
POWER9 Processor User’s Manual

OpenPOWER

Version 2.1
10 October 2019

Title Page

®

Copyright and Disclaimer
© Copyright International Business Machines Corporation 2016, 2019

Printed in the United States of America October 2019

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines Corp.,
registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other compa-
nies. A current list of IBM trademarks is available on the Web at “Copyright and trademark information” at
www.ibm.com/legal/copytrade.shtml.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

NVLink is a trademark of the NVIDIA Corporation in the United States, other countries, or both.

The OpenPOWER word mark and the OpenPOWER Logo mark, and related marks, are trademarks and service marks
licensed by OpenPOWER.

Other company, product, and service names may be trademarks or service marks of others.

All information contained in this document is subject to change without notice. The products described in this document
are NOT intended for use in applications such as implantation, life support, or other hazardous uses where malfunction
could result in death, bodily injury, or catastrophic property damage. The information contained in this document does not
affect or change IBM product specifications or warranties. Nothing in this document shall operate as an express or implied
indemnity under the intellectual property rights of IBM or third parties. All information contained in this document was
obtained in specific environments, and is presented as an illustration. The results obtained in other operating environ-
ments may vary.

This document is intended for the development of technology products compatible with Power Architecture®. You may
use this document, for any purpose (commercial or personal) and make modifications and distribute; however, modifica-
tions to this document may violate Power Architecture and should be carefully considered. Any distribution of this docu-
ment or its derivative works shall include this Notice page including but not limited to the IBM warranty disclaimer and IBM
liability limitation. No other licenses (including patent licenses), expressed or implied, by estoppel or otherwise, to any
intellectual property rights are granted by this document.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN “AS IS” BASIS. IBM makes no represen-
tations or warranties, either express or implied, including but not limited to, warranties of merchantability, fitness for a
particular purpose, or non-infringement, or that any practice or implementation of the IBM documentation will not infringe
any third party patents, copyrights, trade secrets, or other rights. In no event will IBM be liable for damages arising directly
or indirectly from any use of the information contained in this document.

IBM Systems and Technology Group
2070 Route 52, Bldg. 330
Hopewell Junction, NY 12533-6351

The IBM home page can be found at ibm.com®.

Version 2.1
10 October 2019

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Contents

Page 3 of 508

Contents

List of Figures .. 17

List of Tables .. 21

Revision Log .. 25

About this Document ... 27
Who Should Read this Document .. 27
Conventions Used in This Document ... 27

Representation of Numbers ... 27
Bit Significance .. 27
Other Conventions ... 27

Related Documents .. 28

1. POWER9 Processor Overview ... 29
1.1 General Features .. 29

2. POWER9 Processor Core ... 35
2.1 Key Design Fundamentals .. 35

2.1.1 64-bit Implementation of the Power ISA (Version 3.0) .. 35
2.1.2 Layered Implementation Strategy for High-Frequency Operation ... 36
2.1.3 Speculative Superscalar Inner Core Organization .. 36
2.1.4 Specific Focus on Storage Latency Management ... 37

2.2 Pipeline Structure .. 37
2.3 Detailed Features of the Microprocessor Core ... 39

2.3.1 Instruction Fetching and Branch Prediction ... 39
2.3.2 Instruction Decode and Preprocessing .. 40
2.3.3 Instruction Dispatch, Sequencing, and Completion Control .. 41
2.3.4 Fixed-Point Execution Pipelines .. 42
2.3.5 Load and Store Execution Pipelines .. 42
2.3.6 Branch Execution Pipelines ... 43
2.3.7 Unified Second-Level Memory Management (Address Translation) 44
2.3.8 Data Prefetch ... 44
2.3.9 VSU Execution Pipeline ... 45
2.3.10 Decimal Floating-Point Execution Pipeline .. 46

3. Packages ... 47
3.1 POWER9 Single-Chip Module for Cloud and Data Center ... 47
3.2 POWER9 Single-Chip Module for High-Performance Computing and Cloud 48
3.3 POWER9 Single Chip Module for Commercial Entry .. 49

4. Power Architecture Compliance .. 51
4.1 Book I - User Instruction Set Architecture ... 51

4.1.1 Instruction Classifications .. 51
4.1.1.1 Illegal Instructions ... 51

User’s Manual
OpenPOWER
POWER9 Processor

Contents

Page 4 of 508
Version 2.1

10 October 2019

4.1.1.2 Instructions Supported .. 51
4.1.1.3 Invalid Forms .. 51

4.1.2 Branch Processor .. 52
4.1.2.1 Instruction Fetching .. 52
4.1.2.2 Branch Prediction ... 52
4.1.2.3 Instruction Cache Block Touch Hint ... 52
4.1.2.4 Out-of-Order Execution and Instruction Flushes .. 52
4.1.2.5 Branch Processor Instructions with Undefined Results .. 53

4.1.3 Fixed-Point Processor .. 53
4.1.3.1 Fixed-Point Exception Register .. 53

4.1.4 Storage Access Alignment Support Overview ... 54
4.1.4.1 Alignment Interrupts ... 54
4.1.4.2 Storage Control Attribute Caused Data Storage Interrupt or Hypervisor Data

Storage Interrupts .. 56
4.1.5 Fixed-Point Load and Store Instructions .. 56

4.1.5.1 Fixed-Point Load and Store Multiple Instructions ... 56
4.1.5.2 Fixed-Point Move Assist Instructions .. 57
4.1.5.3 Integer Select Instruction .. 57
4.1.5.4 Fixed-Point Logical Instructions .. 57
4.1.5.5 Access to Performance Monitor Special Purpose Registers .. 57
4.1.5.6 Move to/from Condition Register Fields Instructions .. 58

4.2 Fixed-Point Invalid Forms and Undefined Conditions ... 58
4.3 Floating-Point Processor (FP, VMX, and VSX) ... 60

4.3.1 Vector Single-Precision Bandwidth .. 60
4.3.2 IEEE Compliance ... 60

4.3.2.1 Non-IEEE Modes .. 60
4.3.3 Floating-Point Exceptions .. 61
4.3.4 Floating-Point Load and Store Instructions .. 61

4.3.4.1 Scalar Load and Store Atomicity .. 61
4.3.4.2 Vector Load and Store Atomicity .. 61

4.3.5 Heterogeneous Precision Arithmetic .. 61
4.3.5.1 NaN Propagation .. 61
4.3.5.2 Square Root Overflow and Underflow .. 61
4.3.5.3 Hardware Behavior on Enabled Underflow and Enabled Overflow Exception 62

4.3.6 Handling of Denormal Single-Precision Values in Double-Precision Format 62
4.3.7 Floating-Point Invalid Forms and Undefined Conditions .. 62

