
���®

POWER9™
Processor
Programming Model
Bulletin

J September 9, 2019

Brad
Typewritten Text

IBM Hardware Support Documentation

POWER9™ Processor Programming Model Bulletin ii

Brad
Text Box
The specifications in this bulletin are subject to change without notice. Periodic changes to this publication may be incorporated in new additions or supplements to this publication. This publication is provided “AS IS” and IBM Corporation makes no warranty of any kind, expressed or implied, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.IBM® and POWER® are trademarks of IBM Corp., registered in many jurisdictions worldwide. This material contains some concepts that were developed during research sponsored by the Department of Homeland Security (DHS) Science and Technology Directorate, Cyber Security Division (DHS S&T/CSD) via BAA 11-02; the Department of National Defense of Canada, Defense Research and Development Canada (DRDC); and Air Force Research Laboratory Information Directorate via contract number FA8750-12-C-0243. The U.S. Government and the Department of National Defense of Canada, Defense Research and Development Canada (DRDC) are authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the Department of Homeland Security; Air Force Research Laboratory; the U.S. Government; or the Department of National Defense of Canada, Defense Research and Development Canada (DRDC)© Copyright International Business Machines Corporation, 1994, 2019. All rights reserved.

 POWER9™ Processor Programming Model Bulletin

IBM Hardware Support Documentation

iii

POWER9 Processor Programming Model Bulletin

Summary

Some members of the POWER9 Processor family implement the Protected
Execution Facility. Together with the Protected Execution Ultravisor and corequisite
customizations in the hypervisor (e.g. KVM), the Facility enables the creation of
partitions whose memory cannot be accessed by other partitions or by the
hypervisor. Hypervisor customizations are for such things as launching a protected
partition and providing memory for the ultravisor and protected partitions. The
integrity of the protected partitions is not dependent on the hypervisor
customizations. The operation of the Facility complies with the architecture for the
Secure Memory Facility, a new component of the Power ISA which is described in
the following pages. The description is in the form of an RFC (Request for Change)
to the Power ISA. The RFC will be included in v3.0C of the Power ISA.

IBM Hardware Support Documentation
RFC02487: Secure Memory Facility

Date: August 29, 2019
Target Version: 3.0C
Source Version: 2.07B/3.0
Books and sections affected:
Book 1:

Section 2.7 System Call Instructions
Section 3.3.20 Move To/From System Register
Instructions

Book 2:
Section 1.6.4 Guarded
Section 5.3.1 Causes of Transaction Failure
Section 5.3.2 Recording of Transaction Failure
Section 5.4.2 Transaction EXception And Status
Register
Section 5.4.3 Transaction Failure Instruction
Address Register (TFIAR)

Book 3S:
Section 1.2.1 Definitions and Notation
Section 1.4 Exceptions
Section 2.2 Logical Partitioning Control Register
(LPCR)
Section 2.5 Processor Compatibility Register
(PCR)
Section 2.7 Sharing Hypervisor and Ultravisor
Resources
Section 2.10 Hypervisor Interrupt Little-Endian
(HILE) Bit
Chapter 2+ Ultravisor and Secure Memory Facility
(SMF)
Section 3.2.1 Machine State Register
Section 3.2.2 State Transitions Associated with the
Transactional Memory Facility
Section 3.2.3 Processor Stop Status and Control
Register (PSSCR)
Section 3.3.1 System Linkage Instructions
Section 3.3.2 Power-Saving Mode
Section 3.3.2.1 Power-Saving Mode Instruction
Section 3.3.2.2 Entering and Exiting Power-Saving
Mode
Section 4.3.10 Software-use SPRs
Section 4.4.5 Move To/From System Register
Instructions
Section 5.3.2 Address Wrapping Combined with
Changing MSR Bit SF
Section 5.7.3 Ultravisor Real, Hypervisor Real,
and Virtual Real Addressing Modes
Section 5.7.3.1 Ultravisor/Hypervisor Offset Real
Mode Address

Section 5.7.3.2 Storage Control Attributes for
Accesses in Ultravisor and Hypervisor Real
Addressing Modes
Section 5.7.3.2.1 Hypervisor Real Mode Storage
Control
Section 5.7.4 Definitions
Section 5.7.5 Address Ranges Having Defined
Uses
Section 5.7.6.1 Partition Table
Section 5.7.14 Storage Protection
Section 5.7.14.5+ Secure Memory Protection
Section 5.9.2 Synchronize Instruction
Section 5.10 Page Table Update Synchronization
Requirements
6.2.2+ Ultravisor Machine Status Save/Restore
Registers
Section 6.2.12 Hypervisor Facility Status and Con-
trol Register
Section 6.3 Interrupt Synchronization
Section 6.4 Interrupt Classes
Section 6.4.1 Precise Interrupt
Section 6.4.3 Interrupt processing
Section 6.4.4 Implicit alteration of HSRR0 and
HSRR1
Section 6.5 Interrupt Definitions
Section 6.5.1 System Reset Interrupt
Section 6.5.3 Data Storage Interrupt (DSI)
Section 6.5.5 Instruction Storage Interrupt (ISI)
Section 6.5.9 Program Interrupt
Section 6.5.14 System Call Interrupt
Section 6.5.15 Trace Interrupt
Section 6.5.16 Hypervisor Data Storage Interrupt
(HDSI)
Section 6.5.17 Hypervisor Instruction Storage
Interrupt (HISI)
Secction 6.5.18 Hypervisor Emulation Assistance
Interrupt
Section 6.5.27+ Directed Ultravisor Doorbell Inter-
rupt
Section 6.7.2 Ordered Exceptions
Section 6.9 Interrupt Priorities
Section 8.3 Completed Instruction Address Break-
point
Section 8.4 Data Address Watchpoint
Section 10.1 Overview
Section 10.2 Programming Model
Section 10.3.1 Directed Privileged Doorbell Excep-
tion State
Section 10.4 Processor Control Instructions
 RFC02487: Secure Memory Facility 1

IBM Hardware Support Documentation
Chapter 11. Synchronization Requirements for
Context Alterations

Book Appendices:
Appendix G. Opcode Maps
Appendices H, I, J. Power ISA AS Instruction Set

Summary:

Adds support for the secure memory facility (SMF)
security feature including creation of a new ultravi-
sor privilege mode, checking of a secure property
for each page of system memory, ultravisor inter-
ception of interrupts from secure partitions for pro-
tection of processing state, and ultravisor
messages.

Motivation
System software, including both operating system and
hypervisor, comprises millions of lines of code devel-
oped by large and often disparate teams of program-
mers. While these components are responsible for
isolating executables as well as entire virtual machines
from one another to protect sensitive information, they
are themselves exposed to security vulnerabilities. In
order to provide protection that is independent of the
security of these large system components, the secure
memory facility (SMF) is added to the processor
design. The SMF is implemented in hardware plus a
software component that runs at a privilege level above
hypervisor privilege.

This RFC provides support for coarse-grained security
- preventing the hypervisor from observing the data of
secure partitions.

Changes to the Books
Please consider that this RFC was started before v3.0
was published. As a result, there are varying vintages
of architecture excerpts present. Please focus on the
actual changes, and not the surrounding material.

Some of the changes described herein have nothing to
do with SMF.

Editorial Note: There are a large number of random
places where urfid, URMOR, and either non-ultravisor
or ultravisor-privileged will need to be added to existing
text for completeness. Most such cases are deliber-
ately not shown in the RFC to avoid inflating the size to
be even more unwieldy.
POWER9™ Processor Programming Model Bulletin 2

IBM Hardware Support Documentation
Book 1:
Section 2.7 System Call Instructions

This section mentions that LEV > 1 for sc argument is
reserved. We are using LEV = 2 for ultravisor calls. In
the description of the sc instruction, change the third
paragraph.

-------------------------- Begin text --------------------------------

The use of the LEV field is described in Book III. In the
first form of the instruction the LEV values greater than
2 are reserved, and bits 0:4 of the LEV field (instruction
bits 20:24) are treated as a reserved field.

---------------------------- End text --------------------------------

Section 3.3.20 Move To/From System Register
Instructions

For mtspr, add pointer to book 3 for details of loading
TEXASR.

-------------------------- Begin text --------------------------------
n spr5:9 || spr0:4
switch (n)
 case(13): see Book III
 case(130): see Book III
 case(808, 809, 810, 811):
 default:
 if length(SPR(n)) = 64 then
 SPR(n) (RS)
 else
 SPR(n) (RS)32:63

The SPR field denotes a Special Purpose Register,
encoded as shown in the table below. If the SPR field
contains a value from 808 through 811, the instruction
specifies a reserved SPR, and is treated as a no-op;
see Section 1.3.3, “Reserved Fields, Reserved Values,
and Reserved SPRs”. Otherwise, unless the SPR field
contains 13 or 130 (denoting the AMR or the TEXASR),
the contents of register RS are placed into the desig-
nated Special Purpose Register. For Special Purpose
Registers that are 32 bits long, the low-order 32 bits of
RS are placed into the SPR.

The AMR (Authority Mask Register) is used for “stor-
age protection.” This use, and operation of mtspr for
the AMR, are described in Book III.

The TEXASR (Transaction Exception and Status Reg-
ister) is used in the analysis of transaction failures, as
described in <crossref to bk2 ch5>. The operation of
mtspr for the TEXASR is described in Book III.

---------------------------- End text --------------------------------

For mfspr, add pointer to book 3 for details of reading
TEXASR.

-------------------------- Begin text --------------------------------
n spr5:9 || spr0:4
switch (n)
 case(129): see Book III
 case(130): see Book III

 case(808, 809, 810, 811):
 default:
 if length(SPR(n)) = 64 then
 RT SPR(n)
 else
 RT 320 || SPR(n)

The SPR field denotes a Special Purpose Register,
encoded as shown in the table below. If the SPR field
contains 129, the instruction references the Transac-
tion Failure Instruction Address Register (TFIAR) and
the result is dependent on the privilege with which it is
executed. See Book III. If the SPR field contains a
value from 808 through 811, the instruction specifies a
reserved SPR, and is treated as a no-op; see
Section 1.3.3, “Reserved Fields, Reserved Values, and
Reserved SPRs”. Otherwise, unless the SPR field
contains 130 (denoting the TEXASR), the contents of
the designated Special Purpose Register are placed
into register RT. For Special Purpose Registers that are
32 bits long, the low-order 32 bits of RT receive the
contents of the Special Purpose Register and the high-
order 32 bits of RT are set to zero.

The TEXASR (Transaction Exception and Status Reg-
ister) is used in the analysis of transaction failures, as
described in <crossref to bk2 ch5>. The operation of
mfspr for the TEXASR is described in Book III.

---------------------------- End text --------------------------------
 RFC02487: Secure Memory Facility 3

IBM Hardware Support Documentation
Book 2:
Section 1.6.4 Guarded

Fix the second paragraph to deal with radix and SMF.

-------------------------- Begin text --------------------------------

Except in ultravisor or hypervisor real addressing
mode, instructions are not fetched from storage that is
Guarded. Except in these addressing modes, if the
instruction addressed by the current instruction
address is in such storage, the system instruction stor-
age error handler may be invoked (see Section 6.5.5 of
Book III).

---------------------------- End text --------------------------------

Section 5.3.1 Causes of Transaction Failure

Add that urfid, msgsndu and msgclru are disallowed.

-------------------------- Begin text --------------------------------
 Execution of the following instructions while in the

Transactional state: icbi, copy, paste[.],
cp_abort, lwat, ldat, stwat, stdat, dcbf, dcbi,
dcbst, rfscv, rfid, hrfid, urfid, rfebb, mtmsr[d],
msgsnd, msgsndp, msgsndu, msgclr, msgclrp,
msgclru, slbie[g], slbia, slbmte, slbfee, stop,
and tlbie[l]. (These instructions are considered to
be disallowed in Transactional state.) The disal-
lowed instruction is not executed; failure handling
occurs before it has been executed.

---------------------------- End text --------------------------------

Section 5.3.2 Recording of Transaction Failure

Add the secure bit.

-------------------------- Begin text --------------------------------

When transaction failure occurs, information about the
cause and circumstances of failure are recorded in
SPRs associated with the transactional facility. Failure
recording is performed a single time per transaction
that fails, controlled by the state of the TEXASR failure
summary (FS) bit; when 0, FS indicates that failure
recording has not already been performed, and is
therefore permissible.

The following RTL function specifies the actions taken
during the recording of transaction failure:

TMRecordFailure(FailureCause)
#FailureCause is 32-bit cause

code
if TEXASRFS = 0
 if failure IA known then
 TFIAR CIA
 TEXASR37 1
 else
 TFIAR approximate instruction address
 TEXASR37 0
 TEXASR0:31 FailureCause
 if MSRTS=0b01 then TEXASRSuspended 1

 TEXASRPrivilege MSRHV || MSRPR
 TFIARPrivilege MSRHV || MSRPR
 if MSRPR=0 then
 TEXASRSecure MSRS
 TEXASRFS 1
 TDOOMED 1

When failure recording occurs, the TEXASR and
TFIAR SPRs are set indicating the source of failure.
When possible, TFIAR is set to the effective address of
the instruction that caused the failure, and TEXASR37
is set to 1 indicating that the contents of TFIAR are
exact. When the instruction address is not known
exactly, an approximate value is placed in TFIAR and
TEXASR37 is set to 0. TEXASR bits 0:31 are set indi-
cating the cause of the failure, and the TEXASRSus-
pended, TEXASRPrivilege, and TFIARPrivilege fields are
set indicating the machine state in which the failure was
recorded. If MSRPR=0, TEXASRSecure is also set indi-
cating the machine state in which the failure was
recorded. TEXASRTL is unchanged. The TDOOMED
bit is set to 1.

---------------------------- End text --------------------------------

Section 5.4.2 Transaction EXception And Status
Register

Add bit 40 to hold a copy of MSR[S].

-------------------------- Begin text --------------------------------

39 Reserved

40 Secure (S)
The thread was in Secure state when the fail-
ure was recorded.

41:51 Reserved

52:63 Transaction Level (TL)
Transaction level (nesting depth + 1) for the
active transaction, if any; otherwise 0 if the
most recently executed transaction completed
successfully, or the transaction level at which

TFIAR is intended for use in the debugging of
transactional programs by identifying the source of
transaction failure. Because TFIAR may not always
be set exactly, software should test TEXASR37
before use; if zero, the contents of TFIAR are an
approximation.

This bit is read and written only when
MSRPR=0. When MSRPR=1, mtspr
instructions and transaction failure do not
modify the bit, and mfspr instructions
return 0 for the bit.

Programming Note

Programming Note
POWER9™ Processor Programming Model Bulletin 4

IBM Hardware Support Documentation
the most recently executed transaction failed
if the most recently executed transaction did
not complete successfully.

The transaction level in TEXASRTL contains an
unsigned integer indicating whether the current trans-
action is an outer transaction, or is nested, and if
nested, its depth. The maximum transaction level sup-
ported by a given implementation is of the form 2t - 1.
The value of t corresponding to the smallest maximum
is 4; the value of t corresponding to the largest maxi-
mum is 12. This value is tied to the “Maximum transac-
tion level” parameter useful for application
programmers, as specified in Section 4.1. The high-
order 12-t bits of TEXASRTL are treated as reserved.

Transaction failure information is contained in TEX-
ASR0:3740. The fields of TEXASR are initialized upon
the successful initiation of a transaction from the Non-
transactional state, by setting TEXASRTL to 1, indicat-
ing an outer transaction, and all other fields to 0.

When transaction failure is recorded, the failure sum-
mary bit TEXASRFS is set to 1, indicating that failure
has been detected for the active transaction and that
failure recording has been performed. TEXASR0:31 are
set indicating the source of the failure. Exactly one of
bits 8 through 31 will be set indicating the instruction or
event that caused failure. In the event of failure due to
the execution of a tabort., tabortdc., tabortdci.,
tabortwc., tabortwci. or treclaim. instruction, TEX-
ASR31 is set to 1, and, for tabort. and treclaim., a soft-
ware defined failure code is copied from a register
operand to TEXASR0:7. TEXASRSuspended indicates
whether the transaction was in the Suspended state at
the time that failure was recorded. The values of
MSRHV and MSRPR at the time that failure is recorded
are copied to TEXASR34 and TEXASR35, respectively.
If MSRPR is 0 at the time that failure is recorded, the
value of MSRS is copied into TEXASR40. In some cir-
cumstances, the failure causing instruction address in
TFIAR may not be exact. In such circumstances, TEX-
ASR37 is set to 0 indicating that the contents of TFIAR
are not exact; otherwise TEXASR37 is set to 1.

---------------------------- End text --------------------------------

Section 5.4.3 Transaction Failure Instruction
Address Register (TFIAR)

Fix for the addition of MSR[S] and explain why it
needn’t appear in the TFIAR.

-------------------------- Begin text --------------------------------

The Transaction Failure Instruction Address Register is
a 64-bit SPR that is set to the exact effective address of
the instruction causing the failure, when possible. Bits

A value of 1 corresponds to an outer transaction. A
value greater than 1 corresponds to a nested trans-
action.

Programming Note

The transaction level contained in TEXASRTL
should be interpreted by software as follows:

When in the Transactional or Suspended state, this
field contains an unsigned integer representing the
transaction level of the active transaction, with 1
indicating an outer transaction, and a number
greater than 1 indicating a nested transaction. The
nesting depth of the active transaction is TEXAS-
RTL – 1.

When in the Non-transactional state, TEXASRTL
contains 0 if the last transaction committed suc-
cessfully, otherwise it contains the transaction level
at which the most recent transaction failed.

The Privilege and Secure bits in TEXASR repre-
sent the state of the machine at the point when fail-
ure is recorded. This information may be used by
problem state software to determine whether an
unexpected interaction with the operating system
or with higher-privilege software (hypervisor or
ultravisor) was responsible for transaction failure.
(In problem state, mftexasr returns 0 for the
Secure bit.) This information may be useful to oper-
ating systems, hypervisors, or ultravisors when
restoring register state for failure handling after the
transactional facility was reclaimed, to determine
which level of software has retained the pre-trans-
actional version of the checkpointed registers.

Note that any transfer of control to the hypervisor
during a transaction initiated by a secure partition
will cause the transaction to fail because the ultra-
visor must protect the checkpointed register values
from the hypervisor, and therefore must execute
treclaim. before passing control to the hypervisor.
Thus if TEXASR reports that the failure was caused
by treclaim. and occurred in ultravisor state, noth-
ing is likely to be gained from additional analysis.

Programming Note

Programming Note
 RFC02487: Secure Memory Facility 5

IBM Hardware Support Documentation
62:63 contain the value that was in MSRHV || MSRPR
when the failure was recorded.

Figure 1. Transaction Failure Instruction Address
Register (TFIAR)

In certain cases, the exact address may not be avail-
able, and therefore TFIAR will be an approximation. An
approximate value will point to an instruction near the
instruction that was executing at the time of the failure.
TFIAR accuracy is recorded in an Exact bit residing in
TEXASR37.

---------------------------- End text --------------------------------

TFIA Privilege
0 62 63

The purpose of the Privilege field in TFIAR is to
prevent mftfiar executed in a given privilege state
from returning an effective address that was
recorded in a higher privilege state; see <xref to
section 4.4.4 (mfspr)>. There is no need for mft-
fiar to prevent the hypervisor from returning an
effective address that was recorded in ultravisor
state because the ultravisor, running in Non-trans-
actional state, can use TEXASRFS and TEXASRS
HV PR to determine whether the most recent trans-
action failure occurred in ultravisor state and, if the
most recent transaction failure did occur in ultravi-
sor state, the ultravisor can set TFIAR to all 0s
before passing control to the hypervisor. For this
reason there is no need for TFIAR to contain the
value that was in MSRS when the failure was
recorded.

Programming Note
POWER9™ Processor Programming Model Bulletin 6

IBM Hardware Support Documentation
Book 3S:
Section 1.2.1 Definitions and Notation

Add definitions of ultravisor and hypervisor interrupts.
Delete trap interrupt.

-------------------------- Begin text --------------------------------

 exception
An error, unusual condition, or external signal, that
may set a status bit and may or may not cause an
interrupt, depending upon whether the correspond-
ing interrupt is enabled.

 interrupt
The act of changing the machine state in response
to an exception, as described in Chapter
6. “Interrupts” on page 1095.

- ultravisor interrupt
An interrupt that forces the thread into ultravi-
sor state by explicitly setting MSRS HV PR to
0b110 (see <xref to section 3.2.1>).

- hypervisor interrupt
An interrupt that forces the thread into hyper-
visor state by explicitly setting MSRHV PR to
0b10 and is not an ultravisor interrupt.

All interrupts explicitly set MSRPR to 0.

---------------------------- End text --------------------------------

Update the definition of “must” as follows..

-------------------------- Begin text --------------------------------

 “must”
If software that runs in hypervisor state violates a
rule that is stated using the word “must” (e.g., “this
field must be set to 0”), and the rule pertains to the
contents of a hypervisor resource, to executing an
instruction that can be executed only in hypervisor
state, or to accessing storage in real addressing
mode, the results are undefined, and may include
altering resources belonging to other partitions,
causing the system to “hang”, etc. The same is
true for software that runs in ultravisor state and
violates a “must” rule pertaining to an ultravisor
resource or instruction.

---------------------------- End text --------------------------------

After the hardware bullet, add the following new bullet.

-------------------------- Begin text --------------------------------
 ultravisor privileged

A term used to describe an instruction or facility
that is available when and only when the thread is
in ultravisor state.

---------------------------- End text --------------------------------

Update the definition of hypervisor privileged as follows
to smooth over the addition of ultravisor.

-------------------------- Begin text --------------------------------
 hypervisor privileged

A term used to describe an instruction or facility
that is available when and only when the thread is
in hypervisor state.

---------------------------- End text --------------------------------

Add the definition of privileged as follows for complete-
ness.

-------------------------- Begin text --------------------------------
 privileged

A term used to describe an instruction or facility
that is available when and only when the thread is
in privileged state.

---------------------------- End text --------------------------------

Section 1.4 Exceptions

After the second bullet, add the following as the third
bullet.

