource contention with other processing threads.

c. Do not write to the FFI Lock register, unless necessary for clean up.

d. Store to the FFI register and, if necessary, to the FFI Lock register only with 8-byte Stores.

3.2.4.2. MSI Reject (Return) Processing by PHB, the RBA, and Reject
Re-Present Timer
The PHB is set up by the firmware to kick off processing of the RBA, when there are any bits set in
the RBA, on a specific interval. The facility provided by the PHB to allow this setup is the Reject Re-
Present Timer. The definition of this register is implementation specific and is beyond the scope of
this document.

R1-3.2.4.2-1 Hardware Requirement:

The PHB hardware must take all of the following actions:

a. Provide a Reject Re-Present Timer that can be set by firmware.

b. Provide a Reject Re-Present Counter that is loadable by the value in the Reject Re-Present Timer.

c. Implement a BAR to point to the start of the RBA that is loadable by the firmware.

d. When the PHB receives an interrupt reject back from the interrupt source layer, update the R bit
corresponding to the interrupt source in the RBA.

e. When the PHB hardware writes to any bit in the RBA, and when the Reject Re-Present Counter is
0, load the Reject Re-Present Counter with the value in the Reject Re-Present Timer. Start count-
ing down on an implementation-dependent interval.

f. When the Reject Re-Present Counter reaches 0, if there are any bits set in the RBA, then for each
R bit that equals 1; set that R bit to 0. If the interrupt is still enabled, as indicated by the Priority in
the interrupt’s IVE being not 0xFF, re-present the rejected interrupt to the system. Otherwise, set
the Q bit in the IVE for that interrupt to 1.

g. Minimize, as much as possible, the impact of reading the RBA from system memory by reading
only cache lines that might have an R bit set.

Hardware Implementation Note: Interrupts presented through the reject processing do not go through the PE Number checking.
That is, there is no RID or RID-to-PE-Number lookup associated with the reject processing operation.

R1-3.2.4.2-2 Firmware Requirement:

The firmware must take all of the following actions:

a. Write a value into the Reject Re-Present Timer that provides a system trade-off of interrupt re-
present latency versus system resource usage (that is, bandwidth used by the PHB hardware in
fetching the RBA).

OpenPOWER I/O Design Archi-
tecture

February 17, 2016 Revision 1.0.0

OpenPOWER Foundation 46
Workgroup Specification

Standard Track

b. Set up the RBA BAR register to point to the contiguous real memory that the PHB can use to im-
plement the RBA with a size that is a power of 2. It must be large enough to contain one bit per
PE# implemented by the PHB and have an alignment equal to the size.

Table 3.18. RBA Definition
Bits Field Access Mode Definition

0:(n-1) R Bit Hardware R/W n = number of IVEs.

Firmware only writes to these bits for clean-up reasons (for example, during hot
plug operations). Firmware access requires firmware to use a read-modify-write op-
eration with Loadwith reserve and Storeconditional instructions. Abort the Storeif
the reservation is lost due to the PHB writing to the RBA at the same time and to
same address.

n:(m-1) Reserved m = width of RBA. m is a power of 2 and the RBA is naturally aligned.

3.2.4.3. Firmware Action on Enabling an MSI Interrupt
Firmware sets the IVE priority for an interrupt to 0xFF to disable the interrupt at the source inter-
rupt controller. During the time that an interrupt source is disabled in this way, if an MSI is received
for that source, the PHB hardware sets the Q bit for that interrupt. It is firmware’s responsibility to
check and process the Q bit when the source’s priority is changed from 0xFF to something else. The
firmware then uses the FFI facility to force an interrupt, if necessary (that is, if the Q bit is set to a 1
at the time the priority is changed).

R1-3.2.4.3-1 Firmware Requirement:

When the firmware changes the Priority field in the ISE for an interrupt source from 0xFF to some-
thing other than 0xFF, it must take all of the following actions:

a. Write the Priority field in the IVE in system memory to the new value. Update the cached version
to the new value using the IVC Update register.

b. Issue a CI Load to the PHB to flush any Q bit write that is in the PHB’s write queue.

c. If Q = 1 in IVE for the source, set Q = 0. Read the FFI Lock register until a 1 is returned indicat-
ing that the thread can use the facility. Then, write the FFI registers; hardware releases the lock
when the interrupt-force operation is complete. This forces an interrupt to that interrupt source, as
in processing of the Q bit during EOI.

3.2.5. PCIe Configuration Space
Firmware needs the capability to access the PCIe configuration space while the other PEs remain in
the MMIO Stopped state. Therefore, the PE for the configuration space cannot be shared by any oth-
er PE under the PHB.

R1-3.2.5-1 Hardware Requirement:
Configuration access to an IOA function and to the I/O fabric must be available at all times to the
firmware, even though the MMIO Stopped state for a PE might be set. That is, the hardware must
provide PEs for the configuration space that are separate from the normal MMIO memory space
PEs.

OpenPOWER I/O Design Archi-
tecture

February 17, 2016 Revision 1.0.0

OpenPOWER Foundation 47
Workgroup Specification

Standard Track

3.2.6. PE State Table
The PHB is required to capture certain data relative to PE errors. The PE state table (PEST) is in
system memory, and the PE state entry (PESE) is defined by Table 3.19, “PESE Definition” [47].

Table 3.19. PESE Definition

Bits Field Definition

0:1 Reserved

2 MMIO Cause This bit is set to ‘1’ if an MMIO operation froze the PE. It is set to zero if a DMA operation
froze the PE. If both an MMIO and DMA operation attempt to freeze the endpoint in the
same cycle, the MMIO operation has priority.

3 CFG Read The operation that caused the PE to be frozen was a PAPR inject CFG Read.

4 CFG Write The operation that caused the PE to be frozen was a PAPR inject CFG Write, or a CFG
Write with Size or Access error.