4.4 Optional Facilities and Instructions .. 64
4.5 Little-Endian Mode .. 64
4.6 Book II - Virtual Environment Architecture .. 64

4.6.1 Cache ... 64
4.6.2 Classes of Instructions ... 65

4.6.2.1 Instruction Cache Block Touch Instruction ... 65
4.6.2.2 Instruction Cache Block Invalidate (icbi) .. 65
4.6.2.3 Instruction Cache Synchronize (isync) .. 65
4.6.2.4 Vector Category Prefetch Instructions (dss, dst, and dstst) ... 65
4.6.2.5 Data Cache Block Touch Instructions (dcbt and dcbtst) ... 66
4.6.2.6 Data Cache Block Touch Instructions (dcbt and dcbtst) - Single Cache Line

(TH = ‘00000’) ... 66
4.6.2.7 Data Cache Block Touch - Invalid TH Forms (TH = ‘00001’ through TH = ‘00111’) 66
4.6.2.8 Data Cache Block Touch Data Stream (TH = ‘01000’) ... 67

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Contents

Page 5 of 508

4.6.2.9 Data Cache Block Touch Data Stream Descriptor (TH = ‘01010’) 67
4.6.2.10 Data Cache Block Touch Data Stream Stride Descriptor (TH = ‘01011’) 67
4.6.2.11 Data Cache Block Touch - Transient (TH = ‘10000’) ... 67
4.6.2.12 Data Cache Block Touch - No Access Needed Anymore (TH = ‘10001’) 68
4.6.2.13 Data Cache Block Zero (dcbz) ... 68
4.6.2.14 Data Cache Block Store (dcbst) .. 68
4.6.2.15 Data Cache Block Flush (dcbf, dcbfl, and dcbflp) ... 68
4.6.2.16 Key Aspects of Storage Control Instructions .. 69
4.6.2.17 Copy/Paste Instructions ... 69
4.6.2.18 Near Memory Instruction Support .. 69
4.6.2.19 Wait Instruction ... 70

4.6.3 Storage Model ... 70
4.6.3.1 Storage Access Ordering ... 70
4.6.3.2 Atomicity ... 70
4.6.3.3 Atomic Updates and Reservations ... 70

4.6.4 Transactional Memory ... 71
4.6.4.1 TDOOMED ... 71
4.6.4.2 Transactional Lock Elision and Increased Scalability ... 72
4.6.4.3 Reduced Latency of Synchronization Operations .. 72
4.6.4.4 Improved Programmability ... 72
4.6.4.5 Rollback-Only Transaction Enablement of Speculative Optimizations 72
4.6.4.6 Transactional Memory Footprint Capacity .. 73
4.6.4.7 Implementation-Specific Failure Causes .. 73
4.6.4.8 Effects of Cache and Translation Management Instructions on Transactional Accesses 74

4.6.5 Storage Ordering/Barrier Instructions .. 75
4.6.5.1 sync Instruction .. 75
4.6.5.2 eieio Instruction .. 75
4.6.5.3 miso Instruction ... 75
4.6.5.4 Transactional Memory Instructions .. 76

4.6.6 Data Prefetch ... 76
4.6.7 Timer Facilities .. 76
4.6.8 Hypervisor Decrementer (HDEC) .. 77
4.6.9 Decrementer (DEC) ... 78
4.6.10 Book II Invalid Forms ... 78

4.7 Book III - Operating Environment Architecture .. 79
4.7.1 Classes of Instructions .. 79

4.7.1.1 Storage Control Instructions ... 79
4.7.1.2 Reserved Instructions ... 80

4.7.2 Branch Processor .. 80
4.7.2.1 SRR1 Register ... 80
4.7.2.2 HSRR1 Register ... 80
4.7.2.3 MSR Register ... 80
4.7.2.4 System Call and System Call Vectored Instructions .. 80
4.7.2.5 Support Processor Attention Instruction ... 81
4.7.2.6 Current Instruction Address Breakpoint Register (CIABR) ... 81

4.7.3 Fixed-Point Processor ... 81
4.7.3.1 Processor Version Register (PVR) ... 81
4.7.3.2 Processor ID Register (PIR) ... 82
4.7.3.3 Chip Information Register (CIR) ... 82
4.7.3.4 Move To/From Special Purpose Register Instructions ... 82

User’s Manual
OpenPOWER
POWER9 Processor

Contents

Page 6 of 508
Version 2.1

10 October 2019

4.7.3.5 SPRC/SPRD Usage ... 92
4.8 HID Register .. 94

4.8.1 HID Register Description ... 94
4.8.2 Core-to-Core Trace SPR ... 95
4.8.3 Trigger Registers ... 95
4.8.4 IMC Array Access Register .. 95
4.8.5 Performance Monitor Registers ... 95
4.8.6 Other Fixed-Point Instructions ... 95

4.9 Storage Control ... 96
4.9.1 Effective, Virtual, and Physical Address Ranges Supported ... 96
4.9.2 Foreign Address Space Definition and Accessibility .. 96
4.9.3 Hypervisor Real Mode Addressing Using HRMOR .. 96
4.9.4 Partition Table Control Register ... 96
4.9.5 Access Segment Descriptor Register .. 96
4.9.6 Real Mode Addressing for Operating Systems .. 97
4.9.7 HRMOR Update Sequence .. 97

4.10 Translation Architecture .. 97
4.10.1 Logical Partitioning Control Register (LPCR) ... 98
4.10.2 Translation Modes ... 99
4.10.3 tlbie and tlbiel Instruction Format and Operands ... 99
4.10.4 Radix Translation ... 103

4.10.4.1 Supported Radix Tree Configurations and Resulting Page Sizes 104
4.10.4.2 TLB and PWC Hash Functions for Radix ... 105
4.10.4.3 tlbie and tlbiel Encodings for Radix Translations .. 106

4.10.5 Changing the Process ID Register ... 106
4.10.6 Switching between Radix and HPT Partitions .. 106
4.10.7 Hashed Page Table Translation .. 107

4.10.7.1 In-Memory Segment Table and Bolted SLB Entries ... 107
4.10.7.2 SLB Management Instructions ... 108
4.10.7.3 Supported Segment and Page Sizes for HPT Translations 108
4.10.7.4 TLB Hash Function for HPT ... 109
4.10.7.5 tlbie and tlbiel Usage for HPT Translations .. 110

4.10.8 Instruction Effective-to-Real Address Translation Cache .. 111
4.10.9 Data Effective-to-Real-Address Translation ... 113

4.10.9.1 D-ERAT I and G Bit Setting .. 115
4.10.10 Translation Lookaside Buffer and PWC ... 116
4.10.11 Segment Lookaside Buffer ... 117
4.10.12 Discontinued Translation Support Items .. 118