-------------------------- Begin text --------------------------------
 an attempt to modify an ultravisor resource when

the thread is in privileged but non-ultravisor state
(see <crossref to new ch3>), or an attempt to exe-
cute an ultravisor-only instruction (e.g., urfid,
msgsndu, msgclru) when the thread is in privi-
leged but non-ultravisor state

---------------------------- End text --------------------------------

Because ultravisor state is also a hypervisor
state, hypervisor privileged instructions and
facilities are also available when the thread is
in ultravisor state. (The distinct privilege states
in which a hypervisor privileged instruction or
facility is available are: hypervisor non-ultravi-
sor state, and ultravisor state.)

Because hypervisor state is also a privileged
state, privileged instructions and facilities are
also available when the thread is in hypervisor
state (and when the thread is in ultravisor
state). (The distinct privilege states in which a
privileged instruction or facility is available are:
privileged non-hypervisor state, hypervisor
non-ultravisor state, and ultravisor state.)

Programming Note

Programming Note
 RFC02487: Secure Memory Facility 7

IBM Hardware Support Documentation
Section 2.2 Logical Partitioning Control Register
(LPCR)

In the AIL definition, add the missing special case of
scv. Add the ultravisor interrupts to the list that work as
if AIL=0 and also interrupts taken by the ultravisor.
Restructure the overrides to improve clarity.

-------------------------- Begin text --------------------------------

The overrides mentioned above are as fol-
lows. The list should be read from the top
down; the first item matching a given situation
applies.
 If the interrupt results in the thread

being in ultravisor state, the interrupt is
taken as if LPCRAIL=0.

 Machine Check, System Reset, and
Hypervisor Maintenance interrupts are
taken as if LPCRAIL=0.

 If the interrupt occurs when MSRIR=0
or MSRDR=0, the interrupt is taken as
if LPCRAIL=0.

 If the interrupt causes a transition from
MSRHV=0 to MSRHV=1 and HR=0, the
interrupt is taken as if LPCRAIL=0.

---------------------------- End text --------------------------------

Extend the EVIRT definition to cover ultravisor-privi-
leged resources and instructions.

-------------------------- Begin text --------------------------------

42 Enhanced Virtualization (EVIRT)

Controls whether Enhanced Virtualization is
enabled, as specified below.

0 Enhanced virtualization is disabled:
attempts to execute hypervisor-privileged
instructions or access hypervisor
resources, or PTCR, DAWR0, DAWRX0,
or CIABR when they are ultravisor
resources, in privileged but non-hypervi-
sor state cause a Privileged Instruction
type Program interrupt; attempts to
access undefined SPR numbers other
than 0 for mtspr and 0, 4, 5, and 6 for
mfspr in privileged state are treated as
noops.

1 Enhanced virtualization is enabled:
attempts to execute hypervisor-privileged
instructions or access hypervisor
resources, or PTCR, DAWR0, DAWRX0,
or CIABR when they are ultravisor
resources, in privileged but non-hypervi-
sor state cause a Hypervisor Emulation
Assistance interrupt; attempts to access
undefined SPR numbers other than 0 for
mtspr and 0, 4, 5, and 6 for mfspr in priv-
ileged state cause a Hypervisor Emulation
Assistance interrupt.

---------------------------- End text --------------------------------

Change HR definition to be consistent with PATE[HR].

-------------------------- Begin text --------------------------------

43 Host Radix (HR)

Indicates whether the hypervisor uses Radix
Tree translation for the partition, as specified
below.

0 hypervisor uses HPT translation for this
partition.

1 hypervisor uses Radix Tree translation for
this partition.

---------------------------- End text --------------------------------

Section 2.5 Processor Compatibility Register (PCR)

Add urfid to [h]rfid as unaffected by the PCR with
respect to its setting of the MSR.

-------------------------- Begin text --------------------------------

The PCR has no effect on the setting of the MSR and
[H]SRR1 by interrupts (and of the Count Register by
the System Call Vectored interrupt), and by the rfscv,
rfid, hrfid, urfid, and mtmsr[d] instructions, except as
specified elsewhere in this section.

---------------------------- End text --------------------------------

Section 2.7 Sharing Hypervisor and Ultravisor
Resources

Extend the section title. Add URMOR and SMFCTRL
to the section. Also correct that PECE may differ by
thread in LPCR.

-------------------------- Begin text --------------------------------

Certain additional hypervisor and ultravisor resources,
and the PVR, may be shared among threads. Pro-
grams that modify these resources must be aware of
this sharing, and must allow for the fact that changes to
these resources may affect more than one thread.

The hypervisor must program HR to
match the Host Radix bit in the appropri-
ate Partition Table Entry. If the values do
not match when MSRHV PR ≠ 0b10 or
MSRIR DR ≠ 0b00, the results are unde-
fined.

HR is duplicated in the LPCR because
there are times such as immediately after
a partition swap when it is difficult for
hardware to quickly access the PATE.

Programming Note
POWER9™ Processor Programming Model Bulletin 8

IBM Hardware Support Documentation
The following additional resources may be shared
among threads.
 HRMOR (see Section 2.3)
 LPIDR (see Section 2.4)
 PCR (see Section 2.5)
 URMOR (see <crossref to ch3>)
 PVR (see Section 4.3.1)
 RPR (see Section 4.3.8)
 PTCR (see Section 5.7.6.1)
 AMOR (see Section 5.7.14.1)
 HMEER (see Section 6.2.10)
 Time Base (see Section 7.2)
 Virtual Time Base (see Section 7.3)
 Hypervisor Decrementer (see Section 7.5)
 certain implementation-specific registers or imple-

mentation-specific fields in architected registers

The set of resources that are shared is implementation-
dependent.

Threads that share any of the resources listed above,
with the exception of the PTCR, the PVR, the URMOR,
and the HRMOR, must be in the same partition.

For each field of the LPCR, except the AIL, ONL, LD,
PECE, HDICE, and MER fields, software must ensure
that the contents of the field are identical among all
threads that are in the same partition and are in a state
such that the contents of the field could have side
effects. (E.g., software must ensure that the contents of
LPCRLPES are identical among all threads that are in
the same partition and are not in hypervisor state.) For
the HDICE field, software must ensure that the con-
tents of the field are identical among all threads that
share the Hypervisor Decrementer and are in a state
such that the contents of the field could have side
effects. There are no identity requirements for the
other fields listed in the first sentence of this paragraph.

Software must ensure that the contents of UILE and
SMFCTRLE are identical among all threads in the sys-
tem that have completed ultravisor initialization. The
contents of the D and UDEE fields of SMFCTRL may
differ among threads.

---------------------------- End text --------------------------------

Section 2.10 Hypervisor Interrupt Little-Endian
(HILE) Bit

Restate the circumstances for using HILE to allow for
ultravisor state.

-------------------------- Begin text --------------------------------

The Hypervisor Interrupt Little-Endian (HILE) bit is a bit
in an implementation-dependent register or similar
mechanism. The contents of the HILE bit are copied
into MSRLE by interrupts that result in MSRS HV being
equal to 0b01 (see Section 6.5), to establish the Endian
mode for the interrupt handler. The HILE bit is set, by
an implementation-dependent method, only during sys-
tem initialization.

The contents of the HILE bit must be the same for all
threads under the control of a given instance of the
hypervisor; otherwise all results are undefined.

---------------------------- End text --------------------------------
 RFC02487: Secure Memory Facility 9

IBM Hardware Support Documentation
Chapter 2+ Ultravisor and Secure Memory Facility
(SMF)

Add the following chapter after Chapter 2, Logical Parti-
tioning (LPAR) and Thread Control, to describe the
ultravisor functionality and related support for the
secure memory facility.

-------------------------- Begin text --------------------------------

3.1 Overview
The Secure Memory Facility (SMF) provides secure
isolation of partitions from one another and from higher
privilege system software. SMF functionality is imple-
mented using a combination of hardware facilities and
firmware that runs at a privilege level above the hyper-
visor. SMF targets a threat model in which the hypervi-
sor can be compromised such that its inherent isolation
capabilities can no longer be counted on. Maintaining
the security of data is the sole objective of the ultravi-
sor. It has no role in platform management and is not
expected to deal with denial of service attacks. Refer-
ences elsewhere in the Books to “secure systems”
apply more generally, and do not necessarily imply that
the system uses SMF.

The SMF protection mechanism is based on the
assignment of partitions to security domains. The
hypervisor is in one security domain, along with all pro-
cesses that run directly under the hypervisor and all
partitions that do not take advantage of the SMF secu-
rity capabilities. Each of the secure partitions is
assigned to its own security domain so that its data and
instructions can be protected from access by other
security domains. A partition is identified as secure
when MSRS=1. Each location in main storage has an
associated Secure Memory property, memSM. Memory
with memSM=1 may be referred to as “secure memory.”
Memory with memSM=0 may be referred to as “ordinary
memory.” The granularity and method with which main
storage is mapped for the Secure Memory property is
implementation specific. The Secure Memory property
is commonly cached in the TLB and in implementation-
specific lookaside buffers. When secure data are to be
shared with untrusted software, the standard synchro-
nization associated with PTE updates is used to regu-
late access. For example, prior to sharing secure data,
the PTEs used to access the data are marked invalid
and the corresponding TLB entires invalidated by the
ultravisor using the standard invalidation sequence.
(See <crossref to pte update sequence desc>.) The
data are then encrypted and made available in ordinary
memory (either memSM is turned off or the data are
moved to ordinary memory). Finally the PTEs that will
be used to access the data in ordinary memory are
marked valid. (The last step may be done lazily.) Soft-
ware running with MSRS=0 is prohibited from access-
ing secure memory. Software running with MSRS=1
may access both secure and ordinary memory.

SMF firmware runs in ultravisor state, a privilege level
above that of the hypervisor. That firmware, along with
the SMF hardware, is responsible for maintaining isola-
tion of secure partitions from each other and from the
hypervisor. This is accomplished by direct ultravisor
management of the partition-scoped translation tables
in secure memory for secure partitions. The ultravisor
itself runs only in (ultravisor) real addressing mode.
Security is the result of proper management of the par-
tition-scoped translation together with the hardware
enforcement of the access restriction for secure mem-
ory. With this hybrid approach, firmware has the ability
to enable secure memory sharing between secure par-
titions and ordinary memory sharing between a given
secure partition and the hypervisor, e.g. for system
calls. The ultravisor can access any architecture
resource or facility.

The hypervisor is expected to cooperate in the man-
agement of secure partitions by using ultravisor calls to
dispatch them and to manage their storage allocations.
To protect against programming errors and malicious
hypervisor behavior, mtmsr[d], rfid, hrfid, and rfscv
preserve MSRS and hypervisor interrupts from secure
partitions are always received in ultravisor state.

The purpose of intercepting hypervisor interrupts is to
protect the state of the secure partition from the hyper-
visor. The ultravisor’s interrupt handler provides a
‘shim’ that saves and clears the processing state, and
then transfers control to the hypervisor to handle the
exception condition itself. The ultravisor will restore the
secure partition state when it services the ultravisor call
to (re-) dispatch the secure partition. Note that the
ultravisor’s goal is merely to protect the security of
data, and not to provide broader system management
oversight.

The ultravisor will commonly use a no-execute pro-
tection setting to prevent a secure partition from
executing instructions from any ordinary memory
mapped into its address space.

When the ultravisor intercepts an interrupt with a
transaction active, it must save and restore the
checkpointed registers (causing the transaction to
fail).

Programming Note

Programming Note
POWER9™ Processor Programming Model Bulletin 10

IBM Hardware Support Documentation
3.2 Ultravisor Real Mode Offset
Register (URMOR)
The layout of the Ultravisor Real Mode Offset Register
(URMOR) is shown in Figure 2 below.

Figure 2. Ultravisor Real Mode Offset Register

All other fields are reserved.

The supported URMO values are the non-negative
multiples of 2r, where r is the same implementation-
dependent value that constrains the HRMO field of the
HRMOR.

The contents of the URMOR affect how some storage
accesses are performed as described in <crossref to
Real and Virtual Real Addressing modes section> and
<crossref to Address Ranges Having Defined Uses
section>.

3.3 Ultravisor Interrupt Little-
Endian (UILE) Bit
The Ultravisor Interrupt Little-Endian (UILE) bit is a bit
in an implementation-dependent register or similar
mechanism. The contents of the UILE bit are copied
into MSRLE by interrupts that result in MSRS HV being
equal to 0b11 (see Section 6.5), to establish the Endian
mode for the interrupt handler. The UILE bit is set, by
an implementation-dependent method, only during sys-
tem initialization.

The contents of the UILE bit must be the same for all
threads in the system; otherwise all results are unde-
fined.

3.4 Secure Memory Facility Con-
trol Register (SMFCTRL)
The Secure Memory Facility Control Register (SMFC-
TRL) is shown in Figure 3 below.

Figure 3. Secure Memory Facility Control Register
(SMFCTRL)

Bit Description
0 SMF Enable (E)

0 SMF functionality including secure mem-
ory checking is disabled.

1 SMF functionality including secure mem-
ory checking is enabled.

When SMFCTRLE=1, writing the PTCR is
ultravisor privileged.

1 Debug enable (D)
0 Ultravisor debug mode is disabled.
1 Ultravisor debug mode is enabled.

In ultravisor debug mode, CIABR, DAWRn,
and DAWRXn are ultravisor privileged. See
<crossref to ch.8> for a description of how
instruction and data address tracing work in
ultravisor debug mode.

2 Ultravisor Doorbell Exit Enable (UDEE)
0 When the stop instruction is executed

with PSSCREC=1, Directed Ultravisor
Doorbell exceptions are not enabled to
cause exit from power-saving mode

1 When the stop instruction is executed
with PSSCREC=1, Directed Ultravisor
Doorbell exceptions are enabled to cause
exit from power-saving mode.

3:61 Reserved

62:63 Implementation-specific use

SMFCTRLE must be set to 1 prior to exiting ultravisor
state if the system will use the SMF facilities. (When
SMFCTRLE=0 and MSRS=0, there is no way to
achieve MSRS=1 without a reboot.)

If SMFCTRLE=0, SMFCTRLD and SMFCTRLUDEE
must be set to zero. References to SMFCTRLD=1 or
SMFCTRLUDEE=1 elsewhere in the architecture
assume SMFCTRLE=1 unless otherwise stated or obvi-
ous from context.

3.4.1 Enabling SMF and Secure
Memory Enforcement
The SMFCTRLE bit enables SMF functionality. When
SMFCTRLE=1, certain facilities are ultravisor resources

// URMO
 0 4 63

Bit(s) Name Description
4:63 URMO Real Mode Offset

E D UDEE /// ??

0 1 2 3 62 63

The two useful runtime states with respect to SMF
operation are (1) MSRS=0 and SMFCTRLE=0
(SMF permanently disabled) and (2) SMFCTRLE=1
(SMF enabled). Very limited verification may be
performed on the state with MSRS=1 and SMFC-
TRLE=0 and around state changes of SMFC-
TRLE. Therefore, software should change the
value of SMFCTRLE at most once, making the
change prior to the first dispatch of a partition, and
spending as little time as possible in the state with
MSRS=1 and SMFCTRLE=0.

Programming Note
 RFC02487: Secure Memory Facility 11

IBM Hardware Support Documentation
instead of hypervisor resources and secure memory
checking is enabled.

Independent of the basic feature enablement above,
SMF has state transition rules that facilitate the protec-
tion of security domains. (While these rules are nomi-
nally independent of the value of SMFCTRLE, some
transitions cannot happen when SMFCTRLE=0. Spe-
cifically, ultravisor interrupts cannot occur when SMFC-
TRLE=0.)

 All interrupts that are not ultravisor interrupts pre-
serve MSRS. (Ultravisor interrupts necessarily set
MSRS to 1.)

 mtmsr[d], rfid, hrfid, and rfscv are not permitted
to change MSRS

Table 1 summarizes the effect of the SMFCTRLE bit
and the MSRS HV PR bits on various facilities.

Table 1: Ultravisor Resource Behavior

facility MSRS HV PR SMFCTRLE LPCREVIRT behavior
mtspr or mfspr specifying
URMOR, USRR0, USRR1,
USPRG0, USPRG1, or
SMFCTRL;
urfid, msgsndu, msgclru

110 dc dc execution allowed
all xxx
except 110**

dc dc Privileged Instruction type Program inter-
rupt to xx0

mtspr specifying PTCR 110 dc dc execution allowed
010 0 dc execution allowed

1 dc HEAI to 010
x00 dc 0 Privileged Instruction type Program inter-

rupt to x00
1 HEAI to x10

xx1** dc dc Privileged Instruction type Program inter-
rupt to xx0

mtspr or mfspr specifying
DAWR0, DAWRX0 or CIABR
when SMFCTRLD=1

110 1 dc execution allowed
010 1 dc HEAI to 010
x00 1 0 Privileged Instruction type Program inter-

rupt to x00
1 HEAI to x10

xx1** 1 dc Privileged Instruction type Program inter-
rupt to xx0

sc 2 instruction dc** 0 dc hypervisor call, but with SRR1 showing
LEV=2

dc** 1 dc ultravisor call
memSM evaluation and
match

dc** 0 dc disabled
dc** 1 dc enabled*

* memSM evaluation may be avoided when MSRS=1, depending on translation cache design
dc = don’t care
** The encoding MSRS HV PR=0b111 is reserved and must not be used.
POWER9™ Processor Programming Model Bulletin 12

IBM Hardware Support Documentation

---------------------------- End text --------------------------------

Access to memory by mechanisms outside the
core must also enforce secure memory access
restrictions. Facilities that translate addresses or
otherwise use real addresses to access memory
must check memSM against PATES for the partition
on behalf of which they access memory.

Such mechanisms will require a means to evaluate
memSM and a proxy for SMFCTRLE to provide the
same enablement function for secure memory
access enforcement as in the core.

In addition or as an alternative, TCE tables may be
managed by the ultravisor and used to identify
regions of memory that I/O devices may access.

Programming Note
 RFC02487: Secure Memory Facility 13

IBM Hardware Support Documentation
Section 3.2.1 Machine State Register

Add the S bit and references to urfid, as needed. Also
specify that SF must be set to 1 in ultravisor state.

-------------------------- Begin text --------------------------------

The Machine State Register (MSR) is a 64-bit register.
This register defines the state of the thread. On inter-
rupt, the MSR bits are altered in accordance with
Figure 55 on page 1010. The MSR can also be modi-
fied by the mtmsr[d], rfscv, rfid, hrfid and urfid
instructions. It can be read by the mfmsr instruction.

Figure 4. Machine State Register

Below are shown the bit definitions for the Machine
State Register.

Bit Description
0 Sixty-Four-Bit Mode (SF)

0 The thread is in 32-bit mode.
1 The thread is in 64-bit mode.

Software must ensure that SF=1 whenever
the thread is in ultravisor state.

1:2 Reserved

3 Hypervisor State (HV)

0 The thread is not in hypervisor state.
1 If MSRPR=0, the thread is in hypervisor

state; otherwise the thread is not in hyper-
visor state.

4 Reserved

5 Software must ensure that this bit contains 0;
otherwise the results of executing all instruc-
tions are boundedly undefined.

6:28 Reserved

29:30 Transaction State (TS)

00 Non-transactional
01 Suspended
10 Transactional
11 Reserved

MSR
0 63

The privilege state of the thread is deter-
mined by MSRS, MSRHV, and MSRPR, as
follows.

S HV PR

0 x 1 problem
1 0 1 problem
x x 0 privileged
x 1 0 hypervisor
1 1 0 ultravisor
1 1 1 reserved

Hypervisor state is also a privileged state
(MSRPR = 0). All references to “privileged
state” in the Books include hypervisor
state unless otherwise stated or obvious
from context. Ultravisor state is also a
hypervisor state (MSRHV PR = 0b10). All
references to “hypervisor state” in the
Books include ultravisor state unless oth-
erwise stated or obvious from context.

MSRHV can be set to 1 only by the Sys-
tem Call instruction and some interrupts. It
can be set to 0 only by rfid, hrfid and
urfid.

It is possible to run an operating system in
an environment that lacks a hypervisor, by
always having MSRHV = 1 and using
MSRHV PR = 0b10 for the operating sys-
tem (effectively, the OS runs in hypervisor
state) and MSRHV PR = 0b11 for applica-
tions. In this use, MSRS would be 0, and
the environment would also lack an ultra-
visor.

This bit is initialized to 0 by hardware at
system bringup. The handling of this bit
by interrupts and by the rfid, hrfid, urfid,
and rfscv instructions is such that, unless
software deliberately sets the bit to 1, the
bit will continue to contain 0.

Programming Note

Programming Note
POWER9™ Processor Programming Model Bulletin 14

IBM Hardware Support Documentation
Changes to MSR[TS] that are caused by
Transactional Memory instructions, and by
invocation of the transaction's failure handler,
take effect immediately (even though these
instructions and events are not context syn-
chronizing).

31 Transactional Memory Available (TM)

0 The thread cannot execute any Transac-
tional Memory instructions or access any
Transactional Memory registers.

1 The thread can execute Transactional
Memory instructions and access Transac-
tional Memory registers unless the Trans-
actional Memory facility has been made
unavailable by some other register.

32:37 Reserved

38 Vector Available (VEC)

0 The thread cannot execute any vector
instructions, including vector loads,
stores, and moves.

1 The thread can execute vector instruc-
tions unless they have been made
unavailable by some other register.

39 Reserved

40 VSX Available (VSX)

0 The thread cannot execute any VSX
instructions, including VSX loads, stores,
and moves.

1 The thread can execute VSX instructions
unless they have been made unavailable
by some other register.

41 Secure (S)

0 The thread is not in Secure state. It may
not access Secure memory. The thread is
not in ultravisor state.

1 The thread is in Secure state. If
MSRHV=1 and MSRPR=0, the thread is in
ultravisor state; otherwise the value does
not affect privilege. The state with

MSRHV=1 and MSRPR=1 is reserved.
Software must not set MSRS HV PR =
0b111. References elsewhere in this doc-
ument to MSRHV PR=0b11 assume
MSRS=0 unless otherwise stated or obvi-
ous from context.

