
PowerPC AS User Instruction Set Architecture

Book I

Version 2.00

Feb. 24, 1999

Manager:
Paul Ledak/Burlington/IBM
Phone: 802-769-6960
Tie: 446-6960

Technical Content:
Ed Silha/Austin/IBM Andy Wottreng/Rochester/IBM Cathy May/Watson/IBM
Phone: 512-838-1848 Phone: 507-253-3597 Phone: 914-945-1054
Tie: 678-1848 Tie: 553-3597 Tie: 862-1054

IBM Confidential - Feb. 24, 1999

Softcopy Distribution:
VM: KISS64 disk Rochester: VM DOC disk BOOK4
DFS: /.../austin.ibm.com/fs/projects/utds/server_arch/Books

/.../rchland.ibm.com/fs/eng/docs/workbooks/cec_architecture/
Web: (Austin users) file:/.../austin.ibm.com/fs/projects/utds/server_arch/index.html

(Rochester users) file:/.../austin.ibm.com/fs/projects/system_arch/public_html/amazon.html
DFS Access Information: file:/.../austin.ibm.com/fs/projects/utds/index.html

Hardcopy distribution for Rochester: video conference center 025-1/A206

NOTES

■ This is a controlled document.
■ Verify version and completeness prior to use.
■ See Preface for additional important information.

 Copyright International Business Machines Corporation, 1994, 1999. All rights reserved.

IBM Confidential - Feb. 24, 1999

ii PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

Preface

This document defines the PowerPC AS User Instruc-
tion Set Architecture. It covers the base instruction
set and related facilities available to the application
programmer.

Other related documents define the PowerPC AS
Virtual Environment Architecture, the PowerPC AS
Operating Environment Architecture, and PowerPC AS
Implementation Features. Book II, PowerPC AS
Virtual Environment Architecture defines the storage
model and related instructions and facilities available
to the application programmer, and the time-keeping
facilities available to the application programmer.
Book III, PowerPC AS Operating Environment Archi-
tecture defines the system (privileged) instructions
and related facilities. Book IV, PowerPC AS Imple-
mentation Features defines the implementa-
tion-dependent aspects of a particular
implementation.

As used in this document, the term “PowerPC AS
Architecture” refers to the instructions and facilities
described in Books I, II, and III. The description of the
instantiation of the PowerPC AS Architecture in a
given implementation includes also the material in
Book IV for that implementation.

Note: Two kinds of change bar are used. Both mark
changes from Version 1.07.

| This marks a substantive change.

† This marks a non-substantive change.

Engineering Note

The PowerPC AS Architecture permits implementa-
tion-specific extensions to the architecture to be
defined in Book IV. This Note provides guidelines
and limitations on the features that are permitted
to be defined in that book. Any exceptions to the
guidelines and limitations must be approved in
advance by the PowerPC AS Architecture process.

To understand the terminology used in this Note it
may be necessary to refer to Book II and Book III.
In particular, the term “privileged state” means a

| processor state in which nearly all resources of the
architecture are accessible (typically the state in
which operating systems run) and the term
“problem state” means a processor state in which
“privileged” resources are not accessible (typically

| the state in which application programs run). (A
| few resources are accessible only in “hypervisor
| state”; see the section entitled “Logical Parti-
| tioning (LPAR)” in Book III.)

■ The only architecture resources (e.g., opcodes,
SPR numbers, interrupt vector locations, bits
in defined registers and in defined storage
tables) that may be used for implementa-
tion-specific differences or extensions are
those explicitly identified in Book I, II, or III as
reserved for implementation-specific use.

■ It is imperative that fragmentation of the soft-
ware base be avoided. Application software
must be able to run without change on all
implementations. Operating system software
that obeys the programming model described
in Book III must run without change on imple-
mentations that claim to conform to Book III.
Any difference or extension that is likely to
fragment the software base is prohibited.
Examples include but are not limited to the fol-
lowing.
— Features, including instructions and regis-

ters, that are accessible in problem state.
— Mechanisms that control whether a

feature is accessible in problem state.
— Privileged features, including instructions

and registers, that provide functions
useful primarily to application software.

■ It is permissible to provide a privileged control
mechanism that can be used to alter the
behavior of a defined feature for use in per-
forming infrequent operations associated with
system initialization and the like. An example
is a control mechanism that causes a TLB
invalidation instruction to interpret an operand
as specifying the physical TLB entry to be
invalidated, enabling software to invalidate all
TLB entries during system initialization.

| ■ Any implementation-specific resource having
| the property that alteration of the resource by
| a processor in one partition could affect the
| integrity of other partitions must be a
| hypervisor resource; see the Book III section
| cited above.

Preface iii

IBM Confidential - Feb. 24, 1999

User Responsibilities

■ Do not make any unauthorized alterations to the
document (user notes are permitted).

■ Destroy the entire document when it is super-
seded, obsolete, or no longer needed.

■ Distribute copies of the document or portions of
the document only to IBM employees with a need
to know.

■ Verify the version prior to use. The version ver-
ification procedure is described later in this
preface.

■ Verify completeness prior to use. The last page
is labeled “Last Page - End of Document”. The
end of the Table of Contents shows the last page
number.

■ Report any deviations from these procedures to
the document owner.

Next Scheduled Review

There is no scheduled review.

Approval Process

The process used by the Processor Architecture
Review Board (PARB) to approve or reject changes
proposed for this architecture is documented at the
following DFS directory:
/.../austin.ibm.com/fs/projects/utds/server_arch/process

Approvals

This version has been approved by the PARB.

Version Verification for those with access to KISS64

■ Link to the KISS64 disk in Yorktown or a shadow of this disk in Austin or Endicott. In Yorktown, linking to
KISS64 can be done by executing the command “GIME KISS64”. In Rochester, the shadow disk is
VMCTOOLS 801.

■ Browse the file “AMAZON VERSION” by typing “b r ” next to the file name.
■ Verify that your version matches this file.

Version Verification for those without access to KISS64

■ Verify that the version date matches the date on the Books on the Web site at:

http://w3.austin.ibm.com/.../austin.ibm.com/fs/projects/utds/server_arch/

iv PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

Table of Contents

Chapter 1. Introduction 1
1.1 Overview 1
1.2 Computation Modes 1
1.3 Instruction Mnemonics and

Operands 2
1.4 Compatibility with the POWER

Architecture 2
1.5 Document Conventions 2
1.5.1 Definitions and Notation 2
1.5.2 Reserved Fields 3
1.5.3 Description of Instruction Operation 4
1.6 Processor Overview 7
1.7 Instruction Formats 8
1.7.1 I-Form 9
1.7.2 B-Form 9
1.7.3 SC-Form 9
1.7.4 D-Form 9
1.7.5 DS-Form 9
1.7.6 DQ-Form 9
1.7.7 X-Form 10
1.7.8 XL-Form 10
1.7.9 XFX-Form 10
1.7.10 XFL-Form 10
1.7.11 XS-Form 10
1.7.12 XO-Form 10
1.7.13 A-Form 11
1.7.14 M-Form 11
1.7.15 MD-Form 11
1.7.16 MDS-Form 11
1.7.17 TX-Form 11
1.7.18 Instruction Fields 11
1.8 Classes of Instructions 13
1.8.1 Defined Instruction Class 13
1.8.2 Illegal Instruction Class 13
1.8.3 Reserved Instruction Class 14
1.9 Forms of Defined Instructions . . . 14
1.9.1 Preferred Instruction Forms . . . 14
1.9.2 Invalid Instruction Forms 14
1.10 Optionality 15
1.11 Exceptions 16
1.12 Storage Addressing 16
1.12.1 Storage Operands 16
1.12.2 Tag Bits 17

1.12.3 Effective Address Calculation . . 17

Chapter 2. Branch Processor 21
2.1 Branch Processor Overview 21
2.2 Instruction Fetching 21
2.3 Branch Processor Registers 22
2.3.1 Condition Register 22
2.3.2 Link Register 23
2.3.3 Count Register 23
2.4 Branch Processor Instructions . . . 24
2.4.1 Branch Instructions 24
2.4.2 System Call Instructions 29
2.4.3 Condition Register Logical

Instructions 30
2.4.4 Condition Register Field

Instruction 32

Chapter 3. Fixed-Point Processor . . 33
3.1 Fixed-Point Processor Overview . . 33
3.2 Fixed-Point Processor Registers . . 33
3.2.1 General Purpose Registers 33
3.2.2 Fixed-Point Exception Register . 34
3.3 Fixed-Point Processor Instructions 36
3.3.1 Fixed-Point Storage Access

Instructions 36
3.3.2 Fixed-Point Load Instructions . . 36
3.3.3 Fixed-Point Store Instructions . . 44
3.3.4 Fixed-Point Load and Store with

Byte Reversal Instructions 49
3.3.5 Fixed-Point Load and Store

Multiple Instructions 51
3.3.6 Fixed-Point Move Assist

Instructions 53
3.3.7 Other Fixed-Point Instructions . . 58
3.3.8 Fixed-Point Arithmetic Instructions 59
3.3.9 Fixed-Point Compare Instructions 68
3.3.10 Fixed-Point Trap Instructions . . 71
3.3.11 Fixed-Point Select Instructions . 75
3.3.12 Fixed-Point Logical Instructions 78
3.3.13 Fixed-Point Rotate and Shift

Instructions 84
3.3.14 Decimal Assist Instructions . . . 94
3.3.15 Move To/From System Register

Instructions 95

Table of Contents v

IBM Confidential - Feb. 24, 1999

Chapter 4. Floating-Point Processor 99
4.1 Floating-Point Processor Overview 99
4.2 Floating-Point Processor Registers 100
4.2.1 Floating-Point Registers 100
4.2.2 Floating-Point Status and Control

Register 101
4.3 Floating-Point Data 103
4.3.1 Data Format 103
4.3.2 Value Representation 104
4.3.3 Sign of Result 105
4.3.4 Normalization and

Denormalization 106
4.3.5 Data Handling and Precision . . 106
4.3.6 Rounding 107
4.4 Floating-Point Exceptions 108
4.4.1 Invalid Operation Exception . . 110
4.4.2 Zero Divide Exception 111
4.4.3 Overflow Exception 111
4.4.4 Underflow Exception 112
4.4.5 Inexact Exception 112
4.5 Floating-Point Execution Models . 113
4.5.1 Execution Model for IEEE

Operations 113
4.5.2 Execution Model for Multiply-Add

Type Instructions 114
4.6 Floating-Point Processor

Instructions 116
4.6.1 Floating-Point Storage Access

Instructions 117
4.6.2 Floating-Point Load Instructions 117
4.6.3 Floating-Point Store Instructions 120
4.6.4 Floating-Point Move Instructions 124
4.6.5 Floating-Point Arithmetic

Instructions 125
4.6.6 Floating-Point Rounding and

Conversion Instructions 129
4.6.7 Floating-Point Compare

Instructions 133
4.6.8 Floating-Point Status and Control

Register Instructions 134

Chapter 5. Opti onal Facilities and
Instructions 137

5.1 Fixed-Point Processor Instructions 138
5.1.1 Move To/From System Register

Instructions 138
5.2 Floating-Point Processor

Instructions 139
5.2.1 Floating-Point Arithmetic

Instructions 140
5.2.2 Floating-Point Select Instruction 141
5.3 Little-Endian 142
5.3.1 Byte Ordering 142
5.3.2 Structure Mapping Examples . 142

5.3.3 PowerPC AS Byte Ordering . . 143
5.3.4 PowerPC AS Data Addressing in

Little-Endian Mode 145
5.3.5 PowerPC AS Instruction

Addressing in Little-Endian Mode . . 146
5.3.6 PowerPC AS Cache Management

Instructions in Little-Endian Mode . 148
5.3.7 PowerPC AS I/O in Little-Endian

Mode 148
5.3.8 Origin of Endian 148

Appendix A. Suggested
Floating-Point Models 151

A.1 Floating-Point Round to
Single-Precision Model 151

A.2 Floating-Point Convert to Integer
Model 156

A.3 Floating-Point Convert from
Integer Model 159

Appendix B. Assembler Extended
Mnemonics 161

B.1 Symbols 161
B.2 Branch Mnemonics 162
B.2.1 BO and BI Fields 162
B.2.2 Simple Branch Mnemonics . . 162
B.2.3 Branch Mnemonics

Incorporating Conditions 163
B.2.4 Branch Prediction 164
B.3 Condition Register Logical

Mnemonics 165
B.4 Subtract Mnemonics 165
B.4.1 Subtract Immediate 165
B.4.2 Subtract 166
B.5 Compare Mnemonics 166
B.5.1 Doubleword Comparisons . . . 167
B.5.2 Word Comparisons 167
B.6 Trap Mnemonics 168
B.7 Trap on XER mnemonics 169
B.8 Select mnemonics 170
B.9 Rotate and Shift Mnemonics . . . 172
B.9.1 Operations on Doublewords . . 172
B.9.2 Operations on Words 173
B.10 Move To/From Special Purpose

Register Mnemonics 174
B.11 Miscellaneous Mnemonics . . . 174

Appendix C. Programming
Examples 177

C.1 Multiple-Precision Shifts 177
C.2 Floating-Point Conversions 180
C.2.1 Conversion from Floating-Point

Number to Floating-Point Integer . . 180

vi PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

C.2.2 Conversion from Floating-Point
Number to Signed Fixed-Point Integer
Doubleword 180

C.2.3 Conversion from Floating-Point
Number to Unsigned Fixed-Point
Integer Doubleword 180

C.2.4 Conversion from Floating-Point
Number to Signed Fixed-Point Integer
Word 180

C.2.5 Conversion from Floating-Point
Number to Unsigned Fixed-Point
Integer Word 181

C.2.6 Conversion from Signed
Fixed-Point Integer Doubleword to
Floating-Point Number 181

C.2.7 Conversion from Unsigned
Fixed-Point Integer Doubleword to
Floating-Point Number 181

C.2.8 Conversion from Signed
Fixed-Point Integer Word to
Floating-Point Number 181

C.2.9 Conversion from Unsigned
Fixed-Point Integer Word to
Floating-Point Number 181

C.3 Floating-Point Selection 182
C.3.1 Comparison to Zero 182
C.3.2 Minimum and Maximum 182
C.3.3 Simple if-then-else

Constructions 182
C.3.4 Notes 182

Appendix D. Cross-Reference for
Changed POWER Mnemonics . . . 183

Appendix E. Incompatibilities with
the POWER Architecture 185

E.1 New Instructions, Formerly
Privileged Instructions 185

E.2 Newly Privileged Instructions . . 185
E.3 Reserved Bits in Instructions . . 185
E.4 Reserved Bits in Registers 185
E.5 Alignment Check 185
E.6 Condition Register 186
E.7 Inappropriate Use of LK and Rc

Bits . 186
E.8 BO Field 186
E.9 BH Field 186
E.10 Branch Conditional to Count

Register 186
E.11 System Call 186
E.12 Fixed-Point Exception Register

(XER) 187

E.13 Update Forms of Storage Access
Instructions 187

E.14 Multiple Register Loads 187
E.15 Load/Store Multiple Instructions 187
E.16 Move Assist Instructions 187
E.17 Move To/From SPR 188
E.18 Effects of Exceptions on FPSCR

Bits FR and FI 188
E.19 Store Floating-Point Single

Instructions 188
E.20 Move From FPSCR 189
E.21 Zeroing Bytes in the Data Cache 189
E.22 Synchronization 189
E.23 Direct-Store Segments 189
E.24 Segment Register Manipulation

Instructions 189
E.25 TLB Entry Invalidation 189
E.26 Alignment Interrupts 189
E.27 Floating-Point Interrupts 189
E.28 Timing Facilities 190
E.28.1 Real-Time Clock 190
E.28.2 Decrementer 190
E.29 Deleted Instructions 190
E.30 Discontinued Opcodes 191
E.31 POWER2 Compatibility 192
E.31.1 Cross-Reference for Changed

POWER2 Mnemonics 192
E.31.2 Floating-Point Conversion to

Integer 192
E.31.3 Storage Access Ordering . . . 192
E.31.4 Floating-Point Interrupts 192
E.31.5 Trace 192
E.31.6 Deleted Instructions 193
E.31.7 Discontinued Opcodes 193

Appendix F. New Instructions 195

Appendix G. Illegal Instructions . . 197

Appendix H. Reserved Instructions 199

Appendix I. Opcode Maps 201

Appendix J. PowerPC AS Instruction
Set Sorted by Opcode 215

Appendix K. PowerPC AS
Instruction Set Sorted by Mnemonic 221

Index . 227

Last Page - End of Document 231

Table of Contents vii

IBM Confidential - Feb. 24, 1999

viii PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

Figures

1. Logical processing model 7
2. PowerPC AS user register set 8
3. I instruction format 9
4. B instruction format 9
5. SC instruction format 9
6. D instruction format 9
7. DS instruction format 9
8. DQ instruction format 9
9. X instruction format 10

10. XL instruction format 10
11. XFX instruction format 10
12. XFL instruction format 10
13. XS instruction format 10
14. XO instruction format 10
15. A instruction format 11
16. M instruction format 11
17. MD instruction format 11
18. MDS instruction format 11
19. TX instruction format 11
20. Condition Register 22
21. Link Register 23
22. Count Register 23
23. BO field encodings 24
24. "at" bit encodings 24
25. BH field encodings 25
26. General Purpose Registers 33
27. Fixed-Point Exception Register 34
28. Floating-Point Registers 101
29. Floating-Point Status and Control Register 101

30. Floating-Point Result Flags 103
31. Floating-point single format 103
32. Floating-point double format 103
33. IEEE floating-point fields 104
34. Approximation to real numbers 104
35. Selection of Z1 and Z2 107
36. IEEE 64-bit execution model 113
37. Interpretation of G, R, and X bits 114
38. Location of the Guard, Round, and Sticky

bits in the IEEE execution model 114
39. Multiply-add 64-bit execution model . . . 114
40. Location of the Guard, Round, and Sticky

bits in the multiply-add execution model 115
41. C structure 's', showing values of elements 143
42. Big-Endian mapping of structure 's' . . . 143
43. Little-Endian mapping of structure 's' . . 143
44. PowerPC AS Little-Endian, structure 's' in

storage subsystem 144
45. PowerPC AS Little-Endian, structure 's' as

seen by processor 145
46. Little-Endian mapping of word 'w' stored at

address 5 146
47. PowerPC AS Little-Endian, word 'w' stored

at address 5 in storage subsystem . . . 146
48. Assembly language program 'p' 146
49. Big-Endian mapping of program 'p' . . . 147
50. Little-Endian mapping of program 'p' . . 147
51. PowerPC AS Little-Endian, program 'p' in

storage subsystem 147

Figures ix

IBM Confidential - Feb. 24, 1999

Incomplete as of 1999/02/24

topic reason page

Additional programming examples should be
added to Section C.2, Floating-Point Conversions.

180

Changes as of 1999/02/24 Version 2.00

change reason page

Make the following changes.

■ Add the “TH” field for use in the dcbt
instruction.

■ In Section 3.3.15 make a minor change in
wording dealing with extended mnemonics
for consistency with other sections.

■ In Section 5.2 remove the statement that the
instruction is optional in each instruction
description.

RFC02000. 10, 13, 95,
140-141

Make the following changes.

■ Clarify that software is permitted to write
any value to reserved bits in System Regis-
ters unless otherwise stated.

■ Remove E = R and E=DS addressing and
Direct-Store Errors from the architecture.

RFC02001. 3, 6, 29,
189

Make the following changes.

■ Move the Storage Synchronization
instructions descriptions to Book II.

■ Add the “ L ” field for use in the sync instruc-
tion.

■ Remove the vsync instruction from the archi-
tecture.

■ Remove a paragraph in the Programming
Note in Section 4.4 concerning the use of an
execution synchronizing instruction.

■ Make various minor changes for consistency
in wording in Section B.5.

■ Move the “Synchronization” programming
examples to Book II.

■ Show instructions deleted from the architec-
ture in parentheses in Appendix I.

■ Clarify the “Key to Mode Dependency
Column” in Appendix K.

RFC02002. 4, 10, 12,
22, 57, 109,
145, 161,
166, 177,
183, 185,
189, 195,
197,
208+1,
213, 216ff,
221+1ff

x PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

change reason page

Make the following changes.

■ Remove mention of FP Unavailable
exceptions from Book I.

■ Remove FP Assist exception from the archi-
tecture.

■ Clarify which bytes of a storage operand
have an EAO associated with them.

RFC02004. 3, 6, 16,
17+1

Make the following changes.

■ Make minor changes in Section 1.5.3.

■ Replace the Segment Table with a software-
managed SLB.

■ Add new instructions to move to/from the
SLB (slbmte , slbmfev , and slbmfee).

■ Remove the mtsrd , mtsrdin , and rfi
instructions from the architecture

■ Redefine the tlbie “S ” field to be an “ L ” field.

■ Show instructions deleted from the architec-
ture in parentheses in Appendix I.

■ In Appendix K define a 32-bit and 64-bit
mode dependency.

RFC02005, except that in Appendix I parentheses
were placed around the opcode, instead of
around the mnemonic, to reduce the likelihood
that wide mnemonics overlay mnemonics in adja-
cent columns.

In addition the following changes were made.

■ In the definitions of mulhw [u] and divw [u] ,
for consistency with usage elsewhere
“(RT)0:31 are undefined” was changed to
“The contents of RT0:31 are undefined”. The
definitions of fctiw [z] and mffs were changed
similarly.

■ The title and body of Section 5.3.6 were mod-
ified to omit reference to lookaside buffers
and storage tables, because the changes
made by this RFC to the Lookaside Buffer
Management instructions are such that these
instructions do not specify an EA.

■ The rfi entry added in Sections E.29 and E.30
was flagged with a “(*)” to show the instruc-
tion is privileged.

■ To avoid confusion with parentheses around
an opcode to indicate that the instruction is
no longer defined, the parentheses (used as
a separator) around lq in Appendix I were
changed to a “ / ” .

4-5, 10,
12-13, 15,
65-67, 131,
134, 146,
148, 186,
189-191,
201ff, 215ff,
223ff

Changes xi

IBM Confidential - Feb. 24, 1999

change reason page

Make the following changes.

■ Add a Branch Hint (BH) field to the Branch
Conditional to Link Register and Branch Con-
ditional to Count Register instructions.

■ Replace the branch “ y ” bit hint and some of
the “z ” bits with “a t ” bit hints.

■ Eliminate ambiguous use of the term “condi-
tion” in Sections 2.4.1 and B.2.

RFC02006 and Correspondence of 19 March '99,
except that the RFC's proposed change to add
“,0” to the extended mnemonics in the
description of the Branch Conditional instruction
in Section 2.4.1 was not made because the “a t ”
value is specified in the BO field (not as a sepa-
rate operand) in the basic mnemonic. In addition
the following changes were made.

■ The second sentence of the definition of the
Link Register in Section 2.3.2 was reworded
slightly to eliminate the term “ Branch and
Link”, which is nowhere defined.

■ bclr [l] and bcctr [l] instruction descriptions:
— A sentence was added to the first para-

graph mentioning the BH field.
— As for other such cases, a Programming

Note was added stating that bclr, bclrl,
bcctr , and bcctrl each serve as both a
basic and an extended mnemonic, and
an example of this was added under
“Extended Mnemonics” for each of the
two instructions. A similar Note was
added to Section B.2.

■ In the Compatibility Notes in Sections 2.4.2,
3.2.2, 3.3.5, and 3.3.15, and in the Program-
ming Note in Section 5.3.3.1, “please refer
to” was changed to “see”. These are
regarded as minor editorial changes, and are
neither marked with change bars nor
reflected in the page list in this entry.

■ In the Compatibility Note in Section 3.2.2, the
bit range was corrected.

■ The new wording of Section B.2.1 was clari-
fied in several respects.

■ In Section B.2.3 the second sentence of the
second paragraph was corrected with
respect to the BH field and was moved to the
end of the paragraph, and the BH value was
added for the basic mnemonic in the last
example.

■ In Section B.2.4 the statement that a suffix
can be added to any mnemonic was cor-
rected (not all BO encodings have “a t ” bits).

10, 11,
23-28,
34+1,
162-164,
185, 186

xii PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

change reason page

Make the following changes for LPAR.

■ Add a new privilege state, hypervisor state.

■ Redefine the sc instruction to include the
LEV field, which can be used to call the
hypervisor.

Remove statements in Book I concerning 32-bit
tags active mode being undefined. Also, correct
a statement in Section E.5 concerning POWER's
MSR24, which corresponds to the US bit in
PowerPC AS.

RFC02007. In addition the following changes
were made.

■ For consistency with the change made to
Section 1.12.2, a related sentence in the defi-
nitions of CIA and NIA in Section 1.5.3 was
deleted.

■ For consistency with the change made to the
SC-form, the reference to the System Call
Vectored instruction was removed from the
LK description in Section 1.7.18.

■ For consistency with a change for the Com-
patibility Note in Section 2.4.2, “this architec-
ture” was changed to “the PowerPC AS
Architecture” in the Compatibility Notes in
Sections 3.2.2 and 3.3.5.

■ In Appendix K the definition of “TA” was
reworded slightly for consistency with
changes made in the “Key” definitions in
Book III by this RFC and RFC02005.

iii, 5, 9, 12,
17, 18, 29,
34+1, 51,
185,
186+1,
188, 225

Remove firm consistency from the architecture. RFC02009. 192

Remove the dcba and dcbi instructions from the
architecture.

RFC02010, except that the proposed bullet was
not added to Section E.21 because permitting
dcbz to fetch the block from main storage does
not affect the migratibility of software from
POWER to PowerPC AS.

5, 208ff,
217ff, 221

Make the following changes.

■ Allow the system data storage error handler
to be invoked for a lq or stq that accesses
Write Through Required or Caching Inhibited
storage.

■ Change “system error handler” to “system
data storage error handler” in Section
3.3.1.2.

■ Clarify aspects in which PowerPC AS is
incompatible with POWER for Load Multiple,
Store Multiple, and Move Assist instructions.

■ Remove the requirement to load DAR and
DSISR for Alignment interrupts.

RFC02011. In addition the following changes
were made.

■ Mention of the fact that lq and stq can cause
the system alignment error handler to be
invoked if they access Write Through
Required or Caching Inhibited storage was
added to Section 3.3.1.2.

■ In Section 4.6.1.1 “system error handler” was
changed to “system data storage error
handler”, for consistency with this RFC's
change to Section 3.3.1.2.

36, 117,
187, 189

Changes xiii

IBM Confidential - Feb. 24, 1999

change reason page

Make the following changes.

■ Define optional new versions of the mtcrf
and mfcr instructions to operate on one and
only one CR field.

■ Specify a preferred form of the Condition
Register Logical instructions.

■ For the mcrf instruction, clarify that CR field
BF is altered, not the entire CR.

RFC02012 and Correspondence of 21 Dec. '98,
except that in the mcrf instruction description
under the subheading “Special Registers
Altered” “CR” was replaced by “CR field BF”. In
addition the following changes were made.

■ The definition of the FXM field in Section
1.7.18 was reworded slightly, to avoid
implying that mfcr is optional.

■ The last sentence of the last Engineering
Note with the mtspr instruction description
was deleted (referred to “different Book III”).

■ The preferred form for mtcrf was handled in
a manner consistent with other preferred
forms:
— An entry for it was added in Section

1.9.1.
— Description of the preferred form was

added to the introduction to Section
3.3.15.

— The Programming Note in the mtcrf
instruction description was shortened
and corrected.

■ In the description of the extended mnemonic
for mtcrf in the introduction to Section 3.3.15,
“old software” was clarified.

■ An Engineering Note was added to the
description of mtcrf and mfcr in Section
3.3.15, pointing the designers to the
description of the optional version of these
instructions.

■ In the mfcr instruction format in Section
3.3.15, bits 12:15 and 16:20 were merged into
a single reserved field.

■ Under “Special Registers Altered” for mcrxr
and mcrxrt , “CR” was changed to “CR field
BF”.

■ Section 5.1:
— A 3-level section header was added for

consistency with Section 5.2, and an
introductory sentence was added to
clarify that the instructions are versions
of non-optional instructions.

— The first two sentences of the first para-
graph of the instruction descriptions
were modified to cover the case of an
all-zero FXM field.

— To reduce repetition, the Programming
Notes for the two instructions were com-
bined into a single Programming Note,
and similarly for the Engineering Notes
and Architecture Notes, and the Notes
were clarified in various respects. In
particular, in the Architecture Note the
statement about configurability of
Northstar processors was weakened to
be an expectation.

— An Assembler Note was added to explain
how the Assembler should determine
whether to generate the old forms of the
instructions or the new.

■ The mfcr entry in Appendix J and
Appendix K was modified to show the
“Form” as “XFX”.

10, 12, 14,
30-32, 95,
97,
137-139,
185, 216,
223

xiv PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

change reason page

Clarify restrictions related to changing Endian
mode for scv .

RFC02013. 148

Changes xv

IBM Confidential - Feb. 24, 1999

change reason page

Make the following changes.

■ Make Little-Endian optional.

■ Make FPSCRNI a reserved bit.

■ Clarify the programming model to avoid EAO
exceptions.

■ Delete tagged pointer support for the lmd
instruction.

■ Clarify tag bit support for the data cache.

■ Clarify that XEROC is set to an undefined
value by the Subtract From Immediate Car-
rying and Subtract From Carrying
instructions.

■ Remove deviations for pre-Version 2.00
processors.

RFC02014, with the following exceptions.

■ The SC-form changes to Section 1.7.3 pro-
posed by RFC02007 were used in lieu of
those proposed by RFC02014.

■ Material that was moved from the old Little-
Endian appendix (Appendix C) to Section 5.3
has change bars only where where it is mod-
ified.

In addition the following changes were made.

■ In Section 1.7.18 the definitions of the fol-
lowing fields were reworded slightly, for con-
sistency with other definitions in the section:
BD, D, DS, DQ, LI, IB, IS, and PT. For all but
the last three the change is too minor to
warrant a change bar.

■ For clarity, in the first sentence of Section
1.12.2 “storage” was changed to “main
storage”.

■ Overflow Carry (OC) bit:
— In Section 3.2.2 the setting of the OC bit

for Subtract From Carrying type of
instructions was changed to “set to an
undefined value”, for consistency with
the change in this RFC for the subfic and
subfc instruction descriptions.

— Under “Special Registers Altered” in the
subfic and subfc instruction descriptions
“(set to undefined value)” was abbrevi-
ated to “(undefined)”, for consistency
with the treatment of FPRF in Chapter 4.

■ EAO exceptions:
— In Sections 3.3.1 and 4.6.1, the para-

graph citing the Programming Note on
page 6 was made a separate Program-
ming Note because it has nothing to do
with the la extended mnemonic.

— The second sentence of the first Pro-
gramming Note in Section 3.3.1 was
abbreviated, and its details were moved
to be the first paragraph of the new Pro-
gramming Note for la in Section B.11.
The new second sentence was also
added to the la Programming Note in
Section 4.6.1.

— The (now) second paragraph of the Pro-
gramming Note in Section B.11 was clar-
ified.

■ Section 5.3:
— For consistency with references to the

section elsewhere, “Byte Ordering” was
omitted from the section title rather than
being changed to “Storage Addressing”.

— The new first paragraph of the section
was made more consistent with the
introductions to other “optional”
sections.

■ A reference to MXU in Appendix I was
deleted.

■ “Amazon” was changed to “PowerPC AS”
throughout the Book, without change bars.

6, 16-18,
34, 36, 44,
48, 49, 51,
53, 61, 99,
103, 117,
120, 137,
142, 175,
193, 208

xvi PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

For Version 1.07 and earlier versions, PowerPC AS Requests for Change (RFCs) are explicitly identified as such;
other RFCs that are not explicitly identified are PowerPC changes that are adopted for PowerPC AS.

Changes as of 1998/04/30 Version 1.07

change reason page

Delete the statement in Section 3.3.6 that
Load/Store String Indexed instructions follow the
rule for preferred forms for Load/Store Indexed
instructions since there are no longer such pre-
ferred forms.

out of date statement 53

Add new instruction field for tlbie , and new
incompatibilities between POWER and PowerPC
AS for tlbie .

RFC00248 as rewritten by Correspondence of 9
Dec. '97. In addition the following changes were
made.

■ The name of the PS field used by the new
form of tlbie was changed to S, because a
1-letter name fits better in the instruction
format, and use of PS here might cause con-
fusion with the other use of PS (field in PTE).
(S was chosen instead of P to avoid con-
fusion with uses of p in Book III to represent
the log2 of the page size.)

■ The last sentence of the third paragraph of
Section 1.7 was deleted because it is obso-
lete; the section of Book III that described
the Book-III-only fields was deleted in
Version 1.09, and Book II never had such a
section.

10, 13, 189

Changes as of 1998/03/27 Version 1.06

change reason page

State that, in general, optional facilities and
instructions are described in chapters, appen-
dices, and sections for which the title contains
the word “Optional”.

RFC00246. The order of “facilities” and
“instructions” in the new paragraph was
reversed from that in the RFC, for consistency
with the rest of the Architecture Note. In addi-
tion, for correctness, “ i f necessary” was added
near the end of the last paragraph under “Cate-
gory 1”.

15

State that facilities and instructions in optionality
category 2 generally appear in a separate
chapter.

RFC00245 as amended at June PAWG meeting. 15

Removed statement that the Trace facility is
optional in PowerPC AS.

Amazon RFC 365 192

Changes xvii

IBM Confidential - Feb. 24, 1999

change reason page

Add Process Local Storage (PLS) architecture:

■ Modify the definition of XEROC to account for
PLS

■ Modify the definitions of cmpla , td and tdi to
detect PLS boundary cross.

■ In tags active mode tw and twi with
TO=11100 are invalid forms.

■ Remove tags active mode option for 24-bit
effective address addition for both
instructions and data.

Amazon RFC 347 5-6, 18ff,
34, 70-73

Listed Northstar deviations. Amazon RFC 346 old “Devi-
ations”
app.

Add missing “A t ” to Select instructions in
Table 15 on page 204.

Amazon RFC 344 204

Add missing parentheses in lq RTL. Amazon RFC 338 43

Clarify that scv and rfscv still have implementa-
tion-dependent requirements when switching
Endian modes.

Amazon RFC 337 148

Remove EAO X-form implementation-dependent
option for 24-bit add.

Amazon RFC 334 5

Make instruction address EA calculations
boundedly undefined in tags active mode when
the 64-bit result and CIA are different address
types: PLS, SLS, E=R, or E=DS. If also in Privi-
leged mode, the result is undefined.

Amazon RFC 330 6

Remove TG term for XERTAG. Amazon RFC 327 44

Modify PowerPC RFC00220 to E.23 to qualify a
statement about optional direct-store segments
with tags inactive mode.

Amazon RFC 323 189

Remove statement about extended opcodes for
opcode 0 being assigned to various companies.

Amazon RFC 319 199

Correct stq RTL to state that all tag bits in the
QW are set.

Amazon RFC 315 48

Define sync to not be context synchronizing with
respect to Direct-Store Errors

Amazon RFC 308 old sync
def.

Add miscellaneous changes including:

■ Add list of tags active instructions to
Appendix G.

■ Correct bit numbering for MSRFC in E.31.3.

■ Remove “?” symbol's meaning of implemen-
tation-dependent value.

■ State that for n=0 , stsdx stores no bytes.

■ Eliminate redundant statements about RB
containing the smaller operand for multiplies.

■ Correct statement that if any tag bits in a
QW are 0, the QW is “untagged”.

Amazon RFC 306 4, 17, 43,
57, 64ff,
192, 197

State COBRA 4 problem with settag or mtxer
immediately following stq .

Amazon RFC 305 48

xviii PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

change reason page

Delete Matrix Unit from the architecture. Amazon RFC 302 old Matrix
Unit sect.

Make PowerPC optional instructions fsqrt , fsqrts ,
fres , frsqrte , and fsel optional in PowerPC AS.

Amazon RFC 299 126, 133,
137ff, old
“Devi-
ations”
app.

Revise COBRA 4 deviation list for hardware
problems: undefined SRR0 and SRR1 if Direct-
Store Error interrupt collides with other inter-
rupts, MSRUS and MSRFC set incorrectly when
switching from tags active to tags inactive mode,
invalid forms of load string operations, and icbi

Amazon RFC 298 old “Devi-
ations”
app.

Revise MUSKIE deviation list for hardware prob-
lems: requirement for interrupt code to do Load
or Store before floating-point instruction, dcbi ,
MSRMM, W bit aliasing, E=DS instruction fetch,
data cache parity error, precise mode restriction,
minimizing time with MSREE= 0 , and dcbtst .

Amazon RFC 297 old “Devi-
ations”
app.

Add APACHE deviation list. Amazon RFC 296 old “Devi-
ations”
app.

Update COBRA-Lite deviation list for new bugs,
MMCR010:11, W bit aliasing, and Little-Endian.

Amazon RFC 295 old “Devi-
ations”
app.

Remove deviation lists for early processor
passes and remove tlbiex and slbiex from the
architecture.

Amazon RFC 294 old “Devi-
ations”
app.

Add mtmsrd and rfid to COBRA-Lite deviation
list.

Amazon RFC 236 old “Devi-
ations”
app.

Make minor corrections related to instruction
fields, DS-form, optional instructions, illegal
instructions, and POWER vs. POWER2

RFC00231 as amended at Oct. PAWG meeting. 2, 13, 15,
36, 193,
197

Reduce use of “instruction storage” and “data
storage”.

RFC00242 Correspondence of 14 Nov. '96. 3, 16,
145-146

Make minor corrections related to FPSCR excep-
tion summary bits.

RFC00230. 16, 101,
108-109,
134

Redefine sync to make it a memory barrier. RFC00233 and Correspondence of 7 Nov. '96. In
addition, for consistency with similar wording
added elsewhere by the RFC, “that processor”
was used instead of “that other processor” near
the end of the first paragraph of the Program-
ming Note in the sync instruction description.

old “Stg.
Synch.
Instrs.”
sect., old
sync
def.-58,
134, old
synch.
prog.
examples
sect., 189,
192

Reserve SPRs for implementation-specific uses. RFC00167 as rewritten by Correspondence of 30
May '96, as amended at Oct. PAWG meeting.

95, 188

Changes xix

IBM Confidential - Feb. 24, 1999

change reason page

Correct an error in the lock acquisition program-
ming example.

Error Notice of 5 Dec. '96. old synch.
prog.
examples
sect.

Amplify differences from POWER2 regarding
Trace.

RFC00223 as rewritten by Correspondence of 19
Nov. '96.

192

Reserve opcodes for implementation-specific
uses.

RFC00225 as amended at Oct. PAWG meeting. 201ff

Specify what can be defined in Book IV and in
non-AIM Books II and III.

RFC00224 as amended at March PAWG meeting.
In addition, “for implementation-specific differ-
ences or extensions” was inserted into the first
bullet, instead of “for implementation-specific
extensions” as agreed at the meeting, for
reasons given in mail from Cathy May 19 April
'96, and the Engineering Note was placed after
the boldface “Note”, instead of before it as pro-
posed in the RFC, for readability and page layout.

iii

Correct several minor errors. Error Notices of 3 May (two Notices) and 6 May
'96, except that the correction proposed for
Section E.31.2 was not made, because the
current terminology was deemed acceptable and
the affected sentence appears also in Sections
E.21 and E.25.

2, 11+1,
34, 58, 71,
97, 101,
109, 113,
114, 117,
120, 121,
133, 134,
177ff, 181,
186, 188

Add one Engineering Note about reserved bits,
and revise another.

RFC00213 and Correspondence of 23 March '96,
as amended at March PAWG meeting.

4, 187

Describe why various facilities and instructions
are optional.

RFC00218 and Correspondence of 10 April '96.
The “Optional Instructions” appendix was made a
chapter, as agreed at the March PAWG meeting;
this necessitated changing “appendix” to
“chapter” in several places.

13, 15, 102,
137ff, 180,
182

Eliminate reference to Book III sentence that RFC
deletes.

RFC00226. old sync
def.

Start to phase direct-store out of the architec-
ture.

RFC00220. 143, 189

Delete Programming Note about unaligned Little-
Endian storage accesses.

RFC00177 and Correspondence of 23 March '96. 145

Add new Cache Management instruction Data
Cache Block Allocate (dcba).

RFC00228 and Correspondence of 10 May '96. 201+8,
215+3,
221

Incorporate minor changes from the Morgan
Kaufmann book. All such changes that seem
desirable have now been made. Very minor
changes (e.g., fixing grammatical errors) are not
marked with change bars.

Agreed in discussion of RFC00173 at Nov. '94
PAWG meeting.

various

Relax rules for hardware's handling of reserved
bits in registers.

RFC00195. 3, 185

xx PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

change reason page

Correct several minor errors. Error Notice of 27 Oct. '94, Book I items 1-11.
(Item 12 is done as part of RFC 173.)

11, 13, 22,
80, 84, 106,
110, 117,
120, 141,
183+1,
186

Make 64-bit MMU functions an extension of 32-bit
MMU functions.

RFC00178 as rewritten by Correspondence of 24
Oct. '94.

15, 189,
201ff

In the first two sentences of the sync description,
omit the word “given” (three occurrences).

RFC00199 and Correspondence of 25 Oct. '94. old sync
def.

Use “performed” vs. “executed” consistently for
loads and stores.

RFC00205. old sync
def.

Clarify that CR00:2 is undefined for certain
instructions in 64-bit mode.

RFC00194. 65-67

Clarify meaning of floating-point “intermediate
result”.

RFC00185 as amended at Nov. PAWG meeting.
The RFC says to number bits G, R, and X in
Figure 36 on page 113, but this looked too
crowded so G and R are not numbered (there is
no ambiguity about the lengths of these fields).

106-107,
112-114

Correct the definition of rounding. RFC00198 as amended at Nov. PAWG meeting. 101-102,
106-107,
113-114,
129, 132,
181

Clarify descriptions of Underflow and Inexact
Exceptions.

RFC00186. 110,
112-112

Say that rfi and interrupts change Endian mode
reliably for I-fetch.

RFC00181. The wording of the Engineering Note
for p. 148 has been revised slightly to include rfid
and mtmsrd , which were added by RFC00178.
The last sentence has been reworded slightly to
match similar wording used in RFC00203.

148

Delete text that suggests using all 64 bits of
GPRs when in 32-bit mode.

RFC00173. In addition, the second sentence of
the second paragraph of the section introduction
(p. 177) has been deleted because it refers to
material deleted by the RFC, and it is not in the
Morgan Kaufmann book.

177,
177+1

Note additional POWER incompatibility for Store
Floating-Point Single.

RFC00196. 188

Delete “17” from the list of primary opcodes that
have unused extended opcodes.

RFC00173. 197

Define “AIM” and use “-AIM” suffix on citations
as needed.

RFC00203. various

Incorporate minor changes from the Morgan
Kaufmann book. Not all such changes have been
made; the rest will be made in future versions of
this Book. Very minor changes (e.g., fixing gram-
matical errors) are not marked with change bars.

Agreed in discussion of RFC00173 at Nov. PAWG
meeting.

various

Changes xxi

IBM Confidential - Feb. 24, 1999

xxii PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

Chapter 1. Introduction

1.1 Overview 1
1.2 Computation Modes 1
1.3 Instruction Mnemonics and

Operands 2
1.4 Compatibility with the POWER

Architecture 2
1.5 Document Conventions 2
1.5.1 Definitions and Notation 2
1.5.2 Reserved Fields 3
1.5.3 Description of Instruction Operation 4
1.5.3.1 Tags Active Mode + tea 5
1.5.3.2 Tags Active Mode + tia 6
1.5.3.3 Precedence Rules 6
1.6 Processor Overview 7
1.7 Instruction Formats 8
1.7.1 I-Form 9
1.7.2 B-Form 9
1.7.3 SC-Form 9
1.7.4 D-Form 9
1.7.5 DS-Form 9
1.7.6 DQ-Form 9
1.7.7 X-Form 10
1.7.8 XL-Form 10
1.7.9 XFX-Form 10
1.7.10 XFL-Form 10

1.7.11 XS-Form 10
1.7.12 XO-Form 10
1.7.13 A-Form 11
1.7.14 M-Form 11
1.7.15 MD-Form 11
1.7.16 MDS-Form 11
1.7.17 TX-Form 11
1.7.18 Instruction Fields 11
1.8 Classes of Instructions 13
1.8.1 Defined Instruction Class 13
1.8.2 Illegal Instruction Class 13
1.8.3 Reserved Instruction Class 14
1.9 Forms of Defined Instructions . . . 14
1.9.1 Preferred Instruction Forms . . . 14
1.9.2 Invalid Instruction Forms 14
1.10 Optionality 15
1.11 Exceptions 16
1.12 Storage Addressing 16
1.12.1 Storage Operands 16
1.12.2 Tag Bits 17
1.12.3 Effective Address Calculation . . 17
1.12.3.1 Tags Inactive Mode Effective

Address Calculation 17
1.12.3.2 Tags Active Mode Effective

Address Calculation 18

1.1 Overview

This chapter describes computation modes, compat-
ibility with the POWER Architecture, document con-
ventions, a processor overview, instruction formats,
storage addressing, and instruction fetching.

1.2 Computation Modes

The PowerPC AS Architecture requires a 64-bit imple-
mentation, in which all registers except some Special
Purpose Registers are 64 bits long and effective
addresses are 64 bits long. All 64-bit implementa-
tions have two modes of operation: 64-bit mode and
32-bit mode. The mode controls how the effective
address is interpreted, how status bits are set, and
how the Count Register is tested by Branch Condi-
tional instructions. All instructions are available in
both modes. In both 64-bit mode and 32-bit mode,
instructions that set a 64-bit register affect all 64 bits,
and the value placed into the register is independent
of mode. In both modes, effective address computa-
tions use all 64 bits of the relevant registers (General

Chapter 1. Introduction 1

IBM Confidential - Feb. 24, 1999

Purpose Registers, Link Register, Count Register, etc.)
and produce a 64-bit result. However, in 32-bit mode,
the high-order 32 bits of the computed effective
address are ignored when accessing data and are set
to 0 when fetching instructions.

The PowerPC AS Architecture does not permit an
implementation that provides only the equivalent of
32-bit mode (i.e., an implementation in which all regis-
ters except Floating-Point Registers are 32 bits long).

1.3 Instruction Mnemonics and
Operands

The description of each instruction includes the mne-
monic and a formatted list of operands. Some exam-
ples are the following.

stw RS,D(RA)
addis RT,RA,SI

PowerPC AS-compliant Assemblers will support the
mnemonics and operand lists exactly as shown. They
should also provide certain extended mnemonics, as
described in Appendix B, “Assembler Extended
Mnemonics” on page 161.

1.4 Compatibility with the
POWER Architecture

The PowerPC AS Architecture provides binary com-
patibility for POWER application programs, except as
described in Appendix E, “Incompatibilities with the
POWER Architecture” on page 185.

Many of the PowerPC AS instructions are identical to
POWER instructions. For some of these the PowerPC
AS instruction name and/or mnemonic differs from
that in POWER. To assist readers familiar with the
POWER Architecture, POWER mnemonics are shown
with the individual instruction descriptions when they
differ from the PowerPC AS mnemonics. Also,
Appendix D, “Cross-Reference for Changed POWER
Mnemonics” on page 183 provides a cross-reference
from POWER mnemonics to PowerPC AS mnemonics
for the instructions in Books I, II, and III.

References to the POWER Architecture include
POWER2 implementations of the POWER Architecture
unless otherwise stated.

1.5 Document Conventions

1.5.1 Definitions and Notation

The following definitions and notation are used
throughout the PowerPC AS Architecture documents.

■ A program is a sequence of related instructions.

■ Octwords are 256 bits, quadwords are 128 bits,
doublewords are 64 bits, words are 32 bits,
halfwords are 16 bits, and bytes are 8 bits.

■ All numbers are decimal unless specified in some
special way.

— 0bnnnn means a number expressed in binary
format.

— 0xnnnn means a number expressed in
hexadecimal format.

Underscores may be used between digits.

■ RT, RA, R1, ... refer to General Purpose Regis-
ters.

■ FRT, FRA, FR1, ... refer to Floating-Point Regis-
ters.

■ (x) means the contents of register x, where x is
the name of an instruction field. For example,
(RA) means the contents of register RA, and
(FRA) means the contents of register FRA, where
RA and FRA are instruction fields. Names such
as LR and CTR denote registers, not fields, so
parentheses are not used with them. Paren-
theses are also omitted when register x is the
register into which the result of an operation is
placed.

■ (RA|0) means the contents of register RA if the
RA field has the value 1-31, or the value 0 if the
RA field is 0.

■ Bits in registers, instructions, and fields are spec-
ified as follows.

— Bits are numbered left to right, starting with
bit 0.

— Ranges of bits are specified by two numbers
separated by a colon (:). The range p:q con-
sists of bits p through q.

■ Xp means bit p of register/field X.

■ Xp:q means bits p through q of register/field X.

■ Xp q ... means bits p, q, ... of register/field X.

■ ¬(RA) means the one's complement of the con-
tents of register RA.

■ Field i refers to bits 4× i through 4× i + 3 of a reg-
ister.

■ A period (.) as the last character of an instruction
mnemonic means that the instruction records
status information in certain fields of certain
Special Purpose Registers as a side effect of exe-

2 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

cution, as described in Chapter 2 through
Chapter 4.

■ The symbol || is used to describe the concat-
enation of two values. For example, 010 || 111 is
the same as 010111.

■ xn means x raised to the nth power.

■ nx means the replication of x, n times (i.e., x con-
catenated to itself n− 1 times). n0 and n1 are
special cases:

— n0 means a field of n bits with each bit equal
to 0. Thus 50 is equivalent to 0b00000.

— n1 means a field of n bits with each bit equal
to 1. Thus 51 is equivalent to 0b11111.

■ Positive means greater than zero.

■ Negative means less than zero.

■ A system library program is a component of the
system software that can be called by an applica-
tion program using a Branch instruction.

■ A system service program is a component of the
system software that can be called by an applica-
tion program using a System Call instruction.

■ The system trap handler is a component of the
system software that receives control when the
conditions specified in a Trap instruction are sat-
isfied.

■ The system error handler is a component of the
system software that receives control when an
error occurs. The system error handler includes
a component for each of the various kinds of
error. These error-specific components are
referred to as the system alignment error
handler, the system data storage error handler,
etc.

■ Each bit and field in instructions, and in status
and control registers (XER and FPSCR) and
Special Purpose Registers, is either defined or
reserved.

■ /, //, ///, ... denotes a reserved field in an instruc-
tion.

■ Latency refers to the interval from the time an
instruction begins execution until it produces a
result that is available for use by a subsequent
instruction.

■ Unavailable refers to a resource that cannot be
† used by the program. For example, storage is
† unavailable if access to it is denied. See Book III,

PowerPC AS Operating Environment Architecture.

■ The results of executing a given instruction are
said to be boundedly undefined if they could have
been achieved by executing an arbitrary
sequence of instructions, starting in the state the
machine was in before executing the given
instruction. Boundedly undefined results for a
given instruction may vary between implementa-
tions, and between different executions on the
same implementation, and are not further defined
in this document.

■ The sequential execution model is the model of
program execution described in Section 2.2,
“Instruction Fetching” on page 21.

1.5.2 Reserved Fields

All reserved fields in instructions should be zero. If
they are not, the instruction form is invalid: see
Section 1.9.2, “Invalid Instruction Forms” on page 14.

The handling of reserved bits in System Registers
(e.g., XER, FPSCR) is implementation-dependent.

† Unless otherwise stated, software is permitted to
write any value to such a bit. A subsequent reading
of the bit returns 0 if the value last written to the bit
was 0 and returns an undefined value (0 or 1) other-
wise.

Chapter 1. Introduction 3

IBM Confidential - Feb. 24, 1999

Programming Note

It is the responsibility of software to preserve bits
that are now reserved in System Registers, as
they may be assigned a meaning in some future
version of the architecture.

In order to accomplish this preservation in imple-
mentation-independent fashion, software should
do the following.

■ Initialize each such register supplying zeros
for all reserved bits.

■ Alter (defined) bit(s) in the register by reading
the register, altering only the desired bit(s),
and then writing the new value back to the
register.

The XER and FPSCR are partial exceptions to this
recommendation. Software can alter the status
bits in these registers, preserving the reserved
bits, by executing instructions that have the side
effect of altering the status bits. Similarly, soft-
ware can alter any defined bit in the FPSCR by
executing a Floating-Point Status and Control Reg-
ister instruction. Using such instructions is likely
to yield better performance than using the method
described in the second item above.

When a currently reserved bit is subsequently
assigned a meaning, every effort will be made to
have the value to which the system initializes the
bit correspond to the “old behavior”.

Engineering Note

Reserved bits in System Registers need not be
implemented.

1.5.3 Description of Instruction
Operation

A formal description is given of the operation of each
instruction. In addition, the operation of most
instructions is described by a semiformal language at
the register transfer level (RTL). This RTL uses the
notation given below, in addition to the definitions and
notation described in Section 1.5.1, “Definitions and
Notation” on page 2. Some of this notation is also
used in the formal descriptions of instructions. RTL
notation not summarized here should be self-
explanatory.

The RTL descriptions cover the normal execution of
the instruction, except that “standard” setting of the
Condition Register, Fixed-Point Exception Register,
and Floating-Point Status and Control Register are not
shown. (“Non-standard” setting of these registers,

† such as the setting of the Condition Register by the
† Compare instructions, is shown.) The RTL

descriptions do not cover cases in which the system
error handler is invoked, or for which the results are
boundedly undefined.

The RTL descriptions specify the architectural trans-
formation performed by the execution of an instruc-
tion. They do not imply any particular
implementation.

The RTL is written for implementations that have a
tag bit per doubleword or a tag bit per quadword (i.e.
a doubleword or quadword tag block), although other
tag block sizes are permitted.

Notation Meaning
← Assignment
← iea Assignment of an instruction effec-

† tive address. In 32-bit mode the
high-order 32 bits of the 64-bit target

† address are set to 0.
¬ NOT logical operator
+ Two's complement addition
+ tia In tags active mode, special rules

apply to instruction address addition
(see 1.5.3.2, “Tags Active Mode + tia”
on page 6). In tags inactive mode,
this notation means two's comple-
ment 64-bit addition.

+ tea In tags active mode, special rules
apply to effective address addition
(see below). In tags inactive mode,
this notation means two's comple-
ment 64-bit addition.

− Two's complement subtraction, unary
minus

× Multiplication
÷ Division (yielding quotient)

Square root
= , ≠ Equals, Not Equals relations
< , ≤ , > , ≥ Signed comparison relations
<u , >u Unsigned comparison relations
? Unordered comparison relation
&, | AND, OR logical operators
⊕ , ≡ Exclusive OR, Equivalence logical

operators ((a≡ b) = (a⊕ ¬ b))
ABS(x) Absolute value of x
CEIL(x) Least integer ≥ x
DOUBLE(x) Result of converting x from floating-

point single format to floating-point
double format, using the model
shown on page 117

EXTS(x) Result of extending x on the left with
sign bits

FLOOR(x) Greatest integer ≤ x
GPR(x) General Purpose Register x
MASK(x, y) Mask having 1s in positions x

through y (wrapping if x > y) and 0s
elsewhere

4 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

MEM(x, y) Contents of y bytes of storage
starting at address x. In 32-bit mode
of a 64-bit implementation, the high-
order 32 bits of the 64-bit value x are
ignored.

MEMtag(x) Tag bit of the tag block (see “tag
block” below) in storage that con-
tains address x. In 32-bit mode of a
64-bit implementation the high-order
32 bits of the 64-bit value x are
ignored.

MEMtag(x, y) Tag bits of all the tag blocks (see
“tag block” below) that contain any
of the y bytes of storage starting at
address x. In 32-bit mode of a 64-bit
implementation the high-order 32
bits of the 64-bit value x are ignored.

ROTL64(x, y) Result of rotating the 64-bit value x
left y positions

ROTL32(x, y) Result of rotating the 64-bit value
x||x left y positions, where x is 32
bits long

SINGLE(x) Result of converting x from floating-
point double format to floating-point
single format, using the model shown
on page 120

SPREG(x) Special Purpose Register x
tag block An implementation-dependent quan-

tity of storage containing 1, 2, 4, 8 or
16 bytes. The block is integrally
aligned. For each tag block there is
one tag bit in storage.

TRAP Invoke the system trap handler
characterization Reference to the setting of status

bits, in a standard way that is
explained in the text

tags active mode See Book III, PowerPC AS Operating
Environment Architecture.

tags inactive mode See Book III, PowerPC AS Oper-
ating Environment Architecture.

undefined An undefined value. The value may
vary between implementations, and
between different executions on the
same implementation.

CIA Current Instruction Address, which is
the 64-bit address of the instruction
being described by a sequence of
RTL. Used by relative branches to
set the Next Instruction Address
(NIA), and by Branch instructions
with L K = 1 to set the Link Register.
In 32-bit mode, the high-order 32 bits

† of CIA are always set to 0. Does not
correspond to any architected reg-
ister.

NIA Next Instruction Address, which is
the 64-bit address of the next
instruction to be executed. For a
successful branch, the next instruc-
tion address is the branch target
address: in RTL, this indicated by
assigning a value to NIA. For other
instructions that cause non-

sequential instruction fetching (see
Book III, PowerPC AS Operating
Environment Architecture), the RTL
is similar. For instructions that do
not branch, and do not otherwise
cause instruction fetching to be non-
sequential, the next instruction
address is CIA + tia 4. In 32-bit mode,
the high-order 32 bits of NIA are

† always set to 0. Does not corre-
spond to any architected register.

if ... then ... else ... Conditional execution, indenting
shows range; else is optional

do Do loop, indenting shows range.
“To” and/or “by” clauses specify
incrementing an iteration variable,
and a “while” clause gives termi-
nation conditions.

leave Leave innermost do loop, or do loop
described in leave statement

| for For loop, indenting shows range.
| Clause after “ for ” specifies the enti-
| ties for which to execute the body of
| the loop.

1.5.3.1 Tags Active Mode + tea

In tags active mode, the effective address addition
operator, + tea, has two operands which are 64-bit
numbers. The + tea operation involves a 64-bit add.

| With the exception of the dcbt and dcbtst instructions
(see Book II, PowerPC AS Virtual Environment Archi-
tecture for details on these instructions), + tea can
produce an Effective Address Overflow (EAO) excep-
tion. An EAO exception results in invocation of the
system data storage error handler.

The following describes when an EAO exception
occurs. For this description C40 is defined to be the
carry out of bit position 40 assuming two 64-bit oper-
ands are added. C16 is defined to be the carry out of
bit position 16. D0 is the most significant bit of the
displacement in a D-form, DS-form, or DQ-form
instruction

■ D-form, DS-form, and DQ-form instructions :
There are several implementation-dependent
options for detecting EAO exceptions. One of
these must be implemented.

— If EA0:15 = 0 & RA ≠ 0 & (C16 ⊕ D0), then
an EAO exception occurs. If EA0:15 ≠ 0 & RA
≠ 0 & (C40 ⊕ D0), then an EAO exception
occurs.

— If (RA)0:15 = 0 & RA ≠ 0 & (C16 ⊕ D0), then
an EAO exception occurs. If (RA)0:15 ≠ 0 &
RA ≠ 0 & (C40 ⊕ D0), then an EAO excep-
tion occurs.

— If EA0:15 = 0 & RA ≠ 0 & (RA)0:15 ≠ EA0:15,
then an EAO exception occurs. If EA0:15 ≠ 0
& RA ≠ 0 & (RA)0:39 ≠ EA0:39, then an EAO
exception occurs.

Chapter 1. Introduction 5

IBM Confidential - Feb. 24, 1999

— If (RA)0:15 = 0 & RA ≠ 0 & (RA)0:15 ≠ EA0:15,
then an EAO exception occurs. If (RA)0:15 ≠ 0
& RA ≠ 0 & (RA)0:39 ≠ EA0:39, then an EAO
exception occurs.

■ X-form instruction : There are several implemen-
tation-dependent options for detecting EAO
exceptions. One of these must be implemented.

— If EA0:15 = 0 & RA ≠ 0 & (RA)0:15 ≠ EA0:15,
then an EAO exception occurs. If EA0:15 ≠ 0
& RA ≠ 0 & (RA)0:39 ≠ EA0:39, then an EAO
exception occurs.

— If (RA)0:15 = 0 & RA ≠ 0 & (RA)0:15 ≠ EA0:15,
then an EAO exception occurs. If (RA)0:15 ≠ 0
& RA ≠ 0 & (RA)0:39 ≠ EA0:39, then an EAO
exception occurs.

— If EA0:15 = 0 & RA ≠ 0 & ((RB)0:14 ≠ 15(RB)15
| C16 ⊕ (RB)15), then an EAO exception
occurs. If EA0:15 ≠ 0 & RA ≠ 0 & ((RB)0:38 ≠
39(RB)39 | C40 ⊕ (RB)39), then an EAO excep-
tion occurs.

— If (RA)0:15 = 0 & RA ≠ 0 & ((RB)0:14 ≠
15(RB)15 | C16 ⊕ (RB)15), then an EAO excep-
tion occurs. If (RA)0:15 ≠ 0 & RA ≠ 0 & (
(RB)0:38 ≠ 39(RB)39 | C40 ⊕ (RB)39), then an
EAO exception occurs.

† Programming Note

† In order that all implementations detect EAO
† exceptions correctly and do not cause unnec-
† essary EAO exceptions, if the base address is
† in RB then RA must be 0.

† ■ Operand length : An EAO exception occurs for
† byte j of a storage operand, 0 ≤ j < n where n is
† the length of the operand, if any of the following
† conditions is true. EA is the effective address of
† the operand, and EAj is the effective address of
† byte j.

† — RA ≠ 0 and either of the following is true.

† — (RA)0:15 = 0 and (RA)0:15 ≠ EAj0:15.

† — (RA)0:15 ≠ 0 and (RA)0:39 ≠ EAj0:39.

† — RA = 0, the instruction has an RB field, and
† either of the following is true.

† — (RB)0:15 = 0 and (RB)0:15 ≠ EAj0:15.

† — (RB)0:15 ≠ 0 and (RB)0:39 ≠ EAj0:39.

† — RA = 0, the instruction does not have an RB
† field, and EA0 ≠ EAj0.

The effective address calculations for branches and
sequential instruction fetching do not cause EAO
exceptions.

1.5.3.2 Tags Active Mode + t ia

In tags active mode, the effective address calculations
for branches and sequential instruction fetching is
called + tia. + tia has a right and left operand. Both
operands are treated as 64-bit numbers. In the fol-
lowing situations, the result is boundedly undefined in
tags active mode:

1. CIA0:15=0x0000 and a 64-bit effective address
calculation would have produced a resulting
NIA0:15≠ 0x0000.

2. CIA0:15≠ 0x0000 and a 64-bit effective address cal-
culation would have produced a resulting
NIA0:15=0x0000.

|

+ tia does not cause EAO exceptions.

1.5.3.3 Precedence Rules

The precedence rules for RTL operators are summa-
rized in Table 1. Operators higher in the table are
applied before those lower in the table. Operators at
the same level in the table associate from left to
right, from right to left, or not at all, as shown. (For
example, − associates from left to right, so a− b− c =
(a− b)− c.) Parentheses are used to override the eval-
uation order implied by the table or to increase
clarity: parenthesized expressions are evaluated
before serving as operands.

Table 1. Operator precedence

Operators Associativity

subscript, function evaluation left to right

pre-superscript (replication),
post-superscript (exponentiation)

right to left

unary − , ¬ right to left

× , ÷ left to right

+ , − , + tea left to right

|| left to right

= , ≠ , < , ≤ , > , ≥ , <u , >u , ? left to right

&, ⊕ , ≡ left to right

| left to right

: (range) none

← none

6 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

1.6 Processor Overview

The processor implements the instruction set, the
storage model, and other facilities defined in this doc-
ument. Instructions that the processor can execute
fall into three classes:

■ branch instructions,

■ fixed-point instructions, and

■ floating-point instructions.

Branch instructions are described in Section 2.4,
“Branch Processor Instructions” on page 24. Fixed-
point instructions are described in Section 3.3, “Fixed-
Point Processor Instructions” on page 36.
Floating-point instructions are described in Section
4.6, “Floating-Point Processor Instructions” on
page 116.

Fixed-point instructions operate on byte, halfword,
word, and doubleword operands. Floating-point
instructions operate on single-precision and double-
precision floating-point operands. The PowerPC AS
Architecture uses instructions that are four bytes long
and word-aligned. It provides for byte, halfword,
word, doubleword, and quadword operand fetches and
stores between storage and a set of 32 General
Purpose Registers (GPRs). It also provides for word,
doubleword, and quadword operand fetches and
stores between storage and a set of 32 Floating-Point
Registers (FPRs).

Signed integers are represented in two's complement
form.

There are no computational instructions that modify
storage. To use a storage operand in a computation
and then modify the same or another storage
location, the contents of the storage operand must be
loaded into a register, modified, and then stored back
to the target location. Figure 1 is a logical represen-
tation of instruction processing. Figure 2 on page 8
shows the registers of the PowerPC AS User Instruc-
tion Set Architecture.

ÚÄÄÄÄÄÄÄÄÄÄÄ¿
³ Branch ³

ÚÄÄÄÄÄÄÄÄÄH³ Processing ³
³ ÀÄÄÄÄÄÂÄÄÄÄÄÙ
³ ³ Fixed-Point and
³ ³ Floating-Point
³ ³ Instructions
³ ÚÄÄÄÄÄÄÁÄÄÄÄÄÄÄ¿
³ ³ ³
³ ↓ ↓
³ ÚÄÄÄÄÄÄÄÄÄÄÄ¿ ÚÄÄÄÄÄÄÄÄÄÄÄ¿
³ ³ Fixed-Pt ³ ³ Float-Pt ³
³ ³ Processing ³ ³ Processing ³
³ ÀÄÄÄÄÄÄÄÄÄÄÄÙ ÀÄÄÄÄÄÄÄÄÄÄÄÙ
³ ↑ ↑
³ ³ Data to/from ³
³ ³ Storage ³
³ ↓ ↓
³ ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
³ ↑
³ ³
³ ↓
³ ÚÄÄÄÄÄÄÄÄÄÄÄ¿
ÀÄÄÄÄÄÄÄÄÄÄ́ Storage ³

³ ³
Instructions ÀÄÄÄÄÄÄÄÄÄÄÄÙ
from Storage

Figure 1. Logical processing model

Chapter 1. Introduction 7

IBM Confidential - Feb. 24, 1999

CR Condition Register (page 22)
0 31

LR Link Register (page 23)
0 63

CTR Count Register (page 23)
0 63

GPR 0

GPR 1

... General Purpose Registers (page 33)

...

GPR 31
0 63

XER Fixed-Point Exception Register (page 34)
0 31

FPR 0

FPR 1

... Floating-Point

... Registers (page 100)

FPR 31
0 63

FPSCR Floating-Point Status and
0 31 Control Register (page 101)

Figure 2. PowerPC AS user register set

1.7 Instruction Formats

All instructions are four bytes long and word-aligned.
Thus, whenever instruction addresses are presented
to the processor (as in Branch instructions) the low-
order two bits are ignored. Similarly, whenever the
processor develops an instruction address the low-
order two bits are zero.

Bits 0:5 always specify the opcode (OPCD, below).
Many instructions also have an extended opcode (XO,
below). The remaining bits of the instruction contain
one or more fields as shown below for the different
instruction formats.

The format diagrams given below show horizontally
all valid combinations of instruction fields. The dia-
grams include instruction fields that are used only by
instructions defined in Book II, PowerPC AS Virtual
Environment Architecture, or in Book III, PowerPC AS
Operating Environment Architecture.

In some cases an instruction field is reserved, or
must contain a particular value. If a reserved field

does not have all bits set to 0, or if a field that must
contain a particular value does not contain that value,
the instruction form is invalid and the results are as
described in Section 1.9.2, “Invalid Instruction Forms”
on page 14.

Split Field Notation

In some cases an instruction field occupies more than
one contiguous sequence of bits, or occupies one con-
tiguous sequence of bits that are used in permuted
order. Such a field is called a split field. In the
format diagrams given below and in the individual
instruction layouts, the name of a split field is shown
in small letters, once for each of the contiguous
sequences. In the RTL description of an instruction
having a split field, and in certain other places where
individual bits of a split field are identified, the name
of the field in small letters represents the concat-
enation of the sequences from left to right. In all
other places, the name of the field is capitalized and
represents the concatenation of the sequences in
some order, which need not be left to right, as
described for each affected instruction.

8 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

1.7.1 I-Form

0 6 30 31

OPCD LI AA LK

Figure 3. I instruction format

1.7.2 B-Form

0 6 11 16 30 31

OPCD BO BI BD AA LK

Figure 4. B instruction format

1.7.3 SC-Form

0 6 11 16 20 27 30 31

| OPCD /// /// // LEV // XO 1

| OPCD /// /// // LEV // XO /

Figure 5. SC instruction format

1.7.4 D-Form

0 6 11 16 31

OPCD RT RA D

OPCD RT RA SI

OPCD RS RA D

OPCD RS RA UI

OPCD BF / L RA SI

OPCD BF / L RA UI

OPCD TO RA SI

OPCD FRT RA D

OPCD FRS RA D

Figure 6. D instruction format

1.7.5 DS-Form

0 6 11 16 30 31

OPCD RT RA DS XO

OPCD RS RA DS XO

Figure 7. DS instruction format

1.7.6 DQ-Form

0 6 11 16 28 31

OPCD RT RA DQ PT

Figure 8. DQ instruction format

Chapter 1. Introduction 9

IBM Confidential - Feb. 24, 1999

1.7.7 X-Form

0 6 11 16 21 31

OPCD RT RA RB XO /

OPCD RT RA NB XO /

OPCD RT / SR /// XO /

OPCD RT /// RB XO /

OPCD RT /// /// XO /

OPCD RS RA RB XO Rc

OPCD RS RA RB XO 1

OPCD RS RA RB XO /

OPCD RS RA NB XO /

OPCD RS RA SH XO Rc

OPCD RS RA /// XO Rc

OPCD RS RA /// XO 1

OPCD RS / SR /// XO /

OPCD RS /// RB XO /

OPCD RS /// /// XO /

OPCD BF / L RA RB XO /

OPCD BF / 1 RA RB XO /

OPCD BF // FRA FRB XO /

OPCD BF // BFA // /// XO /

OPCD BF // /// U / XO Rc

OPCD BF // /// /// XO /

| OPCD /// TH RA RB XO /

| OPCD /// L /// RB XO /

| OPCD /// L /// /// XO /

OPCD TO RA RB XO /

OPCD FRT RA RB XO /

OPCD FRT /// FRB XO Rc

OPCD FRT /// /// XO Rc

OPCD FRS RA RB XO /

OPCD BT /// /// XO Rc

OPCD /// RA RB XO /

OPCD /// /// RB XO /

OPCD /// RA /// XO /

OPCD /// /// /// XO /

Figure 9. X instruction format

1.7.8 XL-Form

0 6 11 16 21 31

OPCD BT BA BB XO /

| OPCD BO BI /// BH XO LK

OPCD BF // BFA // /// XO /

OPCD /// /// /// XO /

Figure 10. XL instruction format

1.7.9 XFX-Form

0 6 11 21 31

OPCD RT spr XO /

OPCD RT tbr XO /

| OPCD RT 0 /// XO /

| OPCD RT 1 FXM / XO /

| OPCD RS 0 FXM / XO /

| OPCD RS 1 FXM / XO /

OPCD RS spr XO /

OPCD /// XO2 XO /

Figure 11. XFX instruction format

1.7.10 XFL-Form

0 6 7 15 16 21 31

OPCD / FLM / FRB XO Rc

Figure 12. XFL instruction format

1.7.11 XS-Form

0 6 11 16 21 30 31

OPCD RS RA sh XO sh Rc

Figure 13. XS instruction format

1.7.12 XO-Form

0 6 11 16 21 22 31

OPCD RT RA RB OE XO Rc

OPCD RT RA RB / XO Rc

OPCD RT RA /// OE XO Rc

Figure 14. XO instruction format

10 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

1.7.13 A-Form

0 6 11 16 21 26 31

OPCD FRT FRA FRB FRC XO Rc

OPCD FRT FRA FRB /// XO Rc

OPCD FRT FRA /// FRC XO Rc

OPCD FRT /// FRB /// XO Rc

Figure 15. A instruction format

1.7.14 M-Form

0 6 11 16 21 26 31

OPCD RS RA RB MB ME Rc

OPCD RS RA SH MB ME Rc

Figure 16. M instruction format

1.7.15 MD-Form

0 6 11 16 21 27 30 31

OPCD RS RA sh mb XO shRc

OPCD RS RA sh me XO shRc

Figure 17. MD instruction format

1.7.16 MDS-Form

0 6 11 16 21 27 31

OPCD RS RA RB mb XO Rc

OPCD RS RA RB me XO Rc

OPCD IS RA IB XBI // XO Rc

OPCD IS RA RB XBI // XO Rc

OPCD RS RA IB XBI // XO Rc

OPCD RS RA RB XBI // XO Rc

Figure 18. MDS instruction format

1.7.17 TX-Form

0 6 11 21 25 31

OPCD TO UI XBI XO Rc

Figure 19. TX instruction format

1.7.18 Instruction Fields

AA (30)
Absolute Address bit.