4.10.12.1 Address Space Register ... 118
4.10.13 Block Address Translation ... 118

4.10.13.1 Support for 32-Bit Operating Systems .. 118
4.10.13.2 Real Mode .. 118

4.10.14 Reference and Change Bits ... 118
4.10.15 Storage Protection ... 119
4.10.16 Hypervisor Real Mode Storage Control ... 119
4.10.17 Storage Access Modes - WIMG and ATT Bits ... 119
4.10.18 Speculative Storage Accesses .. 120
4.10.19 TLB Invalidate Entry (tlbie and tlbiel) Instruction .. 121
4.10.20 TLB Invalidate All (tlbia) Instruction ... 121
4.10.21 TLB Synchronize (tlbsync) Instruction .. 121

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Contents

Page 7 of 508

4.10.22 SLB Synchronize (slbsync) Instruction ... 121
4.10.23 Support for Store Gathering .. 122
4.10.24 Cache Coherency Paradoxes .. 122
4.10.25 Handling Parity Error, Multi-Hit, and Uncorrectable Errors .. 122

4.10.25.1 Parity Error ... 122
4.10.25.2 Multi-Hit .. 123
4.10.25.3 Both Multi-Hit and Parity Error .. 123
4.10.25.4 Uncorrectable Error Handling ... 123
4.10.25.5 TLB Parity Error and Multi-Hit Action ... 124

4.10.26 Interrupts ... 125
4.10.26.1 Interrupt Vectors ... 125
4.10.26.2 Alternate Interrupt Location .. 126
4.10.26.3 Interrupt Definitions .. 127
4.10.26.4 Synchronous Interrupts .. 128
4.10.26.5 Asynchronous Interrupt Priorities ... 128
4.10.26.6 System Reset Interrupt ... 129
4.10.26.7 Machine Check Interrupt .. 130
4.10.26.8 Hypervisor Maintenance Interrupt .. 134
4.10.26.9 External Interrupt .. 134
4.10.26.10 Alignment Interrupt ... 135
4.10.26.11 Trace Interrupt .. 136
4.10.26.12 Performance Monitor Interrupt ... 136
4.10.26.13 Facility Unavailable Interrupt .. 136
4.10.26.14 Hypervisor Emulation Assistance Interrupt .. 137

4.10.27 Logical Partitioning (LPAR) Support .. 138
4.10.28 Strong Access Ordering Mode (SAO) ... 138
4.10.29 Graphics Data Stream Support ... 138
4.10.30 Performance Monitoring, Sampling, and Trace ... 138
4.10.31 Processor Compatibility Mode ... 138

5. Simultaneous Multithreading ... 139
5.1 Overview ... 139
5.2 Partitioning of Resources in Different SMT Modes ... 139
5.3 Control Register .. 140
5.4 Thread Priority, Status, and Control Requirements .. 141
5.5 Thread Balance Control Requirements ... 141
5.6 Thread Switch Control Register (Hypervisor Access Only) ... 142
5.7 Thread Time-Out Register (Hypervisor only) .. 144
5.8 Program Priority Register (PPR) ... 145
5.9 Forward Progress Timer ... 146
5.10 Thread Priority NOPs .. 146
5.11 Thread Priority Boosting .. 147
5.12 Priority Boosting to Medium-High in User Mode ... 147
5.13 Thread Priority Boosting on Asynchronous Interrupt .. 148

5.13.1 When to Boost Thread Priority .. 148
5.14 Thread Prioritization Implementation .. 149

5.14.1 Thread Switch Fetch Priority ... 149
5.14.2 Thread Switch Decode Priority .. 150
5.14.3 Software-Set Thread Priority ... 150

User’s Manual
OpenPOWER
POWER9 Processor

Contents

Page 8 of 508
Version 2.1

10 October 2019

5.14.4 Low-Power Modes for Application ... 151
5.14.5 Dynamic Thread Priority .. 151

5.15 Support for Multiple LPARs ... 151
5.15.1 Microcode Fairness .. 151
5.15.2 I-ERATs ... 151

5.16 Controlling the Flow of Instructions in SMT ... 152
5.16.1 Dispatch Flush ... 152

5.16.1.1 Dispatch Flush Rules .. 152
5.16.1.2 Stall at Dispatch .. 153

5.16.2 Decode Hold .. 153
5.16.2.1 Balance Flush ... 153

6. L2 Cache ... 155
6.1 Overview ... 155
6.2 L2 Unit Internal Resources .. 157

6.2.1 Description of L2 Control Flow ... 158
6.3 Interfaces ... 159
6.4 Operational Flows and Bandwidths ... 160
6.5 LRU ... 163

6.5.1 LRU modes .. 163
6.5.2 Policies ... 163
6.5.3 Line Disable ... 163

6.6 Transactional Memory Support ... 163
6.6.1 Basic Policy .. 163
6.6.2 L1 TM Filter Structure and L2 TM Tracking Structure .. 163

7. L3 Cache ... 165
7.1 Overview ... 165
7.2 Interfaces ... 166
7.3 List of Features and Resources .. 166
7.4 Queues .. 167

7.4.1 Read Machines .. 167
7.4.2 Castin/Castout Machines ... 168
7.4.3 Prefetch Machines ... 169
7.4.4 Snoop Machines .. 169
7.4.5 Write Machines .. 170
7.4.6 Transaction Memory Machines .. 170

8. SMP Interconnect .. 171
8.1 SMP Interconnect Features ... 171

8.1.1 General Features ... 171
8.1.2 POWER9-Specific Features .. 172
8.1.3 On-Chip Features .. 172
8.1.4 Off-Chip External SMP Features ... 173
8.1.5 Power Management Features .. 173
8.1.6 RAS Features .. 173

8.2 SMP Interconnect Architecture Coherency Protocol ... 174
8.3 External POWER9 Fabric .. 176

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Contents

Page 9 of 508

8.4 Terminology .. 176
8.5 Protocol Layer Payload ... 177

8.5.1 Physical Layer ... 177
8.5.2 Data Link Layer ... 177

8.5.2.1 Electrical Data Link Layer ... 177
8.5.3 Data Link Layer Packet Format ... 177
8.5.4 Transaction Layer .. 178
8.5.5 POWER9 Fabric SMP Topology ... 178
8.5.6 Protocol and Data Routing in Multi-Chip Configurations ... 178