42:47 Reserved

...48 External Interrupt Enable (EE)

0 External, Decrementer, Performance
Monitor, and Privileged Doorbell interrupts
are disabled.

1 External, Decrementer, Performance
Monitor, and Privileged Doorbell interrupts
are enabled.

This bit also affects whether Hypervisor Dec-
rementer, Hypervisor Maintenance, Directed
Hypervisor Doorbell, and Directed Ultravisor
Doorbell interrupts are enabled; see
Section 6.5.12 on page 1122, Section 6.5.19
on page 1130, Section 6.5.20 on page 1131,
and <crossref to ultravisor doorbell int>.

49 Problem State (PR)

0 The thread is in privileged state.
1 If MSRS HV ≠ 0b11, the thread is in prob-

lem state.

..

51 Machine Check Interrupt Enable (ME)

0 Machine Check interrupts are disabled.
1 Machine Check interrupts are enabled.

This bit is a hypervisor resource; see Chapter
2., “Logical Partitioning (LPAR) and Thread
Control”, on page 879.

To access Transactional Memory registers
and execute Transactional Memory
instructions, it must also be true that
HFSCRTM=1 or the thread is in hypervisor
state. See Section 6.2.12 on page 1099
for more information.

An application binary interface defined to
support Vector-Scalar operations should
also specify a requirement that MSRFP and
MSRVEC be set to 1 whenever MSRVSX is set
to 1.

Programming Note

Programming Note

MSRS can be set to 1 only by the System
Call instruction and some interrupts. It
can be set to 0 only by urfid.

Any instruction or event that causes
MSRS HV PR to be set to 0b110 also
causes MSRIR and MSRDR to be set to 0.

Any instruction that sets MSRPR to 1 also
sets MSREE, MSRIR, and MSRDR to 1.

The state with MSRS HV PR=0b111 is
reserved.

The only instructions that can alter
MSRME are rfid, hrfid and urfid.

Programming Note

Programming Note

Programming Note
 RFC02487: Secure Memory Facility 15

IBM Hardware Support Documentation
52 Floating-Point Exception Mode 0 (FE0)
[Category: Floating-Point]

See below.

53:54 Trace Enable (TE)

00 Trace Disabled: The thread executes
instructions normally.

01 Branch Trace: The thread generates a
Branch type Trace interrupt after complet-
ing the execution of a branch instruction,
whether or not the branch is taken.

10 Single Step Trace: The thread generates
a Single-Step type Trace interrupt after
successfully completing the execution of
the next instruction, unless that instruction
is a urfid, hrfid, rfid, rfscv, or a Power-
Saving Mode instruction, all of which are
never traced. Successful completion
means that the instruction caused no
other interrupt and, if the processor is in
the Transactional state, is not one of the
instructions that is forbidden in Transac-
tional state (e.g., dcbf; see Section 4.3.1
of Book II).

11 Reserved

Branch tracing need not be supported. If the
function is not implemented, the 0b01 bit
encoding is treated as reserved.

...

58 Instruction Relocate (IR)

0 Instruction address translation is disabled.
1 Instruction address translation is enabled.

59 Data Relocate (DR)

0 Data address translation is disabled.
Effective Address Overflow (EAO) (see
Book I) does not occur.

1 Data address translation is enabled. EAO
causes a Data Storage interrupt.

...

63 Little-Endian Mode (LE)

0 The thread is in Big-Endian mode.
1 The thread is in Little-Endian mode.

...

The initial state of the MSR should be as follows:

...

...
Bit Name Value

...
41 S 1

---------------------------- End text --------------------------------

Section 3.2.2 State Transitions Associated with the
Transactional Memory Facility

Add urfid to each place in the section where the other
*rfid’s are listed. The same TM state change restric-
tions should apply to urfid. (USRR1 will also need to be
added to the last one before the e-note.) Special
related explanation is added to the last p-note in the
section as follows.

-------------------------- Begin text --------------------------------

---------------------------- End text --------------------------------

See the Programming Note in the defini-
tion of MSRS and in the definition of
MSRPR.

See the Programming Note in the defini-
tion of MSRS and in the definition of
MSRPR.

Programming Note

Programming Note

The only instructions that can alter MSRLE
are rfid, hrfid, urfid, and rfscv.

For rfscv, rfid, hrfid, urfid and mtmsrd, the
attempted transition from S0 to N0 is suppressed in
order that interrupt handlers that are "unaware" of
transactional memory, and load an MSR value that
has not been updated to take account of transac-
tional memory, will continue to work correctly. (If
the interrupt occurs when a transaction is running
or suspended, the interrupt will set MSR[TS || TM]
to S0. If the interrupt handler attempts to load an
MSR value that has not been updated to take
account of transactional memory, that MSR value
will have TS || TM = N0. It is desirable that the
interrupt handler remain in state S0, so that it can
return normally to the interrupted transaction.)

The problem solved by suppressing this transition
does not apply to rfebb, so for rfebb an attempt to
transition from S0 to N0 is not suppressed, and
instead causes a TM Bad Thing type Program
interrupt.

(The problem solved by suppressing this transition
does not apply to urfid either, since urfid was
added to the architecture after Transactional Mem-
ory was added. The transition is suppressed for
urfid because urfid is very similar to [h]rfid.)

Programming Note

Programming Note
POWER9™ Processor Programming Model Bulletin 16

IBM Hardware Support Documentation
Section 3.2.3 Processor Stop Status and Control
Register (PSSCR)

Change “secure environments” to “secure systems” in
the second p-note for consistency with other such ref-
erences.

-------------------------- Begin text --------------------------------

---------------------------- End text --------------------------------

Add behavior for loss of UDEE to the end of the ESL
description just before the notes.

-------------------------- Begin text --------------------------------

For power-saving levels that allow loss of SMFCTRL,
implementations must provide the means to exit power-
saving mode upon the occurrence of a Directed Ultravi-
sor Doorbell exception if SMFCTRLUDEE was set to 1
when stop was executed. For this case, the implemen-
tation is also allowed to exit on the occurrence of a
Directed Ultravisor Doorbell exception if
SMFCTRLUDEE was set to 0 when stop was executed.

---------------------------- End text --------------------------------

Add UDEE and ultravisor doorbell to the wakeup
description for EC=1.

-------------------------- Begin text --------------------------------
1 If SMFCTRLUDEE was set to 1 when stop

was executed and SMFCTRLUDEE was
not lost, hardware will exit power-saving
mode when a Directed Ultravisor Doorbell
exception occurs. If LPCRPECE is not lost,
hardware will exit power-saving mode
when a System Reset exception or one of
the events specified in LPCRPECE occurs.
If the event is a Machine Check exception,
then a Machine Check interrupt occurs;
otherwise a System Reset interrupt
occurs, and the contents of SRR1 indicate
the event that caused exit from power-
saving mode.

---------------------------- End text --------------------------------

Section 3.3.1 System Linkage Instructions

Adjust the LEV field description in the description of the
sc instruction as follows:

-------------------------- Begin text --------------------------------

Then a System Call interrupt is generated. The inter-
rupt causes the MSR to be set as described in
Section 6.5, “Interrupt Definitions” on page 1009. The
setting of the MSR is affected by the contents of the
LEV field. LEV values greater than 2 are reserved. Bits
0:4 of the LEV field (instruction bits 20:24) are treated
as a reserved field.

The interrupt causes the next instruction to be fetched
from effective address 0x0000_0000_0000_0C00.

This instruction is context synchronizing.

Special Registers Altered:
SRR0 SRR1 MSR

---------------------------- End text --------------------------------

In the description of rfscv, don’t allow S (41) to be
changed. Also prevent translation from being enabled
in ultravisor state. Also eliminate MSR[LE] (bit 63).
Add USRR0 to the [H]SRR0s for an enabled pending
exception. Make corresponding changes (and fixes) to
the p-note following the verbal description.
-------------------------- Begin text --------------------------------
if (MSR29:31 ¬= 0b010 | CTR29:31 ¬= 0b000) then
 MSR29:31 CTR29:31
MSR48 CTR48 | CTR49
MSR58 (CTR58 | CTR49)
 & ¬(MSR41 & MSR3 & (¬CTR49))
MSR59 (CTR59 | CTR49)

Before dispatching an OS, the hypervisor
may initialize this field to 1 in order to pre-
vent the OS from reading the Power-Sav-
ing Level Status (PLS) field. This may be
necessary in secure systems since an OS
may be capable of detecting the presence
of another OS on the same processor by
observing the state of the PLS field after
exiting power-saving mode.

Programming Note

If LEV=1, the hypervisor is invoked.

If LEV=2 and SMFCTRLE = 1, the ultravisor is
invoked.

If LEV=2 and SMFCTRLE = 0, the hypervisor is
invoked. However, such invocation should be con-
sidered a programming error.

Executing this instruction with LEV=1 or LEV=2 is
the only way that executing an instruction can
cause a transition from non-hypervisor state to
hypervisor state on the thread that executed the
instruction. Executing this instruction with LEV=2
when SMFCTRLE=1 is the only way that executing
an instruction can cause a transition from non-ultra-
visor state to ultravisor state on the thread that exe-
cuted the instruction.

In correct use, this instruction is used to “call up”
one privilege level (application program calls oper-
ating system, operating system calls hypervisor,
hypervisor calls ultravisor). However, it is possible
for a program to call up more than one level (e.g.,
for an application program to call the hypervisor).
An attempt to call up more than one level should be
considered a programming error.

Programming Note
 RFC02487: Secure Memory Facility 17

IBM Hardware Support Documentation
 & ¬(MSR41 & MSR3 & (¬CTR49))
MSR0:2 4:28 32 37:40 49:50 52:57 60:63CTR0:2 4:28 32 37:40 49:50 52:57
60:63
NIA iea LR0:61 || 0b00

 If bits 29 through 31 of the MSR are not equal to 0b010
or bits 29 through 31 of the Count Register are not
equal to 0b000, then the value of bits 29 through 31 of
the Count Register is placed into bits 29 through 31 of
the MSR. The result of ORing bits 48 and 49 of the
Count Register is placed into MSR48. The result of
ANDing bit 41 of the MSR with bit 3 of the MSR and
with the complement of bit 49 of the Count Register is
complemented and then ANDed with the result of
ORing bits 58 and 49 of the Count Register and placed
into MSR58. The result of ANDing bit 41 of the MSR
with bit 3 of the MSR and with the complement of bit 49
of the Count Register is complemented and then
ANDed with the result of ORing bits 59 and 49 of the
Count Register and placed into MSR59. Bits 0:2, 4:28,
32, 37:40, 49:50, 52:57, and 60:63 of the Count Regis-
ter are placed into the corresponding bits of the MSR.

If the instruction attempts to cause an illegal transaction
state transition (see Table 3, “Transaction state transi-
tions that can be requested by rfebb, rfid, rfscv, hrfid,
and mtmsrd.,” on page 984), or when TM is disabled by
the PCR, a transition to Problem state with an active
transaction, a TM Bad Thing type Program interrupt is
generated (unless a higher-priority exception is pend-
ing). If this interrupt is generated, the value placed into
SRR0 by the interrupt processing mechanism (see
Section 6.4.3) is the address of the rfid instruction.
Otherwise, if the new MSR value does not enable any
pending exceptions, then the next instruction is
fetched, under control of the new MSR value, from the
address LR0:61 || 0b00 (when SF=1 in the new MSR
value) or 320 || LR32:61 || 0b00 (when SF=0 in the new
MSR value). If the new MSR value enables one or
more pending exceptions, the interrupt associated with
the highest priority pending exception is generated; in
this case the value placed into SRR0, HSRR0, or
USRR0 by the interrupt processing mechanism (see
Section 6.4.3) is the address of the instruction that
would have been executed next had the interrupt not
occurred.

This instruction is privileged and context synchronizing.

Special Registers Altered:
MSR

---------------------------- End text --------------------------------

In the description of rfid, don’t allow S (41) to be
changed. Also don’t allow translation to be enabled in
ultravisor state.

-------------------------- Begin text --------------------------------

MSR51 (MSR3 & SRR151) | ((¬MSR3) & MSR51)
MSR3 MSR3 & SRR13
if (MSR29:31 ¬= 0b010 | SRR129:31 ¬= 0b000) then
 MSR29:31 SRR129:31
MSR48 SRR148 | SRR149
MSR58 (SRR158 | SRR149)
 & ¬(MSR41 & MSR3 & (¬SRR149))
MSR59 (SRR159 | SRR149)
 & ¬(MSR41 & MSR3 & (¬SRR149))
MSR0:2 4:28 32 37:40 49:50 52:57 60:63SRR10:2 4:28 32 37:40 49:50 52:57
60:63
NIA iea SRR00:61 || 0b00

If MSR3=1 then bits 3 and 51 of SRR1 are placed into
the corresponding bits of the MSR. If bits 29 through 31
of the MSR are not equal to 0b010 or bits 29 through
31 of SRR1 are not equal to 0b000, then the value of
bits 29 through 31 of SRR1 is placed into bits 29
through 31 of the MSR. The result of ORing bits 48 and
49 of SRR1 is placed into MSR48. The result of AND-
ing bit 41 of the MSR with bit 3 of the MSR and with the
complement of bit 49 of SRR1 is complemented and
then ANDed with the result of ORing bits 58 and 49 of
SRR1 and placed into MSR58. The result of ANDing bit
41 of the MSR with bit 3 of the MSR and with the com-
plement of bit 49 of SRR1 is complemented and then
ANDed with the result of ORing bits 59 and 49 of SRR1
and placed into MSR59. Bits 0:2, 4:28, 32, 37:40, 49:50,
52:57, and 60:63 of SRR1 are placed into the corre-
sponding bits of the MSR.

---------------------------- End text --------------------------------

-------------------------- Begin text --------------------------------

... If the new MSR value enables one or more pending
exceptions, the interrupt associated with the highest
priority pending exception is generated; in this case the
value placed into SRR0, HSRR0, or USRR0 by the
interrupt processing mechanism (see Section 6.4.3) is
the address of the instruction that would have been
executed next had the interrupt not occurred.

This instruction is privileged and context synchronizing.

Special Registers Altered:
MSR

---------------------------- End text --------------------------------

If this instruction sets MSRPR to 1, it also sets
MSREE, MSRIR, and MSRDR to 1. If this instruction
results in MSRS HV PR being equal to 0b110, it also
sets MSRIR and MSRDR to 0.

This instruction does not alter MSRHV, MSRS, or
MSRME.

Programming Note

If this instruction sets MSRPR to 1, it also sets
MSREE, MSRIR, and MSRDR to 1. If this instruction
results in MSRS HV PR being equal to 0b110, it also
sets MSRIR and MSRDR to 0.

Programming Note
POWER9™ Processor Programming Model Bulletin 18

IBM Hardware Support Documentation
In the description of hrfid, don’t allow S (41) to be
changed. Also don’t allow translation to be enabled in
ultravisor state.

-------------------------- Begin text --------------------------------

if (MSR29:31 ¬= 0b010 | HSRR129:31 ¬= 0b000) then
 MSR29:31 HSRR129:31
MSR48 HSRR148 | HSRR149
MSR58 (HSRR158 | HSRR149)
 & ¬(MSR41 & HSRR13 & (¬HSRR149))
MSR59 (HSRR159 | HSRR149)
 & ¬(MSR41 & HSRR13 & (¬HSRR149))
MSR0:28 32 37:40 49:57 60:63 HSRR10:28 32 37:40 49:57 60:63
NIA iea HSRR00:61 || 0b00

 If bits 29 through 31 of the MSR are not equal to 0b010
or bits 29 through 31 of HSRR1 are not equal to 0b000,
then the value of bits 29 through 31 of HSRR1 is placed
into bits 29 through 31 of the MSR. The result of ORing
bits 48 and 49 of HSRR1 is placed into MSR48. The
result of ANDing bit 41 of the MSR with bit 3 of HSRR1
and with the complement of bit 49 of HSRR1 is comple-
mented and then ANDed with the result of ORing bits
58 and 49 of HSRR1 and placed into MSR58. The
result of ANDing bit 41 of the MSR with bit 3 of HSRR1
and with the complement of bit 49 of HSRR1 is comple-
mented and then ANDed with the result of ORing bits
59 and 49 of HSRR1 and placed into MSR59. Bits 0:28,
32, 37:40, 49:57, and 60:63 of HSRR1 are placed into
the corresponding bits of the MSR.

If the instruction attempts to cause an illegal transaction
state transition (see Table 3, “Transaction state transi-
tions that can be requested by rfebb, rfid, rfscv, hrfid,
and mtmsrd.,” on page 984), or when TM is disabled by
the PCR, a transition to Problem state with an active
transaction, a TM Bad Thing type Program interrupt is
generated (unless a higher-priority exception is pend-
ing). If this interrupt is generated, the value placed into
SRR0 by the interrupt processing mechanism (see
Section 6.4.3) is the address of the hrfid instruction.
Otherwise, if the new MSR value does not enable any
pending exceptions, then the next instruction is
fetched, under control of the new MSR value, from the
address HSRR00:61 || 0b00 (when SF=1 in the new
MSR value) or 320 || HSRR032:61 || 0b00 (when SF=0 in
the new MSR value). If the new MSR value enables
one or more pending exceptions, the interrupt associ-
ated with the highest priority pending exception is gen-
erated; in this case the value placed into SRR0,
HSRR0, or USRR0 by the interrupt processing mecha-
nism (see Section 6.4.3) is the address of the instruc-
tion that would have been executed next had the
interrupt not occurred.

---------------------------- End text --------------------------------

-------------------------- Begin text --------------------------------

---------------------------- End text --------------------------------

After the description of hrfid add urfid:

-------------------------- Begin text --------------------------------

Ultravisor Return From Interrupt
Doubleword XL-form

urfid

if (MSR29:31 ¬= 0b010 | USRR129:31 ¬= 0b000) then
 MSR29:31 ← USRR129:31
MSR48 ← USRR148 | USRR149
MSR58 ← (USRR158 | USRR149)
 & ¬(USRR141 & USRR13 & (¬USRR149))
MSR59 ← (USRR159 | USRR149)
 & ¬(USRR141 & USRR13 & (¬USRR149))
MSR0:28 32 37:41 49:57 60:63 ← USRR10:28 32 37:41 49:57 60:63
NIA ←iea USRR00:61 || 0b00

 If bits 29 through 31 of the MSR are not equal to
0b010 or bits 29 through 31 of USRR1 are not equal to
0b000, then the value of bits 29 through 31 of USRR1
is placed into bits 29 through 31 of the MSR. The result
of ORing bits 48 and 49 of USRR1 is placed into
MSR48. The result of ANDing bit 41 of USRR1 with bit
3 of USRR1 and with the complement of bit 49 of
USRR1 is complemented and then ANDed with the
result of ORing bits 58 and 49 of USRR1 and placed
into MSR58. The result of ANDing bit 41 of USRR1 with
bit 3 of USRR1 and with the complement of bit 49 of
USRR1 is complemented and then ANDed with the
result of ORing bits 59 and 49 of USRR1 and placed
into MSR59. Bits 0:28, 32, 37:41, 49:57, and 60:63 of
USRR1 are placed into the corresponding bits of the
MSR.

If the instruction attempts to cause an illegal transaction
state transition or, when TM is made unavailable in
problem state by the PCR, attempts to cause a transi-
tion to problem state and also a transaction state transi-
tion that Table 3 on page 987 shows as legal and as
resulting in the thread being in Transactional or Sus-
pended state, a TM Bad Thing type Program interrupt
is generated (unless a higher-priority exception is
pending). If this interrupt is generated, the value placed
into SRR0 by the interrupt processing mechanism (see
Section 6.4.3) is the address of the urfid instruction.
Otherwise, if the new MSR value does not enable any

If this instruction sets MSRPR to 1, it also sets
MSREE, MSRIR, and MSRDR to 1. If this instruction
results in MSRS HV PR being equal to 0b110, it also
sets MSRIR and MSRDR to 0.

19 /// /// /// 306 /
0 6 11 16 21 31

Programming Note
 RFC02487: Secure Memory Facility 19

IBM Hardware Support Documentation
pending exceptions, then the next instruction is
fetched, under control of the new MSR value, from the
address USRR00:61 || 0b00 (when SF=1 in the new
MSR value) or 320 || USRR032:61 || 0b00 (when SF=0 in
the new MSR value). If the new MSR value enables
one or more pending exceptions, the interrupt associ-
ated with the highest priority pending exception is gen-
erated; in this case the value placed into SRR0,
HSRR0, or USRR0 by the interrupt processing mecha-
nism (see Section 6.4.3) is the address of the instruc-
tion that would have been executed next had the
interrupt not occurred.

This instruction is ultravisor privileged and context syn-
chronizing.

Special Registers Altered:
MSR

---------------------------- End text --------------------------------

Section 3.3.2 Power-Saving Mode

Add the ultravisor equivalent in the last bullet.

-------------------------- Begin text --------------------------------

Power-Saving Mode is a mode in which the thread
does not execute instructions and may consume less
power than it would if it were not in power-saving mode.
The thread can be put in power-saving mode by exe-
cuting the stop instruction.

There are 16 levels of power savings, designated as
levels 0-15. For each power-saving level, the power
consumed may be less than or equal to the power con-
sumed in the next-lower level, and the time required for
the thread to exit power-saving mode and resume exe-
cution may be greater than or equal that of the next-
lower level.

When the thread is in power-saving mode, some
resource state may be lost. The state that may be lost
while in each power-saving level is implementation
dependent, with the following restrictions.
 For PSSCRESL = 0 and power-saving level 0000,

no thread state is lost.
 There must be a power-saving level in which the

Decrementer and all hypervisor resources are
maintained as if the thread was not in power-sav-
ing mode, and in which sufficient information is
maintained to allow the hypervisor to resume exe-
cution.

 The amount of state loss in a given level is less
than or equal to the amount of state loss in the
next higher level.

 The state of all read-only resources, SMFCTRLE,
and the URMOR in an SMF-enabled system or the
HRMOR in an SMF-disabled system is always
maintained.