0 The immediate field represents an address
relative to the current instruction address.
For I-form branches the effective address of
the branch target is the sum of the LI field
sign-extended to 64 bits and the address of
the branch instruction. For B-form branches
the effective address of the branch target is
the sum of the BD field sign-extended to 64
bits and the address of the branch instruc-
tion.

1 The immediate field represents an absolute
address. For I-form branches the effective
address of the branch target is the LI field
sign-extended to 64 bits. For B-form
branches the effective address of the branch
target is the BD field sign-extended to 64
bits.

BA (11:15)
Field used to specify a bit in the CR to be used as
a source.

BB (16:20)
Field used to specify a bit in the CR to be used as
a source.

BD (16:29)
Immediate field used to specify a 14-bit signed
two's complement branch displacement which is
concatenated on the right with 0b00 and sign-
extended to 64 bits.

BF (6:8)
Field used to specify one of the CR fields or one
of the FPSCR fields to be used as a target.

BFA (11:13)
Field used to specify one of the CR fields or one
of the FPSCR fields to be used as a source.

| BH (19:20)
| Field used to specify a hint in the Branch Condi-
| tional to Link Register and Branch Conditional to
| Count Register instructions. The encoding is
| described in Section 2.4.1, “Branch Instructions”
| on page 24.

BI (11:15)
† Field used to specify a bit in the CR to be tested
† by a Branch Conditional instruction.

BO (6:10)
Field used to specify options for the Branch Con-
ditional instructions. The encoding is described in
Section 2.4.1, “Branch Instructions” on page 24.

BT (6:10)
Field used to specify a bit in the CR or in the
FPSCR to be used as a target.

Chapter 1. Introduction 11

IBM Confidential - Feb. 24, 1999

D (16:31)
Immediate field used to specify a 16-bit signed
two's complement integer which is sign-extended
to 64 bits.

DS (16:29)
Immediate field used to specify a 14-bit signed
two's complement integer which is concatenated
on the right with 0b00 and sign-extended to 64
bits.

DQ (16:27)
Immediate field used to specify a 12-bit signed
two's complement integer which is concatenated
on the right with 0b0000 and sign-extended to 64
bits.

FLM (7:14)
Field mask used to identify the FPSCR fields that
are to be updated by the mtfsf instruction.

FRA (11:15)
Field used to specify an FPR to be used as a
source.

FRB (16:20)
Field used to specify an FPR to be used as a
source.

FRC (21:25)
Field used to specify an FPR to be used as a
source.

FRS (6:10)
Field used to specify an FPR to be used as a
source.

FRT (6:10)
Field used to specify an FPR to be used as a
target.

FXM (12:19)
Field mask used to identify the CR fields that are

| to be updated by the mtcrf instruction or moved
| by the optional version of the mfcr instruction.

IB (16:20)
† Immediate field used to specify a 5-bit signed
† integer.

IS (6:10)
† Immediate field used to specify a 5-bit signed
† integer.

L (10)
Field used to specify whether a fixed-point
Compare instruction is to compare 64-bit
numbers or 32-bit numbers.

| Field used by the Synchronize instruction (see
| Book II, PowerPC AS Virtual Environment Archi-
| tecture).

| Field used by the TLB Invalidate Entry instruction
| (see Book III, PowerPC AS Operating Environ-
| ment Architecture).

LEV (20:26)
| Field used by the System Call instructions.

LI (6:29)
Immediate field used to specify a 24-bit signed
two's complement integer which is concatenated
on the right with 0b00 and sign-extended to 64
bits.

LK (31)
LINK bit.

0 Do not set the Link Register.

† 1 Set the Link Register. The address of the
instruction following the Branch instruction is

† placed into the Link Register.

MB (21:25) and ME (26:30)
Fields used in M-form instructions to specify a
64-bit mask consisting of 1-bits from bit MB+32
through bit ME+32 inclusive and 0-bits else-
where, as described in Section 3.3.13, “Fixed-
Point Rotate and Shift Instructions” on page 84.

MB (21:26)
Field used in MD-form and MDS-form instructions
to specify the first 1-bit of a 64-bit mask, as
described in Section 3.3.13, “Fixed-Point Rotate
and Shift Instructions” on page 84.

ME (21:26)
Field used in MD-form and MDS-form instructions
to specify the last 1-bit of a 64-bit mask, as
described in Section 3.3.13, “Fixed-Point Rotate
and Shift Instructions” on page 84.

NB (16:20)
Field used to specify the number of bytes to
move in an immediate Move Assist instruction.

OPCD (0:5)
Primary opcode field.

OE (21)
Field used by XO-form instructions to enable
setting OV and SO in the XER.

PT (28:31)
† Immediate field used to specify a 4-bit unsigned
† value.

RA (11:15)
Field used to specify a GPR to be used as a
source or as a target.

RB (16:20)
Field used to specify a GPR to be used as a
source.

Rc (31)
RECORD bit.

0 Do not alter the Condition Register.

1 Set Condition Register Field 0 or Field 1 as
described in Section 2.3.1, “Condition
Register” on page 22.

RS (6:10)
Field used to specify a GPR to be used as a
source.

12 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

RT (6:10)
Field used to specify a GPR to be used as a
target.

|

SH (16:20, or 16:20 and 30)
Field used to specify a shift amount.

SI (16:31)
Immediate field used to specify a 16-bit signed
integer.

SPR (11:20)
Field used to specify a Special Purpose Register
for the mtspr and mfspr instructions.

SR (12:15)
Field used by the Segment Register Manipulation
instructions (see Book III, PowerPC AS Operating
Environment Architecture).

TBR (11:20)
Field used by the Move From Time Base instruc-
tion (see Book II, PowerPC AS Virtual Environ-
ment Architecture).

| TH (9:10)
| Field used by the optional data stream variant of
| the dcbt instruction (see Book II, PowerPC AS
| Virtual Environment Architecture).

TO (6:10)
Field used to specify the conditions on which to
trap. The encoding is described in Section 3.3.10,
“Fixed-Point Trap Instructions” on page 71.

U (16:19)
Immediate field used as the data to be placed
into a field in the FPSCR.

UI (11:20 or 16:31)
Immediate field used to specify a 16-bit unsigned
integer.

XBI (21:24)
Field used to specify a bit in the XER.

† XO (21:29, 21:30, 22:30, 25:30, 26:30, 27:29, 27:30, 30,
or 30:31)
Extended opcode field.

XO2 (11:20)
Second extended opcode field.

1.8 Classes of Instructions

An instruction falls into exactly one of the following
three classes:

Defined
Illegal
Reserved

The class is determined by examining the opcode, and
the extended opcode if any. If the opcode, or combi-
nation of opcode and extended opcode, is not that of

a defined instruction or of a reserved instruction, the
instruction is illegal.

A given instruction is in the same class for all imple-
mentations of the PowerPC AS Architecture. In future
versions of this architecture, instructions that are now
illegal may become defined (by being added to the
architecture) or reserved (by being assigned to one of
the special purposes described in Appendix H,
“Reserved Instructions” on page 199). Similarly,
instructions that are now reserved may become
defined.

1.8.1 Defined Instruction Class

This class of instructions contains all the instructions
defined in the PowerPC AS User Instruction Set Archi-
tecture, PowerPC AS Virtual Environment Architec-
ture, and PowerPC AS Operating Environment
Architecture.

In general, defined instructions are guaranteed to be
provided in all implementations. The only exceptions
are instructions that are optional instructions. These
exceptions are identified in the instruction
descriptions.

A defined instruction can have preferred and/or
invalid forms, as described in Section 1.9.1, “Pre-
ferred Instruction Forms” on page 14 and Section
1.9.2, “Invalid Instruction Forms” on page 14.

1.8.2 Illegal Instruction Class

This class of instructions contains the set of
instructions described in Appendix G, “Illegal
Instructions” on page 197. Illegal instructions are
available for future extensions of the PowerPC AS
Architecture: that is, some future version of the
PowerPC AS Architecture may define any of these
instructions to perform new functions.

Any attempt to execute an illegal instruction will
cause the system illegal instruction error handler to
be invoked and will have no other effect.

An instruction consisting entirely of binary 0's is guar-
anteed always to be an illegal instruction. This
increases the probability that an attempt to execute
data or uninitialized storage will result in the invoca-
tion of the system illegal instruction error handler.

Editors' Note

Instructions in this class were formerly called
“invalid instructions”. The term was changed to
“illegal instructions” to reduce confusion between
these instructions and invalid forms of defined
instructions.

Chapter 1. Introduction 13

IBM Confidential - Feb. 24, 1999

1.8.3 Reserved Instruction Class

This class of instructions contains the set of
instructions described in Appendix H, “Reserved
Instructions” on page 199.

Reserved instructions are allocated to specific pur-
poses that are outside the scope of the PowerPC AS
Architecture.

Any attempt to execute a reserved instruction will:

■ perform the actions described in Book IV,
PowerPC AS Implementation Features for the
implementation if the instruction is implemented;
or

■ cause the system illegal instruction error handler
to be invoked if the instruction is not imple-
mented.

1.9 Forms of Defined
Instructions

1.9.1 Preferred Instruction Forms

Some of the defined instructions have preferred
forms. For such an instruction, the preferred form will
execute in an efficient manner, but any other form
may take significantly longer to execute than the pre-
ferred form.

Instructions having preferred forms are:

| ■ the Condition Register Logical instructions
■ the Load/Store Multiple instructions
■ the Load/Store String instructions
■ the Or Immediate instruction (preferred form of

no-op)
| ■ the Move To Condition Register Fields instruction

1.9.2 Invalid Instruction Forms

Some of the defined instructions have invalid forms.
An instruction form is invalid if one or more fields of
the instruction, excluding the opcode field(s), are
coded incorrectly in a manner that can be deduced by
examining only the instruction encoding.

Any attempt to execute an invalid form of an instruc-
tion will either cause the system illegal instruction
error handler to be invoked or yield boundedly unde-
fined results. Exceptions to this rule are stated in the
instruction descriptions.

Some kinds of invalid form can be deduced from the
instruction layout. These are listed below.

■ Field shown as “/”(s) but coded as nonzero.

■ Field shown as containing a particular value but
coded as some other value.

These invalid forms are not discussed further.

Instructions having invalid forms that cannot be so
deduced are listed below. These kinds of invalid form
are identified in the instruction descriptions.

■ the Branch Conditional instructions
■ the Load/Store with Update instructions
■ the Load Multiple instructions
■ the Load String instructions
■ Trap on XER (txer)
■ the Load/Store Floating-Point with Update

instructions
■ the Load Quadword (lq) and Store Quadword (stq)

instructions
■ the Trap Word (tw) and Trap Word Immediate

(twi) instructions
■ the Set XER TAG (settag) instruction

Assembler Note

To the extent possible, the Assembler should
report uses of invalid instruction forms as errors.

Engineering Note

Causing the system illegal instruction error
handler to be invoked if attempt is made to
execute an invalid form of an instruction facili-
tates the debugging of software.

14 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

1.10 Optionality

Some of the defined instructions are optional. The
optional instructions are defined in Chapter 5,
“Optional Facilities and Instructions” on page 137.
Additional optional instructions may be defined in
Books II and III (e.g., see the section entitled “Look-

† aside Buffer Management” in Book III, and the chap-
ters entitled “Optional Facilities and Instructions” in
Book II and Book III).

Any attempt to execute an optional instruction that is
not provided by the implementation will cause the
system illegal instruction error handler to be invoked.

In addition to instructions, other kinds of optional
facilities, such as registers, may be defined in Books
II and III. The effects of attempting to use an optional
facility that is not provided by the implementation are
described in Books II and III as appropriate.

Architecture Note

In general, optional facilities and instructions are
described in chapters, appendices, and sections for
which the title contains the word “Optional”.

A facility or instruction is optional for any one of the
following reasons.

1. It is being phased into the architecture. At
some future date it will be required and no
longer optional.

2. It is being phased out of the architecture.
System developers should develop a migration
plan to eliminate use of it in new systems.

3. It is useful primarily for certain kinds of applica-
tions and systems. It is likely to remain in the
architecture, as optional.

Categories 1 and 2 permit the architecture to evolve
gradually, by providing an intermediate status for
facilities and instructions that are being added to or
removed from the architecture. Category 3 is
intended for facilities and instructions that are typi-
cally used primarily in library routines.

The category that a given optional facility or instruc-
tion is in can be identified as follows. The
prototypical Notes and text shown below are altered
as needed for each specific case.

Category 1

The description of each facility or instruction in this
category contains an Engineering Note, the wording
of which depends on how new the facility or instruc-
tion is. When the facility or instruction is first added
to the architecture, the wording is similar to the fol-
lowing.

Engineering Note:
This instruction is being phased into the archi-
tecture, and will become required in a future
version of the architecture.

Subsequently, when a version number “n.mm” of the
architecture has been determined such that
processors being designed to comply with other
aspects of that version will implement the facility or
instruction, the wording is changed to be similar to
the following.

Engineering Note:
This instruction is being phased into the archi-
tecture, and must be implemented in processors
that comply with Version n.mm of the architec-
ture specification or with any subsequent
version.

When the facility or instruction later becomes
required, its description will be moved to the body of
the Book if necessary, and the Engineering Note will
be removed.

Category 2

The facilities and instructions in this category gener-
ally appear in a separate chapter. A prominent
warning such as the following appears in the chapter
introduction.

Warning: The facilities and instructions
described in this chapter are being phased out
of the architecture.

Also, the description of each such facility or instruc-
tion contains a Programming Note and an Engi-
neering Note similar to the following.

Programming Note:
Warning: This instruction is being phased out of
the architecture. It is likely to perform poorly on
future implementations. New programs should
not use it.

Engineering Note:
Decisions regarding whether to implement this
instruction in a given implementation, and how
well to make it perform there, must include con-
sideration of migration plans for existing soft-
ware that uses it.

Category 3

The facilities and instructions in this category are
identified by the absence of the distinguishing marks
of the other two categories.

Chapter 1. Introduction 15

IBM Confidential - Feb. 24, 1999

1.11 Exceptions

There are two kinds of exception, those caused
directly by the execution of an instruction and those
caused by an asynchronous event. In either case, the
exception may cause one of several components of
the system software to be invoked.

The exceptions that can be caused directly by the
execution of an instruction include the following:

■ an attempt to execute an illegal instruction, or an
attempt by an application program to execute a
“privileged” instruction (see Book III, PowerPC
AS Operating Environment Architecture) (system
illegal instruction error handler or system privi-
leged instruction error handler)

■ the execution of a defined instruction using an
invalid form (system illegal instruction error
handler or system privileged instruction error
handler)

■ the execution of an optional instruction that is not
provided by the implementation (system illegal
instruction error handler)

■ an attempt to access a storage location that is
unavailable (system instruction storage error
handler or system data storage error handler)

■ an attempt to access storage in a manner that
causes Effective Address Overflow as described
by the + tea operator on page 5 (system data
storage error handler)

■ an attempt to access storage with an effective
address alignment that is invalid for the instruc-
tion (system alignment error handler)

■ the execution of a System Call instruction
(system service program)

■ the execution of a Trap instruction that traps
(system trap handler)

†

■ the execution of a floating-point instruction that
causes a floating-point enabled exception to exist
(system floating-point enabled exception error
handler)

|

The exceptions that can be caused by an asynchro-
nous event are described in Book III, PowerPC AS
Operating Environment Architecture.

The invocation of the system error handler is precise,
except that if one of the imprecise modes for invoking
the system floating-point enabled exception error
handler is in effect (see page 109) then the invocation

of the system floating-point enabled exception error
handler may be imprecise. When the system error
handler is invoked imprecisely, the excepting instruc-
tion does not appear to complete before the next
instruction starts (because one of the effects of the
excepting instruction, namely the invocation of the
system error handler, has not yet occurred).

Additional information about exception handling can
be found in Book III, PowerPC AS Operating Environ-
ment Architecture.

1.12 Storage Addressing

A program references storage using the effective
address computed by the processor when it executes
a Storage Access or Branch instruction (or certain
other instructions described in Book II, PowerPC AS
Virtual Environment Architecture, and Book III,
PowerPC AS Operating Environment Architecture), or
when it fetches the next sequential instruction.

1.12.1 Storage Operands

Bytes in storage are numbered consecutively starting
with 0. Each number is the address of the corre-
sponding byte.

Storage operands may be bytes, halfwords, words,
doublewords, or quadwords, or, for the Load/Store
Multiple and Move Assist instructions, a sequence of
bytes, words, or doublewords. The address of a
storage operand is the address of its first byte (i.e., of

| its lowest-numbered byte). Byte ordering is Big-
| Endian. However, if the optional Little-Endian facility
| is implemented the system can be operated in a
| mode in which byte ordering is Little-Endian; see
| Section 5.3.

Operand length is implicit for each instruction.

The operand of a single-register Storage Access
instruction, or of a quadword Load or Store instruc-
tion, has a “natural” alignment boundary equal to the
operand length. In other words, the “natural” address
of an operand is an integral multiple of the operand
length. A storage operand is said to be aligned if it is
aligned at its natural boundary: otherwise it is said to
be unaligned.

Storage operands for single-register Storage Access
instructions have the following characteristics.
(Although not permitted as storage operands,
octwords are shown because octword alignment is
desirable for certain storage operands.)

16 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

The concept of alignment is also applied more gener-
ally, to any datum in storage. For example, a 12-byte
datum in storage is said to be word-aligned if its
address is an integral multiple of 4.

Some instructions require their storage operands to
have certain alignments. In addition, alignment may
affect performance. For single-register Storage
Access instructions, and for quadword Load and
Store instructions, the best performance is obtained
when storage operands are aligned. Additional
effects of data placement on performance are
described in Book II, PowerPC AS Virtual Environment
Architecture.

Instructions are always four bytes long and word-
aligned.

1.12.2 Tag Bits

† A tag bit is associated with each tag block in main
storage and in the data cache (see Book II, PowerPC
AS Virtual Environment Architecture). If all tag bits in
a quadword are 1, the quadword is said to be
“tagged”, and if any tag bits in a quadword are 0 the

† quadword is said to be “untagged”. Main storage and
† the data cache implement at least one tag bit per
† quadword. Main storage supplies tag bits to and
† accepts them from the data cache.

To simplify discussion, it is sometimes convenient to
describe tag bits operation as if there were a single
tag bit per quadword. Thus, sometimes the term
“quadword tag bit” is used to describe the logical
AND of all tag bits in the quadword or to describe
setting all the tag bits in the quadword to a single
value.

† Tag bits are intended for use in tags active mode only.
† When stores are performed in tags inactive mode, the
† tag of all affected tag blocks in storage is set to 0.

If storage is modified by mechanisms that do not
maintain tag bits, the tag of all affected tag blocks in
storage is set to 0. An example of such a mechanism
is an I/O device that stores directly into the process-
or's storage.

Programming Note

Tag bits are intended to indicate whether an
address has been constructed or validated by the
operating system. A value of 1 for a tag bit is
intended to mean that the associated value is an
address that has been so constructed or vali-
dated, while a value of 0 for a tag bit is intended
to mean that the associated value has not been
so constructed or validated.

1.12.3 Effective Address Calculation

The 64-bit or 32-bit address computed by the
processor when executing a Storage Access or
Branch instruction (or certain other instructions
described in Book II, PowerPC AS Virtual Environment
Architecture, and Book III, PowerPC AS Operating
Environment Architecture), or when fetching the next
sequential instruction, is called the effective address
and specifies a byte in storage.

1.12.3.1 Tags Inactive Mode Effective
Address Calculation

In general, effective address computations, for both
data and instruction accesses, use 64-bit effective
address addition. Thus all 64 bits participate, regard-
less of mode (32-bit or 64-bit). The 64-bit current
instruction address and next instruction address are
not affected by a change from 32-bit mode to 64-bit
mode, but they are affected by a change from 64-bit
mode to 32-bit mode (the high-order 32 bits are set to
0).

In 64-bit mode, the entire 64-bit result comprises the
64-bit effective address. The effective address arith-
metic wraps around from the maximum address,
264− 1, to address 0.

In 32-bit mode, the low-order 32 bits of the 64-bit
result comprise the effective address for the purpose
of addressing storage. The high-order 32 bits of the
64-bit effective address are ignored for the purpose of
accessing data, but are included whenever a 64-bit
effective address is placed into a GPR by Load with
Update and Store with Update instructions. The high-
order 32 bits of the 64-bit effective address are set to
0 for the purpose of fetching instructions, and when-
ever a 64-bit effective address is placed into the Link
Register by Branch instructions having LK=1. The
high-order 32 bits of the 64-bit effective address are
set to 0 in Special Purpose Registers when the
system error handler is invoked. As used to address
storage, the effective address arithmetic appears to
wrap around from the maximum address, 232− 1, to
address 0 in tags inactive mode.

A zero in the RA field indicates the absence of the
corresponding address component. For the absent

Operand Length Addr 59:63 if aligned

Byte 8 bits xxxxx
Halfword 2 bytes xxxx0
Word 4 bytes xxx00
Doubleword 8 bytes xx000
Quadword 16 bytes x0000
Octword 32 bytes 00000

Note: An “x ” in an address bit position indicates
that the bit can be 0 or 1 independent of the state of
other bits in the address.

Chapter 1. Introduction 17

IBM Confidential - Feb. 24, 1999

component, a value of zero is used for the address.
This is shown in the instruction descriptions as (RA|0).

†

Effective addresses are computed as follows. In the
descriptions below, it should be understood that “the
contents of a GPR” refers to the entire 64-bit con-
tents, independent of mode, but that in 32-bit mode
only bits 32:63 of the 64-bit result of the computation
are used to address storage.

■ With X-form instructions, in computing the effec-
tive address of a data element, the contents of
the GPR designated by RB (or the value zero for
lswi and stswi) are added to the contents of the
GPR designated by RA or to zero if RA=0.

■ With D-form instructions, the 16-bit D field is sign-
extended to form a 64-bit address component. In
computing the effective address of a data
element, this address component is added to the
contents of the GPR designated by RA or to zero
if RA=0.

■ With DS-form instructions, the 14-bit DS field is
concatenated on the right with 0b00 and sign-
extended to form a 64-bit address component. In
computing the effective address of a data
element, this address component is added to the
contents of the GPR designated by RA or to zero
if RA=0.

■ With I-form Branch instructions, the 24-bit LI field
is concatenated on the right with 0b00 and sign-
extended to form a 64-bit address component. If
AA=0 , this address component is added to the
address of the Branch instruction to form the
effective address of the next instruction. If
AA=1 , this address component is the effective
address of the next instruction.

■ With B-form Branch instructions, the 14-bit BD
field is concatenated on the right with 0b00 and
sign-extended to form a 64-bit address compo-
nent. If AA=0 , this address component is added
to the address of the Branch instruction to form
the effective address of the next instruction. If
AA=1 , this address component is the effective
address of the next instruction.

■ With XL-form Branch instructions, bits 0:61 of the
Link Register or the Count Register are concat-
enated on the right with 0b00 to form the effec-
tive address of the next instruction.

■ With sequential instruction fetching, the value 4 is
added to the address of the current instruction to
form the effective address of the next instruction.

†

1.12.3.2 Tags Active Mode Effective
Address Calculation

In general, effective address computations, for data
accesses, use 64-bit tags active mode effective
address addition as defined by the + tea operator (see
page 5). The entire 64-bit result comprises the 64-bit
effective address. Effective address addition for
instructions also uses a 64-bit result, which is some-
times produced from addition.

†

A zero in the RA field indicates the absence of the
corresponding address component. For the absent
component, a value of zero is used for the address.
This is shown in the instruction descriptions as (RA|0).

†

Effective addresses are computed as follows. Addi-
tional implementation options for tags active mode
are given for load/store operands in the + tea definition
(see page 5). In the descriptions below, it should be
understood that “the contents of a GPR” refers to the
entire 64-bit contents.

■ With X-form instructions, in computing the effec-
tive address of a data element, the contents of
the GPR designated by RB (or the value zero for
lswi , lsdi , stswi , and stsdi) is added according to
the rules of + tea to the contents of the GPR desig-
nated by RA or to zero if RA=0.

■ With D-form instructions, the 16-bit D field is sign-
extended to form a 64-bit address component. In
computing the effective address of a data
element, this address component is added
according to the rules of + tea to the contents of
the GPR designated by RA or to zero if RA=0.

■ With DQ-form instructions, the 12-bit DQ field is
concatenated on the right with 0b0000 and sign-
extended to form a 64-bit address component. In
computing the effective address of a data
element, this address component is added
according to the rules of + tea to the contents of
the GPR designated by RA or to zero if RA=0.

■ With DS-form instructions, the 14-bit DS field is
concatenated on the right with 0b00 and sign-
extended to form a 64-bit address component. In
computing the effective address of a data
element, this address component is added
according to the rules of + tea to the contents of
the GPR designated by RA or to zero if RA=0.

■ With I-form Branch instructions, the 24-bit LI field
is concatenated on the right with 0b00 and sign-
extended to form a 64-bit address component. If
AA=0 , this address component is added to the
address of the Branch instruction to form the
effective address of the next instruction. If

18 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

AA=1, this address component is the effective
address of the next instruction.

■ With B-form Branch instructions, the 14-bit BD
field is concatenated on the right with 0b00 and
sign-extended to form a 64-bit address compo-
nent. If AA=0 , this address component is added
to the address of the Branch instruction to form
the effective address of the next instruction. If
AA=1 , this address component is the effective
address of the next instruction.

■ With XL-form Branch instructions, bits 0:61 of the
Link Register or the Count Register are concat-
enated on the right with 0b00 to form the effec-
tive address of the next instruction.

■ With sequential instruction fetching, the value 4 is
added to the address of the current instruction to
form the effective address of the next instruction.

Effective address calculations for branches and
sequential instruction fetching do not cause EAO
exceptions.

For instructions that refer to more than one byte of
storage, the effective address for each byte after the
first is computed by adding 1 to the effective address
of the preceding byte. This addition follows the rules
of + tea.

Chapter 1. Introduction 19

IBM Confidential - Feb. 24, 1999

20 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

Chapter 2. Branch Processor

2.1 Branch Processor Overview 21
2.2 Instruction Fetching 21
2.3 Branch Processor Registers 22
2.3.1 Condition Register 22
2.3.2 Link Register 23
2.3.3 Count Register 23
2.4 Branch Processor Instructions . . . 24

2.4.1 Branch Instructions 24
2.4.2 System Call Instructions 29
2.4.3 Condition Register Logical

Instructions 30
2.4.4 Condition Register Field

Instruction 32

2.1 Branch Processor Overview

This chapter describes the registers and instructions
that make up the Branch Processor facility. Section
2.3, “Branch Processor Registers” on page 22
describes the registers associated with the Branch
Processor. Section 2.4, “Branch Processor
Instructions” on page 24 describes the instructions
associated with the Branch Processor.

2.2 Instruction Fetching

In general, instructions appear to execute sequen-
tially, in the order in which they appear in storage.
The exceptions to this rule are listed below.

■ Branch instructions for which the branch is taken
cause execution to continue at the target address
specified by the Branch instruction.

■ Trap instructions for which the trap conditions are
satisfied, and System Call instructions, cause the
appropriate system handler to be invoked.

■ Exceptions can cause the system error handler to
be invoked, as described in Section 1.11,
“Exceptions” on page 16.

■ Returning from a system service program,
system trap handler, or system error handler
causes execution to continue at a specified
address.

■ For sequential instruction fetching in tags active
mode, if CIA40:63 = 0xFFFFFC then the next
instruction address is implementation-dependent

and can be either CIA + 4 or CIA0:39 || 0x000000.
Typically, the operating system will prevent this
situation from arising.

The model of program execution in which each
instruction appears to complete before the next
instruction starts is called the “sequential execution
model”. In general, from the view of the processor
executing the instructions, the sequential execution
model is obeyed. For the instructions and facilities
defined in this Book, the only exceptions to this rule
are the following.

■ A floating-point exception occurs when the
processor is running in one of the Imprecise float-
ing-point exception modes (see Section 4.4,
“Floating-Point Exceptions” on page 108). The
instruction that causes the exception does not
complete before the next instruction starts, with
respect to setting exception bits and (if the excep-
tion is enabled) invoking the system error
handler.

■ A Store instruction modifies a storage location
that contains an instruction. Software synchroni-
zation is required to ensure that subsequent
instruction fetches from that location obtain the
modified version of the instruction: see Book II,
PowerPC AS Virtual Environment Architecture.

Programming Note

If a program modifies the instructions it
intends to execute, it should call the appro-
priate system library program before
attempting to execute the modified
instructions, to ensure that the modifications
have taken effect with respect to instruction
fetching.

Chapter 2. Branch Processor 21

IBM Confidential - Feb. 24, 1999

2.3 Branch Processor Registers

2.3.1 Condition Register

The Condition Register (CR) is a 32-bit register which
reflects the result of certain operations, and provides
a mechanism for testing (and branching).

CR

0 31

Figure 20. Condition Register

The bits in the Condition Register are grouped into
eight 4-bit fields, named CR Field 0 (CR0), ..., CR Field
7 (CR7), which are set in one of the following ways.

■ Specified fields of the CR can be set by a move
to the CR from a GPR (mtcrf).

■ A specified field of the CR can be set by a move
to the CR from another CR field (mcrf), from
XER32:35 (mcrxr), 0b0 || XER41:43 (mcrxrt), or from
the FPSCR (mcrfs).

■ CR Field 0 can be set as the implicit result of a
fixed-point instruction.

■ CR Field 1 can be set as the implicit result of a
floating-point instruction.

■ A specified CR field can be set as the result of
either a fixed-point or a floating-point Compare
instruction.

Instructions are provided to perform logical oper-
ations on individual CR bits and to test individual CR
bits.

For all fixed-point instructions in which Rc=1, and for
addic., andi. , and andis. , the first three bits of CR
Field 0 (bits 0:2 of the Condition Register) are set by
signed comparison of the result to zero, and the
fourth bit of CR Field 0 (bit 3 of the Condition Reg-
ister) is copied from the SO field of the XER. “Result”
here refers to the entire 64-bit value placed into the
target register in 64-bit mode, and to bits 32:63 of the
64-bit value placed into the target register in 32-bit
mode.

if (64-bit mode)
then M ← 0
else M ← 32

if (target_register) M:63 < 0 then c ← 0b100
else if (target_register) M:63 > 0 then c ← 0b010
else c ← 0b001
CR0 ← c || XERSO

If any portion of the result is undefined, then the
value placed into the first three bits of CR Field 0 is
undefined.

The bits of CR Field 0 are interpreted as follows.

Bit Description

0 Negative (LT)
The result is negative.

1 Positive (GT)
The result is positive.

2 Zero (EQ)
The result is zero.

3 Summary Overflow (SO)
This is a copy of the final state of XERSO at the
completion of the instruction.

Programming Note

CR Field 0 may not reflect the “ t rue” (infinitely
precise) result if overflow occurs: see Section
3.3.8, “Fixed-Point Arithmetic Instructions” on
page 59.

† The stwcx. and stdcx. instructions (see Book II,
† PowerPC AS Virtual Environment Architecture) also

set CR Field 0.

For all floating-point instructions in which Rc=1, CR
Field 1 (bits 4:7 of the Condition Register) is set to the
Floating-Point exception status, copied from bits 0:3 of
the Floating-Point Status and Control Register. These
bits are interpreted as follows.

Bit Description

4 Floating-Point Exception Summary (FX)
This is a copy of the final state of FPSCRFX at the
completion of the instruction.

5 Floating-Point Enabled Exception Summary (FEX)
This is a copy of the final state of FPSCRFEX at
the completion of the instruction.

6 Floating-Point Invalid Operation Exception
Summary (VX)
This is a copy of the final state of FPSCRVX at the
completion of the instruction.

7 Floating-Point Overflow Exception (OX)
This is a copy of the final state of FPSCROX at
the completion of the instruction.

For Compare instructions, a specified CR field is set
to reflect the result of the comparison. The bits of the
specified CR field are interpreted as follows. A com-
plete description of how the bits are set is given in
the instruction descriptions in Section 3.3.9, “Fixed-
Point Compare Instructions” on page 68 and Section
4.6.7, “Floating-Point Compare Instructions” on
page 133.

Bit Description

0 Less Than, Floating-Point Less Than (LT, FL)
For fixed-point Compare instructions, (RA) < SI
or (RB) (signed comparison) or (RA) <u UI or (RB)
(unsigned comparison). For floating-point
Compare instructions, (FRA) < (FRB).

22 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

1 Greater Than, Floating-Point Greater Than (GT,
FG)
For fixed-point Compare instructions, (RA) > SI
or (RB) (signed comparison) or (RA) >u UI or (RB)
(unsigned comparison). For floating-point
Compare instructions, (FRA) > (FRB).

2 Equal, Floating-Point Equal (EQ, FE)
For fixed-point Compare instructions, (RA) = SI,
UI, or (RB). For floating-point Compare
instructions, (FRA) = (FRB).

3 Summary Overflow, Incomparable, Floating-Point
Unordered (SO, IC, FU)
For fixed-point Compare instructions except
cmpla , this is a copy of the final state of XERSO
at the completion of the instruction. For the
cmpla instruction, the operands are not compa-
rable due to quantities with bits 0:39 unequal.
For floating-point Compare instructions, one or
both of (FRA) and (FRB) is a NaN.

2.3.2 Link Register

The Link Register (LR) is a 64-bit register. It can be
used to provide the branch target address for the
Branch Conditional to Link Register instruction, and it

† holds the return address after Branch instructions for
† which L K = 1 and after System Call Vectored

instructions.

LR

0 63

Figure 21. Link Register

2.3.3 Count Register

The Count Register (CTR) is a 64-bit register. It can
be used to hold a loop count that can be decremented
during execution of Branch instructions that contain
an appropriately coded BO field. If the value in the
Count Register is 0 before being decremented, it is
− 1 afterward. The Count Register can also be used
to provide the branch target address for the Branch
Conditional to Count Register instruction. The Count
Register is modified by the System Call Vectored
instruction.

CTR

0 63

Figure 22. Count Register

Chapter 2. Branch Processor 23

IBM Confidential - Feb. 24, 1999

2.4 Branch Processor Instructions

2.4.1 Branch Instructions

The sequence of instruction execution can be changed
by the Branch instructions. Because all instructions
are on word boundaries, bits 62 and 63 of the gener-
ated branch target address are ignored by the
processor in performing the branch.

The Branch instructions compute the effective
address (EA) of the target in one of the following four
ways, as described in Section 1.12.3, “Effective
Address Calculation” on page 17.

1. Adding a displacement to the address of the
Branch instruction (Branch or Branch Conditional
with AA=0) .

2. Specifying an absolute address (Branch or
Branch Conditional with AA=1) .

3. Using the address contained in the Link Register
(Branch Conditional to Link Register).

4. Using the address contained in the Count Reg-
ister (Branch Conditional to Count Register).

In all four cases, in 32-bit mode the final step in the
address computation is setting the high-order 32 bits
of the target address to 0.

For the first two methods, the target addresses can
be computed sufficiently ahead of the Branch instruc-
tion that instructions can be prefetched along the
target path. For the third and fourth methods, pre-
fetching instructions along the target path is also pos-
sible provided the Link Register or the Count Register
is loaded sufficiently ahead of the Branch instruction.

Branching can be conditional or unconditional, and
the return address can optionally be provided. If the
return address is to be provided (LK=1), the effective
address of the instruction following the Branch
instruction is placed into the Link Register after the
branch target address has been computed; this is
done regardless of whether the branch is taken.

For Branch Conditional instructions, the BO field
specifies the conditions under which the branch is

† taken, as shown in Figure 23. In the figure, M = 0 in
64-bit mode and M = 3 2 in 32-bit mode. If the BO field
specifies that the CTR is to be decremented, the
entire 64-bit CTR is decremented regardless of the
mode.

BO Description

| 0000z Decrement the CTR, then branch if the
† decremented CTRM:63≠ 0 and CRBI= 0

| 0001z Decrement the CTR, then branch if the
† decremented CTRM:63= 0 and CRBI= 0

| 001at Branch if CRBI= 0

| 0100z Decrement the CTR, then branch if the
† decremented CTRM:63≠ 0 and CRBI= 1

| 0101z Decrement the CTR, then branch if the
† decremented CTRM:63= 0 and CRBI= 1

| 011at Branch if CRBI= 1

| 1a00t Decrement the CTR, then branch if the
decremented CTRM:63≠ 0

| 1a01t Decrement the CTR, then branch if the
decremented CTRM:63= 0

1z1zz Branch always

† Notes:
1. “ z ” denotes a bit that is ignored.

| 2. The “ a ” and “ t ” bits are used as described
| below.

Figure 23. BO field encodings

| The “ a ” and “ t ” bits of the BO field can be used by
| software to provide a hint about whether the branch
| is likely to be taken or is likely not to be taken, as
| shown in Figure 24.

| at Hint

| 00 No hint is given

| 01 Reserved

| 10 The branch is very likely not to be taken

| 11 The branch is very likely to be taken

| Figure 24. "at" bit encodings

| Programming Note

| Many implementations have dynamic mechanisms
| for predicting whether a branch will be taken.
| Because the dynamic prediction is likely to be
| very accurate, and is likely to be overridden by
| any hint provided by the “a t ” bits, the “a t ” bits
| should be set to 0b00 unless the static prediction
| implied by at=0b10 or at=0b11 is highly likely to
| be correct.

24 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

| For Branch Conditional to Link Register and Branch
| Conditional to Count Register instructions, the BH
| field provides a hint about the use of the instruction,
| as shown in Figure 25.

| BH Hint

| 00 bclr [l] : The instruction is a subroutine return
| bcctr [l] : The instruction is not a subroutine
| return; the target address is likely to
| be the same as the target address
| used the preceding time the branch
| was taken

| 01 bclr [l] : The instruction is not a subroutine
| return; the target address is likely to
| be the same as the target address
| used the preceding time the branch
| was taken
| bcctr [l] : Reserved

| 10 Reserved

| 11 bclr [l] and bcctr [l] : The target address is not
| predictable

| Figure 25. BH field encodings

| Programming Note

| The hint provided by the BH field is independent
| of the hint provided by the “a t ” bits (e.g., the BH
| field provides no indication of whether the branch
| is likely to be taken).

Extended mnemonics for branches

Many extended mnemonics are provided so that
Branch Conditional instructions can be coded with

† portions of the BO and BI fields as part of the mne-
† monic rather than as part of a numeric operand.

Some of these are shown as examples with the
Branch instructions. See Appendix B, “Assembler
Extended Mnemonics” on page 161 for additional
extended mnemonics.

Programming Note

| The hints provided by the “a t ” bits and by the BH
| field do not affect the results of executing the
| instruction.

The “z ” bits should be set to 0, as they may be
assigned a meaning in some future version of the
architecture.

|

|

Programming Note

| Many implementations have dynamic mechanisms
| for predicting the target addresses of bclr [l] and
| bcctr [l] instructions. These mechanisms may
| cache return addresses (i.e., Link Register values
| set by Branch instructions for which L K = 1 and for
| which the branch was taken) and recently used
| branch target addresses. To obtain the best per-
| formance across the widest range of implementa-
| tions, the programmer should obey the following
| rules.

| ■ Use Branch instructions for which L K = 1 only
| as subroutine calls (including function calls,
| etc.).
| ■ Pair each subroutine call (i.e., each Branch
| instruction for which L K = 1 and the branch is
| taken) with a bclr instruction that returns from
| the subroutine and has BH=0b00.
| ■ Do not use bclrl as a subroutine call. (Some
| implementations access the return address
| cache at most once per instruction; such
| implementations are likely to treat bclrl as a
| subroutine return, and not as a subroutine
| call.)
| ■ For bclr [l] and bcctr [l] , use the appropriate
| value in the BH field.

| The following are examples of programming con-
| ventions that obey these rules. In the examples,
| BH is assumed to contain 0b00 unless otherwise
| stated. In addition, the “a t ” bits are assumed to
| be coded appropriately.

† Let A, B, and Glue be specific programs.

|

■ Loop counts:
| Keep them in the Count Register, and use a
| bc instruction (LK=0) to decrement the count
† and to branch back to the beginning of the
† loop if the decremented count is nonzero.

■ Computed goto's, case statements, etc.:
Use the Count Register to hold the address to
branch to, and use a bcctr instruction (LK=0,

| and BH=0b11 if appropriate) to branch to the
selected address.

■ Direct subroutine linkage:
Here A calls B and B returns to A. The two
branches should be as follows.

| — A calls B: use a bl or bcl instruction
(LK=1).

— B returns to A: use a bclr instruction
(LK=0) (the return address is in, or can
be restored to, the Link Register).

■ Indirect subroutine linkage:
Here A calls Glue, Glue calls B, and B returns
to A rather than to Glue. (Such a calling
sequence is common in linkage code used
when the subroutine that the programmer
wants to call, here B, is in a different module
from the caller; the Binder inserts “glue”
code to mediate the branch.) The three
branches should be as follows.

| — A calls Glue: use a bl or bcl instruction
(LK=1).

(Programming Note continues in next column....)

Chapter 2. Branch Processor 25

IBM Confidential - Feb. 24, 1999

Programming Note (continued)

— Glue calls B: place the address of B into
the Count Register, and use a bcctr
instruction (LK=0).

— B returns to A: use a bclr instruction
(LK=0) (the return address is in, or can
be restored to, the Link Register).

| ■ Function call:
| Here A calls a function, the identity of which
| may vary from one instance of the call to
| another, instead of calling a specific program
| B. This case should be handled using the
| conventions of the preceding two bullets,
| depending on whether the call is direct or
| indirect, with the following differences.

| — If the call is direct, place the address of
| the function into the Count Register, and
| use a bcctrl instruction (LK=1) instead of
| a bl or bcl instruction.
| — For the bcctr [l] instruction that branches
| to the function, use BH=0b11 if appro-
| priate.

| Compatibility Note

| The bits corresponding to the current “ a ” and “ t ”
| bits, and to the current “ z ” bits except in the
| “branch always” BO encoding, had different
| meanings in versions of the architecture that
| precede Version 2.00.

| ■ The bit corresponding to the “ t ” bit was called
| the “ y ” bit. The “ y ” bit indicated whether to
| use the architected default prediction (y=0)
| or to use the complement of the default pre-
| diction (y=1). The default prediction was
| defined as follows.

| — If the instruction is bc [l] [a] with a nega-
| tive value in the displacement field, the
| branch is taken. (This is the only case in
| which the prediction corresponding to the
| “ y ” bit differs from the prediction corre-
| sponding to the “ t ” bit.)

| — In all other cases (bc [l] [a] with a non-
| negative value in the displacement field,
| bclr [l] , or bcctr [l]), the branch is not
| taken.

| ■ The BO encodings that test both the Count
| Register and the Condition Register had a “ y ”
| bit in place of the current “ z ” bit. The
| meaning of the “ y ” bit was as described in
| the preceding item.

| ■ The “ a ” bit was a “z ” bit.

| Because these bits have always been defined
| either to be ignored or to be treated as hints, a
| given program will produce the same result on
| any implementation regardless of the values of
| the bits. Also, because even the “ y ” bit is
| ignored, in practice, by most processors that
| implement versions of the architecture that
| precede Version 2.00, the performance of a given
| program on those processors will not be affected
| by the values of the bits.

| Architecture Note

| In some future version of the architecture, the
| value at=0b01 may be used to indicate that the
| branch path (taken or not taken) is unpredictable
| (i.e., that neither static nor dynamic prediction is
| likely to predict the path accurately). It is
| expected that any new meaning will be such that
| future Branch Conditional instructions that use
| at=0b01 would use at=0b00 in the current archi-
| tecture.

| Decisions regarding assignment of a meaning for
| at=0b01 must include consideration of the extent
| to which software still uses the earlier meaning
| (see the preceding Compatibility Note), and of the
| effect that the new meaning would have on the
| performance of such software.

| Decisions regarding assignment of a meaning for
| bit 16 of bclr [l] and bcctr [l] instructions in some
| future version of the architecture (e.g., to extend
| the BH field) must include consideration of the
| fact that processors that implement versions of
| the architecture that precede Version 2.00 may
| use the bit in computing the prediction associated
| with the “ y ” bit. Specifically, for all three Branch
| Conditional instructions, such processors may
| predict that the branch will be taken if the value
| of the following expression is 1, and will not be
| taken if the value is 0. “ s ” represents bit 16 of the
| instruction.

| (BO0 & BO2) | (s ⊕ BO4)

| The expression assumes that instruction bit 16,
| which is the sign bit of the displacement field for
| bc [l] [a] , contains 0 for bclr [l] and bcctr [l] .

26 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

Branch I-form

b target_addr (AA=0 LK=0)
ba target_addr (AA=1 LK=0)
bl target_addr (AA=0 LK=1)
bla target_addr (AA=1 LK=1)

18 LI AA LK

0 6 30 31

if AA then NIA ←iea EXTS(LI || 0b00)
else NIA ←iea CIA + tia EXTS(LI || 0b00)
if LK then LR ←iea CIA + tia 4

target_addr specifies the branch target address.

If A A = 0 then the branch target address is the sum of
LI || 0b00 sign-extended and the address of this
instruction, with the high-order 32 bits of the branch
target address set to 0 in 32-bit mode.

If A A = 1 then the branch target address is the value
LI || 0b00 sign-extended, with the high-order 32 bits of
the branch target address set to 0 in 32-bit mode.

If L K = 1 then the effective address of the instruction
following the Branch instruction is placed into the Link
Register.

Special Registers Altered:
LR (if LK=1)

Branch Conditional B-form

bc BO,BI,target_addr (AA=0 LK=0)
bca BO,BI,target_addr (AA=1 LK=0)
bcl BO,BI,target_addr (AA=0 LK=1)
bcla BO,BI,target_addr (AA=1 LK=1)

16 BO BI BD AA LK

0 6 11 16 30 31

if (64-bit mode)
then M ← 0
else M ← 32

if ¬BO 2 then CTR ← CTR − 1
ctr_ok ← BO2 | ((CTR M:63 =/ 0) ⊕ BO3)
cond_ok ← BO0 | (CR BI ≡ BO1)
if ctr_ok & cond_ok then

if AA then NIA ←iea EXTS(BD || 0b00)
else NIA ←iea CIA + tia EXTS(BD || 0b00)

if LK then LR ←iea CIA + tia 4

† The BI field specifies the Condition Register bit to be
† tested. The BO field is used to resolve the branch as
† described in Figure 23. target_addr specifies the

branch target address.

If A A = 0 then the branch target address is the sum of
BD || 0b00 sign-extended and the address of this
instruction, with the high-order 32 bits of the branch
target address set to 0 in 32-bit mode.

If A A = 1 then the branch target address is the value
BD || 0b00 sign-extended, with the high-order 32 bits
of the branch target address set to 0 in 32-bit mode.

If L K = 1 then the effective address of the instruction
following the Branch instruction is placed into the Link
Register.

Special Registers Altered:
CTR (if BO2= 0)
LR (if LK=1)

Extended Mnemonics:

Examples of extended mnemonics for Branch Condi-
tional:

Extended: Equivalent to:

blt target bc 12,0,target
bne cr2,target bc 4,10,target
bdnz target bc 16,0,target

Chapter 2. Branch Processor 27

IBM Confidential - Feb. 24, 1999

Branch Conditional to Link Register
XL-form

| bclr BO,BI,BH (LK=0)
| bclrl BO,BI,BH (LK=1)

[POWER mnemonics: bcr, bcrl]

| 19 BO BI /// BH 16 LK
| 0 6 11 16 19 21 31

if (64-bit mode)
then M ← 0
else M ← 32

if ¬BO 2 then CTR ← CTR − 1
ctr_ok ← BO2 | ((CTR M:63 =/ 0) ⊕ BO3)
cond_ok ← BO0 | (CR BI ≡ BO1)
if ctr_ok & cond_ok then NIA ←iea LR0:61 || 0b00
if LK then LR ←iea CIA + tia 4

† The BI field specifies the Condition Register bit to be
† tested. The BO field is used to resolve the branch as
| described in Figure 23. The BH field is used as
| described in Figure 25. The branch target address is

LR0:61 || 0b00, with the high-order 32 bits of the
branch target address set to 0 in 32-bit mode.

If L K = 1 then the effective address of the instruction
following the Branch instruction is placed into the Link
Register.

Special Registers Altered:
CTR (if BO2= 0)
LR (if LK=1)

Extended Mnemonics:

Examples of extended mnemonics for Branch Condi-
tional to Link Register:

Extended: Equivalent to:

| bclr 4,6 bclr 4,6,0
| bltlr bclr 12,0,0
| bnelr cr2 bclr 4,10,0
| bdnzlr bclr 16,0,0

| Programming Note

| bclr, bclrl, bcctr , and bcctrl each serve as both a
| basic and an extended mnemonic. The Assembler
| will recognize a bclr, bclrl, bcctr , or bcctrl mne-
| monic with three operands as the basic form, and
| a bclr, bclrl, bcctr , or bcctrl mnemonic with two
| operands as the extended form. In the extended
| form the BH operand is omitted and assumed to
| be 0b00.

Branch Conditional to Count Register
XL-form

| bcctr BO,BI,BH (LK=0)
| bcctrl BO,BI,BH (LK=1)

[POWER mnemonics: bcc, bccl]

| 19 BO BI /// BH 528 LK
| 0 6 11 16 19 21 31

cond_ok ← BO0 | (CR BI ≡ BO1)
if cond_ok then NIA ←iea CTR0:61 || 0b00
if LK then LR ←iea CIA + tia 4

† The BI field specifies the Condition Register bit to be
† tested. The BO field is used to resolve the branch as
| described in Figure 23. The BH field is used as
| described in Figure 25. The branch target address is

CTR0:61 || 0b00, with the high-order 32 bits of the
branch target address set to 0 in 32-bit mode.

If L K = 1 then the effective address of the instruction
following the Branch instruction is placed into the Link
Register.

If the “decrement and test CTR” option is specified
(BO2=0) , the instruction form is invalid.

Special Registers Altered:
LR (if LK=1)

Extended Mnemonics:

Examples of extended mnemonics for Branch Condi-
tional to Count Register:

Extended: Equivalent to:

| bcctr 4,6 bcctr 4,6,0
| bltctr bcctr 12,0,0
| bnectr cr2 bcctr 4,10,0

28 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

2.4.2 System Call Instructions

These instructions provide the means by which a
program can call upon the system to perform a
service.

System Call SC-form

| sc LEV

[POWER mnemonic: svca]

| 17 /// /// // LEV // 1 /
| 0 6 11 16 20 27 30 31

System Call Vectored SC-form

scv LEV

[POWER mnemonic: svcl]

17 /// /// // LEV // 0 1

0 6 11 16 20 27 30 31

These instructions call the system to perform a
service. A complete description of these instructions
can be found in Book III, PowerPC AS Operating Envi-
ronment Architecture.

The first form of the instruction (sc) provides a single
system call. The second form of the instruction (scv)
provides the capability for 128 unique system calls.

| The use of the LEV field is described in Book III. In
| the first form of the instruction the contents of the
| LEV field must be 0 or 1; otherwise the results are
| boundedly undefined.

When control is returned to the program that exe-
cuted the System Call or System Call Vectored
instruction, the contents of the registers will depend
on the register conventions used by the program pro-
viding the system service.

| These instructions are context synchronizing (see
| Book III, PowerPC AS Operating Environment Archi-
| tecture).

In tags inactive mode, scv is an illegal instruction and
an attempt to execute this instruction will invoke the
system illegal instruction error handler.

Special Registers Altered:
Dependent on the system service

| Programming Note

| sc serves as both a basic and an extended mne-
| monic. The Assembler will recognize an sc mne-
| monic with one operand as the basic form, and an
| sc mnemonic with no operand as the extended
| form. In the extended form the LEV operand is
| omitted and assumed to be 0.

| In application programs the value of the LEV
| operand for sc should be 0.

Compatibility Note

For a discussion of POWER compatibility with
† respect to instruction bits 16:19 and 27:29, see

Appendix E, “Incompatibilities with the POWER
Architecture” on page 185. For compatibility with

† future versions of the PowerPC AS Architecture,
these bits should be coded as zeros.

Chapter 2. Branch Processor 29

IBM Confidential - Feb. 24, 1999

2.4.3 Condition Register Logical Instructions

| The Condition Register Logical instructions have pre-
| ferred forms: see Section 1.9.1, “Preferred Instruction
| Forms” on page 14. In the preferred forms, the BT
| and BB fields satisfy the following rule.

| ■ The bit specified by BT is in the same Condition
| Register field as the bit specified by BB.

Extended mnemonics for Condition
Register logical operations

A set of extended mnemonics is provided that allow
additional Condition Register logical operations,
beyond those provided by the basic Condition Reg-
ister Logical instructions, to be coded easily. Some of
these are shown as examples with the Condition Reg-
ister Logical instructions. See Appendix B, “Assem-
bler Extended Mnemonics” on page 161 for additional
extended mnemonics.

Condition Register AND XL-form

crand BT,BA,BB

19 BT BA BB 257 /
0 6 11 16 21 31

CRBT ← CRBA & CRBB

The bit in the Condition Register specified by BA is
ANDed with the bit in the Condition Register specified
by BB, and the result is placed into the bit in the Con-
dition Register specified by BT.

† Special Registers Altered:
† CR BT

Condition Register OR XL-form

cror BT,BA,BB

19 BT BA BB 449 /
0 6 11 16 21 31

CRBT ← CRBA | CRBB

The bit in the Condition Register specified by BA is
ORed with the bit in the Condition Register specified
by BB, and the result is placed into the bit in the Con-
dition Register specified by BT.

† Special Registers Altered:
† CR BT

Extended Mnemonics:

Example of extended mnemonics for Condition Reg-
ister OR:

Extended: Equivalent to:
crmove Bx,By cror Bx,By,By

Condition Register XOR XL-form

crxor BT,BA,BB

19 BT BA BB 193 /
0 6 11 16 21 31

CRBT ← CRBA ⊕ CRBB

The bit in the Condition Register specified by BA is
XORed with the bit in the Condition Register specified
by BB, and the result is placed into the bit in the Con-
dition Register specified by BT.

† Special Registers Altered:
† CR BT

Extended Mnemonics:

Example of extended mnemonics for Condition Reg-
ister XOR:

Extended: Equivalent to:
crclr Bx crxor Bx,Bx,Bx

Condition Register NAND XL-form

crnand BT,BA,BB

19 BT BA BB 225 /
0 6 11 16 21 31

CRBT ← ¬(CRBA & CRBB)

The bit in the Condition Register specified by BA is
ANDed with the bit in the Condition Register specified
by BB, and the complemented result is placed into the
bit in the Condition Register specified by BT.

† Special Registers Altered:
† CR BT

30 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

Condition Register NOR XL-form

crnor BT,BA,BB

19 BT BA BB 33 /

0 6 11 16 21 31

CRBT ← ¬(CRBA | CRBB)

The bit in the Condition Register specified by BA is
ORed with the bit in the Condition Register specified
by BB, and the complemented result is placed into the
bit in the Condition Register specified by BT.

† Special Registers Altered:
† CR BT

Extended Mnemonics:

Example of extended mnemonics for Condition Reg-
ister NOR:

Extended: Equivalent to:

crnot Bx,By crnor Bx,By,By

Condition Register Equivalent XL-form

creqv BT,BA,BB

19 BT BA BB 289 /

0 6 11 16 21 31

CRBT ← CRBA ≡ CRBB

The bit in the Condition Register specified by BA is
XORed with the bit in the Condition Register specified
by BB, and the complemented result is placed into the
bit in the Condition Register specified by BT.

† Special Registers Altered:
† CR BT

Extended Mnemonics:

Example of extended mnemonics for Condition Reg-
ister Equivalent:

Extended: Equivalent to:

crset Bx creqv Bx,Bx,Bx

Condition Register AND with
Complement XL-form

crandc BT,BA,BB

19 BT BA BB 129 /

0 6 11 16 21 31

CRBT ← CRBA & ¬CRBB

The bit in the Condition Register specified by BA is
ANDed with the complement of the bit in the Condi-
tion Register specified by BB, and the result is placed
into the bit in the Condition Register specified by BT.

† Special Registers Altered:
† CR BT

Condition Register OR with Complement
XL-form

crorc BT,BA,BB

19 BT BA BB 417 /

0 6 11 16 21 31

CRBT ← CRBA | ¬CR BB

The bit in the Condition Register specified by BA is
ORed with the complement of the bit in the Condition
Register specified by BB, and the result is placed into
the bit in the Condition Register specified by BT.

† Special Registers Altered:
† CR BT

Chapter 2. Branch Processor 31

IBM Confidential - Feb. 24, 1999

2.4.4 Condition Register Field
Instruction

Move Condition Register Field XL-form

mcrf BF,BFA

19 BF // BFA // /// 0 /

0 6 9 11 14 16 21 31

CR4×BF:4×BF+3 ← CR4×BFA:4×BFA+3

The contents of Condition Register field BFA are
copied to Condition Register field BF.

† Special Registers Altered:
† CR field BF

32 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

Chapter 3. Fixed-Point Processor

3.1 Fixed-Point Processor Overview . . 33
3.2 Fixed-Point Processor Registers . . 33
3.2.1 General Purpose Registers 33
3.2.2 Fixed-Point Exception Register . 34
3.3 Fixed-Point Processor Instructions 36
3.3.1 Fixed-Point Storage Access

Instructions 36
3.3.1.1 Tagged Values 36
3.3.1.2 Storage Access Exceptions . . . 36
3.3.2 Fixed-Point Load Instructions . . 36
3.3.3 Fixed-Point Store Instructions . . 44
3.3.4 Fixed-Point Load and Store with

Byte Reversal Instructions 49
3.3.5 Fixed-Point Load and Store

Multiple Instructions 51

3.3.6 Fixed-Point Move Assist
Instructions 53

3.3.7 Other Fixed-Point Instructions . . 58
3.3.8 Fixed-Point Arithmetic Instructions 59
3.3.9 Fixed-Point Compare Instructions 68
3.3.10 Fixed-Point Trap Instructions . . 71
3.3.11 Fixed-Point Select Instructions . 75
3.3.12 Fixed-Point Logical Instructions 78
3.3.13 Fixed-Point Rotate and Shift

Instructions 84
3.3.13.1 Fixed-Point Rotate Instructions 84
3.3.13.2 Fixed-Point Shift Instructions . 90
3.3.14 Decimal Assist Instructions . . . 94
3.3.15 Move To/From System Register

Instructions 95

3.1 Fixed-Point Processor Overview

This chapter describes the registers and instructions
that make up the Fixed-Point Processor facility.
Section 3.2, “Fixed-Point Processor Registers”
describes the registers associated with the Fixed-
Point Processor. Section 3.3, “Fixed-Point Processor
Instructions” on page 36 describes the instructions
associated with the Fixed-Point Processor.

3.2 Fixed-Point Processor
Registers

3.2.1 General Purpose Registers

All manipulation of information is done in registers
internal to the Fixed-Point Processor. The principal
storage internal to the Fixed-Point Processor is a set
of 32 General Purpose Registers (GPRs). See
Figure 26.

GPR 0

GPR 1

. . .

. . .

GPR 30

GPR 31

0 63

Figure 26. General Purpose Registers

Each GPR is a 64-bit register.

Chapter 3. Fixed-Point Processor 33

IBM Confidential - Feb. 24, 1999

3.2.2 Fixed-Point Exception Register

The Fixed-Point Exception Register (XER) is a 64-bit
register.

XER

0 63

Figure 27. Fixed-Point Exception Register

The bit definitions for the Fixed-Point Exception Reg-
ister are shown below. Here M= 0 in 64-bit mode and
M= 3 2 in 32-bit mode.

The bits are set based on the operation of an instruc-
tion considered as a whole, not on intermediate
results (e.g., the Subtract From Carrying instruction,
the result of which is specified as the sum of three
values, sets bits in the Fixed-Point Exception Register
based on the entire operation, not on an intermediate
sum).

Bit(s) Description

0:15 In tags active mode (see Book III, PowerPC
AS Operating Environment Architecture),
these bits are reserved. In tags inactive
mode, a mfspr of the XER returns zeros for
these bit positions.

16:31 Decimal Carries (DC)
In tags active mode, bit n of this field is set
equal to the carry out of decimal digit posi-
tion n (bit position 4×n) when an Add Car-
rying or Subtract From Carrying instruction is
executed. The name “Decimal Carries”
conveys the intended use; however, these
carries are binary carries from binary bit
positions. In tags inactive mode, a mfspr of
the XER returns zeros for this field.

32 Summary Overflow (SO)
The Summary Overflow bit is set to 1 when-
ever an instruction (except mtspr) sets the
Overflow bit. Once set, the SO bit remains
set until it is cleared by an mtspr instruction
(specifying the XER) or an mcrxr instruction.
It is not altered by Compare instructions, nor
by other instructions (except mtspr to the
XER, and mcrxr) that cannot overflow. Exe-
cuting an mtspr instruction to the XER, sup-
plying the values 0 for SO and 1 for OV,
causes SO to be set to 0 and OV to be set to
1.

33 Overflow (OV)
The Overflow bit is set to indicate that an
overflow has occurred during execution of an
instruction. XO-form Add, Subtract From, and
Negate instructions having OE=1 set it to 1 if
the carry out of bit M is not equal to the
carry out of bit M+ 1 , and set it to 0 other-
wise. XO-form Multiply Low and Divide
instructions having OE=1 set it to 1 if the
result cannot be represented in 64 bits
(mulld, divd, divdu) or in 32 bits (mullw, divw,
divwu), and set it to 0 otherwise. The OV bit
is not altered by Compare instructions, nor
by other instructions (except mtspr to the
XER, and mcrxr) that cannot overflow.

34 Carry (CA)
The Carry bit is set as follows, during exe-
cution of certain instructions. Add Carrying,
Subtract From Carrying, Add Extended, and
Subtract From Extended instructions set it to
1 if there is a carry out of bit M, and set it to
0 otherwise. Shift Right Algebraic
instructions set it to 1 if any 1-bits have been
shifted out of a negative operand, and set it
to 0 otherwise. The CA bit is not altered by
Compare instructions, nor by other
instructions (except Shift Right Algebraic,
dtcs , mtspr to the XER, and mcrxr) that
cannot carry.

35 Offset Carry (OC)
In tags active mode, during execution of Add
Carrying type of instructions (addic [.] ,
addic [o] [.]), the Offset Carry bit is set to one
if one of the following conditions is met; oth-
erwise, it is set to zero.

■ (RA)0:15= 0 and the carry out of bit 16 is
one.

■ (RA)0:15≠ 0 and the carry out of bit 40 is
one.

In tags active mode, Subtract From Carrying
type of instructions (subfc [o] [.] and subfic)

| set the Offset Carry bit to an undefined value.

36:39 FXCC
In tags active mode, this field is set whenever
CR Field 0 is set by an instruction that
records, and whenever any CR field is set by
the fixed-point Compare instructions. In tags
active mode, the first three bits (LT, GT, EQ)
are set in the same way as the corresponding
bits of the affected CR field (see Section
2.3.1, “Condition Register” on page 22): spe-
cifically, they are set by algebraic or logical
comparison of the two operands (Compare
instructions), or by algebraic comparison of
the result with zero (other instructions). The
fourth bit (IC) is set as described below.

36 Negative, Less Than (LT)

37 Positive, Greater Than (GT)

34 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

38 Zero, Equal (EQ)

39 Incomparable (IC)
In tags active mode, the cmpla instruction
sets the Incomparable bit to one if the two
operands do not have the same value in bits
0:39, and sets it to zero otherwise. In tags
active mode, all other instructions that set
the FXCC set the Incomparable bit to zero.

40 Decimal Summary (DS)
In tags active mode, the Decimal Summary
bit is set to the logical OR of all the DC bits
when an Add Carrying or Subtract From Car-
rying instruction is executed.

41:43 Tag Condition Code (TGCC)

41 T02
When lq is executed, this bit is set based on
a decode of bits 0:2 of the data and tag bit
fetched from storage and an immediate field
in the instruction.

42 T07
When lq is executed, this bit is set based on
a decode of bits 0:7 of the data and tag bit
fetched from storage and an immediate field
in the instruction.

43 TAG
When lq is executed, this bit is set to the
value of the quadword tag bit fetched from
storage. This bit is set to 1 by settag .

44:56 Reserved

57:63 This field specifies the number of bytes to be
transferred by a Load String Indexed or Store
String Indexed instruction.

Compatibility Note

For a discussion of POWER compatibility with
| respect to XER bits 48:55, see Appendix E,

“Incompatibilities with the POWER Architecture”
on page 185. For compatibility with future ver-

† sions of the PowerPC AS Architecture, these bits
should be set to zero.

Chapter 3. Fixed-Point Processor 35

IBM Confidential - Feb. 24, 1999

3.3 Fixed-Point Processor Instructions

3.3.1 Fixed-Point Storage Access Instructions

The Storage Access instructions compute the effective
address (EA) of the storage to be accessed as
described in Section 1.12.3, “Effective Address
Calculation” on page 17.

†

Programming Note

The la extended mnemonic permits computing an
effective address as a Load or Store instruction
would, but loads the address itself into a GPR
rather than loading the value that is in storage at

† that address. Unlike a Load or Store instruction,
† la cannot cause an Effective Address Overflow
† exception. This extended mnemonic is described
† in Section B.11, “Miscellaneous Mnemonics” on
† page 174.

Programming Note

The DS field in DS-form Storage Access
instructions is a word offset, not a byte offset like
the D field in D-form Storage Access instructions.
However, for programming convenience, Assem-
blers should support the specification of byte
offsets for both forms of instruction.

† Programming Note

† See the Programming Note on page 6 regarding
† base register usage for X-form Load and Store
† instructions in tags active mode.

3.3.1.1 Tagged Values

Certain fixed-point Load instructions copy tag bits
from storage to special purpose registers. Only one
type of Store instruction, stq , can cause a storage tag
bit to be set to 1 while all others cause tag bits to be
set to 0.

Additional details on tag preservation are given in the
individual instruction descriptions.

†

3.3.1.2 Storage Access Exceptions

† Storage accesses will cause the system data storage
error handler to be invoked if the program is not
allowed to modify the target storage (Store only), or if
the program attempts to access storage that is una-
vailable.

| If the storage location specified by a Load Quadword
| or Store Quadword instruction is in storage that is
| Write Through Required or Caching Inhibited (see
| Book II, PowerPC AS Virtual Environment
| Architecture), the system data storage error handler
| or the system alignment error handler may be
| invoked.

3.3.2 Fixed-Point Load Instructions

The byte, halfword, word, or doubleword in storage
addressed by EA is loaded into register RT. If the
instruction is lq , the quadword in storage addressed
by EA is loaded into registers RT and RT+1, in
increasing order of storage address and register
number.

†

Many of the Load instructions have an “update” form,
in which register RA is updated with the effective
address. For these forms, if RA≠ 0 and RA≠ RT, the
effective address is placed into register RA and the

storage element (byte, halfword, word, or doubleword)
addressed by EA is loaded into RT.

Programming Note

In some implementations, the Load Algebraic and
Load with Update instructions may have greater
latency than other types of Load instructions.
Moreover, Load with Update instructions may take
longer to execute in some implementations than
the corresponding pair of a non-update Load
instruction and an Add instruction.

36 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

Load Byte and Zero D-form

lbz RT,D(RA)

34 RT RA D

0 6 11 16 31

if RA = 0 then b ← 0
else b ← (RA)
EA ← b +tea EXTS(D)
RT ← 560 || MEM(EA, 1)

Let the effective address (EA) be the sum (RA|0)+ teaD.
The byte in storage addressed by EA is loaded into
RT56:63. RT0:55 are set to 0.

Special Registers Altered:
None

Load Byte and Zero Indexed X-form

lbzx RT,RA,RB

31 RT RA RB 87 /

0 6 11 16 21 31

if RA = 0 then b ← 0
else b ← (RA)
EA ← b +tea (RB)
RT ← 560 || MEM(EA, 1)

Let the effective address (EA) be the sum
(RA|0)+ tea(RB). The byte in storage addressed by EA
is loaded into RT56:63. RT0:55 are set to 0.

Special Registers Altered:
None

Load Byte and Zero with Update
D-form

lbzu RT,D(RA)

35 RT RA D

0 6 11 16 31

EA ← (RA) + tea EXTS(D)
RT ← 560 || MEM(EA, 1)
RA ← EA

Let the effective address (EA) be the sum (RA)+ teaD.
The byte in storage addressed by EA is loaded into
RT56:63. RT0:55 are set to 0.

EA is placed into register RA.

If R A = 0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

Load Byte and Zero with Update
Indexed X-form

lbzux RT,RA,RB

31 RT RA RB 119 /

0 6 11 16 21 31

EA ← (RA) + tea (RB)
RT ← 560 || MEM(EA, 1)
RA ← EA

Let the effective address (EA) be the sum
(RA)+ tea(RB). The byte in storage addressed by EA is
loaded into RT56:63. RT0:55 are set to 0.

EA is placed into register RA.

If R A = 0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

Chapter 3. Fixed-Point Processor 37

IBM Confidential - Feb. 24, 1999

Load Halfword and Zero D-form

lhz RT,D(RA)

40 RT RA D

0 6 11 16 31

if RA = 0 then b ← 0
else b ← (RA)
EA ← b +tea EXTS(D)
RT ← 480 || MEM(EA, 2)

Let the effective address (EA) be the sum (RA|0)+ teaD.
The halfword in storage addressed by EA is loaded
into RT48:63. RT0:47 are set to 0.

Special Registers Altered:
None

Load Halfword and Zero Indexed
X-form

lhzx RT,RA,RB

31 RT RA RB 279 /

0 6 11 16 21 31

if RA = 0 then b ← 0
else b ← (RA)
EA ← b +tea (RB)
RT ← 480 || MEM(EA, 2)

Let the effective address (EA) be the sum
(RA|0)+ tea(RB). The halfword in storage addressed by
EA is loaded into RT48:63. RT0:47 are set to 0.

Special Registers Altered:
None

Load Halfword and Zero with Update
D-form

lhzu RT,D(RA)

41 RT RA D

0 6 11 16 31

EA ← (RA) + tea EXTS(D)
RT ← 480 || MEM(EA, 2)
RA ← EA

Let the effective address (EA) be the sum (RA)+ teaD.
The halfword in storage addressed by EA is loaded
into RT48:63. RT0:47 are set to 0.

EA is placed into register RA.

If R A = 0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

Load Halfword and Zero with Update
Indexed X-form

lhzux RT,RA,RB

31 RT RA RB 311 /

0 6 11 16 21 31

EA ← (RA) + tea (RB)
RT ← 480 || MEM(EA, 2)
RA ← EA

Let the effective address (EA) be the sum
(RA)+ tea(RB). The halfword in storage addressed by
EA is loaded into RT48:63. RT0:47 are set to 0.

EA is placed into register RA.

If R A = 0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

38 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

Load Halfword Algebraic D-form

lha RT,D(RA)

42 RT RA D

0 6 11 16 31

if RA = 0 then b ← 0
else b ← (RA)
EA ← b +tea EXTS(D)
RT ← EXTS(MEM(EA, 2))

Let the effective address (EA) be the sum (RA|0)+ teaD.
The halfword in storage addressed by EA is loaded
into RT48:63. RT0:47 are filled with a copy of bit 0 of
the loaded halfword.

Special Registers Altered:
None

Load Halfword Algebraic Indexed
X-form

lhax RT,RA,RB

31 RT RA RB 343 /

0 6 11 16 21 31

if RA = 0 then b ← 0
else b ← (RA)
EA ← b +tea (RB)
RT ← EXTS(MEM(EA, 2))

Let the effective address (EA) be the sum
(RA|0)+ tea(RB). The halfword in storage addressed by
EA is loaded into RT48:63. RT0:47 are filled with a copy
of bit 0 of the loaded halfword.

Special Registers Altered:
None

Load Halfword Algebraic with Update
D-form

lhau RT,D(RA)

43 RT RA D

0 6 11 16 31

EA ← (RA) + tea EXTS(D)
RT ← EXTS(MEM(EA, 2))
RA ← EA

Let the effective address (EA) be the sum (RA)+ teaD.
The halfword in storage addressed by EA is loaded
into RT48:63. RT0:47 are filled with a copy of bit 0 of
the loaded halfword.

EA is placed into register RA.

If R A = 0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

Load Halfword Algebraic with Update
Indexed X-form

lhaux RT,RA,RB

31 RT RA RB 375 /

0 6 11 16 21 31

EA ← (RA) + tea (RB)
RT ← EXTS(MEM(EA, 2))
RA ← EA

Let the effective address (EA) be the sum
(RA)+ tea(RB). The halfword in storage addressed by
EA is loaded into RT48:63. RT0:47 are filled with a copy
of bit 0 of the loaded halfword.