8.6 POWER9 Coherency Flow .. 179
8.6.1 Broadcast Scope Definition ... 179
8.6.2 Address Definition ... 179

9. NCU .. 181
9.1 NCU Characteristics .. 182

9.1.1 Store Queue (STQ) ... 182
9.1.2 Store Modes (IG = ‘1X’) ... 182
9.1.3 LOADS .. 182

10. Memory Controller .. 183
10.1 EMC Major Features ... 184
10.2 Basic Configuration/Grouping ... 188
10.3 Command Dispatch and Snoop Pipeline Collision Detection .. 189
10.4 Epsilon Protection ... 189
10.5 Read Speculation Filtering .. 189
10.6 SMP Fabric Fastpath Interface ... 190
10.7 Read Data ECC Bypass .. 191
10.8 Atomic Memory Operations ... 191
10.9 Write Operations ... 192
10.10 Prefetch Promote/Drop Protocol ... 192

10.10.1 Prefetch Promote ... 193
10.10.2 Prefetch Drop .. 193

11. Nest Accelerator ... 195
11.1 Features .. 196
11.2 Using NX Coprocessors .. 198
11.3 Reliability, Availability, and Serviceability .. 198

12. Virtual Accelerator Switchboard ... 199
12.1 Overview ... 199
12.2 Flow for NX Invocation Through the VAS ... 199
12.3 Core-Core Wakeup Via ASB_Notify .. 202
12.4 Features .. 202

12.4.1 Ingress ... 203
12.4.2 Egress ... 204
12.4.3 Window Cache .. 204
12.4.4 MMIO Registers ... 204

User’s Manual
OpenPOWER
POWER9 Processor

Contents

Page 10 of 508
Version 2.1

10 October 2019

12.4.5 SMP Interconnect Common Queue ... 205
12.5 Reliability and Serviceability (RAS) Features .. 205

13. NVLink Processing Unit .. 207
13.1 Overview ... 207
13.2 Features .. 208
13.3 Interfaces ... 209

13.3.1 On-Chip SMP Interconnect Ports ... 209
13.3.1.1 Command Request ... 209
13.3.1.2 Command Snoop .. 209
13.3.1.3 Data to On-Chip SMP Interconnect .. 209
13.3.1.4 Data from On-Chip SMP Interconnect .. 209

13.3.2 NTL Interfaces ... 209
13.3.2.1 NTL Receive Interface .. 209
13.3.2.2 NTL Transmit Interface ... 209
13.3.2.3 NDL/PHY Private Register Interface .. 210

13.3.3 Interface Diagram .. 210
13.4 Block Diagram ... 210

13.4.1 NPU Common Queue .. 211
13.4.2 NVLink Transaction Layer .. 211
13.4.3 Extended Translation Services .. 212
13.4.4 Address Translation Services .. 212
13.4.5 Miscellaneous .. 212

13.5 Logical Command/Data Flow .. 213
13.5.1 Inbound Command/Data Flow ... 214
13.5.2 Outbound Command/Data Flow .. 215

13.6 POWER9/GPU Transaction Examples ... 216
13.6.1 GPU Read from POWER9 Memory ... 216
13.6.2 GPU Posted Writes to the POWER9 Memory ... 217
13.6.3 POWER9 Caching Read from GPU Memory ... 218
13.6.4 POWER9 Cache Releasing a Cache Line from GPU Memory .. 219
13.6.5 GPU Reclaiming a Cache Line from GPU Memory ... 220

14. OpenCAPI Processing in the POWERAccel Unit .. 223
14.1 Overview ... 223
14.2 Features .. 224
14.3 Interfaces ... 224

14.3.1 On-Chip SMP Interconnect Ports ... 224
14.3.1.1 Command Request ... 224
14.3.1.2 Command Snoop .. 224
14.3.1.3 Data to On-Chip SMP Interconnect .. 225
14.3.1.4 Data from On-Chip SMP Interconnect .. 225

14.3.2 OpenCAPI Transaction Layer Interfaces ... 225
14.3.2.1 OTL Receive Interface .. 225
14.3.2.2 OTL Transmit Interface ... 225

14.3.3 Interface Diagram .. 225
14.4 Block Diagram ... 226

14.4.1 PAU Common Queue .. 226
14.4.2 OpenCAPI Transaction Layer .. 226

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Contents

Page 11 of 508

14.4.3 Extended Translation Services .. 227
14.4.4 Address Translation ... 227
14.4.5 Miscellaneous .. 227

14.5 Logical Command/Data Flow .. 227
14.5.1 Inbound Command/Data Flow ... 229
14.5.2 Outbound Command/Data Flow .. 231

14.6 POWER9 AFU Transaction Examples .. 232
14.6.1 Read from AFU to POWER9 Memory ... 232
14.6.2 AFU Writes to POWER9 Memory .. 233
14.6.3 Read from POWER9 to AFU Memory ... 234
14.6.4 Write from POWER9 to AFU Memory ... 234

15. CAPP .. 235

16. Nest MMU ... 237
16.1 Overview ... 237
16.2 NMMU Features .. 238
16.3 Window/Process Element Context .. 239
16.4 Nest Translation Cache Pipeline ... 241
16.5 Nest Translation Protocol (for Fabric-Attached Agents) .. 243

16.5.1 Translation Checkout ... 243
16.5.2 Translation Check-in .. 243
16.5.3 Translate Invalidation Interface ... 244
16.5.4 Flow Diagrams of Agent/NMMU Translation Operations ... 245

16.5.4.1 Checkout/Check-In Sequence .. 245
16.5.4.2 Back-Invalidate Sequence .. 246

16.5.5 NMMU Cache Pipeline .. 248
16.5.6 NMMU Control State Machines ... 250

16.5.6.1 Tablewalk State Machine ... 250
16.5.6.2 PTE Update State Machine .. 250
16.5.6.3 Castout State Machine Overview ... 251
16.5.6.4 Radix Page Walk Cache Overview .. 252
16.5.6.5 Check-in State Machine Overview ... 253
16.5.6.6 NMMU Invalidate State Machine Overview .. 253

16.6 Unit RAS Overview ... 254
16.6.1 RAS Features .. 254
16.6.2 NMMU Error Handling Policies .. 255

17. Interrupt Controller ... 257
17.1 External Interrupt Virtualization Engine ... 257
17.2 High-Level Block Diagram ... 258
17.3 INT Unit Overview ... 260

17.3.1 P3 Common Queue (P3CQ) .. 261
17.3.2 P3 Virtualization Controller (P3VC) ... 261
17.3.3 P3 Presentation Controller (P3PC) .. 262

17.4 Fabric Bus Interrupt Command ... 264
17.5 Interrupt Processing Flow Examples ... 266

17.5.1 Inter-Processor Interrupts Example ... 266

User’s Manual
OpenPOWER
POWER9 Processor

Contents

Page 12 of 508
Version 2.1

10 October 2019

17.5.2 Hardware Interrupt with State Bit Check in P3VC .. 267
17.5.3 Hardware Interrupt with State Bit Check in P3SC .. 268
17.5.4 P3VC and P3PC Basic Interrupt Handling ... 269
17.5.5 Message Send (Msgsend) and Wakeup .. 269