5:7 Transaction Type (0:2) This is an encoding of the transaction type that caused this PE to be frozen. The encoding
is as follows:

000 DMA Write
001 MSI Interrupt
010 DMA Read
011 DMA Read Response
100 MMIO Load
101 MMIO Store
110 Unused
111 Other (internal checker detected error). This encoding is used for most fatal internal

error cases. Examples include data parity errors, state machine errors, and so on
This encoding is also used where there was no error indicated when a request cov-
ered by one of the other encodings was first received, but after the request was is-
sued, some exception condition occurs. For example: a response timeout.

8 CA Return Status or
Completion Timeout

An MMIO Load, MMIO I/O Write, or other transaction returned from the PCIe link with a
status of Completer Abort (CA), or the MMIO operation terminated with a completion time-
out.

9 UR Return Status An MMIO Load, MMIO I/O Write, or other transaction returned from the PCIe link with a
status of Unsupported Request (UR).

10 NONFATAL_ERROR A PCIe nonfatal error occurred.

11 FATAL_ERROR A PCIe fatal error occurred.

12 Reserved Reserved

13 Parity/ECC UE Error Any parity error or uncorrectable ECC error.

14 Correctable Error /
CORR_ERROR

A correctable error occurred.

15 PCIe Core Interrupt An error occurred in the PCIe core.

16 Invalid MMIO Address

Translation / IODA2 Error

The down-bound MMIO did not match against any BARs or was invalid, or the up-bound
DMA request had an error defined by this architecture.

17 Reserved Reserved

18 TCE Page Fault A DMA transaction accessed a TCE whose page-access control bits were all zeros.

19 TCE Access Fault A DMA transaction conflicted with its allowed permissions according to the TCE page-ac-
cess control bits (includes all cases including page fault).

20 DMA Response

Timeout

A timeout occurred while waiting for an outstanding DMA Read Response to return from
system memory.

21 AIB Size Invalid The Size field in an incoming AIB packet was not valid.

22:25 Reserved Reserved

26:31 LEM Bit Number (0:5) Bit number in the LEM FIR Accumulator Register for the error that froze this endpoint.

OpenPOWER I/O Design Archi-
tecture

February 17, 2016 Revision 1.0.0

OpenPOWER Foundation 48
Workgroup Specification

Standard Track

Bits Field Definition

32:47 Requester ID (0:15) This is the PCIe requester ID value in the TLP.

PCI Bus (0:7) - Requester ID (0:7)
PCI Dev (0:4) - Requester ID (8:12)
PCI Func (0:3) - Requester ID (13:15)

48:63 MSI Data (0:15) Bytes 0 and 1 for an MSI interrupt.

Note: Only bits 4:0 of byte 0 are used for MSI interrupts in the design. For a PCIe Tag
Reuse error, the bits 48:55 contain the PCIe Tag value that was detected as reused.

64:66 Reserved Reserved

67:127 Fail Address(3:63) This is the address that was associated with the transaction that froze the endpoint.

For MMIOs, the address used is the 48-bit AIB address, right justified.

MMIO Fail Address (03:15) = all zeros
MMIO Fail Address (16:63) = AIB Address (0:47)

For DMAs, the address used is the least significant 61 bits of the PCI address.

DMA Fail Address (03:63) = PCI Address (60:0)

Note: This field might be invalid or all zeros for certain cases like MMIO/DMA response re-
lated errors where the address of the original transaction is no longer known or stored. The
address is generally valid for all errors detected during the request phase of a transaction.

R1-3.2.6-1 Hardware Requirement:
The PHB hardware must take all of the following actions:

a. Implement the PEST in system memory, with entries defined by Table 3.19, “PESE Defini-
tion” [47].

b. Implement a BAR, to point to the start of the PEST (PEST BAR), that is loadable by the firmware.

c. Use the PE#, with four trailing zeros concatenated, to index into the PEST.

d. When a PE is placed into the MMIO Stopped state, write the appropriate error information into the
PESE for that PE#.

Implementation Note: Some bits might not make sense for some implementations. However, if possible, they should be imple-
mented and when implemented, appear in the location designated by Table 3.19, “PESE Definition” [47].

R1-3.2.6-2 Firmware Requirement:
The platform firmware must take all of the following actions:

a. Set up the PEST BAR to point to the start of the PEST in contiguous real system memory, with a
size that is a power of 2 and with an address alignment on an integer multiple of the size of the ta-
ble.

b. Clear the contents of a PELE corresponding to a PE# before clearing the MMIO Stopped state for
that PE.

OpenPOWER I/O Design Archi-
tecture

February 17, 2016 Revision 1.0.0

OpenPOWER Foundation 49
Workgroup Specification

Standard Track

Appendix A. Endpoint Partitioning
This appendix describes details of endpoint partitioning in a PCI Express (PCIe) fabric environment.
For implementation information, see Section 3.2, “Lower-Level Details” [6].

A.1. Endpoint Partitioning Overview
Logical partitioning (LPAR) is the capability to divide the resources of a computer system among dif-
ferent partitions, which then act independently. In this environment, it is not permissible for resources
or programs in one partition to affect another partition’s operations.

To be useful, the granularity of assignment of resources needs to be fine-grained. For example, it is
not considered acceptable to assign all resources under a PCI host bridge (PHB)1to the same par-
tition. That approach would restrict configurability of the system, including the capability to dynami-
cally move resources between partitions. To be able to partition I/O adapters (IOAs) requires some
functionality in the bridges in the system be able to partition the IOAs or individual functions of an
IOA to separate partitions. At the same time, one partitionable resource must be prevented from af-
fecting another partition or getting access to another partition’s resources. For example, the following
actions must be prevented:

• Addressing the resources directly
• Causing an error that affects other partitions
• Causing false interrupts to another partition in an attempt to cause a denial-of-service attack.

A partitionable endpoint (PE) is a separately assignable I/O unit.2 That is, a PE is any part of an I/O
subsystem that can be assigned to a partition independent of another PE. In Figure A.1, “Example
System Configurations: Partitionable Endpoint (PE) Definition” [50], examples of PEs are shown
encircled with dotted boxes.

There are also aspects of shared state. Examples include any element that is shared between parti-
tions, such as PHBs and switches, and that detects an error that cannot be isolated to a specific PE.
In such cases, the error must be propagated to the state of all PEs that share that element.