---------------------------- End text --------------------------------

Section 3.3.2.1 Power-Saving Mode Instruction

Add SMFCTRL[UDEE] to the list of controls for power-
saving exit and note that the ultravisor must not exe-
cute stop. (The latter choice was made because of the
difficulty for the design to wake up in the right state in
the prevented circumstances.) Move the two p-notes to
section 3.3.2.2.

-------------------------- Begin text --------------------------------

The thread remains in power-saving mode until either a
System Reset exception or certain other events occur.
The events that may cause exit from power-saving
mode are specified by PSSCREC, LPCRPECE, and
SMFCTRLUDEE. If the event that causes the exit is a
System Reset, Machine Check, or Hypervisor Mainte-
nance exception, resource state that would be lost if
the exception occurred when the thread was not in
power-saving mode may be lost.

An attempt to execute this instruction in Suspended
state will result in a TM Bad Thing type Program inter-
rupt.

This instruction should not be executed in ultravisor
state because that scenario may not be thoroughly ver-
ified.

---------------------------- End text --------------------------------

Section 3.3.2.2 Entering and Exiting Power-Saving
Mode

Add a high level description of how SMF/ultravisor
relates to power saving. Include UDEE in the possible
exit causes. Note that this also tries to fix integration
errors from RFC 2492B by moving p-notes from the
stop description to this section. Note that “stop” should
be in the appropriate font (fixed here w/o change bars).

If this instruction sets MSRPR to 1, it also sets
MSREE, MSRIR, and MSRDR to 1. If this instruction
sets MSRS HV PR to 0b110, it also sets MSRIR and
MSRDR to 0.

Programming Note

For the power-saving level corresponding to the
second item above, if the state of the Decrementer
were not maintained and updated as if the thread
was not in power-saving mode, Decrementer
exceptions would not reliably cause exit from this
power-saving level even if Decrementer exceptions
were enabled to cause exit.

Programming Note
POWER9™ Processor Programming Model Bulletin 20

IBM Hardware Support Documentation
-------------------------- Begin text --------------------------------

Before software executes the stop instruction, the
PSSCR is initialized. If the stop instruction is to be
used by the OS, the hypervisor initializes the fields that
are accessible only to the hypervisor before dispatch-
ing the OS. These fields include the SD, ESL, EC, and
PSLL fields. See the Programming Notes for these
fields in Section 3.2.3 for additional information.

If the stop instruction is to be executed by the hypervi-
sor when PSSCREC=1, LPCRPECE and SMFCTR-
LUDEE must be set to the desired value (see Section
2.2 and <crossref to SMFCTRL section>). Depending
on the implementation and the power-saving level to be
entered, it may also be necessary to save the state of
certain resources and perform synchronization proce-
dures to ensure that all stores have been performed
with respect to other threads or mechanisms that use
the storage areas before executing the stop. See the
the User’s Manual for the implementation for details.

Software must also specify the requested and maxi-
mum power-saving level limit fields (i.e RL and MTL
fields), and the Transition Rate (TR) field in the PSSCR
in order to bound the range of power-saving modes that
can be entered. If the value of the RL field is greater
than or equal to the value of the MTL field, the power-
saving level will not increase from the initial level during
power-saving mode.

After the thread has entered power-saving mode with
PSSCREC=0, any exception may cause exit from
power-saving mode. When an exception occurs,
power-saving mode is exited either at the instruction
following the stop (if MSREE=0) or in the corresponding
interrupt handler (if MSREE=1).

After the thread has entered power-saving mode with
PSSCREC=1, only the System Reset or Machine
Check exceptions and the exceptions enabled in
LPCRPECE and SMFCTRLUDEE will cause exit. If the
event that causes exit is a Machine Check exception,
then a Machine Check interrupt occurs; otherwise a
System Reset interrupt occurs, and the contents of
SRR1 indicate the exception that caused exit from
power-saving mode. If state loss has occurred in an
SMF-enabled system, the interrupt is taken in ultravisor
state.

If the hypervisor has set PSSCRSD=0 prior to when the
stop instruction is executed, the instruction following
the stop may typically be a mfspr in order to read the
contents of PSSCRPLS to determine the maximum
power-saving level that was entered during power-sav-
ing mode.

If MSREE=1 when the stop instruction is executed,
then the interrupt corresponding to the exception
that was expected to cause exit from power-saving
mode may occur immediately prior to execution of
the stop instruction. If this occurs, the result may
be a software hang condition since the exception
that was expected to cause exit from power-saving
mode has already occurred.

The above software hang condition can be pre-
vented by setting MSREE=0 prior to executing
stop.

If stop was executed when PSSCREC=0, then
PSSCRESL must also be set to 0 and
PSSCRRL MTL must be set to values that do not
allow state loss. (See the EC bit description in
<xref to Section 3.2.2>. This guarantees that the
state of MSREE is not lost.)

Programming Note

Programming Note

If stop was executed when PSSCREC=0 and
MSREE=0 (in order to avoid the hang condition
described in a preceding Programming Note),
MSREE should be set to 1 after power-saving mode
is exited in order to take the interrupt corresponding
to the exception that caused exit from power-sav-
ing mode.

Programming Note
 RFC02487: Secure Memory Facility 21

IBM Hardware Support Documentation

---------------------------- End text --------------------------------

Section 4.3.10 Software-use SPRs

Clarify the wording of the p-notes.

-------------------------- Begin text --------------------------------

...

---------------------------- End text --------------------------------

Add the following description of the new USPRG regis-
ters at the end of this subsection.

-------------------------- Begin text --------------------------------

USPRG0 and USPRG1 are 64-bit registers provided
for use by ultravisor programs.

Figure 5. SPRs for use by ultravisor programs

---------------------------- End text --------------------------------

Section 4.4.5 Move To/From System Register
Instructions

Add ultravisor SPRs and note SPRs that can become
ultravisor privileged.

The ultravisor does not initiate power-saving.

If a secure partition attempts to execute stop with
parameters that allow state loss, the ultravisor gets
control via the Hypervisor Facility Unavailable inter-
rupt. It saves secure state and gives control to the
hypervisor’s Hypervisor Facility Unavailable inter-
rupt handler.

Upon exit from a state-losing power-saving mode in
an SMF-enabled system, the ultravisor gets control
at its Machine Check or System Reset interrupt
handler. It restores any ultravisor state that was
lost, and then services the Directed Ultravisor
Doorbell exception if that caused the wakeup. It
then restores the HRMOR and transfers control to
the hypervisor at the hypervisor’s Machine Check
interrupt handler if the ultravisor got control at the
ultravisor’s Machine Check interrupt handler, and
to the hypervisor’s System Reset interrupt handler
otherwise. The hypervisor restores any lost hyper-
visor state, and then handles the exception (other
than Directed Ultravisor Doorbell exception) that
caused the wakeup. For this process to work, the
ultravisor must have stored a record of its state in
some known location prior to transferring control to
the hypervisor to execute stop. The hypervisor in
turn must have stored its HRMOR value in a loca-
tion known to the ultravisor. It must also have
stored a record of its state in some known location.

The only other function the ultravisor may need to
perform for a given power-saving mode transition is
to be a proxy accessing hypervisor state in the
platform that is mixed with ultravisor state and lack-
ing independent access control.

Programming Note
Neither the contents of the SPRGs, nor accessing
them using mtspr or mfspr, has a side effect on
the operation of the thread. One or more of the reg-
isters is likely to be needed by interrupt handlers
that run in privileged non-hypervisor state (e.g., as
scratch registers and/or pointers to per thread save
areas).

Operating systems must ensure that no sensitive
data are left in SPRG3 when a problem state pro-
gram is dispatched, and operating systems for
secure systems must ensure that SPRG3 cannot
be used to implement a “covert channel” between
problem state programs. These requirements can
be satisfied by clearing SPRG3 before passing
control to a program that will run in problem state.

Neither the contents of the HSPRGs, nor accessing
them using mtspr or mfspr, has a side effect on
the operation of the thread. One or more of the reg-
isters is likely to be needed by interrupt handlers
that run in hypervisor non-ultravisor state (e.g., as
scratch registers and/or pointers to per thread save
areas).

USPRG0
USPRG1

0 63

Neither the contents of the USPRGs, nor accessing
them using mtspr or mfspr, has a side effect on
the operation of the thread. One or both of the reg-
isters is likely to be needed by interrupt handlers
that run in ultravisor state (e.g., as scratch registers
and/or pointers to per thread save areas).

Programming Note

Programming Note

Programming Note
POWER9™ Processor Programming Model Bulletin 22

IBM Hardware Support Documentation
-------------------------- Begin text --------------------------------

---------------------------- End text --------------------------------

decimal
SPR1

Register Name
Privileged Length

(bits)
Extended Mnemonics*

spr5:9 spr0:4 mtspr mfspr mtspr mfspr
176 00101 10000 DPDES hypv2 yes 64 mtdpdes Rx mfdpdes Rx
180 00101 10100 DAWR0 hyp/ult15 hyp/ult15 64 mtdawr0 Rx mfdawr0 Rx
186 00101 11010 RPR hypv2 hypv2 64 mtrpr Rx mfrpr Rx
187 00101 11011 CIABR hyp/ult15 hyp/ult15 64 mtciabr Rx mfciabr Rx
188 00101 11100 DAWRX0 hyp/ult15 hyp/ult15 32 mtdawrx0 Rx mfdawrx0 Rx
190 00101 11110 HFSCR hypv2 hypv2 64 mthfscr Rx mfhfscr Rx
...

446 01101 11110 TIR - yes 64 - mftir Rx
464 01110 10000 PTCR hyp/ult14 hypv2 64 mtptcr Rx mfptcr Rx
496 01111 10000 USPRG0 ultv ultv 64 mtusprg0 Rx mfusprg0 Rx
497 01111 10001 USPRG1 ultv ultv 64 mtusprg1 Rx mfusprg1 Rx
505 01111 11001 URMOR ultv ultv 64 mturmor Rx mfurmor Rx
506 01111 11010 USRR0 ultv ultv 64 mtusrr0 Rx mfusrr0 Rx
507 01111 11011 USRR1 ultv ultv 64 mtusrr1 Rx mfusrr1 Rx
511 01111 11111 SMFCTRL ultv ultv 64 mtsmfctrl Rx mfsmfctrl Rx
768 11000 00000 SIER - no6 64 - mfusier Rx

mfsier Rx
- This register is not defined for this instruction.
1 Note that the order of the two 5-bit halves of the SPR number is reversed.
2 This register is a hypervisor resource, and can be accessed by this instruction only in hypervisor state (see

Chapter 2).
3 This register cannot be directly written. Instead, bits in the register corresponding to 0 bits in (RS) can be cleared

using mtspr SPR,RS.
4 The value specified in register RS may be masked by the contents of the [U]AMOR before being placed into the

AMR; see the mtspr instruction description.
5 The value specified in register RS may be ANDed with the contents of the AMOR before being placed into the

UAMOR; see the mtspr instruction description.
6 MMCR0PMCC controls the availability of this SPR, and its contents depend on the privilege state in which it is

accessed. See Section 9.4.4 for details.
7 The value specified in Register RS may be masked by the contents of the AMOR before being placed into the

IAMR; see the mtspr instruction description.
8 Accesses to these SPRs are noops; see Section 1.3.3, “Reserved Fields, Reserved Values, and Reserved

SPRs” in Book I.
9 The length of the GSR is undefined. An access to this SPR affects synchronization of subsequent mtspr instruc-

tions. See the introductory text in this section for more details
10 SPR numbers 777-778, 783, 793-794, and 799 are reserved for the Performance Monitor. All other SPR num-

bers that are not shown above and are not implementation-specific are reserved.
11 The mftb instruction is Phased-Out. Assemblers targeting Version 2.03 or later of the architecture should gener-

ate an mfspr instruction for the mftb and mftbu extended mnemonics; see the corresponding Assembler Note in
the mftb instruction description (see Section 6.1 of Book II).

12 mfspr specifying the GSR has no meaningful use. It is treated as a noop. As a result, no extended mnemonic is
assigned for it.

13 No extended mnemonic is provided because previous versions of the architecture defined the obvious extended
mnemonic as resolving to the non-privileged SPR number, and because there is no software benefit in using the
privileged SPR number, rather than the non-privileged SPR number, for this function.

14 mtspr specifying this register is ultravisor privileged when SMFCTRLE=1; otherwise it is hypervisor privileged.
15 This register is ultravisor privileged when SMFCTRLD=1; otherwise it is hypervisor privileged.
 RFC02487: Secure Memory Facility 23

IBM Hardware Support Documentation
For mtspr, add the secure bit write suppression to TEX-
ASR for problem state and repackage the paragraph
about privilege violations for mtspr to cover hypervisor
access to ultravisor privileged SPRs, as follows. Also
replace “n” in “SPR(n)” with the appropriate number
where it stands for a single number, including cases not
shown below.

-------------------------- Begin text --------------------------------
 case(48): SPR(48) (RS)
 if PATEHR=1 for the partition then
 All implementation-specific
 lookaside information that was
 created when address translation
 was enabled and for which effPID≠0
 is invalidated.
 case (130): if MSRPR = 1 then
 SPR(130)0:39 41:63(RS)0:39 41:63
 else
 SPR(130) (RS)
 case (157): if MSRHV PR = 0b10 then
 SPR(157) (RS)
 else
 SPR(157) (RS) & AMOR

...

The SPR field denotes a Special Purpose Register,
encoded as shown in Figure 18. If the SPR field con-
tains the value 158, the instruction indicates the start of
a sequence of mtspr instructions that may be synchro-
nized as a group. See the introductory material in this
section for more information. If the SPR field contains
a value from 808 through 811, the instruction specifies
a reserved SPR, and is treated as a no-op; see
Section 1.3.3, “Reserved Fields, Reserved Values, and
Reserved SPRs” in Book I. Otherwise, the contents of
register RS are placed into the designated Special Pur-
pose Register, except as described in the next six para-
graphs. For Special Purpose Registers that are 32 bits
long, the low-order 32 bits of RS are placed into the
SPR.

...

When the designated SPR is the UAMOR and
MSRHV PR=0b00, the contents of register RS are
ANDed with the contents of the AMOR and the result is
placed into the UAMOR.

When the designated SPR is the TEXASR and
MSRPR=1, bit 40 of the TEXASR is not modified.

When the designated SPR is the PIDR and the partition
uses Radix Tree translation, the implementation spe-
cific lookaside invalidation specified by slbia with
IH=0b011 is performed along with the SPR update.
When the designated SPR is the LPIDR and both the
originating and destination partitions use Radix Tree
translation, the implementation specific lookaside inval-
idation specified by slbia with IH=0b110 is performed
along with the SPR update.

...

spr0=1 if and only if writing the register is privileged.
Execution of this instruction specifying an SPR number
with spr0=1 when the privilege state of the thread does
not permit the access causes one of the following.
 MSRPR=1: Privileged Instruction type Program

interrupt
 MSRHV PR=0b00 or MSRS HV PR=0b010 and the

SPR is always an ultravisor resource (independent
of the contents of SMFCTRL): Privileged Instruc-
tion type Program interrupt

 MSRHV PR=0b00 and the SPR is a hypervisor
resource (see Figure 17) or is PTCR, DAWR0,
DAWRX0, or CIABR when they are ultravisor privi-
leged for the operation:

- LPCREVIRT=0: Privileged Instruction type Pro-
gram interrupt

- LPCREVIRT=1: Hypervisor Emulation Assis-
tance interrupt

 MSRS HV PR=0b010 and the SPR is PTCR,
DAWR0, DAWRX0, or CIABR when they are ultra-
visor privileged for the operation: Hypervisor Emu-
lation Assistance interrupt

---------------------------- End text --------------------------------

For mfspr, add that problem state reads zero from the
secure bit of TEXASR and clarify that MSR[S] has no
effect on the zeroing of the value read from TFIAR.
Repackage the paragraph about privilege violations for
mfspr to cover hypervisor access to ultravisor privi-
leged SPRs, as follows:

-------------------------- Begin text --------------------------------
 case(129):
 if (MSRHV PR = 0b10) | (TFIARPR=MSRPR=1) |
 ((MSRHV PR = 0b00) & (TFIARHV PR ≠ 0b10)) then
 RT SPR(n)
 else
 RT 0
 case(130):
 RT SPR(n)
 if MSRPR = 1 then
 RT40 0
 case(808, 809, 810, 811):

...

The SPR field denotes a Special Purpose Register,
encoded as shown in Figure 17. If the designated Spe-
cial Purpose Register is the TFIAR and TFIAR indi-
cates the failure was recorded in a state more
privileged than the current state, register RT is set to
zero; ultravisor and hypervisor states are not differenti-
ated (MSRS is ignored) for this purpose. If the desig-
nated Special Purpose Register is the TEXASR and
MSRPR=1, the contents of the TEXASR are placed into
register RT, but with bit 40 of RT set to 0. If the SPR
field contains 158, the instruction specifies the GSR,
and is treated as a noop. If the SPR field contains a
value from 808 through 811, the instruction specifies a
reserved SPR, and is treated as a no-op; see
Section 1.3.3, “Reserved Fields, Reserved Values, and
POWER9™ Processor Programming Model Bulletin 24

IBM Hardware Support Documentation
Reserved SPRs” in Book I. Otherwise, the contents of
the designated Special Purpose Register are placed
into register RT. For Special Purpose Registers that are
32 bits long, the low-order 32 bits of RT receive the
contents of the Special Purpose Register and the high-
order 32 bits of RT are set to zero.

spr0=1 if and only if reading the register is privileged.
Execution of this instruction specifying an SPR number
with spr0=1 when the privilege state of the thread does
not permit the access causes one of the following.
 MSRPR=1: Privileged Instruction type Program

interrupt
 MSRHV PR=0b00 or MSRS HV PR=0b010 and the

SPR is always an ultravisor resource (independent
of the contents of SMFCTRL): Privileged Instruc-
tion type Program interrupt

 MSRHV PR=0b00 and the SPR is a hypervisor
resource (see Figure 17) or is DAWR0, DAWRX0,
or CIABR when they are ultravisor privileged for
the operation:

- LPCREVIRT=0: Privileged Instruction type Pro-
gram interrupt

- LPCREVIRT=1: Hypervisor Emulation Assis-
tance interrupt

 MSRS HV PR=0b010 and the SPR is DAWR0,
DAWRX0, or CIABR when they are ultravisor privi-
leged for the operation: Hypervisor Emulation
Assistance interrupt

---------------------------- End text --------------------------------

Prevent mtmsr from changing S(41) and prevent trans-
lation from being enabled in ultravisor state. The corre-
sponding changes are required for mtmsrd, but are not
shown here.

-------------------------- Begin text --------------------------------
if L = 0 then
 MSR48 (RS)48 | (RS)49
 MSR58 ((RS)58 | (RS)49)
 & ¬(MSR41 & MSR3 & (¬(RS)49))
 MSR59 ((RS)59 | (RS)49)
 & ¬(MSR41 & MSR3 & (¬(RS)49))
 MSR32:40 42:47 49:50 52:57 60:62
(RS)32:40 42:47 49:50 52:57 60:62
else
 MSR48 62 (RS)48 62

The MSR is set based on the contents of register RS
and of the L field.

L=0:

The result of ORing bits 48 and 49 of register RS is
placed into MSR48. The result of ANDing bit 41 of
the MSR with bit 3 of the MSR and with the com-
plement of bit 49 of register RS is complemented
and then ANDed with the result of ORing bits 58
and 49 of register RS and placed into MSR58. The
result of ANDing bit 41 of the MSR with bit 3 of the
MSR and with the complement of bit 49 of register
RS is complemented and then ANDed with the
result of ORing bits 59 and 49 of register RS and
placed into MSR59. Bits 32:40, 42:47, 49:50,
52:57, and 60:62 of register RS are placed into the
corresponding bits of the MSR.

---------------------------- End text --------------------------------

Add a reference to the MSRS bit in the first program-
ming note for the mtmsr instruction, as follows:

-------------------------- Begin text --------------------------------

---------------------------- End text --------------------------------

Add a reference to the MSRS bit in the first program-
ming note for the mtmsrd instruction, as follows:

-------------------------- Begin text --------------------------------

---------------------------- End text --------------------------------

Note that when a problem state transaction’s failure
is recorded in hypervisor state and there is a sub-
sequent need for a context switch in privileged,
non-hypervisor state, an attempt to save TFIAR will
result in zeros being saved. This is harmless
because if the original application ever tries to read
the TFIAR, it would read zeros anyway, since the
failure took place in hypervisor state.

Programming Note

If this instruction sets MSRPR to 1, it also sets
MSREE, MSRIR, and MSRDR to 1. If this instruction
results in MSRS HV PR being equal to 0b110, it also
sets MSRIR and MSRDR to 0.

This instruction does not alter MSRS, MSRME or
MSRLE. (This instruction does not alter MSRHV
because it does not alter any of the high-order 32
bits of the MSR.)

If the only MSR bits to be altered are MSREE RI, to
obtain the best performance L=1 should be used.

If this instruction sets MSRPR to 1, it also sets
MSREE, MSRIR, and MSRDR to 1. If this instruction
results in MSRS HV PR being equal to 0b110, it also
sets MSRIR and MSRDR to 0.

This instruction does not alter MSRHV, MSRS,
MSRME, or MSRLE.

If the only MSR bits to be altered are MSREE RI, to
obtain the best performance L=1 should be used.

Programming Note

Programming Note
 RFC02487: Secure Memory Facility 25

IBM Hardware Support Documentation
Section 5.3.2 Address Wrapping Combined with
Changing MSR Bit SF

Add USRR0 to the p-note.

-------------------------- Begin text --------------------------------

---------------------------- End text --------------------------------

Section 5.7.3 Ultravisor Real, Hypervisor Real, and
Virtual Real Addressing Modes

Extend real mode discussion to cover UV mode.