18. PCI Express Controller ... 271
18.1 Overview ... 271

18.1.1 Processor Bus Common Queues .. 272
18.1.2 Processor Bus AIB Interface .. 272
18.1.3 Express Transaction Unit ... 273
18.1.4 PCIe ASIC Intellectual Property ... 273
18.1.5 Physical Coding Sublayer .. 273
18.1.6 Physical Media Access .. 273

18.2 POWER9 Configurations ... 273
18.3 Reliability, availability, and serviceability (RAS) .. 274

18.3.1 Bit-Level RAS ... 274
18.3.2 Enhanced Error Handling (EEH) .. 274
18.3.3 Freeze Mode ... 275

19. Elastic Differential Interface Plus ... 277
19.1 Elastic Interface Features .. 278
19.2 Driver Features .. 281
19.3 Receiver Features ... 281
19.4 PLL Features ... 282

20. OpenPOWER Interface at 25.78125 Gbps ... 283
20.1 Interface Features ... 283
20.2 Driver Features .. 284
20.3 Receiver Features ... 285
20.4 PLL Features ... 286

21. DDR4 Interfaces ... 287
21.1 Overview ... 287
21.2 Mainline Operation .. 288

22. PCIe Interface ... 289
22.1 Overview ... 289
22.2 Key Features ... 293
22.3 Typical Application .. 294

23. Power Management ... 297
23.1 Policies and Modes of Operation .. 297

23.1.1 Power Management in Linux-Based Systems (Power KVM) ... 298
23.1.2 Power Management in PowerVM-Based Systems .. 298

23.2 Base Enablement Summary .. 298
23.2.1 On-Chip EnergyScale Microcontroller .. 298
23.2.2 Measurement Capability .. 298

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Contents

Page 13 of 508

23.2.3 Dynamic Voltage and Frequency Scaling (DVFS) ... 299
23.2.3.1 Pstates ... 299
23.2.3.2 Actuation .. 299
23.2.3.3 Instrumentation ... 299

23.2.4 Processor Idle (Stop States) .. 300
23.3 Feature Summary ... 300
23.4 Power Management Infrastructure .. 301

23.4.1 Quad Voltage and Clock Domains .. 301
23.4.2 On-Chip Microcontrollers ... 303

23.5 Chip Hardware Features ... 304
23.5.1 Communication Paths for Firmware .. 304
23.5.2 Sensors ... 305

23.5.2.1 Analog On-Chip Thermal Sensor (OCTS) .. 305
23.5.2.2 Digital Thermal Sensor (DTS) .. 305
23.5.2.3 Voltage Droop Monitor ... 305

23.5.3 Dedicated Activity/Event Counters .. 306
23.5.3.1 Processor Core EMPATH Counters ... 306
23.5.3.2 Nest SMP Fabric Usage Counters ... 306

23.5.4 On-Chip Microcontroller Complex ... 307
23.5.4.1 On-Chip Microcontroller (OCC) .. 307
23.5.4.2 General Purpose Engines (GPEs) for OCC Function Off-Load 307
23.5.4.3 GPEs for Chip-Level Function Management .. 307

23.5.5 Dedicated Core Management Engines (CME) .. 308
23.5.6 On-Chip Accelerators .. 308

23.5.6.1 Chiplet Pervasive-Power Management (PPM) Extension .. 308
23.5.7 Actuator and Control Features .. 309

23.5.7.1 On-Chip Frequency Control ... 309
23.5.7.2 External (Off-Chip) VRM Voltage Control ... 309
23.5.7.3 External Sampling .. 309
23.5.7.4 On-Chip Voltage (iVRM) Control .. 310
23.5.7.5 Core and Cache Chiplet Power-Down ... 310
23.5.7.6 Resonant Clocking Mode Support .. 310
23.5.7.7 Voltage Droop Protection ... 310
23.5.7.8 OCC Hang Detection Hardware ... 311
23.5.7.9 Active Power-Down of Unused I/O PHYs ... 311
23.5.7.10 Partial Good and Runtime Deallocation ... 311

23.5.8 Architected Control Registers .. 312
23.5.8.1 Power Management Control Register (PMCR) .. 312
23.5.8.2 Power Management Idle Control Register (PMICR) .. 312
23.5.8.3 Power Management Status Register (PMSR) .. 312
23.5.8.4 Power Management Memory Activity Register (PMMAR) .. 314

23.5.9 Architected Idle Modes (Stop States) .. 314
23.5.9.1 Wake-Up Events .. 315
23.5.9.2 State Loss and Restoration .. 315
23.5.9.3 Auto-Promote of Stop Levels ... 317
23.5.9.4 Latency and Power Savings in each Stop Level .. 318
23.5.9.5 Stop Level Examples .. 319

24. Specific Security Features ... 321
24.1 Secure Boot .. 321

User’s Manual
OpenPOWER
POWER9 Processor

Contents

Page 14 of 508
Version 2.1

10 October 2019

24.1.1 Secure Boot Sequence .. 321
24.1.1.1 Code Authentication ... 322

24.1.2 Trusted Boot .. 322
24.1.3 Dynamic Root of Trust for Measurement ... 323

24.1.3.1 DRTM Sequence .. 323
24.2 Protection of Sensitive State ... 325

24.2.1 Blacklist for SCOM Write Access ... 325
24.2.2 Secure Dump ... 325

24.3 Secure Memory Facility ... 326
24.3.1 Protected Execution Facility in the POWER9 Processor ... 326
24.3.2 Deviations from the SMF Architecture Specification in the POWER9 Implementation 327

24.3.2.1 Unsupported Instructions: Processor Control Instructions Related to Ultravisor
Doorbell Interrupts are not Available .. 327

24.3.2.2 Implementation Restriction: Only URMOR[13:42] Bits are Implemented 327
24.3.2.3 Implementation Deviation: Move to URMOR Instruction .. 327
24.3.2.4 Implementation Restriction: UILE Bit is not Implemented and is a Constant Zero,

Ultravisor Must Execute in Big-Endian Mode ... 328
24.3.2.5 Implementation Restriction: SMFCTRL[62:63] Bits are Restricted to ‘10’ Value Only 328

24.3.3 Secure Memory Bit in System Memory Map .. 328
24.3.4 Mandatory Software Procedures Followed by Ultravisor for Launching and Maintaining

a Secure Virtual Machine .. 328
24.3.4.1 Essential Elements of Code Sequence to Convert a Non-Secure Virtual Machine

into a Secure Virtual Machine ... 329
24.3.4.2 Ensuring Isolation of Register State of a Secure VM from the Hypervisor 329
24.3.4.3 Ensuring Secure VM Translations for Secure Pages are Immutable by Hypervisor .. 330
24.3.4.4 Ensuring Secure Memory Region Separation between Different Secure VMs 331