1PCIe “Root Complex” terminology correlates directly to the “PHB” terminology in this architecture (that is, the reader can substitute the “Root
Complex” PCIe terminology, if desired, for “PHB” when the text can relate to PCIe.
2PCIe defines an “endpoint” somewhat differently than this architecture defines a “Partitionable Endpoint,” in some cases. PCIe defines an end-
point as “a device with a Type 0x00 Configuration Space header.” That means any entity with a unique Bus/Dev/Func # can be an endpoint. In
some cases, a PE does not exactly correspond to this unit.

OpenPOWER I/O Design Archi-
tecture

February 17, 2016 Revision 1.0.0

OpenPOWER Foundation 50
Workgroup Specification

Standard Track

Figure A.1. Example System Configurations: Partitionable Endpoint (PE)
Definition

A.2. Endpoint Partitioning Functional Specifics
Several functions in the PHB are partitioned per PE, and might have to keep state and control sepa-
rate on a per PE basis:

1. IOA address domains (see Section A.2.2, “Address Domains” [52])

a. MMIO Load/Store address domains (see Section A.2.2.1, “MMIO Load/Store Address Domains
(Not Configuration)” [52])

b. Configuration Space Address Domains (see Section A.2.2.2, “Configuration Space Address
Domains” [52])

OpenPOWER I/O Design Archi-
tecture

February 17, 2016 Revision 1.0.0

OpenPOWER Foundation 51
Workgroup Specification

Standard Track

c. DMA I/O bus address domains and TCEs (see Section A.2.2.3, “DMA I/O Bus Address Do-
mains and TCEs” [53])

2. IOA Error domains (specifically for EEH) (see Section A.2.3, “IOA Error Domains (Specifically for
EEH)” [53])

3. IOA error injection domains (see Section A.2.4, “IOA Error Injection Domains” [54])

4. Interrupts (see Section A.2.5, “Interrupts” [54])

a. LSI (see Section A.2.5.2, “LSI Information” [55])

b. MSI (see Section A.2.5.3, “MSI Information” [55])

5. PE Reset domains (see Section A.2.6, “PE Reset Domains” [56])

6. PE Hot Plug and Power domains (see Section A.2.7, “PE Hot Plug and Power Domains” [56])

Some of these functions are partitioned by the PHB, making them unique in some aspects to this ar-
chitecture. Other functions happen naturally within the definition of the industry standard PCIe archi-
tecture. The following sections deal mainly with the former, but touch on the latter.

In addition, as indicated in the following sections, some of the following items can be optional based
on the platform needs.

A.2.1. PE Domains
A.2.1.1. General
The PE domain encompasses all the individual domains necessary to hold the state and control in-
formation for the PE. The breakdown of the domain into the individual domain components is de-
scribed in the following sections.

A.2.1.2. Numbering
The PE Domain Number is the bond that associates the various domain components to the same
PE. PCI defines several divisions that can differentiate IOAs:

• Bus # (or simply “Bus”). The highest level of division. Each bus or PCIe link under a PHB has a
unique Bus #.

• Device # (or simply “Dev”) within the Bus #. Subdivides the IOAs on a bus (the next level of divi-
sion). For PCIe devices that implement the optional PCIe alternate RID interpretation (ARI), the
Dev and Func fields can be combined into one 8-bit Func field.

• Function # (or simply “Func”) within the Device #. Subdivides the IOA into functions. Multifunction
IOAs have multiple function numbers, and single function IOAs have only one.

The Bus/Dev/Func is combined into one field for purposes of naming. This field can be called the
Routing ID (RID). The RID can take the form of a Requester ID or Completer ID, depending on the
context in which it is used (ID of requestor or ID of completer for a request).

The architecture defined here allows for division down to the lowest level for domains (Bus/Dev/
Func). This architecture also allows for the granularity to be higher, for implementations that are to

OpenPOWER I/O Design Archi-
tecture

February 17, 2016 Revision 1.0.0

OpenPOWER Foundation 52
Workgroup Specification

Standard Track

be used in platforms that do not need such fine a granularity or for configurations where the PCI ar-
chitecture does not allow for such level of granularity (for examples, see Figure A.1, “Example Sys-
tem Configurations: Partitionable Endpoint (PE) Definition” [50]). In general the larger the granu-
larity, the less flexibility in the configuration, the less hardware implementation costs, but potentially
higher software implementation costs to deal with the shared aspects. Therefore, there is a trade-off
to be made in choosing the granularity for a particular implementation. Some platforms might require
a certain flexibility of assignment. Chip designers need to be aware of the requirements of those plat-
forms and the ramification of their implementation choices.

A limitation of the Bus/Dev/Func numbers is that the number space is sparse. Bus/Dev/Func allows
for 64K domains (Bus - 8 bits; Dev - 5 bits; Func - 3 bits). However, most PHB implementations will
probably only implement fewer than 1K domains for the foreseeable future. Thus, to number the do-
mains by the PCI numbering schemes might be problematic in the implementation. Therefore, this
architecture defines a way to correlate an incoming PCI transaction’s Bus/Dev/Func with an internal
domain number (PE#), which is compact.

A.2.2. Address Domains
Separation of addressing between PEs is important to keep one partition’s I/O from affecting another
partition and to keep from one partition from accessing another partition’s I/O.

A.2.2.1. MMIO Load/Store Address Domains (Not Configuration)
MMIO (I/O and memory space) addresses are typically decoded, as they pass down through the PCI
tree, by switches and bridges. As the PE state is moved up in the PCI tree, some decoding must al-
so be moved up. This is necessary to determine which PE state to affect when an MMIO error oc-
curs. It is also required to affect certain functionality, such as relaxed ordering and transaction class-
es, based on which IOA is being addressed by the MMIO.

Creation of the MMIO address domain is done by decoding the individual PE addresses and associ-
ating that decode with a PE. This can be done in several ways. See Section 3.2.1.1, “MMIO PE# De-
termination” [7].