-------------------------- Begin text --------------------------------

If a storage access is an instruction fetch performed
when instruction address translation is disabled, or if
the access is a data access performed when data
address translation is disabled, it is said to be per-
formed in “ultravisor real addressing mode” if the
thread is in ultravisor state, in “hypervisor real address-
ing mode” if the thread is in hypervisor non-ultravisor
state, and in “virtual real addressing mode” if the thread
is in privileged non-hypervisor state. Storage accesses
in ultravisor real, hypervisor real, and virtual real
addressing modes are performed in a manner that
depends on the contents of MSRS HV, VPM, PATEPS,
URMOR (see <crossref to UV chapter>), HRMOR (see
Chapter 2), bit 0 of the effective address (EA0), and the
state of the Real Mode Storage Control Facility as
described below. Bits 1:3 of the effective address are
ignored.

MSRS HV=0b11
 If EA0=0, the Ultravisor Offset Real Mode Address

mechanism, described in <crossref to UV Offset
real mode addressing section>, controls the
access.

 If EA0=1, bits 4:63 of the effective address are
used as the real address for the access.

MSRS HV=0b01
 If EA0=0, the Hypervisor Offset Real Mode

Address mechanism, described in Section 5.7.3.1,
controls the access.

 If EA0=1, bits 4:63 of the effective address are
used as the real address for the access.

MSRHV=0
 If PATEHR||GR=0b00, the Virtual Real Mode

Addressing mechanism, described in Section
5.7.3.3, controls the access.

 If PATEHR||GR≠0b00, partition-scoped translation is
performed on the effective address. (See
Section 5.7.12.3, “Obtaining Host Real Address,
Radix on Radix”.)

---------------------------- End text --------------------------------

Section 5.7.3.1 Ultravisor/Hypervisor Offset Real
Mode Address

Add URMOR description, etc.

-------------------------- Begin text --------------------------------

If MSRHV = 1 and EA0 = 0, the access is controlled by
the contents of the Ultravisor Real Mode Offset Regis-
ter or the Hypervisor Real Mode Offset Register,
depending on the value of MSRS, as follows.

Ultravisor Real Mode Offset Register (URMOR)

When MSRS=1, bits 4:63 of the effective address
for the access are ORed with the 60-bit offset rep-
resented by the contents of the URMOR, and the
60-bit result is used as the real address for the
access.

Hypervisor Real Mode Offset Register (HRMOR)

When MSRS=0, bits 4:63 of the effective address
for the access are ORed with the 60-bit offset rep-
resented by the contents of the HRMOR, and the
60-bit result is used as the real address for the
access.

For each of the two registers, the supported offset val-
ues are all values of the form i×2r, where 0 ≤ i < 2j, and
j and r are implementation-dependent values having
the properties that 12 ≤ r ≤ 26 (i.e., the minimum offset
granularity is 4 KB and the maximum offset granularity
is 64 MB) and j+r = m, where the real address size sup-
ported by the implementation is m bits.

---------------------------- End text --------------------------------

If the thread is in 32-bit mode, the current instruc-
tion is at effective address 232 - 4, and an interrupt
occurs that is defined to set SRR0, HSRR0, or
USRR0 (or LR, for the System Call Vectored inter-
rupt) to the effective address of the next sequential
instruction, the contents of SRR0, HSRR0, or
USRR0 (or LR), as appropriate to the interrupt, are
undefined.

Programming Note

EA4:63-r should equal 60-r0. If this condition is satis-
fied, ORing the effective address with the offset
produces a result that is equivalent to adding the
effective address and the offset.

If m<60, EA4:63-m, URMOR4:63-m, and
HRMOR4:63-m must be zeros.

Programming Note
POWER9™ Processor Programming Model Bulletin 26

IBM Hardware Support Documentation
Section 5.7.3.2 Storage Control Attributes for
Accesses in Ultravisor and Hypervisor Real
Addressing Modes

Add UV.

-------------------------- Begin text --------------------------------

Storage accesses in ultravisor and hypervisor real
addressing modes are performed as though all of stor-
age had the following storage control attributes, except
as modified by the Hypervisor Real Mode Storage Con-
trol facility (see Section 5.7.3.2.1). (The storage control
attributes are defined in Book II.)

 not Write Through Required
 not Caching Inhibited, for instruction fetches
 not Caching Inhibited, for data accesses except

those caused by the Load/Store Caching Inhibited
instructions; Caching Inhibited, for data accesses
caused by the Load/Store Caching Inhibited
instructions

 Memory Coherence Required, for data accesses
 Guarded
 not SAO

Additionally, storage accesses in ultravisor and hypervi-
sor real addressing modes are performed as though all
storage was not No-execute.

---------------------------- End text --------------------------------

Section 5.7.3.2.1 Hypervisor Real Mode Storage
Control

Add a couple more allowances for ultravisor. Delete
the e-note that was really intended for the old high
water mark method.

-------------------------- Begin text --------------------------------

The Hypervisor Real Mode Storage Control facility pro-
vides a means of specifying portions of real storage
that are treated as non-Guarded in ultravisor and
hypervisor real addressing modes (MSRHV PR=0b10,
and MSRIR=0 or MSRDR=0, as appropriate for the type
of access). The remaining portions are treated as
Guarded in ultravisor and hypervisor real addressing
modes. The means is a hypervisor resource (see
Chapter 2), and may also be system-specific.

The facility divides real storage into history blocks, in
implementation-specific sizes. The history for instruc-
tion fetches is tracked separately from that for data
accesses. If there is no instruction fetch history for a
block and it is the target of an instruction fetch, the
access is performed as though the block is Guarded,
but the block is treated as non-Guarded for subsequent
instruction fetches on a best effort basis, limited by the
amount of history that the facility can maintain. If there
is no data access history for a block and it is accessed
using a Load/Store Caching Inhibited instruction, the
access is performed as though the block is Guarded,
and the block is treated as Guarded for subsequent
accesses on a best effort basis, limited by the amount
of history that the facility can maintain. If there is no
data access history for a block and it is accessed using
any other Load or Store instruction, the access is per-
formed as though the block is Guarded, but the block is
treated as non-Guarded for subsequent accesses on a
best effort basis, limited by the amount of history that
the facility can maintain.

The storage location specified by a Load/Store Caching
Inhibited instruction must not be in storage that is spec-
ified by the Hypervisor Real Mode Storage Control
facility to be treated as non-Guarded. The storage loca-
tion specified by any other Load or Store instruction
must not be in storage that is specified by the Hypervi-
sor Real Mode Storage Control facility to be treated as
Guarded. ("specified by the Hypervisor Real Mode
Storage Control facility" means "specified in a history
block".) The history can be erased using an slbia
instruction; see Section 5.9.3.2.

Because storage accesses in ultravisor and hyper-
visor real addressing modes do not use the SLB or
the Page Table, accesses in this mode bypass all
checking and recording of information contained
therein (e.g., storage protection checks that use
information contained therein are not performed,
and reference and change information is not
recorded).

Programming Note

There are two cautions about mixing different types
of accesses (i.e. Load/Store Caching Inhibited
instructions vs. any other Load or Store instruction
vs. instruction fetches). The first, as indicated
above, is to avoid confusing the history mecha-
nism, and the granularity for concern is a history
block. For this caution, instruction fetches are irrel-
evant because they have their own history mecha-
nism and are always intended to be non-guarded.

The second caution is to avoid storage paradoxes
that result from a Caching Inhibited access to a
location that is held in a cache. The nature of this
caution and its solution are described in
Section 5.8.2.2, “Altering the Storage Control Bits”.
The minimum granularity for concern is the history
block, but may be larger, depending on extant
translations to the storage in question. Since the
consistency of instruction storage is managed by
software and ultravisor and hypervisor real mode
instruction fetches are always not Caching Inhib-
ited, instruction fetches are also irrelevant to this
caution.

Programming Note
 RFC02487: Secure Memory Facility 27

IBM Hardware Support Documentation
The facility does not apply to implicit accesses to the
Page Table performed during address translation or in
recording reference and change information. These
accesses are performed as described in Section
5.7.3.4.

---------------------------- End text --------------------------------

Section 5.7.4 Definitions

Add translation mode as a new first defintion. Add S to
the MSR states for the adjunct.

-------------------------- Begin text --------------------------------

translation mode: Refers to either HPT translation or
Radix Tree translation. The translation mode is speci-
fied by the HR field in the Partition Table Entry corre-
sponding to the contents of the LPIDR.

...

adjunct: An adjunct is a software entity that resides in
a partition along with an operating system and its appli-
cations in order to efficiently provide services (e.g.
device drivers) for the partition. The adjunct is man-
aged by the hypervisor. It runs in problem state with
MSRS HV PR=0b011, thereby restricting the resources it
can modify (MSRPR=1) and causing its interrupts to go
to the hypervisor (MSRS HV=0b01). It shares an HPT
with the partition it serves. The adjunct’s storage is kept
separate from the client partition’s storage using Virtual
Page Class Key protection. (The adjunct’s lightness of
weight derives from not requiring a full partition context
switch (SLB flush, TLB flush, LPID/PID change, etc.)
when the client partition invokes the services of the
adjunct.) Each hardware thread may have its own
unique translations for an adjunct. As a result, adjunct
segment descriptors cannot exist in the process’s Seg-
ment Table and must instead be bolted in the SLB man-
ually. The adjunct construct exists only with an HR=0
hypervisor and only for LPID≠0. The adjunct has its
own 64-bit EA space. Entry to an adjunct is only possi-
ble from hypervisor state. Prior to dispatching the
adjunct, the hypervisor must invalidate SLB entries that
map the effective address range that will be used by
the adjunct. Similarly, on exit from the adjunct, the
hypervisor must invalidate its SLB entries

---------------------------- End text --------------------------------

Section 5.7.5 Address Ranges Having Defined Uses

Add URMOR to the offset real mode description. Cor-
rect the omission that HV change is conditional on HPT
translation and add ending in ultravisor state to the
AIL=0 cases.

-------------------------- Begin text --------------------------------

 Offset Real Mode interrupt vectors

The real pages beginning at the real addresses
specified by the URMOR and the HRMOR are
used similarly to the page for the fixed interrupt
vectors.

 Relocated interrupt vectors

Depending on the values of LPCRAIL and MSRIR
DR and on the kind of interrupt, and on whether the
interrupt will cause MSRHV to change from 0 to 1
when HR=0 or will result in MSRS HV being equal
to 0b11, either the virtual page containing the byte
addressed by effective address
0x0000_0000_0001_8000 or the virtual page con-
taining the byte addressed by effective address
0xC000_0000_0000_4000 may be used similarly
to the page for the fixed interrupt vectors. (See
Section 2.2.)

---------------------------- End text --------------------------------

Section 5.7.6.1 Partition Table

Add the S bit in the Partition Table Entry layouts, for
use by outboard translation mechanisms.

-------------------------- Begin text --------------------------------

The Partition Table is composed of a pair of double-
words per partition. The first doubleword indicates
whether the host uses HPT or Radix Tree translation
and whether the partition is secure, and contains the
base of the host’s translation table structure in host real
memory. The first doubleword also contains the size of
the table structure and the size of the Root Page Direc-
tory for a hypervisor using Radix Tree translation, or the
base page size for the VRMA for Paravirtualized HPT
translation. Additional details about the parameters for
HPT translation follow.

---------------------------- End text --------------------------------

The preceding capability can be used to improve
the performance of software that runs in ultravisor
and hypervisor real addressing modes, by causing
accesses to instructions and data that occupy well-
behaved storage to be treated as non-Guarded.

Programming Note
POWER9™ Processor Programming Model Bulletin 28

IBM Hardware Support Documentation
-------------------------- Begin text -------------------------------.

All other fields are reserved.

---------------------------- End text --------------------------------

-------------------------- Begin text --------------------------------

---------------------------- End text --------------------------------

Section 5.7.14 Storage Protection

Add to the intro to include secure memory. Also redo
the storage protection cases to cover some omissions
and improve clarity.

-------------------------- Begin text --------------------------------

The storage protection mechanism provides a means
for selectively granting instruction fetch access, grant-
ing read access, granting write access, and prohibiting
access to areas of storage based on a number of con-
trol criteria.

The operation of the storage protection mechanism
depends on the value of one or more of the following.

- MSR bits HV, S, IR, DR, PR

- the key bits in the associated SLB entry

- the page protection bits and key bits in the
associated PTE

- the AMR, IAMR, AMOR, and UAMOR

- the Secure Memory property

The storage protection mechanism consists of the Vir-
tual Page Class Key Protection mechanism described
in Section 5.7.14.1, the Basic Storage Protection mech-
anism described in Section 5.7.14.3 and Section

0 2 3 45 55 58 63

0 / S HTABORG // PS HTABSIZE
0 PRTB /// PRTPS PRTS

 0 38 55 58 63

Paravirtualized HPT Partition Table Entry

Bit(s) Name Description
0 HR Host Radix

0b0- hypervisor uses HPT
translation for this partition

0b1- hypervisor uses Radix
Tree translation for this partition

3 S Partition is Secure
4:45 HTABORG Hashed Page Table Base

56:58 PS Page Size (uses L||LP encoding
as in current SLBE)

59:63 HTABSIZE HPT size = 2HTABSIZE+18

HTABSIZE ≤ 28
0 GR Guest Radix

0b0- partition uses HPT
0b1- partition uses Radix Tree

1:38 PRTB Process Table Base (when
UPRT=1)

56:58 PRTPS Process Table Page SIze (when
UPRT=1) (uses L||LP encoding
as in current SLBE)

59:63 PRTS Process Table Size = 212+PRTS

PRTS≤24 (when UPRT=1)

0 2 3 55 58 63

1 RTS1 S RPDB RTS2 RPDS
1 / PRTB // PRTS

0 3 51 58 63

Radix on Radix Partition Table Entry

Bit(s) Name Description
0 HR Host Radix

0b0- hypervisor uses HPT trans-
lation for this partition

0b1- hypervisor uses Radix Tree
translation for this partition

1:2 RTS1 Radix Tree Size[0:1]
3 S Partition is Secure

4:55 RPDB Root Page Directory Base
56:58 RTS2 Radix Tree Size[2:4] (number of

address bits mapped),
size=2RTS+31

59:63 RPDS Root Page Directory Size
= 2RPDS+3, RPDS≥5

0 GR Guest Radix
0b0- partition uses HPT
0b1- partition uses Radix Tree

4:51 PRTB Process Table Base

59:63 PRTS Process Table Size = 212+PRTS

PRTS≤24 (when UPRT=1)

The S bit in Partition Table Entries is provided for
use by outboard mechanisms that access stor-
age. The processor uses MSRS, not PATES, to
determine partition security.

The size of the Process Table is provided to sim-
plify hardware design and testing. The size
enables the hardware to mask address bits instead
of providing an adder. No size checking is pro-
vided. (An out-of-range PID will not produce an
exception simply because of its size.) Hypervisor
software may help detect such errors by the OS by
not providing a translation for virtual / guest real
addresses for a page or two beyond the end of the
Process Table.

Similarly, no size checking is provided for the Parti-
tion Table. (An out-of-range LPID will not produce
an exception simply because of its size.)

Radix on Radix Partition Table Entry

Bit(s) Name Description

Programming Note
 RFC02487: Secure Memory Facility 29

IBM Hardware Support Documentation
5.7.14.4, the Radix Tree Translation Storage Protection
mechanism described in Section 5.7.14.5, and the
Secure Memory Protection mechanism described in
<crossref to SM section>.

In order for a storage access to be permitted, it must be
permitted by all of the mechanisms that apply to it. If
SMFCTRLE=1, each storage access is subject to
Secure Memory Protection independent of the transla-
tion mode of the access. In addition, each access is
subject to other protection mechanisms depending on
its translation mode, as listed below.

 MSRHV=1 and address translation is disabled:
Basic Storage Protection mechanism

 HR=0
- access to instruction or data when address

translation is enabled: Virtual Page Class Key
Protection mechanism and Basic Storage Pro-
tection mechanism

- all other cases (access to Process Table Entry
or Segment Table Entry when address trans-
lation is enabled; access to instruction or data
when MSRHV=0 and address translation is
disabled): Basic Storage Protection mecha-
nism

 HR=1

- access to instruction or data when address
translation is enabled and effLPID≠0: Radix
Tree Translation Storage Protection mecha-
nisms of both the process-scoped and parti-
tion-scoped PTEs

- access to instruction or data when address
translation is enabled and effLPID=0: Radix
Tree Translation Storage Protection mecha-
nism of the process-scoped PTE

- all other cases (access to Process Table Entry
when address translation is enabled; access
to process-scoped PDE or process-scoped
PTE when address translation is enabled and
effLPID≠0; access to instruction or data when
MSRHV=0 and address translation is dis-
abled): Radix Tree Translation Storage Pro-
tection mechanism of the partition-scoped
PTE

If an access associated with an instruction fetch is not
permitted, an Instruction Storage exception or a Hyper-
visor Instruction Storage exception is generated. If an
access associated with a data access is not permitted,

a Data Storage exception or a Hypervisor Data Storage
exception is generated.

---------------------------- End text --------------------------------

Section 5.7.14.5+ Secure Memory Protection

Add the following section after radix tree translation
storage protection.

-------------------------- Begin text --------------------------------

When SMFCTRLE=1, Secure Memory Protection is
enabled. Each location in main storage has a Secure
Memory property memSM. memSM=1 indicates secure
memory. memSM=0 indicates ordinary memory. Gen-
erally, only secure partitions and the ultravisor may
access secure memory for explicit and implicit
accesses. The one exception is that the Partition Table
is commonly located in secure memory, but may be
accessed implicitly as part of the translation process for
software running with MSRS=0. The granularity and
method with which main storage is mapped for the
Secure Memory property is implementation specific.

For each kind of access to a host real address that can
cause a violation of Basic or Radix Tree Translation
Storage Protection, a Secure Memory Protection
exception is reported by the same type of interrupt as
its Basic or Radix Tree Translation Storage Protection
counterpart, except setting [H]DSISR or [H]SRR1 bit 43
instead of 36, as follows. For HPT translation, the
exception is reported as an ISI or DSI if the thread is in
hypervisor state, or if the thread is in non-hypervisor
state when IR or DR is 1 for the appropriate type of
access and VPM=0; otherwise as HISI or HDSI. For
Radix Tree translation, the exception is reported as an
ISI or DSI if effLPID=0; otherwise as HISI or HDSI. The
same reporting approach is used for accesses which
require translation but for which no Basic Storage Pro-
tection exception is possible. This includes accesses
to the Segment Table Entry Group and Process Table
Entry when HPT translation is in use.

In the preceding cases the host real address for the
access is a result of address translation. A Secure
Memory Protection exception can also be caused by
accesses to a host real address that is not the result of
address translation. (Such accesses cannot cause a
violation of Basic or Radix Tree Translation Storage
Protection.) These additional cases are reported as
follows. For a hypervisor real mode access the excep-
tion is reported as an ISI or DSI. For a process-scoped
radix tree access for effLPID=0 the exception is
reported as an ISI or DSI. For a PTEG access the
exception is reported as an ISI or DSI if MSRHV
PR=0b10; otherwise as HISI or HDSI. For a partition-
scoped radix tree access the exception is reported as
an HISI or HDSI unless effLPID=0, in which case the
exception is reported as an ISI or DSI. These cases
also set [H]DSISR or [H]SRR1 bit 43 to 1.

---------------------------- End text --------------------------------

Because the assumed Ks and Kp values
are either 0 or irrelevant, these accesses
are always permitted by the Basic Storage
Protection mechanism.

Programming Note
POWER9™ Processor Programming Model Bulletin 30

IBM Hardware Support Documentation
Section 5.8.2.2 Altering the Storage Control Bits

Change “ordinary storage” to “normal storage” (refer-
ring to WIMG=0010 equivalent storage).

-------------------------- Begin text --------------------------------

---------------------------- End text --------------------------------

Section 5.9.2 Synchronize Instruction

Add msgsndu with the same requirements as msgsnd.

-------------------------- Begin text --------------------------------

The Synchronize instruction is described in
Section 4.6.3 of Book II, but only at the level required
by an application programmer. This section describes
properties of the instruction that are relevant only to
operating system, hypervisor, and ultravisor software
programmers.

The Synchronize instruction provides an ordering func-
tion for stores that are in set A of the memory barrier
created by the Synchronize instruction, relative to data
accesses caused by instructions that are executed on
other threads after the occurrence of the interrupt that
is caused by a msgsndp, msgsnd, or msgsndu
instruction that follows the Synchronize instruction.
The thread that is the target of the msgsndp, msgsnd,
or msgsndu instruction is here called the "target
thread".
 For msgsndp, and L = 0, 1, or 2 for the Synchro-

nize instruction, the stores are performed with
respect to the target thread before any data
accesses caused by instructions that are executed
on the target thread after the corresponding
Directed Privileged Doorbell interrupt has
occurred.

 For msgsnd or msgsndu, and L = 0 or 2 for the
Synchronize instruction (sync or ptesync), the
stores are performed with respect to any given
other thread before any data accesses caused by
instructions that are executed on the given thread
after a msgsync instruction is executed on that
thread after the corresponding Directed Hypervisor
or Ultravisor Doorbell interrupt has occurred on the
target thread.

---------------------------- End text --------------------------------

Comment: Please disregard the change bar at the end
of the preceding p-note.

Section 5.10 Page Table Update Synchronization
Requirements

Make the following change in the Programming Note:

-------------------------- Begin text --------------------------------

The storage control bit alterations described above
are examples of cases in which the directives for
application of statements about the W and I bits to
SAO given in the third paragraph of the preceding
subsection must be applied. A transition from the
typical WIMG=0b0010 for normal storage to
WIMG=0b1110 for SAO storage does not require
the flush described above because both WIMG
combinations indicate storage that is not Caching
Inhibited.

Programming Note

Synchronize with L=1 (lwsync) should not be
used with msgsnd or msgsndu. (If used, it
will not have the desired ordering effect.)