24.3.5 Code Sequence to Change Value of URMOR Register .. 331
24.3.6 Machine Check Conditions Specific to SMF .. 331

25. Performance Profile .. 333
25.1 Core ... 333

25.1.1 Microarchitecture and Pipeline Overview ... 333
25.1.2 SMT Modes and Thread Count Sensitivity .. 334
25.1.3 Instruction Fetch .. 336

25.1.3.1 L1 Instruction Cache ... 337
25.1.3.2 Instruction Prefetch ... 338
25.1.3.3 Software-Initiated Instruction Prefetch .. 338
25.1.3.4 Branch Prediction ... 339

25.1.4 Instruction Decode and Dispatch Pipeline ... 342
25.1.4.1 Instruction Buffer .. 343
25.1.4.2 Effective Address Tracking ... 343
25.1.4.3 Instruction Decode/Cracking .. 343
25.1.4.4 Instruction/IOP Completion Table ... 344
25.1.4.5 IOP Dispatch .. 344
25.1.4.6 Register Renaming ... 348

25.1.5 Iop Issue and Execution Slices .. 349
25.1.5.1 Load/Store AGEN Issue ... 350
25.1.5.2 EXEC Issue .. 351
25.1.5.3 Branch Issue ... 353
25.1.5.4 Execution Pipeline Issue to Issue Latencies .. 353

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Contents

Page 15 of 508

25.1.6 Iop Execution ... 354
25.1.6.1 Execution Pipeline Hazards ... 354
25.1.6.2 FPR Result Forwarding Restrictions .. 355

25.1.7 Load/Store Processing .. 355
25.1.7.1 Tracking Load and Store Ordering ... 356
25.1.7.2 LS Slice Execution ... 356
25.1.7.3 L1 D-Cache .. 356
25.1.7.4 D-ERAT .. 357
25.1.7.5 Translation Look-Aside Buffer .. 358
25.1.7.6 Store Forwarding .. 358
25.1.7.7 Out-of-Order Load/Store Execution .. 359
25.1.7.8 Load-to-Use Latency .. 359
25.1.7.9 Load/Store Throughput .. 360
25.1.7.10 Load/Store Pipeline Hazards .. 362
25.1.7.11 64-Byte Cache-Line Data ... 362
25.1.7.12 Data Prefetch ... 363
25.1.7.13 Software-Initiated Data Prefetch .. 365

25.1.8 Special Instruction Sequences .. 365
25.1.8.1 larx/stcx Instruction ... 365
25.1.8.2 icbi Instruction .. 366
25.1.8.3 isync Instruction ... 366
25.1.8.4 ptesync Instruction .. 366
25.1.8.5 sync Instruction .. 367
25.1.8.6 eieio Instruction .. 367

25.2 Cache and Memory Hierarchy .. 367
25.2.1 L2 Cache ... 367
25.2.2 L3 Cache ... 367
25.2.3 Cache Latencies and Bandwidth ... 368

25.3 NX Accelerators .. 369
25.4 Direct Attach Memory .. 369
25.5 PCI Express .. 370
25.6 CAPI .. 370
25.7 Interrupt Controller .. 370
25.8 Nest MMU ... 370
25.9 NVLink ... 371
25.10 WOF/Power Management ... 371
25.11 Instruction Properties .. 372

Appendix A. Instruction Properties ... 375

Appendix B. tlbie and tlbiel Encodings for Radix Translations 469

Appendix C. tlbie and tlbiel Encodings for HPT Translations 485

Glossary .. 495

User’s Manual
OpenPOWER
POWER9 Processor

Contents

Page 16 of 508
Version 2.1

10 October 2019

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

List of Figures

Page 17 of 508

List of Figures
Figure 1-1. POWER9 Processor Block Diagram .. 30

Figure 2-1. POWER9 Processor Core .. 35

Figure 2-2. Pipeline Structure ... 38

Figure 3-1. POWER9 Single-Chip Module for Cloud and Data Center .. 47

Figure 3-2. POWER9 Single-Chip Module for HPC/Cloud ... 48

Figure 3-3. POWER9 Single-Chip Module for Commercial Entry .. 49

Figure 4-1. Speculative Optimizations .. 73

Figure 4-2. tlbie Instruction Format for the POWER9 Core ... 100

Figure 4-3. tlbie Operands for the POWER9 Core .. 101

Figure 4-4. tlbiel Instruction Format for the POWER9 Core .. 101

Figure 4-5. tlbiel Operands for the POWER9 Core ... 102

Figure 4-6. Net or Effective I and G Values (I-ERAT) ... 112

Figure 4-7. Net or Effective I and G Values (D-ERAT) ... 115

Figure 6-1. POWER9 Block Diagram of a Multiple Processor-Pair Cache Slice Interconnected
via the Internal Fabric ... 155

Figure 6-2. High-Level Dataflow within the L2, L3, and NCU for a Processor Pair Cache Slice 160

Figure 6-3. L2 Data Flow Overview .. 161

Figure 6-4. L2 Bus Bandwidths .. 162

Figure 7-1. Block Diagram of Multiple Processor-Pair Cache Slice Interconnected via the
Internal Fabric .. 165

Figure 8-1. SMP Interconnect Coherency Protocol .. 174

Figure 8-2. Protocol Layers .. 176

Figure 8-3. Protocol Layer Payload .. 177

Figure 8-4. External SMP Topology ... 178

Figure 8-5. POWER9 System Real-Address Map .. 179

Figure 9-1. NCU Block Diagram ... 181

Figure 10-1. POWER9 Memory Controller ... 183

Figure 10-2. EMC Logical Partitioning .. 188

Figure 11-1. NX Block Diagram .. 195

Figure 12-1. Flow for NX Invocation through the VAS .. 200

Figure 12-2. VAS Block Diagram .. 203

Figure 13-1. NPU Interface Diagram .. 210

Figure 13-2. NPU Block Diagram ... 211

Figure 13-3. NPU Command/Data Flow ... 213

Figure 13-4. NPU Inbound Command/Data Flow ... 214

Figure 13-5. NPU Outbound Command/Data Flow .. 215

Figure 14-1. PAU Interface Diagram .. 225

Figure 14-2. PAU Block Diagram ... 226

User’s Manual
OpenPOWER
POWER9 Processor

List of Figures

Page 18 of 508
Version 2.1

10 October 2019

Figure 14-3. PAU Command Data Flow ...228

Figure 14-4. PAU Inbound Command/Data Flow ...229

Figure 14-5. PAU Outbound Command/Data Flow ...231

Figure 16-1. POWER9 Nest MMU ..237

Figure 16-2. Window/Process Element Context ...240

Figure 16-3. Nest Translation Pipeline ..242

Figure 16-4. Agent/NMMU Flow Diagram (Checkout/Check-in) ...246

Figure 16-5. Agent/NMMU Flow Diagram (Back-Invalidate Sequence) ..247

Figure 16-6. High-level NMMU Translation Pipeline ...249

Figure 16-7. Radix Page-Walk Cache ..252

Figure 17-1. Interrupt Presentation Interaction ...259

Figure 17-2. Interrupt Controller Microarchitecture ...260

Figure 17-3. Exception Wire Activation Example ..263

Figure 17-4. LSI Activation Example ...264

Figure 17-5. Transaction Diagram for Histogram, Poll, and Assign (Part 1 of 3)264