Thus, each PE MMIO address range that is decoded is associated with a compact PE#. This PE# is
tied to the Bus/Dev/Func number of the IOA, as described in Section A.2.2.3, “DMA I/O Bus Address
Domains and TCEs” [53].

Besides a compact PE#, the following pieces of state can also be associated with the MMIO decode.
They can be tied back to the PE# through indirect association or can be implemented in the same
structure as the MMIO decoding.

• EEH state (See Section A.2.3, “IOA Error Domains (Specifically for EEH)” [53]for more informa-
tion.)

• Error injection domains. (See Section A.2.4, “IOA Error Injection Domains” [54].)

• I/O ordering considerations

A.2.2.2. Configuration Space Address Domains
For PCIe PHBs, the hardware must not disable configuration accesses when the partitionable end-
point goes into the MMIO Stopped state. It must provide a separate PE domain for the configuration
space that is used when firmware accesses the configuration space.

OpenPOWER I/O Design Archi-
tecture

February 17, 2016 Revision 1.0.0

OpenPOWER Foundation 53
Workgroup Specification

Standard Track

A.2.2.3. DMA I/O Bus Address Domains and TCEs

The platform must provide a way for an IOA to get access to all the physical memory that it needs to
service the partitions that it needs to service. However, an IOA must not get access to any partitions’
memory that it is not supposed to access. Physical memory for different partitions is interspersed
throughout the physical memory address range. Given the requirement to prevent access to other
partition’s memory, it is not realistic, in general, for an IOA to get access directly from the I/O bus ad-
dress to the physical memory address. This is accomplished by the translation control entry (TCE)
mechanism in this architecture. This TCE mechanism also provides an indirection mechanism that
allows the hypervisor to hide the physical system memory address from the partitions and, specifical-
ly, from the DDs.

This architecture provides structures that are defined to limit an IOA to a range of bus addresses (the
DMA I/O bus address domain of the IOA), while using industry-standard bridges. The mechanism to
do this is the translation validation table (TVT).

The TVT is a table of entries (translation validation entries, or TVEs), each of which is assigned to
a single PE. The index into the TVT is by the PE#, which is looked up in the RID translation table
(RTT), and by one or more address bits from the I/O bus address that is generated by the IOA. This
is called the TVE Index.

For a definition of the TVE fields, see Table 3.5, “TVE Definition” [23].

 Figure 3.5, “I/O Address Validation and TCE Translation Implementation for 64-Bit DMA Address-
es” [21] shows the operation of the TVT, including the lookup of the TCE for 64-bit I/O addresses.
The picture is similar for 32-bit I/O addresses except that the I/O bus address bits that make up
the TVE Index are implied to be 0. Therefore, only one TVE is available for each PE for addresses
smaller than 4 GB.

For more information about how this all works, see Section 3.2.1, “PE# Determination, PE State,
EEH, and Error Injection” [6] and Section 3.2.2, “DMA Design,TVEs, and TCEs” [15].

A.2.3. IOA Error Domains (Specifically for EEH)
Enhanced error handling (EEH) is a powerful technology developed by IBM to prevent I/O errors
from propagating to the system and causing unrecoverable errors, which generally bring down the
operating system. EEH is a required technology for LPARed systems, so that an error in the I/O sub-
system of one partition does not affect the other LPAR partitions.

EEH in the PHB stops operations to and from a PE when an error is detected (called the Stopped
state). Keys to this function are:

1. The PE must be prevented from completing the I/O operation in error:

• In such a way that the PE does not propagate an error to any partition

• In such a way that the requester of the I/O operation does not use bad data

2. The stop of operations must appear to a DD to be isolated to just that DD. This implies extra hard-
ware or firmware to support the continuation of I/O operation of other PEs in the face of an error
generated from another PE.

OpenPOWER I/O Design Archi-
tecture

February 17, 2016 Revision 1.0.0

OpenPOWER Foundation 54
Workgroup Specification

Standard Track

Exceptions:
• A plug-in adapter that has multiple IOAs on it under a PCI-to-PCI bridge, and for which there exist multiple DDs (potentially one

per function). In this case, the DDs for those multiple devices or multiple functions must coordinate any Stopped state recovery.
These cooperating DDs do not necessarily need to be in the same partition, as long as:

• One partition owns the responsibility for coordinating error recovery, and the cooperating DDs have a communication path be-
tween the partitions.

• The user of such shared IOAs understands that one partition can affect a sharing partition’s performance by a denial-of-service
type attack through causing of EEH Stopped states and the ensuing EEH recovery of operations.

• An IOA that has multiple functions on it, and for which there exist multiple DDs (potentially one per function) and for which the
platform does not provide PE functionality down to the Func # level (only the Bus # level). The same shared restrictions and con-
ditions that are listed for a plug-in adapter with multiple IOAs apply here.

3. Software (DD or above) for one PE must not be able to introduce an error that can cause another
PE to enter the Stopped state.

• Software might, for example, improperly set up the TCEs for an I/O operation, or pass the
wrong address to its IOA, causing an access to a TCE that is invalid (TCE not set up, or TCE
set to read-only for a write, or PCI Atomic operation or write-only for a read or PCI Atomic oper-
ation). This would cause the assertion of the Stopped state.

• It is acceptable for a platform hardware error to affect multiple PEs, as long as the recovery
from it is transparent to the DD. (That is, the platform makes it appear to all DDs and PEs that
they have encountered the error condition themselves.) Examples might include:

• An error in a switch or bridge between the PE and the PHB might cause multiple, or all, PE
domains in the PHB to enter the Stopped state. The key here is that there cannot be any of
these conditions that can be overtly caused by a partition’s software (for example, by a DD). If
the hardware cannot determine the source of the error, it must put all PEs under the PHB into
the Stopped state.

• When the firmware requires temporarily suspending all operations under a PHB to recover a
PHB or I/O fabric error, the firmware can place all the PE domains in a PHB into the Stopped
state. This makes it look to the DD and operating system that the error is just for its IOA.

4. The capturing of fault information for problem determination must be allowed after the Stopped
state condition occurs.