The msgsync instruction, which is needed when
msgsnd or msgsndu is used, is not needed when
msgsndp is used because msgsndp targets only
threads on the same multi-threaded processor as
the thread executing the msgsndp, while msgsnd
and msgsndu can target any thread in the system.
(If the target thread for msgsnd or msgsndu is on
the same multi-threaded processor as the thread
executing the msgsnd or msgsndu, in principle
the msgsync can be omitted. This optimization is
practical only when the msgsnd/msgsndu topol-
ogy is appropriately constrained, however, because
the Directed Hypervisor or Ultravisor Doorbell inter-
rupt provides no indication of which thread exe-
cuted the msgsnd or msgsndu that caused the
interrupt, so there is no easy way for the interrupt
handler to determine whether the msgsync can be
omitted.) msgsync is not needed or defined in V.
2.07 for a similar reason: msgsnd in V. 2.07 can
target only threads on the same multi-threaded pro-
cessor as the thread executing the msgsnd.

The ordering done by sync (and ptesync) provides
the appearance of "causality" across a sequence of
msgsnd (or msgsndu) instructions, as in the fol-
lowing example. "msgsnd->T1" means "msgsnd
instruction targetting thread T1". "<DHDI 0>"
means "occurrence of Directed Hypervisor Doorbell
interrupt caused by msgsnd executed on T0". On
T0, register r1 is assumed to contain the value 1.

 T0 T1 T2
 std r1,X <DHDI 0> <DHDI 1>
 sync msgsnd->T2 msgsync
 msgsnd->T1 ld r1,X

In this example, T2's load from X must return 1.

Programming Note

Programming Note
 RFC02487: Secure Memory Facility 31

IBM Hardware Support Documentation

---------------------------- End text --------------------------------

6.2.2+ Ultravisor Machine Status Save/Restore Reg-
isters

-------------------------- Begin text --------------------------------

When a Directed Ultravisor Doorbell interrupt occurs,
the state of the machine is saved in the Ultravisor
Machine Status Save/Restore Registers (USRR0 and
USRR1).

.

Figure 6. Ultravisor Save/Restore Registers

USRR1 bits may be treated as reserved in a given
implementation if they correspond to MSR bits that are
reserved or are treated as reserved in that implementa-
tion and, for USRR1 bits in the range 33:36 and 42:47,
they are specified as being set either to 0 or to an
undefined value by the Directed Ultravisor Doorbell
interrupt.

The USRR0 and USRR1 are ultravisor resources; see
<ultravisor chapter>.

---------------------------- End text --------------------------------

Section 6.2.12 Hypervisor Facility Status and Con-
trol Register

Add urfid to go with [h]rfid in the first p-note.

-------------------------- Begin text --------------------------------

---------------------------- End text --------------------------------

Section 6.3 Interrupt Synchronization

Add the USRRs along with the others.

-------------------------- Begin text --------------------------------

When an interrupt occurs, in general SRR0, HSRR0 or
USRR0 is set to point to an instruction such that all pre-
ceding instructions have completed execution, no sub-
sequent instruction has begun execution, and the
instruction addressed by SRR0, HSRR0 or USRR0
may or may not have completed execution, depending
on the interrupt type. The only exception is that if an
mtspr sequence started by mtgsr is active when the
interrupt occurs, some of the sequence’s mtsprs

In many cases this context synchronization will
occur naturally; for example, if the sequence is exe-
cuted within an interrupt handler the rfscv, rfid,
hrfid or urfid instruction that returns from the inter-
rupt handler may provide the required context syn-
chronization.

USRR0 //
 0 62 63

USRR1
 0 63

Programming Note
Notice that rfebb, rfscv, rfid, hrfid, urfid, and
mtmsrd instructions can cause a TM Bad Thing
type Program interrupt even when executed in a
privilege state in which TM is made unavailable by
the HFSCR. Here are two examples. Both assume
that HFSCRTM=0; the second assumes that
HFSCREBB=1.
 An operating system, running with MSRTS TM

= 0b000 (N0), sets SRR129:31 to 0b101 (T1)
then executes rfid. The attempted illegal
transaction state transition will cause a TM
Bad Thing type Program interrupt, despite the
fact that TM is made unavailable in privileged
non-hypervisor state by the HFSCR.

 An application program, running with
MSRTS TM = 0b000 (N0), sets BESCRTS to
0b01 (S) then executes rfebb. The attempted
illegal transaction state transition will cause a
TM Bad Thing type Program interrupt, despite
the fact that TM is made unavailable in prob-
lem state by the HFSCR.

This anomaly cannot be caused by the PCR.
 rfscv, rfid, hrfid, urfid, and mtmsrd cannot

be executed in the privilege state (problem
state) in which TM is made unavailable by the
PCR.

 rfebb can be executed in the privilege state in
which TM is made unavailable by the PCR, but
the PCR bit that makes TM unavailable (the
v2.06 bit) also makes rfebb unavailable.

Another difference between the HFSCR and the
PCR is that PCRv2.06=1 prevents a thread from
being simultaneously in problem state and in
Transactional or Suspended state and
HFSCRTM=0 does not. However, if the hypervisor
always returns to the partition in Non-transactional
state when HFSCRTM=0, the partition will be
unable to enter Transactional or Suspended state.

Programming Note
POWER9™ Processor Programming Model Bulletin 32

IBM Hardware Support Documentation
beyond the instruction pointed to by SRR0, HSRR0, or
USRR0 may have been executed; see Chapter 11.

---------------------------- End text --------------------------------

Section 6.4 Interrupt Classes

Add ultravisor doorbell to the list of system-caused
interrupts.

-------------------------- Begin text --------------------------------

nterrupts are classified by whether they are directly
caused by the execution of an instruction or are caused
by some other system exception. Those that are “sys-
tem-caused” are:

 System Reset
 Machine Check
 External
 Decrementer
 Directed Privileged Doorbell
 Hypervisor Decrementer
 Hypervisor Maintenance
 Hypervisor Virtualization
 Directed Hypervisor Doorbell
 Directed Ultravisor Doorbell
 Performance Monitor

External, Decrementer, Hypervisor Decrementer,
Directed Privileged Doorbell, Directed Hypervisor Door-
bell, Directed Ultravisor Doorbell, Hypervisor Mainte-
nance, and Hypervisor Virtualization interrupts are
maskable interrupts. Therefore, software may delay the
generation of these interrupts. System Reset and
Machine Check interrupts are not maskable.

“Instruction-caused” interrupts are further divided into
two classes, precise and imprecise.

---------------------------- End text --------------------------------

Section 6.4.1 Precise Interrupt

Add USRR0 to bullet 1. HSRR0 was not previously
included but should be.

-------------------------- Begin text --------------------------------

When the fetching or execution of an instruction causes
a precise interrupt, the following conditions exist at the
interrupt point.

1. SRR0, HSRR0 or USRR0 addresses either the
instruction causing the exception or the immedi-
ately following instruction. Which instruction is
addressed can be determined from the interrupt
type and status bits.

---------------------------- End text --------------------------------

Section 6.4.3 Interrupt processing

Add USRR0 to bullet 1 and USRR1 to bullets 2 and 3
and USRR at the end of the last Programming Note.

-------------------------- Begin text --------------------------------

1. SRR0, HSRR0 or USRR0 is loaded with an
instruction address that depends on the type of
interrupt; see the specific interrupt description for
details.

2. Bits 33:36 and 42:47 of SRR1, HSRR1 or USRR1
are loaded with information specific to the interrupt
type.

3. Bits 0:32, 37:41, and 48:63 of SRR1, HSRR1 or
USRR1 are loaded with a copy of the correspond-
ing bits of the MSR.

...

---------------------------- End text --------------------------------

Section 6.4.4 Implicit alteration of HSRR0 and
HSRR1

Add urfid to the list of instructions that cannot be emu-
lated, and limit the prohibition on emulation of hrfid to
hypervisor state (a correction).

-------------------------- Begin text --------------------------------

Because interrupts that set the HSRRs preserve
MSRRI instead of setting it to 0 as is done by inter-
rupts that set the SRRs, handlers for interrupts that
set the HSRRs must prevent additional such inter-
rupts from occurring until enough state has been
saved that another such interrupt can be recovered
from, and also when the HSRRs have been
restored prior to executing hrfid. Required behav-
ior during those intervals includes the following.
 Keep MSRHV PR EE=0b100. (This state pre-

vents many such interrupts from occurring.)
 Execute only defined instructions that are not

in invalid form.
 Pin the first page of the hypervisor’s Process

Table
 Ensure that the PTE mapping the first page of

the hypervisor’s Process Table has the Refer-
ence bit set and has no other reason to cause
an exception.

Similarly, because the Directed Ultravisor Doorbell
interrupt preserves MSRRI instead of setting it to 0,
the Directed Ultravisor Doorbell interrupt handler
must prevent additional such interrupts from occur-
ring until enough state has been saved that another
such interrupt can be recovered from, and also
when the USRRs have been restored prior to exe-
cuting urfid. This can be accomplished by keeping
MSRS HV PR EE=0b1100 during those intervals.

Programming Note
 RFC02487: Secure Memory Facility 33

IBM Hardware Support Documentation
Executing some of the more complex instructions may
have the side effect of altering the contents of HSRR0
and HSRR1. The instructions listed below are guaran-
teed not to have this side effect. Any omission of
instruction suffixes is significant; e.g., add is listed but
add. is excluded.

1. Branch instructions

b[l][a], bc[l][a], bclr[l], bcctr[l]

2. Fixed-Point Load and Store Instructions

lbz, lbzx, lhz, lhzx, lwz, lwzx, ld, ldx, stb, stbx,
sth, sthx, stw, stwx, std, stdx

Execution of these instructions is guaranteed not
to have the side effect of altering HSRR0 and
HSRR1 only if the storage operand is aligned and
MSRHV DR=0b10.

3. Arithmetic instructions

addi, addis, add, subf, neg

4. Compare instructions

cmpi, cmp, cmpli, cmpl

5. Logical and Extend Sign instructions

ori, oris, xori, xoris, and, or, xor, nand, nor, eqv,
andc, orc, extsb, extsh, extsw

6. Rotate and Shift instructions

rldicl, rldicr, rldic, rlwinm, rldcl, rldcr, rlwnm,
rldimi, rlwimi, sld, slw, srd, srw

7. Other instructions

isync

rfid, urfid

hrfid in hypervisor state

mtspr, mfspr, mtmsrd, mfmsr

---------------------------- End text --------------------------------

Section 6.5 Interrupt Definitions

Add the S column on the right, add the new ultravisor
interrupt type, and add various new entries to the foot-
notes in the MSR setting figure. Also add the new ultra-
visor interrupt type to the effective address figure and
that offsets are also affected by MSR[S].

-------------------------- Begin text --------------------------------

Interrupt Type MSR Bit

 IR DR FE0 FE1 EE RI ME HV S
System Reset 0 0 0 0 0 0 p 1 t
Machine Check 0 0 0 0 0 0 0 1 t
Data Storage r r 0 0 0 0 - - -
Data Segment r r 0 0 0 0 - - -
Instruction Storage r r 0 0 0 0 - - -
Instruction Segment r r 0 0 0 0 - - -
External r r 0 0 0 h - e -
Alignment r r 0 0 0 0 - - -
Program r r 0 0 0 0 - - -
FP Unavailable r r 0 0 0 0 - - -
Decrementer r r 0 0 0 0 - - -
Directed Privileged Doorbell r r 0 0 0 0 - - -
Hypervisor Decrementer r r 0 0 0 - - 1 -
System Call r r 0 0 0 0 - s u
Trace r r 0 0 0 0 - - -
Hypervisor Data Storage r r 0 0 0 - - 1 -
Hypervisor Instr. Storage. r r 0 0 0 - - 1 -
Hypv Emulation Assistance r r 0 0 0 - - 1 -
Hypervisor Maintenance 0 0 0 0 0 - - 1 -
Directed Hypervisor Doorbell r r 0 0 0 - - 1 -
Hypervisor Virtualization r r 0 0 0 0 - 1 -
Performance Monitor r r 0 0 0 0 - - -
Vector Unavailable r r 0 0 0 0 - - -
VSX Unavailable r r 0 0 0 0 - - -
Facility Unavailable r r 0 0 0 0 - - -
Hypervisor Facility Unavailable r r 0 0 0 - - 1 -
Directed Ultravisor Doorbell 0 0 0 0 0 - - 1 1
System Call Vectored r r 0 0 - - - - -
POWER9™ Processor Programming Model Bulletin 34

IBM Hardware Support Documentation
Figure 7. MSR setting due to interrupt

...

0 bit is set to 0
1 bit is set to 1
- bit is not altered
r for interrupts that are taken as if LPCRAIL= 3, and for interrupts for which LPCRAIL applies, if

LPCRAIL=2 or 3, set to 1; otherwise set to 0
p if the interrupt occurred while the thread was in power-saving mode, set to 1; otherwise not

altered
e if LPES=0, set to 1; otherwise not altered
h if LPES=1, set to 0; otherwise not altered
s if LEV=1 or LEV=2, set to 1; otherwise not altered
t if the interrupt caused exit from a state-losing power-saving mode and SMFCTRLE=1, set to

1; if the interrupt caused exit from a state-losing power-saving mode and SMFCTRLE=0, set
to 0; otherwise not altered

u if SMFCTRLE =1 and LEV=2, set to 1; otherwise not altered
Settings for Other Bits

Bits BE, FP, PR, SE, TM, VEC, VSX, PMM, and bit 5 are set to 0.
TM, FP, SLE, VEC, and VSX are set to 0.
If the interrupt results in MSRS HV being equal to 0b11, the LE bit is copied from the UILE bit; other-
wise, if the interrupt results in MSRS HV being equal to 0b01, the LE bit is copied from the HILE bit;
otherwise the LE bit is copied from the LPCRILE bit.
The SF bit is set to 1.

If the TS field contained 0b10 (Transactional) when the interrupt occurred, the TS field is set to
0b01 (Suspended); otherwise the TS field is not altered.

Reserved bits are set as if written as 0.

Interrupt Type MSR Bit
 IR DR FE0 FE1 EE RI ME HV S
 RFC02487: Secure Memory Facility 35

IBM Hardware Support Documentation

Figure 8. Effective address of interrupt vector by
interrupt type

---------------------------- End text --------------------------------

Section 6.5.1 System Reset Interrupt

Add directed ultravisor doorbell to the bulleted list near
the beginning of the section. Add an SRR1 code for
directed ultravisor doorbell wakeup.

-------------------------- Begin text --------------------------------

 External

 Decrementer

 Directed Privileged Doorbell

 Directed Hypervisor Doorbell

 Directed Ultravisor Doorbell

 Hypervisor Maintenance

 Hypervisor Virtualization exception

 Implementation-specific

---------------------------- End text --------------------------------

Delete the Architecture Note in the definition of
SRR1[33]. (The Note, added in V. 2.07, says bit 33 will
be required to be set to 0 “in the next version of the
architecture”, and has been proven incorrect.)

-------------------------- Begin text --------------------------------

SRR1
33 Implementation-dependent.

34:36 Set to 0.
42:45 If the interrupt did not occur when the

thread was in power-saving mode, set to an

Effective
Address1

Interrupt Type

 00..0000_0100 System Reset
 00..0000_0200 Machine Check
 00..0000_0300 Data Storage
 00..0000_0380 Data Segment
 00..0000_0400 Instruction Storage
 00..0000_0480 Instruction Segment
 00..0000_0500 External
 00..0000_0600 Alignment
 00..0000_0700 Program
 00..0000_0800 Floating-Point Unavailable
 00..0000_0900 Decrementer
 00..0000_0980 Hypervisor Decrementer
 00..0000_0A00 Directed Privileged Doorbell
 00..0000_0B00 Reserved
 00..0000_0C00 System Call
 00..0000_0D00 Trace
 00..0000_0E00 Hypervisor Data Storage
 00..0000_0E20 Hypervisor Instruction Storage
 00..0000_0E40 Hypervisor Emulation Assistance
 00..0000_0E60 Hypervisor Maintenance
 00..0000_0E80 Directed Hypervisor Doorbell
 00..0000_0EA0 Hypervisor Virtualization
 00..0000_0EC0 Reserved
 00..0000_0EE0 Reserved for implementation-

dependent interrupt for perfor-
mance monitoring

 00..0000_0F00 Performance Monitor
 00..0000_0F20 Vector Unavailable
 00..0000_0F40 VSX Unavailable
 00..0000_0F60 Facility Unavailable
 00..0000_0F80 Hypervisor Facility Unavailable
 00..0000_0FA0 Directed Ultravisor Doorbell
 00..0000_0FC0 Reserved

 00..0000_0FFF Reserved
 00..0001_7000 System Call Vectored
 00..0001_7020 System Call Vectored

 00..0001_7FE0 System Call Vectored
 00..0001_7FFF (end of scv interrupt vectors)

1 The values in the Effective Address column are
interpreted as follows.
 00...0000_0nnn means

0x0000_0000_0000_0nnn unless the values
of HR, LPCRAIL, and MSRS HV IR DR cause the
application of an effective address offset. See
the description of LPCRAIL in Section 2.2 for
more details.

 0...00_0001_7nnn means
0x0000_0000_0001_7nnn unless the values
of HR, LPCRAIL, and MSRS HV IR DR cause the
usage of an alternate effective address. See
the description of LPCRAIL in Section 2.2 for
details.

Effective addresses 0x0000_0000_0000_0000
through 0x0000_0000_0000_00FF are used by soft-
ware and will not be assigned as interrupt vectors.

Effective
Address1

Interrupt Type
POWER9™ Processor Programming Model Bulletin 36

IBM Hardware Support Documentation
implementation-specific value. If the inter-
rupt occurred when the thread was in
power-saving mode, set to indicate the
exception that caused exit from power-sav-
ing mode as shown below:

---------------------------- End text --------------------------------

Editorial note: The abbreviations of the names of the
storage interrupts are added to the section names.

Section 6.5.3 Data Storage Interrupt (DSI)

Fix words for hypervisor real mode.

-------------------------- Begin text --------------------------------

A Data Storage interrupt occurs when no higher priority
exception exists and either

(a) a copy-paste transfer other than from main storage

 to a properly initiated accelerator is attempted, or

(b) (MSRHV PR=0b10) & (MSRDR=0)) and the data
access cannot be performed, or

(c) HPT translation is being performed, the value of the

 expression

 ((MSRHV PR=0b10)|((¬VPM|¬PRTEV)& MSRDR))

 is 1, and a data access cannot be performed,

 except for the case of MSRHV PR≠0b10,

 VPM=0, LPCRKBV=1, and a Virtual Page Class

 Key Storage Protection exception exists, or

(d) Radix Tree translation is being performed, and

 either a Data Address Watchpoint match occurs, an

 attempt is made to execute an AMO with an invalid

 function code, a problem other than page fault occurs
attempting to access the LPID=0 process table, or pro-
cess-scoped translation prevents the data access from

 being performed

for any of the following reasons that can occur in the
respective translation state except for a PTEG access
causing a secure memory exception when VPM=0. (In
the expression for (c) above, “¬PRTEV” is shorthand
representing the case of an invalid segment table
descriptor stopping the translation process.)

---------------------------- End text --------------------------------

Add radix storage protection (an oversight) and secure
memory protection.

-------------------------- Begin text --------------------------------
 The access violates Basic Storage Protection.
 The access violates Virtual Page Class Key Stor-

age Protection and LPCRKBV=0.
 The access violates Radix Tree Translation Stor-

age Protection.
 The access violates Secure Memory Protection.
 The process- and partition-scoped page attributes

conflict.

---------------------------- End text --------------------------------

-------------------------- Begin text --------------------------------
42 Set to 1 if the access is not permitted by vir-

tual page class key protection; otherwise
set to 0.

43 Set to 1 if the access is not permitted by
Secure Memory Protection; otherwise set
to 0.

44 Set to 1 if an unsupported radix tree config-
uration is found during the translation pro-
cess; otherwise set to 0.

---------------------------- End text --------------------------------

Make a miscellaneous repair.

-------------------------- Begin text --------------------------------

If multiple Data Storage exceptions occur for a given
effective address, any one or more of the bits corre-
sponding to these exceptions may be set to 1 in the
DSISR. However, if one or more Data Storage excep-
tions occur together with a Virtualized Page Class Key
Storage Protection exception that occurs when
LPCRKBV=1 and Virtualized Partition Memory is dis-
abled by VPM=0, an HDSI results, and all of the excep-
tions are reported in the HDSISR.

---------------------------- End text --------------------------------

Section 6.5.5 Instruction Storage Interrupt (ISI)

Add the steering for hypervisor real mode.

SRR142:45 Exception
0000 Reserved
0001 Directed Ultvsr Doorbell
0010 Implementation specific
0011 Directed Hypvsr Doorbell
0100 System Reset
0101 Directed Privlgd Doorbell
0110 Decrementer
0111 Reserved
1000 External
1001 Hypervisor Virtualization
1010 Hypervisor Maintenance
1011 Reserved
1100 Implementation specific
1101 Reserved
1110 Implementation specific
1111 Reserved
 RFC02487: Secure Memory Facility 37

IBM Hardware Support Documentation
-------------------------- Begin text --------------------------------

An Instruction Storage interrupt occurs when no higher
priority exception exists and either

(a) (MSRHV PR=0b10) & (MSRIR=0)) and the next
instruction to be executed cannot be fetched, or

(b) HPT Translation is being performed, the value of the

 expression

 ((MSRHV PR=0b10)|((¬VPM|¬PRTEV)&MSRIR))

 is 1, and the next instruction to be executed cannot

 be fetched, or

(c) Radix Tree translation is being performed and either
a problem other than page fault occurs attempting to
access the LPID=0 process table or

 process-scoped translation prevents the next

 instruction to be executed from being fetched

for any of the following reasons that can occur in the
respective translation state except for a PTEG access
causing a secure memory exception when VPM=0.
(In the expression for (b) above, “¬PRTEV” is short-
hand representing the case of an invalid segment table
descriptor stopping the translation process.)

---------------------------- End text --------------------------------

Add secure memory protection. (The presentation is
made more consistent with that for DSI.)

-------------------------- Begin text --------------------------------
 The address of the appropriate process table entry

or segment table entry group cannot be translated
when HR=0 and either VPM=0 or the process table
entry is invalid (independent of VPM).

 The access violates Basic Storage Protection.
 The access violates Virtual Page Class Key Stor-

age Protection.
 The access violates Radix Tree Translation Stor-

age Protection.
 The access violates Secure Memory Protection.
 The process- and partition-scoped page attributes

conflict.