EA is placed into register RA.

If R A = 0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

Chapter 3. Fixed-Point Processor 39

IBM Confidential - Feb. 24, 1999

Load Word and Zero D-form

lwz RT,D(RA)

[POWER mnemonic: l]

32 RT RA D

0 6 11 16 31

if RA = 0 then b ← 0
else b ← (RA)
EA ← b +tea EXTS(D)
RT ← 320 || MEM(EA, 4)

Let the effective address (EA) be the sum (RA|0)+ teaD.
The word in storage addressed by EA is loaded into
RT32:63. RT0:31 are set to 0.

Special Registers Altered:
None

Load Word and Zero Indexed X-form

lwzx RT,RA,RB

[POWER mnemonic: lx]

31 RT RA RB 23 /

0 6 11 16 21 31

if RA = 0 then b ← 0
else b ← (RA)
EA ← b +tea (RB)
RT ← 320 || MEM(EA, 4)

Let the effective address (EA) be the sum
(RA|0)+ tea(RB). The word in storage addressed by EA
is loaded into RT32:63. RT0:31 are set to 0.

Special Registers Altered:
None

Load Word and Zero with Update
D-form

lwzu RT,D(RA)

[POWER mnemonic: lu]

33 RT RA D

0 6 11 16 31

EA ← (RA) + tea EXTS(D)
RT ← 320 || MEM(EA, 4)
RA ← EA

Let the effective address (EA) be the sum (RA)+ teaD.
The word in storage addressed by EA is loaded into
RT32:63. RT0:31 are set to 0.

EA is placed into register RA.

If R A = 0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

Load Word and Zero with Update
Indexed X-form

lwzux RT,RA,RB

[POWER mnemonic: lux]

31 RT RA RB 55 /

0 6 11 16 21 31

EA ← (RA) + tea (RB)
RT ← 320 || MEM(EA, 4)
RA ← EA

Let the effective address (EA) be the sum
(RA)+ tea(RB). The word in storage addressed by EA is
loaded into RT32:63. RT0:31 are set to 0.

EA is placed into register RA.

If R A = 0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

40 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

Load Word Algebraic DS-form

lwa RT,DS(RA)

58 RT RA DS 2

0 6 11 16 30 31

if RA = 0 then b ← 0
else b ← (RA)
EA ← b +tea EXTS(DS || 0b00)
RT ← EXTS(MEM(EA, 4))

Let the effective address (EA) be the sum
(RA|0)+ tea(DS||0b00). The word in storage addressed
by EA is loaded into RT32:63. RT0:31 are filled with a
copy of bit 0 of the loaded word.

Special Registers Altered:
None

Load Word Algebraic Indexed X-form

lwax RT,RA,RB

31 RT RA RB 341 /

0 6 11 16 21 31

if RA = 0 then b ← 0
else b ← (RA)
EA ← b +tea (RB)
RT ← EXTS(MEM(EA, 4))

Let the effective address (EA) be the sum
(RA|0)+ tea(RB). The word in storage addressed by EA
is loaded into RT32:63. RT0:31 are filled with a copy of
bit 0 of the loaded word.

Special Registers Altered:
None

Load Word Algebraic with Update
Indexed X-form

lwaux RT,RA,RB

31 RT RA RB 373 /

0 6 11 16 21 31

EA ← (RA) + tea (RB)
RT ← EXTS(MEM(EA, 4))
RA ← EA

Let the effective address (EA) be the sum
(RA)+ tea(RB). The word in storage addressed by EA is
loaded into RT32:63. RT0:31 are filled with a copy of bit
0 of the loaded word.

EA is placed into register RA.

If R A = 0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

Chapter 3. Fixed-Point Processor 41

IBM Confidential - Feb. 24, 1999

Load Doubleword DS-form

ld RT,DS(RA)

58 RT RA DS 0

0 6 11 16 30 31

if RA = 0 then b ← 0
else b ← (RA)
EA ← b +tea EXTS(DS || 0b00)
RT ← MEM(EA, 8)

Let the effective address (EA) be the sum
(RA|0)+ tea(DS||0b00). The doubleword in storage
addressed by EA is loaded into RT.

Special Registers Altered:
None

Load Doubleword Indexed X-form

ldx RT,RA,RB

31 RT RA RB 21 /

0 6 11 16 21 31

if RA = 0 then b ← 0
else b ← (RA)
EA ← b +tea (RB)
RT ← MEM(EA, 8)

Let the effective address (EA) be the sum
(RA|0)+ tea(RB). The doubleword in storage addressed
by EA is loaded into RT.

Special Registers Altered:
None

Load Doubleword with Update DS-form

ldu RT,DS(RA)

58 RT RA DS 1

0 6 11 16 30 31

EA ← (RA) + tea EXTS(DS || 0b00)
RT ← MEM(EA, 8)
RA ← EA

Let the effective address (EA) be the sum
(RA)+ tea(DS||0b00). The doubleword in storage
addressed by EA is loaded into RT.

EA is placed into register RA.

If R A = 0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

Load Doubleword with Update Indexed
X-form

ldux RT,RA,RB

31 RT RA RB 53 /

0 6 11 16 21 31

EA ← (RA) + tea (RB)
RT ← MEM(EA, 8)
RA ← EA

Let the effective address (EA) be the sum
(RA)+ tea(RB). The doubleword in storage addressed
by EA is loaded into RT.

EA is placed into register RA.

If R A = 0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

42 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

Load Quadword DQ-form

lq RT,DQ(RA),PT

56 RT RA DQ PT

0 6 11 16 28 31

This instruction uses a DECODE function
y = DECODE(x) defined by:

x y
00 1000
01 0100
10 0010
11 0001

if RA = 0 then b ← 0
else b ← (RA)
EA ← b +tea EXTS(DQ || 0b0000)
if EA 60:63 = 0b0000 then

RT ← MEM(EA, 8)
GPR(RT+1) ← MEM(EA+8, 8)
if ((DECODE(MEM 0:1(EA, 1)) & PT) = / 0b0000) &

(MEM2(EA, 1) = 0) & (MEM tag(EA) = 1) &
(MEMtag(EA+8) = 1) then XER 41 ← 0b1

else XER 41 ← 0b0
if (MEM(EA, 1) = (0b1010 || PT)) & (MEM tag(EA) = 1)

& (MEMtag(EA+8) = 1) then XER 42 ← 0b1
else XER 42 ← 0b0
XER43 ← MEMtag(EA) & MEMtag(EA+8)

else
RT ← undefined
GPR(RT+1) ← undefined
u ← undefined 1-bit value
if u then

XER41:43 ← 0b000
else

XER41:43 ← undefined
system alignment error handler

If EA60:63=0b0000, the quadword in storage
addressed by EA is loaded into registers RT and
RT+1, in increasing order of storage address and
register number; otherwise, the contents of registers
RT and RT+1 are undefined.

XER41 is set to 1 if four conditions are met:

■ all tags within the quadword are 1,

■ bit 2 of the data loaded into RT is 0, and

■ a DECODE of the two high-order bits loaded into
RT ANDed with the PT field is not equal to 0b0000

■ EA60:63=0b0000

otherwise, it is set to 0. The DECODE function y =
DECODE(x) is defined by:

x y
00 1000
01 0100
10 0010
11 0001

If EA60:63≠ 0b0000, it is implementation-dependent
whether the system alignment error handler is
invoked. If the system alignment error handler is
invoked, XER is undefined.

If EA60:63=0b0000 and if all tags within the quadword
are 1 and the high-order byte loaded into RT is equal
to the byte formed by concatenating 0b1010 with the
PT field then XER42 is set to 1; otherwise it is set to 0.

XER43 is set to 1 if EA60:63=0b0000 and all tags within
the quadword are 1; otherwise it is set to 0.

If RT is odd, the instruction form is invalid.

In tags inactive mode, this instruction is an illegal
instruction and an attempt to execute this instruction
will invoke the system illegal instruction error
handler.

Special Registers Altered:
TGCC

Chapter 3. Fixed-Point Processor 43

IBM Confidential - Feb. 24, 1999

3.3.3 Fixed-Point Store Instructions

The contents of register RS are stored into the byte,
halfword, word, or doubleword in storage addressed
by EA. For stq , the contents of registers RT and
RT+1 are stored into the quadword in storage
addressed by EA, in increasing order of storage
address and register number. If an aligned quadword
is stored, the tag(s) of the quadword in storage is set
to the value of the XER TAG bit. For all other fixed-
point Store instructions, the tag of every tag block
affected is set to zero.

†

Many of the Store instructions have an “update” form,
in which register RA is updated with the effective
address. For these forms, the following rules apply.

■ If RA≠ 0, the effective address is placed into reg-
ister RA.

■ If RS=RA, the contents of register RS are copied
to the target storage element and then EA is
placed into RA (RS).

Store Byte D-form

stb RS,D(RA)

38 RS RA D
0 6 11 16 31

if RA = 0 then b ← 0
else b ← (RA)
EA ← b +tea EXTS(D)
MEM(EA, 1) ← (RS) 56:63
MEMtag(EA) ← 0

Let the effective address (EA) be the sum (RA|0)+ teaD.
(RS)56:63 are stored into the byte in storage addressed
by EA.

Special Registers Altered:
None

Store Byte Indexed X-form

stbx RS,RA,RB

31 RS RA RB 215 /
0 6 11 16 21 31

if RA = 0 then b ← 0
else b ← (RA)
EA ← b +tea (RB)
MEM(EA, 1) ← (RS) 56:63
MEMtag(EA) ← 0

Let the effective address (EA) be the sum
(RA|0)+ tea(RB). (RS)56:63 are stored into the byte in
storage addressed by EA.

Special Registers Altered:
None

Store Byte with Update D-form

stbu RS,D(RA)

39 RS RA D
0 6 11 16 31

EA ← (RA) + tea EXTS(D)
MEM(EA, 1) ← (RS) 56:63
MEMtag(EA) ← 0
RA ← EA

Let the effective address (EA) be the sum (RA)+ teaD.
(RS)56:63 are stored into the byte in storage addressed
by EA.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

Special Registers Altered:
None

Store Byte with Update Indexed X-form

stbux RS,RA,RB

31 RS RA RB 247 /
0 6 11 16 21 31

EA ← (RA) + tea (RB)
MEM(EA, 1) ← (RS) 56:63
MEMtag(EA) ← 0
RA ← EA

Let the effective address (EA) be the sum
(RA)+ tea(RB). (RS)56:63 are stored into the byte in
storage addressed by EA.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

Special Registers Altered:
None

44 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

Store Halfword D-form

sth RS,D(RA)

44 RS RA D

0 6 11 16 31

if RA = 0 then b ← 0
else b ← (RA)
EA ← b +tea EXTS(D)
MEM(EA, 2) ← (RS) 48:63
MEMtag(EA, 2) ← 0

Let the effective address (EA) be the sum (RA|0)+ teaD.
(RS)48:63 are stored into the halfword in storage
addressed by EA.

Special Registers Altered:
None

Store Halfword Indexed X-form

sthx RS,RA,RB

31 RS RA RB 407 /

0 6 11 16 21 31

if RA = 0 then b ← 0
else b ← (RA)
EA ← b +tea (RB)
MEM(EA, 2) ← (RS) 48:63
MEMtag(EA, 2) ← 0

Let the effective address (EA) be the sum
(RA|0)+ tea(RB). (RS)48:63 are stored into the halfword
in storage addressed by EA.

Special Registers Altered:
None

Store Halfword with Update D-form

sthu RS,D(RA)

45 RS RA D

0 6 11 16 31

EA ← (RA) + tea EXTS(D)
MEM(EA, 2) ← (RS) 48:63
MEMtag(EA, 2) ← 0
RA ← EA

Let the effective address (EA) be the sum (RA)+ teaD.
(RS)48:63 are stored into the halfword in storage
addressed by EA.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

Special Registers Altered:
None

Store Halfword with Update Indexed
X-form

sthux RS,RA,RB

31 RS RA RB 439 /

0 6 11 16 21 31

EA ← (RA) + tea (RB)
MEM(EA, 2) ← (RS) 48:63
MEMtag(EA, 2) ← 0
RA ← EA

Let the effective address (EA) be the sum
(RA)+ tea(RB). (RS)48:63 are stored into the halfword in
storage addressed by EA.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

Special Registers Altered:
None

Chapter 3. Fixed-Point Processor 45

IBM Confidential - Feb. 24, 1999

Store Word D-form

stw RS,D(RA)

[POWER mnemonic: st]

36 RS RA D

0 6 11 16 31

if RA = 0 then b ← 0
else b ← (RA)
EA ← b +tea EXTS(D)
MEM(EA, 4) ← (RS) 32:63
MEMtag(EA, 4) ← 0

Let the effective address (EA) be the sum (RA|0)+ teaD.
(RS)32:63 are stored into the word in storage
addressed by EA.

Special Registers Altered:
None

Store Word Indexed X-form

stwx RS,RA,RB

[POWER mnemonic: stx]

31 RS RA RB 151 /

0 6 11 16 21 31

if RA = 0 then b ← 0
else b ← (RA)
EA ← b +tea (RB)
MEM(EA, 4) ← (RS) 32:63
MEMtag(EA, 4) ← 0

Let the effective address (EA) be the sum
(RA|0)+ tea(RB). (RS)32:63 are stored into the word in
storage addressed by EA.

Special Registers Altered:
None

Store Word with Update D-form

stwu RS,D(RA)

[POWER mnemonic: stu]

37 RS RA D

0 6 11 16 31

EA ← (RA) + tea EXTS(D)
MEM(EA, 4) ← (RS) 32:63
MEMtag(EA, 4) ← 0
RA ← EA

Let the effective address (EA) be the sum (RA)+ teaD.
(RS)32:63 are stored into the word in storage
addressed by EA.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

Special Registers Altered:
None

Store Word with Update Indexed X-form

stwux RS,RA,RB

[POWER mnemonic: stux]

31 RS RA RB 183 /

0 6 11 16 21 31

EA ← (RA) + tea (RB)
MEM(EA, 4) ← (RS) 32:63
MEMtag(EA, 4) ← 0
RA ← EA

Let the effective address (EA) be the sum
(RA)+ tea(RB). (RS)32:63 are stored into the word in
storage addressed by EA.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

Special Registers Altered:
None

46 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

Store Doubleword DS-form

std RS,DS(RA)

62 RS RA DS 0

0 6 11 16 30 31

if RA = 0 then b ← 0
else b ← (RA)
EA ← b +tea EXTS(DS || 0b00)
MEM(EA, 8) ← (RS)
MEMtag(EA, 8) ← 0

Let the effective address (EA) be the sum
(RA|0)+ tea(DS||0b00). (RS) is stored into the
doubleword in storage addressed by EA.

Special Registers Altered:
None

Store Doubleword Indexed X-form

stdx RS,RA,RB

31 RS RA RB 149 /

0 6 11 16 21 31

if RA = 0 then b ← 0
else b ← (RA)
EA ← b +tea (RB)
MEM(EA, 8) ← (RS)
MEMtag(EA, 8) ← 0

Let the effective address (EA) be the sum
(RA|0)+ tea(RB). (RS) is stored into the doubleword in
storage addressed by EA.

Special Registers Altered:
None

Store Doubleword with Update DS-form

stdu RS,DS(RA)

62 RS RA DS 1

0 6 11 16 30 31

EA ← (RA) + tea EXTS(DS || 0b00)
MEM(EA, 8) ← (RS)
MEMtag(EA, 8) ← 0
RA ← EA

Let the effective address (EA) be the sum
(RA)+ tea(DS||0b00). (RS) is stored into the doubleword
in storage addressed by EA.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

Special Registers Altered:
None

Store Doubleword with Update Indexed
X-form

stdux RS,RA,RB

31 RS RA RB 181 /

0 6 11 16 21 31

EA ← (RA) + tea (RB)
MEM(EA, 8) ← (RS)
MEMtag(EA, 8) ← 0
RA ← EA

Let the effective address (EA) be the sum
(RA)+ tea(RB). (RS) is stored into the doubleword in
storage addressed by EA.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

Special Registers Altered:
None

Chapter 3. Fixed-Point Processor 47

IBM Confidential - Feb. 24, 1999

Store Quadword DS-form

stq RS,DS(RA)

62 RS RA DS 2

0 6 11 16 30 31

If RA = 0 then b ← 0
else b ← (RA)
EA ← b +tea EXTS(DS || 0b00)
If EA 60:63 = 0b0000 then

MEM(EA, 8) ← RS
MEM(EA+8, 8) ← GPR(RS+1)
MEMtag(EA, 16) ← XER43

else
invoke system alignment error handler

Let the effective address (EA) be the sum
(RA|0)+ tea(DS||0b00). (RS) and (RS+1) are stored into
the quadword in storage addressed by EA, in
increasing order of storage address and register
number.

If RS is odd, the instruction form is invalid.

All tags within the quadword in storage are set to the
value of XER43.

If the effective address is not quadword aligned, the
system alignment error handler is invoked, and the
store is not performed.

In tags inactive mode, this instruction is an illegal
instruction and an attempt to execute this instruction
will invoke the system illegal instruction error
handler.

Special Registers Altered:
None

†

48 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

3.3.4 Fixed-Point Load and Store with Byte Reversal Instructions

† Programming Note

† These instructions have the effect of loading and
† storing data in Little-Endian byte order.

In some implementations, the Load Byte-Reverse
instructions may have greater latency than other
Load instructions.

Load Halfword Byte-Reverse Indexed
X-form

lhbrx RT,RA,RB

31 RT RA RB 790 /

0 6 11 16 21 31

if RA = 0 then b ← 0
else b ← (RA)
EA ← b +tea (RB)
RT ← 480 || MEM(EA+tea 1, 1) || MEM(EA, 1)

Let the effective address (EA) be the sum
(RA|0)+ tea(RB). Bits 0:7 of the halfword in storage
addressed by EA are loaded into RT56:63. Bits 8:15 of
the halfword in storage addressed by EA are loaded
into RT48:55. RT0:47 are set to 0.

Special Registers Altered:
None

Load Word Byte-Reverse Indexed
X-form

lwbrx RT,RA,RB

[POWER mnemonic: lbrx]

31 RT RA RB 534 /

0 6 11 16 21 31

if RA = 0 then b ← 0
else b ← (RA)
EA ← b +tea (RB)
RT ← 320 || MEM(EA+tea 3, 1) || MEM(EA+tea 2, 1)

|| MEM(EA+tea 1, 1) || MEM(EA, 1)

Let the effective address (EA) be the sum
(RA|0)+ tea(RB). Bits 0:7 of the word in storage
addressed by EA are loaded into RT56:63. Bits 8:15 of
the word in storage addressed by EA are loaded into
RT48:55. Bits 16:23 of the word in storage addressed
by EA are loaded into RT40:47. Bits 24:31 of the word
in storage addressed by EA are loaded into RT32:39.
RT0:31 are set to 0.

Special Registers Altered:
None

Chapter 3. Fixed-Point Processor 49

IBM Confidential - Feb. 24, 1999

Store Halfword Byte-Reverse Indexed
X-form

sthbrx RS,RA,RB

31 RS RA RB 918 /

0 6 11 16 21 31

if RA = 0 then b ← 0
else b ← (RA)
EA ← b +tea (RB)
MEM(EA, 2) ← (RS) 56:63 || (RS) 48:55
MEMtag(EA, 2) ← 0

Let the effective address (EA) be the sum
(RA|0)+ tea(RB). (RS)56:63 are stored into bits 0:7 of the
halfword in storage addressed by EA. (RS)48:55 are
stored into bits 8:15 of the halfword in storage
addressed by EA.

Special Registers Altered:
None

Store Word Byte-Reverse Indexed
X-form

stwbrx RS,RA,RB

[POWER mnemonic: stbrx]

31 RS RA RB 662 /

0 6 11 16 21 31

if RA = 0 then b ← 0
else b ← (RA)
EA ← b +tea (RB)
MEM(EA, 4) ← (RS) 56:63 || (RS) 48:55 || (RS) 40:47 || (RS) 32:39
MEMtag(EA, 4) ← 0

Let the effective address (EA) be the sum
(RA|0)+ tea(RB). (RS)56:63 are stored into bits 0:7 of the
word in storage addressed by EA. (RS)48:55 are stored
into bits 8:15 of the word in storage addressed by EA.
(RS)40:47 are stored into bits 16:23 of the word in
storage addressed by EA. (RS)32:39 are stored into
bits 24:31 of the word in storage addressed by EA.

Special Registers Altered:
None

50 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

3.3.5 Fixed-Point Load and Store Multiple Instructions

The Load/Store Multiple instructions have preferred
forms: see Section 1.9.1, “Preferred Instruction
Forms” on page 14. In the preferred forms, storage
alignment satisfies the following rule.

■ The combination of the EA and RT (RS) is such
that the low-order byte of GPR 31 is loaded
(stored) from (into) the last byte of an aligned
octword in storage.

†

Compatibility Note

For a discussion of POWER compatibility with
respect to the alignment of the EA for the Load
Multiple Word and Store Multiple Word
instructions, see Appendix E, “Incompatibilities
with the POWER Architecture” on page 185. For

† compatibility with future versions of the PowerPC
† AS Architecture, these EAs should be word-

aligned.

Engineering Note

Causing the system alignment error handler to be
invoked if attempt is made to execute a Load Mul-
tiple or Store Multiple instruction having an incor-
rectly aligned effective address facilitates the
debugging of software.

Load Multiple Word D-form

lmw RT,D(RA)
[POWER mnemonic: lm]

46 RT RA D
0 6 11 16 31

if RA = 0 then b ← 0
else b ← (RA)
EA ← b +tea EXTS(D)
r ← RT
do while r ≤ 31

GPR(r) ← 320 || MEM(EA, 4)
r ← r + 1
EA ← EA +tea 4

Let n = (32− RT). Let the effective address (EA) be
the sum (RA|0)+ teaD.

n consecutive words starting at EA are loaded into
the low-order 32 bits of GPRs RT through 31. The
high-order 32 bits of these GPRs are set to zero.

EA must be a multiple of 4. If it is not, either the
system alignment error handler is invoked or the
results are boundedly undefined.

If RA is in the range of registers to be loaded,
including the case in which RA=0, the instruction
form is invalid.

Special Registers Altered:
None

Load Multiple Doubleword DS-form

lmd RT,DS(RA)

58 RT RA DS 3
0 6 11 16 30 31

if RA = 0 then b ← 0
else b ← (RA)
EA ← b +tea EXTS(DS || 0b00)
r ← RT
do while r ≤ 31

GPR(r) ← MEM(EA, 8)
r ← r + 1
EA ← EA +tea 8

Let n = (32− RT). Let the effective address (EA) be
the sum (RA|0)+ tea(DS||0b00).

n consecutive doublewords starting at EA are loaded
into GPRs from RT through 31.

EA must be a multiple of 8. If it is not, either the
system alignment error handler is invoked or the
results are boundedly undefined.

If RA is in the range of registers to be loaded,
including the case in which RA=0, the instruction
form is invalid.

In tags inactive mode, this instruction is an illegal
instruction and an attempt to execute this instruction
will invoke the system illegal instruction error
handler.

|

Special Registers Altered:
None

Chapter 3. Fixed-Point Processor 51

IBM Confidential - Feb. 24, 1999

Store Multiple Word D-form

stmw RS,D(RA)

[POWER mnemonic: stm]

47 RS RA D

0 6 11 16 31

if RA = 0 then b ← 0
else b ← (RA)
EA ← b +tea EXTS(D)
r ← RS
do while r ≤ 31

MEM(EA, 4) ← GPR(r) 32:63
MEMtag(EA, 4) ← 0
r ← r + 1
EA ← EA +tea 4

Let n = (32− RS). Let the effective address (EA) be
the sum (RA|0)+ teaD.

n consecutive words starting at EA are stored from
the low-order 32 bits of GPRs RS through 31.

EA must be a multiple of 4. If it is not, either the
system alignment error handler is invoked or the
results are boundedly undefined.

Special Registers Altered:
None

Store Multiple Doubleword DS-form

stmd RS,DS(RA)

62 RS RA DS 3

0 6 11 16 30 31

if RA = 0 then b ← 0
else b ← (RA)
EA ← b +tea EXTS(DS || 0b00)
r ← RS
do while r ≤ 31

MEM(EA, 8) ← GPR(r)
MEMtag(EA, 8) ← 0
r ← r + 1
EA ← EA +tea 8

Let n = (32− RS). Let the effective address (EA) be
the sum (RA|0)+ tea(DS||0b00).

n consecutive doublewords starting at EA are stored
from GPRs RS through 31.

EA must be a multiple of 8. If it is not, either the
system alignment error handler is invoked or the
results are boundedly undefined.

In tags inactive mode, this instruction is an illegal
instruction and an attempt to execute this instruction
will invoke the system illegal instruction error
handler.

Special Registers Altered:
None

52 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

3.3.6 Fixed-Point Move Assist Instructions

The Move Assist instructions allow movement of data
from storage to registers or from registers to storage
without concern for alignment. These instructions can
be used for a short move between arbitrary storage
locations or to initiate a long move between unaligned
storage fields.

The Load/Store String instructions have preferred
forms: see Section 1.9.1, “Preferred Instruction
Forms” on page 14. In the preferred forms, register
usage satisfies the following rules.

■ RS = 4 or 5
■ RT = 4 or 5
■ last register loaded/stored ≤ 12

For some implementations, using GPR 4 for RS and
RT may result in slightly faster execution than using
GPR 5; see Book IV, PowerPC AS Implementation
Features.

Architecture Note

The preferred register for RS and RT in PowerPC
is GPR 5.

†

Chapter 3. Fixed-Point Processor 53

IBM Confidential - Feb. 24, 1999

Load String Word Immediate X-form

lswi RT,RA,NB

[POWER mnemonic: lsi]

31 RT RA NB 597 /

0 6 11 16 21 31

if RA = 0 then EA ← 0
else EA ← (RA)
if NB = 0 then n ← 32
else n ← NB
r ← RT − 1
i ← 32
do while n > 0

if i = 32 then
r ← r + 1 (mod 32)
GPR(r) ← 0

GPR(r) i : i + 7 ← MEM(EA, 1)
i ← i + 8
if i = 64 then i ← 32
EA ← EA +tea 1
n ← n − 1

Let the effective address (EA) be (RA|0). Let n = NB
if NB≠ 0, n = 32 if NB=0; n is the number of bytes to
load. Let nr = CEIL(n÷ 4); nr is the number of regis-
ters to receive data.

n consecutive bytes starting at EA are loaded into
GPRs RT through RT+nr− 1. Data are loaded into the
low-order four bytes of each GPR; the high-order four
bytes are set to 0.

Bytes are loaded left to right in each register. The
sequence of registers wraps around to GPR 0 if
required. If the low-order four bytes of register
RT+nr− 1 are only partially filled, the unfilled low-
order byte(s) of that register are set to 0.

If RA is in the range of registers to be loaded,
including the case in which RA=0, the instruction
form is invalid.

Special Registers Altered:
None

Load String Doubleword Immediate
X-form

lsdi RT,RA,NB

31 RT RA NB 629 /

0 6 11 16 21 31

if RA = 0 then EA ← 0
else EA ← (RA)
if NB = 0 then n ← 32
else n ← NB
r ← RT − 1
i ← 0
do while n > 0

if i = 0 then
r ← r + 1 (mod 32)
GPR(r) ← 0

GPR(r) i : i + 7 ← MEM(EA, 1)
i ← i + 8 (mod 64)
EA ← EA +tea 1
n ← n − 1

Let the effective address (EA) be (RA|0). Let n = NB
if NB≠ 0, n = 32 if NB=0: n is the number of bytes to
load. Let nr = CEIL(n÷ 8): nr is the number of regis-
ters to receive data.

n consecutive bytes starting at EA are loaded into
GPRs RT through RT+nr− 1. Data are loaded into all
eight bytes of each GPR.

Bytes are loaded left to right in each register. The
sequence of registers wraps around to GPR 0 if
required. If register RT+nr− 1 is only partially filled,
the unfilled low-order byte(s) of that register are set
to 0.

If RA is in the range of registers to be loaded,
including the case in which RA=0, the instruction
form is invalid.

In tags inactive mode, this instruction is an illegal
instruction and an attempt to execute this instruction
will invoke the system illegal instruction error
handler.

Special Registers Altered:
None

54 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

Load String Word Indexed X-form

lswx RT,RA,RB

[POWER mnemonic: lsx]

31 RT RA RB 533 /

0 6 11 16 21 31

if RA = 0 then b ← 0
else b ← (RA)
EA ← b +tea (RB)
n ← XER57:63
r ← RT − 1
i ← 32
RT ← undefined
do while n > 0

if i = 32 then
r ← r + 1 (mod 32)
GPR(r) ← 0

GPR(r) i : i + 7 ← MEM(EA, 1)
i ← i + 8
if i = 64 then i ← 32
EA ← EA +tea 1
n ← n − 1

Let the effective address (EA) be the sum
(RA|0)+ tea(RB). Let n = XER57:63; n is the number of
bytes to load. Let nr = CEIL(n÷ 4); nr is the number
of registers to receive data.

If n>0 , n consecutive bytes starting at EA are loaded
into GPRs RT through RT+nr− 1. Data are loaded
into the low-order four bytes of each GPR; the high-
order four bytes are set to 0.

Bytes are loaded left to right in each register. The
sequence of registers wraps around to GPR 0 if
required. If the low-order four bytes of register
RT+nr− 1 are only partially filled, the unfilled low-
order byte(s) of that register are set to 0.

If n=0 , the contents of register RT are undefined.

If RA or RB is in the range of registers to be loaded,
including the case in which RA=0, either the system
illegal instruction error handler is invoked or the
results are boundedly undefined. If RT=RA or
RT=RB, the instruction form is invalid.

Special Registers Altered:
None

Load String Doubleword Indexed
X-form

lsdx RT,RA,RB

31 RT RA RB 565 /

0 6 11 16 21 31

if RA = 0 then b ← 0
else b ← (RA)
EA ← b +tea (RB)
n ← XER57:63
r ← RT − 1
i ← 0
RT ← undefined
do while n > 0

if i = 0 then
r ← r + 1 (mod 32)
GPR(r) ← 0

GPR(r) i : i + 7 ← MEM(EA, 1)
i ← i + 8 (mod 64)
EA ← EA +tea 1
n ← n − 1

Let the effective address (EA) be the sum
(RA|0)+ tea(RB). Let n = XER57:63: n is the number of
bytes to load. Let nr = CEIL(n÷ 8): nr is the number
of registers to receive data.

If n>0 , n consecutive bytes starting at EA are loaded
into GPRs RT through RT+nr− 1. Data are loaded
into all eight bytes of each GPR.

Bytes are loaded left to right in each register. The
sequence of registers wraps around to GPR 0 if
required. If register RT+nr− 1 is only partially filled,
the unfilled low-order byte(s) of that register are set
to 0.

If n=0 , the contents of register RT are undefined.

If RA or RB is in the range of registers to be loaded,
including the case in which RA=0, either the system
illegal instruction error handler is invoked or the
results are boundedly undefined. If RT=RA or
RT=RB, the instruction form is invalid.

In tags inactive mode, this instruction is an illegal
instruction and an attempt to execute this instruction
will invoke the system illegal instruction error
handler.

Special Registers Altered:
None

Chapter 3. Fixed-Point Processor 55

IBM Confidential - Feb. 24, 1999

Store String Word Immediate X-form

stswi RS,RA,NB

[POWER mnemonic: stsi]

31 RS RA NB 725 /

0 6 11 16 21 31

if RA = 0 then EA ← 0
else EA ← (RA)
if NB = 0 then n ← 32
else n ← NB
r ← RS − 1
i ← 32
do while n > 0

if i = 32 then r ← r + 1 (mod 32)
MEM(EA, 1) ← GPR(r) i : i + 7
MEMtag(EA) ← 0
i ← i + 8
if i = 64 then i ← 32
EA ← EA +tea 1
n ← n − 1

Let the effective address (EA) be (RA|0). Let n = NB
if NB≠ 0, n = 32 if NB=0; n is the number of bytes to
store. Let nr = CEIL(n÷ 4); nr is the number of regis-
ters to supply data.

n consecutive bytes starting at EA are stored from
GPRs RS through RS+nr− 1. Data are stored from
the low-order four bytes of each GPR.

Bytes are stored left to right from each register. The
sequence of registers wraps around to GPR 0 if
required.

Special Registers Altered:
None

Store String Doubleword Immediate
X-form

stsdi RS,RA,NB

31 RS RA NB 757 /

0 6 11 16 21 31

if RA = 0 then EA ← 0
else EA ← (RA)
if NB = 0 then n ← 32
else n ← NB
r ← RS − 1
i ← 0
do while n > 0

if i = 0 then r ← r + 1 (mod 32)
MEM(EA, 1) ← GPR(r) i : i + 7
MEMtag(EA) ← 0
i ← i + 8 (mod 64)
EA ← EA +tea 1
n ← n − 1

Let the effective address (EA) be (RA|0). Let n = NB
if NB≠ 0, n = 32 if NB=0: n is the number of bytes to
store. Let nr = CEIL(n÷ 8): nr is the number of regis-
ters to supply data.

n consecutive bytes starting at EA are stored from
GPRs RS through RS+nr− 1. Data are stored from all
eight bytes of each GPR.

Bytes are stored left to right from each register. The
sequence of registers wraps around to GPR 0 if
required.

In tags inactive mode, this instruction is an illegal
instruction and an attempt to execute this instruction
will invoke the system illegal instruction error
handler.

Special Registers Altered:
None

56 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

Store String Word Indexed X-form

stswx RS,RA,RB

[POWER mnemonic: stsx]

31 RS RA RB 661 /

0 6 11 16 21 31

if RA = 0 then b ← 0
else b ← (RA)
EA ← b +tea (RB)
n ← XER57:63
r ← RS − 1
i ← 32
do while n > 0

if i = 32 then r ← r + 1 (mod 32)
MEM(EA, 1) ← GPR(r) i : i + 7
MEMtag(EA) ← 0
i ← i + 8
if i = 64 then i ← 32
EA ← EA +tea 1
n ← n − 1

Let the effective address (EA) be the sum
(RA|0)+ tea(RB). Let n = XER57:63; n is the number of
bytes to store. Let nr = CEIL(n÷ 4); nr is the number
of registers to supply data.

n consecutive bytes starting at EA are stored from
GPRs RS through RS+nr− 1. Data are stored from
the low-order four bytes of each GPR.

Bytes are stored left to right from each register. The
sequence of registers wraps around to GPR 0 if
required.

If n=0 , no bytes are stored.

Special Registers Altered:
None

Store String Doubleword Indexed
X-form

stsdx RS,RA,RB

31 RS RA RB 693 /

0 6 11 16 21 31

if RA = 0 then b ← 0
else b ← (RA)
EA ← b +tea (RB)
n ← XER57:63
r ← RS − 1
i ← 0
do while n > 0

if i = 0 then r ← r + 1 (mod 32)
MEM(EA, 1) ← GPR(r) i : i + 7
MEMtag(EA) ← 0
i ← i + 8 (mod 64)
EA ← EA +tea 1
n ← n − 1

Let the effective address (EA) be the sum
(RA|0)+ tea(RB). Let n = XER57:63: n is the number of
bytes to store. Let nr = CEIL(n÷ 8): nr is the number
of registers to supply data.

n consecutive bytes starting at EA are stored from
GPRs RS through RS+nr− 1. Data are stored from all
eight bytes of each GPR.

Bytes are stored left to right from each register. The
sequence of registers wraps around to GPR 0 if
required.

In tags inactive mode, this instruction is an illegal
instruction and an attempt to execute this instruction
will invoke the system illegal instruction error
handler.

If n=0 , no bytes are stored.

Special Registers Altered:
None

†

Chapter 3. Fixed-Point Processor 57

IBM Confidential - Feb. 24, 1999

3.3.7 Other Fixed-Point Instructions

The remainder of the fixed-point instructions use the
contents of the General Purpose Registers (GPRs) as
source operands, and place results into GPRs, into the
Fixed-Point Exception Register (XER), and into Condi-
tion Register fields. In addition, the Trap instructions
compare the contents of one GPR with a second GPR
or immediate data and, if the specified conditions are
met, invoke the system trap handler.

These instructions treat the source operands as
signed integers unless the instruction is explicitly
identified as performing an unsigned operation.

The X-form and XO-form instructions with Rc=1, and
the D-form instructions addic., andi., and andis., set
the first three bits of CR Field 0 to characterize the

result placed into the target register. In 64-bit mode,
these bits are set by signed comparison of the result
to zero. In 32-bit mode, these bits are set by signed
comparison of the low-order 32 bits of the result to
zero.

Unless otherwise noted and when appropriate, when
CR Field 0 and the XER are set they reflect the value
placed into the target register.

Programming Note

Instructions with the OE bit set or that set CA may
execute slowly or may prevent the execution of
subsequent instructions until the instruction has
completed.

58 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

3.3.8 Fixed-Point Arithmetic Instructions

The XO-form Arithmetic instructions with Rc=1, and
the D-form Arithmetic instruction addic. , set the first
three bits of CR Field 0 as described in Section 3.3.7,
“Other Fixed-Point Instructions” on page 58.

addic, addic., subfic, addc, subfc, adde, subfe, addme,
subfme, addze, and subfze always set CA, to reflect
the carry out of bit 0 in 64-bit mode and out of bit 32
in 32-bit mode. The XO-form Arithmetic instructions
set SO and OV when OE=1 to reflect overflow of the
result. Except for the Multiply Low and Divide
instructions, the setting of these bits is mode-
dependent, and reflects overflow of the 64-bit result in
64-bit mode and overflow of the low-order 32-bit
result in 32-bit mode. For XO-form Multiply Low and
Divide instructions, the setting of these bits is mode-
independent, and reflects overflow of the 64-bit result
for mulld, divd , and divdu , and overflow of the low-
order 32-bit result for mullw, divw , and divwu .

Programming Note

Notice that CR Field 0 may not reflect the “ t rue”
(infinitely precise) result if overflow occurs.

Extended mnemonics for addition and
subtraction

Several extended mnemonics are provided that use
the Add Immediate and Add Immediate Shifted
instructions to load an immediate value or an address
into a target register. Some of these are shown as
examples with the two instructions.

The PowerPC AS Architecture supplies Subtract From
instructions, which subtract the second operand from
the third. A set of extended mnemonics is provided
that use the more “normal” order, in which the third
operand is subtracted from the second, with the third
operand being either an immediate field or a register.
Some of these are shown as examples with the appro-
priate Add and Subtract From instructions.

See Appendix B, “Assembler Extended Mnemonics”
on page 161 for additional extended mnemonics.

Add Immediate D-form

addi RT,RA,SI

[POWER mnemonic: cal]

14 RT RA SI
0 6 11 16 31

if RA = 0 then RT ← EXTS(SI)
else RT ← (RA) + EXTS(SI)

The sum (RA|0) + SI is placed into register RT.

Special Registers Altered:
None

Extended Mnemonics:

Examples of extended mnemonics for Add Immediate:

Extended: Equivalent to:

li Rx,value addi Rx,0,value
la Rx,disp(Ry) addi Rx,Ry,disp
subi Rx,Ry,value addi Rx,Ry,− value

Programming Note

addi, addis, add, and subf are the preferred
instructions for addition and subtraction, because
they set few status bits.

Notice that addi and addis use the value 0, not the
contents of GPR 0, if RA=0.

Add Immediate Shifted D-form

addis RT,RA,SI

[POWER mnemonic: cau]

15 RT RA SI
0 6 11 16 31

if RA = 0 then RT ← EXTS(SI || 160)
else RT ← (RA) + EXTS(SI || 160)

The sum (RA|0) + (SI || 0x0000) is placed into reg-
ister RT.

Special Registers Altered:
None

Extended Mnemonics:

Examples of extended mnemonics for Add Immediate
Shifted:

Extended: Equivalent to:

lis Rx,value addis Rx,0,value
subis Rx,Ry,value addis Rx,Ry,− value

Chapter 3. Fixed-Point Processor 59

IBM Confidential - Feb. 24, 1999

Add XO-form

add RT,RA,RB (OE=0 Rc=0)
add. RT,RA,RB (OE=0 Rc=1)
addo RT,RA,RB (OE=1 Rc=0)
addo. RT,RA,RB (OE=1 Rc=1)

[POWER mnemonics: cax, cax., caxo, caxo.]

31 RT RA RB OE 266 Rc

0 6 11 16 21 22 31

RT ← (RA) + (RB)

The sum (RA) + (RB) is placed into register RT.

Special Registers Altered:
CR0 FXCC (if Rc=1)
SO OV (if OE=1)

Subtract From XO-form

subf RT,RA,RB (OE=0 Rc=0)
subf. RT,RA,RB (OE=0 Rc=1)
subfo RT,RA,RB (OE=1 Rc=0)
subfo. RT,RA,RB (OE=1 Rc=1)

31 RT RA RB OE 40 Rc

0 6 11 16 21 22 31

RT ← ¬(RA) + (RB) + 1

The sum ¬(RA) + (RB) + 1 is placed into register
RT.

Special Registers Altered:
CR0 FXCC (if Rc=1)
SO OV (if OE=1)

Extended Mnemonics:

Example of extended mnemonics for Subtract From:

Extended: Equivalent to:

sub Rx,Ry,Rz subf Rx,Rz,Ry

Add Immediate Carrying D-form

addic RT,RA,SI

[POWER mnemonic: ai]

12 RT RA SI

0 6 11 16 31

RT ← (RA) + EXTS(SI)

The sum (RA) + SI is placed into register RT.

Special Registers Altered:
CA OC

Extended Mnemonics:

Example of extended mnemonics for Add Immediate
Carrying:

Extended: Equivalent to:

subic Rx,Ry,value addic Rx,Ry,− value

Add Immediate Carrying and Record
D-form

addic. RT,RA,SI

[POWER mnemonic: ai.]

13 RT RA SI

0 6 11 16 31

RT ← (RA) + EXTS(SI)

The sum (RA) + SI is placed into register RT.

Special Registers Altered:
CR0 FXCC CA OC

Extended Mnemonics:

Example of extended mnemonics for Add Immediate
Carrying and Record:

Extended: Equivalent to:

subic. Rx,Ry,value addic. Rx,Ry,− value

60 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

Subtract From Immediate Carrying
D-form

subfic RT,RA,SI

[POWER mnemonic: sfi]

8 RT RA SI

0 6 11 16 31

RT ← ¬(RA) + EXTS(SI) + 1

The sum ¬(RA) + SI + 1 is placed into register RT.

| Special Registers Altered:
| CA
| OC (undefined)

Add Carrying XO-form

addc RT,RA,RB (OE=0 Rc=0)
addc. RT,RA,RB (OE=0 Rc=1)
addco RT,RA,RB (OE=1 Rc=0)
addco. RT,RA,RB (OE=1 Rc=1)

[POWER mnemonics: a, a., ao, ao.]

31 RT RA RB OE 10 Rc

0 6 11 16 21 22 31

RT ← (RA) + (RB)

The sum (RA) + (RB) is placed into register RT.

Special Registers Altered:
DC CA OC DS
CR0 FXCC (if Rc=1)
SO OV (if OE=1)

Programming Note

addc and subfc are the only instructions that set
Decimal Carries. In some implementations they
may be slower than similar instructions that do
not set Decimal Carries.

Subtract From Carrying XO-form

subfc RT,RA,RB (OE=0 Rc=0)
subfc. RT,RA,RB (OE=0 Rc=1)
subfco RT,RA,RB (OE=1 Rc=0)
subfco. RT,RA,RB (OE=1 Rc=1)

[POWER mnemonics: sf, sf., sfo, sfo.]

31 RT RA RB OE 8 Rc

0 6 11 16 21 22 31

RT ← ¬(RA) + (RB) + 1

The sum ¬(RA) + (RB) + 1 is placed into register
RT.

| Special Registers Altered:
| DC CA DS
| OC (undefined)
| CR0 FXCC (if Rc=1)
| SO OV (if OE=1)

Extended Mnemonics:

Example of extended mnemonics for Subtract From
Carrying:

Extended: Equivalent to:

subc Rx,Ry,Rz subfc Rx,Rz,Ry

Chapter 3. Fixed-Point Processor 61

IBM Confidential - Feb. 24, 1999

Add Extended XO-form

adde RT,RA,RB (OE=0 Rc=0)
adde. RT,RA,RB (OE=0 Rc=1)
addeo RT,RA,RB (OE=1 Rc=0)
addeo. RT,RA,RB (OE=1 Rc=1)

[POWER mnemonics: ae, ae., aeo, aeo.]

31 RT RA RB OE 138 Rc

0 6 11 16 21 22 31

RT ← (RA) + (RB) + CA

The sum (RA) + (RB) + CA is placed into register
RT.

Special Registers Altered:
CA
CR0 FXCC (if Rc=1)
SO OV (if OE=1)

Subtract From Extended XO-form

subfe RT,RA,RB (OE=0 Rc=0)
subfe. RT,RA,RB (OE=0 Rc=1)
subfeo RT,RA,RB (OE=1 Rc=0)
subfeo. RT,RA,RB (OE=1 Rc=1)

[POWER mnemonics: sfe, sfe., sfeo, sfeo.]

31 RT RA RB OE 136 Rc

0 6 11 16 21 22 31

RT ← ¬(RA) + (RB) + CA

The sum ¬(RA) + (RB) + CA is placed into register
RT.

Special Registers Altered:
CA
CR0 FXCC (if Rc=1)
SO OV (if OE=1)

Add to Minus One Extended XO-form

addme RT,RA (OE=0 Rc=0)
addme. RT,RA (OE=0 Rc=1)
addmeo RT,RA (OE=1 Rc=0)
addmeo. RT,RA (OE=1 Rc=1)

[POWER mnemonics: ame, ame., ameo, ameo.]

31 RT RA /// OE 234 Rc

0 6 11 16 21 22 31

RT ← (RA) + CA − 1

The sum (RA) + CA + 641 is placed into register RT.

Special Registers Altered:
CA
CR0 FXCC (if Rc=1)
SO OV (if OE=1)

Subtract From Minus One Extended
XO-form

subfme RT,RA (OE=0 Rc=0)
subfme. RT,RA (OE=0 Rc=1)
subfmeo RT,RA (OE=1 Rc=0)
subfmeo. RT,RA (OE=1 Rc=1)

[POWER mnemonics: sfme, sfme., sfmeo, sfmeo.]

31 RT RA /// OE 232 Rc

0 6 11 16 21 22 31

RT ← ¬(RA) + CA − 1

The sum ¬(RA) + CA + 641 is placed into register
RT.

Special Registers Altered:
CA
CR0 FXCC (if Rc=1)
SO OV (if OE=1)

62 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

Add to Zero Extended XO-form

addze RT,RA (OE=0 Rc=0)
addze. RT,RA (OE=0 Rc=1)
addzeo RT,RA (OE=1 Rc=0)
addzeo. RT,RA (OE=1 Rc=1)

[POWER mnemonics: aze, aze., azeo, azeo.]

31 RT RA /// OE 202 Rc

0 6 11 16 21 22 31

RT ← (RA) + CA

The sum (RA) + CA is placed into register RT.

Special Registers Altered:
CA
CR0 FXCC (if Rc=1)
SO OV (if OE=1)

Subtract From Zero Extended XO-form

subfze RT,RA (OE=0 Rc=0)
subfze. RT,RA (OE=0 Rc=1)
subfzeo RT,RA (OE=1 Rc=0)
subfzeo. RT,RA (OE=1 Rc=1)

[POWER mnemonics: sfze, sfze., sfzeo, sfzeo.]

31 RT RA /// OE 200 Rc

0 6 11 16 21 22 31

RT ← ¬(RA) + CA

The sum ¬(RA) + CA is placed into register RT.

Special Registers Altered:
CA
CR0 FXCC (if Rc=1)
SO OV (if OE=1)

Programming Note

The setting of CA by the Add and Subtract From
instructions, including the Extended versions
thereof, is mode-dependent. If a sequence of
these instructions is used to perform extended-
precision addition or subtraction, the same mode
should be used throughout the sequence.

Negate XO-form

neg RT,RA (OE=0 Rc=0)
neg. RT,RA (OE=0 Rc=1)
nego RT,RA (OE=1 Rc=0)
nego. RT,RA (OE=1 Rc=1)

31 RT RA /// OE 104 Rc

0 6 11 16 21 22 31

RT ← ¬(RA) + 1

The sum ¬(RA) + 1 is placed into register RT.

If executing in 64-bit mode and register RA contains
the most negative 64-bit number (0x8000_0000_0000_
0000), the result is the most negative number and, if
OE=1, OV is set to 1. Similarly, if executing in 32-bit
mode and (RA)32:63 contain the most negative 32-bit
number (0x8000_0000), the low-order 32 bits of the
result contain the most negative 32-bit number and, if
OE=1, OV is set to 1.

Special Registers Altered:
CR0 FXCC (if Rc=1)
SO OV (if OE=1)

Chapter 3. Fixed-Point Processor 63

IBM Confidential - Feb. 24, 1999

Multiply Low Immediate D-form

mulli RT,RA,SI
[POWER mnemonic: muli]

7 RT RA SI
0 6 11 16 31

prod 0:127 ← (RA) × EXTS(SI)
RT ← prod 64:127

The 64-bit first operand is (RA). The 64-bit second
operand is the sign-extended value of the SI field.
The low-order 64 bits of the 128-bit product of the
operands are placed into register RT.

Both operands and the product are interpreted as
signed integers.

Special Registers Altered:
None

Multiply Low Doubleword XO-form

mulld RT,RA,RB (OE=0 Rc=0)
mulld. RT,RA,RB (OE=0 Rc=1)
mulldo RT,RA,RB (OE=1 Rc=0)
mulldo. RT,RA,RB (OE=1 Rc=1)

31 RT RA RB OE 233 Rc
0 6 11 16 21 22 31

prod 0:127 ← (RA) × (RB)
RT ← prod 64:127

The 64-bit operands are (RA) and (RB). The low-order
64 bits of the 128-bit product of the operands are
placed into register RT.

If OE=1 then OV is set to 1 if the product cannot be
represented in 64 bits.

Both operands and the product are interpreted as
signed integers.

Special Registers Altered:
CR0 FXCC (if Rc=1)
SO OV (if OE=1)

Programming Note

The XO-form Multiply instructions may execute
faster on some implementations if RB contains
the operand having the smaller absolute value.

Multiply Low Word XO-form

mullw RT,RA,RB (OE=0 Rc=0)
mullw. RT,RA,RB (OE=0 Rc=1)
mullwo RT,RA,RB (OE=1 Rc=0)
mullwo. RT,RA,RB (OE=1 Rc=1)
[POWER mnemonics: muls, muls., mulso, mulso.]

31 RT RA RB OE 235 Rc
0 6 11 16 21 22 31

RT ← (RA) 32:63 × (RB) 32:63

The 32-bit operands are the low-order 32 bits of RA
and of RB. The 64-bit product of the operands is
placed into register RT.

If OE=1 then OV is set to 1 if the product cannot be
represented in 32 bits.

Both operands and the product are interpreted as
signed integers.

Special Registers Altered:
CR0 FXCC (if Rc=1)
SO OV (if OE=1)

Programming Note

For mulli and mullw , the low-order 32 bits of the
product are the correct 32-bit product for 32-bit
mode.

For mulli and mulld , the low-order 64 bits of the
product are independent of whether the operands
are regarded as signed or unsigned 64-bit inte-
gers. For mulli and mullw , the low-order 32 bits
of the product are independent of whether the
operands are regarded as signed or unsigned
32-bit integers.

64 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

Multiply High Doubleword XO-form

mulhd RT,RA,RB (Rc=0)
mulhd. RT,RA,RB (Rc=1)

31 RT RA RB / 73 Rc

0 6 11 16 21 22 31

prod 0:127 ← (RA) × (RB)
RT ← prod 0:63

The 64-bit operands are (RA) and (RB). The high-
order 64 bits of the 128-bit product of the operands
are placed into register RT.

Both operands and the product are interpreted as
signed integers.

Special Registers Altered:
CR0 FXCC (if Rc=1)

Multiply High Word XO-form

mulhw RT,RA,RB (Rc=0)
mulhw. RT,RA,RB (Rc=1)

31 RT RA RB / 75 Rc

0 6 11 16 21 22 31

prod 0:63 ← (RA) 32:63 × (RB) 32:63
RT32:63 ← prod 0:31
RT0:31 ← undefined

The 32-bit operands are the low-order 32 bits of RA
and of RB. The high-order 32 bits of the 64-bit

† product of the operands are placed into RT32:63. The
† contents of RT0:31 are undefined.

Both operands and the product are interpreted as
signed integers.

Special Registers Altered:
CR0 FXCC (CR0(0:2) and FXCC(36:38)

undefined in 64-bit mode) (if Rc=1)

Multiply High Doubleword Unsigned
XO-form

mulhdu RT,RA,RB (Rc=0)
mulhdu. RT,RA,RB (Rc=1)

31 RT RA RB / 9 Rc

0 6 11 16 21 22 31

prod 0:127 ← (RA) × (RB)
RT ← prod 0:63

The 64-bit operands are (RA) and (RB). The high-
order 64 bits of the 128-bit product of the operands
are placed into register RT.

Both operands and the product are interpreted as
unsigned integers, except that if Rc=1 the first three
bits of CR Field 0 are set by signed comparison of the
result to zero.

Special Registers Altered:
CR0 FXCC (if Rc=1)

Multiply High Word Unsigned XO-form

mulhwu RT,RA,RB (Rc=0)
mulhwu. RT,RA,RB (Rc=1)

31 RT RA RB / 11 Rc

0 6 11 16 21 22 31

prod 0:63 ← (RA) 32:63 × (RB) 32:63
RT32:63 ← prod 0:31
RT0:31 ← undefined

The 32-bit operands are the low-order 32 bits of RA
and of RB. The high-order 32 bits of the 64-bit

† product of the operands are placed into RT32:63. The
† contents of RT0:31 are undefined.

Both operands and the product are interpreted as
unsigned integers, except that if Rc=1 the first three
bits of CR Field 0 are set by signed comparison of the
result to zero.

Special Registers Altered:
CR0 FXCC (CR0(0:2) and FXCC(36:38)

undefined in 64-bit mode) (if Rc=1)

Chapter 3. Fixed-Point Processor 65

IBM Confidential - Feb. 24, 1999

Divide Doubleword XO-form

divd RT,RA,RB (OE=0 Rc=0)
divd. RT,RA,RB (OE=0 Rc=1)
divdo RT,RA,RB (OE=1 Rc=0)
divdo. RT,RA,RB (OE=1 Rc=1)

31 RT RA RB OE 489 Rc

0 6 11 16 21 22 31

dividend 0:63 ← (RA)
divisor 0:63 ← (RB)
RT ← dividend ÷ divisor

The 64-bit dividend is (RA). The 64-bit divisor is (RB).
The 64-bit quotient of the dividend and divisor is
placed into register RT. The remainder is not sup-
plied as a result.

Both operands and the quotient are interpreted as
signed integers. The quotient is the unique signed
integer that satisfies

dividend = (quotient × divisor) + r

where 0 ≤ r < |divisor| if the dividend is nonnegative,
and − |divisor| < r ≤ 0 if the dividend is negative.

If an attempt is made to perform any of the divisions

0x8000_0000_0000_0000 ÷ −1
<anything> ÷ 0

then the contents of register RT are undefined as are
(if Rc=1) the contents of the LT, GT, and EQ bits of
CR Field 0 and of the FXCC. In these cases, if OE=1
then OV is set to 1.

Special Registers Altered:
CR0 FXCC (if Rc=1)
SO OV (if OE=1)

Programming Note

The 64-bit signed remainder of dividing (RA) by
(RB) can be computed as follows, except in the
case that (RA) = − 263 and (RB) = − 1.

divd RT,RA,RB # RT = quotient
mulld RT,RT,RB # RT = quotient*divisor
subf RT,RT,RA # RT = remainder

Divide Word XO-form

divw RT,RA,RB (OE=0 Rc=0)
divw. RT,RA,RB (OE=0 Rc=1)
divwo RT,RA,RB (OE=1 Rc=0)
divwo. RT,RA,RB (OE=1 Rc=1)

31 RT RA RB OE 491 Rc

0 6 11 16 21 22 31

dividend 0:63 ← EXTS((RA) 32:63)
divisor 0:63 ← EXTS((RB) 32:63)
RT32:63 ← dividend ÷ divisor
RT0:31 ← undefined

The 64-bit dividend is the sign-extended value of
(RA)32:63. The 64-bit divisor is the sign-extended
value of (RB)32:63. The 64-bit quotient is formed. The
low-order 32 bits of the 64-bit quotient are placed into

† RT32:63. The contents of RT0:31 are undefined. The
remainder is not supplied as a result.

Both operands and the quotient are interpreted as
signed integers. The quotient is the unique signed
integer that satisfies

dividend = (quotient × divisor) + r

where 0 ≤ r < |divisor| if the dividend is nonnegative,
and − |divisor| < r ≤ 0 if the dividend is negative.

If an attempt is made to perform any of the divisions

0x8000_0000 ÷ −1
<anything> ÷ 0

then the contents of register RT are undefined as are
(if Rc=1) the contents of the LT, GT, and EQ bits of
CR Field 0 and of the FXCC. In these cases, if OE=1
then OV is set to 1.

Special Registers Altered:
CR0 FXCC (CR0(0:2) and FXCC(36:38)

undefined in 64-bit mode) (if Rc=1)
SO OV (if OE=1)

Programming Note

The 32-bit signed remainder of dividing (RA)32:63
by (RB)32:63 can be computed as follows, except in
the case that (RA)32:63 = − 231 and (RB)32:63 = − 1.

divw RT,RA,RB # RT = quotient
mullw RT,RT,RB # RT = quotient*divisor
subf RT,RT,RA # RT = remainder

66 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

Divide Doubleword Unsigned XO-form

divdu RT,RA,RB (OE=0 Rc=0)
divdu. RT,RA,RB (OE=0 Rc=1)
divduo RT,RA,RB (OE=1 Rc=0)
divduo. RT,RA,RB (OE=1 Rc=1)

31 RT RA RB OE 457 Rc

0 6 11 16 21 22 31

dividend 0:63 ← (RA)
divisor 0:63 ← (RB)
RT ← dividend ÷ divisor

The 64-bit dividend is (RA). The 64-bit divisor is (RB).
The 64-bit quotient of the dividend and divisor is
placed into register RT. The remainder is not sup-
plied as a result.

Both operands and the quotient are interpreted as
unsigned integers, except that if Rc=1 the first three
bits of CR Field 0 are set by signed comparison of the
result to zero. The quotient is the unique unsigned
integer that satisfies

dividend = (quotient × divisor) + r

where 0 ≤ r < divisor.

If an attempt is made to perform the division

<anything> ÷ 0

then the contents of register RT are undefined as are
(if Rc=1) the contents of the LT, GT, and EQ bits of
CR Field 0 and of the FXCC. In this case, if OE=1
then OV is set to 1.

Special Registers Altered:
CR0 FXCC (if Rc=1)
SO OV (if OE=1)

Programming Note

The 64-bit unsigned remainder of dividing (RA) by
(RB) can be computed as follows.

divdu RT,RA,RB # RT = quotient
mulld RT,RT,RB # RT = quotient*divisor
subf RT,RT,RA # RT = remainder

Divide Word Unsigned XO-form

divwu RT,RA,RB (OE=0 Rc=0)
divwu. RT,RA,RB (OE=0 Rc=1)
divwuo RT,RA,RB (OE=1 Rc=0)
divwuo. RT,RA,RB (OE=1 Rc=1)

31 RT RA RB OE 459 Rc

0 6 11 16 21 22 31

dividend 0:63 ← 320 || (RA) 32:63
divisor 0:63 ← 320 || (RB) 32:63
RT32:63 ← dividend ÷ divisor
RT0:31 ← undefined

The 64-bit dividend is the zero-extended value of
(RA)32:63. The 64-bit divisor is the zero-extended
value of (RB)32:63. The 64-bit quotient is formed. The
low-order 32 bits of the 64-bit quotient are placed into

† RT32:63. The contents of RT0:31 are undefined. The
remainder is not supplied as a result.

Both operands and the quotient are interpreted as
unsigned integers, except that if Rc=1 the first three
bits of CR Field 0 are set by signed comparison of the
result to zero. The quotient is the unique unsigned
integer that satisfies

dividend = (quotient × divisor) + r

where 0 ≤ r < divisor.

If an attempt is made to perform the division

<anything> ÷ 0

then the contents of register RT are undefined as are
(if Rc=1) the contents of the LT, GT, and EQ bits of
CR Field 0 and of the FXCC. In this case, if OE=1
then OV is set to 1.

Special Registers Altered:
CR0 FXCC (CR0(0:2) and FXCC(36:38)

undefined in 64-bit mode) (if Rc=1)
SO OV (if OE=1)

Programming Note

The 32-bit unsigned remainder of dividing
(RA)32:63 by (RB)32:63 can be computed as follows.

divwu RT,RA,RB # RT = quotient
mullw RT,RT,RB # RT = quotient*divisor
subf RT,RT,RA # RT = remainder

Chapter 3. Fixed-Point Processor 67

IBM Confidential - Feb. 24, 1999

3.3.9 Fixed-Point Compare Instructions

The fixed-point Compare instructions compare the
contents of register RA with (1) the sign-extended
value of the SI field, (2) the zero-extended value of
the UI field, or (3) the contents of register RB. The
comparison is signed for cmpi and cmp , and unsigned
for cmpli and cmpl .

The L field controls whether the operands are treated
as 64-bit or 32-bit quantities, as follows:

L Operand length
0 32-bit operands
1 64-bit operands

When the operands are treated as 32-bit signed quan-
tities, bit 32 of the register (RA or RB) is the sign bit.

The cmpi, cmp, cmpli , and cmpl instructions set one
bit in the leftmost three bits of the designated CR
field to 1, and the other two to 0. XERSO is copied to
bit 3 of the designated CR field. The cmpla instruc-
tion sets one bit in the designated CR field to 1, and
the other three to 0.

The CR field is set as follows.

Bit Name Description

0 LT (RA) < SI or (RB) (signed comparison)

(RA) <u UI or (RB) (unsigned comparison)

1 GT (RA) > SI or (RB) (signed comparison)

(RA) >u UI or (RB) (unsigned comparison)

2 EQ (RA) = SI, UI, or (RB)

3 SO,IC Summary Overflow from the XER,
or Incomparable (cmpla only)

The Compare instructions also set XERFXCC, as
follows.

Bit Name Description
0 LT (RA) < SI, UI, or (RB)
1 GT (RA) > SI, UI, or (RB)
2 EQ (RA) = SI, UI, or (RB)
3 IC Incomparable (used by cmpla ;

set to 0 by other compares)

Extended mnemonics for compares

A set of extended mnemonics is provided so that
compares can be coded with the operand length as
part of the mnemonic rather than as a numeric
operand. Some of these are shown as examples with
the Compare instructions. See Appendix B, “Assem-
bler Extended Mnemonics” on page 161 for additional
extended mnemonics.

Compare Immediate D-form

cmpi BF,L,RA,SI

11 BF / L RA SI
0 6 9 10 11 16 31

if L = 0 then a ← EXTS((RA) 32:63)
else a ← (RA)

if a < EXTS(SI) then c ← 0b100
else if a > EXTS(SI) then c ← 0b010
else c ← 0b001
CR4×BF:4×BF+3 ← c || XERSO
FXCC ← c || 0b0

The contents of register RA ((RA)32:63 sign-extended
to 64 bits if L = 0) are compared with the sign-
extended value of the SI field, treating the operands
as signed integers. The result of the comparison is
placed into CR field BF and into the FXCC.

Special Registers Altered:
CR field BF, FXCC

Extended Mnemonics:

Examples of extended mnemonics for Compare Imme-
diate:

Extended: Equivalent to:
cmpdi Rx,value cmpi 0,1,Rx,value
cmpwi cr3,Rx,value cmpi 3,0,Rx,value

Compare X-form

cmp BF,L,RA,RB

31 BF / L RA RB 0 /
0 6 9 10 11 16 21 31

if L = 0 then a ← EXTS((RA) 32:63)
b ← EXTS((RB) 32:63)

else a ← (RA)
b ← (RB)

if a < b then c ← 0b100
else if a > b then c ← 0b010
else c ← 0b001
CR4×BF:4×BF+3 ← c || XERSO
FXCC ← c || 0b0

The contents of register RA ((RA)32:63 if L = 0) are
compared with the contents of register RB ((RB)32:63 if
L=0) , treating the operands as signed integers. The
result of the comparison is placed into CR field BF
and into the FXCC.

Special Registers Altered:
CR field BF, FXCC

Extended Mnemonics:

Examples of extended mnemonics for Compare:

Extended: Equivalent to:
cmpd Rx,Ry cmp 0,1,Rx,Ry
cmpw cr3,Rx,Ry cmp 3,0,Rx,Ry

68 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

Compare Logical Immediate D-form

cmpli BF,L,RA,UI

10 BF / L RA UI

0 6 9 10 11 16 31

if L = 0 then a ← 320 || (RA) 32:63
else a ← (RA)

if a < u (480 || UI) then c ← 0b100
else if a > u (480 || UI) then c ← 0b010
else c ← 0b001
CR4×BF:4×BF+3 ← c || XERSO
FXCC ← c || 0b0

The contents of register RA ((RA)32:63 zero-extended
to 64 bits if L = 0) are compared with 480 || UI, treating
the operands as unsigned integers. The result of the
comparison is placed into CR field BF and into the
FXCC.

Special Registers Altered:
CR field BF, FXCC

Extended Mnemonics:

Examples of extended mnemonics for Compare
Logical Immediate:

Extended: Equivalent to:

cmpldi Rx,value cmpli 0,1,Rx,value
cmplwi cr3,Rx,value cmpli 3,0,Rx,value

Compare Logical X-form

cmpl BF,L,RA,RB

31 BF / L RA RB 32 /

0 6 9 10 11 16 21 31

if L = 0 then a ← 320 || (RA) 32:63
b ← 320 || (RB) 32:63

else a ← (RA)
b ← (RB)

if a < u b then c ← 0b100
else if a > u b then c ← 0b010
else c ← 0b001
CR4×BF:4×BF+3 ← c || XERSO
FXCC ← c || 0b0

The contents of register RA ((RA)32:63 if L = 0) are
compared with the contents of register RB ((RB)32:63 if
L=0) , treating the operands as unsigned integers.
The result of the comparison is placed into CR field
BF and into the FXCC.

Special Registers Altered:
CR field BF, FXCC

Extended Mnemonics:

Examples of extended mnemonics for Compare
Logical:

Extended: Equivalent to:

cmpld Rx,Ry cmpl 0,1,Rx,Ry
cmplw cr3,Rx,Ry cmpl 3,0,Rx,Ry

Chapter 3. Fixed-Point Processor 69

IBM Confidential - Feb. 24, 1999

Compare Logical Addresses X-form

cmpla BF,RA,RB

31 BF / 1 RA RB 64 /

0 6 9 10 11 16 21 31

if (RA) 0:15 = (RB) 0:15 &
((RA) 0:15 = 0 |

(RA) 0:39 = (RB) 0:39) then
if (RA) < u (RB) then c ← 0b1000
else if (RA) > u (RB) then c ← 0b0100
else c ← 0b0010

else c ← 0b0001
CR4×BF:4×BF+3 ← c
FXCC ← c

If the high order 16 bits of the contents of register RA
are zero and both operands have the same value in
bit positions 0 to 15, or if the high order 16 bits of the
contents of register RA are not all zero and both
operands have the same value in bit positions 0 to 39,
then the contents of register RA is compared with the
contents of register RB, treating the operands as
unsigned integers. The result of the comparison is
placed into CR field BF and into the FXCC. The low-
order bit of the FXCC is set to zero.

If the operands differ in the high-order 16 bits, or if
the high order 16 bits of the contents of register RA
are not all zero and the operands differ in the high-
order 40 bits, the high-order three bits of CR field BF
and of the FXCC are set to zero, and the low-order bit
of CR field BF and of the FXCC is set to one. In this
case the operands are said to be “incomparable”.

In tags inactive mode, this instruction is an illegal
instruction and an attempt to execute this instruction
will invoke the system illegal instruction error
handler.

Special Registers Altered:
CR field BF, FXCC

70 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

3.3.10 Fixed-Point Trap Instructions

The Trap instructions are provided to test for a speci-
fied set of conditions. If any of the conditions tested
by a Trap instruction are met, the system trap handler
is invoked. If none of the tested conditions are met,
instruction execution continues normally.

Except for the txer instruction, the contents of register
RA are compared with either the sign-extended value
of the SI field or the contents of register RB,
depending on the Trap instruction. For tdi and td , the
entire contents of RA (and RB) participate in the com-
parison; for twi and tw , only the contents of the low-
order 32 bits of RA (and RB) participate in the
comparison.

In tags inactive mode (see Book III, PowerPC AS
Operating Environment Architecture) or with TO equal
to any value other than 0b11100 or 0b11110, this com-
parison results in five conditions which are ANDed
with TO. If the result is not 0 the system trap handler
is invoked. These conditions are as follows.

TO Bit ANDed with Condition
0 Less Than, using signed comparison
1 Greater Than, using signed comparison
2 Equal
3 Less Than, using unsigned comparison
4 Greater Than, using unsigned comparison

For tdi and td in tags active mode and TO = 0b11100,
this comparison results in two conditions that cause
the system trap handler to be invoked. The system
trap handler is invoked if any of the following condi-
tions are true:

■ The high-order 16 bits are not equal
■ The high-order 16 bits of one operand are not all

zero and either the high-order 40 bits are not
equal or the first operand is less than the second,
using signed comparison

For tdi and td in tags active mode and TO = 0b11110,
this comparison results in three conditions that cause
the system trap handler to be invoked. The system
trap handler is invoked if any of the following condi-
tions are true:

■ Less Than, using signed comparison
■ Logically Less Than
■ The high-order 40 bits are not equal

twi and tw in tags active mode with TO = 0b11100 or
TO = 0b11110 are invalid forms.

For the txer instruction, the contents of a specified
XER bit are compared with the TO field. If the two are
equal the system trap handler is invoked.

Extended mnemonics for traps

A set of extended mnemonics is provided so that
traps can be coded with the condition as part of the
mnemonic rather than as a numeric operand. Some
of these are shown as examples with the Trap
instructions. See Appendix B, “Assembler Extended
Mnemonics” on page 161 for additional extended
mnemonics.

Chapter 3. Fixed-Point Processor 71

IBM Confidential - Feb. 24, 1999

Trap Doubleword Immediate D-form

tdi TO,RA,SI

2 TO RA SI
0 6 11 16 31

a ← (RA)
b ← EXTS(SI)
if (a 0:15 =/ b 0:15 |

(a 0:15 =/ 0 &
((a 16:39 =/ b 16:39) | (a < b)))) &

TO = 0b11100 & (tags active) then TRAP
if (a 0:39 =/ b 0:39) &
(TO = 0b11110) & (tags active) then TRAP
if (a < EXTS(SI)) & TO 0 &

(TO =/ 0b11100 | tags inactive) then TRAP
if (a > EXTS(SI)) & TO 1 &

((TO =/ 0b11100 &
TO =/ 0b11110) | tags inactive) then TRAP

if (a = EXTS(SI)) & TO 2 &
((TO =/ 0b11100 &

TO =/ 0b11110) | tags inactive) then TRAP
if (a < u EXTS(SI)) & TO 3 then TRAP
if (a > u EXTS(SI)) & TO 4 then TRAP

The contents of register RA are compared with the
sign-extended value of the SI field. In tags inactive
mode or if TO is equal to any value other than
0b11100 or 0b11110, if any bit in the TO field is set to
1 and its corresponding condition is met by the result
of the comparison, the system trap handler is
invoked.

In tags active mode with TO = 0b11100 the system
trap handler is invoked if any of the following condi-
tions are met.

■ The high-order 16 bits of the contents of RA are
not equal to the high-order 16 bits of the 64-bit
sign-extended SI field.

■ The high-order 16 bits of the contents of RA are
not equal to zero, and either the high-order 40
bits of the contents of RA are not equal to the
high-order 40 bits of the 64-bit sign-extended SI
field or the contents of RA are less than the sign-
extended SI field.

In tags active mode with TO = 0b11110, if the high-
order 40 bits of the contents of RA are not equal to
the high-order 40 bits of the 64-bit sign-extended SI
field, or if the contents of RA are less than or logically
less than the sign-extended SI field, the system trap
handler is invoked.