5. Firmware must have access to the configuration space below the PHB when any or all of the PEs
are in the Stopped state.

A.2.4. IOA Error Injection Domains
Hardware, firmware, DD code, and operating system code development for PE functionality requires
the capability during development to be able to programmatically inject errors, to test the hardware,
firmware, and software. This functionality, although it does not have to be partitioned to the PE level,
at least needs to be able to inject errors that cause a specific PE to see the error injected.

A.2.5. Interrupts
A.2.5.1. Types of Interrupts
Two types of interrupts are supported for PEs:

OpenPOWER I/O Design Archi-
tecture

February 17, 2016 Revision 1.0.0

OpenPOWER Foundation 55
Workgroup Specification

Standard Track

1. Level-Signalled Interrupt (LSI). This type of interrupt was defined by the original PCI architecture.
The IOA activates an LSI interrupt and does not deactivate the interrupt until told to do so by the
DD. The DD must tell the IOA to release the LSI before issuing an EOI to the interrupt controller. It
must do so in a way that guarantees that the request to release the LSI gets to the IOA and gets
signalled to the interrupt controller before the EOI gets to the interrupt controller. Otherwise, the
interrupt controller presents the same interrupt again on receiving the EOI. The IOA can try to ac-
tivate the same interrupt signal for a different operation while it remains activated for a previous in-
terrupt. Therefore, the interrupt processing must assure that all outstanding interrupts have been
processed after telling the IOA to release the interrupt.

Originally, the LSI was signalled by separate signal wires that were wired to the interrupt con-
troller. For PCIe, a message to turn on an LSI and turn off an LSI is packetized across the PCIe
bus. PCIe limits the number of these messages per PHB to a total of four per root complex (that
is, per PHB). That means that there can be at most four PEs below a PHB that support LSI inter-
rupts because of the interrupt sharing requirement (see R1-3.2.3.1-2 c [34].

2. Message-Signalled Interrupt (MSI). The IOA signals this interrupt by writing data that contains in-
terrupt information to a specific address that can be decoded by the system to be that of an inter-
rupt controller. The interrupt is signalled once per occurrence. It does not have to be “released”
by the DD before an EOI is issued to the interrupt controller. This is what is sometimes called an
“edge triggered” interrupt. As with LSIs, the IOA can try to activate the same interrupt signal for a
different operation before finishing processing of that same interrupt source for the previous oper-
ation. The timing requirements are a little different for the MSI case, however. In this case, the DD
must assure that, after issuing an EOI to the interrupt controller, the IOA does not have any out-
standing interrupts pending.

This type of interrupt was first defined by later versions of PCI, and was made required by PCI-X.
PCIe, a packet-based protocol, takes this further and tries to deprecate the LSI method (leaving
the MSI method), by strictly limiting the LSI number of interrupts (see Section A.2.5.2, “LSI Infor-
mation” [55]).

A.2.5.2. LSI Information

For PCIe, two messages are defined, Assert_INTx and Deassert_INTx, for emulation of PCI INTx
signaling, where x is A, B, C, and D for respective PCI interrupt signals. These messages are used
to provide “virtual wires” for signaling interrupts across a link. Because switches collect these virtual
wires and present a combined set at the switch’s upstream port, there can be only four total LSI in-
terrupts under one PCIe PHB.

LSIs are not validated by the PHB. Therefore, it is firmware’s responsibility to make sure that a parti-
tion does not accidentally or intentionally set up the configuration space of an IOA owned by it to ac-
cess an LSI for another partition.

A.2.5.3. MSI Information

MSI accesses are validated by comparing the PE# of the device accessing the IVE to the PE# in the
IVE. Therefore, the IOA cannot be set up accidentally or intentionally to access the MSI belonging to
another PE. See also Section 3.2.4, “MSI Design” [35].

OpenPOWER I/O Design Archi-
tecture

February 17, 2016 Revision 1.0.0

OpenPOWER Foundation 56
Workgroup Specification

Standard Track

A.2.6. PE Reset Domains
For PE error recovery, the PCIe hot reset capability might not be sufficient. Therefore, the PCIe fun-
damental reset capability might need to be provided for each PE. This implies that a hot plug con-
troller must be provided for each PE, even if the PE is not pluggable.

For IOA functions that implement the optional PCI function level reset (FLR), that is also available to
reset down to the function level. It is required when a PE is a single function.

A.2.7. PE Hot Plug and Power Domains
For PEs that are hot pluggable, the hot plug controller and all external bus isolation and power-con-
trol electronics must be provided. For PEs that participate in DLPAR but that are not hot pluggable
and do not implement FLR, the hot plug controller and any external power control electronics must
be provided to power cycle the PE to get it into a known initialized state.

OpenPOWER I/O Design Archi-
tecture

February 17, 2016 Revision 1.0.0

OpenPOWER Foundation 57
Workgroup Specification

Standard Track

Appendix B. No-Translate Operation
 Table B.1, “IODA2 No-Translate Operation” [57]shows the no-translate operation for the I/O De-
sign Architecture, version 2 (IODA2). IODA2 has 2 or n segments that are mappable for each PE (bi-
modal). For example, POWER8 implements n = 64 and has 2 or 64 segments that are mappable for
each PE (bi-modal). IODA2 also has separate address spaces for each PE.

Table B.1. IODA2 No-Translate Operation
Function IODA2 Comments

TVE selection

• 32-bit

• 64-bit

PE# is obtained from the RTT lookup. This is con-
catenated with either PCI addr 59 or 59:m, depend-
ing on PHB configuration bit setting, to form the in-
dex into the TVE. For 32-bit, these high-order addr
bits are implied to be 0.

For IODA2 addresses below 4 GB, there is only
one TVE for any given RID.

For example, POWER8 implements “m” = 55, so 1
bit or 5 bits (59:55) are used.

TVE selection validation Not required because only the RID assigned to a
TVE can access the TVE, because the PE# for the
RID is used as part of the index to select the TVE.

TVE validation of ad-
dress

Uses the address range for the no-translate field of
the TVE to validate the address.