---------------------------- End text --------------------------------

-------------------------- Begin text --------------------------------
42 Set to 1 if the access is not permitted by vir-

tual page class key protection; otherwise
set to 0.

43 Set to 1 if the access is not permitted by
Secure Memory Protection; otherwise set
to 0.

44 Set to 1 if an unsupported radix tree config-
uration is found during the translation pro-
cess; otherwise set to 0.

---------------------------- End text --------------------------------

Section 6.5.9 Program Interrupt

Update the privileged instruction type of program inter-
rupt to account for ultravisor privileged resources.

-------------------------- Begin text --------------------------------

Privileged Instruction

The following applies if the instruction is executed
when MSRPR = 1.

A Privileged Instruction type Program interrupt
is generated when execution is attempted of a
privileged instruction, or of an mtspr or mfspr
instruction with an SPR field that contains a
value having spr0=1.

The following applies if the instruction is executed
when MSRHV PR = 0b00 and LPCREVIRT=0.

A Privileged Instruction type Program interrupt
is generated when execution is attempted of a
hypervisor privileged instruction, or of an
mtspr or mfspr instruction that specifies an
SPR that is hypervisor privileged for the oper-
ation or that specifies PTCR, DAWR0, DAW-
RX0, or CIABR when those SPRs are
ultravisor privileged for the operation.

The following applies if the instruction is executed
when MSRHV PR = 0b00 or when MSRS HV PR =
0b010.

A Privileged Instruction type Program interrupt
is generated when execution is attempted of
an ultravisor privileged instruction, or of an
mtspr or mfspr instruction that specifies an
SPR, other than PTCR, DAWR0, DAWRX0,
and CIABR, that is ultravisor privileged for the
operation.

---------------------------- End text --------------------------------

Update the last p-note in the section to include ultravi-
sor-privileged resources.

-------------------------- Begin text --------------------------------
POWER9™ Processor Programming Model Bulletin 38

IBM Hardware Support Documentation

---------------------------- End text --------------------------------

Section 6.5.14 System Call Interrupt

Add SRR1 bits to distinguish ucall from hcall from
syscall.

-------------------------- Begin text --------------------------------

A System Call interrupt occurs when a System Call
instruction is executed.

The following registers are set:

SRR0 Set to the effective address of the instruc-
tion following the System Call instruction.

SRR1
33:36 Set to 0.
42:43 Set to indicate the LEV value specified by

the System Call instruction that caused the
interrupt, as follows.

44:47 Set to 0.
Others Loaded from the MSR.

MSR See Figure 7 on page 35.

Execution resumes at effective address
0x0000_0000_0000_0C00, possibly offset as specified
in Figure 7.

---------------------------- End text --------------------------------

Section 6.5.15 Trace Interrupt

Add urfid to join the other *rfid’s.

-------------------------- Begin text --------------------------------

A Trace interrupt occurs when no higher priority excep-
tion exists and any instruction except rfid, hrfid, urfid,
rfscv, or a Power-Saving Mode instruction is success-
fully completed, provided any of the following is true:

...

Execution resumes at effective address
0x0000_0000_0000_00D0, possibly offset as specified
in Figure 70. For a Trace interrupt resulting from exe-
cution of an instruction that modifies the value of
MSRIR, MSRDR, MSRS HV, or LPCRAIL HR, the Trace
interrupt vector location is based on the modified val-
ues.

When LPCREVIRT=1, some of the conditions that
cause a Privileged Instruction type Program inter-
rupt when LPCREVIRT=0 (attempted execution, in
privileged but non-hypervisor state, of a hypervisor
privileged instruction or of an mtspr or mfspr
instruction specifying an SPR that is hypervisor
privileged for the operation or PTCR, DAWR0,
DAWRX0, or CIABR when they are ultravisor privi-
leged for the operation) instead cause a Hypervisor
Emulation Assistance interrupt. Having these
cases cause a Hypervisor Emulation Assistance
interrupt permits support of nested hypervisors
through virtualization of hypervisor facilities, and
simplifies creation of a common kernel for the OS
and the hypervisor. Some operating systems may
still have code to handle these conditions, at the
Program interrupt vector location. For this reason, if
a Hypervisor Emulation Assistance interrupt occurs
with HSRR145=1 and the hypervisor is not provid-
ing either of these functions, the hypervisor should
pass control to the operating system at the operat-
ing system's Program interrupt vector location, with
all registers (SRR0, SRR1, MSR, GPRs, etc.) set
as if the instruction had caused a Privileged
Instruction type Program interrupt, including setting
SRR13 49 to 0b00.

LEV SRR142:43
 0 00
 1 01
 2 10
 3* undefined
* reserved LEV value

Programming Note

An attempt to execute an sc instruction with LEV=1
or LEV=2 in problem state, or an attempt to exe-
cute an sc instruction with LEV=2 in privileged non-
hypervisor state, should be treated as a program-
ming error.

An attempt to execute an sc instruction with LEV=2
when SMFCTRLE=0 should be treated as a pro-
gramming error.

Programming Note
 RFC02487: Secure Memory Facility 39

IBM Hardware Support Documentation

---------------------------- End text --------------------------------

Section 6.5.16 Hypervisor Data Storage Interrupt
(HDSI)

Make editorial wording improvement.

-------------------------- Begin text --------------------------------

(b) HPT translation is being performed and either a
PTEG access causes a secure memory exception or
the value of the expression

 (¬MSRDR) | (VPM & PRTEV & MSRDR)

 is 1, and a data access cannot be performed, or

(c) Radix Tree translation is being performed and either
a page fault occurs on the LPID=0 process table or

 partition-scoped translation other than for the
LPID=0 process table prevents an access from being
performed

---------------------------- End text --------------------------------

Add secure memory protection.

-------------------------- Begin text --------------------------------
 The access violates storage protection. In addition

to the legacy VPM cases (including those for
Secure Memory Protection), this includes mis-
matches in access authority in which the process-
scoped PTE permits the access but the partition-
scoped PTE does not and Secure Memory Protec-
tion for a radix guest. It also includes lack of nec-

essary authority for accesses to process-scoped
tables, for example lack of write authority to set a
reference bit in the process-scoped PTE (and
Secure Memory Protection here as well). (In such
a case, the “access” reported as failing would be
the access to the process-scoped table. The
HDAR would provide the guest real / (abbreviated)
virtual address of the table entry.)

---------------------------- End text --------------------------------

-------------------------- Begin text --------------------------------
42 Set to 1 if the access is not permitted by vir-

tual page class key protection; otherwise
set to 0.

43 Set to 1 if the access is not permitted by
Secure Memory Protection; otherwise set
to 0.

44 Set to 1 if an unsupported MMU configura-
tion is found during the translation process.

---------------------------- End text --------------------------------

Section 6.5.17 Hypervisor Instruction Storage Inter-
rupt (HISI)

Make editorial wording improvement.

-------------------------- Begin text --------------------------------

A Hypervisor Instruction Storage interrupt occurs when
no higher priority exception exists, either the thread is
not in hypervisor state or an unsupported MMU config-
uration has been found or the access has been pre-
vented by a problem in partition-scoped Radix Tree
translation, and either

(a) HPT translation is being performed and either a
PTEG access causes a secure memory exception or
the value of the expression

 (¬MSRIR) | (VPM & PRTEV & MSRIR))

 is 1, and the next instruction to be executed cannot

 be fetched for any of the following reasons, or

(b) Radix Tree translation is being performed and either
a page fault occurs on the LPID=0 process table or

 partition-scoped translation other than for the LPID=0
process table prevents the next

 instruction to be executed from being fetched for any

 of the following reasons that can occur in the respec-
tive translation state.

---------------------------- End text --------------------------------

Add secure memory protection.

-------------------------- Begin text --------------------------------
 The access violates storage protection. In addition

to the legacy VPM cases (including those for
Secure Memory Protection), this includes mis-

The following instructions are not traced.

 rfid
 hrfid
 urfid
 rfscv
 sc, scv, and Trap instructions that trap
 Power-Saving Mode instructions
 other instructions that cause interrupts (other

than Trace interrupts)
 the first instructions of any interrupt handler
 instructions that are emulated by software
 instructions, executed in Transactional state,

that are disallowed in Transactional state
 instructions, executed in Transactional state,

that cause types of accesses that are disal-
lowed in Transactional state

 mtspr, executed in Transactional state, speci-
fying an SPR that is not part of the Transac-
tional Memory checkpointed registers

 tbegin. executed at maximum nesting depth

In general, interrupt handlers can achieve the effect
of tracing these instructions.

Programming Note
POWER9™ Processor Programming Model Bulletin 40

IBM Hardware Support Documentation
matches in access authority in which the process-
scoped PTE permits the access but the partition-
scoped PTE does not and Secure Memory Protec-
tion for a radix guest. It also includes lack of nec-
essary authority for accesses to process-scoped
tables, for example lack of write authority to set a
reference bit in the process-scoped PTE (and
Secure Memory Protection here as well). (In such
a case, the “access” reported as failing would be
the access to the process-scoped table. The
HDAR would provide the guest real / (abbreviated)
virtual address of the table entry.)

---------------------------- End text --------------------------------

-------------------------- Begin text --------------------------------
42 Set to 1 if the access is not permitted by vir-

tual page class key protection; otherwise
set to 0.

43 Set to 1 if the access is not permitted by
Secure Memory Protection; otherwise set
to 0.

44 Set to 1 if an unsupported MMU configura-
tion is found during the translation process.

---------------------------- End text --------------------------------

Secction 6.5.18 Hypervisor Emulation Assistance
Interrupt

-------------------------- Begin text --------------------------------

A Hypervisor Emulation Assistance interrupt is gener-
ated when execution is attempted of an illegal instruc-
tion, or of a reserved instruction or an instruction that is
not provided by the implementation. It is also generated
under the following conditions.
 When MSRHV PR=0b00 and LPCREVIRT=1, execu-

tion is attempted of a hypervisor privileged instruc-
tion, or of an mtspr or mfspr instruction that
specifies an SPR that is hypervisor privileged for
the operation or that specifies PTCR, DAWR0,
DAWRX0, or CIABR when those SPRs are ultravi-
sor privileged for the operation.

 When MSRS HV PR = 0b010, execution is
attempted of an mtspr or mfspr instruction that
specifies PTCR, DAWR0, DAWRX0, or CIABR
when those SPRs are ultravisor privileged for the
operation.

 When MSRPR=1, execution is attempted of an
mtspr or mfspr instruction that specifies an SPR
with spr0=0 that is not provided by the implementa-
tion.

...

HSRR1
33:36 Set to 0.
42:44 Set to 0.
45 Set to 1 for an attempt, when MSRHV PR =

0b00 and LPCREVIRT=1, to execute a
hypervisor privileged instruction or an
mtspr or mfspr instruction that specifies an

SPR that is hypervisor privileged for the
operation or that specifies PTCR, DAWR0,
DAWRX0, or CIABR when they are ultravi-
sor privileged for the operation, or for an
attempt when MSRS HV PR = 0b010 to exe-
cute an mtspr or mfspr instruction that
specifies PTCR, DAWR0, DAWRX0, or
CIABR when they are ultravisor privileged
for the operation; otherwise set to 0.

46:47 Set to 0.
Others Loaded from the MSR.

---------------------------- End text --------------------------------

Admit that the big p-note ignores SMF Extend the first
paragraph as follows.

-------------------------- Begin text --------------------------------

This Programming Note illustrates how Hypervisor
Emulation Assistance interrupts should be handled by
software, including in environments that support nested
hypervisors. For simplicity, this Programming Note
ignores effects of the SMF facility (equivalently,
assumes that SMFCTRLE=0).

---------------------------- End text --------------------------------

Section 6.5.27+ Directed Ultravisor Doorbell Inter-
rupt

Add ultravisor IPIs.

-------------------------- Begin text --------------------------------

A Directed Ultravisor Doorbell interrupt occurs when no
higher priority exception exists, SMFCTRLE=1, a
Directed Ultravisor Doorbell exception is present, and
the value of the following expression is 1.

(MSREE | ¬(MSRS HV PR=0b110)

Directed Ultravisor Doorbell exceptions are generated
when Directed Ultravisor Doorbell messages (see
Chapter 10) are received and accepted by the thread.

The following registers are set:

USRR0 Set to the effective address of the instruc-
tion that the thread would have attempted
to execute next if no interrupt conditions
were present.

USRR1
33:36 Set to 0.
42:47 Set to 0.
Others Loaded from the MSR.

MSR See Figure 7 on page 35.

Execution resumes at effective address
0x0000_0000_0000_0FA0.

---------------------------- End text --------------------------------
 RFC02487: Secure Memory Facility 41

IBM Hardware Support Documentation
Section 6.7.2 Ordered Exceptions

Include new ultravisor exceptions in the ordering. The
ultravisor doorbell goes above HMI and the other door-
bells and security goes with “other [H]DSI and with all
[H]ISI.

-------------------------- Begin text --------------------------------

The exceptions listed here are ordered with respect to
the state of the interrupt processing mechanism. With
one exception, in the following list the hypervisor forms
of the Data Storage and Instruction Storage exceptions
can be substituted for the non-hypervisor forms since
the hypervisor forms cannot be caused by the same
instruction and have the same ordering. The exception
is that Virtual Page Class Key Storage Protection
exceptions that occur when LPCRKBV=1 and Virtual-
ized Partition Memory is disabled by VPM1=0 cause
only a Hypervisor Data Storage exception (and never a
Data Storage exception).

System-Caused or Imprecise

1. Program
 - Imprecise Mode Floating-Point Enabled Exception
2. Directed Ultravisor Doorbell
3. Hypervisor Maintenance
4. Hypervisor Virtualization, External, [Hypervisor]

Decrementer, Performance Monitor, Directed Privi-
leged Doorbell, Directed Hypervisor Doorbell

Instruction-Caused and Precise

1. Instruction Segment
2. [Hypervisor] Instruction Storage
3.a Hypervisor Emulation Assistance
3.b Program
 - Privileged Instruction
4. Function-Dependent
 4.a Fixed-Point and Branch
 1 Hypervisor Facility Unavailable
 2 Facility Unavailable
 3a Program
 - Trap
 - TM Bad Thing
 3b System Call or System Call Vectored
 3c.1 Data Storage for the case of Fixed-Point
 Load or Store Caching Inhibited instructions
 with MSRDR=1 or the case of an invalid

 function code for an Atomic Memory
 Operation

 3c.2 all other Data Storage, Hypervisor Data
 Storage, [Hypervisor] Data Segment, or
 Alignment
 4 Trace
 4.b Floating-Point
 1 Hypervisor Facility Unavailable
 2 FP Unavailable
 3a Program
 - Precise Mode Floating-Pt Enabled Excep’n
 3b [Hypervisor] Data Storage, [Hypervisor] Data

 Segment, or Alignment
 4 Trace
 4.c Vector
 1 Hypervisor Facility Unavailable
 2 Vector Unavailable
 3a [Hypervisor] Data Storage, [Hypervisor] Data
 Segment, or Alignment
 4 Trace
 4.d VSX
 1 Hypervisor Facility Unavailable
 2 VSX Unavailable
 3a Program
 - Precise Mode Floating-Pt Enabled Excep’n
 3b [Hypervisor] Data Storage, [Hypervisor] Data
 Segment, or Alignment

 4 Trace
 4.e Other Instructions
 1 Hypervisor Facility Unavailable
 2 Facility Unavailable
 3a [Hypervisor] Data Storage, [Hypervisor] Data
 Segment, or Alignment
 4 Trace

For implementations that execute multiple instructions
in parallel using pipeline or superscalar techniques, or
combinations of these, it can be difficult to understand
the ordering of exceptions.To understand this ordering
it is useful to consider a model in which each instruction
is fetched, then decoded, then executed, all before the
next instruction is fetched. In this model, the exceptions
a single instruction would generate are in the order
shown in the list of instruction-caused exceptions.
Exceptions with different numbers have different order-
ing. Exceptions with the same numbering but different
lettering are mutually exclusive and cannot be caused
by the same instruction. The Hypervisor Virtualization,
External, [Hypervisor] Decrementer, Performance Mon-
itor, Directed Privileged Doorbell, and Directed Hyper-
visor Doorbell interrupts have equal ordering. Similarly,
where Data Storage, Data Segment, and Alignment
exceptions are listed in the same item they have equal
ordering.

Even on threads that are capable of executing several
instructions simultaneously, or out of order, instruction-
caused interrupts (precise and imprecise) occur in pro-
gram order.

---------------------------- End text --------------------------------

Section 6.9 Interrupt Priorities

Add urfid to the other *rfid’s, add ultravisor doorbell (list
numbers are wrong ...sorry). Security faults are silently
added to other [H]DSIs and [H]ISIs.

Also, cleanup old oversights: add rfebb and mtmsr and
restore rfscv (which was removed in error) to HEAI, add
HEAI to the TM instructions,

-------------------------- Begin text --------------------------------

 H. TM instruction, mt/fspr specifying TM SPR
POWER9™ Processor Programming Model Bulletin 42

IBM Hardware Support Documentation
 a.These exceptions are mutually exclusive
 and have the same priority:
 Program - Privileged Instruction (only

for treclaim. and trechkpt.)
 Hypervisor Emulation Assistance

b.Hypervisor Facility Unavailable
c. Facility Unavailable
d.Program - TM Bad Thing (only for treclaim.,

trechkpt., and mtspr)
e.Trace

 I. rfebb, rfscv, rfid, hrfid, urfid, and mtmsr[d]
a.These exceptions are mutually exclusive

and have the same priority:
 Program - Privileged Instruction, for all

except rfebb
 Hypervisor Emulation Assistance, for

rfebb, rfscv, hrfid and mtmsr
b.Hypervisor Facility Unavailable (rfebb only)
c. Facility Unavailable (rfebb only)
d Program - TM Bad Thing for all except

mtmsr.
e.Program - Floating-Point Enabled Exception

or all except rfebb
f. Trace, for rfebb and mtmsr[d] only

J. Other Instructions
 a.These exceptions are mutually exclusive

 and have the same priority:
 Program - Trap
 System Call
 System Call Vectored
 Program - Privileged Instruction
 Hypervisor Emulation Assistance

b. Hypervisor Facility Unavailable
c. Facility Unavailable
d.Trace

K. [Hypervisor] Instruction Storage and
 Instruction Segment

These exceptions have the lowest priority in
this category. They are recognized only when
all instructions prior to the instruction causing
one of these exceptions appear to have com-
pleted and that instruction is the next instruc-
tion to be executed. The two exceptions are
mutually exclusive.

The priority of these exceptions is specified for
completeness and to ensure that they are not
given more favorable treatment. It is accept-
able for an implementation to treat these
exceptions as though they had a lower priority.

5. Program - Imprecise Mode Floating-Point Enabled
Exception

This exception is the fourth highest priority excep-
tion. When this exception is created, the interrupt
mechanism waits for all other possible exceptions
to be reported. It then generates this interrupt if no

higher priority exception exists when the interrupt
is to be generated.

6. Directed Ultravisor Doorbell

This exception is the fifth highest priority excep-
tion. When this exception is created, the interrupt
mechanism waits for all other possible exceptions
to be reported. It then generates this interrupt if no
higher priority exception exists when the interrupt
is to be generated.

5. Hypervisor Maintenance

This exception is the sixth highest priority excep-
tion. When this exception is created, the interrupt
mechanism waits for all other possible exceptions
to be reported. It then generates this interrupt if no
higher priority exception exists when the interrupt
is to be generated.

If a Hypervisor Maintenance exception exists and
each attempt to execute an instruction when the
Hypervisor Maintenance interrupt is enabled
causes an exception (see the Programming Note
below), the Hypervisor Maintenance interrupt is
not delayed indefinitely.

6. Hypervisor Virtualization, Direct External, Medi-
ated External, and [Hypervisor] Decrementer, Per-
formance Monitor, Directed Privileged Doorbell,
Directed Hypervisor Doorbell

These exceptions are the lowest priority excep-
tions. All have equal priority (i.e., the hardware
may generate any one of the corresponding inter-
rupts for which an exception exists). When one of
these exceptions is created, the interrupt process-
ing mechanism waits for all other possible excep-
tions to be reported. It then generates the
corresponding interrupt if no higher priority excep-
tion exists when the interrupt is to be generated.

---------------------------- End text --------------------------------

Section 8.3 Completed Instruction Address Break-
point

Add UV debug control.

-------------------------- Begin text --------------------------------

The Completed Instruction Address Breakpoint mecha-
nism provides a means of detecting an instruction com-
pletion at a specific instruction address. The address
comparison is done on an effective address (EA).

Some platform implementations may depend
on timely servicing of Hypervisor Maintenance
interrupts, e.g. to prevent physical damage.
The Directed Ultravisor Doorbell interrupt han-
dler may test the HMER to identify such cir-
cumstances and take appropriate action.

Programming Note
 RFC02487: Secure Memory Facility 43

IBM Hardware Support Documentation
The Completed Instruction Address Breakpoint mecha-
nism is controlled by the Completed Instruction
Address Breakpoint Register (CIABR) shown in
Figure 9, except that if SMFCTRLD=1 when PRIV≠0,
the Privilege specification in the PRIV field is ignored
and the facility detects instruction address matches in
ultravisor state.

Figure 9. Completed Instruction Address
Breakpoint Register

A Completed Instruction Address Breakpoint match
occurs upon instruction completion if all of the following
conditions are satisfied. The values of CIABR, SMFC-
TRL, and the MSR that are used for the comparisons
are those that exist at the time the instruction is initi-
ated.

 the completed instruction address is equal to
CIEA0:61 || 0b00.

 SMFCTRLD=0 and the thread privilege matches
that specified in PRIV or SMFCTRLD=1, PRIV≠0,
and MSRS HV PR=0b110.

In 32-bit mode the high-order 32 bits of the EA are
treated as zeros for the purpose of detecting a match.

A Completed Instruction Address Breakpoint match
causes a Trace exception provided that no higher prior-
ity interrupt occurs from the completion of the instruc-
tion (see Section 6.5.15).