Special Registers Altered:
None

Extended Mnemonics:

Examples of extended mnemonics for Trap
Doubleword Immediate:

Extended: Equivalent to:
tdlti Rx,value tdi 16,Rx,value
tdnei Rx,value tdi 24,Rx,value

Trap Word Immediate D-form

twi TO,RA,SI

[POWER mnemonic: ti]

3 TO RA SI

0 6 11 16 31

a ← EXTS((RA) 32:63)
if (a < EXTS(SI)) & TO 0 then TRAP
if (a > EXTS(SI)) & TO 1 then TRAP
if (a = EXTS(SI)) & TO 2 then TRAP
if (a < u EXTS(SI)) & TO 3 then TRAP
if (a > u EXTS(SI)) & TO 4 then TRAP

The contents of RA32:63 are compared with the sign-
extended value of the SI field. If any bit in the TO
field is set to 1 and its corresponding condition is met
by the result of the comparison, the system trap
handler is invoked.

In tags active mode (see Book III, PowerPC AS Oper-
ating Environment Architecture), TO = 0b11100 and
TO = 0b11110 are invalid forms.

Special Registers Altered:
None

Extended Mnemonics:

Examples of extended mnemonics for Trap Word
Immediate:

Extended: Equivalent to:

twgti Rx,value twi 8,Rx,value
twllei Rx,value twi 6,Rx,value

72 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

Trap Doubleword X-form

td TO,RA,RB

31 TO RA RB 68 /
0 6 11 16 21 31

a ← (RA)
b ← (RB)
if (a 0:15 =/ b 0:15 |

(a 0:15 =/ 0 &
((a 16:39 =/ b 16:39) | (a < b)))) &

TO = 0b11100 & (tags active) then TRAP
if (a 0:39 =/ b 0:39) &
(TO = 0b11110) & (tags active) then TRAP
if (a < b) & TO 0 &

(TO =/ 0b11100 | tags inactive) then TRAP
if (a > b) & TO 1 &

((TO =/ 0b11100 &
TO =/ 0b11110) | tags inactive) then TRAP

if (a = b) & TO 2 &
((TO =/ 0b11100 &

TO =/ 0b11110) | tags inactive) then TRAP
if (a < u b) & TO3 then TRAP
if (a > u b) & TO4 then TRAP

The contents of register RA are compared with the
contents of register RB. In tags inactive mode or if
TO is equal to any value other than 0b11100 or
0b11110, if any bit in the TO field is set to 1 and its
corresponding condition is met by the result of the
comparison, the system trap handler is invoked.

In tags active mode with TO = 0b11100 the system
trap handler is invoked if any of the following condi-
tions are met.

■ The high-order 16 bits of the contents of RA are
not equal to the high-order 16 bits of the contents
of RB.

■ The high-order 16 bits of the contents of RA are
not equal to zero, and either the high-order 40
bits of the contents of RA are not equal to the
high-order 40 bits of the contents of RB or the
contents of RA are less than the contents of RB.

In tags active mode with TO = 0b11110, if the high-
order 40 bits of the contents of RA are not equal to
the high-order 40 bits of the contents of RB, or if the
contents of RA are less than or logically less than the
contents of RB, the system trap handler is invoked.

Special Registers Altered:
None

Extended Mnemonics:

Examples of extended mnemonics for Trap
Doubleword:

Extended: Equivalent to:

tdge Rx,Ry td 12,Rx,Ry
tdlnl Rx,Ry td 5,Rx,Ry

Trap Word X-form

tw TO,RA,RB

[POWER mnemonic: t]

31 TO RA RB 4 /

0 6 11 16 21 31

a ← EXTS((RA) 32:63)
b ← EXTS((RB) 32:63)
if (a < b) & TO 0 then TRAP
if (a > b) & TO 1 then TRAP
if (a = b) & TO 2 then TRAP
if (a < u b) & TO3 then TRAP
if (a > u b) & TO4 then TRAP

The contents of RA32:63 are compared with the con-
tents of RB32:63. If any bit in the TO field is set to 1
and its corresponding condition is met by the result of
the comparison, the system trap handler is invoked.

In tags active mode (see Book III, PowerPC AS Oper-
ating Environment Architecture), TO = 0b11100 and
TO = 0b11110 are invalid forms.

Special Registers Altered:
None

Extended Mnemonics:

Examples of extended mnemonics for Trap Word:

Extended: Equivalent to:

tweq Rx,Ry tw 4,Rx,Ry
twlge Rx,Ry tw 5,Rx,Ry
trap tw 31,0,0

Chapter 3. Fixed-Point Processor 73

IBM Confidential - Feb. 24, 1999

Trap on XER TX-form

txer TO,UI,XBI

31 TO UI XBI 36 /

0 6 11 21 25 31

if XER XBI+32 = TO4 then TRAP

The XER bit at position XBI+32 is tested. If it equals
TO4, the system trap handler is invoked.

The UI field is ignored by the processor.

If TO is not 0 or 1, the instruction form is invalid.

In tags inactive mode, this instruction is an illegal
instruction and an attempt to execute this instruction
will invoke the system illegal instruction error
handler.

Special Registers Altered:
None

Extended Mnemonics:

Examples of extended mnemonics for Trap on XER:

Extended: Equivalent to:

txereq 256 txer 1,256,38
txeric txer 1,0,39
txerntag 5 txer 0,5,43

Programming Note

The UI field can be used to pass a parameter to
the system trap handler. The system trap handler
can examine the instruction that caused the trap
to obtain this parameter. One use of this param-
eter is to indicate what function was being per-
formed when the instruction was executed.

74 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

3.3.11 Fixed-Point Select Instructions

The Select instructions set a target register to one of
two values, according to the value of a specified bit in
the Fixed-Point Exception Register. Only bits 32
through 47 can be tested.

If Rc=1, the Select instructions set CR Field 0 and
the FXCC according to the value in register RA at the
completion of the instruction.

Architecture Note

For all four Select instructions, the result if
XBI+32 = 1 is specified by instruction bits 6:10
and the result if XBI+32 = 0 is specified by
instruction bits 16:20.

Programming Note

In some implementations, testing one of the first
three bits of the FXCC may be faster than testing
other XER bits.

Programming Note

The Select instructions are intended to be used to
improve program execution speed by reducing
branching. For example, they can be used, often
after a Compare instruction, to implement the
fixed-point minimum, maximum, and absolute
value functions, to obtain 0/1 or 0/− 1 values for
relational expressions, and to implement certain
simple forms of C conditional expressions and if-
then-else constructions.

Extended mnemonics for selects

A set of extended mnemonics is provided so that
selects can be coded with the condition as part of the
mnemonic rather than as a numeric operand. Some
of these are shown as examples with the Select
instructions. See Appendix B, “Assembler Extended
Mnemonics” on page 161 for additional extended
mnemonics.

Chapter 3. Fixed-Point Processor 75

IBM Confidential - Feb. 24, 1999

Select Imm ediate-Immediate MDS-form

selii RA,IS,IB,XBI (Rc=0)
selii. RA,IS,IB,XBI (Rc=1)

30 IS RA IB XBI // 12 Rc

0 6 11 16 21 25 27 31

if XER XBI+32 then RA ← EXTS(IS)
else RA ← EXTS(IB)

The XER bit at position XBI+32 is tested. If it is 1,
register RA is set to the sign-extended value of IS.
Otherwise register RA is set to the sign-extended
value of IB.

In tags inactive mode, this instruction is an illegal
instruction and an attempt to execute this instruction
will invoke the system illegal instruction error
handler.

Special Registers Altered:
CR0 FXCC (if Rc=1)

Extended Mnemonics:

Examples of extended mnemonics for Select
Immediate-Immediate:

Extended: Equivalent to:

seleqii Rx,valy,valz selii Rx,valy,valz,38
seldsii Rx,valy,valz selii Rx,valy,valz,40

Select Immediate-Register MDS-form

selir RA,IS,RB,XBI (Rc=0)
selir. RA,IS,RB,XBI (Rc=1)

30 IS RA RB XBI // 13 Rc

0 6 11 16 21 25 27 31

if XER XBI+32 then RA ← EXTS(IS)
else RA ← (RB)

The XER bit at position XBI+32 is tested. If it is 1,
register RA is set to the sign-extended value of IS.
Otherwise register RA is set to (RB).

In tags inactive mode, this instruction is an illegal
instruction and an attempt to execute this instruction
will invoke the system illegal instruction error
handler.

Special Registers Altered:
CR0 FXCC (if Rc=1)

Extended Mnemonics:

Examples of extended mnemonics for Select
Immediate-Register:

Extended: Equivalent to:

selltir Rx,valy,Rz selir Rx,valy,Rz,36
selcair Rx,valy,Rz selir Rx,valy,Rz,34

76 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

Select Register-Immediate MDS-form

selri RA,RS,IB,XBI (Rc=0)
selri. RA,RS,IB,XBI (Rc=1)

30 RS RA IB XBI // 14 Rc

0 6 11 16 21 25 27 31

if XER XBI+32 then RA ← (RS)
else RA ← EXTS(IB)

The XER bit at position XBI+32 is tested. If it is 1,
register RA is set to (RS). Otherwise register RA is
set to the sign-extended value of IB.

In tags inactive mode, this instruction is an illegal
instruction and an attempt to execute this instruction
will invoke the system illegal instruction error
handler.

Special Registers Altered:
CR0 FXCC (if Rc=1)

Extended Mnemonics:

Examples of extended mnemonics for Select Register-
Immediate:

Extended: Equivalent to:

selgtri Rx,Ry,valz selri Rx,Ry,valz,37
seltcri Rx,Ry,valz selri Rx,Ry,valz,35

Select Register-Register MDS-form

selrr RA,RS,RB,XBI (Rc=0)
selrr. RA,RS,RB,XBI (Rc=1)

30 RS RA RB XBI // 15 Rc

0 6 11 16 21 25 27 31

if XER XBI+32 then RA ← (RS)
else RA ← (RB)

The XER bit at position XBI+32 is tested. If it is 1,
register RA is set to (RS). Otherwise register RA is
set to (RB).

In tags inactive mode, this instruction is an illegal
instruction and an attempt to execute this instruction
will invoke the system illegal instruction error
handler.

Special Registers Altered:
CR0 FXCC (if Rc=1)

Extended Mnemonics:

Examples of extended mnemonics for Select Register-
Register:

Extended: Equivalent to:

selovrr Rx,Ry,Rz selrr Rx,Ry,Rz,33
selicrr Rx,Ry,Rz selrr Rx,Ry,Rz,39

Chapter 3. Fixed-Point Processor 77

IBM Confidential - Feb. 24, 1999

3.3.12 Fixed-Point Logical Instructions

The Logical instructions perform bit-parallel oper-
ations on 64-bit operands.

The X-form Logical instructions with Rc=1, and the
D-form Logical instructions andi. and andis. , set the
first three bits of CR Field 0 as described in Section
3.3.7, “Other Fixed-Point Instructions” on page 58.
The Logical instructions do not change the SO, OV,
and CA bits in the XER.

Extended mnemonics for logical
operations

An extended mnemonic is provided that generates the
preferred form of “no-op” (an instruction that does
nothing). This is shown as an example with the OR
Immediate instruction.

Extended mnemonics are provided that use the OR
and NOR instructions to copy the contents of one reg-
ister to another, with and without complementing.
These are shown as examples with the two
instructions.

See Appendix B, “Assembler Extended Mnemonics”
on page 161 for additional extended mnemonics.

AND Immediate D-form

andi. RA,RS,UI

[POWER mnemonic: andil.]

28 RS RA UI

0 6 11 16 31

RA ← (RS) & (480 || UI)

The contents of register RS are ANDed with 480 || UI
and the result is placed into register RA.

Special Registers Altered:
CR0 FXCC

AND Immediate Shifted D-form

andis. RA,RS,UI

[POWER mnemonic: andiu.]

29 RS RA UI

0 6 11 16 31

RA ← (RS) & (320 || UI || 160)

The contents of register RS are ANDed with 320 || UI
|| 160 and the result is placed into register RA.

Special Registers Altered:
CR0 FXCC

78 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

OR Immediate D-form

ori RA,RS,UI

[POWER mnemonic: oril]

24 RS RA UI

0 6 11 16 31

RA ← (RS) | (480 || UI)

The contents of register RS are ORed with 480 || UI
and the result is placed into register RA.

The preferred “no-op” (an instruction that does
nothing) is:

ori 0,0,0

Special Registers Altered:
None

Extended Mnemonics:

Example of extended mnemonics for OR Immediate:

Extended: Equivalent to:

nop ori 0,0,0

Engineering Note

It is desirable for implementations to make the
preferred form of no-op execute quickly, since this
form should be used by compilers.

OR Immediate Shifted D-form

oris RA,RS,UI

[POWER mnemonic: oriu]

25 RS RA UI

0 6 11 16 31

RA ← (RS) | (320 || UI || 160)

The contents of register RS are ORed with 320 || UI ||
160 and the result is placed into register RA.

Special Registers Altered:
None

XOR Immediate D-form

xori RA,RS,UI

[POWER mnemonic: xoril]

26 RS RA UI

0 6 11 16 31

RA ← (RS) ⊕ (480 || UI)

The contents of register RS are XORed with 480 || UI
and the result is placed into register RA.

Special Registers Altered:
None

XOR Immediate Shifted D-form

xoris RA,RS,UI

[POWER mnemonic: xoriu]

27 RS RA UI

0 6 11 16 31

RA ← (RS) ⊕ (320 || UI || 160)

The contents of register RS are XORed with 320 || UI
|| 160 and the result is placed into register RA.

Special Registers Altered:
None

Chapter 3. Fixed-Point Processor 79

IBM Confidential - Feb. 24, 1999

AND X-form

and RA,RS,RB (Rc=0)
and. RA,RS,RB (Rc=1)

31 RS RA RB 28 Rc

0 6 11 16 21 31

RA ← (RS) & (RB)

The contents of register RS are ANDed with the con-
tents of register RB and the result is placed into reg-
ister RA.

Special Registers Altered:
CR0 FXCC (if Rc=1)

OR X-form

or RA,RS,RB (Rc=0)
or. RA,RS,RB (Rc=1)

31 RS RA RB 444 Rc

0 6 11 16 21 31

RA ← (RS) | (RB)

The contents of register RS are ORed with the con-
tents of register RB and the result is placed into reg-
ister RA.

Special Registers Altered:
CR0 FXCC (if Rc=1)

Extended Mnemonics:

Example of extended mnemonics for OR:

Extended: Equivalent to:

mr Rx,Ry or Rx,Ry,Ry

XOR X-form

xor RA,RS,RB (Rc=0)
xor. RA,RS,RB (Rc=1)

31 RS RA RB 316 Rc

0 6 11 16 21 31

RA ← (RS) ⊕ (RB)

The contents of register RS are XORed with the con-
tents of register RB and the result is placed into reg-
ister RA.

Special Registers Altered:
CR0 FXCC (if Rc=1)

NAND X-form

nand RA,RS,RB (Rc=0)
nand. RA,RS,RB (Rc=1)

31 RS RA RB 476 Rc

0 6 11 16 21 31

RA ← ¬((RS) & (RB))

The contents of register RS are ANDed with the con-
tents of register RB and the complemented result is
placed into register RA.

Special Registers Altered:
CR0 FXCC (if Rc=1)

Programming Note

nand or nor with RS=RB can be used to obtain
the one's complement.

80 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

NOR X-form

nor RA,RS,RB (Rc=0)
nor. RA,RS,RB (Rc=1)

31 RS RA RB 124 Rc

0 6 11 16 21 31

RA ← ¬((RS) | (RB))

The contents of register RS are ORed with the con-
tents of register RB and the complemented result is
placed into register RA.

Special Registers Altered:
CR0 FXCC (if Rc=1)

Extended Mnemonics:

Example of extended mnemonics for NOR:

Extended: Equivalent to:

not Rx,Ry nor Rx,Ry,Ry

Equivalent X-form

eqv RA,RS,RB (Rc=0)
eqv. RA,RS,RB (Rc=1)

31 RS RA RB 284 Rc

0 6 11 16 21 31

RA ← (RS) ≡ (RB)

The contents of register RS are XORed with the con-
tents of register RB and the complemented result is
placed into register RA.

Special Registers Altered:
CR0 FXCC (if Rc=1)

AND with Complement X-form

andc RA,RS,RB (Rc=0)
andc. RA,RS,RB (Rc=1)

31 RS RA RB 60 Rc

0 6 11 16 21 31

RA ← (RS) & ¬(RB)

The contents of register RS are ANDed with the com-
plement of the contents of register RB and the result
is placed into register RA.

Special Registers Altered:
CR0 FXCC (if Rc=1)

OR with Complement X-form

orc RA,RS,RB (Rc=0)
orc. RA,RS,RB (Rc=1)

31 RS RA RB 412 Rc

0 6 11 16 21 31

RA ← (RS) | ¬(RB)

The contents of register RS are ORed with the com-
plement of the contents of register RB and the result
is placed into register RA.

Special Registers Altered:
CR0 FXCC (if Rc=1)

Chapter 3. Fixed-Point Processor 81

IBM Confidential - Feb. 24, 1999

Extend Sign Byte X-form

extsb RA,RS (Rc=0)
extsb. RA,RS (Rc=1)

31 RS RA /// 954 Rc

0 6 11 16 21 31

s ← (RS) 56
RA56:63 ← (RS) 56:63
RA0:55 ← 56s

(RS)56:63 are placed into RA56:63. Bit 56 of register RS
is placed into RA0:55.

Special Registers Altered:
CR0 FXCC (if Rc=1)

Extend Sign Halfword X-form

extsh RA,RS (Rc=0)
extsh. RA,RS (Rc=1)

[POWER mnemonics: exts, exts.]

31 RS RA /// 922 Rc

0 6 11 16 21 31

s ← (RS) 48
RA48:63 ← (RS) 48:63
RA0:47 ← 48s

(RS)48:63 are placed into RA48:63. Bit 48 of register RS
is placed into RA0:47.

Special Registers Altered:
CR0 FXCC (if Rc=1)

Extend Sign Word X-form

extsw RA,RS (Rc=0)
extsw. RA,RS (Rc=1)

31 RS RA /// 986 Rc

0 6 11 16 21 31

s ← (RS) 32
RA32:63 ← (RS) 32:63
RA0:31 ← 32s

(RS)32:63 are placed into RA32:63. Bit 32 of register RS
is placed into RA0:31.

Special Registers Altered:
CR0 FXCC (if Rc=1)

82 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

Count Leading Zeros Doubleword
X-form

cntlzd RA,RS (Rc=0)
cntlzd. RA,RS (Rc=1)

31 RS RA /// 58 Rc

0 6 11 16 21 31

n ← 0
do while n < 64

if (RS) n = 1 then leave
n ← n + 1

RA ← n

A count of the number of consecutive zero bits
starting at bit 0 of register RS is placed into RA. This
number ranges from 0 to 64, inclusive.

If Rc=1, CR Field 0 is set to reflect the result.

Special Registers Altered:
CR0 FXCC (if Rc=1)

Count Leading Zeros Word X-form

cntlzw RA,RS (Rc=0)
cntlzw. RA,RS (Rc=1)

[POWER mnemonics: cntlz, cntlz.]

31 RS RA /// 26 Rc

0 6 11 16 21 31

n ← 32
do while n < 64

if (RS) n = 1 then leave
n ← n + 1

RA ← n − 32

A count of the number of consecutive zero bits
starting at bit 32 of register RS is placed into RA.
This number ranges from 0 to 32, inclusive.

If Rc=1, CR Field 0 is set to reflect the result.

Special Registers Altered:
CR0 FXCC (if Rc=1)

Programming Note

For both Count Leading Zeros instructions, if
Rc=1 then LT is set to 0 in CR Field 0 and in the
FXCC.

Chapter 3. Fixed-Point Processor 83

IBM Confidential - Feb. 24, 1999

3.3.13 Fixed-Point Rotate and Shift Instructions

The Fixed-Point Processor performs rotation oper-
ations on data from a GPR and returns the result, or a
portion of the result, to a GPR.

The rotation operations rotate a 64-bit quantity left by
a specified number of bit positions. Bits that exit from
position 0 enter at position 63.

Two types of rotation operation are supported.

For the first type, denoted rotate64 or ROTL64, the
value rotated is the given 64-bit value. The rotate64
operation is used to rotate a given 64-bit quantity.

For the second type, denoted rotate32 or ROTL32, the
value rotated consists of two copies of bits 32:63 of
the given 64-bit value, one copy in bits 0:31 and the
other in bits 32:63. The rotate32 operation is used to
rotate a given 32-bit quantity.

The Rotate and Shift instructions employ a mask gen-
erator. The mask is 64 bits long, and consists of
1-bits from a start bit, mstart, through and including a
stop bit, mstop, and 0-bits elsewhere. The values of
mstart and mstop range from 0 to 63. If mstart >
mstop, the 1-bits wrap around from position 63 to
position 0. Thus the mask is formed as follows:

if mstart ≤ mstop then
maskmstart:mstop = ones
maskall other bits = zeros

else
maskmstart:63 = ones
mask0:mstop = ones
maskall other bits = zeros

There is no way to specify an all-zero mask.

For instructions that use the rotate32 operation, the
mask start and stop positions are always in the low-
order 32 bits of the mask.

The use of the mask is described in following
sections.

The Rotate and Shift instructions with Rc=1 set the
first three bits of CR field 0 as described in Section
3.3.7, “Other Fixed-Point Instructions” on page 58.
Rotate and Shift instructions do not change the OV
and SO bits. Rotate and Shift instructions, except
algebraic right shifts, do not change the CA bit.

Extended mnemonics for rotates and
shifts

The Rotate and Shift instructions, while powerful, can
be complicated to code (they have up to five oper-
ands). A set of extended mnemonics is provided that
allow simpler coding of often-used functions such as
clearing the leftmost or rightmost bits of a register,
left justifying or right justifying an arbitrary field, and
performing simple rotates and shifts. Some of these
are shown as examples with the Rotate instructions.
See Appendix B, “Assembler Extended Mnemonics”
on page 161 for additional extended mnemonics.

3.3.13.1 Fixed-Point Rotate Instructions

These instructions rotate the contents of a register.
The result of the rotation is

■ inserted into the target register under control of a
mask (if a mask bit is 1 the associated bit of the
rotated data is placed into the target register,
and if the mask bit is 0 the associated bit in the
target register remains unchanged); or

■ ANDed with a mask before being placed into the
target register.

The Rotate Left instructions allow right-rotation of the
contents of a register to be performed (in concept) by
a left-rotation of 64− n, where n is the number of bits
by which to rotate right. They allow right-rotation of
the contents of the low-order 32 bits of a register to
be performed (in concept) by a left-rotation of 32− n,
where n is the number of bits by which to rotate right.

Architecture Note

For MD-form and MDS-form instructions, the MB
and ME fields are used in permuted rather than
sequential order because this is easier for the
processor. Permuting the MB field permits the
processor to obtain the low-order five bits of the
MB value from the same place for all instructions
having an MB field (M-form and MD-form
instructions). Permuting the ME field permits the
processor to treat bits 21:26 of all MD-form
instructions uniformly.

84 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

Rotate Left Doubleword Immediate then
Clear Left MD-form

rldicl RA,RS,SH,MB (Rc=0)
rldicl. RA,RS,SH,MB (Rc=1)

30 RS RA sh mb 0 shRc

0 6 11 16 21 27 30 31

n ← sh 5 || sh 0:4
r ← ROTL64((RS), n)
b ← mb5 || mb0:4
m ← MASK(b, 63)
RA ← r & m

The contents of register RS are rotated64 left SH bits.
A mask is generated having 1-bits from bit MB
through bit 63 and 0-bits elsewhere. The rotated data
are ANDed with the generated mask and the result is
placed into register RA.

Special Registers Altered:
CR0 FXCC (if Rc=1)

Extended Mnemonics:

Examples of extended mnemonics for Rotate Left
Doubleword Immediate then Clear Left:

Extended: Equivalent to:

extrdi Rx,Ry,n,b rldicl Rx,Ry,b+n,64− n
srdi Rx,Ry,n rldicl Rx,Ry,64− n,n
clrldi Rx,Ry,n rldicl Rx,Ry,0,n

Programming Note

rldicl can be used to extract an n-bit field that
starts at bit position b in register RS, right-
justified into register RA (clearing the remaining
64− n bits of RA), by setting S H = b+ n and
MB=64− n. It can be used to rotate the contents
of a register left (right) by n bits, by setting S H = n
(64− n) and MB=0. It can be used to shift the
contents of a register right by n bits, by setting
SH=64− n and M B = n. It can be used to clear
the high-order n bits of a register, by setting
SH=0 and M B = n.

Extended mnemonics are provided for all of these
uses: see Appendix B, “Assembler Extended
Mnemonics” on page 161.

Rotate Left Doubleword Immediate then
Clear Right MD-form

rldicr RA,RS,SH,ME (Rc=0)
rldicr. RA,RS,SH,ME (Rc=1)

30 RS RA sh me 1 shRc

0 6 11 16 21 27 30 31

n ← sh 5 || sh 0:4
r ← ROTL64((RS), n)
e ← me5 || me0:4
m ← MASK(0, e)
RA ← r & m

The contents of register RS are rotated64 left SH bits.
A mask is generated having 1-bits from bit 0 through
bit ME and 0-bits elsewhere. The rotated data are
ANDed with the generated mask and the result is
placed into register RA.

Special Registers Altered:
CR0 FXCC (if Rc=1)

Extended Mnemonics:

Examples of extended mnemonics for Rotate Left
Doubleword Immediate then Clear Right:

Extended: Equivalent to:

extldi Rx,Ry,n,b rldicr Rx,Ry,b,n− 1
sldi Rx,Ry,n rldicr Rx,Ry,n,63− n
clrrdi Rx,Ry,n rldicr Rx,Ry,0,63− n

Programming Note

rldicr can be used to extract an n-bit field that
starts at bit position b in register RS, left-justified
into register RA (clearing the remaining 64− n bits
of RA), by setting S H = b and M E = n− 1. It can be
used to rotate the contents of a register left
(right) by n bits, by setting S H = n (64− n) and
ME=63. It can be used to shift the contents of a
register left by n bits, by setting S H = n and
ME=63− n. It can be used to clear the low-order
n bits of a register, by setting SH=0 and
ME=63− n.

Extended mnemonics are provided for all of these
uses (some devolve to rldicl): see Appendix B,
“Assembler Extended Mnemonics” on page 161.

Chapter 3. Fixed-Point Processor 85

IBM Confidential - Feb. 24, 1999

Rotate Left Doubleword Immediate then
Clear MD-form

rldic RA,RS,SH,MB (Rc=0)
rldic. RA,RS,SH,MB (Rc=1)

30 RS RA sh mb 2 shRc

0 6 11 16 21 27 30 31

n ← sh 5 || sh 0:4
r ← ROTL64((RS), n)
b ← mb5 || mb0:4
m ← MASK(b, ¬n)
RA ← r & m

The contents of register RS are rotated64 left SH bits.
A mask is generated having 1-bits from bit MB
through bit 63− SH and 0-bits elsewhere. The rotated
data are ANDed with the generated mask and the
result is placed into register RA.

Special Registers Altered:
CR0 FXCC (if Rc=1)

Extended Mnemonics:

Example of extended mnemonics for Rotate Left
Doubleword Immediate then Clear:

Extended: Equivalent to:

clrlsldi Rx,Ry,b,n rldic Rx,Ry,n,b− n

Programming Note

rldic can be used to clear the high-order b bits of
the contents of a register and then shift the result
left by n bits, by setting S H = n and M B = b− n. It
can be used to clear the high-order n bits of a
register, by setting SH=0 and M B = n.

Extended mnemonics are provided for both of
these uses (the second devolves to rldicl): see
Appendix B, “Assembler Extended Mnemonics”
on page 161.

Rotate Left Word Immediate then AND
with Mask M-form

rlwinm RA,RS,SH,MB,ME (Rc=0)
rlwinm. RA,RS,SH,MB,ME (Rc=1)

[POWER mnemonics: rlinm, rlinm.]

21 RS RA SH MB ME Rc

0 6 11 16 21 26 31

n ← SH
r ← ROTL32((RS) 32:63, n)
m ← MASK(MB+32, ME+32)
RA ← r & m

The contents of register RS are rotated32 left SH bits.
A mask is generated having 1-bits from bit MB+32
through bit ME+32 and 0-bits elsewhere. The rotated
data are ANDed with the generated mask and the
result is placed into register RA.

Special Registers Altered:
CR0 FXCC (if Rc=1)

Extended Mnemonics:

Examples of extended mnemonics for Rotate Left
Word Immediate then AND with Mask:

Extended: Equivalent to:

extlwi Rx,Ry,n,b rlwinm Rx,Ry,b,0,n− 1
srwi Rx,Ry,n rlwinm Rx,Ry,32− n,n,31
clrrwi Rx,Ry,n rlwinm Rx,Ry,0,0,31− n

86 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

Programming Note

Let RSL represent the low-order 32 bits of reg-
ister RS, with the bits numbered from 0 through
31.

rlwinm can be used to extract an n-bit field that
starts at bit position b in RSL, right-justified into
the low-order 32 bits of register RA (clearing the
remaining 32− n bits of the low-order 32 bits of
RA), by setting S H = b+ n, MB=32− n, and
ME=31. It can be used to extract an n-bit field
that starts at bit position b in RSL, left-justified
into the low-order 32 bits of register RA (clearing
the remaining 32− n bits of the low-order 32 bits
of RA), by setting S H = b, MB = 0, and M E = n− 1.
It can be used to rotate the contents of the low-
order 32 bits of a register left (right) by n bits, by
setting S H = n (32− n), MB=0, and ME=31. It can
be used to shift the contents of the low-order 32
bits of a register right by n bits, by setting
SH=32− n, M B = n, and ME=31. It can be used to
clear the high-order b bits of the low-order 32 bits
of the contents of a register and then shift the
result left by n bits, by setting S H = n, M B = b− n
and ME=31− n. It can be used to clear the low-
order n bits of the low-order 32 bits of a register,
by setting SH=0, MB=0, and ME=31− n.

For all the uses given above, the high-order 32
bits of register RA are cleared.

Extended mnemonics are provided for all of these
uses: see Appendix B, “Assembler Extended
Mnemonics” on page 161.

Rotate Left Doubleword then Clear Left
MDS-form

rldcl RA,RS,RB,MB (Rc=0)
rldcl. RA,RS,RB,MB (Rc=1)

30 RS RA RB mb 8 Rc

0 6 11 16 21 27 31

n ← (RB) 58:63
r ← ROTL64((RS), n)
b ← mb5 || mb0:4
m ← MASK(b, 63)
RA ← r & m

The contents of register RS are rotated64 left the
number of bits specified by (RB)58:63. A mask is gen-
erated having 1-bits from bit MB through bit 63 and
0-bits elsewhere. The rotated data are ANDed with
the generated mask and the result is placed into reg-
ister RA.

Special Registers Altered:
CR0 FXCC (if Rc=1)

Extended Mnemonics:

Example of extended mnemonics for Rotate Left
Doubleword then Clear Left:

Extended: Equivalent to:
rotld Rx,Ry,Rz rldcl Rx,Ry,Rz,0

Programming Note

rldcl can be used to extract an n-bit field that
starts at variable bit position b in register RS,
right-justified into register RA (clearing the
remaining 64− n bits of RA), by setting
RB58:63= b+ n and MB=64− n. It can be used to
rotate the contents of a register left (right) by var-
iable n bits, by setting RB58:63= n (64− n) and
MB=0.

Extended mnemonics are provided for some of
these uses: see Appendix B, “Assembler
Extended Mnemonics” on page 161.

Chapter 3. Fixed-Point Processor 87

IBM Confidential - Feb. 24, 1999

Rotate Left Doubleword then Clear Right
MDS-form

rldcr RA,RS,RB,ME (Rc=0)
rldcr. RA,RS,RB,ME (Rc=1)

30 RS RA RB me 9 Rc

0 6 11 16 21 27 31

n ← (RB) 58:63
r ← ROTL64((RS), n)
e ← me5 || me0:4
m ← MASK(0, e)
RA ← r & m

The contents of register RS are rotated64 left the
number of bits specified by (RB)58:63. A mask is gen-
erated having 1-bits from bit 0 through bit ME and
0-bits elsewhere. The rotated data are ANDed with
the generated mask and the result is placed into reg-
ister RA.

Special Registers Altered:
CR0 FXCC (if Rc=1)

Programming Note

rldcr can be used to extract an n-bit field that
starts at variable bit position b in register RS, left-
justified into register RA (clearing the remaining
64− n bits of RA), by setting RB58:63= b and
M E = n− 1. It can be used to rotate the contents of
a register left (right) by variable n bits, by setting
RB58:63= n (64− n) and ME=63.

Extended mnemonics are provided for some of
these uses (some devolve to rldcl) see
Appendix B, “Assembler Extended Mnemonics”
on page 161.

Rotate Left Word then AND with Mask
M-form

rlwnm RA,RS,RB,MB,ME (Rc=0)
rlwnm. RA,RS,RB,MB,ME (Rc=1)

[POWER mnemonics: rlnm, rlnm.]

23 RS RA RB MB ME Rc

0 6 11 16 21 26 31

n ← (RB) 59:63
r ← ROTL32((RS) 32:63, n)
m ← MASK(MB+32, ME+32)
RA ← r & m

The contents of register RS are rotated32 left the
number of bits specified by (RB)59:63. A mask is gen-
erated having 1-bits from bit MB+32 through bit
ME+32 and 0-bits elsewhere. The rotated data are
ANDed with the generated mask and the result is
placed into register RA.

Special Registers Altered:
CR0 FXCC (if Rc=1)

Extended Mnemonics:

Example of extended mnemonics for Rotate Left Word
then AND with Mask:

Extended: Equivalent to:
rotlw Rx,Ry,Rz rlwnm Rx,Ry,Rz,0,31

Programming Note

Let RSL represent the low-order 32 bits of reg-
ister RS, with the bits numbered from 0 through
31.

rlwnm can be used to extract an n-bit field that
starts at variable bit position b in RSL, right-
justified into the low-order 32 bits of register RA
(clearing the remaining 32− n bits of the low-order
32 bits of RA), by setting RB59:63= b+ n,
MB=32− n, and ME=31. It can be used to extract
an n-bit field that starts at variable bit position b
in RSL, left-justified into the low-order 32 bits of
register RA (clearing the remaining 32− n bits of
the low-order 32 bits of RA), by setting RB59:63= b,
MB = 0, and M E = n− 1. It can be used to rotate
the contents of the low-order 32 bits of a register
left (right) by variable n bits, by setting RB59:63= n
(32− n), MB=0, and ME=31.

For all the uses given above, the high-order 32
bits of register RA are cleared.

Extended mnemonics are provided for some of
these uses: see Appendix B, “Assembler
Extended Mnemonics” on page 161.

88 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

Rotate Left Doubleword Immediate then
Mask Insert MD-form

rldimi RA,RS,SH,MB (Rc=0)
rldimi. RA,RS,SH,MB (Rc=1)

30 RS RA sh mb 3 shRc

0 6 11 16 21 27 30 31

n ← sh 5 || sh 0:4
r ← ROTL64((RS), n)
b ← mb5 || mb0:4
m ← MASK(b, ¬n)
RA ← r&m | (RA)&¬m

The contents of register RS are rotated64 left SH bits.
A mask is generated having 1-bits from bit MB
through bit 63− SH and 0-bits elsewhere. The rotated
data are inserted into register RA under control of the
generated mask.

Special Registers Altered:
CR0 FXCC (if Rc=1)

Extended Mnemonics:

Example of extended mnemonics for Rotate Left
Doubleword Immediate then Mask Insert:

Extended: Equivalent to:
insrdi Rx,Ry,n,b rldimi Rx,Ry,64− (b+n),b

Programming Note

rldimi can be used to insert an n-bit field that is
right-justified in register RS, into register RA
starting at bit position b, by setting
SH=64− (b+ n) and M B = b.

An extended mnemonic is provided for this use:
see Appendix B, “Assembler Extended
Mnemonics” on page 161.

Rotate Left Word Immediate then Mask
Insert M-form

rlwimi RA,RS,SH,MB,ME (Rc=0)
rlwimi. RA,RS,SH,MB,ME (Rc=1)

[POWER mnemonics: rlimi, rlimi.]

20 RS RA SH MB ME Rc

0 6 11 16 21 26 31

n ← SH
r ← ROTL32((RS) 32:63, n)
m ← MASK(MB+32, ME+32)
RA ← r&m | (RA)&¬m

The contents of register RS are rotated32 left SH bits.
A mask is generated having 1-bits from bit MB+32
through bit ME+32 and 0-bits elsewhere. The rotated
data are inserted into register RA under control of the
generated mask.

Special Registers Altered:
CR0 FXCC (if Rc=1)

Extended Mnemonics:

Example of extended mnemonics for Rotate Left Word
Immediate then Mask Insert:

Extended: Equivalent to:
inslwi Rx,Ry,n,b rlwimi Rx,Ry,32− b,b,b+n− 1

Programming Note

Let RAL represent the low-order 32 bits of reg-
ister RA, with the bits numbered from 0 through
31.

rlwimi can be used to insert an n-bit field that is
left-justified in the low-order 32 bits of register
RS, into RAL starting at bit position b, by setting
SH=32− b, M B = b, and ME=(b + n)− 1. It can be
used to insert an n-bit field that is right-justified in
the low-order 32 bits of register RS, into RAL
starting at bit position b, by setting
SH=32− (b+ n), M B = b, and ME=(b + n)− 1.

Extended mnemonics are provided for both of
these uses: see Appendix B, “Assembler
Extended Mnemonics” on page 161.

Chapter 3. Fixed-Point Processor 89

IBM Confidential - Feb. 24, 1999

3.3.13.2 Fixed-Point Shift Instructions

The instructions in this section perform left and right
shifts.

Extended mnemonics for shifts

Immediate-form logical (unsigned) shift operations are
obtained by specifying appropriate masks and shift
values for certain Rotate instructions. A set of
extended mnemonics is provided to make coding of
such shifts simpler and easier to understand. Some
of these are shown as examples with the Rotate
instructions. See Appendix B, “Assembler Extended
Mnemonics” on page 161 for additional extended
mnemonics.

Programming Note

Any Shift Right Algebraic instruction, followed by
addze , can be used to divide quickly by 2n. The
setting of the CA bit by the Shift Right Algebraic
instructions is independent of mode.

Programming Note

Multiple-precision shifts can be programmed as
shown in Section C.1, “Multiple-Precision Shifts”
on page 177.

Engineering Note

The instructions intended for use with 32-bit data
are shown as doing a rotate32 operation. This is
strictly necessary only for setting the CA bit for
srawi and sraw . slw and srw could do a rotate64
operation if that is easier.

Shift Left Doubleword X-form

sld RA,RS,RB (Rc=0)
sld. RA,RS,RB (Rc=1)

31 RS RA RB 27 Rc

0 6 11 16 21 31

n ← (RB) 58:63
r ← ROTL64((RS), n)
if (RB) 57 = 0 then

m ← MASK(0, 63 −n)
else m ← 640
RA ← r & m

The contents of register RS are shifted left the
number of bits specified by (RB)57:63. Bits shifted out
of position 0 are lost. Zeros are supplied to the
vacated positions on the right. The result is placed
into register RA. Shift amounts from 64 to 127 give a
zero result.

Special Registers Altered:
CR0 FXCC (if Rc=1)

Shift Left Word X-form

slw RA,RS,RB (Rc=0)
slw. RA,RS,RB (Rc=1)

[POWER mnemonics: sl, sl.]

31 RS RA RB 24 Rc

0 6 11 16 21 31

n ← (RB) 59:63
r ← ROTL32((RS) 32:63, n)
if (RB) 58 = 0 then

m ← MASK(32, 63 −n)
else m ← 640
RA ← r & m

The contents of the low-order 32 bits of register RS
are shifted left the number of bits specified by
(RB)58:63. Bits shifted out of position 32 are lost.
Zeros are supplied to the vacated positions on the
right. The 32-bit result is placed into RA32:63. RA0:31
are set to zero. Shift amounts from 32 to 63 give a
zero result.

Special Registers Altered:
CR0 FXCC (if Rc=1)

90 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

Shift Right Doubleword X-form

srd RA,RS,RB (Rc=0)
srd. RA,RS,RB (Rc=1)

31 RS RA RB 539 Rc

0 6 11 16 21 31

n ← (RB) 58:63
r ← ROTL64((RS), 64 −n)
if (RB) 57 = 0 then

m ← MASK(n, 63)
else m ← 640
RA ← r & m

The contents of register RS are shifted right the
number of bits specified by (RB)57:63. Bits shifted out
of position 63 are lost. Zeros are supplied to the
vacated positions on the left. The result is placed into
register RA. Shift amounts from 64 to 127 give a zero
result.

Special Registers Altered:
CR0 FXCC (if Rc=1)

Shift Right Word X-form

srw RA,RS,RB (Rc=0)
srw. RA,RS,RB (Rc=1)

[POWER mnemonics: sr, sr.]

31 RS RA RB 536 Rc

0 6 11 16 21 31

n ← (RB) 59:63
r ← ROTL32((RS) 32:63, 64 −n)
if (RB) 58 = 0 then

m ← MASK(n+32, 63)
else m ← 640
RA ← r & m

The contents of the low-order 32 bits of register RS
are shifted right the number of bits specified by
(RB)58:63. Bits shifted out of position 63 are lost.
Zeros are supplied to the vacated positions on the
left. The 32-bit result is placed into RA32:63. RA0:31
are set to zero. Shift amounts from 32 to 63 give a
zero result.

Special Registers Altered:
CR0 FXCC (if Rc=1)

Chapter 3. Fixed-Point Processor 91

IBM Confidential - Feb. 24, 1999

Shift Right Algebraic Doubleword
Immediate XS-form

sradi RA,RS,SH (Rc=0)
sradi. RA,RS,SH (Rc=1)

31 RS RA sh 413 sh Rc

0 6 11 16 21 30 31

n ← sh 5 || sh 0:4
r ← ROTL64((RS), 64 −n)
m ← MASK(n, 63)
s ← (RS) 0
RA ← r&m | (64s)&¬m
CA ← s & ((r&¬m)= /0)

The contents of register RS are shifted right SH bits.
Bits shifted out of position 63 are lost. Bit 0 of RS is
replicated to fill the vacated positions on the left. The
result is placed into register RA. CA is set to 1 if (RS)
is negative and any 1-bits are shifted out of position
63; otherwise CA is set to 0. A shift amount of zero
causes RA to be set equal to (RS), and CA to be set
to 0.

Special Registers Altered:
CA
CR0 FXCC (if Rc=1)

Shift Right Algebraic Word Immediate
X-form

srawi RA,RS,SH (Rc=0)
srawi. RA,RS,SH (Rc=1)

[POWER mnemonics: srai, srai.]

31 RS RA SH 824 Rc

0 6 11 16 21 31

n ← SH
r ← ROTL32((RS) 32:63, 64 −n)
m ← MASK(n+32, 63)
s ← (RS) 32
RA ← r&m | (64s)&¬m
CA ← s & ((r&¬m) 32:63=/0)

The contents of the low-order 32 bits of register RS
are shifted right SH bits. Bits shifted out of position
63 are lost. Bit 32 of RS is replicated to fill the
vacated positions on the left. The 32-bit result is
placed into RA32:63. Bit 32 of RS is replicated to fill
RA0:31. CA is set to 1 if the low-order 32 bits of (RS)
contain a negative number and any 1-bits are shifted
out of position 63; otherwise CA is set to 0. A shift
amount of zero causes RA to receive EXTS((RS)32:63),
and CA to be set to 0.

Special Registers Altered:
CA
CR0 FXCC (if Rc=1)

92 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

Shift Right Algebraic Doubleword
X-form

srad RA,RS,RB (Rc=0)
srad. RA,RS,RB (Rc=1)

31 RS RA RB 794 Rc

0 6 11 16 21 31

n ← (RB) 58:63
r ← ROTL64((RS), 64 −n)
if (RB) 57 = 0 then

m ← MASK(n, 63)
else m ← 640
s ← (RS) 0
RA ← r&m | (64s)&¬m
CA ← s & ((r&¬m)= /0)

The contents of register RS are shifted right the
number of bits specified by (RB)57:63. Bits shifted out
of position 63 are lost. Bit 0 of RS is replicated to fill
the vacated positions on the left. The result is placed
into register RA. CA is set to 1 if (RS) is negative and
any 1-bits are shifted out of position 63; otherwise CA
is set to 0. A shift amount of zero causes RA to be
set equal to (RS), and CA to be set to 0. Shift
amounts from 64 to 127 give a result of 64 sign bits in
RA, and cause CA to receive the sign bit of (RS).

Special Registers Altered:
CA
CR0 FXCC (if Rc=1)

Shift Right Algebraic Word X-form

sraw RA,RS,RB (Rc=0)
sraw. RA,RS,RB (Rc=1)

[POWER mnemonics: sra, sra.]

31 RS RA RB 792 Rc

0 6 11 16 21 31

n ← (RB) 59:63
r ← ROTL32((RS) 32:63, 64 −n)
if (RB) 58 = 0 then

m ← MASK(n+32, 63)
else m ← 640
s ← (RS) 32
RA ← r&m | (64s)&¬m
CA ← s & ((r&¬m) 32:63=/0)

The contents of the low-order 32 bits of register RS
are shifted right the number of bits specified by
(RB)58:63. Bits shifted out of position 63 are lost. Bit
32 of RS is replicated to fill the vacated positions on
the left. The 32-bit result is placed into RA32:63. Bit
32 of RS is replicated to fill RA0:31. CA is set to 1 if
the low-order 32 bits of (RS) contain a negative
number and any 1-bits are shifted out of position 63;
otherwise CA is set to 0. A shift amount of zero
causes RA to receive EXTS((RS)32:63), and CA to be
set to 0. Shift amounts from 32 to 63 give a result of
64 sign bits, and cause CA to receive the sign bit of
(RS)32:63.

Special Registers Altered:
CA
CR0 FXCC (if Rc=1)

Chapter 3. Fixed-Point Processor 93

IBM Confidential - Feb. 24, 1999

3.3.14 Decimal Assist Instructions

For the Decimal Assist instructions, the affected
General Purpose Registers are considered to contain
packed decimal numbers, formatted as follows.

The register is considered to consist of 16 4-bit fields,
numbered from 0 through 15 starting at the high-order
end of the register. Field n consists of bits 4×n
through 4×n+ 3 . Fields 0:14 each contain a decimal

digit, while field 15 can contain either a decimal digit
or a sign. Increasing field number corresponds to
decreasing digit significance. A decimal digit can
have any value from 0 through 9. A sign can have
any value: a sign value of 0xB or 0xD represents a
minus sign, and any other value represents a plus
sign.

Decimal Sixes X-form

dsixes RA

31 /// RA /// 61 /

0 6 11 16 21 31

c ← 4(DC0) || 4(DC1) || ... || 4(DC15)
RA ← (¬c) & 0x6666_6666_6666_6666

A doubleword is composed from the Decimal Carry
bits in the XER, and placed into RA. The doubleword
consists of a decimal six (0b0110) in every decimal
digit position for which the corresponding bit in XERDC
is zero, and a zero (0b0000) in every position for
which the corresponding bit in XERDC is one. Bit i of
XERDC corresponds to decimal digit position i of RA,
for i = 0, 1, ..., 15.

In tags inactive mode, this instruction is an illegal
instruction and an attempt to execute this instruction
will invoke the system illegal instruction error
handler.

Special Registers Altered:
None

Decimal Test and Clear Sign X-form

dtcs. RA,RS

31 RS RA /// 93 1

0 6 11 16 21 31

s ← (RS) 60 & ((RS) 61 ⊕ (RS) 62) & (RS) 63
if s = 1 then CR 0:3 ← 0b100 || XERSO

FXCC ← 0b1000
else CR 0:3 ← 0b010 || XERSO

FXCC ← 0b0100
RA ← (RS) 0:59 || 0b0000
CA ← 0

CR0 and the FXCC are set to reflect “Less Than” if
the sign in the low-order four bits of (RS) is 0xB or
0xD, and to reflect “Greater Than” otherwise. RA0:59
is set to (RS)0:59. RA60:63 are set to 0. XERCA is set to
0.

In tags inactive mode, this instruction is an illegal
instruction and an attempt to execute this instruction
will invoke the system illegal instruction error
handler.

Special Registers Altered:
CA CR0 FXCC

94 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

3.3.15 Move To/From System Register Instructions

| The Move To Condition Register Fields instruction has
| a preferred form: see Section 1.9.1, “Preferred
| Instruction Forms” on page 14. In the preferred form,
| the FXM field satisfies the following rule.

| ■ Exactly one bit of the FXM field is set to 1.

Extended mnemonics

† Extended mnemonics are provided for the mtspr and
mfspr instructions so that they can be coded with the

SPR name as part of the mnemonic rather than as a
numeric operand. An extended mnemonic is provided

| for the mtcrf instruction for compatibility with old soft-
| ware (written for a version of the architecture that
| precedes Version 2.00) that uses it to set the entire

Condition Register. Some of these extended mne-
monics are shown as examples with the relevant
instructions. See Appendix B, “Assembler Extended
Mnemonics” on page 161 for additional extended
mnemonics.

Move To Special Purpose Register
XFX-form

mtspr SPR,RS

31 RS spr 467 /
0 6 11 21 31

n ← spr 5:9 || spr 0:4
if length(SPREG(n)) = 64 then

SPREG(n) ← (RS)
else

SPREG(n) ← (RS) 32:63{0:31}

The SPR field denotes a Special Purpose Register,
encoded as shown in the table below. The contents of
register RS are placed into the designated Special
Purpose Register. For Special Purpose Registers that
are 32 bits long, the low-order 32 bits of RS are
placed into the SPR.

SPR* Register
decimal spr 5:9 spr 0:4 Name

1 00000 00001 XER
8 00000 01000 LR
9 00000 01001 CTR

* Note that the order of the two 5-bit
halves of the SPR number is reversed.

If the SPR field contains any value other than one of
the values shown above then one of the following
occurs.

■ The system illegal instruction error handler is
invoked.

■ The system privileged instruction error handler is
invoked.

■ The results are boundedly undefined.

A complete description of this instruction can be
found in Book III, PowerPC AS Operating Environment
Architecture.

Special Registers Altered:
See above

Extended Mnemonics:

Examples of extended mnemonics for Move To
Special Purpose Register:

Extended: Equivalent to:

mtxer Rx mtspr 1,Rx
mtlr Rx mtspr 8,Rx
mtctr Rx mtspr 9,Rx

Compiler and Assembler Note

For the mtspr and mfspr instructions, the SPR
number coded in assembler language does not
appear directly as a 10-bit binary number in the
instruction. The number coded is split into two
5-bit halves that are reversed in the instruction,
with the high-order 5 bits appearing in bits 16:20
of the instruction and the low-order 5 bits in bits
11:15. This maintains compatibility with POWER
SPR encodings, in which these two instructions
have only a 5-bit SPR field occupying bits 11:15.

Compatibility Note

For a discussion of POWER compatibility with
respect to SPR numbers not shown in the instruc-
tion descriptions for mtspr and mfspr , see
Appendix E, “Incompatibilities with the POWER
Architecture” on page 185.

Engineering Note

If MSRPR= 1 , the only effect of executing this
instruction with an SPR number in which spr0= 1
is to cause either an Illegal Instruction type
Program interrupt or a Privileged Instruction type
Program interrupt.

Engineering Note

Any assignment of SPR numbers not shown in the
Book I instruction descriptions for mtspr and
mfspr must be done in a manner consistent with
the section that describes these instructions in

† Book III.

Chapter 3. Fixed-Point Processor 95

IBM Confidential - Feb. 24, 1999

Move From Special Purpose Register
XFX-form

mfspr RT,SPR

31 RT spr 339 /

0 6 11 21 31

n ← spr 5:9 || spr 0:4
if length(SPREG(n)) = 64 then

RT ← SPREG(n)
else

RT ← 320 || SPREG(n)

The SPR field denotes a Special Purpose Register,
encoded as shown in the table below. The contents of
the designated Special Purpose Register are placed
into register RT. For Special Purpose Registers that
are 32 bits long, the low-order 32 bits of RT receive
the contents of the Special Purpose Register and the
high-order 32 bits of RT are set to zero.

SPR* Register
decimal spr 5:9 spr 0:4 Name

1 00000 00001 XER
8 00000 01000 LR
9 00000 01001 CTR

* Note that the order of the two 5-bit
halves of the SPR number is reversed.

If the SPR field contains any value other than one of
the values shown above then one of the following
occurs.

■ The system illegal instruction error handler is
invoked.

■ The system privileged instruction error handler is
invoked.

■ The results are boundedly undefined.

A complete description of this instruction can be
found in Book III, PowerPC AS Operating Environment
Architecture.

Special Registers Altered:
None

Extended Mnemonics:

Examples of extended mnemonics for Move From
Special Purpose Register:

Extended: Equivalent to:

mfxer Rx mfspr Rx,1
mflr Rx mfspr Rx,8
mfctr Rx mfspr Rx,9

Note

See the Notes that appear with mtspr .

Set XER TAG XFX-form

settag

31 /// XO2 499 /

0 6 11 21 31

XER43 ← 1

Bit 43 of the XER is set to 1.

If the XO2 field contains any value other than 32, the
instruction form is invalid.

In tags inactive mode, this instruction is an illegal
instruction and an attempt to execute this instruction
will invoke the system illegal instruction error
handler.

Special Registers Altered:
TAG

96 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

Move To Condition Register Fields
XFX-form

mtcrf FXM,RS

| 31 RS 0 FXM / 144 /
| 0 6 11 12 20 21 31

mask ← 4(FXM0) || 4(FXM1) || ... 4(FXM7)
CR ← ((RS) 32:63 & mask) | (CR & ¬mask)

The contents of bits 32:63 of register RS are placed
into the Condition Register under control of the field
mask specified by FXM. The field mask identifies the
4-bit fields affected. Let i be an integer in the range
0-7. If FXMi= 1 then CR field i (CR bits 4× i:4× i + 3) is
set to the contents of the corresponding field of the
low-order 32 bits of RS.

Special Registers Altered:
CR fields selected by mask

Extended Mnemonics:

Example of extended mnemonics for Move To Condi-
tion Register Fields:

Extended: Equivalent to:
mtcr Rx mtcrf 0xFF,Rx

Programming Note

| In the preferred form of this instruction (see the
| introduction to Section 3.3.15), only one Condition
| Register field is updated.

| Engineering Note

| See the description of the optional version of
| mtcrf in Section 5.1.1 for additional information
| about this instruction.

Move to Condition Register from XER
X-form

mcrxr BF

31 BF // /// /// 512 /

0 6 9 11 16 21 31

CR4×BF:4×BF+3 ← XER32:35
XER32:35 ← 0b0000

The contents of XER32:35 are copied to Condition Reg-
ister field BF. XER32:35 are set to zero.

† Special Registers Altered:
† CR field BF XER 32:35

| Move From Condition Register
| XFX-form

mfcr RT

| 31 RT 0 /// 19 /
| 0 6 11 12 21 31

RT ← 320 || CR

The contents of the Condition Register are placed into
RT32:63. RT0:31 are set to 0.

Special Registers Altered:
None

| Engineering Note

| See the description of the optional version of mfcr
| in Section 5.1.1 for additional information about
| this instruction.

Move to Condition Register from XER
TGCC X-form

mcrxrt BF

31 BF // /// /// 544 /

0 6 9 11 16 21 31

CR4×BF:4×BF+3 ← 0b0 || XER41:43

0b0 concatenated with the contents of XER41:43 is
copied into the Condition Register field designated by
BF.

In tags inactive mode, this instruction is an illegal
instruction and an attempt to execute this instruction
will invoke the system illegal instruction error
handler.

† Special Registers Altered:
† CR field BF

Chapter 3. Fixed-Point Processor 97

IBM Confidential - Feb. 24, 1999

98 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

Chapter 4. Floating-Point Processor

4.1 Floating-Point Processor Overview 99
4.2 Floating-Point Processor Registers 100
4.2.1 Floating-Point Registers 100
4.2.2 Floating-Point Status and Control

Register 101
4.3 Floating-Point Data 103
4.3.1 Data Format 103
4.3.2 Value Representation 104
4.3.3 Sign of Result 105
4.3.4 Normalization and

Denormalization 106
4.3.5 Data Handling and Precision . . 106
4.3.6 Rounding 107
4.4 Floating-Point Exceptions 108
4.4.1 Invalid Operation Exception . . 110
4.4.1.1 Definition 110
4.4.1.2 Action 110
4.4.2 Zero Divide Exception 111
4.4.2.1 Definition 111
4.4.2.2 Action 111
4.4.3 Overflow Exception 111
4.4.3.1 Definition 111
4.4.3.2 Action 111
4.4.4 Underflow Exception 112
4.4.4.1 Definition 112
4.4.4.2 Action 112
4.4.5 Inexact Exception 112

4.4.5.1 Definition 112
4.4.5.2 Action 112
4.5 Floating-Point Execution Models . 113
4.5.1 Execution Model for IEEE

Operations 113
4.5.2 Execution Model for Multiply-Add

Type Instructions 114
4.6 Floating-Point Processor

Instructions 116
4.6.1 Floating-Point Storage Access

Instructions 117
4.6.1.1 Storage Access Exceptions . . 117
4.6.2 Floating-Point Load Instructions 117
4.6.3 Floating-Point Store Instructions 120
4.6.4 Floating-Point Move Instructions 124
4.6.5 Floating-Point Arithmetic

Instructions 125
4.6.5.1 Floating-Point Elementary

Arithmetic Instructions 125
4.6.5.2 Floating-Point Multiply-Add

Instructions 127
4.6.6 Floating-Point Rounding and

Conversion Instructions 129
4.6.7 Floating-Point Compare

Instructions 133
4.6.8 Floating-Point Status and Control

Register Instructions 134

4.1 Floating-Point Processor
Overview

This chapter describes the registers and instructions
that make up the Floating-Point Processor facility.
Section 4.2, “Floating-Point Processor Registers” on
page 100 describes the registers associated with the
Floating-Point Processor. Section 4.6, “Floating-Point
Processor Instructions” on page 116 describes the
instructions associated with the Floating-Point
Processor.

This architecture specifies that the processor imple-
ment a floating-point system as defined in ANSI/IEEE
Standard 754-1985, “IEEE Standard for Binary
Floating-Point Arithmetic” (hereafter referred to as
“the IEEE standard”), but requires software support in
order to conform fully with that standard. That
standard defines certain required “operations” (addi-
tion, subtraction, etc.); the term “floating-point opera-
tion” is used in this chapter to refer to one of these
required operations, or to the operation performed by
one of the Multiply-Add or Reciprocal Estimate
instructions. All floating-point operations conform to

| that standard.

Chapter 4. Floating-Point Processor 99

IBM Confidential - Feb. 24, 1999

Instructions are provided to perform arithmetic,
rounding, conversion, comparison, and other oper-
ations in floating-point registers; to move floating-
point data between storage and these registers; and
to manipulate the Floating-Point Status and Control
Register explicitly.

These instructions are divided into two categories.

■ computational instructions
The computational instructions are those that
perform addition, subtraction, multiplication, divi-
sion, extracting the square root, rounding, con-
version, comparison, and combinations of these
operations. These instructions provide the float-
ing-point operations. They place status informa-
tion into the Floating-Point Status and Control
Register. They are the instructions described in
Sections 4.6.5 through 4.6.7 and Section 5.2.1.

■ non-computational instructions
The non-computational instructions are those that
perform loads and stores, move the contents of a
floating-point register to another floating-point
register possibly altering the sign, manipulate the
Floating-Point Status and Control Register explic-
itly, and select the value from one of two float-
ing-point registers based on the value in a third
floating-point register. The operations performed
by these instructions are not considered floating-
point operations. With the exception of the
instructions that manipulate the Floating-Point
Status and Control Register explicitly, they do not
alter the Floating-Point Status and Control Reg-
ister. They are the instructions described in
Sections 4.6.2 through 4.6.4, 4.6.8, and 5.2.2.

A floating-point number consists of a signed exponent
and a signed significand. The quantity expressed by
this number is the product of the significand and the
number 2exponent. Encodings are provided in the data
format to represent finite numeric values, ± Infinity,
and values that are “Not a Number” (NaN). Oper-
ations involving infinities produce results obeying tra-
ditional mathematical conventions. NaNs have no
mathematical interpretation. Their encoding permits
a variable diagnostic information field. They may be
used to indicate such things as uninitialized variables
and can be produced by certain invalid operations.

There is one class of exceptional events that occur
during instruction execution that is unique to the
Floating-Point Processor: the Floating-Point Exception.
Floating-point exceptions are signaled with bits set in
the Floating-Point Status and Control Register
(FPSCR). They can cause the system floating-point
enabled exception error handler to be invoked, pre-
cisely or imprecisely, if the proper control bits are set.

Floating-Point Exceptions

The following floating-point exceptions are detected
by the processor:

■ Invalid Operation Exception (VX)
SNaN (VXSNAN)
Infinity− Infinity (VXISI)
Infinity÷ Infinity (VXIDI)
Zero÷ Zero (VXZDZ)
Infinity×Zero (VXIMZ)
Invalid Compare (VXVC)
Software Request (VXSOFT)
Invalid Square Root (VXSQRT)
Invalid Integer Convert (VXCVI)

■ Zero Divide Exception (ZX)
■ Overflow Exception (OX)
■ Underflow Exception (UX)
■ Inexact Exception (XX)

Each floating-point exception, and each category of
Invalid Operation Exception, has an exception bit in
the FPSCR. In addition, each floating-point exception
has a corresponding enable bit in the FPSCR. See
Section 4.2.2, “Floating-Point Status and Control
Register” on page 101 for a description of these
exception and enable bits, and Section 4.4, “Floating-
Point Exceptions” on page 108 for a detailed dis-
cussion of floating-point exceptions, including the
effects of the enable bits.

4.2 Floating-Point Processor
Registers

4.2.1 Floating-Point Registers

Implementations of this architecture provide 32 float-
ing-point registers (FPRs). The floating-point instruc-
tion formats provide 5-bit fields for specifying the
FPRs to be used in the execution of the instruction.
The FPRs are numbered 0-31. See Figure 28 on
page 101.

Each FPR contains 64 bits that support the floating-
point double format. Every instruction that interprets
the contents of an FPR as a floating-point value uses
the floating-point double format for this interpretation.

The computational instructions, and the Move and
Select instructions, operate on data located in FPRs
and, with the exception of the Compare instructions,
place the result value into an FPR and optionally
place status information into the Condition Register.

Load Double and Store Double instructions are pro-
vided that transfer 64 bits of data between storage
and the FPRs with no conversion. Load Single
instructions are provided to transfer and convert
floating-point values in floating-point single format
from storage to the same value in floating-point
double format in the FPRs. Store Single instructions
are provided to transfer and convert floating-point
values in floating-point double format from the FPRs

100 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

to the same value in floating-point single format in
storage.

Instructions are provided that manipulate the
Floating-Point Status and Control Register and the
Condition Register explicitly. Some of these
instructions copy data from an FPR to the Floating-
Point Status and Control Register or vice versa.

The computational instructions and the Select instruc-
tion accept values from the FPRs in double format.
For single-precision arithmetic instructions, all input
values must be representable in single format; if they
are not, the result placed into the target FPR, and the
setting of status bits in the FPSCR and in the Condi-
tion Register (if Rc=1), are undefined.

FPR 0

FPR 1

. . .

. . .

FPR 30

FPR 31

0 63

Figure 28. Floating-Point Registers

4.2.2 Floating-Point Status and
Control Register

The Floating-Point Status and Control Register
(FPSCR) controls the handling of floating-point
exceptions and records status resulting from the float-
ing-point operations. Bits 0:23 are status bits. Bits
24:31 are control bits.

The exception bits in the FPSCR (bits 3:12, 21:23) are
sticky; that is, once set to 1 they remain set to 1 until
they are set to 0 by an mcrfs, mtfsfi, mtfsf, or mtfsb0
instruction. The exception summary bits in the FPSCR
(FX, FEX, and VX, which are bits 0:2) are not consid-
ered to be “exception bits”, and only FX is sticky.

FEX and VX are simply the ORs of other FPSCR bits.
Therefore these two bits are not listed among the
FPSCR bits affected by the various instructions.

FPSCR

0 31

Figure 29. Floating-Point Status and Control Register

The bit definitions for the FPSCR are as follows.

Bit(s) Description

0 Floating-Point Exception Summary (FX)
Every floating-point instruction, except mtfsfi
and mtfsf , implicitly sets FPSCRFX to 1 if that
instruction causes any of the floating-point
exception bits in the FPSCR to change from 0 to
1. mcrfs , mtfsfi , mtfsf , mtfsb0, and mtfsb1 can
alter FPSCRFX explicitly.

1 Floating-Point Enabled Exception Summary
(FEX)
This bit is the OR of all the floating-point excep-
tion bits masked by their respective enable bits.
mcrfs , mtfsfi , mtfsf , mtfsb0 , and mtfsb1 cannot
alter FPSCRFEX explicitly.

2 Floating-Point Invalid Operation Exception
Summary (VX)
This bit is the OR of all the Invalid Operation
exception bits. mcrfs , mtfsfi , mtfsf , mtfsb0 , and
mtfsb1 cannot alter FPSCRVX explicitly.

3 Floating-Point Overflow Exception (OX)
See Section 4.4.3, “Overflow Exception” on
page 111.

4 Floating-Point Underflow Exception (UX)
See Section 4.4.4, “Underflow Exception” on
page 112.

Chapter 4. Floating-Point Processor 101

IBM Confidential - Feb. 24, 1999

5 Floating-Point Zero Divide Exception (ZX)
See Section 4.4.2, “Zero Divide Exception” on
page 111.

6 Floating-Point Inexact Exception (XX)
See Section 4.4.5, “Inexact Exception” on
page 112.

FPSCRXX is a sticky version of FPSCRFI (see
below). Thus the following rules completely
describe how FPSCRXX is set by a given instruc-
tion.

■ If the instruction affects FPSCRFI, the new
value of FPSCRXX is obtained by ORing the
old value of FPSCRXX with the new value of
FPSCRFI.

■ If the instruction does not affect FPSCRFI,
the value of FPSCRXX is unchanged.

7 Floating-Point Invalid Operation Exception
(SNaN) (VXSNAN)
See Section 4.4.1, “Invalid Operation Exception”
on page 110.

8 Floating-Point Invalid Operation Exception
(∞ − ∞) (VXISI)
See Section 4.4.1, “Invalid Operation Exception”
on page 110.

9 Floating-Point Invalid Operation Exception
(∞ ÷ ∞) (VXIDI)
See Section 4.4.1, “Invalid Operation Exception”
on page 110.

10 Floating-Point Invalid Operation Exception
(0÷ 0) (VXZDZ)
See Section 4.4.1, “Invalid Operation Exception”
on page 110.

11 Floating-Point Invalid Operation Exception
(∞ ×0) (VXIMZ)
See Section 4.4.1, “Invalid Operation Exception”
on page 110.

12 Floating-Point Invalid Operation Exception
(Invalid Compare) (VXVC)
See Section 4.4.1, “Invalid Operation Exception”
on page 110.

13 Floating-Point Fraction Rounded (FR)
The last Arithmetic or Rounding and Conversion
instruction incremented the fraction during
rounding. See Section 4.3.6, “Rounding” on
page 107. This bit is not sticky.

14 Floating-Point Fraction Inexact (FI)
The last Arithmetic or Rounding and Conversion
instruction either produced an inexact result
during rounding or caused a disabled Overflow
Exception. See Section 4.3.6, “Rounding” on
page 107. This bit is not sticky.

See the definition of FPSCRXX, above, regarding
the relationship between FPSCRFI and FPSCRXX.

15:19 Floating-Point Result Flags (FPRF)
This field is set as described below. For arith-
metic, rounding, and conversion instructions,
the field is set based on the result placed into
the target register, except that if any portion of
the result is undefined then the value placed
into FPRF is undefined.

15 Floating-Point Result Class Descriptor (C)
Arithmetic, rounding, and conversion
instructions may set this bit with the FPCC bits,
to indicate the class of the result as shown in
Figure 30 on page 103.

16:19 Floating-Point Condition Code (FPCC)
Floating-point Compare instructions set one of
the FPCC bits to 1 and the other three FPCC
bits to 0. Arithmetic, rounding, and conversion
instructions may set the FPCC bits with the C
bit, to indicate the class of the result as shown
in Figure 30 on page 103. Note that in this
case the high-order three bits of the FPCC
retain their relational significance indicating
that the value is less than, greater than, or
equal to zero.

16 Floating-Point Less Than or Negative (FL or <)

17 Floating-Point Greater Than or Positive (FG or
>)

18 Floating-Point Equal or Zero (FE or =)

19 Floating-Point Unordered or NaN (FU or ?)

20 Reserved

21 Floating-Point Invalid Operation Exception
(Software Request) (VXSOFT)
This bit can be altered only by mcrfs, mtfsfi,
mtfsf, mtfsb0, or mtfsb1 . See Section 4.4.1,
“Invalid Operation Exception” on page 110.

22 Floating-Point Invalid Operation Exception
(Invalid Square Root) (VXSQRT)
See Section 4.4.1, “Invalid Operation Exception”
on page 110.

Architecture Note

This bit is defined even for implementations
that do not support either of the two
optional instructions that set it, namely
Floating Square Root and Floating Recip-
rocal Square Root Estimate. Defining it for
all implementations gives software a
standard interface for handling square root
exceptions.

Programming Note

If the implementation does not support the
optional Floating Square Root or Floating
Reciprocal Square Root Estimate instruction,
software can simulate the instruction and
set this bit to reflect the exception.

102 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

23 Floating-Point Invalid Operation Exception
(Invalid Integer Convert) (VXCVI)
See Section 4.4.1, “Invalid Operation Exception”
on page 110.

24 Floating-Point Invalid Operation Exception
Enable (VE)
See Section 4.4.1, “Invalid Operation Exception”
on page 110.

25 Floating-Point Overflow Exception Enable (OE)
See Section 4.4.3, “Overflow Exception” on
page 111.

26 Floating-Point Underflow Exception Enable (UE)
See Section 4.4.4, “Underflow Exception” on
page 112.

27 Floating-Point Zero Divide Exception Enable
(ZE)
See Section 4.4.2, “Zero Divide Exception” on
page 111.

28 Floating-Point Inexact Exception Enable (XE)
See Section 4.4.5, “Inexact Exception” on
page 112.

| 29 Reserved

| Architecture Note

| This bit will be among the last to be
| assigned a meaning. It was the NI
| (Non-IEEE Mode) bit in earlier versions of
| the architecture.

30:31 Floating-Point Rounding Control (RN)
See Section 4.3.6, “Rounding” on page 107.

00 Round to Nearest
01 Round toward Zero
10 Round toward + Infinity
11 Round toward − Infinity

Result
Flags Result Value Class

C < > = ?

1 0 0 0 1 Quiet NaN
0 1 0 0 1 − Infinity
0 1 0 0 0 − Normalized Number
1 1 0 0 0 − Denormalized Number
1 0 0 1 0 − Zero
0 0 0 1 0 + Zero
1 0 1 0 0 + Denormalized Number
0 0 1 0 0 + Normalized Number
0 0 1 0 1 + Infinity

Figure 30. Floating-Point Result Flags

|

4.3 Floating-Point Data

4.3.1 Data Format

This architecture defines the representation of a float-
ing-point value in two different binary fixed-length
formats. The format may be a 32-bit single format for
a single-precision value or a 64-bit double format for
a double-precision value. The single format may be
used for data in storage. The double format format
may be used for data in storage and for data in float-
ing-point registers.

The lengths of the exponent and the fraction fields
differ between these two formats. The structure of
the single and double formats is shown below.

S EXP FRACTION

0 1 9 31

Figure 31. Floating-point single format

S EXP FRACTION

0 1 12 63

Figure 32. Floating-point double format

Values in floating-point format are composed of three
fields:

S sign bit
EXP exponent+bias
FRACTION fraction

†

Representation of numeric values in the floating-point
formats consists of a sign bit (S), a biased exponent
(EXP), and the fraction portion (FRACTION) of the
significand. The significand consists of a leading
implied bit concatenated on the right with the FRAC-
TION. This leading implied bit is 1 for normalized
numbers and 0 for denormalized numbers and is
located in the unit bit position (i.e., the first bit to the
left of the binary point). Values representable within
the two floating-point formats can be specified by the
parameters listed in Figure 33 on page 104.

Chapter 4. Floating-Point Processor 103

IBM Confidential - Feb. 24, 1999

Format

Single Double

Exponent Bias +127 +1023
Maximum Exponent +127 +1023
Minimum Exponent − 126 − 1022

Widths (bits)
Format 32 64
Sign 1 1
Exponent 8 11
Fraction 23 52
Significand 24 53

Figure 33. IEEE floating-point fields

The architecture requires that the FPRs of the
Floating-Point Processor support the floating-point
double format only.

4.3.2 Value Representation

This architecture defines numeric and non-numeric
values representable within each of the two supported
formats. The numeric values are approximations to
the real numbers and include the normalized
numbers, denormalized numbers, and zero values.
The non-numeric values representable are the infin-
ities and the Not a Numbers (NaNs). The infinities are
adjoined to the real numbers, but are not numbers
themselves, and the standard rules of arithmetic do
not hold when they are used in an operation. They
are related to the real numbers by order alone. It is
possible however to define restricted operations
among numbers and infinities as defined below. The
relative location on the real number line for each of
the defined entities is shown in Figure 34.