No-translate address

capability

A PHB can support a mixture of translated and
untranslated device addresses. One TVE is used
per contiguous address range, with the number of
ranges per RID only limited by the number of TVEs
available. The address in the range is specified by
the TVE field “Addr range for no translate” with a
starting boundary that is 4 KB aligned and a size
that is an integer multiple of 4 KB.

For IODA2, only those TVEs selectable by the
number of address bits concatenated with the PE#
are available. Architecturally, any number of ad-
dress bits can be used, giving access to all the
TVEs. However, due to system requirements to
support more than one PE# under a PHB for most
applications with no-translate, the implementations
limit the number of address bits that get concate-
nated with the PE# for TVE selection. Architectural-
ly, the selection of 1 bit or “n” bits is bi-modal per
PHB, meaning one or the other for any particular
PHB.

For example, for POWER8, the selection uses 1 bit
or 5 bits (n = 5) and is bi-modal per PHB. PHB us-
es either 1 or 5 bits, configurable by a configuration
bit. For POWER8 this gives:

• Two TVEs per PE with 256 PEs available

• Thirty-two TVEs per PE with 16 PEs available

Architecturally, the PAPR interfaces only allow no-
translate mode for addresses above 4 GB, with ad-
dresses below 4 GB being allocated for address
translation enabled. See Figure B.2, “Example
Physical Address Map with TCE Bypass Enabled
for Some PEs” [59].

For IODA2, the TVE no-translate field adds 2 high-order bits from the TCE Table Size field
(TVE[byte6]) to extend the addressing to 50 bits.

When the I/O Page Size field is zero (no translate case) and the TVE is valid (TVE[byte 6 bit 3] =
1), then if

The PCI Express address[bits 49:24] ≥ (TVE[byte 6 bits 4:5] concatenated with TVE[bytes 0:2])
and
The PCI Express address[bits 49:24] < (TVE[byte 6 bits 6:7] concatenated with TVE[bytes 3:5])

then use the low-order PCI Express address[bits 49:0] untranslated, as the DMA address.

Note
1. The no-translate case is not valid for 32-bit PCI Express addresses.
2. The alignment of the no-translate address range in real address space is 16 MB or

larger.

OpenPOWER I/O Design Archi-
tecture

February 17, 2016 Revision 1.0.0

OpenPOWER Foundation 58
Workgroup Specification

Standard Track

 Figure B.1, “IODA2 TVE and PE# Determination” [58]shows graphically the IODA2 TVE and PE#
determination.

Figure B.1. IODA2 TVE and PE# Determination

B.1. No-Translate Example
An overview of how no-translate maps logical memory blocks (LMBs) is shown in Figure B.2, “Exam-
ple Physical Address Map with TCE Bypass Enabled for Some PEs” [59].

OpenPOWER I/O Design Archi-
tecture

February 17, 2016 Revision 1.0.0

OpenPOWER Foundation 59
Workgroup Specification

Standard Track

Figure B.2. Example Physical Address Map with TCE Bypass Enabled for Some
PEs

OpenPOWER I/O Design Archi-
tecture

February 17, 2016 Revision 1.0.0

OpenPOWER Foundation 60
Workgroup Specification

Standard Track

Appendix C. Glossary
AIB ASIC interconnect bus.

ARI Alternate RID interpretation.

BAR Base Address Register.

Bus/Dev/Func Bus, device, and function. These are three fields in the PCI/PCI-X/PCIe domain that define an IOA
function. They come from the Bus (8 bits), Device (5 bits), and Function (3 bits) fields that define
the configuration address for the IOA function. In addition, with the implementation of the PCIe
alternate requester ID interpretation (ARI) option, the Dev and Func fields can be combined into
one 8-bit Func field and a device can consume multiple buses. See also RID and CID.

CFG Configuration.

CI Cache-inhibited.

CID Completer ID. When returning the completion for a transaction, the completer attaches its Bus/
Dev/Func to the transaction as a CID. See also RID and BUS/DEV/FUNC.

DD Device driver. Software that interfaces to and controls an IOA.

DMA Direct memory access.

DMA Stopped state See Stopped State.

DLPAR Dynamic logical partitioning.

DR Dynamic reconfiguration. The capability of a system to adapt to changes in the hardware/firmware
physical or logical configuration, and to be able to use the new configuration, all without having to
turn the platform power off or restart the operating system. See the PAPR document for more in-
formation.

ECC Error correction code.

ECRC End-to-end cyclic redundancy check.

EEH Enhanced I/O error handling option. See Section 2.2.4, “EEH” [4].

EEH Stopped state See Stopped State.

Endpoint partitioning The concept of having a collection of independent domains (addressing, error state, and so on)
that relate to a single IOA (that is, a single endpoint). See Appendix A, Endpoint Partitioning [49].
See also PE.

EOI End of interrupt.

FFI Firmware force interrupt.

FIR Fault Isolation Register.

FLR Function level reset.

FMTC Firmware-managed TCE coherency.

FW Firmware.

HB Host bridge. An entity that attaches an I/O bus to a system. A PHB is a specific HB for a PCI bus.
See also PHB.

IOA I/O adapter (for example, a PCI adapter). These adapters can be built-in (for example, soldered
onto a system planar) or plug-in (for example, pluggable into a PCI slot). An IOA can be single
function or multiple function.

IOA function A single function, or specific function, of an IOA.

IODA2 I/O Design Architecture, version 2.

IOV I/O virtualization. For more information, see the PCI-SIG I/O Virtualization (IOV) Specifications.

ISE Interrupt state entry.

IST Interrupt state table.

IVC Interrupt vector cache.

IVE Interrupt vector entry. For a particular interrupt source, contains the interrupt priority, server num-
ber, presented bit, and queued interrupt bit. See Table 3.13, “MSI IVE Definition” [42].

IVT Interrupt vector table. A table of IVEs.

LEM Local error macro.

LMB Logical memory block.

OpenPOWER I/O Design Archi-
tecture

February 17, 2016 Revision 1.0.0

OpenPOWER Foundation 61
Workgroup Specification

Standard Track

LPAR Logical partitioning. See the PAPR document for details.