---------------------------- End text --------------------------------

Section 8.4 Data Address Watchpoint

Add UV debug control.

-------------------------- Begin text --------------------------------

The Data Address Watchpoint mechanism provides a
means of detecting load and store accesses to a range
of addresses starting at a designated doubleword. The
address comparison is done on an effective address
(EA).

The Data Address Watchpoint mechanism is controlled
by a single set of SPRs, numbered with n=0: the Data
Address Watchpoint Register (DAWRn), shown in
Figure 10, and the Data Address Watchpoint Register
Extension (DAWRXn), shown in Figure 11. SMFC-
TRLD functions as an extension to the PRIVM field:
when SMFCTRLD=1, the facility detects data address
watchpoint matches in ultravisor state in addition to
states enabled by the PRIVM field.

Figure 10. Data Address Watchpoint Register

All other fields are reserved.

Figure 11. Data Address Watchpoint Register
Extension

The supported PRIVM values are 0b000, 0b001,
0b010, 0b011, 0b100, and 0b111 when SMFCTRLD=0
and 0b000, 0b001, 0b010, and 0b011 when SMFC-
TRLD=1. If the combination of SMFCTRLD and the
PRIVM field does not contain one of the supported val-
ues, then whether a match occurs for a given storage

CIEA PRIV
0 62 63

Bit(s) Name Description
0:61 CIEA Completed Instruction Effective

Address
62:63 PRIV Privilege (PRIV > 0b00 ignored when

SMFCTRLD=1)
00: Disable matching
01: Match in problem state
10: Match in privileged non-hypervi-

sor state
11: Match in hypervisor non-ultravisor

state

The Data Address Watchpoint mechanism employs
a simple EA compare. It makes no attempt to take
the radix table translation quadrants (keyed off
EA0:1) into account to enable a single setting to
work in all privilege levels.

DEAW ///
0 61 63

Bit(s) Name Description
0:60 DEAW Data Effective Address Watchpoint

/// MRD /// HRAMMC DW DR WT WTI PRIVM
32 48 54 56 57 58 59 60 61 63

Bit(s) Name Description
48:53 MRD Match Range in Doublewords

biased by -1. (0b000000 = 1 DW,
0b111111 = 64 DW)

56 HRAMMC Hypervisor Real Addressing Mode
Match Control

0: DEAW0 and EA0 are used
during matching in ultravisor or
hypervisor real addressing mode

1: DEAW0 and EA0 are ignored
during matching in ultravisor or
hypervisor real addressing mode

57 DW Data Write
58 DR Data Read
59 WT Watchpoint Translation
60 WTI Watchpoint Translation Ignore
61:63 PRIVM Privilege Mask
61 HYP Hypervisor non-ultravisor state
62 PNH Privileged Non-Hypervisor state
63 PRO Problem state

Programming Note
POWER9™ Processor Programming Model Bulletin 44

IBM Hardware Support Documentation
access is undefined. Elsewhere in this section it is
assumed that the PRIVM field contains one of the sup-
ported values.

A Data Address Watchpoint match occurs for a Load or
Store instruction if, for any byte accessed, all of the fol-
lowing conditions are satisfied. For the first condition,
chk_DEAW and chk_EA are defined as follows. If
MSRHV DR=0b10 and HRAMMC=1 then

chk_DEAW = 0b0 || DEAW1:60 and
chk_EA = 0b0 || EA1:63;

otherwise
chk_DEAW = DEAW and
chk_EA = EA.

 the access is
- a quadword access and located in the range

(chk_DEAW0:59 || 0b0) ≤ (chk_EA0:59 || 0b0) ≤
((chk_DEAW0:59 || 0b0) + (550 || MRD0:4||
0b0)) such that (chk_EA0:60 AND (551 || 60)) =
 (chk_DEAW0:60 AND (551 || 60)).

- not a quadword access and located in the
range chk_DEAW0:60 ≤ chk_EA0:60 ≤
(chk_DEAW0:60 + (550 || MRD0:5)) such that
(chk_EA0:60 AND (551 || 60)) =
 (chk_DEAW0:60 AND (551 || 60)).

 (MSRDR = DAWRXnWT) | DAWRXnWTI
 the thread is in

- ultravisor state and SMFCTRLD=1, or
- hypervisor non-ultravisor state and

DAWRXnHYP = 1, or
- privileged non-hypervisor state and

DAWRXnPNH = 1, or
- problem state and DAWRXnPR = 1

 the instruction is a Store and DAWRXnDW = 1, or
the instruction is a Load and DAWRXnDR = 1.

In 32-bit mode the high-order 32 bits of the EA are
treated as zeros for the purpose of detecting a match.

If the above conditions are satisfied, it is undefined
whether a match occurs in the following cases.

 The instruction is Store Conditional but the store is
not performed

 The instruction is dcbz. (For the purpose of deter-
mining whether a match occurs, dcbz is treated as
a Store.)

The Cache Management instructions other than dcbz
never cause a match.

A Data Address Watchpoint match causes a Data Stor-
age exception or a Hypervisor Data Storage exception
(see Section 6.5.3, “Data Storage Interrupt” on
page 1114 and Section 6.5.16, “Hypervisor Data Stor-
age Interrupt” on page 1124). If a match occurs, some
or all of the bytes of the storage operand may have
been accessed; however, if a Store instruction causes
the match, the storage operand is not modified if the
instruction is one of the following:
 any Store instruction that causes an atomic access

---------------------------- End text --------------------------------

Section 10.1 Overview

-------------------------- Begin text --------------------------------

The Processor Control facility provides a mechanism
for the ultravisor or hypervisor to send messages to
other threads in the system. Privileged non-hypervisor
programs are able to send messages to other threads
on the same multi-threaded processor; however if the
processor is configured into sub-processors, privileged
non-hypervisor programs can only send messages to
other threads on the same sub-processor.

---------------------------- End text --------------------------------

Section 10.2 Programming Model

-------------------------- Begin text --------------------------------

Ultravisor-level, hypervisor-level, and privileged-level
messages can be sent. Ultravisor-level messages are
sent using the msgsndu instruction and cause ultravi-
sor-level exceptions when received. Hypervisor-level
messages are sent using the msgsnd instruction and
cause hypervisor-level exceptions when received. Priv-
ileged-level messages are sent using the msgsndp
instruction and cause privileged-level exceptions when
received. For all three instructions, the message type
and destination threads are specified in a General Pur-
pose Register.

If a message is received by a thread, the exception cor-
responding to the message type is generated. When
the exception is generated, the corresponding interrupt
occurs when no higher priority exception exists and the
interrupt is enabled (MSREE=1 for the Directed Privi-
leged Doorbell interrupt, MSREE=1 or MSRHV=0 for the
Directed Hypervisor Doorbell interrupt, and MSREE=1

When SMFCTRLD=0, PRIVM value 0b000 causes
matches not to occur regardless of the contents of
other DAWRn and DAWRXn fields. PRIVM values
0b101 and 0b110 are not supported because a
storage location that is shared between the hyper-
visor and non-hypervisor software is unlikely to be
accessed using the same EA by both the hypervi-
sor and the non-hypervisor software. (PRIVM value
0b111 is supported primarily for reasons of soft-
ware compatibility with respect to emulation of the
DABR facility as described in a subsequent Pro-
gramming Note.)

SMFCTRLD=1 is provided for ultravisor debugging
and also for ultravisor supervision of secure parti-
tion debugging. When SMFCTRLD=1, exceptions
due to matches that occur in hypervisor non-ultravi-
sor state are unlikely to be desirable.

Programming Note
 RFC02487: Secure Memory Facility 45

IBM Hardware Support Documentation
or MSRS HV PR≠0b110 for the Directed Ultravisor Door-
bell interrupt).

A Directed Privileged Doorbell exception remains until
the corresponding interrupt occurs, or the exception is
cleared by execution of a mtspr(DPDES) or msgclrp
instruction.

A Directed Hypervisor Doorbell exception remains until
the corresponding interrupt occurs, or the exception is
cleared by execution of a msgclr instruction.

A Directed Ultravisor Doorbell exception remains until
the corresponding interrupt occurs, or the exception is
cleared by execution of a msgclru instruction.

If a Doorbell exception of a given privilege is present
and the corresponding interrupt is pended because
MSREE=0, additional Doorbell exceptions of that privi-
lege are ignored until the exception is cleared.

---------------------------- End text --------------------------------

Section 10.3.1 Directed Privileged Doorbell Excep-
tion State

Update the p-note for ultravisor.

-------------------------- Begin text --------------------------------

---------------------------- End text --------------------------------

Section 10.4 Processor Control Instructions

Add msgsndu and msgclru to the introduction.

-------------------------- Begin text --------------------------------

msgsndu, msgsnd, msgsndp, msgclru, msgclr, and
msgclrp instructions are provided for sending and
clearing messages. msgsync is provided to enable the
thread that is target of a msgsndu or msgsnd instruc-
tion to ensure that stores performed by the message-
sending thread before it executed msgsndu or
msgsnd have been performed with respect to the tar-
get thread. msgsndp and msgclrp are privileged
instructions; msgsnd, msgclr, and msgsync are
hypervisor privileged instructions; msgsndu and
msgclru are ultravisor privileged instructions.

---------------------------- End text --------------------------------

Add msgsndu and msgclru instructions for interproces-
sor interrupt / system synchronization purposes as the
first two instructions in the section.

-------------------------- Begin text --------------------------------

Message Send Ultravisor X-form

msgsndu RB

msgtype GPR(RB)32:36
payload GPR(RB)37:63
if (msgtype = 0x05) then
 send_msg(msgtype, payload)

msgsndu sends a message to other threads in the
system. The message type and destination thread(s)
are specified in RB.

RB

Figure 12. RB Contents for msgsndu

The contents of RB are defined below. Bits 37:63 are
referred to as the message payload.

Field Description
0:31 Reserved

32:36 Type

If Type=0x05, then a Directed Ultravisor Door-
bell message is to be sent to the thread(s)
specified in the Message Payload field.

All other values of the Type field are reserved;
if the instruction is executed with this field set
to a reserved value, the instruction is treated
as a no-op.

37:38 Broadcast (B)

00 The message is sent to the thread for
which PIR44:63 is equal to the value of the
PROCIDTAG field in the message pay-
load.

01 The message is sent to all threads on the
same sub-processor as the thread for
which PIR44:63 is equal to the value of the
PROCIDTAG field in the message pay-
load.

10 The message is sent to all threads on the
same multi-threaded processor as the
thread for which PIR44:63 is equal to the
value of the PROCIDTAG field in the mes-
sage payload.

The primary use of the DPDES is to provide the
means for the hypervisor to save a [sub-]proces-
sor's Directed Privileged Doorbell exception state
when the set of programs running on the [sub-]pro-
cessor is swapped out or moved from one [sub-
]processor to another. Since there is no such need
for a similar function for the hypervisor or ultravisor,
there is no similar register for the hypervisor or
ultravisor. Privileged programs are able to read the
DPDES in order to poll for Directed Privileged
Doorbell exceptions when the corresponding inter-
rupt is disabled (MSREE=1).

Programming Note

31 /// /// RB 78 /
0 6 11 16 21 31

<-Message Payload->
/ / / TYPE B / / / PROCIDTAG

0 32 37 39 44 63
POWER9™ Processor Programming Model Bulletin 46

IBM Hardware Support Documentation
11 Reserved

39:43 Reserved

44:63 PROCIDTAG

This field indicates the recipient thread(s) as
specified in the B field. If this field set to a
value that is not the same as bits PIR44:63 of
any thread in the system, then the instruction
behaves as if it were a no-op.

The actions taken on receipt of a message are defined
in Section 10.2.

This instruction is ultravisor privileged.

Special Registers Altered:
None

Message Clear Ultravisor X-form

msgclru RB

t hypervisor thread number of executing thread
if (msgtype = 0x05) then

clear any Directed Ultravisor Doorbell exception
for thread t

msgclru clears a message previously accepted by the
thread executing the msgclru.

Let msgtype be (RB)32: 36, and let t be the hypervisor
thread number of the thread executing the msgclru
instruction.

If msgtype = 0x05, then clear any Directed Ultravisor
Doorbell exception that exists on thread t; otherwise,
this instruction is treated as a no-op.

This instruction is ultravisor privileged.

Special Registers Altered:
None

---------------------------- End text --------------------------------

Make minor editorial fixes to the msgsnd description.

-------------------------- Begin text --------------------------------
msgtype GPR(RB)32:36
payload GPR(RB)37:63
if (msgtype = 0x05) then
 send_msg(msgtype, payload)

...

---------------------------- End text --------------------------------

Make minor editorial fixes to the msgclr description.

-------------------------- Begin text --------------------------------
t hypervisor thread number of executing thread
if (msgtype = 0x05) then

clear any Directed Hypervisor Doorbell exception
for thread t

---------------------------- End text --------------------------------

If msgsndu is used to notify the receiver that
updates have been made to storage, a sync
should be placed between the stores and the
msgsndu. See Section 5.9.2.

Programming Note

31 /// /// RB 110 /
0 6 11 16 21 31

msgclru is typically issued only when MSREE=0. If
msgclru is executed when MSREE=1 when a
Directed Ultravisor Doorbell interrupt is about to
occur, the corresponding interrupt may or may not
occur.

If msgsnd is used to notify the receiver that
updates have been made to storage, a sync
should be placed between the stores and the
msgsnd. See Section 5.9.2.

Programming Note

Programming Note
 RFC02487: Secure Memory Facility 47

IBM Hardware Support Documentation
Fix up msgsync to include msgsndu.

-------------------------- Begin text --------------------------------

Message Synchronize X-form

msgsync

In conjunction with the Synchronize and msgsndu or
msgsnd instructions, the msgsync instruction pro-
vides an ordering function for stores that have been
performed with respect to the thread executing the
Synchronize and msgsndu or msgsnd instructions,
relative to data accesses by other threads that are per-
formed after a Directed Ultravisor Doorbell or Directed
Hypervisor Doorbell interrupt has occurred, as
described in the Synchronize instruction description on
p. 1067.

This instruction is hypervisor privileged.

Special Registers Altered:

 None

---------------------------- End text --------------------------------

Chapter 11. Synchronization Requirements for Con-
text Alterations

Add urfid, urmor, and SMFCTRL to the tables.
Remove reference to note 11 from both LPCR entries.

-------------------------- Begin text --------------------------------

31 /// /// /// 886 /
0 6 11 16 21 31

When used in conjunction with msgsndu or
msgsnd, Synchronize with L = 0 or 2 is executed
on the thread that will execute the msgsndu or
msgsnd, and msgsync is executed on another
thread -- typically the thread that is the target of the
msgsndu or msgsnd, but possibly any other
thread (partly because the software that services
the Directed Ultravisor Doorbell or Directed Hyper-
visor Doorbell interrupt may ultimately run on a
thread other than that which received the excep-
tion). The Synchronize precedes the msgsndu or
msgsnd; the msgsync is executed after the
Directed Ultravisor Doorbell or Directed Hypervisor
Doorbell interrupt occurs, and precedes all instruc-
tions that need to "see" the values stored by the
stores that are in set A of the memory barrier cre-
ated by the Synchronize; see Section 5.9.2, “Syn-
chronize Instruction”.

Programming Note

Instruction or
Event

Required
Before

Required
After

Notes

event-based
branch and rfebb

none none 21

interrupt none none
rfid none none
hrfid none none
urfid none none
rfscv none none
sc none none
scv none none
Trap none none
mtspr (AMR) CSI CSI 13
mtspr (PIDR) CSI CSI 6
mtspr (DAWRn) CSI CSI
mtspr (DAWRXn) CSI CSI
mtspr (HRMOR) CSI CSI 11,17
mtspr (URMOR) CSI CSI 11,17
mtspr (LPCR) CSI CSI 14
mtspr (PTCR) ptesync CSI 3
mtspr (SMFCTRL) CSI CSI
mtmsrd (SF) none none
mtmsrd (TS) none none
mtmsrd (TM) none none
mtmsr[d] (PR) none none
mtmsr[d] (DR) none none
mtspr (PIDR) CSI CSI 6
slbie CSI CSI 4
slbieg CSI CSI 4,6
slbia CSI CSI 4
slbmte CSI CSI 4,10
tlbie CSI CSI 4,6
tlbiel CSI ptesync 4
Store(PTE) none {ptesync,

CSI}
5,6

Store(STE) none {ptesync,
CSI}

5,6

Store(PRTE) none {ptesync,
CSI}

5,6

Store(PATE) none {ptesync,
CSI}

5,6

transaction failure
and all TM
instructions
except tcheck

none none 21

Table 2: Synchronization requirements for data access
POWER9™ Processor Programming Model Bulletin 48

IBM Hardware Support Documentation
---------------------------- End text --------------------------------

Add URMOR to the text of footnote 11 and remove
LPCR[VC].

-------------------------- Begin text --------------------------------

When the URMOR or the HRMOR is modified, software
must invalidate all implementation-specific lookaside
information used in address translation that depends
on the old contents of the register or field (i.e., the con-
tents immediately before the modification). The slbia
instruction can be used to invalidate all such implemen-
tation-specific lookaside information.

---------------------------- End text --------------------------------

Book Appendices:

Appendix G. Opcode Maps

Add the following entry in Table 9 (Right), column
‘10010’, row ‘01001:

306
urfid
S XL

Add msgsndu and msgclru.

Appendices H, I, J. Power ISA AS Instruction Set

Add urfid, msgsndu, and msgclru to the instruction
listings, as appropriate. Add ultravisor priority to the
key.

---------------------------- End RFC -------------------------------

Instruction or
Event

Required
Before

Required
After

Notes

event-based branch
and rfebb

none none 21

interrupt none none
rfid none none
hrfid none none
urfid none none
rfscv none none
sc none none
scv none none
Trap none none
mtmsrd (SF) none none 7
mtmsrd (TS) none none
mtmsrd (TM) none none
mtmsr[d] (EE) none none 1
mtmsr[d] (PR) none none 8
mtmsr[d] (FP) none none
mtmsr[d](FE0,FE1) none none
mtmsr[d] (SE, BE) none none
mtmsr[d] (IR) none none 8
mtmsr[d] (RI) none none
mtspr (DEC) none none 9
mtspr (PIDR) CSI CSI 6
mtspr (IAMR) none CSI
mtspr (TFHAR) none none
mtspr (TEXASR) none none
mtspr (CTRL) none none
mtspr (FSCR) none CSI
mtspr (DPDES) none CSI 17
mtspr (CIABR) none CSI
mtspr (HFSCR) none CSI
mtspr (HDEC) none none 9
mtspr (HRMOR) none CSI 8, 11,17
mtspr (URMOR) none CSI 8, 11,17
mtspr (LPCR) none CSI 12
mtspr (LPIDR) CSI CSI 6,14,17
mtspr (PCR) none CSI 17
mtspr (PTCR) ptesync CSI 3,17
mtspr (SMFCTRL) none CSI
mtspr (Perf. Mon.) none CSI 15,18
mtspr (BESCR) none CSI 16,18
slbie none CSI 4
slbieg none CSI 4,6
slbia none CSI 4
slbmte none CSI 4,8,10
tlbie none CSI 4,6
tlbiel none CSI 4
Store(PTE) none {ptesync,

CSI}
5,6,8

Store(STE) none {ptesync,
CSI}

5,6,8

Table 3: Synchronization requirements for instruction
fetch and/or execution

Store(PRTE) none {ptesync,
CSI}

5,6,8

Store(PATE) none {ptesync,
CSI}

5,6,8

transaction failure
and all TM
instructions
except tcheck

none none 21

Instruction or
Event

Required
Before

Required
After

Notes

Table 3: Synchronization requirements for instruction
fetch and/or execution
 RFC02487: Secure Memory Facility 49

IBM Hardware Support Documentation
POWER9™ Processor Programming Model Bulletin 50

	RFC02183.HTM.r17.public7.pdf
	POWER7+supplement.pdf
	RFC02487.acm.bulletin.pdf
	RFC02487: Secure Memory Facility
	3.1 Overview
	3.2 Ultravisor Real Mode Offset Register (URMOR)
	3.3 Ultravisor Interrupt Little- Endian (UILE) Bit
	3.4 Secure Memory Facility Control Register (SMFCTRL)
	3.4.1 Enabling SMF and Secure Memory Enforcement
	Ultravisor Return From Interrupt Doubleword XL-form
	Message Send Ultravisor X-form
	Message Clear Ultravisor X-form
	Message Synchronize X-form

	RFC02487.acm.bulletin.pdf
	RFC02487: Secure Memory Facility
	3.1 Overview
	3.2 Ultravisor Real Mode Offset Register (URMOR)
	3.3 Ultravisor Interrupt Little- Endian (UILE) Bit
	3.4 Secure Memory Facility Control Register (SMFCTRL)
	3.4.1 Enabling SMF and Secure Memory Enforcement
	Ultravisor Return From Interrupt Doubleword XL-form
	Message Send Ultravisor X-form
	Message Clear Ultravisor X-form
	Message Synchronize X-form

	RFC02487.acm.bulletin.pdf
	RFC02487: Secure Memory Facility
	3.1 Overview
	3.2 Ultravisor Real Mode Offset Register (URMOR)
	3.3 Ultravisor Interrupt Little- Endian (UILE) Bit
	3.4 Secure Memory Facility Control Register (SMFCTRL)
	3.4.1 Enabling SMF and Secure Memory Enforcement
	Ultravisor Return From Interrupt Doubleword XL-form
	Message Send Ultravisor X-form
	Message Clear Ultravisor X-form
	Message Synchronize X-form

	RFC02487.acm.bulletin.pdf
	RFC02487: Secure Memory Facility
	3.1 Overview
	3.2 Ultravisor Real Mode Offset Register (URMOR)
	3.3 Ultravisor Interrupt Little- Endian (UILE) Bit
	3.4 Secure Memory Facility Control Register (SMFCTRL)
	3.4.1 Enabling SMF and Secure Memory Enforcement
	Ultravisor Return From Interrupt Doubleword XL-form
	Message Send Ultravisor X-form
	Message Clear Ultravisor X-form
	Message Synchronize X-form