-INF ³ -NOR ³-DEN³-0 ³+0³+DEN³ +NOR ³+INF
IÄÄÄÅÄÄÄÄÄÄÄÄÅÄÄÄÄÅÄÄÅÄÄÅÄÄÄÄÅÄÄÄÄÄÄÄÄÅÄÄÄH

Figure 34. Approximation to real numbers

The NaNs are not related to the numeric values or
infinities by order or value but are encodings used to
convey diagnostic information such as the represen-
tation of uninitialized variables.

The following is a description of the different floating-
point values defined in the architecture:

Binary floating-point numbers
Machine representable values used as approxi-
mations to real numbers. Three categories of
numbers are supported: normalized numbers, denor-
malized numbers, and zero values.

Normalized numbers (± NOR)
These are values that have a biased exponent value
in the range:

1 to 254 in single format
1 to 2046 in double format

They are values in which the implied unit bit is 1.
Normalized numbers are interpreted as follows:

NOR = (− 1)s x 2E x (1.fraction)

where s is the sign, E is the unbiased exponent, and
1.fraction is the significand, which is composed of a
leading unit bit (implied bit) and a fraction part.

The ranges covered by the magnitude (M) of a nor-
malized floating-point number are approximately
equal to:

Single Format:

1.2x10− 38 ≤ M ≤ 3.4x1038

Double Format:

2.2x10− 308 ≤ M ≤ 1.8x10308

Zero values (± 0)
These are values that have a biased exponent value
of zero and a fraction value of zero. Zeros can have
a positive or negative sign. The sign of zero is
ignored by comparison operations (i.e., comparison
regards + 0 as equal to − 0).

Denormalized numbers (± DEN)
These are values that have a biased exponent value
of zero and a nonzero fraction value. They are
nonzero numbers smaller in magnitude than the
representable normalized numbers. They are values
in which the implied unit bit is 0. Denormalized
numbers are interpreted as follows:

DEN = (− 1)s x 2Emin x (0.fraction)

where Emin is the minimum representable exponent
value (− 126 for single-precision, − 1022 for double-
precision).

Infinities (± ∞)
These are values that have the maximum biased
exponent value:

255 in single format
2047 in double format

and a zero fraction value. They are used to approxi-
mate values greater in magnitude than the maximum
normalized value.

Infinity arithmetic is defined as the limiting case of
real arithmetic, with restricted operations defined
among numbers and infinities. Infinities and the real
numbers can be related by ordering in the affine
sense:

− ∞ < every finite number < + ∞

104 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

Arithmetic on infinities is always exact and does not
signal any exception, except when an exception
occurs due to the invalid operations as described in
Section 4.4.1, “Invalid Operation Exception” on
page 110.

Not a Numbers (NaNs)
These are values that have the maximum biased
exponent value and a nonzero fraction value. The
sign bit is ignored (i.e., NaNs are neither positive nor
negative). If the high-order bit of the fraction field is
0 then the NaN is a Signaling NaN; otherwise it is a
Quiet NaN.

Signaling NaNs are used to signal exceptions when
they appear as operands of computational
instructions.

Quiet NaNs are used to represent the results of
certain invalid operations, such as invalid arithmetic
operations on infinities or on NaNs, when Invalid
Operation Exception is disabled (FPSCRVE=0) . Quiet
NaNs propagate through all floating-point operations
except ordered comparison, Floating Round to Single-
Precision, and conversion to integer. Quiet NaNs do
not signal exceptions, except for ordered comparison
and conversion to integer operations. Specific
encodings in QNaNs can thus be preserved through a
sequence of floating-point operations, and used to
convey diagnostic information to help identify results
from invalid operations.

When a QNaN is the result of a floating-point opera-
tion because one of the operands is a NaN or because
a QNaN was generated due to a disabled Invalid
Operation Exception, then the following rule is applied
to determine the NaN with the high-order fraction bit
set to 1 that is to be stored as the result.

if (FRA) is a NaN
then FRT ← (FRA)
else if (FRB) is a NaN

then if instruction is frsp
then FRT ← (FRB)0:34 || 290
else FRT ← (FRB)

else if (FRC) is a NaN
then FRT ← (FRC)
else if generated QNaN

then FRT ← generated QNaN

If the operand specified by FRA is a NaN, then that
NaN is stored as the result. Otherwise, if the operand
specified by FRB is a NaN (if the instruction specifies
an FRB operand), then that NaN is stored as the
result, with the low-order 29 bits of the result set to 0
if the instruction is frsp . Otherwise, if the operand
specified by FRC is a NaN (if the instruction specifies
an FRC operand), then that NaN is stored as the
result. Otherwise, if a QNaN was generated due to a
disabled Invalid Operation Exception, then that QNaN
is stored as the result. If a QNaN is to be generated
as a result, then the QNaN generated has a sign bit of
0, an exponent field of all 1s, and a high-order fraction
bit of 1 with all other fraction bits 0. Any instruction
that generates a QNaN as the result of a disabled
Invalid Operation must generate this QNaN (i.e.,
0x7FF8_0000_0000_0000).

A double-precision NaN is considered to be represent-
able in single format if and only if the low-order 29
bits of the double-precision NaN's fraction are zero.

4.3.3 Sign of Result

The following rules govern the sign of the result of an
arithmetic, rounding, or conversion operation, when
the operation does not yield an exception. They apply
even when the operands or results are zeros or infin-
ities.

■ The sign of the result of an add operation is the
sign of the operand having the larger absolute
value. If both operands have the same sign, the
sign of the result of an add operation is the same
as the sign of the operands. The sign of the
result of the subtract operation x− y is the same
as the sign of the result of the add operation
x + (− y).

When the sum of two operands with opposite
sign, or the difference of two operands with the
same sign, is exactly zero, the sign of the result
is positive in all rounding modes except Round
toward − Infinity, in which mode the sign is nega-
tive.

■ The sign of the result of a multiply or divide oper-
ation is the Exclusive OR of the signs of the oper-
ands.

■ The sign of the result of a Square Root or Recip-
rocal Square Root Estimate operation is always

Chapter 4. Floating-Point Processor 105

IBM Confidential - Feb. 24, 1999

positive, except that the square root of − 0 is − 0
and the reciprocal square root of − 0 is − Infinity.

■ The sign of the result of a Round to Single-
Precision or Convert To/From Integer operation is
the sign of the operand being converted.

For the Multiply-Add instructions, the rules given
above are applied first to the multiply operation and
then to the add or subtract operation (one of the
inputs to the add or subtract operation is the result of
the multiply operation).

4.3.4 Normalization and
Denormalization

The intermediate result of an arithmetic or frsp
instruction may require normalization and/or denor-
malization as described below. Normalization and
denormalization do not affect the sign of the result.

When an arithmetic or frsp instruction produces an
intermediate result, consisting of a sign bit, an expo-
nent, and a nonzero significand with a 0 leading bit, it
is not a normalized number and must be normalized
before it is stored.

A number is normalized by shifting its significand left
while decrementing its exponent by 1 for each bit
shifted, until the leading significand bit becomes 1.
The Guard bit and the Round bit (see Section 4.5.1,
“Execution Model for IEEE Operations” on page 113)
participate in the shift with zeros shifted into the
Round bit. The exponent is regarded as if its range
were unlimited.

After normalization, or if normalization was not
required, the intermediate result may have a nonzero
significand and an exponent value that is less than
the minimum value that can be represented in the
format specified for the result. In this case, the inter-
mediate result is said to be “Tiny” and the stored
result is determined by the rules described in Section
4.4.4, “Underflow Exception” on page 112. These
rules may require denormalization.

A number is denormalized by shifting its significand
right while incrementing its exponent by 1 for each bit
shifted, until the exponent is equal to the format's
minimum value. If any significant bits are lost in this
shifting process then “Loss of Accuracy” has occurred
(See Section 4.4.4, “Underflow Exception” on
page 112) and Underflow Exception is signaled.

Engineering Note

When denormalized numbers are operands of
multiply, divide, and square root operations, some
implementations may prenormalize the operands
internally before performing the operations.

4.3.5 Data Handling and Precision

Instructions are defined to move floating-point data
between the FPRs and storage. For double format
data, the data are not altered during the move. For
single format data, a format conversion from single to
double is performed when loading from storage into
an FPR and a format conversion from double to single
is performed when storing from an FPR to storage.
No floating-point exceptions are caused by these
instructions.

All computational, Move, and Select instructions use
the floating-point double format.

Floating-point single-precision is obtained with the
implementation of four types of instruction.

1. Load Floating-Point Single

This form of instruction accesses a single-
precision operand in single format in storage,
converts it to double format, and loads it into an
FPR. No floating-point exceptions are caused by
these instructions.

2. Round to Floating-Point Single-Precision

The Floating Round to Single-Precision instruction
rounds a double-precision operand to single-
precision, checking the exponent for single-
precision range and handling any exceptions
according to respective enable bits, and places
that operand into an FPR as a double-precision
operand. For results produced by single-
precision arithmetic instructions, single-precision
loads, and other instances of the Floating Round
to Single-Precision instruction, this operation
does not alter the value.

3. Single-Precision Arithmetic Instructions

This form of instruction takes operands from the
FPRs in double format, performs the operation as
if it produced an intermediate result having infi-
nite precision and unbounded exponent range,
and then coerces this intermediate result to fit in
single format. Status bits, in the FPSCR and
optionally in the Condition Register, are set to
reflect the single-precision result. The result is
then converted to double format and placed into
an FPR. The result lies in the range supported by
the single format.

All input values must be representable in single
format; if they are not, the result placed into the
target FPR, and the setting of status bits in the
FPSCR and in the Condition Register (if Rc=1),
are undefined.

4. Store Floating-Point Single

This form of instruction converts a double-
precision operand to single format and stores
that operand into storage. No floating-point
exceptions are caused by these instructions.

106 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

(The value being stored is effectively assumed to
be the result of an instruction of one of the pre-
ceding three types.)

When the result of a Load Floating-Point Single,
Floating Round to Single-Precision, or single-precision
arithmetic instruction is stored in an FPR, the low-
order 29 FRACTION bits are zero.

Programming Note

The Floating Round to Single-Precision instruction
is provided to allow value conversion from
double-precision to single-precision with appro-
priate exception checking and rounding. This
instruction should be used to convert double-
precision floating-point values (produced by
double-precision load and arithmetic instructions
and by fcfid) to single-precision values prior to
storing them into single format storage elements
or using them as operands for single-precision
arithmetic instructions. Values produced by
single-precision load and arithmetic instructions
are already single-precision values and can be
stored directly into single format storage ele-
ments, or used directly as operands for single-
precision arithmetic instructions, without
preceding the store, or the arithmetic instruction,
by a Floating Round to Single-Precision instruc-
tion.

Programming Note

A single-precision value can be used in double-
precision arithmetic operations. The reverse is
true only if the double-precision value is repre-
sentable in single format.

Some implementations may execute single-
precision arithmetic instructions faster than
double-precision arithmetic instructions. There-
fore, if double-precision accuracy is not required,
single-precision data and instructions should be
used.

4.3.6 Rounding

The material in this section applies to operations that
have numeric operands (i.e., operands that are not
infinities or NaNs). Rounding the intermediate result
of such an operation may cause an Overflow Excep-
tion, an Underflow Exception, or an Inexact Exception.
The remainder of this section assumes that the opera-
tion causes no exceptions and that the result is
numeric. See Section 4.3.2, “Value Representation”
on page 104 and Section 4.4, “Floating-Point
Exceptions” on page 108 for the cases not covered
here.

The arithmetic, rounding, and conversion instructions
produce an intermediate result that can be regarded

as having infinite precision and unbounded exponent
range. This intermediate result is normalized or
denormalized if required, then rounded to the destina-
tion format. The final result is then placed into the
target FPR in double format or in fixed-point integer
format, depending on the instruction.

The instructions that round their intermediate result
are the Arithmetic and Rounding and Conversion
instructions. Each of these instructions sets FPSCR
bits FR and FI. If the fraction was incremented during
rounding then FR is set to 1, otherwise FR is set to 0.
If the rounded result is inexact then FI is set to 1, oth-
erwise FI is set to 0.

The two Estimate instructions set FR and FI to unde-
fined values. The remaining floating-point instructions
do not alter FR and FI.

Four user-selectable rounding modes are provided
through the Floating-Point Rounding Control field in
the FPSCR. See Section 4.2.2, “Floating-Point Status
and Control Register” on page 101. These are
encoded as follows:

RN Rounding Mode
00 Round to Nearest
01 Round toward Zero
10 Round toward + Infinity
11 Round toward − Infinity

Let Z be the intermediate arithmetic result or the
operand of a convert operation. If Z can be repres-
ented exactly in the target format, then the result in
all rounding modes is Z as represented in the target
format. If Z cannot be represented exactly in the
target format, let Z1 and Z2 bound Z as the next
larger and next smaller numbers representable in the
target format. Then Z1 or Z2 can be used to approxi-
mate the result in the target format.

Figure 35 shows the relation of Z, Z1, and Z2 in this
case. The following rules specify the rounding in the
four modes. “LSB” means “least significant bit”.

ÚÄÄÄÄÄÄÄ By Incrementing LSB of Z ÄÄÄÄÄÄÄ¿
³ ÚÄÄÄÄÄ Infinitely Precise Value ÄÄÄÄÄ¿ ³
³ ³ ÚÄÄÄ By Truncating after LSB ÄÄÄ¿ ³ ³
↓ ↓ ↓ ↓ ↓ ↓

IÄÅÄÅÄÅÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÅÄÅÄÅÄH
Z2³ Z1 0 Z2³ Z1

Z Z
Negative values IÄÄÅÄÄH Positive values

Figure 35. Selection of Z1 and Z2

Round to Nearest
Choose the value that is closer to Z (Z1 or Z2).
In case of a tie, choose the one that is even
(least significant bit 0).

Round toward Zero
Choose the smaller in magnitude (Z1 or Z2).

Round toward + Infinity
Choose Z1.

Chapter 4. Floating-Point Processor 107

IBM Confidential - Feb. 24, 1999

Round toward − Infinity
Choose Z2.

See Section 4.5.1, “Execution Model for IEEE
Operations” on page 113 for a detailed explanation of
rounding.

4.4 Floating-Point Exceptions

This architecture defines the following floating-point
exceptions:

■ Invalid Operation Exception
SNaN
Infinity− Infinity
Infinity÷ Infinity
Zero÷ Zero
Infinity×Zero
Invalid Compare
Software Request
Invalid Square Root
Invalid Integer Convert

■ Zero Divide Exception
■ Overflow Exception
■ Underflow Exception
■ Inexact Exception

These exceptions may occur during execution of com-
putational instructions. In addition, an Invalid Opera-
tion Exception occurs when a Move To FPSCR
instruction sets FPSCRVXSOFT to 1 (Software Request).

Each floating-point exception, and each category of
Invalid Operation Exception, has an exception bit in
the FPSCR. In addition, each floating-point exception
has a corresponding enable bit in the FPSCR. The
exception bit indicates occurrence of the corre-
sponding exception. If an exception occurs, the corre-
sponding enable bit governs the result produced by
the instruction and, in conjunction with the FE0 and
FE1 bits (see page 109), whether and how the system
floating-point enabled exception error handler is
invoked. (In general, the enabling specified by the
enable bit is of invoking the system error handler, not
of permitting the exception to occur. The occurrence
of an exception depends only on the instruction and
its inputs, not on the setting of any control bits. The
only deviation from this general rule is that the occur-
rence of an Underflow Exception may depend on the
setting of the enable bit.)

A single instruction, other than mtfsfi or mtfsf , may
set more than one exception bit only in the following
cases:

■ Inexact Exception may be set with Overflow
Exception.

■ Inexact Exception may be set with Underflow
Exception.

■ Invalid Operation Exception (SNaN) is set with
Invalid Operation Exception (∞ ×0) for
Multiply-Add instructions for which the values

being multiplied are infinity and zero and the
value being added is an SNaN.

■ Invalid Operation Exception (SNaN) may be set
with Invalid Operation Exception (Invalid
Compare) for Compare Ordered instructions.

■ Invalid Operation Exception (SNaN) may be set
with Invalid Operation Exception (Invalid Integer
Convert) for Convert To Integer instructions.

When an exception occurs the instruction execution
may be suppressed or a result may be delivered,
depending on the exception.

Instruction execution is suppressed for the following
kinds of exception, so that there is no possibility that
one of the operands is lost:

■ Enabled Invalid Operation
■ Enabled Zero Divide

For the remaining kinds of exception, a result is gen-
erated and written to the destination specified by the
instruction causing the exception. The result may be
a different value for the enabled and disabled condi-
tions for some of these exceptions. The kinds of
exception that deliver a result are the following:

■ Disabled Invalid Operation
■ Disabled Zero Divide
■ Disabled Overflow
■ Disabled Underflow
■ Disabled Inexact
■ Enabled Overflow
■ Enabled Underflow
■ Enabled Inexact

Subsequent sections define each of the floating-point
exceptions and specify the action that is taken when
they are detected.

The IEEE standard specifies the handling of excep-
tional conditions in terms of “traps” and “trap han-
dlers”. In this architecture, an FPSCR exception
enable bit of 1 causes generation of the result value
specified in the IEEE standard for the “trap enabled”
case: the expectation is that the exception will be
detected by software, which will revise the result. An
FPSCR exception enable bit of 0 causes generation of
the “default result” value specified for the “trap disa-
bled” (or “no trap occurs” or “trap is not imple-
mented”) case: the expectation is that the exception
will not be detected by software, which will simply use
the default result. The result to be delivered in each
case for each exception is described in the sections
below.

The IEEE default behavior when an exception occurs
is to generate a default value and not to notify soft-
ware. In this architecture, if the IEEE default behavior
when an exception occurs is desired for all
exceptions, all FPSCR exception enable bits should be
set to 0 and Ignore Exceptions Mode (see below)
should be used. In this case the system floating-point

108 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

enabled exception error handler is not invoked, even
if floating-point exceptions occur: software can inspect
the FPSCR exception bits if necessary, to determine
whether exceptions have occurred.

In this architecture, if software is to be notified that a
given kind of exception has occurred, the corre-
sponding FPSCR exception enable bit must be set to 1
and a mode other than Ignore Exceptions Mode must
be used. In this case the system floating-point
enabled exception error handler is invoked if an
enabled floating-point exception occurs. The system
floating-point enabled exception error handler is also
invoked if a Move To FPSCR instruction causes an
exception bit and the corresponding enable bit both to
be 1; the Move To FPSCR instruction is considered to
cause the enabled exception.

The FE0 and FE1 bits control whether and how the
system floating-point enabled exception error handler
is invoked if an enabled floating-point exception
occurs. The location of these bits and the require-
ments for altering them are described in Book III,
PowerPC AS Operating Environment Architecture.
(The system floating-point enabled exception error
handler is never invoked because of a disabled float-
ing-point exception.) The effects of the four possible
settings of these bits are as follows.

FE0 FE1 Description

0 0 Ignore Exceptions Mode
Floating-point exceptions do not cause the
system floating-point enabled exception
error handler to be invoked.

0 1 Imprecise Nonrecoverable Mode
The system floating-point enabled exception
error handler is invoked at some point at or
beyond the instruction that caused the
enabled exception. It may not be possible to
identify the excepting instruction or the data
that caused the exception. Results
produced by the excepting instruction may
have been used by or may have affected
subsequent instructions that are executed
before the error handler is invoked.

1 0 Imprecise Recoverable Mode
The system floating-point enabled exception
error handler is invoked at some point at or
beyond the instruction that caused the
enabled exception. Sufficient information is
provided to the error handler that it can
identify the excepting instruction and the
operands, and correct the result. No results
produced by the excepting instruction have
been used by or have affected subsequent
instructions that are executed before the
error handler is invoked.

1 1 Precise Mode
The system floating-point enabled exception
error handler is invoked precisely at the
instruction that caused the enabled excep-
tion.

Architecture Note

The FE0 and FE1 bits must be defined in Book III
in a manner such that they can be changed
dynamically and can easily be treated as part of a
process' state.

In all cases, the question of whether a floating-point
result is stored, and what value is stored, is governed
by the FPSCR exception enable bits, as described in
subsequent sections, and is not affected by the value
of the FE0 and FE1 bits.

In all cases in which the system floating-point enabled
exception error handler is invoked, all instructions
before the instruction at which the system floating-
point enabled exception error handler is invoked have
completed, and no instruction after the instruction at
which the system floating-point enabled exception
error handler is invoked has begun execution. (Recall
that, for the two Imprecise modes, the instruction at
which the system floating-point enabled exception
error handler is invoked need not be the instruction
that caused the exception.) The instruction at which
the system floating-point enabled exception error
handler is invoked has not been executed unless it is
the excepting instruction, in which case it has been
executed if the exception is not among those listed on
page 108 as suppressed.

Programming Note

In any of the three non-Precise modes, a Floating-
Point Status and Control Register instruction can
be used to force any exceptions, due to
instructions initiated before the Floating-Point
Status and Control Register instruction, to be
recorded in the FPSCR. (This forcing is super-
fluous for Precise Mode.)

In either of the Imprecise modes, a Floating-Point
Status and Control Register instruction can be
used to force any invocations of the system float-
ing-point enabled exception error handler, due to
instructions initiated before the Floating-Point
Status and Control Register instruction, to occur.
(This forcing has no effect in Ignore Exceptions
Mode, and is superfluous for Precise Mode.)

|

In order to obtain the best performance across the
widest range of implementations, the programmer
should obey the following guidelines.

Chapter 4. Floating-Point Processor 109

IBM Confidential - Feb. 24, 1999

■ If the IEEE default results are acceptable to the
application, Ignore Exceptions Mode should be
used with all FPSCR exception enable bits set to
0.

■ If the IEEE default results are not acceptable to
the application, Imprecise Nonrecoverable Mode
should be used, or Imprecise Recoverable Mode
if recoverability is needed, with FPSCR exception
enable bits set to 1 for those exceptions for which
the system floating-point enabled exception error
handler is to be invoked.

■ Ignore Exceptions Mode should not, in general, be
used when any FPSCR exception enable bits are
set to 1.

■ Precise Mode may degrade performance in some
implementations, perhaps substantially, and
therefore should be used only for debugging and
other specialized applications.

Engineering Note

It is permissible for the implementation to be
precise in any of the three modes that permit
interrupts, or to be recoverable in Nonrecoverable
Mode.

4.4.1 Invalid Operation Exception

4.4.1.1 Definition

An Invalid Operation Exception occurs when an
operand is invalid for the specified operation. The
invalid operations are:

■ Any floating-point operation on a signaling NaN
(SNaN)

■ For add or subtract operations, magnitude sub-
traction of infinities (∞ − ∞)

■ Division of infinity by infinity (∞ ÷ ∞)
■ Division of zero by zero (0÷ 0)
■ Multiplication of infinity by zero (∞ ×0)
■ Ordered comparison involving a NaN (Invalid

Compare)
■ Square root or reciprocal square root of a nega-

tive (and nonzero) number (Invalid Square Root)
■ Integer convert involving a number too large in

magnitude to be represented in the target format,
or involving an infinity or a NaN (Invalid Integer
Convert)

In addition, an Invalid Operation Exception occurs if
software explicitly requests this by executing an
mtfsfi, mtfsf, or mtfsb1 instruction that sets
FPSCRVXSOFT to 1 (Software Request).

Programming Note

The purpose of FPSCRVXSOFT is to allow software
to cause an Invalid Operation Exception for a con-
dition that is not necessarily associated with the
execution of a floating-point instruction. For
example, it might be set by a program that com-
putes a square root, if the source operand is neg-
ative.

4.4.1.2 Action

The action to be taken depends on the setting of the
Invalid Operation Exception Enable bit of the FPSCR.

When Invalid Operation Exception is enabled
(FPSCRVE= 1) and Invalid Operation occurs or soft-
ware explicitly requests the exception, the following
actions are taken:

1. One or two Invalid Operation Exceptions are set
FPSCRVXSNAN (if SNaN)
FPSCRVXISI (if ∞ − ∞)
FPSCRVXIDI (if ∞ ÷ ∞)
FPSCRVXZDZ (if 0÷ 0)
FPSCRVXIMZ (if ∞ ×0)
FPSCRVXVC (if invalid comp)
FPSCRVXSOFT (if software req)
FPSCRVXSQRT (if invalid sqrt)
FPSCRVXCVI (if invalid int cvrt)

2. If the operation is an arithmetic, Floating Round
to Single-Precision, or convert to integer opera-
tion,

the target FPR is unchanged
FPSCRFR FI are set to zero
FPSCRFPRF is unchanged

3. If the operation is a compare,
FPSCRFR FI C are unchanged
FPSCRFPCC is set to reflect unordered

4. If software explicitly requests the exception,
FPSCRFR FI FPRF are as set by the mtfsfi,
mtfsf, or mtfsb1 instruction

When Invalid Operation Exception is disabled
(FPSCRVE= 0) and Invalid Operation occurs or soft-
ware explicitly requests the exception, the following
actions are taken:

1. One or two Invalid Operation Exceptions are set
FPSCRVXSNAN (if SNaN)
FPSCRVXISI (if ∞ − ∞)
FPSCRVXIDI (if ∞ ÷ ∞)
FPSCRVXZDZ (if 0÷ 0)
FPSCRVXIMZ (if ∞ ×0)
FPSCRVXVC (if invalid comp)
FPSCRVXSOFT (if software req)
FPSCRVXSQRT (if invalid sqrt)
FPSCRVXCVI (if invalid int cvrt)

2. If the operation is an arithmetic or Floating
Round to Single-Precision operation,

the target FPR is set to a Quiet NaN
FPSCRFR FI are set to zero

110 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

FPSCRFPRF is set to indicate the class of the
result (Quiet NaN)

3. If the operation is a convert to 64-bit integer
operation,

the target FPR is set as follows:
FRT is set to the most positive 64-bit
integer if the operand in FRB is a posi-
tive number or + ∞ , and to the most
negative 64-bit integer if the operand in
FRB is a negative number, − ∞ , or NaN

FPSCRFR FI are set to zero
FPSCRFPRF is undefined

4. If the operation is a convert to 32-bit integer
operation,

the target FPR is set as follows:
FRT0:31 ← undefined
FRT32:63 are set to the most positive
32-bit integer if the operand in FRB is a
positive number or + ∞ , and to the most
negative 32-bit integer if the operand in
FRB is a negative number, − ∞ , or NaN

FPSCRFR FI are set to zero
FPSCRFPRF is undefined

5. If the operation is a compare,
FPSCRFR FI C are unchanged
FPSCRFPCC is set to reflect unordered

6. If software explicitly requests the exception,
FPSCRFR FI FPRF are as set by the mtfsfi,
mtfsf, or mtfsb1 instruction

4.4.2 Zero Divide Exception

4.4.2.1 Definition

A Zero Divide Exception occurs when a Divide instruc-
tion is executed with a zero divisor value and a finite
nonzero dividend value. It also occurs when a Recip-
rocal Estimate instruction (fres or frsqrte) is executed
with an operand value of zero.

Architecture Note

The name is a misnomer used for historical
reasons. The proper name for this exception
should be “Exact Infinite Result from Finite Oper-
ands” corresponding to what mathematicians call
a “pole”.

4.4.2.2 Action

The action to be taken depends on the setting of the
Zero Divide Exception Enable bit of the FPSCR.

When Zero Divide Exception is enabled (FPSCRZE= 1)
and Zero Divide occurs, the following actions are
taken:

1. Zero Divide Exception is set
FPSCRZX ← 1

2. The target FPR is unchanged
3. FPSCRFR FI are set to zero

4. FPSCRFPRF is unchanged

When Zero Divide Exception is disabled (FPSCRZE= 0)
and Zero Divide occurs, the following actions are
taken:

1. Zero Divide Exception is set
FPSCRZX ← 1

2. The target FPR is set to ± Infinity, where the sign
is determined by the XOR of the signs of the
operands

3. FPSCRFR FI are set to zero
4. FPSCRFPRF is set to indicate the class and sign of

the result (± Infinity)

4.4.3 Overflow Exception

4.4.3.1 Definition

Overflow occurs when the magnitude of what would
have been the rounded result if the exponent range
were unbounded exceeds that of the largest finite
number of the specified result precision.

4.4.3.2 Action

The action to be taken depends on the setting of the
Overflow Exception Enable bit of the FPSCR.

When Overflow Exception is enabled (FPSCROE= 1)
and exponent overflow occurs, the following actions
are taken:

1. Overflow Exception is set
FPSCROX ← 1

2. For double-precision arithmetic instructions, the
exponent of the normalized intermediate result is
adjusted by subtracting 1536

3. For single-precision arithmetic instructions and
the Floating Round to Single-Precision instruc-
tion, the exponent of the normalized intermediate
result is adjusted by subtracting 192

4. The adjusted rounded result is placed into the
target FPR

5. FPSCRFPRF is set to indicate the class and sign of
the result (± Normal Number)

When Overflow Exception is disabled (FPSCROE= 0)
and overflow occurs, the following actions are taken:

1. Overflow Exception is set
FPSCROX ← 1

2. Inexact Exception is set
FPSCRXX ← 1

3. The result is determined by the rounding mode
(FPSCRRN) and the sign of the intermediate result
as follows:
A. Round to Nearest

Store ± Infinity, where the sign is the sign of
the intermediate result

B. Round toward Zero
Store the format's largest finite number with
the sign of the intermediate result

Chapter 4. Floating-Point Processor 111

IBM Confidential - Feb. 24, 1999

C. Round toward + Infinity
For negative overflow, store the format's
most negative finite number; for positive
overflow, store + Infinity

D. Round toward − Infinity
For negative overflow, store − Infinity; for
positive overflow, store the format's largest
finite number

4. The result is placed into the target FPR
5. FPSCRFR is undefined
6. FPSCRFI is set to 1
7. FPSCRFPRF is set to indicate the class and sign of

the result (± Infinity or ± Normal Number)

4.4.4 Underflow Exception

4.4.4.1 Definition

Underflow Exception is defined separately for the
enabled and disabled states:

■ Enabled:
Underflow occurs when the intermediate result is
“Tiny”.

■ Disabled:
Underflow occurs when the intermediate result is
“Tiny” and there is “Loss of Accuracy”.

A “Tiny” result is detected before rounding, when a
nonzero intermediate result computed as though both
the precision and the exponent range were
unbounded would be less in magnitude than the
smallest normalized number.

If the intermediate result is “Tiny” and Underflow
Exception is disabled (FPSCRUE= 0) then the interme-
diate result is denormalized (see Section 4.3.4, “Nor-
malization and Denormalization” on page 106) and
rounded (see Section 4.3.6, “Rounding” on page 107)
before being placed into the target FPR.

“Loss of Accuracy” is detected when the delivered
result value differs from what would have been com-
puted were both the precision and the exponent range
unbounded.

4.4.4.2 Action

The action to be taken depends on the setting of the
Underflow Exception Enable bit of the FPSCR.

When Underflow Exception is enabled (FPSCRUE= 1)
and exponent underflow occurs, the following actions
are taken:

1. Underflow Exception is set
FPSCRUX ← 1

2. For double-precision arithmetic instructions, the
exponent of the normalized intermediate result is
adjusted by adding 1536

3. For single-precision arithmetic instructions and
the Floating Round to Single-Precision instruc-

tion, the exponent of the normalized intermediate
result is adjusted by adding 192

4. The adjusted rounded result is placed into the
target FPR

5. FPSCRFPRF is set to indicate the class and sign of
the result (± Normalized Number)

Programming Note

The FR and FI bits are provided to allow the
system floating-point enabled exception error
handler, when invoked because of an Underflow
Exception, to simulate a “trap disabled” environ-
ment. That is, the FR and FI bits allow the system
floating-point enabled exception error handler to
unround the result, thus allowing the result to be
denormalized.

When Underflow Exception is disabled (FPSCRUE= 0)
and underflow occurs, the following actions are taken:

1. Underflow Exception is set
FPSCRUX ← 1

2. The rounded result is placed into the target FPR
3. FPSCRFPRF is set to indicate the class and sign of

the result (± Normalized Number, ± Denormalized
Number, or ± Zero)

4.4.5 Inexact Exception

4.4.5.1 Definition

An Inexact Exception occurs when one of two condi-
tions occur during rounding:

1. The rounded result differs from the intermediate
result assuming both the precision and the expo-
nent range of the intermediate result to be
unbounded. In this case the result is said to be
inexact. (If the rounding causes an enabled Over-
flow Exception or an enabled Underflow Excep-
tion, an Inexact Exception also occurs only if the
significands of the rounded result and the inter-
mediate result differ.)

2. The rounded result overflows and Overflow
Exception is disabled.

4.4.5.2 Action

The action to be taken does not depend on the setting
of the Inexact Exception Enable bit of the FPSCR.

When Inexact Exception occurs, the following actions
are taken:

1. Inexact Exception is set
FPSCRXX ← 1

2. The rounded or overflowed result is placed into
the target FPR

3. FPSCRFPRF is set to indicate the class and sign of
the result

112 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

Programming Note

In some implementations, enabling Inexact
Exceptions may degrade performance more than
does enabling other types of floating-point excep-
tion.

4.5 Floating-Point Execution
Models

All implementations of this architecture must provide
the equivalent of the following execution models to
ensure that identical results are obtained.

Special rules are provided in the definition of the
computational instructions for the infinities, denormal-
ized numbers and NaNs. The material in the
remainder of this section applies to instructions that
have numeric operands and a numeric result (i.e.,
operands and result that are not infinities or NaNs),
and that cause no exceptions. See Section 4.3.2,
“Value Representation” on page 104 and Section 4.4,
“Floating-Point Exceptions” on page 108 for the cases
not covered here.

Although the double format specifies an 11-bit expo-
nent, exponent arithmetic makes use of two additional
bits to avoid potential transient overflow conditions.
One extra bit is required when denormalized double-
precision numbers are prenormalized. The second bit
is required to permit the computation of the adjusted
exponent value in the following cases when the corre-
sponding exception enable bit is 1:

■ Underflow during multiplication using a denormal-
ized operand.

■ Overflow during division using a denormalized
divisor.

The IEEE standard includes 32-bit and 64-bit arith-
metic. The standard requires that single-precision
arithmetic be provided for single-precision operands.
The standard permits double-precision floating-point
operations to have either (or both) single-precision or
double-precision operands, but states that single-
precision floating-point operations should not accept
double-precision operands. The PowerPC AS Archi-
tecture follows these guidelines: double-precision
arithmetic instructions can have operands of either or
both precisions, while single-precision arithmetic
instructions require all operands to be single-
precision. Double-precision arithmetic instructions
and fcfid produce double-precision values, while

single-precision arithmetic instructions produce
single-precision values.

For arithmetic instructions, conversions from double-
precision to single-precision must be done explicitly
by software, while conversions from single-precision
to double-precision are done implicitly.

4.5.1 Execution Model for IEEE
Operations

The following description uses 64-bit arithmetic as an
example. 32-bit arithmetic is similar except that the
FRACTION is a 23-bit field, and the single-precision
Guard, Round, and Sticky bits (described in this
section) are logically adjacent to the 23-bit FRACTION
field.

IEEE-conforming significand arithmetic is considered
to be performed with a floating-point accumulator
having the following format, where bits 0:55 comprise
the significand of the intermediate result.

S C L FRACTION G R X
0 1 52 55

Figure 36. IEEE 64-bit execution model

The S bit is the sign bit.

The C bit is the carry bit, which captures the carry out
of the significand.

The L bit is the leading unit bit of the significand,
which receives the implicit bit from the operand.

The FRACTION is a 52-bit field that accepts the frac-
tion of the operand.

The Guard (G), Round (R), and Sticky (X) bits are
extensions to the low-order bits of the accumulator.
The G and R bits are required for postnormalization of
the result. The G, R, and X bits are required during
rounding to determine if the intermediate result is
equally near the two nearest representable values.
The X bit serves as an extension to the G and R bits
by representing the logical OR of all bits that may
appear to the low-order side of the R bit, due either to
shifting the accumulator right or to other generation
of low-order result bits. The G and R bits participate
in the left shifts with zeros being shifted into the R bit.
Figure 37 on page 114 shows the significance of the
G, R, and X bits with respect to the intermediate
result (IR), the representable number next lower in
magnitude (NL), and the representable number next
higher in magnitude (NH).

Chapter 4. Floating-Point Processor 113

IBM Confidential - Feb. 24, 1999

G R X Interpretation

0 0 0 IR is exact

0 0 1
0 1 0 IR closer to NL
0 1 1

1 0 0 IR midway between NL and NH

1 0 1
1 1 0 IR closer to NH
1 1 1

Figure 37. Interpretation of G, R, and X bits

After normalization, the intermediate result is
rounded, using the rounding mode specified by
FPSCRRN. If rounding results in a carry into C, the
significand is shifted right one position and the expo-
nent incremented by one. This yields an inexact
result and possibly also exponent overflow. Fraction
bits to the left of the bit position used for rounding
are stored into the FPR and low-order bit positions, if
any, are set to zero.

Four user-selectable rounding modes are provided
through FPSCRRN as described in Section 4.3.6,
“Rounding” on page 107. For rounding, the concep-
tual Guard, Round, and Sticky bits are defined in
terms of accumulator bits. Figure 38 shows the posi-
tions of the Guard, Round, and Sticky bits for double-
precision and single-precision floating-point numbers
in the IEEE execution model.

Format Guard Round Sticky

Double G bit R bit X bit
Single 24 25 OR of 26:52, G, R, X

Figure 38. Location of the Guard, Round, and Sticky
bits in the IEEE execution model

Rounding can be treated as though the significand
were shifted right, if required, until the least signif-
icant bit to be retained is in the low-order bit position
of the FRACTION. If any of the Guard, Round, or
Sticky bits is nonzero, then the result is inexact.

Z1 and Z2, as defined on page 108, can be used to
approximate the result in the target format when one
of the following rules is used.

■ Round to Nearest

Guard bit = 0
The result is truncated. (Result exact (GRX =
000) or closest to next lower value in magni-
tude (GRX = 001, 010, or 011))

Guard bit = 1
Depends on Round and Sticky bits:

Case a
If the Round or Sticky bit is 1 (inclusive),
the result is incremented. (Result closest
to next higher value in magnitude (GRX
= 101, 110, or 111))

Case b
If the Round and Sticky bits are 0 (result
midway between closest representable
values), then if the low-order bit of the
result is 1 the result is incremented.
Otherwise (the low-order bit of the result
is 0) the result is truncated (this is the
case of a tie rounded to even).

■ Round toward Zero
Choose the smaller in magnitude of Z1 or Z2. If
the Guard, Round, or Sticky bit is nonzero, the
result is inexact.

■ Round toward + Infinity
Choose Z1.

■ Round toward − Infinity
Choose Z2.

Where the result is to have fewer than 53 bits of pre-
cision because the instruction is a Floating Round to
Single-Precision or single-precision arithmetic instruc-
tion, the intermediate result is either normalized or
placed in correct denormalized form before being
rounded.

4.5.2 Execution Model for
Multiply-Add Type Instructions

The PowerPC AS Architecture provides a special form
of instruction that performs up to three operations in
one instruction (a multiplication, an addition, and a
negation). With this added capability comes the
special ability to produce a more exact intermediate
result as input to the rounder. 32-bit arithmetic is
similar except that the FRACTION field is smaller.

Multiply-add significand arithmetic is considered to be
performed with a floating-point accumulator having
the following format, where bits 0:106 comprise the
significand of the intermediate result.

S C L FRACTION X'

0 1 105 106

Figure 39. Multiply-add 64-bit execution model

The first part of the operation is a multiplication. The
multiplication has two 53-bit significands as inputs,
which are assumed to be prenormalized, and
produces a result conforming to the above model. If
there is a carry out of the significand (into the C bit),
then the significand is shifted right one position,
shifting the L bit (leading unit bit) into the most signif-
icant bit of the FRACTION and shifting the C bit (carry
out) into the L bit. All 106 bits (L bit, the FRACTION)
of the product take part in the add operation. If the
exponents of the two inputs to the adder are not
equal, the significand of the operand with the smaller
exponent is aligned (shifted) to the right by an amount
that is added to that exponent to make it equal to the
other input's exponent. Zeros are shifted into the left

114 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

of the significand as it is aligned and bits shifted out
of bit 105 of the significand are ORed into the X' bit.
The add operation also produces a result conforming
to the above model with the X' bit taking part in the
add operation.

The result of the addition is then normalized, with all
bits of the addition result, except the X' bit, partic-
ipating in the shift. The normalized result serves as
the intermediate result that is input to the rounder.

For rounding, the conceptual Guard, Round, and
Sticky bits are defined in terms of accumulator bits.
Figure 40 shows the positions of the Guard, Round,
and Sticky bits for double-precision and single-
precision floating-point numbers in the multiply-add
execution model.

Format Guard Round Sticky

Double 53 54 OR of 55:105, X'
Single 24 25 OR of 26:105, X'

Figure 40. Location of the Guard, Round, and Sticky
bits in the multiply-add execution model

The rules for rounding the intermediate result are the
same as those given in Section 4.5.1, “Execution
Model for IEEE Operations” on page 113.

If the instruction is Floating Negative Multiply-Add or
Floating Negative Multiply-Subtract, the final result is
negated.

Chapter 4. Floating-Point Processor 115

IBM Confidential - Feb. 24, 1999

4.6 Floating-Point Processor Instructions

Architecture Note

The rules followed in assigning new primary and
extended opcodes, for instructions that are not in
the POWER Architecture, are the following.

1. A new primary opcode, 59, has been added. It
is used for the single-precision arithmetic
instructions.

2. The single-precision instructions for which there
is a corresponding double-precision instruction
have the same format and extended opcode as
that double-precision instruction.

3. In assigning new extended opcodes for primary
opcode 63, the following regularities, present in
the POWER Architecture, have been maintained.
In addition, all new X-form instructions in
primary opcode 63 have bits 21:22 = 0b11,
which distinguishes them from the X-form
instructions present in POWER Architecture.

■ Bit 26 = 1 iff the instruction is A-form.

■ Bits 26:29 = 0b0000 iff the instruction is a
comparison or mcrfs (i.e., iff the instruction
sets an explicitly-designated CR field).

■ Bits 26:28 = 0b001 iff the instruction explic-
itly refers to or sets the FPSCR (i.e., is a
Floating-Point Status and Control Register
instruction) and is not mcrfs .

■ Bits 26:30 = 0b01000 iff the instruction is a
Move Register instruction, or any other
instruction that does not refer to or set the
FPSCR.

4. In assigning extended opcodes for primary
opcode 59, the following regularities have been
maintained. They are based on those rules for
primary opcode 63 that apply to the instructions
having primary opcode 59. In particular,
primary opcode 59 has no Floating-Point Status
and Control Register instructions, so the corre-
sponding rule does not apply.

■ If there is a corresponding instruction with
primary opcode 63, its extended opcode is
used.

■ Bit 26 = 1 iff the instruction is A-form.

■ Bits 26:30 = 0b01000 iff the instruction is a
Move Register instruction, or any other
instruction that does not refer to or set the
FPSCR.

116 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

4.6.1 Floating-Point Storage Access Instructions

The Storage Access instructions compute the effective
address (EA) of the storage to be accessed as
described in Section 1.12.3, “Effective Address
Calculation” on page 17.

†

Programming Note

The la extended mnemonic permits computing an
effective address as a Load or Store instruction
would, but loads the address itself into a GPR
rather than loading the value that is in storage at

† that address. Unlike a Load or Store instruction,
† la cannot cause an Effective Address Overflow
† exception. This extended mnemonic is described
† in Section B.11, “Miscellaneous Mnemonics” on
† page 174.

† Programming Note

† See the Programming Note on page 6 regarding
† base register usage for X-form Load and Store
† instructions in tags active mode.

4.6.1.1 Storage Access Exceptions

† Storage accesses will cause the system data storage
error handler to be invoked if the program is not
allowed to modify the target storage (Store only), or if
the program attempts to access storage that is una-
vailable.

4.6.2 Floating-Point Load Instructions

There are two basic forms of load instruction: single-
precision and double-precision. Because the FPRs
support only floating-point double format, single-
precision Load Floating-Point instructions convert
single-precision data to double format prior to loading
the operand into the target FPR. The conversion and
loading steps are as follows.

Let WORD0:31 be the floating-point single-precision
operand accessed from storage.

Normalized Operand
if WORD1:8 > 0 and WORD1:8 < 255 then

FRT0:1 ← WORD0:1
FRT2 ← ¬WORD1
FRT3 ← ¬WORD1
FRT4 ← ¬WORD1
FRT5:63 ← WORD2:31 || 290

Denormalized Operand
if WORD1:8 = 0 and WORD9:31 ≠ 0 then

sign ← WORD0
exp ← − 126
frac0:52 ← 0b0 || WORD9:31 || 290
normalize the operand

do while frac0 = 0
frac ← frac1:52 || 0b0
exp ← exp − 1

FRT0 ← sign
FRT1:11 ← exp + 1023
FRT12:63 ← frac1:52

Zero / Infinity / NaN
if WORD1:8 = 255 or WORD1:31 = 0 then

FRT0:1 ← WORD0:1
FRT2 ← WORD1
FRT3 ← WORD1
FRT4 ← WORD1
FRT5:63 ← WORD2:31 || 290

Engineering Note

The above description of the conversion steps is a
model only. The actual implementation may vary
from this but must produce results equivalent to
what this model would produce.

For double-precision Load Floating-Point instructions
no conversion is required, as the data from storage
are copied directly into the FPR.

Many of the Load Floating-Point instructions have an
“update” form, in which register RA is updated with
the effective address. For these forms, if RA≠ 0, the
effective address is placed into register RA and the
storage element (word or doubleword) addressed by
EA is loaded into FRT.

Note: Recall that RA and RB denote General Purpose
Registers, while FRT denotes a Floating-Point Reg-
ister.

†

Chapter 4. Floating-Point Processor 117

IBM Confidential - Feb. 24, 1999

Load Floating-Point Single D-form

lfs FRT,D(RA)

48 FRT RA D

0 6 11 16 31

if RA = 0 then b ← 0
else b ← (RA)
EA ← b +tea EXTS(D)
FRT ← DOUBLE(MEM(EA, 4))

Let the effective address (EA) be the sum (RA|0)+ teaD.

The word in storage addressed by EA is interpreted
as a floating-point single-precision operand. This
word is converted to floating-point double format (see
page 117) and placed into register FRT.

Special Registers Altered:
None

Load Floating-Point Single Indexed
X-form

lfsx FRT,RA,RB

31 FRT RA RB 535 /

0 6 11 16 21 31

if RA = 0 then b ← 0
else b ← (RA)
EA ← b +tea (RB)
FRT ← DOUBLE(MEM(EA, 4))

Let the effective address (EA) be the sum
(RA|0)+ tea(RB).

The word in storage addressed by EA is interpreted
as a floating-point single-precision operand. This
word is converted to floating-point double format (see
page 117) and placed into register FRT.

Special Registers Altered:
None

Load Floating-Point Single with Update
D-form

lfsu FRT,D(RA)

49 FRT RA D

0 6 11 16 31

EA ← (RA) + tea EXTS(D)
FRT ← DOUBLE(MEM(EA, 4))
RA ← EA

Let the effective address (EA) be the sum (RA)+ teaD.

The word in storage addressed by EA is interpreted
as a floating-point single-precision operand. This
word is converted to floating-point double format (see
page 117) and placed into register FRT.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

Special Registers Altered:
None

Load Floating-Point Single with Update
Indexed X-form

lfsux FRT,RA,RB

31 FRT RA RB 567 /

0 6 11 16 21 31

EA ← (RA) + tea (RB)
FRT ← DOUBLE(MEM(EA, 4))
RA ← EA

Let the effective address (EA) be the sum
(RA)+ tea(RB).

The word in storage addressed by EA is interpreted
as a floating-point single-precision operand. This
word is converted to floating-point double format (see
page 117) and placed into register FRT.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

Special Registers Altered:
None

118 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

Load Floating-Point Double D-form

lfd FRT,D(RA)

50 FRT RA D

0 6 11 16 31

if RA = 0 then b ← 0
else b ← (RA)
EA ← b +tea EXTS(D)
FRT ← MEM(EA, 8)

Let the effective address (EA) be the sum (RA|0)+ teaD.

The doubleword in storage addressed by EA is placed
into register FRT.

Special Registers Altered:
None

Load Floating-Point Double Indexed
X-form

lfdx FRT,RA,RB

31 FRT RA RB 599 /

0 6 11 16 21 31

if RA = 0 then b ← 0
else b ← (RA)
EA ← b +tea (RB)
FRT ← MEM(EA, 8)

Let the effective address (EA) be the sum
(RA|0)+ tea(RB).

The doubleword in storage addressed by EA is placed
into register FRT.

Special Registers Altered:
None

Load Floating-Point Double with Update
D-form

lfdu FRT,D(RA)

51 FRT RA D

0 6 11 16 31

EA ← (RA) + tea EXTS(D)
FRT ← MEM(EA, 8)
RA ← EA

Let the effective address (EA) be the sum (RA)+ teaD.

The doubleword in storage addressed by EA is placed
into register FRT.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

Special Registers Altered:
None

Load Floating-Point Double with Update
Indexed X-form

lfdux FRT,RA,RB

31 FRT RA RB 631 /

0 6 11 16 21 31

EA ← (RA) + tea (RB)
FRT ← MEM(EA, 8)
RA ← EA

Let the effective address (EA) be the sum
(RA)+ tea(RB).

The doubleword in storage addressed by EA is placed
into register FRT.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

Special Registers Altered:
None

Chapter 4. Floating-Point Processor 119

IBM Confidential - Feb. 24, 1999

4.6.3 Floating-Point Store Instructions

There are three basic forms of store instruction:
single-precision, double-precision, and integer. The
integer form is provided by the optional Store
Floating-Point as Integer Word instruction, described
on page 123. Because the FPRs support only float-
ing-point double format for floating-point data, single-
precision Store Floating-Point instructions convert
double-precision data to single format prior to storing
the operand into storage. The conversion steps are
as follows.

Let WORD0:31 be the word in storage written to.

No Denormalization Required (includes Zero / Infinity
/ NaN)
if FRS1:11 > 896 or FRS1:63 = 0 then

WORD0:1 ← FRS0:1
WORD2:31 ← FRS5:34

Denormalization Required
if 874 ≤ FRS1:11 ≤ 896 then

sign ← FRS0
exp ← FRS1:11 − 1023
frac ← 0b1 || FRS12:63
denormalize operand

do while exp < − 126
frac ← 0b0 || frac0:62
exp ← exp + 1

WORD0 ← sign
WORD1:8 ← 0x00
WORD9:31 ← frac1:23

else WORD ← undefined

Notice that if the value to be stored by a single-
precision Store Floating-Point instruction is larger in
magnitude than the maximum number representable
in single format, the first case above (No Denormal-
ization Required) applies. The result stored in WORD
is then a well-defined value, but is not numerically
equal to the value in the source register (i.e., the
result of a single-precision Load Floating-Point from
WORD will not compare equal to the contents of the
original source register).

Engineering Note

The above description of the conversion steps is a
model only. The actual implementation may vary
from this but must produce results equivalent to
what this model would produce.

For double-precision Store Floating-Point instructions
and for the Store Floating-Point as Integer Word
instruction no conversion is required, as the data
from the FPR are copied directly into storage.

For all Store Floating-Point instructions, the tag of
every tag block affected is set to zero.

Many of the Store Floating-Point instructions have an
“update” form, in which register RA is updated with
the effective address. For these forms, if RA≠ 0, the
effective address is placed into register RA.

Note: Recall that RA and RB denote General Purpose
Registers, while FRS denotes a Floating-Point Reg-
ister.

†

120 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

Store Floating-Point Single D-form

stfs FRS,D(RA)

52 FRS RA D

0 6 11 16 31

if RA = 0 then b ← 0
else b ← (RA)
EA ← b +tea EXTS(D)
MEM(EA, 4) ← SINGLE((FRS))
MEMtag(EA, 4) ← 0

Let the effective address (EA) be the sum (RA|0)+ teaD.

The contents of register FRS are converted to single
format (see page 120) and stored into the word in
storage addressed by EA.

Special Registers Altered:
None

Store Floating-Point Single Indexed
X-form

stfsx FRS,RA,RB

31 FRS RA RB 663 /

0 6 11 16 21 31

if RA = 0 then b ← 0
else b ← (RA)
EA ← b +tea (RB)
MEM(EA, 4) ← SINGLE((FRS))
MEMtag(EA, 4) ← 0

Let the effective address (EA) be the sum
(RA|0)+ tea(RB).

The contents of register FRS are converted to single
format (see page 120) and stored into the word in
storage addressed by EA.

Special Registers Altered:
None

Store Floating-Point Single with Update
D-form

stfsu FRS,D(RA)

53 FRS RA D

0 6 11 16 31

EA ← (RA) + tea EXTS(D)
MEM(EA, 4) ← SINGLE((FRS))
MEMtag(EA, 4) ← 0
RA ← EA

Let the effective address (EA) be the sum (RA)+ teaD.

The contents of register FRS are converted to single
format (see page 120) and stored into the word in
storage addressed by EA.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

Special Registers Altered:
None

Store Floating-Point Single with Update
Indexed X-form

stfsux FRS,RA,RB

31 FRS RA RB 695 /

0 6 11 16 21 31

EA ← (RA) + tea (RB)
MEM(EA, 4) ← SINGLE((FRS))
MEMtag(EA, 4) ← 0
RA ← EA

Let the effective address (EA) be the sum
(RA)+ tea(RB).

The contents of register FRS are converted to single
format (see page 120) and stored into the word in
storage addressed by EA.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

Special Registers Altered:
None

Chapter 4. Floating-Point Processor 121

IBM Confidential - Feb. 24, 1999

Store Floating-Point Double D-form

stfd FRS,D(RA)

54 FRS RA D

0 6 11 16 31

if RA = 0 then b ← 0
else b ← (RA)
EA ← b +tea EXTS(D)
MEM(EA, 8) ← (FRS)
MEMtag(EA, 8) ← 0

Let the effective address (EA) be the sum (RA|0)+ teaD.

The contents of register FRS are stored into the
doubleword in storage addressed by EA.

Special Registers Altered:
None

Store Floating-Point Double Indexed
X-form

stfdx FRS,RA,RB

31 FRS RA RB 727 /

0 6 11 16 21 31

if RA = 0 then b ← 0
else b ← (RA)
EA ← b +tea (RB)
MEM(EA, 8) ← (FRS)
MEMtag(EA, 8) ← 0

Let the effective address (EA) be the sum
(RA|0)+ tea(RB).

The contents of register FRS are stored into the
doubleword in storage addressed by EA.

Special Registers Altered:
None

Store Floating-Point Double with Update
D-form

stfdu FRS,D(RA)

55 FRS RA D

0 6 11 16 31

EA ← (RA) + tea EXTS(D)
MEM(EA, 8) ← (FRS)
MEMtag(EA, 8) ← 0
RA ← EA

Let the effective address (EA) be the sum (RA)+ teaD.

The contents of register FRS are stored into the
doubleword in storage addressed by EA.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

Special Registers Altered:
None

Store Floating-Point Double with Update
Indexed X-form

stfdux FRS,RA,RB

31 FRS RA RB 759 /

0 6 11 16 21 31

EA ← (RA) + tea (RB)
MEM(EA, 8) ← (FRS)
MEMtag(EA, 8) ← 0
RA ← EA

Let the effective address (EA) be the sum
(RA)+ tea(RB).

The contents of register FRS are stored into the
doubleword in storage addressed by EA.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

Special Registers Altered:
None

122 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

Store Floating-Point as Integer Word
Indexed X-form

stfiwx FRS,RA,RB

31 FRS RA RB 983 /

0 6 11 16 21 31

if RA = 0 then b ← 0
else b ← (RA)
EA ← b +tea (RB)
MEM(EA, 4) ← (FRS) 32:63
MEMtag(EA, 4) ← 0

Let the effective address (EA) be the sum
(RA|0)+ tea(RB).

The contents of the low-order 32 bits of register FRS
are stored, without conversion, into the word in
storage addressed by EA.

If the contents of register FRS were produced, either
directly or indirectly, by a Load Floating-Point Single
instruction, a single-precision Arithmetic instruction,
or frsp , then the value stored is undefined. (The con-
tents of register FRS are produced directly by such an
instruction if FRS is the target register for the instruc-
tion. The contents of register FRS are produced indi-
rectly by such an instruction if FRS is the final target
register of a sequence of one or more Floating-Point
Move instructions, with the input to the sequence
having been produced directly by such an instruction.)

Special Registers Altered:
None

Architecture Note

Allowing the value stored to be undefined if the
input to stfiwx was produced by a single-
precision-producing instruction (i.e., a Load
Floating-Point Single instruction, a single-
precision arithmetic instruction, or frsp) seems
gratuitous at the architectural level. The back-
ground and reasons for allowing it are as follows.

■ The implementors agreed to support stfiwx
partly because they understood it to be easy
to implement.

■ In some implementations (e.g., those that
keep single-precision numbers in registers in
a non-architected format), storing the archi-
tected low-order 32 bits of a register that was
set by a single-precision-producing instruction
may be harder (and slower, and more trouble
to verify) than simply storing whatever
happens to be in the low-order 32 bits of the
register.

■ Software can think of no use for storing the
low-order 32 bits of the result of a single-
precision producing instruction.

Chapter 4. Floating-Point Processor 123

IBM Confidential - Feb. 24, 1999

4.6.4 Floating-Point Move Instructions

These instructions copy data from one floating-point
register to another, altering the sign bit (bit 0) as
described below for fneg, fabs , and fnabs . These
instructions treat NaNs just like any other kind of

value (e.g., the sign bit of a NaN may be altered by
fneg, fabs , and fnabs). These instructions do not alter
the FPSCR.

Floating Move Register X-form

fmr FRT,FRB (Rc=0)
fmr. FRT,FRB (Rc=1)

63 FRT /// FRB 72 Rc

0 6 11 16 21 31

The contents of register FRB are placed into register
FRT.

Special Registers Altered:
CR1 (if Rc=1)

Floating Negate X-form

fneg FRT,FRB (Rc=0)
fneg. FRT,FRB (Rc=1)

63 FRT /// FRB 40 Rc

0 6 11 16 21 31

The contents of register FRB with bit 0 inverted are
placed into register FRT.

Special Registers Altered:
CR1 (if Rc=1)

Floating Absolute Value X-form

fabs FRT,FRB (Rc=0)
fabs. FRT,FRB (Rc=1)

63 FRT /// FRB 264 Rc

0 6 11 16 21 31

The contents of register FRB with bit 0 set to zero are
placed into register FRT.

Special Registers Altered:
CR1 (if Rc=1)

Floating Negative Absolute Value
X-form

fnabs FRT,FRB (Rc=0)
fnabs. FRT,FRB (Rc=1)

63 FRT /// FRB 136 Rc

0 6 11 16 21 31

The contents of register FRB with bit 0 set to one are
placed into register FRT.

Special Registers Altered:
CR1 (if Rc=1)

124 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

4.6.5 Floating-Point Arithmetic Instructions

4.6.5.1 Floating-Point Elementary Arithmetic Instructions

Floating Add [Single] A-form

fadd FRT,FRA,FRB (Rc=0)
fadd. FRT,FRA,FRB (Rc=1)

[POWER mnemonics: fa, fa.]

63 FRT FRA FRB /// 21 Rc

0 6 11 16 21 26 31

fadds FRT,FRA,FRB (Rc=0)
fadds. FRT,FRA,FRB (Rc=1)

59 FRT FRA FRB /// 21 Rc

0 6 11 16 21 26 31

The floating-point operand in register FRA is added to
the floating-point operand in register FRB.

If the most significant bit of the resultant significand is
not 1, the result is normalized. The result is rounded
to the target precision under control of the Floating-
Point Rounding Control field RN of the FPSCR and
placed into register FRT.

Floating-point addition is based on exponent compar-
ison and addition of the two significands. The expo-
nents of the two operands are compared, and the
significand accompanying the smaller exponent is
shifted right, with its exponent increased by one for
each bit shifted, until the two exponents are equal.
The two significands are then added or subtracted as
appropriate, depending on the signs of the operands,
to form an intermediate sum. All 53 bits of the
significand as well as all three guard bits (G, R, and
X) enter into the computation.

If a carry occurs, the sum's significand is shifted right
one bit position and the exponent is increased by one.

FPSCRFPRF is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRVE= 1 .

Special Registers Altered:
FPRF FR FI
FX OX UX XX
VXSNAN VXISI
CR1 (if Rc=1)

Floating Subtract [Single] A-form

fsub FRT,FRA,FRB (Rc=0)
fsub. FRT,FRA,FRB (Rc=1)

[POWER mnemonics: fs, fs.]

63 FRT FRA FRB /// 20 Rc

0 6 11 16 21 26 31

fsubs FRT,FRA,FRB (Rc=0)
fsubs. FRT,FRA,FRB (Rc=1)

59 FRT FRA FRB /// 20 Rc

0 6 11 16 21 26 31

The floating-point operand in register FRB is sub-
tracted from the floating-point operand in register
FRA.

If the most significant bit of the resultant significand is
not 1, the result is normalized. The result is rounded
to the target precision under control of the Floating-
Point Rounding Control field RN of the FPSCR and
placed into register FRT.

The execution of the Floating Subtract instruction is
identical to that of Floating Add, except that the con-
tents of FRB participate in the operation with the sign
bit (bit 0) inverted.

FPSCRFPRF is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRVE= 1 .

Special Registers Altered:
FPRF FR FI
FX OX UX XX
VXSNAN VXISI
CR1 (if Rc=1)

Chapter 4. Floating-Point Processor 125

IBM Confidential - Feb. 24, 1999

Floating Multiply [Single] A-form

fmul FRT,FRA,FRC (Rc=0)
fmul. FRT,FRA,FRC (Rc=1)

[POWER mnemonics: fm, fm.]

63 FRT FRA /// FRC 25 Rc

0 6 11 16 21 26 31

fmuls FRT,FRA,FRC (Rc=0)
fmuls. FRT,FRA,FRC (Rc=1)

59 FRT FRA /// FRC 25 Rc

0 6 11 16 21 26 31

The floating-point operand in register FRA is multi-
plied by the floating-point operand in register FRC.

If the most significant bit of the resultant significand is
not 1, the result is normalized. The result is rounded
to the target precision under control of the Floating-
Point Rounding Control field RN of the FPSCR and
placed into register FRT.

Floating-point multiplication is based on exponent
addition and multiplication of the significands.

FPSCRFPRF is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRVE= 1 .

Special Registers Altered:
FPRF FR FI
FX OX UX XX
VXSNAN VXIMZ
CR1 (if Rc=1)

Floating Divide [Single] A-form

fdiv FRT,FRA,FRB (Rc=0)
fdiv. FRT,FRA,FRB (Rc=1)

[POWER mnemonics: fd, fd.]

63 FRT FRA FRB /// 18 Rc

0 6 11 16 21 26 31

fdivs FRT,FRA,FRB (Rc=0)
fdivs. FRT,FRA,FRB (Rc=1)

59 FRT FRA FRB /// 18 Rc

0 6 11 16 21 26 31

The floating-point operand in register FRA is divided
by the floating-point operand in register FRB. The
remainder is not supplied as a result.

If the most significant bit of the resultant significand is
not 1, the result is normalized. The result is rounded
to the target precision under control of the Floating-
Point Rounding Control field RN of the FPSCR and
placed into register FRT.

Floating-point division is based on exponent sub-
traction and division of the significands.

FPSCRFPRF is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRVE= 1 and Zero Divide Exceptions when
FPSCRZE= 1 .

Special Registers Altered:
FPRF FR FI
FX OX UX ZX XX
VXSNAN VXIDI VXZDZ
CR1 (if Rc=1)

126 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

4.6.5.2 Floating-Point Multiply-Add Instructions

These instructions combine a multiply and an add
operation without an intermediate rounding operation.
The fraction part of the intermediate product is 106
bits wide (L bit, FRACTION), and all 106 bits take part
in the add/subtract portion of the instruction.

Status bits are set as follows.

■ Overflow, Underflow, and Inexact Exception bits,
the FR and FI bits, and the FPRF field are set

based on the final result of the operation, and not
on the result of the multiplication.

■ Invalid Operation Exception bits are set as if the
multiplication and the addition were performed
using two separate instructions (fmul [s] , followed
by fadd [s] or fsub [s]). That is, multiplication of
infinity by 0 or of anything by an SNaN, and/or
addition of an SNaN, cause the corresponding
exception bits to be set.

Floating Multiply-Add [Single] A-form

fmadd FRT,FRA,FRC,FRB (Rc=0)
fmadd. FRT,FRA,FRC,FRB (Rc=1)

[POWER mnemonics: fma, fma.]

63 FRT FRA FRB FRC 29 Rc

0 6 11 16 21 26 31

fmadds FRT,FRA,FRC,FRB (Rc=0)
fmadds. FRT,FRA,FRC,FRB (Rc=1)

59 FRT FRA FRB FRC 29 Rc

0 6 11 16 21 26 31

The operation
FRT ← [(FRA)× (FRC)] + (FRB)

is performed.

The floating-point operand in register FRA is multi-
plied by the floating-point operand in register FRC.
The floating-point operand in register FRB is added to
this intermediate result.

If the most significant bit of the resultant significand is
not 1, the result is normalized. The result is rounded
to the target precision under control of the Floating-
Point Rounding Control field RN of the FPSCR and
placed into register FRT.

FPSCRFPRF is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRVE= 1 .

Special Registers Altered:
FPRF FR FI
FX OX UX XX
VXSNAN VXISI VXIMZ
CR1 (if Rc=1)

Floating Multiply-Subtract [Single]
A-form

fmsub FRT,FRA,FRC,FRB (Rc=0)
fmsub. FRT,FRA,FRC,FRB (Rc=1)

[POWER mnemonics: fms, fms.]

63 FRT FRA FRB FRC 28 Rc

0 6 11 16 21 26 31

fmsubs FRT,FRA,FRC,FRB (Rc=0)
fmsubs. FRT,FRA,FRC,FRB (Rc=1)

59 FRT FRA FRB FRC 28 Rc

0 6 11 16 21 26 31

The operation
FRT ← [(FRA)× (FRC)] − (FRB)

is performed.

The floating-point operand in register FRA is multi-
plied by the floating-point operand in register FRC.
The floating-point operand in register FRB is sub-
tracted from this intermediate result.

If the most significant bit of the resultant significand is
not 1, the result is normalized. The result is rounded
to the target precision under control of the Floating-
Point Rounding Control field RN of the FPSCR and
placed into register FRT.

FPSCRFPRF is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRVE= 1 .

Special Registers Altered:
FPRF FR FI
FX OX UX XX
VXSNAN VXISI VXIMZ
CR1 (if Rc=1)

Chapter 4. Floating-Point Processor 127

IBM Confidential - Feb. 24, 1999

Floating Negative Multiply-Add [Single]
A-form

fnmadd FRT,FRA,FRC,FRB (Rc=0)
fnmadd. FRT,FRA,FRC,FRB (Rc=1)

[POWER mnemonics: fnma, fnma.]

63 FRT FRA FRB FRC 31 Rc

0 6 11 16 21 26 31

fnmadds FRT,FRA,FRC,FRB (Rc=0)
fnmadds. FRT,FRA,FRC,FRB (Rc=1)

59 FRT FRA FRB FRC 31 Rc

0 6 11 16 21 26 31

The operation
FRT ← − ([(FRA)× (FRC)] + (FRB))

is performed.

The floating-point operand in register FRA is multi-
plied by the floating-point operand in register FRC.
The floating-point operand in register FRB is added to
this intermediate result.

If the most significant bit of the resultant significand is
not 1, the result is normalized. The result is rounded
to the target precision under control of the Floating-
Point Rounding Control field RN of the FPSCR, then
negated and placed into register FRT.

This instruction produces the same result as would be
obtained by using the Floating Multiply-Add instruc-
tion and then negating the result, with the following
exceptions.

■ QNaNs propagate with no effect on their “sign”
bit.

■ QNaNs that are generated as the result of a disa-
bled Invalid Operation Exception have a “sign” bit
of 0.

■ SNaNs that are converted to QNaNs as the result
of a disabled Invalid Operation Exception retain
the “sign” bit of the SNaN.

FPSCRFPRF is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRVE= 1 .

Special Registers Altered:
FPRF FR FI
FX OX UX XX
VXSNAN VXISI VXIMZ
CR1 (if Rc=1)

Floating Negative Multiply-Subtract
[Single] A-form

fnmsub FRT,FRA,FRC,FRB (Rc=0)
fnmsub. FRT,FRA,FRC,FRB (Rc=1)

[POWER mnemonics: fnms, fnms.]

63 FRT FRA FRB FRC 30 Rc

0 6 11 16 21 26 31

fnmsubs FRT,FRA,FRC,FRB (Rc=0)
fnmsubs. FRT,FRA,FRC,FRB (Rc=1)

59 FRT FRA FRB FRC 30 Rc

0 6 11 16 21 26 31

The operation
FRT ← − ([(FRA)× (FRC)] − (FRB))

is performed.

The floating-point operand in register FRA is multi-
plied by the floating-point operand in register FRC.
The floating-point operand in register FRB is sub-
tracted from this intermediate result.

If the most significant bit of the resultant significand is
not 1, the result is normalized. The result is rounded
to the target precision under control of the Floating-
Point Rounding Control field RN of the FPSCR, then
negated and placed into register FRT.

This instruction produces the same result as would be
obtained by using the Floating Multiply-Subtract
instruction and then negating the result, with the fol-
lowing exceptions.

■ QNaNs propagate with no effect on their “sign”
bit.

■ QNaNs that are generated as the result of a disa-
bled Invalid Operation Exception have a “sign” bit
of 0.

■ SNaNs that are converted to QNaNs as the result
of a disabled Invalid Operation Exception retain
the “sign” bit of the SNaN.

FPSCRFPRF is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRVE= 1 .

Special Registers Altered:
FPRF FR FI
FX OX UX XX
VXSNAN VXISI VXIMZ
CR1 (if Rc=1)

128 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

4.6.6 Floating-Point Rounding and Conversion Instructions

Programming Note

Examples of uses of these instructions to perform
various conversions can be found in Section C.2,
“Floating-Point Conversions” on page 180.

Floating Round to Single-Precision
X-form

frsp FRT,FRB (Rc=0)
frsp. FRT,FRB (Rc=1)

63 FRT /// FRB 12 Rc

0 6 11 16 21 31

The floating-point operand in register FRB is rounded
to single-precision, using the rounding mode specified
by FPSCRRN, and placed into register FRT.

The rounding is described fully in Section A.1,
“Floating-Point Round to Single-Precision Model” on
page 151.

FPSCRFPRF is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRVE= 1 .

Special Registers Altered:
FPRF FR FI
FX OX UX XX
VXSNAN
CR1 (if Rc=1)

Chapter 4. Floating-Point Processor 129

IBM Confidential - Feb. 24, 1999

Floating Convert To Integer Doubleword
X-form

fctid FRT,FRB (Rc=0)
fctid. FRT,FRB (Rc=1)

63 FRT /// FRB 814 Rc

0 6 11 16 21 31

The floating-point operand in register FRB is con-
verted to a 64-bit signed fixed-point integer, using the
rounding mode specified by FPSCRRN, and placed into
register FRT.

If the operand in FRB is greater than 263 − 1, then
FRT is set to 0x7FFF_FFFF_FFFF_FFFF. If the
operand in FRB is less than − 263, then FRT is set to
0x8000_0000_0000_0000.

The conversion is described fully in Section A.2,
“Floating-Point Convert to Integer Model” on
page 156.

Except for enabled Invalid Operation Exceptions,
FPSCRFPRF is undefined. FPSCRFR is set if the result
is incremented when rounded. FPSCRFI is set if the
result is inexact.

Special Registers Altered:
FPRF (undefined) FR FI
FX XX
VXSNAN VXCVI
CR1 (if Rc=1)

Floating Convert To Integer Doubleword
with round toward Zero X-form

fctidz FRT,FRB (Rc=0)
fctidz. FRT,FRB (Rc=1)

63 FRT /// FRB 815 Rc

0 6 11 16 21 31

The floating-point operand in register FRB is con-
verted to a 64-bit signed fixed-point integer, using the
rounding mode Round toward Zero, and placed into
register FRT.

If the operand in FRB is greater than 263 − 1, then
FRT is set to 0x7FFF_FFFF_FFFF_FFFF. If the
operand in FRB is less than − 263, then FRT is set to
0x8000_0000_0000_0000.

The conversion is described fully in Section A.2,
“Floating-Point Convert to Integer Model” on
page 156.

Except for enabled Invalid Operation Exceptions,
FPSCRFPRF is undefined. FPSCRFR is set if the result
is incremented when rounded. FPSCRFI is set if the
result is inexact.