Figure 17-6. Transaction Diagram for Histogram, Poll, and Assign (Part 2 of 3)265

Figure 17-7. Transaction Diagram for Histogram, Poll, and Assign (Part 3 of 3)265

Figure 17-8. Inter-Processor Interrupts (IPI) Example ..266

Figure 17-9. Hardware P3SC Interrupt Trigger and Completion (State Bit Check in VC)267

Figure 17-10. Hardware P3SC Interrupt Trigger and Completion (State Bit Check in SC)268

Figure 17-11. Basic Interrupt Handling ...269

Figure 18-1. High-Level Block Diagram ..271

Figure 18-2. POWER9 PCIe High-Level Diagram ..274

Figure 19-1. System-Level I/O Interface ...277

Figure 19-2. Top-Level Interface Block Diagram ..280

Figure 19-3. Block Diagram of PLL ...282

Figure 22-1. PCI Express Functional Layers Diagram ..289

Figure 22-2. IOP_X844_TOP Hierarchy Diagram ...290

Figure 22-3. Typical IOP_X844_TOP Unit Application ...295

Figure 23-1. Quad Voltage Control ...301

Figure 23-2. Detailed Quad Voltage and Clock Domains ...302

Figure 23-3. High-Level Diagram of POWER9 PPE Instances ...303

Figure 23-4. OCC Complex ..304

Figure 23-5. Supported Stop Levels ...318

Figure 23-6. Stop States (0 - 7) ..319

Figure 23-7. Stop Level 8 ...319

Figure 23-8. Stop Level 8 (both Core Pairs) ...320

Figure 23-9. Stop Level 11 ...320

Figure 25-1. POWER9 Microarchitecture ...333

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

List of Figures

Page 19 of 508

Figure 25-2. Partitioning of Resources Between Thread Modes .. 335

Figure 25-3. Single Core Active per L2/L3 Cache .. 336

Figure 25-4. Available Slice Destinations ... 347

Figure 25-5. Double-Precision Pipeline Multicycle Busy versus Issueable Cycles 352

Figure 25-6. Store Drain Path from Core-to-L2 Cache ... 361

User’s Manual
OpenPOWER
POWER9 Processor

List of Figures

Page 20 of 508
Version 2.1

10 October 2019

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

List of Tables

Page 21 of 508

List of Tables
Table 4-1. XER Bits and Fields ... 53

Table 4-2. Alignment Interrupt for AMO Cases ... 55

Table 4-3. Storage Control Instructions ... 69

Table 4-4. Cache, SLB, and TLB Management Instruction Effects on Transactional Accesses 74

Table 4-5. System Call and System Call Vectored Invocation .. 80

Table 4-6. PVR .. 81

Table 4-7. PIR .. 82

Table 4-8. SPR Table .. 83

Table 4-9. SPRC Definition Normal Core Mode (1 LPAR per Thread) ... 92

Table 4-10. SPRC Definition Normal Core Mode (1 LPAR per Core) ... 93

Table 4-11. OCC SPRC Definition .. 93

Table 4-12. HID Register ... 94

Table 4-13. HRMOR Update Sequence .. 97

Table 4-14. Description of tlbie Instruction Format for the POWER9 Core .. 100

Table 4-15. Description of tlbiel Instruction Format for the POWER9 Core ... 102

Table 4-16. Address Bit Range Checking by Hardware .. 103

Table 4-17. Supported Radix Tree Configurations and Resulting Page Sizes .. 104

Table 4-18. TLB Hash for Radix Mode .. 105

Table 4-19. PWC Hash for Radix Mode .. 105

Table 4-20. tlbie(l) Page Encodings for POWER9 Radix (R = ‘1’) .. 106

Table 4-21. PTE and STE/SLBE Correspondence for HPT Translation ... 109

Table 4-22. 256 MB Segments .. 109

Table 4-23. 1 TB Segments .. 109

Table 4-24. Segment Size and Page Size Specifications for HPT tlbie and tlbiel 110

Table 4-25. Segment Size and Page Size Specifications for HPT tlbie and tlbiel 110

Table 4-26. Segment Size and Page Size Specifications for HPT tlbie Cluster Bombs
(R = ‘0’, L = ‘0’, and RIC = ‘3’) .. 111

Table 4-27. I-ERAT I and G Bit Setting ... 113

Table 4-28. D-ERAT I and G Bit Setting .. 115

Table 4-29. WIMG Bits .. 120

Table 4-30. IG Bits .. 120

Table 4-31. Summary of POWER9 Behavior on Parity Error, Multi-Hit, and Uncorrectable Error 123

Table 4-32. Interrupt Vectors ... 125

Table 4-33. AIL Effects on Interrupt Processing (IR = DR) ... 126

Table 4-34. Implementation MSR and SRR1/HSRR1 Bits .. 127

Table 4-35. HEIR Instruction Formatting for Branch-Like Instructions .. 128

Table 4-36. System Reset Interrupt .. 129

Table 4-37. Synchronous Machine Checks ... 132

User’s Manual
OpenPOWER
POWER9 Processor

List of Tables

Page 22 of 508
Version 2.1

10 October 2019

Table 4-38. Direct External Interrupt (LPES = ‘0’) ...134

Table 4-39. Direct External Interrupt (LPES = ‘1’) ...134

Table 4-40. Mediated External Interrupt (LPES = ‘0’) ..135

Table 4-41. Mediated External Interrupt (LPES = ‘1’) ..135

Table 4-42. Trace Interrupt ..136

Table 5-1. SMT Modes ..139

Table 5-2. Front-End Execution Core Resource ..139

Table 5-3. mfspr CTRL Data Formatting ..141

Table 5-4. Thread Priority Nops ...146

Table 5-5. Asynchronous Interrupt ..148

Table 6-1. L2 Resources (Share between a Pair of POWER9 Cores) ..157

Table 8-1. Terminology ..176

Table 8-2. Broadcast Scope Definition ..179

Table 10-1. Frequencies ..187

Table 10-2. Allowable DIMM Mixing ..187

Table 13-1. Example of 128-Byte Read Command ...216

Table 13-2. Example of Series of Posted 128-Byte Write Commands ..217

Table 13-3. Example of a POWER9 Caching Read from GPU ...218

Table 13-4. Example of Cache Controller on POWER9 Chip Releasing Cache Line from GPU219