LSI Level-signalled interrupt. An interrupt signaled by a packet on the PCIe bus.

MMIO Memory-mapped I/O. Refers to mapping the I/O bus address space (for example, I/O bus memory
and I/O address spaces) into the Load/Store address space of the processor.

MMIO Stopped state See Stopped State.

Migration descriptor A migration descriptor is created by the hypervisor during a memory migrate operation to allow for
writing DMA data to two real pages per TCE.

MSI Message signalled interrupt. An interrupt that is signaled by a write to a particular address with
specific data.

MSI-X Message signalled interrupt - extended.

Page offset The field in a PCI address used to index into a selected page of memory.

PAPR Power Architecture Platform Requirements.

PCI® Peripheral Component Interface.

PCIe® PCI Express.

PCI-X® PCI Extended.

PE Partitionable endpoint. The smallest entity that can be partitioned in endpoint partitioning. See Ap-
pendix A, Endpoint Partitioning [49].

PE# Partitionable endpoint number.

PELE-V PE lookup entry (vector). The RTT associates a Bus/Device/Function number of an incoming
PCIe transaction to either a PE# or an index into the PELT-V table when the operation is an error
message. The PELE-V contains a vector of bits indicating which PE numbers are affected by the
incoming RID.

PELT-V PE lookup table (Vector). A table of PELE-Vs. See also PELE-V.

PESE PE state entry.

PF The physical function of an IOV adapter. For more information, see the PCI-SIG I/O Virtualization
(IOV) Specifications.

PHB PCI host bridge. An entity that attaches a PCIe bus to the system.

PHB chip The hardware chip where the PHB is implemented. The PHB might only be part of the chip func-
tionality; for example, when the PHB is implemented on the processor chip. In that case, the pro-
cessor chip becomes the PHB chip for purposes of this architecture.

PTE Page table entry. Used for processor Load/Storeaddress translation like the TVE/TCE is used for
I/O address translation. Used to translate MMIO addresses as well.

RBA Reject bit array. See Table 3.18, “RBA Definition” [46].

RC Root complex. Connects a PCIe bus into the system. PCIe PHB is used in this document in place
of the RC terminology.

RID Requester ID. A name for the combined Bus/Dev/Func fields. The RID is attached to each PCIe
transaction. It uniquely identifies the requester of the transaction. Given the uniqueness of this
identifier, it is used by IODA2 to separate facilities in the PHB that are unique to the Func request-
ing the operation (for example, address translation, interrupt validation, and so on). See also Bus/
Dev/Func and CID.

Root complex “An entity that includes a host bridge and one or more root ports.” (PCI-SIG. PCI Express Base
Specification. 2003)

Root port “A PCI express port on a root complex that maps a portion of the hierarchy through an associated
virtual PCI-PCI bridge.” (PCI-SIG. PCI Express Base Specification. 2003)

RPN Real page number. The bits in the TCE that are used to replace the high-order I/O bus address
bits.

RTAS Run-Time Abstraction Services.

RTC RID translation cache. An optional PHB implementation that allows for better PCI transaction per-
formance when the RTT is in system memory. See also RTT.

RTE RID translation entry. An entry in the RTT. See Table 3.1, “RTE Definition” [10].

RTT RID translation table. A 64K-entry table that takes the 16-bit RID from a PCI transaction and maps
that to a PE# (for DMA and MSI operations) or to a PELE-V (when the operation is an error mes-
sage). See also RTE.

OpenPOWER I/O Design Archi-
tecture

February 17, 2016 Revision 1.0.0

OpenPOWER Foundation 62
Workgroup Specification

Standard Track

Stopped state More informally called the EEH Freeze state, this state occurs after an I/O error. In this state,
MMIO Stores to the affected IOA are discarded, MMIO Loadsare returned without error with data
of all ones, and DMA operations from the IOA are aborted. This state prevents an IOA, after an er-
ror, from causing any damage to the system. Therefore, the IOA can be restarted with the knowl-
edge that there are no data-integrity-type errors caused by the error that caused the Stopped
state. In addition, the IOA Stopped state can be broken down into the MMIO Stopped state and
the DMA Stopped state. If the DMA Stopped state is set, DMA for that IOA or PE is stopped. If the
MMIO Stopped state is set, the MMIO is stopped. When first entering the Stopped state, both the
MMIO and DMA Stopped states are set by the hardware. The DD might subsequently reset the
MMIO Stopped state while leaving the DMA Stopped state set, to be able to query its IOA and re-
cover it. In this document, if “MMIO” or “DMA” is not specified along with “Stopped state”, the ref-
erence is either to the general concept or to both the MMIO and DMA Stopped states.

TC Traffic class. In PCIe, this defines a priority between PCI transactions within a VC. See also VC.

TCE Translation control entry. Used to translate an I/O address page number to a real page number in
system memory. See Table 3.6, “TCE Definition” [24]for the TCE definition.

TCE index The field in a PCI address that is used to index into the TCE table to get the TCE.

TCE table Translation control entry table. The table that contains the TCEs.

TLP Transaction layer packet.

TTA TCE table address. The address of the start of the TCE table. It is contained in the TVE.

TVE Translation validation entry. An entry in a TVT. Used to translate and validate an IOA’s access to a
DMA address space. See Table 3.5, “TVE Definition” [23]for the TVE definition.

TVT Translation validation table (in PHB). Table containing TVEs. See also TVE.

UE Uncorrectable error.

UR Unsupported request.

VC Virtual channel. In PCIe, a virtual channel defines a separate set of resources.

VF The virtual function of an IOV adapter. For more information, see the PCI-SIG I/O Virtualization
(IOV) Specifications.

XIVE External interrupt vector table entry. Provides the interrupt priority and server number for rout-
ing an LSI interrupt. A priority of 0xFF is assumed to mean that the interrupt is disabled. See Ta-
ble 3.10, “XIVE Definition for LSI Interrupts Only” [33]for the XIVE definition.

XIVT External interrupt vector table. The table that contains the XIVEs. See also XIVE.