Special Registers Altered:
FPRF (undefined) FR FI
FX XX
VXSNAN VXCVI
CR1 (if Rc=1)

130 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

Floating Convert To Integer Word
X-form

fctiw FRT,FRB (Rc=0)
fctiw. FRT,FRB (Rc=1)

[POWER2 mnemonics: fcir, fcir.]

63 FRT /// FRB 14 Rc

0 6 11 16 21 31

The floating-point operand in register FRB is con-
verted to a 32-bit signed fixed-point integer, using the
rounding mode specified by FPSCRRN, and placed into

† FRT32:63. The contents of FRT0:31 are undefined.

If the operand in FRB is greater than 231 − 1, then bits
32:63 of FRT are set to 0x7FFF_FFFF. If the operand
in FRB is less than − 231, then bits 32:63 of FRT are
set to 0x8000_0000.

The conversion is described fully in Section A.2,
“Floating-Point Convert to Integer Model” on
page 156.

Except for enabled Invalid Operation Exceptions,
FPSCRFPRF is undefined. FPSCRFR is set if the result
is incremented when rounded. FPSCRFI is set if the
result is inexact.

Special Registers Altered:
FPRF (undefined) FR FI
FX XX
VXSNAN VXCVI
CR1 (if Rc=1)

Floating Convert To Integer Word with
round toward Zero X-form

fctiwz FRT,FRB (Rc=0)
fctiwz. FRT,FRB (Rc=1)

[POWER2 mnemonics: fcirz, fcirz.]

63 FRT /// FRB 15 Rc

0 6 11 16 21 31

The floating-point operand in register FRB is con-
verted to a 32-bit signed fixed-point integer, using the
rounding mode Round toward Zero, and placed into

† FRT32:63. The contents of FRT0:31 are undefined.

If the operand in FRB is greater than 231 − 1, then bits
32:63 of FRT are set to 0x7FFF_FFFF. If the operand
in FRB is less than − 231, then bits 32:63 of FRT are
set to 0x8000_0000.

The conversion is described fully in Section A.2,
“Floating-Point Convert to Integer Model” on
page 156.

Except for enabled Invalid Operation Exceptions,
FPSCRFPRF is undefined. FPSCRFR is set if the result
is incremented when rounded. FPSCRFI is set if the
result is inexact.

Special Registers Altered:
FPRF (undefined) FR FI
FX XX
VXSNAN VXCVI
CR1 (if Rc=1)

Chapter 4. Floating-Point Processor 131

IBM Confidential - Feb. 24, 1999

Floating Convert From Integer
Doubleword X-form

fcfid FRT,FRB (Rc=0)
fcfid. FRT,FRB (Rc=1)

63 FRT /// FRB 846 Rc

0 6 11 16 21 31

The 64-bit signed fixed-point operand in register FRB
is converted to an infinitely precise floating-point
integer. The result of the conversion is rounded to
double-precision, using the rounding mode specified
by FPSCRRN, and placed into register FRT.

The conversion is described fully in Section A.3,
“Floating-Point Convert from Integer Model” on
page 159.

FPSCRFPRF is set to the class and sign of the result.
FPSCRFR is set if the result is incremented when
rounded. FPSCRFI is set if the result is inexact.

Special Registers Altered:
FPRF FR FI
FX XX
CR1 (if Rc=1)

132 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

4.6.7 Floating-Point Compare Instructions

The floating-point Compare instructions compare the
contents of two floating-point registers. Comparison
ignores the sign of zero (i.e., regards + 0 as equal to
− 0). The comparison can be ordered or unordered.

The comparison sets one bit in the designated CR
field to 1 and the other three to 0. The FPCC is set in
the same way.

The CR field and the FPCC are set as follows.

Bit Name Description
0 FL (FRA) < (FRB)
1 FG (FRA) > (FRB)
2 FE (FRA) = (FRB)
3 FU (FRA) ? (FRB) (unordered)

Floating Compare Unordered X-form

fcmpu BF,FRA,FRB

63 BF // FRA FRB 0 /

0 6 9 11 16 21 31

if (FRA) is a NaN or
(FRB) is a NaN then c ← 0b0001

else if (FRA) < (FRB) then c ← 0b1000
else if (FRA) > (FRB) then c ← 0b0100
else c ← 0b0010
FPCC ← c
CR4×BF:4×BF+3 ← c
if (FRA) is an SNaN or

(FRB) is an SNaN then
VXSNAN← 1

The floating-point operand in register FRA is com-
pared to the floating-point operand in register FRB.
The result of the compare is placed into CR field BF
and the FPCC.

If either of the operands is a NaN, either quiet or sig-
naling, then CR field BF and the FPCC are set to
reflect unordered. If either of the operands is a Sig-
naling NaN, then VXSNAN is set.

Special Registers Altered:
CR field BF
FPCC
FX
VXSNAN

Floating Compare Ordered X-form

fcmpo BF,FRA,FRB

63 BF // FRA FRB 32 /

0 6 9 11 16 21 31

if (FRA) is a NaN or
(FRB) is a NaN then c ← 0b0001

else if (FRA) < (FRB) then c ← 0b1000
else if (FRA) > (FRB) then c ← 0b0100
else c ← 0b0010
FPCC ← c
CR4×BF:4×BF+3 ← c
if (FRA) is an SNaN or

(FRB) is an SNaN then
VXSNAN← 1
if VE = 0 then VXVC ← 1

else if (FRA) is a QNaN or
(FRB) is a QNaN then VXVC ← 1

The floating-point operand in register FRA is com-
pared to the floating-point operand in register FRB.
The result of the compare is placed into CR field BF
and the FPCC.

If either of the operands is a NaN, either quiet or sig-
naling, then CR field BF and the FPCC are set to
reflect unordered. If either of the operands is a Sig-
naling NaN, then VXSNAN is set and, if Invalid Opera-
tion is disabled (VE=0), VXVC is set. If neither
operand is a Signaling NaN but at least one operand
is a Quiet NaN, then VXVC is set.

Special Registers Altered:
CR field BF
FPCC
FX
VXSNAN VXVC

Chapter 4. Floating-Point Processor 133

IBM Confidential - Feb. 24, 1999

4.6.8 Floating-Point Status and Control Register Instructions

Every Floating-Point Status and Control Register
instruction synchronizes the effects of all floating-
point instructions executed by a given processor.
Executing a Floating-Point Status and Control Register
instruction ensures that all floating-point instructions
previously initiated by the given processor have com-
pleted before the Floating-Point Status and Control
Register instruction is initiated, and that no subse-
quent floating-point instructions are initiated by the
given processor until the Floating-Point Status and
Control Register instruction has completed. In partic-
ular:

■ All exceptions that will be caused by the previ-
ously initiated instructions are recorded in the

FPSCR before the Floating-Point Status and
Control Register instruction is initiated.

■ All invocations of the system floating-point
enabled exception error handler that will be
caused by the previously initiated instructions
have occurred before the Floating-Point Status
and Control Register instruction is initiated.

■ No subsequent floating-point instruction that
depends on or alters the settings of any FPSCR
bits is initiated until the Floating-Point Status and
Control Register instruction has completed.

(Floating-point Storage Access instructions are not
affected.)

Move From FPSCR X-form

mffs FRT (Rc=0)
mffs. FRT (Rc=1)

63 FRT /// /// 583 Rc

0 6 11 16 21 31

† The contents of the FPSCR are placed into FRT32:63.
† The contents of FRT0:31 are undefined.

Special Registers Altered:
CR1 (if Rc=1)

Move to Condition Register from FPSCR
X-form

mcrfs BF,BFA

63 BF // BFA // /// 64 /

0 6 9 11 14 16 21 31

The contents of FPSCR field BFA are copied to Condi-
tion Register field BF. All exception bits copied are
set to 0 in the FPSCR. If the FX bit is copied, it is set
to 0 in the FPSCR.

Special Registers Altered:
CR field BF
FX OX (if BFA=0)
UX ZX XX VXSNAN (if BFA=1)
VXISI VXIDI VXZDZ VXIMZ (if BFA=2)
VXVC (if BFA=3)
VXSOFT VXSQRT VXCVI (if BFA=5)

134 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

Move To FPSCR Field Immediate
X-form

mtfsfi BF,U (Rc=0)
mtfsfi. BF,U (Rc=1)

63 BF // /// U / 134 Rc

0 6 9 11 16 20 21 31

The value of the U field is placed into FPSCR field BF.

FPSCRFX is altered only if BF = 0.

Special Registers Altered:
FPSCR field BF
CR1 (if Rc=1)

Programming Note

When FPSCR0:3 is specified, bits 0 (FX) and 3 (OX)
are set to the values of U0 and U3 (i.e., even if
this instruction causes OX to change from 0 to 1,
FX is set from U0 and not by the usual rule that
FX is set to 1 when an exception bit changes from
0 to 1). Bits 1 and 2 (FEX and VX) are set
according to the usual rule, given on page 101,
and not from U1:2.

Move To FPSCR Fields XFL-form

mtfsf FLM,FRB (Rc=0)
mtfsf. FLM,FRB (Rc=1)

63 / FLM / FRB 711 Rc

0 6 7 15 16 21 31

The contents of bits 32:63 of register FRB are placed
into the FPSCR under control of the field mask speci-
fied by FLM. The field mask identifies the 4-bit fields
affected. Let i be an integer in the range 0-7. If
FLMi= 1 then FPSCR field i (FPSCR bits 4× i:4× i + 3) is
set to the contents of the corresponding field of the
low-order 32 bits of register FRB.

FPSCRFX is altered only if FLM0 = 1.

Special Registers Altered:
FPSCR fields selected by mask
CR1 (if Rc=1)

Programming Note

Updating fewer than all eight fields of the FPSCR
may have substantially poorer performance on
some implementations than updating all the fields.

Programming Note

When FPSCR0:3 is specified, bits 0 (FX) and 3 (OX)
are set to the values of (FRB)32 and (FRB)35 (i.e.,
even if this instruction causes OX to change from
0 to 1, FX is set from (FRB)32 and not by the usual
rule that FX is set to 1 when an exception bit
changes from 0 to 1). Bits 1 and 2 (FEX and VX)
are set according to the usual rule, given on page
101, and not from (FRB)33:34.

Chapter 4. Floating-Point Processor 135

IBM Confidential - Feb. 24, 1999

Move To FPSCR Bit 0 X-form

mtfsb0 BT (Rc=0)
mtfsb0. BT (Rc=1)

63 BT /// /// 70 Rc

0 6 11 16 21 31

Bit BT of the FPSCR is set to 0.

Special Registers Altered:
FPSCR bit BT
CR1 (if Rc=1)

Programming Note

Bits 1 and 2 (FEX and VX) cannot be explicitly
reset.

Move To FPSCR Bit 1 X-form

mtfsb1 BT (Rc=0)
mtfsb1. BT (Rc=1)

63 BT /// /// 38 Rc

0 6 11 16 21 31

Bit BT of the FPSCR is set to 1.

Special Registers Altered:
FPSCR bits BT and FX
CR1 (if Rc=1)

Programming Note

Bits 1 and 2 (FEX and VX) cannot be explicitly set.

136 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

† Chapter 5. Optional Facilities and Instructions

5.1 Fixed-Point Processor Instructions 138
5.1.1 Move To/From System Register

Instructions 138
5.2 Floating-Point Processor

Instructions 139
5.2.1 Floating-Point Arithmetic

Instructions 140
5.2.1.1 Floating-Point Elementary

Arithmetic Instructions 140
5.2.2 Floating-Point Select Instruction 141
5.3 Little-Endian 142
5.3.1 Byte Ordering 142
5.3.2 Structure Mapping Examples . 142
5.3.2.1 Big-Endian Mapping 142
5.3.2.2 Little-Endian Mapping 143
5.3.3 PowerPC AS Byte Ordering . . 143

5.3.3.1 Controlling PowerPC AS Byte
Ordering 143

5.3.3.2 PowerPC AS Little-Endian Byte
Ordering 143

5.3.4 PowerPC AS Data Addressing in
Little-Endian Mode 145

5.3.4.1 Individual Aligned Scalars . . 145
5.3.4.2 Other Scalars 145
5.3.4.3 Page Table 146
5.3.5 PowerPC AS Instruction

Addressing in Little-Endian Mode . . 146
5.3.6 PowerPC AS Cache Management

Instructions in Little-Endian Mode . 148
5.3.7 PowerPC AS I/O in Little-Endian

Mode 148
5.3.8 Origin of Endian 148

† The facilities and instructions described in this
chapter are optional. An implementation may provide
all, some, or none of them, except as described in

† Section 5.2.

†

Chapter 5. Opti onal Facilities and Instructions 137

IBM Confidential - Feb. 24, 1999

| 5.1 Fixed-Point Processor Instructions

| 5.1.1 Move To/From System Register Instructions

| The optional versions of the Move To Condition Reg-
| ister Field and Move From Condition Register
| instructions move to or from a single CR field.

| Move To Condition Register Field
| XFX-form

| mtcrf FXM,RS

| 31 RS 1 FXM / 144 /
| 0 6 11 12 20 21 31

| count ← 0
| do i = 0 to 7
| if FXM i = 1 then
| n ← i
| count ← count + 1
| if count = 1 then CR 4×n:4×n + 3 ← (RS) 32+4×n:32+4×n + 3
| else CR ← undefined
| If exactly one bit of the FXM field is set to 1, let n be
| the position of that bit in the field (0 ≤ n ≤ 7). The
| contents of bits 32+4×n:32+4×n + 3 of register RS
| are placed into CR field n (CR bits 4×n:4×n+3) . Oth-
| erwise, the contents of the Condition Register are
| undefined.

| Special Registers Altered:
| CR field selected by FXM

| Programming Note

| These forms of the mtcrf and mfcr instructions are
| intended to replace the old forms of the
| instructions (the forms shown in Section 3.3.15),
| which will eventually be phased out of the archi-
| tecture. The new forms are backward compatible
| with most processors that comply with versions of
| the architecture that precede Version 2.00. On
| those processors, the new forms are treated as
| the old forms.

| However, on some processors that comply with
| versions of the architecture that precede Version
| 2.00 the new forms may be treated as follows:

| mtcrf : may cause the system illegal instruction
| error handler to be invoked
| mfcr : may copy the contents of an SPR, possibly
| a privileged SPR, into register RT

| Assembler Note

| There is no direct way for the programmer to
| specify whether the Assembler should generate
| the old forms of these instructions or the new
| forms. The Assembler should determine which
| form to generate based on the target machine, as
| well as on how the instruction is coded (i.e.,
| whether an FXM field is given for mfcr and, for
| both instructions, whether the FXM field has
| exactly one bit set to 1).

| Move From Condition Register
| XFX-form

| mfcr RT,FXM

| 31 RT 1 FXM / 19 /
| 0 6 11 12 20 21 31

| RT ← undefined
| count ← 0
| do i = 0 to 7
| if FXM i = 1 then
| n ← i
| count ← count + 1
| if count = 1 then RT 32+4×n:32+4×n + 3 ← CR4×n:4×n + 3

| If exactly one bit of the FXM field is set to 1, let n be
| the position of that bit in the field (0 ≤ n ≤ 7). The
| contents of CR field n (CR bits 4×n:4×n + 3) are placed
| into bits 32+4×n:32+4×n + 3 of register RT and the
| contents of the remaining bits of register RT are
| undefined. Otherwise, the contents of register RT are
| undefined.

| Special Registers Altered:
| None

| Engineering Note

| These forms of the mtcrf and mfcr instructions are
| being phased into the architecture, and must be
| implemented in processors that comply with
| Version 2.00 of the architecture specification or
| with any subsequent version.

| Architecture Note

| The processors for which the new forms of these
| instructions are not treated as the old forms are
| as follows:

| mtcrf : versions of the 630 processor that predate
| 630 SOI (Illegal Instruction type Program
| interrupt)
| mfcr : Northstar processors (incorrect results)

| When the performance of systems based on these
| processors is less important than the performance
| of newer systems, the new forms of the
| instructions can be moved into the architecture
| proper. After that time, it is expected that
| systems based on Northstar processors can be
| configured to generate a Program interrupt when
| the new form of mfcr is executed. If this expecta-
| tion is met, the new forms of the instructions will
| generate a Program interrupt on all processors for
| which they are treated neither as the old forms
| nor as the new forms, and operating systems on
| the affected systems would be expected to
| emulate the new forms.

138 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

5.2 Floating-Point Processor Instructions

† The optional instructions described in this section are
divided into two groups. Additional groups may be
defined in the future.

■ General Purpose group: fsqrt , fsqrts
■ Graphics group: fres, frsqrte , fsel

An implementation that claims to support a given
group implements all the instructions in the group.

Chapter 5. Opti onal Facilities and Instructions 139

IBM Confidential - Feb. 24, 1999

5.2.1 Floating-Point Arithmetic Instructions

5.2.1.1 Floating-Point Elementary Arithmetic Instructions

Floating Square Root [Single] A-form

fsqrt FRT,FRB (Rc=0)
fsqrt. FRT,FRB (Rc=1)

63 FRT /// FRB /// 22 Rc

0 6 11 16 21 26 31

fsqrts FRT,FRB (Rc=0)
fsqrts. FRT,FRB (Rc=1)

59 FRT /// FRB /// 22 Rc

0 6 11 16 21 26 31

The square root of the floating-point operand in reg-
ister FRB is placed into register FRT.

If the most significant bit of the resultant significand is
not 1, the result is normalized. The result is rounded
to the target precision under control of the Floating-
Point Rounding Control field RN of the FPSCR and
placed into register FRT.

Operation with various special values of the operand
is summarized below.

Operand Result Exception
−∞ QNaN1 VXSQRT
< 0 QNaN1 VXSQRT
−0 −0 None
+∞ +∞ None
SNaN QNaN1 VXSNAN
QNaN QNaN None
1No result if FPSCRVE = 1.

FPSCRFPRF is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRVE= 1 .

†

Special Registers Altered:
FPRF FR FI
FX XX
VXSNAN VXSQRT
CR1 (if Rc=1)

Floating Reciprocal Estimate Single
A-form

fres FRT,FRB (Rc=0)
fres. FRT,FRB (Rc=1)

59 FRT /// FRB /// 24 Rc
0 6 11 16 21 26 31

A single-precision estimate of the reciprocal of the
floating-point operand in register FRB is placed into
register FRT. The estimate placed into register FRT
is correct to a precision of one part in 256 of the
reciprocal of (FRB), i.e.,

ABS(estimate − 1/x
1/x) ≤ 1

256

where x is the initial value in FRB. Note that the
value placed into register FRT may vary between
implementations, and between different executions on
the same implementation.

Operation with various special values of the operand
is summarized below.

Operand Result Exception
−∞ −0 None
−0 −∞1 ZX
+0 +∞1 ZX
+∞ +0 None
SNaN QNaN2 VXSNAN
QNaN QNaN None
1No result if FPSCRZE = 1.
2No result if FPSCRVE = 1.

FPSCRFPRF is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRVE= 1 and Zero Divide Exceptions when
FPSCRZE= 1 .

†

Special Registers Altered:
FPRF FR (undefined) FI (undefined)
FX OX UX ZX
VXSNAN
CR1 (if Rc=1)

Architecture Note

No double-precision version of this instruction is
provided because graphics applications are
expected to need only the single-precision
version, and no other important performance-
critical applications are expected to need a
double-precision version.

140 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

Floating Reciprocal Square Root
Estimate A-form

frsqrte FRT,FRB (Rc=0)
frsqrte. FRT,FRB (Rc=1)

63 FRT /// FRB /// 26 Rc

0 6 11 16 21 26 31

A double-precision estimate of the reciprocal of the
square root of the floating-point operand in register
FRB is placed into register FRT. The estimate placed
into register FRT is correct to a precision of one part
in 32 of the reciprocal of the square root of (FRB), i.e.,

ABS(estimate − 1/ x

1/ x) ≤ 1
32

where x is the initial value in FRB. Note that the
value placed into register FRT may vary between
implementations, and between different executions on
the same implementation.

Operation with various special values of the operand
is summarized below.

Operand Result Exception
−∞ QNaN2 VXSQRT
< 0 QNaN2 VXSQRT
−0 −∞1 ZX
+0 +∞1 ZX
+∞ +0 None
SNaN QNaN2 VXSNAN
QNaN QNaN None
1No result if FPSCRZE = 1.
2No result if FPSCRVE = 1.

FPSCRFPRF is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRVE= 1 and Zero Divide Exceptions when
FPSCRZE= 1 .

†

Special Registers Altered:
FPRF FR (undefined) FI (undefined)
FX ZX
VXSNAN VXSQRT
CR1 (if Rc=1)

Architecture Note

No single-precision version of this instruction is
provided because it would be superfluous: if (FRB)
is representable in single format, then so is (FRT).

5.2.2 Floating-Point Select
Instruction

Floating Select A-form

fsel FRT,FRA,FRC,FRB (Rc=0)
fsel. FRT,FRA,FRC,FRB (Rc=1)

63 FRT FRA FRB FRC 23 Rc

0 6 11 16 21 26 31

if (FRA) ≥ 0.0 then FRT ← (FRC)
else FRT ← (FRB)

The floating-point operand in register FRA is com-
pared to the value zero. If the operand is greater
than or equal to zero, register FRT is set to the con-
tents of register FRC. If the operand is less than zero
or is a NaN, register FRT is set to the contents of reg-
ister FRB. The comparison ignores the sign of zero
(i.e., regards + 0 as equal to − 0).

†

Special Registers Altered:
CR1 (if Rc=1)

Architecture Note

The Select instruction is similar to a Move instruc-
tion, and therefore does not alter the FPSCR.

Programming Note

Examples of uses of this instruction can be found
in Sections C.2, “Floating-Point Conversions” on
page 180 and C.3, “Floating-Point Selection” on
page 182.

Warning: Care must be taken in using fsel if IEEE
compatibility is required, or if the values being
tested can be NaNs or infinities; see Section C.3.4,
“Notes” on page 182.

Chapter 5. Opti onal Facilities and Instructions 141

IBM Confidential - Feb. 24, 1999

† 5.3 Little-Endian

It is computed that eleven Thousand Persons have, at several Times, suffered Death, rather than submit
to break their Eggs at the smaller End. Many hundred large Volumes have been published upon this
Controversy

Jonathan Swift, Gulliver's Travels

† The Little-Endian facility permits a program to access
† storage using Little-Endian byte ordering.

5.3.1 Byte Ordering

If scalars (individual data items and instructions) were
indivisible, then there would be no such concept as
“byte ordering”. It is meaningless to talk of the
“order” of bits or groups of bits within the smallest
addressable unit of storage, because nothing can be
observed about such order. Only when scalars, which
the programmer and processor regard as indivisible
quantities, can be made up of more than one address-
able unit of storage does the question of “order”
arise.

For a machine in which the smallest addressable unit
of storage is the 64-bit doubleword, there is no ques-
tion of the ordering of “bytes” within doublewords.
All transfers of individual scalars to and from storage
(e.g., between registers and storage) are of
doublewords, and the address of the “byte” con-
taining the high-order 8 bits of a scalar is no different
from the address of a “byte” containing any other
part of the scalar.

For PowerPC AS, as for most computers currently
available, the smallest addressable unit of storage is
the 8-bit byte. Many scalars are halfwords, words, or
doublewords, which consist of groups of bytes. When
a word-length scalar is moved from a register to
storage, the scalar occupies four consecutive byte
addresses. It thus becomes meaningful to discuss the
order of the byte addresses with respect to the value
of the scalar: which byte contains the highest-order 8
bits of the scalar, which byte contains the next-
highest-order 8 bits, and so on.

Given a scalar that spans multiple bytes, the choice of
byte ordering is essentially arbitrary. There are
4! = 24 ways to specify the ordering of four bytes
within a word, but only two of these orderings are
sensible:

■ The ordering that assigns the lowest address to
the highest-order (“leftmost”) 8 bits of the scalar,

the next sequential address to the next-highest-
order 8 bits, and so on. This is called Big-Endian
because the “big end” of the scalar, considered
as a binary number, comes first in storage. IBM
RISC System/6000, IBM System/370, and
Motorola 680x0 are examples of computers using
this byte ordering.

■ The ordering that assigns the lowest address to
the lowest-order (“rightmost”) 8 bits of the scalar,
the next sequential address to the next-lowest-
order 8 bits, and so on. This is called Little-
Endian because the “litt le end” of the scalar,
considered as a binary number, comes first in
storage. DEC VAX and Intel x86 are examples of
computers using this byte ordering.

5.3.2 Structure Mapping Examples

Figure 41 on page 143 shows an example of a C lan-
guage structure s containing an assortment of scalars
and one character string. The value assumed to be in
each structure element is shown in hex in the C com-
ments; these values are used below to show how the
bytes making up each structure element are mapped
into storage.

C structure mapping rules permit the use of padding
(skipped bytes) in order to align the scalars on desir-
able boundaries. Figures 42 and 43 show each scalar
aligned at its natural boundary. This alignment intro-
duces padding of four bytes between a and b , one
byte between d and e, and two bytes between e and f.
The same amount of padding is present for both Big-
Endian and Little-Endian mappings.

5.3.2.1 Big-Endian Mapping

The Big-Endian mapping of structure s is shown in
Figure 42. Addresses are shown in hex at the left of
each doubleword, and in small figures below each
byte. The contents of each byte, as indicated in the C
example in Figure 41, are shown in hex (as characters
for the elements of the string).

142 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

struct {
int a; /* 0x1112_1314 word */
double b; /* 0x2122_2324_2526_2728 doubleword */
char * c; /* 0x3132_3334 word */
char d[7] ; /* 'A', 'B', 'C', 'D', 'E', 'F', 'G' array of bytes */
short e; /* 0x5152 halfword */
int f; /* 0x6162_6364 word */

} s;

Figure 41. C structure 's', showing values of elements

00 11 12 13 14
00 01 02 03 04 05 06 07

08 21 22 23 24 25 26 27 28
08 09 0A 0B 0C 0D 0E 0F

10 31 32 33 34 'A' 'B' 'C' 'D'
10 11 12 13 14 15 16 17

18 'E' 'F' 'G' 51 52
18 19 1A 1B 1C 1D 1E 1F

20 61 62 63 64
20 21 22 23

Figure 42. Big-Endian mapping of structure 's'

5.3.2.2 Little-Endian Mapping

The same structure s is shown mapped Little-Endian
in Figure 43. Doublewords are shown laid out from
right to left, which is the common way of showing
storage maps for Little-Endian machines.

11 12 13 14 00
07 06 05 04 03 02 01 00

21 22 23 24 25 26 27 28 08
0F 0E 0D 0C 0B 0A 09 08

'D' 'C' 'B' 'A' 31 32 33 34 10
17 16 15 14 13 12 11 10

51 52 'G' 'F' 'E' 18
1F 1E 1D 1C 1B 1A 19 18

61 62 63 64 20
23 22 21 20

Figure 43. Little-Endian mapping of structure 's'

5.3.3 PowerPC AS Byte Ordering

The body of each of the three PowerPC AS Architec-
ture Books, Book I, PowerPC AS User Instruction Set
Architecture, Book II, PowerPC AS Virtual Environ-
ment Architecture, and Book III, PowerPC AS Oper-
ating Environment Architecture, is written as if a
PowerPC AS system runs only in Big-Endian mode. In
fact, a PowerPC AS system can instead run in Little-
Endian mode, in which the instruction set behaves as
if the byte ordering were Little-Endian, and can
change Endian mode dynamically. The remainder of
Section 5.3 describes how the mode is controlled, and

how running in Little-Endian mode differs from
running in Big-Endian mode.

5.3.3.1 Controlling PowerPC AS Byte
Ordering

The Endian mode of a PowerPC AS processor is con-
trolled by two bits: the LE (Little-Endian Mode) bit
specifies the current mode of the processor, and the
ILE (Interrupt Little-Endian Mode) bit specifies the
mode that the processor enters when the system
error handler is invoked. For both bits, a value of 0
specifies Big-Endian mode and a value of 1 specifies
Little-Endian mode. The location of these bits and the
requirements for altering them are described in Book
III, PowerPC AS Operating Environment Architecture.

When a PowerPC AS system comes up after power-
on-reset, Big-Endian mode is in effect (see Book III,
PowerPC AS Operating Environment Architecture).
Thereafter, methods described in Book III can be used
to change the mode, as can both invoking the system
error handler and returning from the system error
handler.

Programming Note

For a discussion of software synchronization
requirements when altering the LE and ILE bits,
see Book III (e.g., to the chapter entitled “Syn-
chronization Requirements for Special Registers
and for Lookaside Buffers” in Book III).

Architecture Note

The LE and ILE bits must be defined in Book III in
a manner such that they can be changed dynam-
ically and that the LE bit can easily be treated as
part of a process' state.

5.3.3.2 PowerPC AS Little-Endian Byte
Ordering

One might expect that a PowerPC AS system running
in Little-Endian mode would have to perform a 2-way,
4-way, or 8-way byte swap when transferring a
halfword, word, or doubleword to or from storage,
e.g., when transferring data between storage and a
General Purpose Register or Floating-Point Register,
when fetching instructions, and when transferring data

Chapter 5. Opti onal Facilities and Instructions 143

IBM Confidential - Feb. 24, 1999

between storage and an Input/Output (I/O) device.
PowerPC AS systems do not do such swapping, but
instead achieve the effect of Little-Endian byte
ordering by modifying the low-order three bits of the
effective address (EA) as described below. Individual
scalars actually appear in storage in Big-Endian byte
order.

The modification affects only the addresses presented
to the storage subsystem (see Book III, PowerPC AS
Operating Environment Architecture). All effective
addresses in architecturally defined registers, as well
as the Current Instruction Address (CIA) and Next
Instruction Address (NIA), are independent of Endian
mode. For example:

■ The effective address placed into the Link Reg-
ister by a Branch instruction with L K = 1 is equal
to the CIA of the Branch instruction + 4;

■ The effective address placed into RA by a
Load/Store with Update instruction is the value
computed as described in the instruction
description; and

■ The effective addresses placed into System Reg-
isters when the system error handler is invoked
(e.g., SRR0, DAR: see Book III, PowerPC AS
Operating Environment Architecture) are those
that were computed or would have been com-
puted by the interrupted program.

Architecture Note

In fact, the modification is performed on the real
address (see Book III, PowerPC AS Operating
Environment Architecture), and not on the effec-
tive address at all. Describing the modification
this way makes it obvious why all effective
addresses in architecturally defined registers, and
in the CIA and NIA, are unaffected. However, this
simple description cannot be used here, because
real addresses are not defined in Book I.

The modification is performed regardless of whether
address translation is enabled or disabled and, if
address translation is enabled, regardless of the
translation mechanism used (see Book III, PowerPC
AS Operating Environment Architecture). The actual
transfer of data and instructions to and from storage
is unaffected (and thus unencumbered by multiplexors
for byte swapping).

The modification of the low-order three bits of the
effective address in Little-Endian mode is done as
follows, for access to an individual aligned scalar.
(Alignment is as determined before this modification.)
Access to an individual unaligned scalar or to multiple
scalars is described in subsequent sections, as is
access to certain architecturally defined data in
storage, data in caches (e.g., see Book II, PowerPC
AS Virtual Environment Architecture, and Book III,
PowerPC AS Operating Environment Architecture),
etc.

In Little-Endian mode, the effective address is com-
puted in the same way as in Big-Endian mode. Then,
in Little-Endian mode only, the low-order three bits of
the effective address are Exclusive ORed with a
three-bit value that depends on the length of the
operand (1, 2, 4, or 8 bytes), as shown in Table 2.
This modified effective address is then presented to
the storage subsystem, and data of the specified
length are transferred to or from the addressed (as
modified) storage locations(s).

Table 2. PowerPC AS Little-Endian, effective address
modification for individual aligned scalars

The effective address modification makes it appear to
the processor that individual aligned scalars are
stored Little-Endian, while in fact they are stored Big-
Endian but in different bytes within doublewords from
the order in which they are stored in Big-Endian
mode.

For example, in Little-Endian mode structure s would
be placed in storage as follows, from the point of view
of the storage subsystem (i.e., after the effective
address modification described above).

00 11 12 13 14
00 01 02 03 04 05 06 07

08 21 22 23 24 25 26 27 28
08 09 0A 0B 0C 0D 0E 0F

10 'D' 'C' 'B' 'A' 31 32 33 34
10 11 12 13 14 15 16 17

18 51 52 'G' 'F' 'E'
18 19 1A 1B 1C 1D 1E 1F

20 61 62 63 64
20 21 22 23 24 25 26 27

Figure 44. PowerPC AS Little-Endian, structure 's' in
storage subsystem

Figure 44 is identical to Figure 43 except that the byte
numbers within each doubleword are reversed. (This
identity is in some sense an artifact of depicting
storage as a sequence of doublewords. If storage is
instead depicted as a sequence of words, a single
byte stream, etc., then no such identity appears.
However, regardless of the unit in which storage is
depicted or accessed, the address of a given byte in
Figure 44 differs from the address of the same byte
in Figure 43 only in the low-order three bits, and the
sum of the two 3-bit values that comprise the low-

Data Length (bytes) EA Modification

1 XOR with 0b111

2 XOR with 0b110

4 XOR with 0b100

8 (no change)

144 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

order three bits of the two addresses is equal to 7.
Depicting storage as a sequence of doublewords
makes this relationship easy to see.)

Because of the modification performed on effective
addresses, structure s appears to the processor to be
mapped into storage as follows when the processor is
in Little-Endian mode.

11 12 13 14 00
07 06 05 04 03 02 01 00

21 22 23 24 25 26 27 28 08
0F 0E 0D 0C 0B 0A 09 08

'D' 'C' 'B' 'A' 31 32 33 34 10
17 16 15 14 13 12 11 10

51 52 'G' 'F' 'E' 18
1F 1E 1D 1C 1B 1A 19 18

61 62 63 64 20
23 22 21 20

Figure 45. PowerPC AS Little-Endian, structure 's' as
seen by processor

Notice that, as seen by the program executing in the
processor, the mapping for structure s is identical to
the Little-Endian mapping shown in Figure 43. From a
point of view outside the processor, however, the
addresses of the bytes making up structure s are as
shown in Figure 44. These addresses match neither
the Big-Endian mapping of Figure 42 nor the Little-
Endian mapping of Figure 43; allowance must be
made for this in certain circumstances (e.g., when
performing I/O: see Section 5.3.7).

The following four sections describe in greater detail
the effects of running in Little-Endian mode on
accessing data, on fetching instructions, on explicitly
accessing the caches and any address translation
lookaside buffers (e.g., see Book II, PowerPC AS
Virtual Environment Architecture, and Book III,
PowerPC AS Operating Environment Architecture),
and on doing I/O.

Architecture Note

The capability of running in Little-Endian mode is
provided in order to facilitate porting Little-Endian
application programs and operating systems to
PowerPC AS systems.

5.3.4 PowerPC AS Data Addressing
in Little-Endian Mode

5.3.4.1 Individual Aligned Scalars

When the storage operand is aligned for any instruc-
tion in the following classes, the effective address
presented to the storage subsystem is computed as
described in Section 5.3.3.2: Fixed-Point Load, Fixed-

† Point Store, Load and Store with Byte Reversal,
† Floating-Point Load, Floating-Point Store (including
† stfiwx), and Load And Reserve and Store Conditional
† (see Book II).

The Load and Store with Byte Reversal instructions
have the effect of loading or storing data in the oppo-
site Endian mode from that in which the processor is
running. That is, data are loaded or stored in Little-
Endian order if the processor is running in Big-Endian
mode, and in Big-Endian order if the processor is
running in Little-Endian mode.

5.3.4.2 Other Scalars

As described below, the system alignment error
handler may be (see Section “Individual Unaligned
Scalars”) or is (see Section “Multiple Scalars” on
page 146) invoked if attempt is made in Little-Endian
mode to execute any of the instructions described in
the following two subsections.

Individual Unaligned Scalars

The “tr ick” of Exclusive ORing the low-order three bits
of the effective address of an individual scalar does
not work unless the scalar is aligned. In Little-Endian
mode, PowerPC AS processors may cause the system
alignment error handler to be invoked whenever any
of the Load or Store instructions listed in Section
5.3.4.1 is issued with an unaligned effective address,
regardless of whether such an access could be
handled without invoking the system alignment error
handler in Big-Endian mode.

PowerPC AS processors are not required to invoke
the system alignment error handler when an una-
ligned access is attempted in Little-Endian mode. The
implementation may handle some or all such
accesses without invoking the system alignment error
handler, just as in Big-Endian mode. The architectural
requirement is that halfwords, words, and
doublewords be placed in storage such that the Little-
Endian effective address of the lowest-order byte is
the effective address computed by the Load or Store
instruction, the Little-Endian address of the next-

† lowest-order byte is one greater, and so on. (Load
† And Reserve and Store Conditional differ somewhat

from the rest of the instructions listed in Section
5.3.4.1, in that neither the implementation nor the
system alignment error handler is expected to handle

Chapter 5. Opti onal Facilities and Instructions 145

IBM Confidential - Feb. 24, 1999

these four instructions “correctly” if their operands
are not aligned.)

Figure 46 shows an example of a word w stored at
Little-Endian address 5. The word is assumed to
contain the binary value 0x1112_1314.

12 13 14 00
07 06 05 04 03 02 01 00

11 08
0F 0E 0D 0C 0B 0A 09 08

Figure 46. Little-Endian mapping of word 'w' stored
at address 5

In Little-Endian mode word w would be placed in
storage as follows, from the point of view of the
storage subsystem (i.e., after the effective address
modification described in Section 5.3.3.2).

00 12 13 14
00 01 02 03 04 05 06 07

08 11
08 09 0A 0B 0C 0D 0E 0F

Figure 47. PowerPC AS Little-Endian, word 'w' stored
at address 5 in storage subsystem

Notice that the unaligned word w in Figure 47 spans
two doublewords. The two parts of the unaligned
word are not contiguous as seen by the storage sub-
system.

An implementation may choose to support some but
not all unaligned Little-Endian accesses. For example,
an unaligned Little-Endian access that is contained
within a single doubleword may be supported, while
one that spans doublewords may cause the system
alignment error handler to be invoked.

Multiple Scalars

PowerPC AS has two classes of instructions that
handle multiple scalars, namely the Load and Store
Multiple instructions and the Move Assist instructions.
Because both classes of instructions potentially deal
with more than one word-length scalar, neither class
is amenable to the effective address modification
described in Section 5.3.3.2 (e.g., pairs of aligned
words would be accessed in reverse order from what
the program would expect). Attempting to execute
any of these instructions in Little-Endian mode causes
the system alignment error handler to be invoked.

Quadword Instructions

If MSRLE= 1 and MSRTA= 1 and lq or stq is executed,
either the system alignment error handler is invoked
or the results are boundedly undefined.

| 5.3.4.3 Page Table

| The layout of the Page Table in storage (see Book III,
PowerPC AS Operating Environment Architecture) is

| independent of Endian mode. A given byte in the
| Page Table must be accessed using an effective

address appropriate to the mode of the executing
program (e.g., the high-order byte of a Page Table
Entry must be accessed with an effective address
ending with 0b000 in Big-Endian mode, and with an
effective address ending with 0b111 in Little-Endian
mode).

Engineering Note

An implementation that uses software assistance
to facilitate the hardware's searching and alter-

| ation of the Page Table must supply two separate
software routines, one for Big-Endian mode and
one for Little-Endian mode.

5.3.5 PowerPC AS Instruction
Addressing in Little-Endian Mode

Each PowerPC AS instruction occupies an aligned
word in storage. The processor fetches and executes
instructions as if the CIA were advanced by four for
each sequentially fetched instruction. When the
processor is in Little-Endian mode, the effective
address presented to the storage subsystem in order
to fetch an instruction is the value from the CIA, mod-
ified as described in Section 5.3.3.2 for aligned word-
length scalars. A Little-Endian program is thus an
array of aligned Little-Endian words, with each word
fetched and executed in order (discounting branches
and invocations of the system error handler).

Figure 48 shows an example of a small assembly lan-
guage program p .

loop:
cmplwi r5,0
beq done
lwzux r4,r5,r6
add r7,r7,r4
subi r5,r5,4
b loop

done:
stw r7,total

Figure 48. Assembly language program 'p'

The Big-Endian mapping for program p is shown in
Figure 49 (assuming the program starts at address 0).

146 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

00 loop: cmplwi r5,0 beq done
00 01 02 03 04 05 06 07

08 lwzux r4,r5,r6 add r7,r7,r4
08 09 0A 0B 0C 0D 0E 0F

10 subi r5,r5,4 b loop
10 11 12 13 14 15 16 17

18 done: stw r7,total
18 19 1A 1B 1C 1D 1E 1F

Figure 49. Big-Endian mapping of program 'p'

The same program p is shown mapped Little-Endian
in Figure 50.

beq done loop: cmplwi r5,0 00
07 06 05 04 03 02 01 00

add r7,r7,r4 lwzux r4,r5,r6 08
0F 0E 0D 0C 0B 0A 09 08

b loop subi r5,r5,4 10
17 16 15 14 13 12 11 10

done: stw r7,total 18
1F 1E 1D 1C 1B 1A 19 18

Figure 50. Little-Endian mapping of program 'p'

In Little-Endian mode program p would be placed in
storage as follows, from the point of view of the
storage subsystem (i.e., after the effective address
modification described in Section 5.3.3.2).

00 beq done loop: cmplwi r5,0
00 01 02 03 04 05 06 07

08 add r7,r7,r4 lwzux r4,r5,r6
08 09 0A 0B 0C 0D 0E 0F

10 b loop subi r5,r5,4
10 11 12 13 14 15 16 17

18 done: stw r7,total
18 19 1A 1B 1C 1D 1E 1F

Figure 51. PowerPC AS Little-Endian, program 'p' in
storage subsystem

Figure 51 is identical to Figure 50 except that the
byte numbers within each doubleword are reversed.
(This identity is in some sense an artifact of depicting
storage as a sequence of doublewords. If storage is
instead depicted as a sequence of words, a single
byte stream, etc., then no such identity appears.
However, regardless of the unit in which storage is
depicted or accessed, the address of a given byte in
Figure 51 differs from the address of the same byte
in Figure 50 only in the low-order three bits, and the
sum of the two 3-bit values that comprise the low-
order three bits of the two addresses is equal to 7.
Depicting storage as a sequence of doublewords
makes this relationship easy to see.)

Each individual machine instruction appears in
storage as a 32-bit integer containing the value
described in the instruction description, regardless of
the Endian mode. This is a consequence of the fact
that individual aligned scalars are mapped in storage
in Big-Endian byte order.

Notice that, as seen by the processor when executing
program p , the mapping for program p is identical to
the Little-Endian mapping shown in Figure 50. From a
point of view outside the processor, however, the
addresses of the bytes making up program p are as
shown in Figure 51. These addresses match neither
the Big-Endian mapping of Figure 49 nor the Little-
Endian mapping of Figure 50.

All instruction effective addresses visible to an exe-
cuting program are the effective addresses that are
computed by that program or, in the case of the
system error handler, effective addresses that were
or could have been computed by the interrupted
program. These effective addresses are independent
of Endian mode. Examples for Little-Endian mode
include the following.

■ An instruction address placed into the Link Reg-
ister by a Branch instruction with LK=1, or an
instruction address saved in a System Register
when the system error handler is invoked, is the
effective address that a program executing in
Little-Endian mode would use to access the
instruction as a data word using a Load instruc-
tion.

■ An offset in a relative Branch instruction (Branch
or Branch Conditional with AA=0) reflects the
difference between the addresses of the branch
and target instructions, using the addresses that
a program executing in Little-Endian mode would
use to access the instructions as data words
using Load instructions.

■ A target address in an absolute Branch instruc-
tion (Branch or Branch Conditional with AA=1) is
the address that a program executing in Little-
Endian mode would use to access the target
instruction as a data word using a Load instruc-
tion.

■ The storage locations that contain the first set of
instructions executed by each kind of system
error handler must be set in a manner consistent
with the Endian mode in which the system error
handler will be invoked. (These sets of
instructions occupy architecturally defined
locations: see Book III, PowerPC AS Operating
Environment Architecture.) Thus if the system
error handler is to be invoked in Little-Endian
mode, the first set of instructions for each kind of
system error handler must appear in storage,
from the point of view of the storage subsystem
(i.e., after the effective address modification
described in Section 5.3.3.2), with the pair of
instructions within each doubleword reversed

Chapter 5. Opti onal Facilities and Instructions 147

IBM Confidential - Feb. 24, 1999

from the order in which they are to be executed.
(If the instructions are placed into storage by a
program running in the same Endian mode as
that in which the system error handler will be
invoked, the appropriate order will be achieved
naturally.)

Programming Note

In general, a given subroutine in storage cannot
be shared between programs running in different
Endian modes. This affects the sharing of subrou-
tine libraries.

Engineering Note

If the Endian mode changes because an sc , Trap,
| or rfid (see Book III) instruction was executed or

because an interrupt occurred, subsequent
instructions must be executed in the correct order
as determined by the new Endian mode (MSRLE)
regardless of the Endian mode that was in effect
when the instructions were fetched into the
instruction cache. Implementations that condi-
tionally reverse the order of instructions within
doublewords depending on the current Endian
mode when placing instructions into the instruc-
tion cache must correct the instruction order
when the Endian mode is changed by the occur-
rences listed at the beginning of this Note.
However, restrictions may apply when the Endian
mode is changed by the execution of an mtmsr [d]

† or rfscv instruction; e.g., see the chapter entitled
“Synchronization Requirements for Special Regis-
ters and for Lookaside Buffers” in Book III.

| 5.3.6 PowerPC AS Cache
| Management Instructions in
| Little-Endian Mode

| Instructions for explicitly accessing the caches (see
| Book II, PowerPC AS Virtual Environment
| Architecture) are unaffected by Endian mode. (Iden-
| tification of the block to be accessed is not affected

by the low-order three bits of the effective address.)

5.3.7 PowerPC AS I/O in
Little-Endian Mode

Input/output (I/O), such as writing the contents of a
large area of storage to disk, transfers a byte stream
on both Big-Endian and Little-Endian systems. For the
disk transfer, the first byte of the area is written to
the first byte of the disk record and so on.

For a PowerPC AS system running in Big-Endian
mode, I/O transfers happen “naturally” because the

byte that the processor sees as byte 0 is the same
one that the storage subsystem sees as byte 0.

For a PowerPC AS system running in Little-Endian
mode this is not the case, because of the modification
of the low-order three bits of the effective address
when the processor accesses storage. In order for
I/O transfers to transfer byte streams properly, in
Little-Endian mode I/O transfers must be performed
as if the bytes transferred were accessed one byte at
a time, using the address modification described in
Section 5.3.3.2 for single-byte scalars. This does not
mean that I/O on Little-Endian PowerPC AS systems
must use only 1-byte-wide transfers; data transfers
can be as wide as desired, but the order of the bytes
transferred within doublewords must appear as if the
bytes were fetched or stored one byte at a time. See
the System Architecture documentation for a given
PowerPC AS system for details on the transfer width
and byte ordering on that system.

However, not all I/O done on PowerPC AS systems is
for large areas of storage as described above. I/O
can be performed with certain devices merely by
storing to or loading from addresses that are associ-
ated with the devices (the terms “memory-mapped
I/O” and “programmed I/O” or “PIO” are used for
this). For such PIO transfers, care must be taken
when defining the addresses to be used, for these
addresses are subject to the effective address modifi-
cation shown in Table 2 on page 144. A Load or
Store instruction that maps to a control register on a
device may require that the value loaded or stored
have its bytes reversed; if this is required, the Load
and Store with Byte Reversal instructions can be
used. Any requirement for such byte reversal for a
particular I/O device register is independent of
whether the PowerPC AS system is running in Big-
Endian or Little-Endian mode.

Similarly, the address sent to an I/O device by an
eciwx or ecowx instruction (see Book II, PowerPC AS
Virtual Environment Architecture) is subject to the
effective address modification shown in Table 2.

5.3.8 Origin of Endian

The terms Big-Endian and Little-Endian come from
Part I, Chapter 4, of Jonathan Swift's Gulliver's
Travels. Here is the complete passage, from the
edition printed in 1734 by George Faulkner in Dublin.

... our Histories of six Thousand Moons make
no Mention of any other Regions, than the
two great Empires of Lilliput and Blefuscu.
Which two mighty Powers have, as I was
going to tell you, been engaged in a most
obstinate War for six and thirty Moons past.
It began upon the following Occasion. It is
allowed on all Hands, that the primitive Way
of breaking Eggs before we eat them, was
upon the larger End: But his present Majes-

148 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

ty's Grand-father, while he was a Boy, going
to eat an Egg, and breaking it according to
the ancient Practice, happened to cut one of
his Fingers. Whereupon the Emperor his
Father, published an Edict, commanding all
his Subjects, upon great Penalties, to break
the smaller End of their Eggs. The People so
highly resented this Law, that our Histories
tell us, there have been six Rebellions raised
on that Account; wherein one Emperor lost
his Life, and another his Crown. These civil
Commotions were constantly fomented by the
Monarchs of Blefuscu; and when they were
quelled, the Exiles always fled for Refuge to
that Empire. It is computed that eleven
Thousand Persons have, at several Times,
suffered Death, rather than submit to break
their Eggs at the smaller End. Many hundred
large Volumes have been published upon this
Controversy: But the Books of the Big-
Endians have been long forbidden, and the
whole Party rendered incapable by Law of
holding Employments. During the Course of
these Troubles, the Emperors of Blefuscu did
frequently expostulate by their Ambassadors,
accusing us of making a Schism in Religion,
by offending against a fundamental Doctrine
of our great Prophet Lustrog, in the fifty-

fourth Chapter of the Brundrecal, (which is
their Alcoran.) This, however, is thought to
be a mere Strain upon the text: For the
Words are these; That all true Believers shall
break their Eggs at the convenient End: and
which is the convenient End, seems, in my
humble Opinion, to be left to every Man's
Conscience, or at least in the Power of the
chief Magistrate to determine. Now the Big-
Endian Exiles have found so much Credit in
the Emperor of Blefuscu's Court; and so
much private Assistance and Encouragement
from their Party here at home, that a bloody
War has been carried on between the two
Empires for six and thirty Moons with various
Success; during which Time we have lost
Forty Capital Ships, and a much greater
Number of smaller Vessels, together with
thirty thousand of our best Seamen and Sol-
diers; and the Damage received by the
Enemy is reckoned to be somewhat greater
than ours. However, they have now
equipped a numerous Fleet, and are just pre-
paring to make a Descent upon us: and his
Imperial Majesty, placing great Confidence in
your Valour and Strength, hath commanded
me to lay this Account of his Affairs before
you.

Chapter 5. Opti onal Facilities and Instructions 149

IBM Confidential - Feb. 24, 1999

150 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

Appendix A. Suggested Floating-Point Models

A.1 Floating-Point Round to Single-Precision Model

The following describes algorithmically the operation of the Floating Round to Single-Precision instruction.

If (FRB)1:11 < 897 and (FRB)1:63 > 0 then
Do

If FPSCRUE = 0 then goto Disabled Exponent Underflow
If FPSCRUE = 1 then goto Enabled Exponent Underflow

End

If (FRB)1:11 > 1150 and (FRB)1:11 < 2047 then
Do

If FPSCROE = 0 then goto Disabled Exponent Overflow
If FPSCROE = 1 then goto Enabled Exponent Overflow

End

If (FRB)1:11 > 896 and (FRB)1:11 < 1151 then goto Normal Operand

If (FRB)1:63 = 0 then goto Zero Operand

If (FRB)1:11 = 2047 then
Do

If (FRB)12:63 = 0 then goto Infinity Operand
If (FRB)12 = 1 then goto QNaN Operand
If (FRB)12 = 0 and (FRB)13:63 > 0 then goto SNaN Operand

End

Appendix A. Suggested Floating-Point Models 151

IBM Confidential - Feb. 24, 1999

Disabled Exponent Underflow :

sign ← (FRB)0
If (FRB)1:11 = 0 then

Do
exp ← − 1022
frac0:52 ← 0b0 || (FRB)12:63

End
If (FRB)1:11 > 0 then

Do
exp ← (FRB)1:11 − 1023
frac0:52 ← 0b1 || (FRB)12:63

End
Denormalize operand:

G || R || X ← 0b000
Do while exp < − 126

exp ← exp + 1
frac0:52 || G || R || X ← 0b0 || frac0:52 || G || (R | X)

End
FPSCRUX ← (frac24:52 || G || R || X) > 0
Round Single(sign,exp,frac0:52,G,R,X)
FPSCRXX ← FPSCRXX | FPSCRFI
If frac0:52 = 0 then

Do
FRT0 ← sign
FRT1:63 ← 0
If sign = 0 then FPSCRFPRF ← “ + zero”
If sign = 1 then FPSCRFPRF ← “ − zero”

End
If frac0:52 > 0 then

Do
If frac0 = 1 then

Do
If sign = 0 then FPSCRFPRF ← “ + normal number”
If sign = 1 then FPSCRFPRF ← “ − normal number”

End
If frac0 = 0 then

Do
If sign = 0 then FPSCRFPRF ← “ + denormalized number”
If sign = 1 then FPSCRFPRF ← “ − denormalized number”

End
Normalize operand:

Do while frac0 = 0
exp ← exp− 1
frac0:52 ← frac1:52 || 0b0

End
FRT0 ← sign
FRT1:11 ← exp + 1023
FRT12:63 ← frac1:52

End
Done

152 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

Enabled Exponent Underflow :

FPSCRUX ← 1
sign ← (FRB)0
If (FRB)1:11 = 0 then

Do
exp ← − 1022
frac0:52 ← 0b0 || (FRB)12:63

End
If (FRB)1:11 > 0 then

Do
exp ← (FRB)1:11 − 1023
frac0:52 ← 0b1 || (FRB)12:63

End
Normalize operand:

Do while frac0 = 0
exp ← exp − 1
frac0:52 ← frac1:52 || 0b0

End
Round Single(sign,exp,frac0:52,0,0,0)
FPSCRXX ← FPSCRXX | FPSCRFI
exp ← exp + 192
FRT0 ← sign
FRT1:11 ← exp + 1023
FRT12:63 ← frac1:52
If sign = 0 then FPSCRFPRF ← “ + normal number”
If sign = 1 then FPSCRFPRF ← “ − normal number”
Done

Disabled Exponent Overflow :

FPSCROX ← 1
If FPSCRRN = 0b00 then /* Round to Nearest */

Do
If (FRB)0 = 0 then FRT ← 0x7FF0_0000_0000_0000
If (FRB)0 = 1 then FRT ← 0xFFF0_0000_0000_0000
If (FRB)0 = 0 then FPSCRFPRF ← “ + infinity”
If (FRB)0 = 1 then FPSCRFPRF ← “ − infinity”

End
If FPSCRRN = 0b01 then /* Round toward Zero */

Do
If (FRB)0 = 0 then FRT ← 0x47EF_FFFF_E000_0000
If (FRB)0 = 1 then FRT ← 0xC7EF_FFFF_E000_0000
If (FRB)0 = 0 then FPSCRFPRF ← “ + normal number”
If (FRB)0 = 1 then FPSCRFPRF ← “ − normal number”

End
If FPSCRRN = 0b10 then /* Round toward +Inf in i ty */

Do
If (FRB)0 = 0 then FRT ← 0x7FF0_0000_0000_0000
If (FRB)0 = 1 then FRT ← 0xC7EF_FFFF_E000_0000
If (FRB)0 = 0 then FPSCRFPRF ← “ + infinity”
If (FRB)0 = 1 then FPSCRFPRF ← “ − normal number”

End
If FPSCRRN = 0b11 then /* Round toward − Infinity */

Do
If (FRB)0 = 0 then FRT ← 0x47EF_FFFF_E000_0000
If (FRB)0 = 1 then FRT ← 0xFFF0_0000_0000_0000
If (FRB)0 = 0 then FPSCRFPRF ← “ + normal number”
If (FRB)0 = 1 then FPSCRFPRF ← “ − infinity”

End
FPSCRFR ← undefined
FPSCRFI ← 1
FPSCRXX ← 1
Done

Appendix A. Suggested Floating-Point Models 153

IBM Confidential - Feb. 24, 1999

Enabled Exponent Overflow :

sign ← (FRB)0
exp ← (FRB)1:11 − 1023
frac0:52 ← 0b1 || (FRB)12:63
Round Single(sign,exp,frac0:52,0,0,0)
FPSCRXX ← FPSCRXX | FPSCRFI

Enabled Overflow:
FPSCROX ← 1
exp ← exp − 192
FRT0 ← sign
FRT1:11 ← exp + 1023
FRT12:63 ← frac1:52
If sign = 0 then FPSCRFPRF ← “ + normal number”
If sign = 1 then FPSCRFPRF ← “ − normal number”
Done

Zero Operand :

FRT ← (FRB)
If (FRB)0 = 0 then FPSCRFPRF ← “ + zero”
If (FRB)0 = 1 then FPSCRFPRF ← “ − zero”
FPSCRFR FI ← 0b00
Done

Infinity Operand :

FRT ← (FRB)
If (FRB)0 = 0 then FPSCRFPRF ← “ + infinity”
If (FRB)0 = 1 then FPSCRFPRF ← “ − infinity”
FPSCRFR FI ← 0b00
Done

QNaN Operand :

FRT ← (FRB)0:34 || 290
FPSCRFPRF ← “QNaN”
FPSCRFR FI ← 0b00
Done

SNaN Operand :

FPSCRVXSNAN ← 1
If FPSCRVE = 0 then

Do
FRT0:11 ← (FRB)0:11
FRT12 ← 1
FRT13:63 ← (FRB)13:34 || 290
FPSCRFPRF ← “QNaN”

End
FPSCRFR FI ← 0b00
Done

154 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

Normal Operand :

sign ← (FRB)0
exp ← (FRB)1:11 − 1023
frac0:52 ← 0b1 || (FRB)12:63
Round Single(sign,exp,frac0:52,0,0,0)
FPSCRXX ← FPSCRXX | FPSCRFI
If exp > 127 and FPSCROE = 0 then go to Disabled Exponent Overflow
If exp > 127 and FPSCROE = 1 then go to Enabled Overflow
FRT0 ← sign
FRT1:11 ← exp + 1023
FRT12:63 ← frac1:52
If sign = 0 then FPSCRFPRF ← “ + normal number”
If sign = 1 then FPSCRFPRF ← “ − normal number”
Done

Round Single (sign,exp,frac0:52,G,R,X):

inc ← 0
lsb ← frac23
gbit ← frac24
rbit ← frac25
xbit ← (frac26:52||G||R||X)≠ 0
If FPSCRRN = 0b00 then /* Round to Nearest */

Do /* comparisons ignore u bits */
If sign || lsb || gbit || rbit || xbit = 0bu11uu then inc ← 1
If sign || lsb || gbit || rbit || xbit = 0bu011u then inc ← 1
If sign || lsb || gbit || rbit || xbit = 0bu01u1 then inc ← 1

End
If FPSCRRN = 0b10 then /* Round toward +Inf in i ty */

Do /* comparisons ignore u bits */
If sign || lsb || gbit || rbit || xbit = 0b0u1uu then inc ← 1
If sign || lsb || gbit || rbit || xbit = 0b0uu1u then inc ← 1
If sign || lsb || gbit || rbit || xbit = 0b0uuu1 then inc ← 1

End
If FPSCRRN = 0b11 then /* Round toward − Infinity */

Do /* comparisons ignore u bits */
If sign || lsb || gbit || rbit || xbit = 0b1u1uu then inc ← 1
If sign || lsb || gbit || rbit || xbit = 0b1uu1u then inc ← 1
If sign || lsb || gbit || rbit || xbit = 0b1uuu1 then inc ← 1

End
frac0:23 ← frac0:23 + inc
If carry_out = 1 then

Do
frac0:23 ← 0b1 || frac0:22
exp ← exp + 1

End
frac24:52 ← 290
FPSCRFR ← inc
FPSCRFI ← gbit | rbit | xbit
Return

Appendix A. Suggested Floating-Point Models 155

IBM Confidential - Feb. 24, 1999

A.2 Floating-Point Convert to Integer Model

The following describes algorithmically the operation of the Floating Convert To Integer instructions.

If Floating Convert To Integer Word then
Do

round_mode ← FPSCRRN
tgt_precision ← “32-bit integer”

End

If Floating Convert To Integer Word with round toward Zero then
Do

round_mode ← 0b01
tgt_precision ← “32-bit integer”

End

If Floating Convert To Integer Doubleword then
Do

round_mode ← FPSCRRN
tgt_precision ← “64-bit integer”

End

If Floating Convert To Integer Doubleword with round toward Zero then
Do

round_mode ← 0b01
tgt_precision ← “64-bit integer”

End

sign ← (FRB)0
If (FRB)1:11 = 2047 and (FRB)12:63 = 0 then goto Infinity Operand
If (FRB)1:11 = 2047 and (FRB)12 = 0 then goto SNaN Operand
If (FRB)1:11 = 2047 and (FRB)12 = 1 then goto QNaN Operand
If (FRB)1:11 > 1086 then goto Large Operand

If (FRB)1:11 > 0 then exp ← (FRB)1:11 − 1023 /* exp − bias */
If (FRB)1:11 = 0 then exp ← − 1022
If (FRB)1:11 > 0 then frac0:64 ← 0b01 || (FRB)12:63 || 110 /* normal; need leading 0 for later complement */
If (FRB)1:11 = 0 then frac0:64 ← 0b00 || (FRB)12:63 || 110 /* denormal */

gbit || rbit || xbit ← 0b000
Do i=1,63− exp /* do the loop 0 times if exp = 63 */

frac0:64 || gbit || rbit || xbit ← 0b0 || frac

0:64 || gbit || (rbit | xbit)
End

Round Integer(sign,frac0:64,gbit,rbit,xbit,round_mode)

If sign = 1 then frac0:64 ← ¬ frac0:64 + 1 /* needed leading 0 for − 264 < (FRB) < − 263 */

If tgt_precision = “32-bit integer” and frac0:64 > 231− 1 then goto Large Operand
If tgt_precision = “64-bit integer” and frac0:64 > 263− 1 then goto Large Operand
If tgt_precision = “32-bit integer” and frac0:64 < − 231 then goto Large Operand
If tgt_precision = “64-bit integer” and frac0:64 < − 263 then goto Large Operand

FPSCRXX ← FPSCRXX | FPSCRFI

If tgt_precision = “32-bit integer” then FRT ← 0xuuuu_uuuu || frac33:64 /* u is undefined hex digit */
If tgt_precision = “64-bit integer” then FRT ← frac1:64
FPSCRFPRF ← undefined
Done

156 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

Round Integer(sign,frac0:64,gbit,rbit,xbit,round_mode):

inc ← 0
If round_mode = 0b00 then /* Round to Nearest */

Do /* comparisons ignore u bits */
If sign || frac64 || gbit || rbit || xbit = 0bu11uu then inc ← 1
If sign || frac64 || gbit || rbit || xbit = 0bu011u then inc ← 1
If sign || frac64 || gbit || rbit || xbit = 0bu01u1 then inc ← 1

End
If round_mode = 0b10 then /* Round toward +Inf in i ty */

Do /* comparisons ignore u bits */
If sign || frac64 || gbit || rbit || xbit = 0b0u1uu then inc ← 1
If sign || frac64 || gbit || rbit || xbit = 0b0uu1u then inc ← 1
If sign || frac64 || gbit || rbit || xbit = 0b0uuu1 then inc ← 1

End
If round_mode = 0b11 then /* Round toward − Infinity */

Do /* comparisons ignore u bits */
If sign || frac64 || gbit || rbit || xbit = 0b1u1uu then inc ← 1
If sign || frac64 || gbit || rbit || xbit = 0b1uu1u then inc ← 1
If sign || frac64 || gbit || rbit || xbit = 0b1uuu1 then inc ← 1

End
frac0:64 ← frac0:64 + inc
FPSCRFR ← inc
FPSCRFI ← gbit | rbit | xbit
Return

Infinity Operand :

FPSCRFR FI VXCVI ← 0b001
If FPSCRVE = 0 then Do

If tgt_precision = “32-bit integer” then
Do

If sign = 0 then FRT ← 0xuuuu_uuuu_7FFF_FFFF /* u is undefined hex digit */
If sign = 1 then FRT ← 0xuuuu_uuuu_8000_0000 /* u is undefined hex digit */

End
Else

Do
If sign = 0 then FRT ← 0x7FFF_FFFF_FFFF_FFFF
If sign = 1 then FRT ← 0x8000_0000_0000_0000

End
FPSCRFPRF ← undefined
End

Done

SNaN Operand :

FPSCRFR FI VXSNAN VXCVI ← 0b0011
If FPSCRVE = 0 then

Do
If tgt_precision = “32-bit integer” then FRT ← 0xuuuu_uuuu_8000_0000 /* u is undefined hex digit */
If tgt_precision = “64-bit integer” then FRT ← 0x8000_0000_0000_0000
FPSCRFPRF ← undefined

End
Done

Appendix A. Suggested Floating-Point Models 157

IBM Confidential - Feb. 24, 1999

QNaN Operand :

FPSCRFR FI VXCVI ← 0b001
If FPSCRVE = 0 then

Do
If tgt_precision = “32-bit integer” then FRT ← 0xuuuu_uuuu_8000_0000 /* u is undefined hex digit */
If tgt_precision = “64-bit integer” then FRT ← 0x8000_0000_0000_0000
FPSCRFPRF ← undefined

End
Done

Large Operand :

FPSCRFR FI VXCVI ← 0b001
If FPSCRVE = 0 then Do

If tgt_precision = “32-bit integer” then
Do

If sign = 0 then FRT ← 0xuuuu_uuuu_7FFF_FFFF /* u is undefined hex digit */
If sign = 1 then FRT ← 0xuuuu_uuuu_8000_0000 /* u is undefined hex digit */

End
Else

Do
If sign = 0 then FRT ← 0x7FFF_FFFF_FFFF_FFFF
If sign = 1 then FRT ← 0x8000_0000_0000_0000

End
FPSCRFPRF ← undefined
End

Done

158 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

A.3 Floating-Point Convert from Integer Model

The following describes algorithmically the operation of the Floating Convert From Integer Doubleword instruction.

sign ← (FRB)0
exp ← 63
frac0:63 ← (FRB)

If frac0:63 = 0 then go to Zero Operand

If sign = 1 then frac0:63 ← ¬ frac0:63 + 1

Do while frac0 = 0 /* do the loop 0 times if (FRB) = maximum negative integer */
frac0:63 ← frac1:63 || 0b0
exp ← exp − 1

End

Round Float(sign,exp,frac0:63,FPSCRRN)

If sign = 0 then FPSCRFPRF ← “ + normal number”
If sign = 1 then FPSCRFPRF ← “ − normal number”
FRT0 ← sign
FRT1:11 ← exp + 1023 /* exp + bias */
FRT12:63 ← frac1:52
Done

Zero Operand :

FPSCRFR FI ← 0b00
FPSCRFPRF ← “ + zero”
FRT ← 0x0000_0000_0000_0000
Done

Appendix A. Suggested Floating-Point Models 159

IBM Confidential - Feb. 24, 1999

Round Float (sign,exp,frac0:63,round_mode):

inc ← 0
lsb ← frac52
gbit ← frac53
rbit ← frac54
xbit ← frac55:63 > 0
If round_mode = 0b00 then /* Round to Nearest */

Do /* comparisons ignore u bits */
If sign || lsb || gbit || rbit || xbit = 0bu11uu then inc ← 1
If sign || lsb || gbit || rbit || xbit = 0bu011u then inc ← 1
If sign || lsb || gbit || rbit || xbit = 0bu01u1 then inc ← 1

End
If round_mode = 0b10 then /* Round toward +Inf in i ty */

Do /* comparisons ignore u bits */
If sign || lsb || gbit || rbit || xbit = 0b0u1uu then inc ← 1
If sign || lsb || gbit || rbit || xbit = 0b0uu1u then inc ← 1
If sign || lsb || gbit || rbit || xbit = 0b0uuu1 then inc ← 1

End
If round_mode = 0b11 then /* Round toward − Infinity */

Do /* comparisons ignore u bits */
If sign || lsb || gbit || rbit || xbit = 0b1u1uu then inc ← 1
If sign || lsb || gbit || rbit || xbit = 0b1uu1u then inc ← 1
If sign || lsb || gbit || rbit || xbit = 0b1uuu1 then inc ← 1

End
frac0:52 ← frac0:52 + inc
If carry_out = 1 then exp ← exp + 1
FPSCRFR ← inc
FPSCRFI ← gbit | rbit | xbit
FPSCRXX ← FPSCRXX | FPSCRFI
Return

160 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

Appendix B. Assembler Extended Mnemonics

In order to make assembler language programs simpler to write and easier to understand, a set of extended
mnemonics and symbols is provided that defines simple shorthand for the most frequently used forms of Branch
Conditional, Compare, Trap, Select, Rotate and Shift, and certain other instructions.

† Assemblers should provide the extended mnemonics and symbols listed here, and may provide others.

B.1 Symbols

The following symbols are defined for use in instructions (basic or extended mnemonics) that specify a Condition
Register field or a Condition Register bit. The first five (lt, ..., un) identify a bit number within a CR field. The
remainder (cr0, ..., cr7) identify a CR field. An expression in which a CR field symbol is multiplied by 4 and then
added to a bit-number-within-CR-field symbol can be used to identify a CR bit.

Symbol Value Meaning

lt 0 Less than
gt 1 Greater than
eq 2 Equal
so 3 Summary overflow
ic 3 Incomparable (after cmpla)
un 3 Unordered (after floating-point comparison)
cr0 0 CR Field 0
cr1 1 CR Field 1
cr2 2 CR Field 2
cr3 3 CR Field 3
cr4 4 CR Field 4
cr5 5 CR Field 5
cr6 6 CR Field 6
cr7 7 CR Field 7

The extended mnemonics in Sections B.2.2 and B.3 require identification of a CR bit: if one of the CR field symbols
is used, it must be multiplied by 4 and added to a bit-number-within-CR-field (value in the range 0-3, explicit or
symbolic). The extended mnemonics in Sections B.2.3 and B.5 require identification of a CR field: if one of the CR
field symbols is used, it must not be multiplied by 4. (For the extended mnemonics in Section B.2.3, the bit
number within the CR field is part of the extended mnemonic. The programmer identifies the CR field, and the
Assembler does the multiplication and addition required to produce a CR bit number for the BI field of the under-
lying basic mnemonic.)

Appendix B. Assembler Extended Mnemonics 161

IBM Confidential - Feb. 24, 1999

B.2 Branch Mnemonics

The mnemonics discussed in this section are variations of the Branch Conditional instructions.

| Note: bclr, bclrl, bcctr , and bcctrl each serve as both a basic and an extended mnemonic. The Assembler will
| recognize a bclr, bclrl, bcctr , or bcctrl mnemonic with three operands as the basic form, and a bclr, bclrl, bcctr , or
| bcctrl mnemonic with two operands as the extended form. In the extended form the BH operand is omitted and
| assumed to be 0b00. Similarly, for all the extended mnemonics described in Sections B.2.2 - B.2.4 that devolve to
| any of these four basic mnemonics the BH operand can either be coded or omitted. If it is omitted it is assumed
| to be 0b00.

B.2.1 BO and BI Fields

† The 5-bit BO and BI fields control whether the branch is taken. Providing an extended mnemonic for every pos-
† sible combination of these fields would be neither useful nor practical. The mnemonics described in Sections
† B.2.2 - B.2.4 include the most useful cases. Other cases can be coded using a basic Branch Conditional mne-
† monic (bc , bclr , bcctr) with the appropriate operands.

B.2.2 Simple Branch Mnemonics

† Instructions using one of the mnemonics in Table 3 that tests a Condition Register bit specify the corresponding
† bit as the first operand. The symbols defined in Section B.1 can be used in this operand.

Notice that there are no extended mnemonics for relative and absolute unconditional branches. For these the
basic mnemonics b, ba, bl, and bla should be used.

Table 3. Simple branch mnemonics

Branch Semantics
LR not Set LR Set

bc
Relative

bca
Absolute

bclr
To LR

bcctr
To CTR

bcl
Relative

bcla
Absolute

bclrl
To LR

bcctrl
To CTR

Branch unconditionally − − blr bctr − − blrl bctrl

† Branch if CRBI= 1 bt bta btlr btctr btl btla btlrl btctrl

† Branch if CRBI= 0 bf bfa bflr bfctr bfl bfla bflrl bfctrl

Decrement CTR,
branch if CTR nonzero

bdnz bdnza bdnzlr − bdnzl bdnzla bdnzlrl −

Decrement CTR,
branch if CTR nonzero

† and CRBI= 1
bdnzt bdnzta bdnztlr − bdnztl bdnztla bdnztlrl −

Decrement CTR,
branch if CTR nonzero

† and CRBI= 0
bdnzf bdnzfa bdnzflr − bdnzfl bdnzfla bdnzflrl −

Decrement CTR,
branch if CTR zero

bdz bdza bdzlr − bdzl bdzla bdzlrl −

Decrement CTR,
branch if CTR zero

† and CRBI= 1
bdzt bdzta bdztlr − bdztl bdztla bdztlrl −

Decrement CTR,
branch if CTR zero

† and CRBI= 0
bdzf bdzfa bdzflr − bdzfl bdzfla bdzflrl −

†

162 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

Examples

1. Decrement CTR and branch if it is still nonzero (closure of a loop controlled by a count loaded into CTR).

bdnz target (equivalent to: bc 16,0,target)

2. Same as (1) but branch only if CTR is nonzero and condition in CR0 is “equal”.

bdnzt eq,target (equivalent to: bc 8,2,target)

3. Same as (2), but “equal” condition is in CR5.

bdnzt 4*cr5+eq,target (equivalent to: bc 8,22,target)

† 4. Branch if bit 27 of CR is 0.

bf 27,target (equivalent to: bc 4,27,target)

5. Same as (4), but set the Link Register. This is a form of conditional “call”.

bfl 27,target (equivalent to: bcl 4,27,target)

B.2.3 Branch Mnemonics Incorporating Conditions

† In the mnemonics defined in Table 4 on page 164, the test of a bit in a Condition Register field is encoded in the
† mnemonic.

† Instructions using the mnemonics in Table 4 specify the Condition Register field as an optional first operand. One
† of the CR field symbols defined in Section B.1 can be used for this operand. If the CR field being tested is CR
| Field 0, this operand need not be specified unless the resulting basic mnemonic is bclr [l] or bcctr [l] and the BH
| operand is specified.

A standard set of codes has been adopted for the most common combinations of branch conditions.

Code Meaning

lt Less than
le Less than or equal
eq Equal
ge Greater than or equal
gt Greater than
nl Not less than
ne Not equal
ng Not greater than
so Summary overflow
ns Not summary overflow
ic Incomparable (after cmpla)
ni Not incomparable (after cmpla)
un Unordered (after floating-point comparison)
nu Not unordered (after floating-point comparison)

These codes are reflected in the mnemonics shown in Table 4.

Appendix B. Assembler Extended Mnemonics 163

IBM Confidential - Feb. 24, 1999

Table 4. Branch mnemonics incorporating conditions

Branch Semantics
LR not Set LR Set

bc
Relative

bca
Absolute

bclr
To LR

bcctr
To CTR

bcl
Relative

bcla
Absolute

bclrl
To LR

bcctrl
To CTR

Branch if less than blt blta bltlr bltctr bltl bltla bltlrl bltctrl

Branch if less than or equal ble blea blelr blectr blel blela blelrl blectrl

Branch if equal beq beqa beqlr beqctr beql beqla beqlrl beqctrl

Branch if greater than or equal bge bgea bgelr bgectr bgel bgela bgelrl bgectrl

Branch if greater than bgt bgta bgtlr bgtctr bgtl bgtla bgtlrl bgtctrl

Branch if not less than bnl bnla bnllr bnlctr bnll bnlla bnllrl bnlctrl

Branch if not equal bne bnea bnelr bnectr bnel bnela bnelrl bnectrl

Branch if not greater than bng bnga bnglr bngctr bngl bngla bnglrl bngctrl

Branch if summary overflow bso bsoa bsolr bsoctr bsol bsola bsolrl bsoctrl

Branch if not summary overflow bns bnsa bnslr bnsctr bnsl bnsla bnslrl bnsctrl

Branch if incomparable bic bica biclr bicctr bicl bicla biclrl bicctrl

Branch if not incomparable bni bnia bnilr bnictr bnil bnila bnilrl bnictrl

Branch if unordered bun buna bunlr bunctr bunl bunla bunlrl bunctrl

Branch if not unordered bnu bnua bnulr bnuctr bnul bnula bnulrl bnuctrl

†

Examples

1. Branch if CR0 reflects condition “not equal”.

bne target (equivalent to: bc 4,2,target)

2. Same as (1), but condition is in CR3.

bne cr3,target (equivalent to: bc 4,14,target)

3. Branch to an absolute target if CR4 specifies “greater than”, setting the Link Register. This is a form of
conditional “call”.

bgtla cr4,target (equivalent to: bcla 12,17,target)

4. Same as (3), but target address is in the Count Register.

| bgtctrl cr4 (equivalent to: bcctrl 12,17,0)

B.2.4 Branch Prediction

| Software can use the “a t ” bits of Branch Conditional instructions to provide a hint to the processor about the
| behavior of the branch. If, for a given such instruction, the branch is almost always taken or almost always not
| taken, a suffix can be added to the mnemonic indicating the value to be used for the “a t ” bits.

| + Predict branch to be taken (at=0b11)

| − Predict branch not to be taken (at=0b10)

| Such a suffix can be added to any Branch Conditional mnemonic, either basic or extended, that tests either the
| Count Register or a CR bit (but not both). Assemblers should use 0b00 as the default value for the “a t ” bits,
| indicating that software has offered no prediction.

164 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

Examples

1. Branch if CR0 reflects condition “less than”, specifying that the branch should be predicted to be taken.

b l t + target

2. Same as (1), but target address is in the Link Register and the branch should be predicted not to be taken.

bltlr−

B.3 Condition Register Logical Mnemonics

The Condition Register Logical instructions can be used to set (to 1), clear (to 0), copy, or invert a given Condition
Register bit. Extended mnemonics are provided that allow these operations to be coded easily.

Table 5. Condition Register logical mnemonics

Operation Extended Mnemonic Equivalent to

Condition Register set crset bx creqv bx,bx,bx

Condition Register clear crclr bx crxor bx,bx,bx

Condition Register move crmove bx,by cror bx,by,by

Condition Register not crnot bx,by crnor bx,by,by

The symbols defined in Section B.1 can be used to identify the Condition Register bits.

Examples

1. Set CR bit 25.

crset 25 (equivalent to: creqv 25,25,25)

2. Clear the SO bit of CR0.

crclr so (equivalent to: crxor 3,3,3)

3. Same as (2), but SO bit to be cleared is in CR3.

crclr 4*cr3+so (equivalent to: crxor 15,15,15)

4. Invert the EQ bit.

crnot eq,eq (equivalent to: crnor 2,2,2)

5. Same as (4), but EQ bit to be inverted is in CR4, and the result is to be placed into the EQ bit of CR5.

crnot 4*cr5+eq,4*cr4+eq (equivalent to: crnor 22,18,18)

B.4 Subtract Mnemonics

B.4.1 Subtract Immediate

Although there is no “Subtract Immediate” instruction, its effect can be achieved by using an Add Immediate
instruction with the immediate operand negated. Extended mnemonics are provided that include this negation,
making the intent of the computation clearer.

subi Rx,Ry,value (equivalent to: addi Rx,Ry,− value)

subis Rx,Ry,value (equivalent to: addis Rx,Ry,− value)

subic Rx,Ry,value (equivalent to: addic Rx,Ry,− value)

subic. Rx,Ry,value (equivalent to: addic. Rx,Ry,− value)

Appendix B. Assembler Extended Mnemonics 165

IBM Confidential - Feb. 24, 1999

B.4.2 Subtract

The Subtract From instructions subtract the second operand (RA) from the third (RB). Extended mnemonics are
provided that use the more “normal” order, in which the third operand is subtracted from the second. Both these
mnemonics can be coded with a final “ o ” and/or “ . ” to cause the OE and/or Rc bit to be set in the underlying
instruction.

sub Rx,Ry,Rz (equivalent to: subf Rx,Rz,Ry)

subc Rx,Ry,Rz (equivalent to: subfc Rx,Rz,Ry)

B.5 Compare Mnemonics

The L field in the fixed-point Compare instructions controls whether the operands are treated as 64-bit quantities
† or as 32-bit quantities. Extended mnemonics are provided that represent the L value in the mnemonic rather than

requiring it to be coded as a numeric operand.

The BF field can be omitted if the result of the comparison is to be placed into CR Field 0. Otherwise the target
CR field must be specified as the first operand. One of the CR field symbols defined in Section B.1 can be used
for this operand.

Note: The basic Compare mnemonics of PowerPC AS are the same as those of POWER, but the POWER
instructions have three operands while the PowerPC AS instructions have four. The Assembler will recognize a
basic Compare mnemonic with three operands as the POWER form, and will generate the instruction with L=0 .
(Thus the Assembler must require that the BF field, which normally can be omitted when CR Field 0 is the target,
be specified explicitly if L is.)

166 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

B.5.1 Doubleword Comparisons

Table 6. Doubleword compare mnemonics

Operation Extended Mnemonic Equivalent to

Compare doubleword immediate cmpdi bf,ra,si cmpi bf,1,ra,si

Compare doubleword cmpd bf,ra,rb cmp bf,1,ra,rb

Compare logical doubleword immediate cmpldi bf,ra,ui cmpli bf,1,ra,ui

Compare logical doubleword cmpld bf,ra,rb cmpl bf,1,ra,rb

Examples

1. Compare register Rx and immediate value 100 as unsigned 64-bit integers and place result into CR0.

cmpldi Rx,100 (equivalent to: cmpli 0,1,Rx,100)

2. Same as (1), but place result into CR4.

cmpldi cr4,Rx,100 (equivalent to: cmpli 4,1,Rx,100)

3. Compare registers Rx and Ry as signed 64-bit integers and place result into CR0.

cmpd Rx,Ry (equivalent to: cmp 0,1,Rx,Ry)

B.5.2 Word Comparisons

Table 7. Word compare mnemonics

Operation Extended Mnemonic Equivalent to

Compare word immediate cmpwi bf,ra,si cmpi bf,0,ra,si

Compare word cmpw bf,ra,rb cmp bf,0,ra,rb

Compare logical word immediate cmplwi bf,ra,ui cmpli bf,0,ra,ui

Compare logical word cmplw bf,ra,rb cmpl bf,0,ra,rb

Examples

1. Compare bits 32:63 of register Rx and immediate value 100 as signed 32-bit integers and place result into
CR0.

cmpwi Rx,100 (equivalent to: cmpi 0,0,Rx,100)

2. Same as (1), but place result into CR4.

cmpwi cr4,Rx,100 (equivalent to: cmpi 4,0,Rx,100)

3. Compare bits 32:63 of registers Rx and Ry as unsigned 32-bit integers and place result into CR0.

cmplw Rx,Ry (equivalent to: cmpl 0,0,Rx,Ry)

Appendix B. Assembler Extended Mnemonics 167

IBM Confidential - Feb. 24, 1999

B.6 Trap Mnemonics

The mnemonics defined in Table 8 are variations of the Trap instructions, with the most useful values of TO
represented in the mnemonic rather than specified as a numeric operand.

A standard set of codes has been adopted for the most common combinations of trap conditions.

Code Meaning TO encoding < > = <
u

>
u

lt Less than 16 1 0 0 0 0
le Less than or equal 20 1 0 1 0 0
eq Equal 4 0 0 1 0 0
ge Greater than or equal 12 0 1 1 0 0
gt Greater than 8 0 1 0 0 0
nl Not less than 12 0 1 1 0 0
ne Not equal 24 1 1 0 0 0
ng Not greater than 20 1 0 1 0 0
llt Logically less than 2 0 0 0 1 0
lle Logically less than or equal 6 0 0 1 1 0
lge Logically greater than or equal 5 0 0 1 0 1
lgt Logically greater than 1 0 0 0 0 1
lnl Logically not less than 5 0 0 1 0 1
lng Logically not greater than 6 0 0 1 1 0

(none) Unconditional 31 1 1 1 1 1

These codes are reflected in the mnemonics shown in Table 8.

Table 8. Trap mnemonics

Trap Semantics
64-bit Comparison 32-bit Comparison

tdi
Immediate

td
Register

twi
Immediate

tw
Register

Trap unconditionally − − − trap

Trap unconditionally with parameters tdui tdu twui twu

Trap if less than tdlti tdlt twlti twlt

Trap if less than or equal tdlei tdle twlei twle

Trap if equal tdeqi tdeq tweqi tweq

Trap if greater than or equal tdgei tdge twgei twge

Trap if greater than tdgti tdgt twgti twgt

Trap if not less than tdnli tdnl twnli twnl

Trap if not equal tdnei tdne twnei twne

Trap if not greater than tdngi tdng twngi twng

Trap if logically less than tdllti tdllt twllti twllt

Trap if logically less than or equal tdllei tdlle twllei twlle

Trap if logically greater than or equal tdlgei tdlge twlgei twlge

Trap if logically greater than tdlgti tdlgt twlgti twlgt

Trap if logically not less than tdlnli tdlnl twlnli twlnl

Trap if logically not greater than tdlngi tdlng twlngi twlng

168 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

Examples

1. Trap if register Rx is not 0.

tdnei Rx,0 (equivalent to: tdi 24,Rx,0)

2. Same as (1), but comparison is to register Ry.

tdne Rx,Ry (equivalent to: td 24,Rx,Ry)

3. Trap if bits 32:63 of register Rx, considered as a 32-bit quantity, are logically greater than 0x7FF.

twlgti Rx,0x7FF (equivalent to: twi 1,Rx,0x7FF)

4. Trap unconditionally.

trap (equivalent to: tw 31,0,0)

5. Trap unconditionally with immediate parameters Rx and Ry

tdu Rx,Ry (equivalent to: td 31,Rx,Ry)

B.7 Trap on XER mnemonics

The mnemonics defined in Table 9 on page 170 are variations of the Trap on XER instruction, with the most
useful values of XBI represented in the mnemonic rather than specified as a numeric operand.

A standard set of codes has been adopted for the XER bits that can be tested (and are not reserved). The code
identifies the condition under which the system trap handler is invoked.

Code Meaning TO 4

lt Less than 1
eq Equal 1
gt Greater than 1
nl Not less than 0
ne Not equal 0
ng Not greater than 0
ic Incomparable 1
so Summary overflow 1
ov Overflow 1
ca Carry 1
oc Offset carry 1
no Not offset carry 0
nt02 Not T02 (type field bits 0:2 mismatch or no tag) 0
nt07 Not T07 (type field bits 0:7 mismatch or no tag) 0
ntag Not XER TAG 0
ds Decimal summary 1

These codes are reflected in the mnemonics shown in Table 9 on page 170.

Appendix B. Assembler Extended Mnemonics 169

IBM Confidential - Feb. 24, 1999

Table 9. Trap on XER mnemonics

Trap on XER semantics txer

Trap if less than txerlt

Trap if equal txereq

Trap if greater than txergt

Trap if not less than txernl

Trap if not equal txerne

Trap if not greater than txerng

Trap if incomparable txeric

Trap if summary overflow txerso

Trap if overflow txerov

Trap if carry txerca

Trap if offset carry txeroc

Trap if not T02 (trap if type field bits 0:2 mismatch or no tag) txernt02

Trap if not T07 (trap if type field bits 0:7 mismatch or no tag) txernt07

Trap if not TAG txerntag

Trap if not decimal summary txerds

Examples

1. Trap if the EQ bit is set in the XER.

txereq 256 (equivalent to: txer 1,256,38)

2. Trap if the IC bit is set in the XER.

txeric (equivalent to: txer 1,0,39)

3. Trap if the IC bit is set in the XER.

txerntag 5 (equivalent to: txer 0,5,43)

B.8 Select mnemonics

The mnemonics defined in Table 10 on page 171 are variations of the Select instructions, with the most useful
values of XBI represented in the mnemonic rather than specified as a numeric operand.

A standard set of codes has been adopted for the XER bits that can be tested (and are not reserved). The code
identifies the condition under which the first source operand is selected: if the bit tested is 1 then the first source
operand is placed into the target register, otherwise the second source operand is placed into the target register.

170 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

Code Meaning

lt Less than
eq Equal
gt Greater than
ic Incomparable
so Summary overflow
ov Overflow
ca Carry
oc Offset carry
t02 T02 (i.e., type field bits 0:2 match) 0
t07 T07 (i.e., type field bits 0:7 match) 0
tag XER TAG
ds Decimal summary

These codes are reflected in the mnemonics shown in Table 10.

Table 10. Select mnemonics

Select semantics
selii

Immediate-
Immediate

selir
Immediate-

Register

selri
Register-

Immediate

selrr
Register-
Register

Select if less than selltii selltir selltri selltrr

Select if equal seleqii seleqir seleqri seleqrr

Select if greater than selgtii selgtir selgtri selgtrr

Select if incomparable selicii selicir selicri selicrr

Select if summary overflow selsoii selsoir selsori selsorr

Select if overflow selovii selovir selovri selovrr

Select if carry selcaii selcair selcari selcarr

Select if offset carry selocii selocir selocri selocrr

Select if T02 selt02ii selt02ir selt02ri selt02rr

Select if T07 selt07ii selt07ir selt07ri selt07rr

Select if XER TAG seltagii seltagir seltagri seltagrr

Select if decimal summary seldsii seldsir seldsri seldsrr

Examples

1. Set register Rx to 1 if the EQ bit is set in the XER, and to 0 otherwise.

seleqii Rx,1,0 (equivalent to: selii Rx,1,0,38)

2. Same as (1) but use the value in Ry if the EQ bit is set.

seleqri Rx,Ry,0 (equivalent to: selri Rx,Ry,0,38)

3. Set Rx to the value in Ry if the OV bit is set in the XER, and leave Rx unchanged otherwise.

selovrr Rx,Ry,Rx (equivalent to: selrr Rx,Ry,Rx,33)

4. Set Rx to the absolute value of Ry.

neg. Rx,Ry
selgtrr Rx,Rx,Ry (equivalent to: selrr Rx,Rx,Ry,37)

5. Set Rx to the minimum of Ry and Rz, regarded as signed 64-bit numbers.

cmpd Ry,Rz (equivalent to: cmp 0,1,Ry,Rz)
selltrr Rx,Ry,Rz (equivalent to: selrr Rx,Ry,Rz,36)

Appendix B. Assembler Extended Mnemonics 171

IBM Confidential - Feb. 24, 1999

B.9 Rotate and Shift Mnemonics

The Rotate and Shift instructions provide powerful and general ways to manipulate register contents, but can be
difficult to understand. Extended mnemonics are provided that allow some of the simpler operations to be coded
easily.

Mnemonics are provided for the following types of operation.

Extract Select a field of n bits starting at bit position b in the source register; left or right justify this field in
the target register; clear all other bits of the target register to 0.

Insert Select a left-justified or right-justified field of n bits in the source register; insert this field starting at
bit position b of the target register; leave other bits of the target register unchanged. (No extended
mnemonic is provided for insertion of a left-justified field when operating on doublewords, because
such an insertion requires more than one instruction.)

Rotate Rotate the contents of a register right or left n bits without masking.

Shift Shift the contents of a register right or left n bits, clearing vacated bits to 0 (logical shift).

Clear Clear the leftmost or rightmost n bits of a register to 0.

Clear left and shift left
Clear the leftmost b bits of a register, then shift the register left by n bits. This operation can be used
to scale a (known nonnegative) array index by the width of an element.

B.9.1 Operations on Doublewords

All these mnemonics can be coded with a final “ . ” to cause the Rc bit to be set in the underlying instruction.

Table 11. Doubleword rotate and shift mnemonics

Operation Extended Mnemonic Equivalent to

Extract and left justify immediate extldi ra,rs,n,b (n > 0) rldicr ra,rs,b,n− 1

Extract and right justify immediate extrdi ra,rs,n,b (n > 0) rldicl ra,rs,b+ n,64− n

Insert from right immediate insrdi ra,rs,n,b (n > 0) rldimi ra,rs,64− (b+ n),b

Rotate left immediate rotldi ra,rs,n rldicl ra,rs,n,0

Rotate right immediate rotrdi ra,rs,n rldicl ra,rs,64− n,0

Rotate left rotld ra,rs,rb rldcl ra,rs,rb,0

Shift left immediate sldi ra,rs,n (n < 64) rldicr ra,rs,n,63− n

Shift right immediate srdi ra,rs,n (n < 64) rldicl ra,rs,64− n,n

Clear left immediate clrldi ra,rs,n (n < 64) rldicl ra,rs,0,n

Clear right immediate clrrdi ra,rs,n (n < 64) rldicr ra,rs,0,63− n

Clear left and shift left immediate clrlsldi ra,rs,b,n (n ≤ b < 64) rldic ra,rs,n,b− n

Examples

1. Extract the sign bit (bit 0) of register Ry and place the result right-justified into register Rx.

extrdi Rx,Ry,1,0 (equivalent to: rldicl Rx,Ry,1,63)

2. Insert the bit extracted in (1) into the sign bit (bit 0) of register Rz.

insrdi Rz,Rx,1,0 (equivalent to: rldimi Rz,Rx,63,0)

3. Shift the contents of register Rx left 8 bits.

sldi Rx,Rx,8 (equivalent to: rldicr Rx,Rx,8,55)

4. Clear the high-order 32 bits of register Ry and place the result into register Rx.

172 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

clrldi Rx,Ry,32 (equivalent to: rldicl Rx,Ry,0,32)

B.9.2 Operations on Words

All these mnemonics can be coded with a final “ . ” to cause the Rc bit to be set in the underlying instruction. The
operations as described above apply to the low-order 32 bits of the registers, as if the registers were 32-bit regis-
ters. The Insert operations either preserve the high-order 32 bits of the target register or place rotated data
there; the other operations clear these bits.

Table 12. Word rotate and shift mnemonics

Operation Extended Mnemonic Equivalent to

Extract and left justify immediate extlwi ra,rs,n,b (n > 0) rlwinm ra,rs,b,0,n− 1

Extract and right justify immediate extrwi ra,rs,n,b (n > 0) rlwinm ra,rs,b+ n,32− n,31

Insert from left immediate inslwi ra,rs,n,b (n > 0) rlwimi ra,rs,32− b,b,(b+ n)− 1

Insert from right immediate insrwi ra,rs,n,b (n > 0) rlwimi ra,rs,32− (b+ n),b,(b+ n)− 1

Rotate left immediate rotlwi ra,rs,n rlwinm ra,rs,n,0,31

Rotate right immediate rotrwi ra,rs,n rlwinm ra,rs,32− n,0,31

Rotate left rotlw ra,rs,rb rlwnm ra,rs,rb,0,31

Shift left immediate slwi ra,rs,n (n < 32) rlwinm ra,rs,n,0,31− n

Shift right immediate srwi ra,rs,n (n < 32) rlwinm ra,rs,32− n,n,31

Clear left immediate clrlwi ra,rs,n (n < 32) rlwinm ra,rs,0,n,31

Clear right immediate clrrwi ra,rs,n (n < 32) rlwinm ra,rs,0,0,31− n

Clear left and shift left immediate clrlslwi ra,rs,b,n (n ≤ b < 32) rlwinm ra,rs,n,b− n,31− n

Examples

1. Extract the sign bit (bit 32) of register Ry and place the result right-justified into register Rx.

extrwi Rx,Ry,1,0 (equivalent to: rlwinm Rx,Ry,1,31,31)

2. Insert the bit extracted in (1) into the sign bit (bit 32) of register Rz.

insrwi Rz,Rx,1,0 (equivalent to: rlwimi Rz,Rx,31,0,0)

3. Shift the contents of register Rx left 8 bits, clearing the high-order 32 bits.

slwi Rx,Rx,8 (equivalent to: rlwinm Rx,Rx,8,0,23)

4. Clear the high-order 16 bits of the low-order 32 bits of register Ry and place the result into register Rx,
clearing the high-order 32 bits of register Rx.

clrlwi Rx,Ry,16 (equivalent to: rlwinm Rx,Ry,0,16,31)

Appendix B. Assembler Extended Mnemonics 173

IBM Confidential - Feb. 24, 1999

B.10 Move To/From Special Purpose Register Mnemonics

The mtspr and mfspr instructions specify a Special Purpose Register (SPR) as a numeric operand. Extended mne-
monics are provided that represent the SPR in the mnemonic rather than requiring it to be coded as an operand.

Table 13. Extended mnemonics for moving to/from an SPR

Special Purpose Register
Move To SPR Move From SPR

Extended Equivalent to Extended Equivalent to

Fixed-Point Exception Register (XER) mtxer Rx mtspr 1,Rx mfxer Rx mfspr Rx,1

Link Register (LR) mtlr Rx mtspr 8,Rx mflr Rx mfspr Rx,8

Count Register (CTR) mtctr Rx mtspr 9,Rx mfctr Rx mfspr Rx,9

Examples

1. Copy the contents of Rx to the XER.

mtxer Rx (equivalent to: mtspr 1,Rx)

2. Copy the contents of the LR to register Rx.

mflr Rx (equivalent to: mfspr Rx,8)

3. Copy the contents of register Rx to the CTR.

mtctr Rx (equivalent to: mtspr 9,Rx)

B.11 Miscellaneous Mnemonics

No-op

Many PowerPC AS instructions can be coded in a way such that, effectively, no operation is performed. An
extended mnemonic is provided for the preferred form of no-op. If an implementation performs any type of run-
time optimization related to no-ops, the preferred form is the no-op that will trigger this.

nop (equivalent to: ori 0,0,0)

Load Immediate

The addi and addis instructions can be used to load an immediate value into a register. Extended mnemonics are
provided to convey the idea that no addition is being performed but merely data movement (from the immediate
field of the instruction to a register).

Load a 16-bit signed immediate value into register Rx.

li Rx,value (equivalent to: addi Rx,0,value)

Load a 16-bit signed immediate value, shifted left by 16 bits, into register Rx.

lis Rx,value (equivalent to: addis Rx,0,value)

174 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

Load Address

This mnemonic permits computing the value of a base-displacement operand, using the addi instruction which
normally requires separate register and immediate operands.

la Rx,D(Ry) (equivalent to: addi Rx,Ry,D)

The la mnemonic is useful for obtaining the address of a variable specified by name, allowing the Assembler to
supply the base register number and compute the displacement. If the variable v is located at offset Dv bytes
from the address in register Rv, and the Assembler has been told to use register Rv as a base for references to
the data structure containing v, then the following line causes the address of v to be loaded into register Rx.

la Rx,v (equivalent to: addi Rx,Rv,Dv)

Programming Note

† Unlike the + tea computation for a Load or Store instruction, the la computation cannot cause an Effective
† Address Overflow exception, and the result of the la computation may be different from that of the corre-
† sponding + tea computation if the latter would have produced an Effective Address Overflow exception.

† In an earlier AS/400 architecture called “IMPI”, la performed boundary checking and could cause an Effective
† Address Overflow exception.

Move Register

Several PowerPC AS instructions can be coded in a way such that they simply copy the contents of one register to
another. An extended mnemonic is provided to convey the idea that no computation is being performed but
merely data movement (from one register to another).

The following instruction copies the contents of register Ry to register Rx. This mnemonic can be coded with a
final “ . ” to cause the Rc bit to be set in the underlying instruction.

mr Rx,Ry (equivalent to: or Rx,Ry,Ry)

Complement Register

Several PowerPC AS instructions can be coded in a way such that they complement the contents of one register
and place the result into another register. An extended mnemonic is provided that allows this operation to be
coded easily.

The following instruction complements the contents of register Ry and places the result into register Rx. This
mnemonic can be coded with a final “ . ” to cause the Rc bit to be set in the underlying instruction.

not Rx,Ry (equivalent to: nor Rx,Ry,Ry)

Move To Condition Register

This mnemonic permits copying the contents of the low-order 32 bits of a GPR to the Condition Register, using the
same style as the mfcr instruction.

mtcr Rx (equivalent to: mtcrf 0xFF,Rx)

|

Appendix B. Assembler Extended Mnemonics 175

IBM Confidential - Feb. 24, 1999

176 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

Appendix C. Programming Examples

†

C.1 Multiple-Precision Shifts

This section gives examples of how multiple-precision
shifts can be programmed.

A multiple-precision shift is initially defined to be a
shift of an N-doubleword quantity (64-bit mode) or an
N-word quantity (32-bit mode), where N> 1. (This defi-
nition is relaxed somewhat for 32-bit mode, below.)
The quantity to be shifted is contained in N registers
(in the low-order 32 bits in 32-bit mode). The shift
amount is specified either by an immediate value in
the instruction, or by bits 57:63 (64-bit mode) or 58:63
(32-bit mode) of a register.

The examples shown below distinguish between the
cases N = 2 and N> 2. If N=2, the shift amount may be
in the range 0 through 127 (64-bit mode) or 0 through
63 (32-bit mode), which are the maximum ranges sup-
ported by the Shift instructions used. However if
N> 2, the shift amount must be in the range 0 through
63 (64-bit mode) or 0 through 31 (32-bit mode), in
order for the examples to yield the desired result.
The specific instance shown for N> 2 is N=3:

extending those code sequences to larger N is
straightforward, as is reducing them to the case N = 2
when the more stringent restriction on shift amount is
met. For shifts with immediate shift amounts only the
case N = 3 is shown, because the more stringent
restriction on shift amount is always met.

In the examples it is assumed that GPRs 2 and 3 (and
4) contain the quantity to be shifted, and that the
result is to be placed into the same registers, except
for the immediate left shifts in 64-bit mode for which
the result is placed into GPRs 3, 4, and 5. In all
cases, for both input and result, the lowest-numbered
register contains the highest-order part of the data
and highest-numbered register contains the lowest-
order part. For non-immediate shifts, the shift
amount is assumed to be in GPR 6. For immediate
shifts, the shift amount is assumed to be greater than
0. GPRs 0 and 31 are used as scratch registers.

For N> 2, the number of instructions required is 2N− 1
(immediate shifts) or 3N− 1 (non-immediate shifts).

Appendix C. Programming Examples 177

IBM Confidential - Feb. 24, 1999

Multiple-precision shifts in 64-bit mode Multiple-precision shifts in 32-bit mode

Shift Left Immediate, N = 3 (shift amnt < 64)
rldicr r5,r4,sh,63-sh
rldimi r4,r3,0,sh
rldicl r4,r4,sh,0
rldimi r3,r2,0,sh
rldicl r3,r3,sh,0

Shift Left Immediate, N = 3 (shift amnt < 32)
rlwinm r2,r2,sh,0,31-sh
rlwimi r2,r3,sh,32-sh,31
rlwinm r3,r3,sh,0,31-sh
rlwimi r3,r4,sh,32-sh,31
rlwinm r4,r4,sh,0,31-sh

Shift Left, N = 2 (shift amnt < 128)
subfic r31,r6,64
sld r2,r2,r6
srd r0,r3,r31
or r2,r2,r0
addi r31,r6,-64
sld r0,r3,r31
or r2,r2,r0
sld r3,r3,r6

Shift Left, N = 2 (shift amnt < 64)
subfic r31,r6,32
slw r2,r2,r6
srw r0,r3,r31
or r2,r2,r0
addi r31,r6,-32
slw r0,r3,r31
or r2,r2,r0
slw r3,r3,r6

Shift Left, N = 3 (shift amnt < 64)
subfic r31,r6,64
sld r2,r2,r6
srd r0,r3,r31
or r2,r2,r0
sld r3,r3,r6
srd r0,r4,r31
or r3,r3,r0
sld r4,r4,r6

Shift Left, N = 3 (shift amnt < 32)
subfic r31,r6,32
slw r2,r2,r6
srw r0,r3,r31
or r2,r2,r0
slw r3,r3,r6
srw r0,r4,r31
or r3,r3,r0
slw r4,r4,r6

Shift Right Immediate, N = 3 (shift amnt < 64)
rldimi r4,r3,0,64-sh
rldicl r4,r4,64-sh,0
rldimi r3,r2,0,64-sh
rldicl r3,r3,64-sh,0
rldicl r2,r2,64-sh,sh

Shift Right Immediate, N = 3 (shift amnt < 32)
rlwinm r4,r4,32-sh,sh,31
rlwimi r4,r3,32-sh,0,sh-1
rlwinm r3,r3,32-sh,sh,31
rlwimi r3,r2,32-sh,0,sh-1
rlwinm r2,r2,32-sh,sh,31

Shift Right, N = 2 (shift amnt < 128)
subfic r31,r6,64
srd r3,r3,r6
sld r0,r2,r31
or r3,r3,r0
addi r31,r6,-64
srd r0,r2,r31
or r3,r3,r0
srd r2,r2,r6

Shift Right, N = 2 (shift amnt < 64)
subfic r31,r6,32
srw r3,r3,r6
slw r0,r2,r31
or r3,r3,r0
addi r31,r6,-32
srw r0,r2,r31
or r3,r3,r0
srw r2,r2,r6

Shift Right, N = 3 (shift amnt < 64)
subfic r31,r6,64
srd r4,r4,r6
sld r0,r3,r31
or r4,r4,r0
srd r3,r3,r6
sld r0,r2,r31
or r3,r3,r0
srd r2,r2,r6

Shift Right, N = 3 (shift amnt < 32)
subfic r31,r6,32
srw r4,r4,r6
slw r0,r3,r31
or r4,r4,r0
srw r3,r3,r6
slw r0,r2,r31
or r3,r3,r0
srw r2,r2,r6

178 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

Multiple-precision shifts in 64-bit mode,
continued

Multiple-precision shifts in 32-bit mode,
continued

Shift Right Algebraic Immediate, N = 3 (shift amnt < 64)
rldimi r4,r3,0,64-sh
rldicl r4,r4,64-sh,0
rldimi r3,r2,0,64-sh
rldicl r3,r3,64-sh,0
sradi r2,r2,sh

Shift Right Algebraic Immediate, N = 3 (shift amnt < 32)
rlwinm r4,r4,32-sh,sh,31
rlwimi r4,r3,32-sh,0,sh-1
rlwinm r3,r3,32-sh,sh,31
rlwimi r3,r2,32-sh,0,sh-1
srawi r2,r2,sh

Shift Right Algebraic, N = 2 (shift amnt < 128)
subfic r31,r6,64
srd r3,r3,r6
sld r0,r2,r31
or r3,r3,r0
addic. r31,r6,-64
srad r0,r2,r31
selrr r3,r0,r3,gt
srad r2,r2,r6

Shift Right Algebraic, N = 2 (shift amnt < 64)
subfic r31,r6,32
srw r3,r3,r6
slw r0,r2,r31
or r3,r3,r0
addic. r31,r6,-32
sraw r0,r2,r31
selrr r3,r0,r3,gt
sraw r2,r2,r6

Shift Right Algebraic, N = 3 (shift amnt < 64)
subfic r31,r6,64
srd r4,r4,r6
sld r0,r3,r31
or r4,r4,r0
srd r3,r3,r6
sld r0,r2,r31
or r3,r3,r0
srad r2,r2,r6

Shift Right Algebraic, N = 3 (shift amnt < 32)
subfic r31,r6,32
srw r4,r4,r6
slw r0,r3,r31
or r4,r4,r0
srw r3,r3,r6
slw r0,r2,r31
or r3,r3,r0
sraw r2,r2,r6

Appendix C. Programming Examples 179

IBM Confidential - Feb. 24, 1999

C.2 Floating-Point Conversions

This section gives examples of how the Floating-Point
Conversion instructions can be used to perform
various conversions.

Warning: Some of the examples use the optional fsel
instruction. Care must be taken in using fsel if IEEE
compatibility is required, or if the values being tested
can be NaNs or infinities: see Section C.3.4, “Notes”
on page 182.

C.2.1 Conversion from
Floating-Point Number to
Floating-Point Integer

The full convert to floating-point integer function can
be implemented with the sequence shown below,
assuming the floating-point value to be converted is
in FPR 1 and the result is returned in FPR 3.

mtfsb0 23 #clear VXCVI
fctid[z] f3,f1 #convert to fx int
fcfid f3,f3 #convert back again
mcrfs 7,5 #VXCVI to CR
bf 31,$+8 #skip if VXCVI was 0
fmr f3,f1 #input was fp int

C.2.2 Conversion from Floating-Point
Number to Signed Fixed-Point Integer
Doubleword

The full convert to signed fixed-point integer
doubleword function can be implemented with the
sequence shown below, assuming the floating-point
value to be converted is in FPR 1, the result is
returned in GPR 3, and a doubleword at displacement
“disp” from the address in GPR 1 can be used as
scratch space.

fctid[z] f2,f1 #convert to dword int
stfd f2,disp(r1) #store float
ld r3,disp(r1) #load dword

C.2.3 Conversion from Floating-Point
Number to Unsigned Fixed-Point
Integer Doubleword

The full convert to unsigned fixed-point integer
doubleword function can be implemented with the
sequence shown below, assuming the floating-point
value to be converted is in FPR 1, the value 0 is in
FPR 0, the value 264− 2048 is in FPR 3, the value 263 is
in FPR 4 and GPR 4, the result is returned in GPR 3,
and a doubleword at displacement “disp” from the
address in GPR 1 can be used as scratch space.

fsel f2,f1,f1,f0 #use 0 if < 0
fsub f5,f3,f1 #use max if > max
fsel f2,f5,f2,f3
fsub f5,f2,f4 #subtract 2**63
fcmpu cr2,f2,f4 #use diff if ≥ 2**63
fsel f2,f5,f5,f2
fctid[z] f2,f2 #convert to fx int
stfd f2,disp(r1) #store float
ld r3,disp(r1) #load dword
blt cr2,$+8 #add 2**63 if input
add r3,r3,r4 # was ≥ 2**63

C.2.4 Conversion from Floating-Point
Number to Signed Fixed-Point Integer
Word

The full convert to signed fixed-point integer word
function can be implemented with the sequence
shown below, assuming the floating-point value to be
converted is in FPR 1, the result is returned in GPR 3,
and a doubleword at displacement “disp” from the
address in GPR 1 can be used as scratch space.

fctiw[z] f2,f1 #convert to fx int
stfd f2,disp(r1) #store float
lwa r3,disp+4(r1) #load word algebraic

180 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

C.2.5 Conversion from Floating-Point
Number to Unsigned Fixed-Point
Integer Word

The full convert to unsigned fixed-point integer word
function can be implemented with the sequence
shown below, assuming the floating-point value to be
converted is in FPR 1, the value 0 is in FPR 0, the
value 232− 1 is in FPR 3, the result is returned in GPR
3, and a doubleword at displacement “disp” from the
address in GPR 1 can be used as scratch space.

fsel f2,f1,f1,f0 #use 0 if < 0
fsub f4,f3,f1 #use max if > max
fsel f2,f4,f2,f3
fctid[z] f2,f2 #convert to fx int
stfd f2,disp(r1) #store float
lwz r3,disp+4(r1) #load word and zero

C.2.6 Conversion from Signed
Fixed-Point Integer Doubleword to
Floating-Point Number

The full convert from signed fixed-point integer
doubleword function, using the rounding mode speci-
fied by FPSCRRN, can be implemented with the
sequence shown below, assuming the fixed-point
value to be converted is in GPR 3, the result is
returned in FPR 1, and a doubleword at displacement
“disp” from the address in GPR 1 can be used as
scratch space.

std r3,disp(r1) #store dword
lfd f1,disp(r1) #load float
fcfid f1,f1 #convert to fp int

C.2.7 Conversion from Unsigned
Fixed-Point Integer Doubleword to
Floating-Point Number

The full convert from unsigned fixed-point integer
doubleword function, using the rounding mode speci-
fied by FPSCRRN, can be implemented with the
sequence shown below, assuming the fixed-point
value to be converted is in GPR 3, the value 232 is in
FPR 4, the result is returned in FPR 1, and two
doublewords at displacement “disp” from the address
in GPR 1 can be used as scratch space.

rldicl r2,r3,32,32 #isolate high half
rldicl r0,r3,0,32 #isolate low half
std r2,disp(r1) #store dword both
std r0,disp+8(r1)
lfd f2,disp(r1) #load float both
lfd f1,disp+8(r1)
fcfid f2,f2 #convert each half to
fcfid f1,f1 # fp int (exact result)
fmadd f1,f4,f2,f1 #(2**32)*high + low

An alternative, shorter, sequence can be used if
rounding according to FSCPRRN is desired and
FPSCRRN specifies Round toward + Infinity or Round
toward − Infinity, or if it is acceptable for the rounded
answer to be either of the two representable floating-
point integers nearest to the given fixed-point integer.
In this case the full convert from unsigned fixed-point
integer doubleword function can be implemented with
the sequence shown below, assuming the value 264 is
in FPR 2.

std r3,disp(r1) #store dword
lfd f1,disp(r1) #load float
fcfid f1,f1 #convert to fp int
fadd f4,f1,f2 #add 2**64
fsel f1,f1,f1,f4 # if r3 < 0

C.2.8 Conversion from Signed
Fixed-Point Integer Word to
Floating-Point Number

The full convert from signed fixed-point integer word
function can be implemented with the sequence
shown below, assuming the fixed-point value to be
converted is in GPR 3, the result is returned in FPR 1,
and a doubleword at displacement “disp” from the
address in GPR 1 can be used as scratch space. (The
result is exact.)

extsw r3,r3 #extend sign
std r3,disp(r1) #store dword
lfd f1,disp(r1) #load float
fcfid f1,f1 #convert to fp int

C.2.9 Conversion from Unsigned
Fixed-Point Integer Word to
Floating-Point Number

The full convert from unsigned fixed-point integer
word function can be implemented with the sequence
shown below, assuming the fixed-point value to be
converted is in GPR 3, the result is returned in FPR 1,
and a doubleword at displacement “disp” from the
address in GPR 1 can be used as scratch space. (The
result is exact.)

rldicl r0,r3,0,32 #zero-extend
std r0,disp(r1) #store dword
lfd f1,disp(r1) #load float
fcfid f1,f1 #convert to fp int

Appendix C. Programming Examples 181

IBM Confidential - Feb. 24, 1999

C.3 Floating-Point Selection

This section gives examples of how the optional
Floating Select instruction can be used to implement
floating-point minimum and maximum functions, and
certain simple forms of if-then-else constructions,
without branching.

The examples show program fragments in an imagi-
nary, C-like, high-level programming language, and
the corresponding program fragment using fsel and
other PowerPC AS instructions. In the examples, a, b,

x, y, and z are floating-point variables, which are
assumed to be in FPRs fa, fb, fx, fy, and fz. FPR fs is
assumed to be available for scratch space.

Additional examples can be found in Section C.2,
“Floating-Point Conversions” on page 180.

Warning: Care must be taken in using fsel if IEEE com-
patibility is required, or if the values being tested can
be NaNs or infinities: see Section C.3.4, “Notes”.

C.3.1 Comparison to Zero

High-level language: PowerPC AS: Notes

if a ≥ 0.0 then x ← y fsel fx,fa,fy,fz (1)
else x ← z

if a > 0.0 then x ← y fneg fs,fa (1,2)
else x ← z fsel fx,fs,fz,fy

if a = 0.0 then x ← y fsel fx,fa,fy,fz (1)
else x ← z fneg fs,fa

fsel fx,fs,fx,fz

C.3.2 Minimum and Maximum

High-level language: PowerPC AS: Notes

x ← min(a,b) fsub fs,fa,fb (3,4,5)
fsel fx,fs,fb,fa

x ← max(a,b) fsub fs,fa,fb (3,4,5)
fsel fx,fs,fa,fb

C.3.3 Simple if-then-else
Constructions

High-level language: PowerPC AS: Notes

if a ≥ b then x ← y fsub fs,fa,fb (4,5)
else x ← z fsel fx,fs,fy,fz

if a > b then x ← y fsub fs,fb,fa (3,4,5)
else x ← z fsel fx,fs,fz,fy

if a = b then x ← y fsub fs,fa,fb (4,5)
else x ← z fsel fx,fs,fy,fz

fneg fs,fs
fsel fx,fs,fx,fz

C.3.4 Notes

The following Notes apply to the preceding examples
and to the corresponding cases using the other three
arithmetic relations (< , ≤ , and ≠). They should also
be considered when any other use of fsel is contem-
plated.

In these Notes, the “optimized program” is the
PowerPC AS program shown, and the “unoptimized
program” (not shown) is the corresponding PowerPC
AS program that uses fcmpu and Branch Conditional
instructions instead of fsel .

1. The unoptimized program affects the VXSNAN bit
of the FPSCR, and therefore may cause the
system error handler to be invoked if the corre-
sponding exception is enabled, while the opti-
mized program does not affect this bit. This
property of the optimized program is incompat-
ible with the IEEE standard.

2. The optimized program gives the incorrect result
if a is a NaN.

3. The optimized program gives the incorrect result
if a and/or b is a NaN (except that it may give the
correct result in some cases for the minimum and
maximum functions, depending on how those
functions are defined to operate on NaNs).

4. The optimized program gives the incorrect result
if a and b are infinities of the same sign. (Here it
is assumed that Invalid Operation Exceptions are
disabled, in which case the result of the sub-
traction is a NaN. The analysis is more compli-
cated if Invalid Operation Exceptions are enabled,
because in that case the target register of the
subtraction is unchanged.)

5. The optimized program affects the OX, UX, XX,
and VXISI bits of the FPSCR, and therefore may
cause the system error handler to be invoked if
the corresponding exceptions are enabled, while
the unoptimized program does not affect these
bits. This property of the optimized program is
incompatible with the IEEE standard.

182 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

Appendix D. Cross-Reference for Changed POWER
Mnemonics

The following table lists the POWER instruction mne-
monics that have been changed in the PowerPC AS
Architecture, sorted by POWER mnemonic.

To determine the PowerPC AS mnemonic for one of
these POWER mnemonics, find the POWER mnemonic
in the second column of the table: the remainder of
the line gives the PowerPC AS mnemonic and the
page or Book in which the instruction is described, as
well as the instruction names. A page number is
shown for instructions that are defined in this Book
(Book I, PowerPC AS User Instruction Set

Architecture), and the Book number is shown for
instructions that are defined in other Books (Book II,
PowerPC AS Virtual Environment Architecture, and
Book III, PowerPC AS Operating Environment Archi-
tecture). If an instruction is defined in more than one
of these Books, the lowest-numbered Book is used.

POWER mnemonics that have not changed are not
listed. POWER instruction names that are the same in
PowerPC AS are not repeated; i.e., for these, the last
column of the table is blank.

Page /
Bk

POWER PowerPC AS

Mnemonic Instruction Mnemonic Instruction

61 a[o] [.] Add addc[o] [.] Add Carrying
62 ae[o] [.] Add Extended adde[o] [.]
60 ai Add Immediate addic Add Immediate Carrying
60 ai. Add Immediate and Record addic. Add Immediate Carrying and Record
62 ame[o] [.] Add To Minus One Extended addme[o] [.] Add to Minus One Extended
78 andil. AND Immediate Lower andi. AND Immediate
78 andiu. AND Immediate Upper andis. AND Immediate Shifted
63 aze[o] [.] Add To Zero Extended addze[o] [.] Add to Zero Extended
28 bcc[l] Branch Conditional to Count Register bcctr[l]
28 bcr[l] Branch Conditional to Link Register bclr[l]
59 cal Compute Address Lower addi Add Immediate
59 cau Compute Address Upper addis Add Immediate Shifted
60 cax[o] [.] Compute Address add[o] [.] Add
83 cntlz[.] Count Leading Zeros cntlzw[.] Count Leading Zeros Word

II dclz Data Cache Line Set to Zero dcbz Data Cache Block set to Zero
† II† dcs† Data Cache Synchronize† sync† Synchronize

82 exts[.] Extend Sign extsh[.] Extend Sign Halfword
125 fa[.] Floating Add fadd[.]
126 fd[.] Floating Divide fdiv[.]
126 fm[.] Floating Multiply fmul[.]
127 fma[.] Floating Multiply-Add fmadd[.]
127 fms[.] Floating Multiply-Subtract fmsub[.]
128 fnma[.] Floating Negative Multiply-Add fnmadd[.]
128 fnms[.] Floating Negative Multiply-Subtract fnmsub[.]
125 fs[.] Floating Subtract fsub[.]

II ics Instruction Cache Synchronize isync Instruction Synchronize
40 l Load lwz Load Word and Zero
49 lbrx Load Byte-Reverse Indexed lwbrx Load Word Byte-Reverse Indexed
51 lm Load Multiple lmw Load Multiple Word
54 lsi Load String Immediate lswi Load String Word Immediate
55 lsx Load String Indexed lswx Load String Word Indexed
40 lu Load with Update lwzu Load Word and Zero with Update

Appendix D. Cross-Reference for Changed POWER Mnemonics 183

IBM Confidential - Feb. 24, 1999

Page /
Bk

POWER PowerPC AS

Mnemonic Instruction Mnemonic Instruction

40 lux Load with Update Indexed lwzux Load Word and Zero with Update
Indexed

40 lx Load Indexed lwzx Load Word and Zero Indexed
III mtsri Move To Segment Register Indirect mtsrin

64 muli Multiply Immediate mulli Multiply Low Immediate
64 muls[o] [.] Multiply Short mullw[o] [.] Multiply Low Word
79 oril OR Immediate Lower ori OR Immediate
79 oriu OR Immediate Upper oris OR Immediate Shifted

III rfsvc Return From SVC rfscv Return From System Call Vectored
89 rlimi[.] Rotate Left Immediate Then Mask

Insert
rlwimi[.] Rotate Left Word Immediate then

Mask Insert
86 rlinm[.] Rotate Left Immediate Then AND

With Mask
rlwinm[.] Rotate Left Word Immediate then

AND with Mask
88 rlnm[.] Rotate Left Then AND With Mask rlwnm[.] Rotate Left Word then AND with

Mask
61 sf[o] [.] Subtract From subfc[o] [.] Subtract From Carrying
62 sfe[o] [.] Subtract From Extended subfe[o] [.]
61 sfi Subtract From Immediate subfic Subtract From Immediate Carrying
62 sfme[o] [.] Subtract From Minus One Extended subfme[o] [.]
63 sfze[o] [.] Subtract From Zero Extended subfze[o] [.]
90 sl[.] Shift Left slw[.] Shift Left Word
91 sr[.] Shift Right srw[.] Shift Right Word
93 sra[.] Shift Right Algebraic sraw[.] Shift Right Algebraic Word
92 srai[.] Shift Right Algebraic Immediate srawi[.] Shift Right Algebraic Word Imme-

diate
46 st Store stw Store Word
50 stbrx Store Byte-Reverse Indexed stwbrx Store Word Byte-Reverse Indexed
52 stm Store Multiple stmw Store Multiple Word
56 stsi Store String Immediate stswi Store String Word Immediate
57 stsx Store String Indexed stswx Store String Word Indexed
46 stu Store with Update stwu Store Word with Update
46 stux Store with Update Indexed stwux Store Word with Update Indexed
46 stx Store Indexed stwx Store Word Indexed
29 svca Supervisor Call sc System Call
29 svcl Supervisor Call scv System Call Vectored
73 t Trap tw Trap Word
72 ti Trap Immediate twi Trap Word Immediate

III tlbi TLB Invalidate Entry tlbie
79 xoril XOR Immediate Lower xori XOR Immediate
79 xoriu XOR Immediate Upper xoris XOR Immediate Shifted

184 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

Appendix E. Incompatibilities with the POWER Architecture

This appendix identifies the known incompatibilities
that must be managed in the migration from the
POWER Architecture to the PowerPC AS Architecture.
Some of the incompatibilities can, at least in principle,
be detected by the processor, which could trap and
let software simulate the POWER operation. Others
cannot be detected by the processor even in prin-
ciple.

In general, the incompatibilities identified here are
those that affect a POWER application program;

incompatibilities for instructions that can be used only
by POWER system programs are not necessarily dis-
cussed.

References to instructions and facilities that are not
defined in Book I, PowerPC AS User Instruction Set
Architecture, apply to an implementation that con-
forms to Book II, PowerPC AS Virtual Environment
Architecture, and Book III, PowerPC AS Operating
Environment Architecture.

E.1 New Instructions, Formerly
Privileged Instructions

Instructions new to PowerPC AS typically use opcode
values (including extended opcode) that are illegal in
POWER. A few instructions that are privileged in
POWER (e.g., dclz , called dcbz in PowerPC AS) have
been made nonprivileged in PowerPC AS. Any
POWER program that executes one of these now-valid
or now-nonprivileged instructions, expecting to cause
the system illegal instruction error handler or the
system privileged instruction error handler to be
invoked, will not execute correctly on PowerPC AS.

E.2 Newly Privileged Instructions

The following instructions are nonprivileged in POWER
but privileged in PowerPC AS.

mfmsr
mfsr

E.3 Reserved Bits in Instructions

These are shown with “ / ”s in the instruction layouts.
In POWER such bits are ignored by the processor. In
PowerPC AS they must be 0 or the instruction form is
invalid.

In several cases the PowerPC AS Architecture
assumes that such bits in POWER instructions are
indeed 0. The cases include the following.

| ■ bclr [l] and bcctr [l] assume that bits 19:20 in the
| POWER instructions are 0.

■ cmpi, cmp, cmpli , and cmpl assume that bit 10 in
the POWER instructions is 0.

■ mtspr and mfspr assume that bits 16:20 in the
POWER instructions are 0.

| ■ mtcrf and mfcr assume that bit 11 in the POWER
| instructions is 0.
| ■ sync assumes that bit 10 in the POWER instruc-
| tion (dcs) is 0.

E.4 Reserved Bits in Registers

Both POWER and PowerPC AS permit software to
write any value to these bits. However in POWER
reading such a bit always returns 0, while in PowerPC
AS reading it may return either 0 or the value that
was last written to it.

E.5 Alignment Check

The POWER MSR AL bit (bit 24) is no longer sup-
| ported; the corresponding PowerPC AS MSR bit, bit
| 56, is the US bit in tags active mode and is treated as
| reserved in tags inactive mode. The low-order bits of

the EA are always used. (Notice that the value 0 —
† the normal value for a reserved bit — means “ignore

the low-order EA bits” in POWER, and the value 1
means “use the low-order EA bits”.)

† POWER-compatible operating system code will prob-
† ably write the value 1 to this bit.

Appendix E. Incompatibilities with the POWER Architecture 185

IBM Confidential - Feb. 24, 1999

E.6 Condition Register

The following instructions specify a field in the CR
explicitly (via the BF field) and also, in POWER, use bit
31 as the Record bit. In PowerPC AS, if bit 31 = 1 for
these instructions the instruction form is invalid. In
POWER, if Rc=1 the instructions execute normally
except as follows:

cmp CR0 is undefined if Rc=1 and BF≠ 0
cmpl CR0 is undefined if Rc=1 and BF≠ 0
mcrxr CR0 is undefined if Rc=1 and BF≠ 0
fcmpu CR1 is undefined if Rc=1
fcmpo CR1 is undefined if Rc=1
mcrfs CR1 is undefined if Rc=1 and BF≠ 1

E.7 Inappropriate Use of LK and
Rc Bits

For the instructions listed below, if bit 31 (LK or Rc bit
in POWER) is set to 1, POWER executes the instruction
normally with the exception of setting the Link Reg-
ister (if LK=1) or Condition Register Field 0 or 1 (if
Rc=1) to an undefined value. In PowerPC AS such
instruction forms are invalid.

PowerPC AS instructions that are invalid form if bit 31
= 1 (LK bit in POWER):

sc (svc in POWER)
the Condition Register Logical instructions
mcrf
isync (ics in POWER)

|

PowerPC AS instructions that are invalid form if bit 31
= 1 (Rc bit in POWER):

fixed-point X-form Load and Store instructions
fixed-point X-form Compare instructions
the X-form Trap instruction
mtspr, mfspr, mtcrf, mcrxr, mfcr
floating-point X-form Load and Store instructions
floating-point Compare instructions
mcrfs
dcbz (dclz in POWER)

E.8 BO Field

POWER shows certain bits in the BO field — used by
Branch Conditional instructions — as “x”. Although
the POWER Architecture does not say how these bits
are to be interpreted, they are in fact ignored by the
processor.

| PowerPC AS shows these bits as “z” , “a” , or “ t ” . The

| “ z ” bits are ignored, as in POWER. However, the “ a ”
| and “ t ” bits can be used by software to provide a hint
| about how the branch is likely to behave. If a POWER
| program has the “wrong” value for these bits, the
| program will produce the same results as on POWER
| but performance may be affected.

| E.9 BH Field

| Bits 19:20 of the Branch Conditional to Link Register
| and Branch Conditional to Count Register instructions
| are reserved in POWER but are defined as a branch
| hint (BH) field in PowerPC AS. Because these bits are
| hints, they may affect performance but do not affect
| the results of executing the instruction.

E.10 Branch Conditional to
Count Register

For the case in which the Count Register is decre-
mented and tested (i.e., the case in which BO2=0) ,
POWER specifies only that the branch target address
is undefined, with the implication that the Count Reg-
ister, and the Link Register if LK=1, are updated in
the normal way. PowerPC AS specifies that this
instruction form is invalid.

E.11 System Call

There are several respects in which PowerPC AS is
incompatible with POWER for System Call
instructions — which in POWER are called Supervisor
Call instructions.

■ POWER provides a version of the Supervisor Call
instruction (bits 30:31 = 0b00) that allows instruc-
tion fetching to continue at any one of 128
locations without altering the Link Register.
PowerPC AS provides no such version: if bits
30:31 of the instruction are 0b00 the instruction
form is invalid.

■ POWER provides a version of the Supervisor Call
instruction (bits 30:31 = 0b11) that resumes
instruction fetching at one location and sets the
Link Register to the address of the next instruc-
tion. PowerPC AS provides no such version: if
bits 30:31 of the instruction are 0b11 the instruc-
tion form is invalid.

■ For POWER, information from the MSR is saved in
the Count Register. For PowerPC AS this infor-
mation is saved in SRR1 for the System Call
instruction (the System Call Vectored instruction
is compatible with POWER in this regard).

186 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

| ■ POWER permits bits 16:19 and 27:29 of the
instruction to be nonzero, while in PowerPC AS
such an instruction form is invalid.

Architecture and Engineering Note

| Bits 16:19 and 27:29 should be regarded as
reserved for POWER. As long as POWER
compatibility is required for this instruction,

| bits 16:19 and 27:29 should be ignored by the
processor.

■ POWER saves the low-order 16 bits of the instruc-
tion, in the Count Register. PowerPC AS does not
save them.

■ The settings of MSR bits by the associated inter-
rupt differ between POWER and PowerPC AS; see
POWER Processor Architecture and Book III,
PowerPC AS Operating Environment Architecture.

E.12 Fixed-Point Exception
Register (XER)

Bits 48:55 of the XER are reserved in PowerPC AS,
while in POWER the corresponding bits (16:23) are
defined and contain the comparison byte for the lscbx
instruction (which PowerPC AS lacks).

Engineering Note

For reasons of compatibility with the POWER
Architecture, early implementations must set XER
bits 48:55 from the source value on write, and
return the value last written to them on read.

E.13 Update Forms of Storage
Access Instructions

PowerPC AS requires that RA not be equal to either
RT (fixed-point Load only) or 0. If the restriction is
violated the instruction form is invalid. POWER
permits these cases, and simply avoids saving the
EA.

E.14 Multiple Register Loads

PowerPC AS requires that RA, and RB if present in
the instruction format, not be in the range of registers
to be loaded, while POWER permits this and does not
alter RA or RB in this case. (The PowerPC AS
restriction applies even if RA=0, although there is no
obvious benefit to the restriction in this case since RA
is not used to compute the effective address if

RA=0.) If the PowerPC AS restriction is violated,
either the system illegal instruction error handler is
invoked or the results are boundedly undefined. The
instructions affected are:

lmw (lm in POWER)
lswi (lsi in POWER)
lswx (lsx in POWER)

For example, an lmw instruction that loads all 32 reg-
isters is valid in POWER but is an invalid form in
PowerPC AS.

| E.15 Load/Store Multiple
| Instructions

| There are several respects in which PowerPC AS is
| incompatible with POWER for Load Multiple and Store
| Multiple instructions.

† ■ If the EA is not word-aligned, in PowerPC AS
† either an Alignment interrupt occurs or the
† results are boundedly undefined, while in POWER
| an Alignment interrupt occurs if MSRAL= 1 (the
| low-order two bits of the EA are ignored if
| MSRAL=0) .

Engineering Note

If attempt is made to execute an lmw or stmw
instruction having an incorrectly aligned
effective address, early implementations must
either correctly transfer the addressed bytes
or cause an Alignment interrupt, for reasons
of compatibility with the POWER Architecture.

| ■ In PowerPC AS the instruction may be interrupted
| by a system-caused interrupt, while in POWER the
| instruction cannot be thus interrupted.

E.16 Move Assist Instructions

There are several respects in which PowerPC AS is
incompatible with POWER for Move Assist
instructions.

■ In PowerPC AS an lswx instruction with zero
length leaves the contents of RT undefined (if
RT≠ RA and RT≠ RB) or is an invalid instruction
form (if RT=RA or RT=RB), while in POWER the
corresponding instruction (lsx) is a no-op in these
cases.

■ In PowerPC AS an lswx instruction with zero
length may alter the Reference bit, and a stswx
instruction with zero length may alter the Refer-
ence and Change bits, while in POWER the corre-
sponding instructions (lsx and stsx) do not alter
the Reference and Change bits in this case.

Appendix E. Incompatibilities with the POWER Architecture 187

IBM Confidential - Feb. 24, 1999

| ■ In PowerPC AS a Move Assist instruction may be
| interrupted by a system-caused interrupt, while in
| POWER the instruction cannot be thus inter-
| rupted.

E.17 Move To/From SPR

There are several respects in which PowerPC AS is
incompatible with POWER for Move To/From Special
Purpose Register instructions.

■ The SPR field is ten bits long in PowerPC AS, but
only five in POWER (see also Section E.3,
“Reserved Bits in Instructions” on page 185).

■ mfspr can be used to read the Decrementer in
problem state in POWER, but only in privileged
state in PowerPC AS.

■ If the SPR value specified in the instruction is not
one of the defined values, POWER behaves as
follows.

— If the instruction is executed in problem state
and SPR0= 1 , a Privileged Instruction type
Program interrupt occurs. No architected
registers are altered except those set by the
interrupt.

† — Otherwise no architected registers are
altered.

In this same case, PowerPC AS behaves as
follows.

— If the instruction is executed in problem state
and spr0= 1 , either an Illegal Instruction type
Program interrupt or a Privileged Instruction
type Program interrupt occurs. No archi-
tected registers are altered except those set
by the interrupt.

† — Otherwise either an Illegal Instruction type
Program interrupt occurs (in which case no
architected registers are altered except those
set by the interrupt) or the results are

| boundedly undefined (or possibly undefined,
| for mtspr ; see Book III).

Engineering Note

For reasons of compatibility with the POWER
Architecture, early implementations must cause
an Illegal Instruction type Program interrupt for an
attempt to execute an mtspr or mfspr instruction
with SPR=0 (spr0:4= 0 denotes the POWER MQ
register).

Similarly, early implementations must cause an
Illegal Instruction type Program interrupt for an
attempt to execute an mfspr instruction with
SPR=4 (spr0:4= 4 denotes reading the Real-Time
Clock Upper in POWER), SPR=5 (spr0:4= 5
denotes reading the Real-Time Clock Lower in
POWER), or SPR=6 (spr0:4= 6 denotes reading the
Decrementer in POWER).

Essentially all POWER programs are expected to
have bits 16:20 of mtspr and mfspr instructions
set to 0. These bits correspond to PowerPC AS's
spr5:9, and are reserved bits in POWER. The
requirements described in this Note provide com-
patibility only for POWER programs that have
these bits set to 0.

E.18 Effects of Exceptions on
FPSCR Bits FR and FI

For the following cases, POWER does not specify how
FR and FI are set, while PowerPC AS preserves them
for Invalid Operation Exception caused by a Compare
instruction, sets FI to 1 and FR to an undefined value
for disabled Overflow Exception, and clears them oth-
erwise.

■ Invalid Operation Exception (enabled or disabled)
■ Zero Divide Exception (enabled or disabled)
■ Disabled Overflow Exception

E.19 Store Floating-Point Single
Instructions

There are several respects in which PowerPC AS is
incompatible with POWER for Store Floating-Point
Single instructions.

■ POWER uses FPSCRUE to help determine whether
denormalization should be done, while PowerPC
AS does not. Using FPSCRUE is in fact incorrect:
if FPSCRUE= 1 and a denormalized single-
precision number is copied from one storage
location to another by means of lfs followed by
stfs , the two “copies” may not be the same.

■ For an operand having an exponent that is less
than 874 (unbiased exponent less than − 149),

188 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

POWER stores a zero (if FPSCRUE= 0) while
PowerPC AS stores an undefined value.

E.20 Move From FPSCR

POWER defines the high-order 32 bits of the result of
mffs to be 0xFFFF_FFFF, while PowerPC AS specifies
that they are undefined.

E.21 Zeroing Bytes in the Data
Cache

The dclz instruction of POWER and the dcbz instruc-
tion of PowerPC AS have the same opcode. However,
the functions differ in the following respects.

■ dclz clears a line while dcbz clears a block.
■ dclz saves the EA in RA (if RA≠ 0) while dcbz

does not.
■ dclz is privileged while dcbz is not.

E.22 Synchronization

The sync instruction (called dcs in POWER) and the
isync instruction (called ics in POWER) cause more
pervasive synchronization in PowerPC AS than in
POWER. However, unlike dcs , sync does not wait until
data cache block writes caused by preceding
instructions have been performed in main storage.

| Also, sync has an L field while dcs does not.

E.23 Direct-Store Segments

| POWER's direct-store segments are not supported in
| PowerPC AS.

E.24 Segment Register
Manipulation Instructions

The definitions of the four Segment Register Manipu-
lation instructions mtsr, mtsrin, mfsr, and mfsrin differ
in two respects between POWER and PowerPC AS.
Instructions similar to mtsrin and mfsrin are called
mtsri and mfsri in POWER.

privilege: mfsr and mfsri are problem state
instructions in POWER, while mfsr and
mfsrin are privileged in PowerPC AS.

function: the “indirect” instructions (mtsri and
mfsri) in POWER use an RA register in
computing the Segment Register number,
and the computed EA is stored into RA (if
RA≠ 0 and RA≠ RT), while in PowerPC AS
mtsrin and mfsrin have no RA field and
the EA is not stored.

mtsr, mtsrin (mtsri), and mfsr have the same opcodes
in PowerPC AS as in POWER. mfsri (POWER) and
mfsrin (PowerPC AS) have different opcodes.

| Also, the Segment Register Manipulation instructions
| are required in POWER whereas they are optional in
| PowerPC AS.

E.25 TLB Entry Invalidation

The tlbi instruction of POWER and the tlbie instruction
of PowerPC AS have the same opcode. However, the
functions differ in the following respects.

■ tlbi computes the EA as (RA|0) + (RB), while
| tlbie lacks an RA field and computes the EA and
| related information as (RB).

■ tlbi saves the EA in RA (if RA≠ 0), while tlbie
lacks an RA field and does not save the EA.

| ■ For tlbi the high-order 36 bits of RB are used in
| computing the EA, while for tlbie these bits
| contain additional information that is not directly
| related to the EA.
| ■ tlbie has an L field, while tlbi does not.

Also, tlbi is required in POWER whereas tlbie is
optional in PowerPC AS.

|

| E.26 Alignment Interrupts

| Placing information about the interrupting instruction
| into the DSISR and the DAR when an Alignment inter-
| rupt occurs is optional in PowerPC AS but required in
| POWER.

E.27 Floating-Point Interrupts

Both architectures use MSR bit 20 to control the gen-
eration of interrupts for floating-point enabled
exceptions. However, in PowerPC AS this bit is part
of a two-bit value that controls the occurrence, preci-
sion, and recoverability of the interrupt, while in
POWER this bit is used independently to control the
occurrence of the interrupt (in POWER all floating-
point interrupts are precise).

Appendix E. Incompatibilities with the POWER Architecture 189

IBM Confidential - Feb. 24, 1999

E.28 Timing Facilities

E.28.1 Real-Time Clock

The POWER Real-Time Clock is not supported in
PowerPC AS. Instead, PowerPC AS provides a Time
Base. Both the RTC and the TB are 64-bit Special
Purpose Registers, but they differ in the following
respects.

■ The RTC counts seconds and nanoseconds, while
the TB counts “ticks”. The ticking rate of the TB
is implementation-dependent.

■ The RTC increments discontinuously: 1 is added
to RTCU when the value in RTCL passes
999_999_999. The TB increments continuously: 1
is added to TBU when the value in TBL passes
0xFFFF_FFFF.

■ The RTC is written and read by the mtspr and
mfspr instructions, using SPR numbers that
denote the RTCU and RTCL. The TB is written by
the mtspr instruction (using new SPR numbers),
and read by the new mftb instruction.

■ The SPR numbers that denote POWER's RTCL
and RTCU are invalid in PowerPC AS.

■ The RTC is guaranteed to increment at least once
in the time required to execute ten Add Imme-
diate instructions. No analogous guarantee is
made for the TB.

■ Not all bits of RTCL need be implemented, while
all bits of the TB must be implemented.

E.28.2 Decrementer

The PowerPC AS Decrementer differs from the
POWER Decrementer in the following respects.

■ The PowerPC AS DEC decrements at the same
rate that the TB increments, while the POWER
DEC decrements every nanosecond (which is the
same rate that the RTC increments).

■ Not all bits of the POWER DEC need be imple-
mented, while all bits of the PowerPC AS DEC
must be implemented.

■ The interrupt caused by the DEC has its own
interrupt vector location in PowerPC AS, but is
considered an External interrupt in POWER.

E.29 Deleted Instructions

The following instructions are part of the POWER
Architecture but have been dropped from the
PowerPC AS Architecture.

abs Absolute
clcs Cache Line Compute Size
clf Cache Line Flush
cli (*) Cache Line Invalidate
dclst Data Cache Line Store
div Divide
divs Divide Short
doz Difference Or Zero
dozi Difference Or Zero Immediate
lscbx Load String And Compare Byte Indexed
maskg Mask Generate
maskir Mask Insert From Register
mfsri Move From Segment Register Indirect
mul Multiply
nabs Negative Absolute
rac (*) Real Address Compute

| rfi (*) Return From Interrupt
rlmi Rotate Left Then Mask Insert
rrib Rotate Right And Insert Bit
sle Shift Left Extended
sleq Shift Left Extended With MQ
sliq Shift Left Immediate With MQ
slliq Shift Left Long Immediate With MQ
sllq Shift Left Long With MQ
slq Shift Left With MQ
sraiq Shift Right Algebraic Immediate With MQ
sraq Shift Right Algebraic With MQ
sre Shift Right Extended
srea Shift Right Extended Algebraic
sreq Shift Right Extended With MQ
sriq Shift Right Immediate With MQ
srliq Shift Right Long Immediate With MQ
srlq Shift Right Long With MQ
srq Shift Right With MQ

(*) This instruction is privileged.

Note: Many of these instructions use the MQ reg-
ister. The MQ is not defined in the PowerPC AS
Architecture.

190 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

E.30 Discontinued Opcodes

The opcodes listed below are defined in the POWER
Architecture but have been dropped from the
PowerPC AS Architecture. The list contains the
POWER mnemonic (MNEM), the primary opcode (PRI),
and the extended opcode (XOP) if appropriate. The
corresponding instructions are reserved in PowerPC
AS.

MNEM PRI XOP

abs 31 360
clcs 31 531
clf 31 118
cli (*) 31 502
dclst 31 630
div 31 331
divs 31 363
doz 31 264
dozi 09 −
lscbx 31 277
maskg 31 29
maskir 31 541
mfsri 31 627
mul 31 107
nabs 31 488
rac (*) 31 818

| rfi (*) 19 50
rlmi 22 −
rrib 31 537
sle 31 153
sleq 31 217
sliq 31 184
slliq 31 248
sllq 31 216
slq 31 152
sraiq 31 952
sraq 31 920
sre 31 665
srea 31 921
sreq 31 729
sriq 31 696
srliq 31 760
srlq 31 728
srq 31 664

(*) This instruction is privileged.

Assembler Note

It might be helpful to current software writers for
the Assembler to flag the discontinued POWER
instructions.

Engineering Note

The instructions listed above are reserved in the
PowerPC AS Architecture. For reasons of compat-
ibility with the POWER Architecture, early imple-
mentations must cause an Illegal Instruction type
Program interrupt for an attempt to execute any
of these instructions that are not privileged.

Appendix E. Incompatibilities with the POWER Architecture 191

IBM Confidential - Feb. 24, 1999

E.31 POWER2 Compatibility

The POWER2 instruction set is a superset of the
POWER instruction set. Some of the instructions
added for POWER2 are included in the PowerPC AS
Architecture. Those that have been renamed in the
PowerPC AS Architecture are listed in this section, as

are the new POWER2 instructions that are not
included in the PowerPC AS Architecture.

Other incompatibilities are also listed.

E.31.1 Cross-Reference for Changed POWER2 Mnemonics

The following table lists the new POWER2 instruction
mnemonics that have been changed in the PowerPC
AS User Instruction Set Architecture, sorted by
POWER2 mnemonic.

To determine the PowerPC AS mnemonic for one of
these POWER2 mnemonics, find the POWER2 mne-

monic in the second column of the table: the
remainder of the line gives the PowerPC AS mne-
monic and the page on which the instruction is
described, as well as the instruction names.

POWER2 mnemonics that have not changed are not
listed.