OpenPOWER I/O Design Archi-
tecture

February 17, 2016 Revision 1.0.0

OpenPOWER Foundation 63
Workgroup Specification

Standard Track

Appendix D. OpenPOWER Foundation
overview
The OpenPOWER Foundation was founded in 2013 as an open technical membership organization
that will enable data centers to rethink their approach to technology. Member companies are enabled
to customize POWER CPU processors and system platforms for optimization and innovation for their
business needs. These innovations include custom systems for large or warehouse scale data cen-
ters, workload acceleration through GPU, FPGA or advanced I/O, platform optimization for SW ap-
pliances, or advanced hardware technology exploitation. OpenPOWER members are actively purs-
ing all of these innovations and more and welcome all parties to join in moving the state of the art of
OpenPOWER systems design forward.

To learn more about the OpenPOWER Foundation, visit the organization website at
openpowerfoundation.org.

D.1. Foundation documentation
Key foundation documents include:

• Bylaws of OpenPOWER Foundation

• OpenPOWER Foundation Intellectual Property Rights (IPR) Policy

• OpenPOWER Foundation Membership Agreement

• OpenPOWER Anti-Trust Guidelines

More information about the foundation governance can be found at openpowerfoundation.org/about-
us/governance.

D.2. Technical resources
Development resouces fall into the following general categories:

• Foundation work groups

• Remote development environments (VMs)

• Development systems

• Technical specifications

• Software

• Developer tools

The complete list of technical resources are maintained on the foundation Technical Resources web
page.

http://openpowerfoundation.org
https://members.openpowerfoundation.org/document/dl/635
https://members.openpowerfoundation.org/document/dl/596
https://members.openpowerfoundation.org/document/dl/595
https://members.openpowerfoundation.org/document/dl/498
http://openpowerfoundation.org/about-us/governance/
http://openpowerfoundation.org/about-us/governance/
http://openpowerfoundation.org/technical/working-groups/
http://openpowerfoundation.org/technical/technical-resources/development-environmentvm/
http://openpowerfoundation.org/technical/technical-resources/development-systems/
http://openpowerfoundation.org/technical/technical-resources/technical-specifications/
http://openpowerfoundation.org/technical/technical-resources/software/
http://openpowerfoundation.org/technical/technical-resources/openpower-developer-tools/
http://openpowerfoundation.org/technical/

OpenPOWER I/O Design Archi-
tecture

February 17, 2016 Revision 1.0.0

OpenPOWER Foundation 64
Workgroup Specification

Standard Track

D.3. Contact the foundation
To learn more about the OpenPOWER Foundation, please use the following contact points:

• General information -- <info@openpowerfoundation.org>

• Membership -- <membership@openpowerfoundation.org>

• Technical Work Groups and projects -- <tsc-chair@openpowerfoundation.org>

• Events and other activities -- <admin@openpowerfoundation.org>

• Press/Analysts -- <press@openpowerfoundation.org>

More contact information can be found at openpowerfoundation.org/get-involved/contact-us.

http://openpowerfoundation.org/get-involved/contact-us/

	OpenPOWER I/O Design Architecture
	Table of Contents
	Preface
	1. Conventions
	2. Document change history

	1. About This Document
	1.1. Purpose
	1.2. Numbering Conventions
	1.3. Reference Documentation
	1.4. OpenPOWER Foundation Standards Track Work Product

	2. Introduction
	2.1. Conformance to this Specification
	2.2. General Information
	2.2.1. I/O Load/Store Address Space
	2.2.2. TCEs
	2.2.3. MSIs
	2.2.4. EEH

	3. Design Specifics
	3.1. High-Level Specifics
	3.2. Lower-Level Details
	3.2.1. PE# Determination, PE State, EEH, and Error Injection
	3.2.1.1. MMIO PE# Determination
	3.2.1.2. DMA and Error Message PE# Determination, RTT, RTC Invalidate, and PELT-V
	3.2.1.3. PE State and EEH
	3.2.1.4. Error-Injection Hardware Requirements

	3.2.2. DMA Design,TVEs, and TCEs
	3.2.2.1. DMA Design Details: No Page Migration
	3.2.2.2. Additional DMA Design Details: Page Migration
	3.2.2.3. Additional DMA Design Details: Multilevel TCE Tables
	3.2.2.3.1. Multilevel Table TCE Fetching
	3.2.2.3.2. Multilevel Table TCE Caching

	3.2.2.4. DMA Read Sync Register

	3.2.3. LSI Design
	3.2.3.1. LSI XIVE Definition
	3.2.3.2. LSI ISE Definition
	3.2.3.3. LSI Interrupt Source Number Definition

	3.2.4. MSI Design
	3.2.4.1. Firmware Force Interrupt (FFI) and FFI Lock Registers
	3.2.4.2. MSI Reject (Return) Processing by PHB, the RBA, and Reject Re-Present Timer
	3.2.4.3. Firmware Action on Enabling an MSI Interrupt

	3.2.5. PCIe Configuration Space
	3.2.6. PE State Table

	Appendix A. Endpoint Partitioning
	A.1. Endpoint Partitioning Overview
	A.2. Endpoint Partitioning Functional Specifics
	A.2.1. PE Domains
	A.2.1.1. General
	A.2.1.2. Numbering

	A.2.2. Address Domains
	A.2.2.1. MMIO Load/Store Address Domains (Not Configuration)
	A.2.2.2. Configuration Space Address Domains
	A.2.2.3. DMA I/O Bus Address Domains and TCEs

	A.2.3. IOA Error Domains (Specifically for EEH)
	A.2.4. IOA Error Injection Domains
	A.2.5. Interrupts
	A.2.5.1. Types of Interrupts
	A.2.5.2. LSI Information
	A.2.5.3. MSI Information

	A.2.6. PE Reset Domains
	A.2.7. PE Hot Plug and Power Domains

	Appendix B. No-Translate Operation
	B.1. No-Translate Example

	Appendix C. Glossary
	Appendix D. OpenPOWER Foundation overview
	D.1. Foundation documentation
	D.2. Technical resources
	D.3. Contact the foundation