Page
POWER2 PowerPC AS

Mnemonic Instruction Mnemonic Instruction

131 fcir[.] Floating Convert Double to Integer
with Round

fctiw[.] Floating Convert To Integer Word

131 fcirz[.] Floating Convert Double to Integer
with Round to Zero

fctiwz[.] Floating Convert To Integer Word
with round toward Zero

E.31.2 Floating-Point Conversion to
Integer

The fcir and fcirz instructions of POWER2 have the
same opcodes as do the fctiw and fctiwz instructions,
respectively, of PowerPC AS. However, the functions
differ in the following respects.

■ fcir and fcirz set the high-order 32 bits of the
target FPR to 0xFFFF_FFFF, while fctiw and fctiwz
set them to an undefined value.

■ Except for enabled Invalid Operation Exceptions,
fcir and fcirz set the FPRF field of the FPSCR
based on the result, while fctiw and fctiwz set it
to an undefined value.

■ fcir and fcirz do not affect the VXSNAN bit of the
FPSCR, while fctiw and fctiwz do.

■ fcir and fcirz set FPSCRXX to 1 for certain cases
of “Large Operands” (i.e., operands that are too
large to be represented as a 32-bit signed fixed-
point integer), while fctiw and fctiwz do not alter
it for any case of “Large Operand”. (The IEEE
standard requires not altering it for “Large Oper-
ands”.)

E.31.3 Storage Access Ordering

| POWER2 uses MSR bit 28 to control storage access
| ordering. This bit is reserved in PowerPC AS, and no
| corresponding control is provided.

E.31.4 Floating-Point Interrupts

Both architectures use MSR bits 20 and 23 to control
the generation of interrupts for floating-point enabled
exceptions. However, in PowerPC AS these bits com-
prise a two-bit value that controls the occurrence,
precision, and recoverability of the interrupt, while in
POWER2 these bits are used independently to control
the occurrence (bit 20) and the precision (bit 23) of
the interrupt. Moreover, in PowerPC AS all floating-
point interrupts are considered Program interrupts,
while in POWER2 imprecise floating-point interrupts
have their own interrupt vector location.

E.31.5 Trace

The Trace interrupt vector location differs between
the two architectures, and there are many other dif-
ferences. Also, the Trace facility is optional in
PowerPC AS but required in POWER2.

192 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

E.31.6 Deleted Instructions

The following instructions are new in POWER2 imple-
mentations of the POWER Architecture but have been
dropped from the PowerPC AS Architecture.

lfq Load Floating-Point Quad
lfqu Load Floating-Point Quad with Update
lfqux Load Floating-Point Quad with Update

Indexed
lfqx Load Floating-Point Quad Indexed
stfq Store Floating-Point Quad
stfqu Store Floating-Point Quad with Update
stfqux Store Floating-Point Quad with Update

Indexed
stfqx Store Floating-Point Quad Indexed

E.31.7 Discontinued Opcodes

The opcodes listed below are new in POWER2 imple-
mentations of the POWER Architecture but have been
dropped from the PowerPC AS Architecture. The list
contains the POWER2 mnemonic (MNEM), the primary
opcode (PRI), and the extended opcode (XOP) if
appropriate. The corresponding instructions are
reserved in PowerPC AS.

MNEM PRI XOP

lfq 56 −
lfqu 57 −
lfqux 31 823
lfqx 31 791
stfq 60 −
stfqu 61 −
stfqux 31 951
stfqx 31 919

Engineering Note

The instructions listed above are reserved in the
PowerPC AS Architecture. For reasons of compat-
ibility with POWER2 implementations of the
POWER Architecture, early implementations must
cause an Illegal Instruction type Program interrupt
for an attempt to execute any of these
instructions.

†

Appendix E. Incompatibilities with the POWER Architecture 193

IBM Confidential - Feb. 24, 1999

194 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

Appendix F. New Instructions

The following instructions in the PowerPC AS User
Instruction Set Architecture are new; they are not in
the POWER Architecture.

The following instructions are optional: fres, frsqrte,
fsel, fsqrt [s] .

cmpla Compare Logical Addresses
cntlzd Count Leading Zeros Doubleword
divd Divide Doubleword
divdu Divide Doubleword Unsigned
divw Divide Word
divwu Divide Word Unsigned
dsixes Decimal Sixes
dtcs Decimal Test and Clear Sign
extsb Extend Sign Byte
extsw Extend Sign Word
fadds Floating Add Single
fcfid Floating Convert From Integer

Doubleword
fctid Floating Convert To Integer Doubleword
fctidz Floating Convert To Integer Doubleword

with round toward Zero
fctiw Floating Convert To Integer Word
fctiwz Floating Convert To Integer Word with

round toward Zero
fdivs Floating Divide Single
fmadds Floating Multiply-Add Single
fmsubs Floating Multiply-Subtract Single
fmuls Floating Multiply Single
fnmadds Floating Negative Multiply-Add Single
fnmsubs Floating Negative Multiply-Subtract Single
fres Floating Reciprocal Estimate Single
frsqrte Floating Reciprocal Square Root Estimate
fsel Floating Select
fsqrt [s] Floating Square Root [Single]
fsubs Floating Subtract Single
ld Load Doubleword

†
ldu Load Doubleword with Update
ldux Load Doubleword with Update Indexed
ldx Load Doubleword Indexed
lmd Load Multiple Doubleword
lq Load Quadword
lsdi Load String Doubleword Immediate
lsdx Load String Doubleword Indexed
lwa Load Word Algebraic

†

lwaux Load Word Algebraic with Update Indexed
lwax Load Word Algebraic Indexed
mcrxrt Move to Condition Register from XER

TGCC
mulhd Multiply High Doubleword
mulhdu Multiply High Doubleword Unsigned
mulhw Multiply High Word
mulhwu Multiply High Word Unsigned
mulld Multiply Low Doubleword
rldcl Rotate Left Doubleword then Clear Left
rldcr Rotate Left Doubleword then Clear Right
rldic Rotate Left Doubleword Immediate then

Clear
rldicl Rotate Left Doubleword Immediate then

Clear Left
rldicr Rotate Left Doubleword Immediate then

Clear Right
rldimi Rotate Left Doubleword Immediate then

Mask Insert
selii Select Immediate-Immediate
selir Select Immediate-Register
selri Select Register-Immediate
selrr Select Register-Register
settag Set XER TAG
sld Shift Left Doubleword
srad Shift Right Algebraic Doubleword
sradi Shift Right Algebraic Doubleword Imme-

diate
srd Shift Right Doubleword
std Store Doubleword

†
stdu Store Doubleword with Update
stdux Store Doubleword with Update Indexed
stdx Store Doubleword Indexed
stfiwx Store Floating-Point as Integer Word

Indexed
stmd Store Multiple Doubleword
stq Store Quadword
stsdi Store String Doubleword Immediate
stsdx Store String Doubleword Indexed

†
subf Subtract From
td Trap Doubleword
tdi Trap Doubleword Immediate
txer Trap on XER

Appendix F. New Instructions 195

IBM Confidential - Feb. 24, 1999

196 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

Appendix G. Illegal Instructions

With the exception of the instruction consisting
entirely of binary 0s, the instructions in this class are
available for future extensions of the PowerPC AS
Architecture; that is, some future version of the
PowerPC AS Architecture may define any of these
instructions to perform new functions.

The following primary opcodes are illegal.

1, 4, 5, 6

The following primary opcodes are illegal in tags inac-
tive mode.

56

The following primary opcodes have unused extended
opcodes. Their unused extended opcodes can be
determined from the opcode maps in Appendix I. All
unused extended opcodes are illegal.

19, 30, 31, 56, 57, 59, 60, 61, 62, 63

An instruction consisting entirely of binary 0s is
illegal, and is guaranteed to be illegal in all future
versions of this architecture.

The following instructions are illegal in tags inactive
mode:

■ cmpla
■ dsixes
■ dtcs.
■ lmd
■ lq
■ lsdi
■ lsdx
■ mcrxrt
■ rfscv
■ scv
■ selii [.]
■ selir [.]
■ selri [.]
■ selrr [.]
■ settag
■ stmd
■ stq
■ stsdi
■ stsdx
■ txer

|

Appendix G. Illegal Instructions 197

IBM Confidential - Feb. 24, 1999

198 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

Appendix H. Reserved Instructions

The instructions in this class are allocated to specific
purposes that are outside the scope of the PowerPC
AS User Instruction Set Architecture, PowerPC AS
Virtual Environment Architecture, and PowerPC AS
Operating Environment Architecture.

The following types of instruction are included in this
class.

1. The instruction having primary opcode 0, except
the instruction consisting entirely of binary 0s
(which is an illegal instruction: see Section 1.8.2,
“Illegal Instruction Class” on page 13) and the
extended opcodes shown below.

256 Service Processor “Attention” (PowerPC AS
only)

257 bccbr (PowerPC AS only)

2. Instructions for the POWER Architecture that have
not been included in the PowerPC AS Architec-
ture. These are listed in Section E.30, “Discon-
tinued Opcodes” on page 191 and Section E.31.7,
“Discontinued Opcodes” on page 193.

3. Implementation-specific instructions used to
conform to the PowerPC AS Architecture specifi-
cation.

4. Any other instructions contained in Book IV,
PowerPC AS Implementation Features for any
implementation, that are not defined in the
PowerPC AS User Instruction Set Architecture,
PowerPC AS Virtual Environment Architecture, or
PowerPC AS Operating Environment Architecture.

Appendix H. Reserved Instructions 199

IBM Confidential - Feb. 24, 1999

200 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

Appendix I. Opcode Maps

This section contains tables showing the opcodes and
extended opcodes in all members of the POWER
architecture family.

For the primary opcode table (Table 14 on page 203),
each cell is in the following format.

Opcode in Opcode in
Decimal Hexadecimal

Instruction
Mnemonic

Applicable Instruction
Machines Format

“Applicable Machines” identifies the POWER architec-
ture family members that recognize the opcode,
encoded as follows:

A PowerPC AS
At PowerPC AS in tags active mode only
Api PowerPC AS in PowerPC-incompatible

mode
P PowerPC
2 POWER2
O Original POWER (RS/6000)
All All of the above

The extended opcode tables show the extended
opcode in decimal, the instruction mnemonic, the
applicable machines, and the instruction format.
These tables appear in order of primary opcode within
two groups. The first group consists of the primary
opcodes that have small extended opcode fields (2-4
bits), namely 30, 56, 57, 58, 60, 61, and 62. The
second group consists of primary opcodes that have
10-bit extended opcode fields. The tables for the
second group are rotated.

In the extended opcode tables several special
markings are used.

■ A prime (′) following an instruction mnemonic
denotes an additional cell, after the lowest-
numbered one, used by the instruction. For
example, subfc occupies cells 8 and 520 of
primary opcode 31, with the former corresponding
to OE=0 and the latter to OE=1. Similarly, sradi
occupies cells 826 and 827, with the former corre-

sponding to sh5= 0 and the latter to sh5= 1 (the
9-bit extended opcode 413, shown on page 92,
excludes the sh5 bit).

■ Two vertical bars (||) are used instead of primed
mnemonics when an instruction occupies an
entire column of a table. The instruction mne-
monic is repeated in the last cell of the column.

■ For primary opcode 31, an asterisk (*) in a cell
that would otherwise be empty means that the
cell is reserved because it is “overlaid”, by a
fixed-point or Storage Access instruction having
only a primary opcode, by an instruction having
an extended opcode in primary opcode 30, 58, or
62, or by a potential instruction in any of the cate-
gories just mentioned. The overlaying instruc-
tion, if any, is also shown. A cell thus reserved
should not be assigned to an instruction having
primary opcode 31. (The overlaying is a conse-
quence of opcode decoding for fixed-point
instructions: the primary opcode, and the
extended opcode if any, are mapped internally to
a 10-bit “compressed opcode” for ease of subse-
quent decoding.)

| ■ Parentheses around the opcode or extended
| opcode mean that the instruction was defined in
| earlier versions of the PowerPC AS Architecture
| but is no longer defined in the PowerPC AS Archi-
| tecture.

| An empty cell, a cell containing only an asterisk, or a
| cell in which the opcode or extended opcode is paren-
| thesized, corresponds to an illegal instruction.

When instruction names and/or mnemonics differ
among the family members, the PowerPC AS/PowerPC
terminology is used.

The instruction consisting entirely of binary 0's causes
the system illegal instruction error handler to be
invoked for all members of the POWER family, and
this is likely to remain true in future models (it is
guaranteed in the PowerPC AS Architecture). An
instruction having primary opcode 0 but not consisting
entirely of binary 0's is reserved except for the fol-
lowing extended opcodes (instruction bits 21:30).

256 Service Processor “Attention” (PowerPC AS
only)

257 bccbr (PowerPC AS only)

Appendix I. Opcode Maps 201

IBM Confidential - Feb. 24, 1999

Engineering Note

Implementation-specific instructions must be privi-
leged, and must comply with the other guidelines
and limitations given in the Preface of Book I.
Opcodes for implementation-specific instructions
must be requested in advance from the person
responsible for the technical content of this docu-
ment (see the cover page).

Architecture Note

The following opcodes are reserved because they
are used in some implementations.

■ Primary opcode 19: extended opcode 51

■ Primary opcode 31: extended opcodes 131,
| 163, 262, 274, 308, 323, 451, 454, 486, 914,

946, 966, 978, 998, 1010

These opcodes will not be assigned a meaning in
the PowerPC AS Architecture except after careful
consideration of the effect of such assignment on

| existing implementations. The same applies to
| opcodes that are parenthesized in the opcode
| maps.

202 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

Table 14. Primary opcodes
0 00

Illegal,
Reserved

All

1 01 2 02
tdi

AP D

3 03
twi

All D

See primary opcode 0 extensions on page 201.

Trap Doubleword Immediate
Trap Word Immediate

4 04 5 05 6 06 7 07
mulli

All D Multiply Low Immediate
8 08

subfic

All D

9 09
dozi

2O D

10 0A
cmpli

All D

11 0B
cmpi

All D

Subtract From Immediate Carrying
Difference or Zero Immediate
Compare Logical Immediate
Compare Immediate

12 0C
addic

All D

13 0D
addic.

All D

14 0E
addi

All D

15 0F
addis

All D

Add Immediate Carrying
Add Immediate Carrying and Record
Add Immediate
Add Immediate Shifted

16 10
bc

All B

17 11
sc,
scv

All SC

18 12
b

All I

19 13
CR ops,

etc.
All XL

Branch Conditional
System Call (All), System Call Vectored (A2O)
Branch
See Table 22 on page 206

20 14
rlwimi

All M

21 15
rlwinm

All M

22 16
rlmi

2O M

23 17
rlwnm

All M

Rotate Left Word Imm. then Mask Insert
Rotate Left Word Imm. then AND with Mask
Rotate Left then Mask Insert
Rotate Left Word then AND with Mask

24 18
ori

All D

25 19
oris

All D

26 1A
xori

All D

27 1B
xoris

All D

OR Immediate
OR Immediate Shifted
XOR Immediate
XOR Immediate Shifted

28 1C
andi.

All D

29 1D
andis.

All D

30 1E
FX Dwd Rot

& Select
AP MD[S]

31 1F
FX

Extended Ops
All

AND Immediate
AND Immediate Shifted
See Table 15 on page 204
See Table 23 on page 208

32 20
lwz

All D

33 21
lwzu

All D

34 22
lbz

All D

35 23
lbzu

All D

Load Word and Zero
Load Word and Zero with Update
Load Byte and Zero
Load Byte and Zero with Update

36 24
stw

All D

37 25
stwu

All D

38 26
stb

All D

39 27
stbu

All D

Store Word
Store Word with Update
Store Byte
Store Byte with Update

40 28
lhz

All D

41 29
lhzu

All D

42 2A
lha

All D

43 2B
lhau

All D

Load Half and Zero
Load Half and Zero with Update
Load Half Algebraic
Load Half Algebraic with Update

44 2C
sth

All D

45 2D
sthu

All D

46 2E
lmw

All D

47 2F
stmw

All D

Store Half
Store Half with Update
Load Multiple Word
Store Multiple Word

48 30
lfs

All D

49 31
lfsu

All D

50 32
lfd

All D

51 33
lfdu

All D

Load Floating-Point Single
Load Floating-Point Single with Update
Load Floating-Point Double
Load Floating-Point Double with Update

52 34
stfs

All D

53 35
stfsu

All D

54 36
stfd

All D

55 37
stfdu

All D

Store Floating-Point Single
Store Floating-Point Single with Update
Store Floating-Point Double
Store Floating-Point Double with Update

† 56 38
† lq/lfq
† /3 illegal
† At/2 DQ/DS

57 39
lfqu,

3 illegal
2 DS

58 3A
FX DS-form

Loads
AP DS

59 3B
FP Single

Extended Ops
AP A

See Table 16 on page 205
See Table 17 on page 205
See Table 18 on page 205
See Table 24 on page 210

60 3C
stfq,

3 illegal
2 DS

61 3D
stfqu,

3 illegal
2 DS

62 3E
FX DS-Form

Stores
AP DS

63 3F
FP Double

Extended Ops
All

See Table 19 on page 205
See Table 20 on page 205
See Table 21 on page 205
See Table 25 on page 212

Appendix I. Opcode Maps 203

IBM Confidential - Feb. 24, 1999

Table 15. Extended opcodes for primary opcode 30
(instruction bits 27:30)

00 01 10 11

00

0
rldicl
AP
MD

1
rldicl ′

AP
MD

2
rldicr

AP
MD

3
rldicr ′

AP
MD

01

4
rldic
AP
MD

5
rldic ′
AP
MD

6
rldimi

AP
MD

7
rldimi ′

AP
MD

10

8
rldcl
AP

MDS

9
rldcr
AP

MDS

11

12
selii
At

MDS

13
selir
At

MDS

14
selri
At

MDS

15
selrr

At
MDS

204 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

Table 16. Extended opcodes for primary opcode 56
(instruction bits 30:31)

Table 17. Extended opcodes for primary opcode 57
(instruction bits 30:31)

0 1 0 1

0

† 0
† lq / lfq
† At/2
† DQ/DS

1
lq
At
DQ

0

0
lfqu

2
DS

1

2
lq
At
DQ

3
lq
At
DQ

1

Table 18. Extended opcodes for primary opcode 58
(instruction bits 30:31)

Table 19. Extended opcodes for primary opcode 60
(instruction bits 30:31)

0 1 0 1

0

0
ld
AP
DS

1
ldu
AP
DS

0

0
stfq

2
DS

1

2
lwa
AP
DS

3
lmd
At
DS

1

Table 20. Extended opcodes for primary opcode 61
(instruction bits 30:31)

Table 21. Extended opcodes for primary opcode 62
(instruction bits 30:31)

0 1 0 1

0

0
stfqu

2
DS

0

0
std
AP
DS

1
stdu
AP
DS

1 1

2
stq
At
DS

3
stmd

At
DS

Appendix I. Opcode Maps 205

IB
M

C
onfidential-

Feb.
24,

1999

11111111101110111100110111101011001110001011110110

150
isync

All
XL

101011010010011

51
Res'd

AP

10010

18
r f id
AP
XL

| (50)
| r f i
| All
| XL

82
rfscv
At2O
XL

1000110000

16
bclr
All
XL

011110111001101011000101101010010010100000111001100010100100000110001000001

33
crnor

All
XL

129
crandc

All
XL

193
crxor

All
XL

225
crnand

All
XL

257
crand

All
XL

289
creqv

All
XL

417
crorc

All
XL

449
cror
All
XL

00000

0
mcrf
All
XL

Table 22 (Page 1 of 2). Extended opcodes for primary opcode 19 (instruction bits 21:30)

00000

00001

00010

00011

00100

00101

00110

00111

01000

01001

01010

01011

01100

01101

01110

01111

206
P

ow
erP

C
A

S
U

ser
Instruction

S
et

A
rchitecture

IB
M

C
onfidential-

Feb.
24,

1999

11111111101110111100110111101011001110001011110110101011010010011100101000110000

528
bcctr

All
XL

01111011100110101100010110101001001010000011100110001010010000011000100000100000

Table 22 (Page 2 of 2). Extended opcodes for primary opcode 19 (instruction bits 21:30)

10000

10001

10010

10011

10100

10101

10110

10111

11000

11001

11010

11011

11100

11101

11110

11111

A
ppendix

I.
O

pcode
M

aps
207

IB
M

C
onfidential-

Feb.
24,

1999

11111

159
r lw imi*

All
M

191
r lwinm*

All
M

223
r lmi*

2O
M

255
r lwnm*

All
M

287
ori*
All
D

319
oris*

All
D

351
xori*

All
D

383
xoris*

All
D

415
andi .*

All
D

447
andis.*

All
D

11110

30
r ld ic l*

AP
MD

62
r ld ic l*

AP
MD

94
r ld icr*

AP
MD

126
r ld icr*

AP
MD

158
r ld ic*

AP
MD

190
r ld ic*

AP
MD

222
r ld imi*

AP
MD

254
r ld imi*

AP
MD

286
r ldcl*

AP
MDS

318
r ldcl*

AP
MDS

350
*

382
*

414
sel i i *

A
MDS

446
sel i r*

A
MDS

478
selr i*

A
MDS

510
selrr*

A
MDS

11101

29
maskg

2O
X

61
dsixes

At
X

93
dtcs

At
X

11100

28
and
All
X

60
andc

All
X

124
nor
All
X

284
eqv
All
X

316
xor
All
X

412
orc
All
X

444
or
All
X

476
nand

All
X

11011

27
sld
AP
X

11010

26
cntlzw

All
X

58
cntlzd

AP
X

11001

153
sle
2O
X

217
sleq
2O
X

11000

24
slw
All
X

152
slq
2O
X

184
sliq
2O
X

216
sllq
2O
X

248
sl l iq
2O
X

10111

23
lwzx
All
X

55
lwzux

All
X

87
lbzx
All
X

119
lbzux

All
X

151
stwx
All
X

183
stwux

All
X

215
stbx
All
X

247
stbux

All
X

279
lhzx
All
X

311
lhzux

All
X

343
lhax
All
X

375
lhaux

All
X

407
sthx
All
X

439
sthux

All
X

471
lmw*

All
D

503
stmw*

All
D

10110

54
dcbst

AP
X

86
dcbf
AP
X

118
clf
2O
X

150
stwcx.

AP
X

214
stdcx.

AP
X

246
dcbtst

AP
X

278
dcbt
AP
X

310
eciwx

AP
X

438
ecowx

AP
X

| (470)
| dcbi
| AP
| X

502
cl i
2O
X

10101

21
ldx
AP
X

53
ldux
AP
X

149
stdx
AP
X

181
stdux

AP
X

277
lscbx

2O
X

341
lwax
AP
X

373
lwaux

AP
X

469
lmd*

At
DS

501
stmd*

At
DS

10100

20
lwarx

AP
X

84
ldarx

AP
X

308
Res'd

AP

10011

19
mfcr
All
X

83
mfmsr

All
X

339
mfspr

All
XFX

371
mftb
AP
XFX

467
mtspr

All
XFX

499
settag

At
XFX

10010

| (82)
| mtsrd
| AP
| X

| (114)
| mtsrdin
| AP
| X

146
mtmsr

All
X

178
mtmsrd

X
AP

210
mtsr
All
X

242
mtsrin

All
X

| 274
| Res'd
| A

306
t lb ie
All
X

370
t lb ia
AP
X

| 402
| slbmte
| A
| X

434
slbie

AP
X

498
slbia

AP
X

1000110000

144
mtcrf

All
XFX

01111

15
Res0*

All

† 47
† *

79
td i *
AP
D

111
tw i*
All
D

143
*

175
*

207
*

239
mull i *

All
D

271
subfic*

All
D

303
dozi*

2O
D

335
cmpli*

All
D

367
cmpi*

All
D

399
addic*

All
D

431
addic.*

All
D

463
addi*

All
D

495
addis*

All
D

01110011010110001011

11
mulhwu

AP
XO

75
mulhw

AP
XO

107
mul
2O
XO

235
mullw

All
XO

331
div
2O
XO

363
divs
2O
XO

459
divwu

AP
XO

491
divw
AP
XO

01010

10
addc

All
XO

138
adde

All
XO

202
addze

All
XO

234
addme

All
XO

266
add
All
XO

01001

9
mulhdu

AP
XO

73
mulhd

AP
XO

233
mulld

AP
XO

457
divdu

AP
XO

489
divd
AP
XO

01000

8
subfc

All
XO

40
subf
AP
XO

104
neg
All
XO

136
subfe

All
XO

200
subfze

All
XO

232
subfme

All
XO

264
doz
2O
XO

360
abs
2O
XO

488
nabs

2O
XO

0011100110

262
Res'd

AP

454
Res'd

AP

486
Res'd

AP

0010100100

4
tw
All
X

36
txer
At
TX

68
td
AP
X

100
txer ′

At
TX

164
txer ′

At
TX

228
txer ′

At
TX

292
txer ′

At
TX

356
txer ′

At
TX

420
txer ′

At
TX

484
txer ′

At
TX

00011

131
Res'd

AP

163
Res'd

AP

323
Res'd

AP

451
Res'd

AP

000100000100000

0
cmp
All
X

32
cmpl

All
X

64
cmpla

At
X

Table 23 (Page 1 of 2). Extended opcodes for primary opcode 31 (instruction bits 21:30)

00000

00001

00010

00011

00100

00101

00110

00111

01000

01001

01010

01011

01100

01101

01110

01111

208
P

ow
erP

C
A

S
U

ser
Instruction

S
et

A
rchitecture

IB
M

C
onfidential-

Feb.
24,

1999

111111111011101

541
maskir

2O
X

1110011011

539
srd
AP
X

827
sradi ′

AP
XS

11010

794
srad
AP
X

826
sradi

AP
XS

922
extsh

All
X

954
extsb

AP
X

986
extsw

AP
X

11001

537
rr ib
2O
X

665
sre
2O
X

729
sreq
2O
X

921
srea
2O
X

11000

536
srw
All
X

664
srq
2O
X

696
sriq
2O
X

728
srlq
2O
X

760
srl iq

2O
X

792
sraw

All
X

824
srawi

All
X

920
sraq
2O
X

952
sraiq

2O
X

10111

535
l fsx
All
X

567
lfsux

All
X

599
l fdx
All
X

631
l fdux

All
X

663
stfsx

All
X

695
stfsux

All
X

727
stfdx

All
X

759
stfdux

All
X

791
l fqx

2
X

823
l fqux

2
X

919
stfqx

2
X

951
stfqux

2
X

983
stf iwx

AP
X

10110

534
lwbrx

All
X

566
tlbsync

AP
X

598
sync
All
X

630
dclst

2O
X

662
stwbrx

All
X

| (758)
| dcba
| AP
| X

790
lhbrx

All
X

854
eieio

AP
X

| (886)
| vsync
| At
| X

918
sthbrx

All
X

982
icbi
AP
X

1014
dcbz
All
X

10101

533
lswx
All
X

565
lsdx

At
X

597
lswi
All
X

629
lsdi
At
X

661
stswx

All
X

693
stsdx

At
X

725
stswi

All
X

757
stsdi

At
X

1010010011

531
clcs
2O
X

595
mfsr
All
X

627
mfsr i

2O
X

659
mfsrin

AP
X

| 851
| slbmfev
| A
| X

| 915
| slbmfee
| A
| X

10010

818
rac
2O
X

914
Res'd

AP

946
Res'd

AP

978
Res'd

AP

1010
Res'd

AP

10001100000111101110011010110001011

523
mulhwu ′

AP
XO

587
mulhw ′

AP
XO

619
mul ′
2O
XO

747
mullw ′

All
XO

843
div ′
2O
XO

875
divs ′

2O
XO

971
divwu ′

AP
XO

1003
divw ′

AP
XO

01010

522
addc ′

All
XO

650
adde ′

All
XO

714
addze ′

All
XO

746
addme ′

All
XO

778
add ′
All
XO

01001

521
mulhdu ′

AP
XO

585
mulhd ′

AP
XO

745
mulld ′

AP
XO

969
divdu ′

AP
XO

1001
divd ′

AP
XO

01000

520
subfc ′

All
XO

552
subf ′

AP
XO

616
neg ′
All
XO

648
subfe ′

All
XO

712
subfze ′

All
XO

744
subfme ′

All
XO

776
doz ′
2O
XO

872
abs ′
2O
XO

1000
nabs ′

2O
XO

0011100110

966
Res'd

AP

998
Res'd

AP

0010100100

548
txer ′

At
TX

612
txer ′

At
TX

676
txer ′

At
TX

740
txer ′

At
TX

804
txer ′

At
TX

868
txer ′

At
TX

932
txer ′

At
TX

996
txer ′

At
TX

00011000100000100000

512
mcrxr

All
X

544
mcrxrt

At
X

Table 23 (Page 2 of 2). Extended opcodes for primary opcode 31 (instruction bits 21:30)

10000

10001

10010

10011

10100

10101

10110

10111

11000

11001

11010

11011

11100

11101

11110

11111

A
ppendix

I.
O

pcode
M

aps
209

IB
M

C
onfidential-

Feb.
24,

1999

11111

31
fnmadds

AP
A

||
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

11110

30
fnmsubs

AP
A

||
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

11101

29
fmadds

AP
A

||
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

11100

28
fmsubs

AP
A

||
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

110111101011001

25
fmuls

AP
A

||
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

11000

24
f res
AP
A

||
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

1011110110

22
fsqrts

AP
A

||
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

10101

21
fadds

AP
A

||
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

10100

20
fsubs

AP
A

||
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

1001110010

18
fdivs

AP
A

||
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

100011000001111011100110101100010110101001001010000011100110001010010000011000100000100000

Table 24 (Page 1 of 2). Extended opcodes for primary opcode 59 (instruction bits 21:30)

00000

00001

00010

00011

00100

00101

00110

00111

01000

01001

01010

01011

01100

01101

01110

01111

210
P

ow
erP

C
A

S
U

ser
Instruction

S
et

A
rchitecture

IB
M

C
onfidential-

Feb.
24,

1999

11111

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |

fnmadds

11110

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |

fnmsubs

11101

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |

fmadds

11100

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |

fmsubs

110111101011001

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |

fmuls

11000

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |

f res

1011110110

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |

fsqrts

10101

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |

fadds

10100

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |

fsubs

1001110010

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |

fdivs

100011000001111011100110101100010110101001001010000011100110001010010000011000100000100000

Table 24 (Page 2 of 2). Extended opcodes for primary opcode 59 (instruction bits 21:30)

10000

10001

10010

10011

10100

10101

10110

10111

11000

11001

11010

11011

11100

11101

11110

11111

A
ppendix

I.
O

pcode
M

aps
211

IB
M

C
onfidential-

Feb.
24,

1999

11111

31
fnmadd

All
A

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

11110

30
fnmsub

All
A

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

11101

29
fmadd

All
A

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

11100

28
fmsub

All
A

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

1101111010

26
f rsqrte

AP
A

||
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

11001

25
fmul
All
A

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

1100010111

23
fsel
AP
A

||
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

10110

22
fsqrt
AP2

A

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

10101

21
fadd
All
A

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

10100

20
fsub
All
A

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

1001110010

18
fdiv
All
A

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

100011000001111

15
fct iwz
AP2

X

01110

14
fct iw
AP2

X

0110101100

12
frsp
All
X

01011010100100101000

40
fneg
All
X

72
fmr
All
X

136
fnabs

All
X

264
fabs
All
X

0011100110

38
mtfsb1

All
X

70
mtfsb0

All
X

134
mtfsf i

All
X

001010010000011000100000100000

0
fcmpu

All
X

32
fcmpo

All
X

64
mcrfs

All
X

Table 25 (Page 1 of 2). Extended opcodes for primary opcode 63 (instruction bits 21:30)

00000

00001

00010

00011

00100

00101

00110

00111

01000

01001

01010

01011

01100

01101

01110

01111

212
P

ow
erP

C
A

S
U

ser
Instruction

S
et

A
rchitecture

IB
M

C
onfidential-

Feb.
24,

1999

11111

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |

fnmadd

11110

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |

fnmsub

11101

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |

fmadd

11100

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |

fmsub

1101111010

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |

f rsqrte

11001

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |

fmul

1100010111

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |

fsel

10110

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |

fsqrt

10101

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |

fadd

10100

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |

fsub

1001110010

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |
| |

| |
| |
| |

fdiv

100011000001111

815
fc t idz

AP
X

01110

814
fct id
AP
X

846
fcf id
AP
X

01101011000101101010010010100000111

583
mffs
All
X

† (615)
† mffpspr
† Api
† X

711
mtfsf

All
XFL

† (743)
† mtfpspr
† Api
† X

00110001010010000011000100000100000

Table 25 (Page 2 of 2). Extended opcodes for primary opcode 63 (instruction bits 21:30)

10000

10001

10010

10011

10100

10101

10110

10111

11000

11001

11010

11011

11100

11101

11110

11111

A
ppendix

I.
O

pcode
M

aps
213

IBM Confidential - Feb. 24, 1999

214 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

Appendix J. PowerPC AS Instruction Set Sorted by Opcode

This appendix lists all the instructions in the PowerPC
AS Architecture, in order by opcode. A page number
is shown for instructions that are defined in this Book
(Book I, PowerPC AS User Instruction Set
Architecture), and the Book number is shown for

instructions that are defined in other Books (Book II,
PowerPC AS Virtual Environment Architecture, and
Book III, PowerPC AS Operating Environment Archi-
tecture). If an instruction is defined in more than one
of these Books, the lowest-numbered Book is used.

Form
Opcode Mode

Dep.1
Page /

Bk
Mnemonic Instruction

Primary Extend

D 2 72 tdi Trap Doubleword Immediate
D 3 72 twi Trap Word Immediate
D 7 64 mulli Multiply Low Immediate
D 8 SR 61 subfic Subtract From Immediate Carrying
D 10 69 cmpli Compare Logical Immediate
D 11 68 cmpi Compare Immediate
D 12 SR 60 addic Add Immediate Carrying
D 13 SR 60 addic. Add Immediate Carrying and Record
D 14 59 addi Add Immediate
D 15 59 addis Add Immediate Shifted
B 16 CT 27 bc[l] [a] Branch Conditional
SC 17 0 TA 29 scv System Call Vectored
SC 17 1 29 sc System Call
I 18 27 b[l] [a] Branch
XL 19 0 32 mcrf Move Condition Register Field
XL 19 16 CT 28 bclr[l] Branch Conditional to Link Register
XL 19 18 III rfid Return from Interrupt Doubleword
XL 19 33 31 crnor Condition Register NOR

||
XL 19 82 TA III rfscv Return From System Call Vectored
XL 19 129 31 crandc Condition Register AND with Complement
XL 19 150 II isync Instruction Synchronize
XL 19 193 30 crxor Condition Register XOR
XL 19 225 30 crnand Condition Register NAND
XL 19 257 30 crand Condition Register AND
XL 19 289 31 creqv Condition Register Equivalent
XL 19 417 31 crorc Condition Register OR with Complement
XL 19 449 30 cror Condition Register OR
XL 19 528 CT 28 bcctr[l] Branch Conditional to Count Register
M 20 SR 89 rlwimi[.] Rotate Left Word Immediate then Mask Insert
M 21 SR 86 rlwinm[.] Rotate Left Word Immediate then AND with Mask
M 23 SR 88 rlwnm[.] Rotate Left Word then AND with Mask
D 24 79 ori OR Immediate
D 25 79 oris OR Immediate Shifted
D 26 79 xori XOR Immediate
D 27 79 xoris XOR Immediate Shifted
D 28 SR 78 andi. AND Immediate
D 29 SR 78 andis. AND Immediate Shifted
MD 30 0 SR 85 rldicl[.] Rotate Left Doubleword Immediate then Clear Left
MD 30 1 SR 85 rldicr[.] Rotate Left Doubleword Immediate then Clear Right
MD 30 2 SR 86 rldic[.] Rotate Left Doubleword Immediate then Clear

Appendix J. PowerPC AS Instruction Set Sorted by Opcode 215

IBM Confidential - Feb. 24, 1999

Form
Opcode Mode

Dep.1
Page /

Bk
Mnemonic Instruction

Primary Extend

MD 30 3 SR 89 rldimi[.] Rotate Left Doubleword Immediate then Mask Insert
MDS 30 8 SR 87 rldcl[.] Rotate Left Doubleword then Clear Left
MDS 30 9 SR 88 rldcr[.] Rotate Left Doubleword then Clear Right
MDS 30 12 TA 76 selii[.] Select Immediate-Immediate
MDS 30 13 TA 76 selir[.] Select Immediate-Register
MDS 30 14 TA 77 selri[.] Select Register-Immediate
MDS 30 15 TA 77 selrr[.] Select Register-Register
X 31 0 68 cmp Compare
X 31 4 73 tw Trap Word
XO 31 8 SR 61 subfc[o] [.] Subtract From Carrying
XO 31 9 SR 65 mulhdu[.] Multiply High Doubleword Unsigned
XO 31 10 SR 61 addc[o] [.] Add Carrying
XO 31 11 SR 65 mulhwu[.] Multiply High Word Unsigned

| XFX| 31| 19| 97| mfcr| Move From Condition Register
| XFX| 31| 19| 138| mfcr| Move From Condition Register (optional version)
† X† 31† 20† II† lwarx† Load Word And Reserve Indexed

X 31 21 42 ldx Load Doubleword Indexed
X 31 23 40 lwzx Load Word and Zero Indexed
X 31 24 SR 90 slw[.] Shift Left Word
X 31 26 SR 83 cntlzw[.] Count Leading Zeros Word
X 31 27 SR 90 sld[.] Shift Left Doubleword
X 31 28 SR 80 and[.] AND
X 31 32 69 cmpl Compare Logical
TX 31 36 TA 74 txer Trap on XER
XO 31 40 SR 60 subf[o] [.] Subtract From
X 31 53 42 ldux Load Doubleword with Update Indexed
X 31 54 II dcbst Data Cache Block Store
X 31 55 40 lwzux Load Word and Zero with Update Indexed
X 31 58 SR 83 cntlzd[.] Count Leading Zeros Doubleword
X 31 60 SR 81 andc[.] AND with Complement
X 31 61 TA 94 dsixes Decimal Sixes
X 31 64 TA 70 cmpla Compare Logical Addresses
X 31 68 73 td Trap Doubleword
XO 31 73 SR 65 mulhd[.] Multiply High Doubleword
XO 31 75 SR 65 mulhw[.] Multiply High Word

||
X 31 83 III mfmsr Move From Machine State Register

† X† 31† 84† II† ldarx† Load Doubleword And Reserve Indexed
X 31 86 II dcbf Data Cache Block Flush
X 31 87 37 lbzx Load Byte and Zero Indexed
X 31 93 TA 94 dtcs. Decimal Test and Clear Sign
XO 31 104 SR 63 neg[o] [.] Negate

||
X 31 119 37 lbzux Load Byte and Zero with Update Indexed
X 31 124 SR 81 nor[.] NOR
XO 31 136 SR 62 subfe[o] [.] Subtract From Extended
XO 31 138 SR 62 adde[o] [.] Add Extended
XFX 31 144 97 mtcrf Move To Condition Register Fields

| XFX| 31| 144| 138| mtcrf| Move To Condition Register Field (optional version)
X 31 146 III mtmsr Move To Machine State Register
X 31 149 47 stdx Store Doubleword Indexed

† X† 31† 150† II† stwcx.† Store Word Conditional Indexed
X 31 151 46 stwx Store Word Indexed
X 31 178 III mtmsrd Move To Machine State Register Doubleword
X 31 181 47 stdux Store Doubleword with Update Indexed
X 31 183 46 stwux Store Word with Update Indexed
XO 31 200 SR 63 subfze[o] [.] Subtract From Zero Extended
XO 31 202 SR 63 addze[o] [.] Add to Zero Extended

216 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

Form
Opcode Mode

Dep.1
Page /

Bk
Mnemonic Instruction

Primary Extend

| X| 31| 210| 32| III| mtsr| Move To Segment Register
† X† 31† 214† II† stdcx.† Store Doubleword Conditional Indexed

X 31 215 44 stbx Store Byte Indexed
XO 31 232 SR 62 subfme[o] [.] Subtract From Minus One Extended
XO 31 233 SR 64 mulld[o] [.] Multiply Low Doubleword
XO 31 234 SR 62 addme[o] [.] Add to Minus One Extended
XO 31 235 SR 64 mullw[o] [.] Multiply Low Word

| X| 31| 242| 32| III| mtsrin| Move To Segment Register Indirect
X 31 246 II dcbtst Data Cache Block Touch for Store
X 31 247 44 stbux Store Byte with Update Indexed
XO 31 266 SR 60 add[o] [.] Add
X 31 278 II dcbt Data Cache Block Touch
X 31 279 38 lhzx Load Halfword and Zero Indexed
X 31 284 SR 81 eqv[.] Equivalent

| X| 31| 306| 64| III| tlbie| TLB Invalidate Entry
X 31 310 II eciwx External Control In Word Indexed
X 31 311 38 lhzux Load Halfword and Zero with Update Indexed
X 31 316 SR 80 xor[.] XOR
XFX 31 339 96 mfspr Move From Special Purpose Register
X 31 341 41 lwax Load Word Algebraic Indexed
X 31 343 39 lhax Load Halfword Algebraic Indexed
X 31 370 III tlbia TLB Invalidate All
XFX 31 371 II mftb Move From Time Base
X 31 373 41 lwaux Load Word Algebraic with Update Indexed
X 31 375 39 lhaux Load Halfword Algebraic with Update Indexed

| X| 31| 402| III| slbmte| SLB Move To Entry
X 31 407 45 sthx Store Halfword Indexed
X 31 412 SR 81 orc[.] OR with Complement
XS 31 413 SR 92 sradi[.] Shift Right Algebraic Doubleword Immediate
X 31 434 III slbie SLB Invalidate Entry
X 31 438 II ecowx External Control Out Word Indexed
X 31 439 45 sthux Store Halfword with Update Indexed
X 31 444 SR 80 or[.] OR
XO 31 457 SR 67 divdu[o] [.] Divide Doubleword Unsigned
XO 31 459 SR 67 divwu[o] [.] Divide Word Unsigned
XFX 31 467 95 mtspr Move To Special Purpose Register

||
X 31 476 SR 80 nand[.] NAND
XO 31 489 SR 66 divd[o] [.] Divide Doubleword
XO 31 491 SR 66 divw[o] [.] Divide Word
X 31 498 III slbia SLB Invalidate All
XFX 31 499 TA 96 settag Set XER Tag
X 31 512 97 mcrxr Move to Condition Register from XER
X 31 533 55 lswx Load String Word Indexed
X 31 534 49 lwbrx Load Word Byte-Reverse Indexed
X 31 535 118 lfsx Load Floating-Point Single Indexed
X 31 536 SR 91 srw[.] Shift Right Word
X 31 539 SR 91 srd[.] Shift Right Doubleword
X 31 544 TA 97 mcrxrt Move to Condition Register from XER TGCC
X 31 565 TA 55 lsdx Load String Doubleword Indexed
X 31 566 III tlbsync TLB Synchronize
X 31 567 118 lfsux Load Floating-Point Single with Update Indexed

| X| 31| 595| 32| III| mfsr| Move From Segment Register
X 31 597 54 lswi Load String Word Immediate

† X† 31† 598† II† sync† Synchronize
X 31 599 119 lfdx Load Floating-Point Double Indexed
X 31 629 TA 54 lsdi Load String Doubleword Immediate
X 31 631 119 lfdux Load Floating-Point Double with Update Indexed

Appendix J. PowerPC AS Instruction Set Sorted by Opcode 217

IBM Confidential - Feb. 24, 1999

Form
Opcode Mode

Dep.1
Page /

Bk
Mnemonic Instruction

Primary Extend

| X| 31| 659| 32| III| mfsrin| Move From Segment Register Indirect
X 31 661 57 stswx Store String Word Indexed
X 31 662 50 stwbrx Store Word Byte-Reverse Indexed
X 31 663 121 stfsx Store Floating-Point Single Indexed
X 31 693 TA 57 stsdx Store String Doubleword Indexed
X 31 695 121 stfsux Store Floating-Point Single with Update Indexed
X 31 725 56 stswi Store String Word Immediate
X 31 727 122 stfdx Store Floating-Point Double Indexed
X 31 757 TA 56 stsdi Store String Doubleword Immediate

||
X 31 759 122 stfdux Store Floating-Point Double with Update Indexed
X 31 790 49 lhbrx Load Halfword Byte-Reverse Indexed
X 31 792 SR 93 sraw[.] Shift Right Algebraic Word
X 31 794 SR 93 srad[.] Shift Right Algebraic Doubleword
X 31 824 SR 92 srawi[.] Shift Right Algebraic Word Immediate

| X| 31| 851| III| slbmfev| SLB Move From Entry VSID
X 31 854 II eieio Enforce In-order Execution of I/O

||
| X| 31| 915| III| slbmfee| SLB Move From Entry ESID

X 31 918 50 sthbrx Store Halfword Byte-Reverse Indexed
X 31 922 SR 82 extsh[.] Extend Sign Halfword
X 31 954 SR 82 extsb[.] Extend Sign Byte
X 31 982 II icbi Instruction Cache Block Invalidate
X 31 983 123 stfiwx Store Floating-Point as Integer Word Indexed
X 31 986 SR 82 extsw[.] Extend Sign Word
X 31 1014 II dcbz Data Cache Block set to Zero
D 32 40 lwz Load Word and Zero
D 33 40 lwzu Load Word and Zero with Update
D 34 37 lbz Load Byte and Zero
D 35 37 lbzu Load Byte and Zero with Update
D 36 46 stw Store Word
D 37 46 stwu Store Word with Update
D 38 44 stb Store Byte
D 39 44 stbu Store Byte with Update
D 40 38 lhz Load Halfword and Zero
D 41 38 lhzu Load Halfword and Zero with Update
D 42 39 lha Load Halfword Algebraic
D 43 39 lhau Load Halfword Algebraic with Update
D 44 45 sth Store Halfword
D 45 45 sthu Store Halfword with Update
D 46 51 lmw Load Multiple Word
D 47 52 stmw Store Multiple Word
D 48 118 lfs Load Floating-Point Single
D 49 118 lfsu Load Floating-Point Single with Update
D 50 119 lfd Load Floating-Point Double
D 51 119 lfdu Load Floating-Point Double with Update
D 52 121 stfs Store Floating-Point Single
D 53 121 stfsu Store Floating-Point Single with Update
D 54 122 stfd Store Floating-Point Double
D 55 122 stfdu Store Floating-Point Double with Update
DQ 56 TA 43 lq Load Quadword
DS 58 0 42 ld Load Doubleword
DS 58 1 42 ldu Load Doubleword with Update
DS 58 2 41 lwa Load Word Algebraic
DS 58 3 TA 51 lmd Load Multiple Doubleword
A 59 18 126 fdivs[.] Floating Divide Single
A 59 20 125 fsubs[.] Floating Subtract Single
A 59 21 125 fadds[.] Floating Add Single

218 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

Form
Opcode Mode

Dep.1
Page /

Bk
Mnemonic Instruction

Primary Extend

A 59 22 140 fsqrts[.] Floating Square Root Single
A 59 24 140 fres[.] Floating Reciprocal Estimate Single
A 59 25 126 fmuls[.] Floating Multiply Single
A 59 28 127 fmsubs[.] Floating Multiply-Subtract Single
A 59 29 127 fmadds[.] Floating Multiply-Add Single
A 59 30 128 fnmsubs[.] Floating Negative Multiply-Subtract Single
A 59 31 128 fnmadds[.] Floating Negative Multiply-Add Single
DS 62 0 47 std Store Doubleword
DS 62 1 47 stdu Store Doubleword with Update
DS 62 2 TA 48 stq Store Quadword
DS 62 3 TA 52 stmd Store Multiple Doubleword
X 63 0 133 fcmpu Floating Compare Unordered
X 63 12 129 frsp[.] Floating Round to Single-Precision
X 63 14 131 fctiw[.] Floating Convert To Integer Word
X 63 15 131 fctiwz[.] Floating Convert To Integer Word with round toward Zero
A 63 18 126 fdiv[.] Floating Divide
A 63 20 125 fsub[.] Floating Subtract
A 63 21 125 fadd[.] Floating Add
A 63 22 140 fsqrt[.] Floating Square Root
A 63 23 141 fsel[.] Floating Select
A 63 25 126 fmul[.] Floating Multiply
A 63 26 141 frsqrte[.] Floating Reciprocal Square Root Estimate
A 63 28 127 fmsub[.] Floating Multiply-Subtract
A 63 29 127 fmadd[.] Floating Multiply-Add
A 63 30 128 fnmsub[.] Floating Negative Multiply-Subtract
A 63 31 128 fnmadd[.] Floating Negative Multiply-Add
X 63 32 133 fcmpo Floating Compare Ordered
X 63 38 136 mtfsb1[.] Move To FPSCR Bit 1
X 63 40 124 fneg[.] Floating Negate
X 63 64 134 mcrfs Move to Condition Register from FPSCR
X 63 70 136 mtfsb0[.] Move To FPSCR Bit 0
X 63 72 124 fmr[.] Floating Move Register
X 63 134 135 mtfsfi[.] Move To FPSCR Field Immediate
X 63 136 124 fnabs[.] Floating Negative Absolute Value
X 63 264 124 fabs[.] Floating Absolute Value
X 63 583 134 mffs[.] Move From FPSCR
XFL 63 711 135 mtfsf[.] Move To FPSCR Fields
X 63 814 130 fctid[.] Floating Convert To Integer Doubleword
X 63 815 130 fctidz[.] Floating Convert To Integer Doubleword with round

toward Zero
X 63 846 132 fcfid[.] Floating Convert From Integer Doubleword

1See key to mode dependency column, on page 225.

Appendix J. PowerPC AS Instruction Set Sorted by Opcode 219

IBM Confidential - Feb. 24, 1999

220 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

Appendix K. PowerPC AS Instruction Set Sorted by Mnemonic

This appendix lists all the instructions in the PowerPC
AS Architecture, in order by mnemonic. A page
number is shown for instructions that are defined in
this Book (Book I, PowerPC AS User Instruction Set
Architecture), and the Book number is shown for

instructions that are defined in other Books (Book II,
PowerPC AS Virtual Environment Architecture, and
Book III, PowerPC AS Operating Environment Archi-
tecture). If an instruction is defined in more than one
of these Books, the lowest-numbered Book is used.

Form
Opcode Mode

Dep.1
Page /

Bk
Mnemonic Instruction

Primary Extend

XO 31 266 SR 60 add[o] [.] Add
XO 31 10 SR 61 addc[o] [.] Add Carrying
XO 31 138 SR 62 adde[o] [.] Add Extended
D 14 59 addi Add Immediate
D 12 SR 60 addic Add Immediate Carrying
D 13 SR 60 addic. Add Immediate Carrying and Record
D 15 59 addis Add Immediate Shifted
XO 31 234 SR 62 addme[o] [.] Add to Minus One Extended
XO 31 202 SR 63 addze[o] [.] Add to Zero Extended
X 31 28 SR 80 and[.] AND
X 31 60 SR 81 andc[.] AND with Complement
D 28 SR 78 andi. AND Immediate
D 29 SR 78 andis. AND Immediate Shifted
I 18 27 b[l] [a] Branch
B 16 CT 27 bc[l] [a] Branch Conditional
XL 19 528 CT 28 bcctr[l] Branch Conditional to Count Register
XL 19 16 CT 28 bclr[l] Branch Conditional to Link Register
X 31 0 68 cmp Compare
D 11 68 cmpi Compare Immediate
X 31 32 69 cmpl Compare Logical
X 31 64 TA 70 cmpla Compare Logical Addresses
D 10 69 cmpli Compare Logical Immediate
X 31 58 SR 83 cntlzd[.] Count Leading Zeros Doubleword
X 31 26 SR 83 cntlzw[.] Count Leading Zeros Word
XL 19 257 30 crand Condition Register AND
XL 19 129 31 crandc Condition Register AND with Complement
XL 19 289 31 creqv Condition Register Equivalent
XL 19 225 30 crnand Condition Register NAND
XL 19 33 31 crnor Condition Register NOR
XL 19 449 30 cror Condition Register OR
XL 19 417 31 crorc Condition Register OR with Complement
XL 19 193 30 crxor Condition Register XOR

||
X 31 86 II dcbf Data Cache Block Flush

||
X 31 54 II dcbst Data Cache Block Store
X 31 278 II dcbt Data Cache Block Touch
X 31 246 II dcbtst Data Cache Block Touch for Store
X 31 1014 II dcbz Data Cache Block set to Zero
XO 31 489 SR 66 divd[o] [.] Divide Doubleword
XO 31 457 SR 67 divdu[o] [.] Divide Doubleword Unsigned

Appendix K. PowerPC AS Instruction Set Sorted by Mnemonic 221

IBM Confidential - Feb. 24, 1999

Form
Opcode Mode

Dep.1
Page /

Bk
Mnemonic Instruction

Primary Extend

XO 31 491 SR 66 divw[o] [.] Divide Word
XO 31 459 SR 67 divwu[o] [.] Divide Word Unsigned
X 31 61 TA 94 dsixes Decimal Sixes
X 31 93 TA 94 dtcs. Decimal Test and Clear Sign
X 31 310 II eciwx External Control In Word Indexed
X 31 438 II ecowx External Control Out Word Indexed
X 31 854 II eieio Enforce In-order Execution of I/O
X 31 284 SR 81 eqv[.] Equivalent
X 31 954 SR 82 extsb[.] Extend Sign Byte
X 31 922 SR 82 extsh[.] Extend Sign Halfword
X 31 986 SR 82 extsw[.] Extend Sign Word
X 63 264 124 fabs[.] Floating Absolute Value
A 63 21 125 fadd[.] Floating Add
A 59 21 125 fadds[.] Floating Add Single
X 63 846 132 fcfid[.] Floating Convert From Integer Doubleword
X 63 32 133 fcmpo Floating Compare Ordered
X 63 0 133 fcmpu Floating Compare Unordered
X 63 814 130 fctid[.] Floating Convert To Integer Doubleword
X 63 815 130 fctidz[.] Floating Convert To Integer Doubleword with round

toward Zero
X 63 14 131 fctiw[.] Floating Convert To Integer Word
X 63 15 131 fctiwz[.] Floating Convert To Integer Word with round toward Zero
A 63 18 126 fdiv[.] Floating Divide
A 59 18 126 fdivs[.] Floating Divide Single
A 63 29 127 fmadd[.] Floating Multiply-Add
A 59 29 127 fmadds[.] Floating Multiply-Add Single
X 63 72 124 fmr[.] Floating Move Register
A 63 28 127 fmsub[.] Floating Multiply-Subtract
A 59 28 127 fmsubs[.] Floating Multiply-Subtract Single
A 63 25 126 fmul[.] Floating Multiply
A 59 25 126 fmuls[.] Floating Multiply Single
X 63 136 124 fnabs[.] Floating Negative Absolute Value
X 63 40 124 fneg[.] Floating Negate
A 63 31 128 fnmadd[.] Floating Negative Multiply-Add
A 59 31 128 fnmadds[.] Floating Negative Multiply-Add Single
A 63 30 128 fnmsub[.] Floating Negative Multiply-Subtract
A 59 30 128 fnmsubs[.] Floating Negative Multiply-Subtract Single
A 59 24 140 fres[.] Floating Reciprocal Estimate Single
X 63 12 129 frsp[.] Floating Round to Single-Precision
A 63 26 141 frsqrte[.] Floating Reciprocal Square Root Estimate
A 63 23 141 fsel[.] Floating Select
A 63 22 140 fsqrt[.] Floating Square Root
A 59 22 140 fsqrts[.] Floating Square Root Single
A 63 20 125 fsub[.] Floating Subtract
A 59 20 125 fsubs[.] Floating Subtract Single
X 31 982 II icbi Instruction Cache Block Invalidate
XL 19 150 II isync Instruction Synchronize
D 34 37 lbz Load Byte and Zero
D 35 37 lbzu Load Byte and Zero with Update
X 31 119 37 lbzux Load Byte and Zero with Update Indexed
X 31 87 37 lbzx Load Byte and Zero Indexed
DS 58 0 42 ld Load Doubleword

† X† 31† 84† II† ldarx† Load Doubleword And Reserve Indexed
DS 58 1 42 ldu Load Doubleword with Update
X 31 53 42 ldux Load Doubleword with Update Indexed
X 31 21 42 ldx Load Doubleword Indexed
D 50 119 lfd Load Floating-Point Double
D 51 119 lfdu Load Floating-Point Double with Update

222 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

Form
Opcode Mode

Dep.1
Page /

Bk
Mnemonic Instruction

Primary Extend

X 31 631 119 lfdux Load Floating-Point Double with Update Indexed
X 31 599 119 lfdx Load Floating-Point Double Indexed
D 48 118 lfs Load Floating-Point Single
D 49 118 lfsu Load Floating-Point Single with Update
X 31 567 118 lfsux Load Floating-Point Single with Update Indexed
X 31 535 118 lfsx Load Floating-Point Single Indexed
D 42 39 lha Load Halfword Algebraic
D 43 39 lhau Load Halfword Algebraic with Update
X 31 375 39 lhaux Load Halfword Algebraic with Update Indexed
X 31 343 39 lhax Load Halfword Algebraic Indexed
X 31 790 49 lhbrx Load Halfword Byte-Reverse Indexed
D 40 38 lhz Load Halfword and Zero
D 41 38 lhzu Load Halfword and Zero with Update
X 31 311 38 lhzux Load Halfword and Zero with Update Indexed
X 31 279 38 lhzx Load Halfword and Zero Indexed
DS 58 3 TA 51 lmd Load Multiple Doubleword
D 46 51 lmw Load Multiple Word
DQ 56 TA 43 lq Load Quadword
X 31 629 TA 54 lsdi Load String Doubleword Immediate
X 31 565 TA 55 lsdx Load String Doubleword Indexed
X 31 597 54 lswi Load String Word Immediate
X 31 533 55 lswx Load String Word Indexed
DS 58 2 41 lwa Load Word Algebraic

† X† 31† 20† II† lwarx† Load Word And Reserve Indexed
X 31 373 41 lwaux Load Word Algebraic with Update Indexed
X 31 341 41 lwax Load Word Algebraic Indexed
X 31 534 49 lwbrx Load Word Byte-Reverse Indexed
D 32 40 lwz Load Word and Zero
D 33 40 lwzu Load Word and Zero with Update
X 31 55 40 lwzux Load Word and Zero with Update Indexed
X 31 23 40 lwzx Load Word and Zero Indexed
XL 19 0 32 mcrf Move Condition Register Field
X 63 64 134 mcrfs Move to Condition Register from FPSCR
X 31 512 97 mcrxr Move to Condition Register from XER
X 31 544 TA 97 mcrxrt Move to Condition Register from XER TGCC

| XFX| 31| 19| 97| mfcr| Move From Condition Register
| XFX| 31| 19| 138| mfcr| Move From Condition Register (optional version)

X 63 583 134 mffs[.] Move From FPSCR
X 31 83 III mfmsr Move From Machine State Register
XFX 31 339 96 mfspr Move From Special Purpose Register

| X| 31| 595| 32| III| mfsr| Move From Segment Register
| X| 31| 659| 32| III| mfsrin| Move From Segment Register Indirect

XFX 31 371 II mftb Move From Time Base
XFX 31 144 97 mtcrf Move To Condition Register Fields

| XFX| 31| 144| 138| mtcrf| Move To Condition Register Field (optional version)
X 63 70 136 mtfsb0[.] Move To FPSCR Bit 0
X 63 38 136 mtfsb1[.] Move To FPSCR Bit 1
XFL 63 711 135 mtfsf[.] Move To FPSCR Fields
X 63 134 135 mtfsfi[.] Move To FPSCR Field Immediate
X 31 146 III mtmsr Move To Machine State Register
X 31 178 III mtmsrd Move To Machine State Register Doubleword
XFX 31 467 95 mtspr Move To Special Purpose Register

| X| 31| 210| 32| III| mtsr| Move To Segment Register
||
| X| 31| 242| 32| III| mtsrin| Move To Segment Register Indirect

XO 31 73 SR 65 mulhd[.] Multiply High Doubleword
XO 31 9 SR 65 mulhdu[.] Multiply High Doubleword Unsigned
XO 31 75 SR 65 mulhw[.] Multiply High Word

Appendix K. PowerPC AS Instruction Set Sorted by Mnemonic 223

IBM Confidential - Feb. 24, 1999

Form
Opcode Mode

Dep.1
Page /

Bk
Mnemonic Instruction

Primary Extend

XO 31 11 SR 65 mulhwu[.] Multiply High Word Unsigned
XO 31 233 SR 64 mulld[o] [.] Multiply Low Doubleword
D 7 64 mulli Multiply Low Immediate
XO 31 235 SR 64 mullw[o] [.] Multiply Low Word
X 31 476 SR 80 nand[.] NAND
XO 31 104 SR 63 neg[o] [.] Negate
X 31 124 SR 81 nor[.] NOR
X 31 444 SR 80 or[.] OR
X 31 412 SR 81 orc[.] OR with Complement
D 24 79 ori OR Immediate
D 25 79 oris OR Immediate Shifted

||
XL 19 18 III rfid Return from Interrupt Doubleword
XL 19 82 TA III rfscv Return From System Call Vectored
MDS 30 8 SR 87 rldcl[.] Rotate Left Doubleword then Clear Left
MDS 30 9 SR 88 rldcr[.] Rotate Left Doubleword then Clear Right
MD 30 2 SR 86 rldic[.] Rotate Left Doubleword Immediate then Clear
MD 30 0 SR 85 rldicl[.] Rotate Left Doubleword Immediate then Clear Left
MD 30 1 SR 85 rldicr[.] Rotate Left Doubleword Immediate then Clear Right
MD 30 3 SR 89 rldimi[.] Rotate Left Doubleword Immediate then Mask Insert
M 20 SR 89 rlwimi[.] Rotate Left Word Immediate then Mask Insert
M 21 SR 86 rlwinm[.] Rotate Left Word Immediate then AND with Mask
M 23 SR 88 rlwnm[.] Rotate Left Word then AND with Mask
SC 17 1 29 sc System Call
SC 17 0 TA 29 scv System Call Vectored
MDS 30 12 TA 76 selii[.] Select Immediate-Immediate
MDS 30 13 TA 76 selir[.] Select Immediate-Register
MDS 30 14 TA 77 selri[.] Select Register-Immediate
MDS 30 15 TA 77 selrr[.] Select Register-Register
XFX 31 499 TA 96 settag Set XER Tag
X 31 498 III slbia SLB Invalidate All
X 31 434 III slbie SLB Invalidate Entry

| X| 31| 915| III| slbmfee| SLB Move From Entry ESID
| X| 31| 851| III| slbmfev| SLB Move From Entry VSID
| X| 31| 402| III| slbmte| SLB Move To Entry

X 31 27 SR 90 sld[.] Shift Left Doubleword
X 31 24 SR 90 slw[.] Shift Left Word
X 31 794 SR 93 srad[.] Shift Right Algebraic Doubleword
XS 31 413 SR 92 sradi[.] Shift Right Algebraic Doubleword Immediate
X 31 792 SR 93 sraw[.] Shift Right Algebraic Word
X 31 824 SR 92 srawi[.] Shift Right Algebraic Word Immediate
X 31 539 SR 91 srd[.] Shift Right Doubleword
X 31 536 SR 91 srw[.] Shift Right Word
D 38 44 stb Store Byte
D 39 44 stbu Store Byte with Update
X 31 247 44 stbux Store Byte with Update Indexed
X 31 215 44 stbx Store Byte Indexed
DS 62 0 47 std Store Doubleword

† X† 31† 214† II† stdcx.† Store Doubleword Conditional Indexed
DS 62 1 47 stdu Store Doubleword with Update
X 31 181 47 stdux Store Doubleword with Update Indexed
X 31 149 47 stdx Store Doubleword Indexed
D 54 122 stfd Store Floating-Point Double
D 55 122 stfdu Store Floating-Point Double with Update
X 31 759 122 stfdux Store Floating-Point Double with Update Indexed
X 31 727 122 stfdx Store Floating-Point Double Indexed
X 31 983 123 stfiwx Store Floating-Point as Integer Word Indexed
D 52 121 stfs Store Floating-Point Single

224 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

Form
Opcode Mode

Dep.1
Page /

Bk
Mnemonic Instruction

Primary Extend

D 53 121 stfsu Store Floating-Point Single with Update
X 31 695 121 stfsux Store Floating-Point Single with Update Indexed
X 31 663 121 stfsx Store Floating-Point Single Indexed
D 44 45 sth Store Halfword
X 31 918 50 sthbrx Store Halfword Byte-Reverse Indexed
D 45 45 sthu Store Halfword with Update
X 31 439 45 sthux Store Halfword with Update Indexed
X 31 407 45 sthx Store Halfword Indexed
DS 62 3 TA 52 stmd Store Multiple Doubleword
D 47 52 stmw Store Multiple Word
DS 62 2 TA 48 stq Store Quadword
X 31 757 TA 56 stsdi Store String Doubleword Immediate
X 31 693 TA 57 stsdx Store String Doubleword Indexed
X 31 725 56 stswi Store String Word Immediate
X 31 661 57 stswx Store String Word Indexed
D 36 46 stw Store Word
X 31 662 50 stwbrx Store Word Byte-Reverse Indexed

† X† 31† 150† II† stwcx.† Store Word Conditional Indexed
D 37 46 stwu Store Word with Update
X 31 183 46 stwux Store Word with Update Indexed
X 31 151 46 stwx Store Word Indexed
XO 31 40 SR 60 subf[o] [.] Subtract From
XO 31 8 SR 61 subfc[o] [.] Subtract From Carrying
XO 31 136 SR 62 subfe[o] [.] Subtract From Extended
D 8 SR 61 subfic Subtract From Immediate Carrying
XO 31 232 SR 62 subfme[o] [.] Subtract From Minus One Extended
XO 31 200 SR 63 subfze[o] [.] Subtract From Zero Extended

† X† 31† 598† II† sync† Synchronize
X 31 68 73 td Trap Doubleword
D 2 72 tdi Trap Doubleword Immediate
X 31 370 III tlbia TLB Invalidate All

| X| 31| 306| 64| III| tlbie| TLB Invalidate Entry
X 31 566 III tlbsync TLB Synchronize
X 31 4 73 tw Trap Word
D 3 72 twi Trap Word Immediate
TX 31 36 TA 74 txer Trap on XER

||
X 31 316 SR 80 xor[.] XOR
D 26 79 xori XOR Immediate
D 27 79 xoris XOR Immediate Shifted

1Key to Mode Dependency Column

† Except as described below and in Section 1.12.3,
† “Effective Address Calculation” on page 17, all
† instructions are independent of whether the processor
† is in 32-bit or 64-bit mode and of whether the
† processor is in tags active or tags inactive mode.

CT If the instruction tests the Count Register, it
† tests the low-order 32 bits in 32-bit mode and
† all 64 bits in 64-bit mode.

† SR The setting of status registers (such as XER
and CR0) is mode-dependent.

† TA The instruction can be executed only in tags
active mode. In tags inactive mode the
instruction is an illegal instruction.

| 32 The instruction must be executed only in
| 32-bit mode.

| 64 The instruction must be executed only in
| 64-bit mode.

Appendix K. PowerPC AS Instruction Set Sorted by Mnemonic 225

IBM Confidential - Feb. 24, 1999

226 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

Index

A

a bit 24
A-form 11
AA field 11
address 16

effective 17
assembler language

extended mnemonics 161
mnemonics 161
symbols 161

B

B-form 9
BA field 11
BB field 11
BD field 11
BF field 11
BFA field 11
BH field 11
BI field 11
Big-Endian 142
BO field 11, 24
boundedly undefined 3
BT field 11
byte ordering 142
bytes 2

C

C 102
CA 34
CIA 5
CR 22
CTR 23

D

D field 12
D-form 9
DC 34
decimal assist instructions 94

decimal carries 34
defined instructions 13
denormalization 106
denormalized number 104
double-precision 106
doublewords 2
DQ field 12
DQ-form 9
DS 35
DS field 12
DS-form 9

E

EA 17
EAO 5
effective address 17
EQ 22, 23, 35

F

facilities
optional 15

FE 23, 102
FEX 101
FG 23, 102
FI 102
FL 22, 102
FLM field 12
floating-point

denormalization 106
double-precision 106
exceptions 100, 108

inexact 112
invalid operation 110
overflow 111
underflow 112
zero divide 111

execution models 113
normalization 106
number

denormalized 104
infinity 104
normalized 104
not a number 105
zero 104

Index 227

IBM Confidential - Feb. 24, 1999

floating-point (continued)
rounding 107
sign 105
single-precision 106

FPCC 102
FPR 100
FPRF 102
FPSCR 101

C 102
FE 102
FEX 101
FG 102
FI 102
FL 102
FPCC 102
FPRF 102
FR 102
FU 102
FX 101
OE 103
OX 101
RN 103
UE 103
UX 101
VE 103
VX 101
VXCVI 103
VXIDI 102
VXIMZ 102
VXISI 102
VXSNAN 102
VXSOFT 102
VXSQRT 102
VXVC 102
VXZDZ 102
XE 103
XX 102
ZE 103
ZX 102

FR 102
FRA field 12
FRB field 12
FRC field 12
FRS field 12
FRT field 12
FU 23, 102
FX 101
FXCC 34
FXM field 12

G

GPR 33
GT 22, 23, 34
Gulliver's Travels 142

H

halfwords 2
hardware description language 4

I

I-form 8
IB field 12
IC 23, 35
illegal instructions 13
inexact 112
infinity 104
instruction

fields 11, 12, 13
AA 11
BA 11
BB 11
BD 11
BF 11
BFA 11
BH 11
BI 11
BO 11
BT 11
D 12
DQ 12
DS 12
FLM 12
FRA 12
FRB 12
FRC 12
FRS 12
FRT 12
FXM 12
IB 12
IS 12
L 12
LEV 12
LI 12
LK 12
MB 12
ME 12
NB 12
OE 12
PT 12
RA 12
RB 12
Rc 12
RS 12
RT 13
SH 13
SI 13
SPR 13
SR 13
TBR 13
TH 13
TO 13

228 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

instruction (continued)
fields (continued)

U 13
UI 13
XBI 13
XO 13
XO2 13

formats 8, 9, 10, 11
A-form 11
B-form 9
D-form 9
DQ-form 9
DS-form 9
I-form 8
M-form 11
MD-form 11
MDS-form 11
SC-form 9
TX-form 11
X-form 10
XFL-form 10
XFX-form 10
XL-form 10
XO-form 10
XS-form 10

instructions
classes 13
defined 13

forms 14
illegal 13
invalid forms 14
optional 15
preferred forms 14
reserved 14

invalid instruction forms 14
invalid operation 110
IS field 12

L

L field 12
language used for instruction operation description 4
LEV field 12
LI field 12
Little-Endian 142
LK field 12
LR 23
LT 22, 34

M

M-form 11
MB field 12
MD-form 11
MDS-form 11
ME field 12

mnemonics
extended 161

N

NB field 12
NIA 5
no-op 79
normalization 106
normalized number 104
not a number 105

O

OC 34
octwords 2
OE 103
OE field 12
optional facility 15
optional instruction 15
OV 34
overflow 111
OX 101

P

packed decimal format 94
preferred instruction forms 14
PT field 12

Q

quadword tag bit 17
quadwords 2

R

RA field 12
RB field 12
Rc field 12
register transfer level language 4
registers

Condition Register 22
Count Register 23
Fixed-Point Exception Register 34
Floating-Point Registers 100
Floating-Point Status and Control Register 101
General Purpose Registers 33
Link Register 23

reserved field 3
reserved instructions 14
RN 103
rounding 107
RS field 12

Index 229

IBM Confidential - Feb. 24, 1999

RT field 13
RTL 4

S

SC-form 9
sequential execution model 21
SH field 13
SI field 13
sign 105
single-precision 106
SO 22, 23, 34
split field notation 8
SPR field 13
SR field 13
storage access

floating-point 117
storage address 16
Swift, Jonathan 142
symbols 161

T

t bit 24
TAG 35, 96
tag bit 17, 35, 43, 48
tag block 5
tags active mode 5
tags inactive mode 5
TBR field 13
TGCC 35
TH field 13
TO field 13
TX-form 11
T02 35
T07 35

U

U field 13
UE 103
UI field 13
undefined 5

boundedly 3
underflow 112
UX 101

V

VE 103
VX 101
VXCVI 103
VXIDI 102
VXIMZ 102

VXISI 102
VXSNAN 102
VXSOFT 102
VXSQRT 102
VXVC 102
VXZDZ 102

W

words 2

X

X-form 10
XBI field 13
XE 103
XER 34
XFL-form 10
XFX-form 10
XL-form 10
XO field 13
XO-form 10
XO2 field 13
XS-form 10
XX 102

Z

z bit 24
ZE 103
zero 104
zero divide 111
ZX 102

230 PowerPC AS User Instruction Set Architecture

IBM Confidential - Feb. 24, 1999

Last Page - End of Document

Last Page - End of Document 231