Table 13-5. Example of GPU Reclaiming a Cache Line from GPU Memory ...220

Table 14-1. Read from AFU to POWER9 Memory ..232

Table 14-2. AFU Writes to POWER9 Memory ...233

Table 14-3. POWER9 Read of AFU Memory ..234

Table 14-4. POWER9 Write to the AFU Memory ..234

Table 19-1. Interface Operational Mode Definitions ..278

Table 22-1. Data Rates and Receiver Modes Supported by the IOP_X844_TOP Unit292

Table 23-1. PMCR Description (Version 0x1) ..312

Table 23-2. PMSR Description ..313

Table 23-3. Stop Instruction to Unit Mapping ..317

Table 24-1. System Memory Map for 56-Bit System Address (8:63) ..328

Table 24-2. Essential Elements of Code Sequence to Launch a Secure Virtual Machine329

Table 24-3. Code Sequence to Set Value of URMOR ...331

Table 25-1. Handling of bclr and bclrl Instructions ...341

Table 25-2. Handling of bcctr and bcctrl Instructions ..341

Table 25-3. History Buffer Sizes ..348

Table 25-4. Issue-to-Issue Latencies between Execution Pipelines ..354

Table 25-5. Slices per Load/Store Operation ..355

Table 25-6. Load Issue to Dependent Iop Issue Latencies for L1 Hit or Store Forwarding360

Table 25-7. Cache and Memory Hierarchy Load to Issue Latencies and Bandwidth368

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

List of Tables

Page 23 of 508

Table 25-8. NX Accelerator Throughput .. 369

Table 25-9. POWER9 Memory Bandwidth for Eight Channels Active .. 369

Table 25-10. NMMU Translation Latency and Throughput ... 370

Table 25-11. NVLink Peak Bandwidths Per Brick ... 371

Table A-1. Instruction Properties ... 375

Table B-1. tlbie Encodings for Radix Translations (with R = ‘1’ and GTSE = ‘1’) 469

Table B-2. tlbiel Encodings for Radix Translations (with R = ‘1’) .. 476

Table C-1. tlbie Encodings for HPT Translations (with R = ‘0’ and GTSE = ‘1’) 485

Table C-2. tlbiel Encodings for HPT Translation (with R = ‘0’) .. 490

User’s Manual
OpenPOWER
POWER9 Processor

List of Tables

Page 24 of 508
Version 2.1

10 October 2019

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Revision Log

Page 25 of 508

Revision Log

Each release of this document supersedes all previously released versions. The revision log lists all signifi-
cant changes made to the document since its initial release. In the rest of the document, change bars in the
margin indicate that the adjacent text was modified from the previous release of this document.

Revision Date Description

10 October 2019 Version 2.1.
• Revised Related Documents on page 28.
• Revised Section 4 Power Architecture Compliance on page 51.
• Revised Section 4.2 Fixed-Point Invalid Forms and Undefined Conditions on page 58.
• Revised Section 4.3.7 Floating-Point Invalid Forms and Undefined Conditions on page 62.
• Revised Section 4.6.2.4 Vector Category Prefetch Instructions (dss, dst, and dstst) on page 65.
• Revised Section 4.6.2.5 Data Cache Block Touch Instructions (dcbt and dcbtst) on page 66.
• Added Section 4.6.2.6 Data Cache Block Touch Instructions (dcbt and dcbtst) - Single Cache Line (TH

= ‘00000’) on page 66.
• Added Section 4.6.2.7 Data Cache Block Touch - Invalid TH Forms (TH = ‘00001’ through TH = ‘00111’)

on page 66.
• Revised Section 4.6.2.8 Data Cache Block Touch Data Stream (TH = ‘01000’) on page 67.
• Added Section 4.6.2.9 Data Cache Block Touch Data Stream Descriptor (TH = ‘01010’) on page 67.
• Added Section 4.6.2.10 Data Cache Block Touch Data Stream Stride Descriptor (TH = ‘01011’) on

page 67.
• Revised Section 4.6.2.11 Data Cache Block Touch - Transient (TH = ‘10000’) on page 67.
• Revised Section 4.6.2.12 Data Cache Block Touch - No Access Needed Anymore (TH = ‘10001’) on

page 68.
• Added Section 4.6.4.1 TDOOMED on page 71.
• Revised Section 4.7.3.4 Move To/From Special Purpose Register Instructions on page 82.
• Revised Table 4-8 SPR Table on page 83.
• Revised Table 4-16 Address Bit Range Checking by Hardware on page 103.
• Revised Section 4.10.9.1 D-ERAT I and G Bit Setting on page 115 (removed additional condition descrip-

tions for Table 4-28 D-ERAT I and G Bit Setting on page 115).
• Added a bullet describing secure memory facility support to Section 10.1 EMC Major Features on

page 184.
• Changed bullet to 24 cores x 4 threads in Section 17.3.3 P3 Presentation Controller (P3PC) on

page 262.
• Revised the introduction in Section 24 Specific Security Features on page 321.
• Added Section 24.3 Secure Memory Facility on page 326.
• Added mfspr_smfctrl/mtspr_smfctrl, mfspr_urmor/mtspr_urmor, mfspr_usprg0/mtspr_usprg0,

mfspr_usprg1/mtspr_usprg1, mfspr_usrr0/mtspr_usrr0, and mfspr_usrr1/mtspr_usrr1 to
Table A-1. Instruction Properties on page 375.

• Revised the Glossary on page 495.

9 April 2018 Version 2.0.

29 September 2016 Version 1.0.

User’s Manual
OpenPOWER
POWER9 Processor

Revision Log

Page 26 of 508
Version 2.1

10 October 2019

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

About this Document

Page 27 of 508

About this Document

This user’s manual describes the IBM® POWER9 processor and provides information about the registers,
facilities, initialization, and use of the POWER9 processor.

This document provides information about the POWER9 processor that is visible from a programming model
point of view, and is intended to be a companion to the baseline architecture documentation (see Related
Documents on page 28). While there are some programming model considerations associated with chips and
subsystems outside of the Central Electronics Complex (CEC), this document focuses primarily on the micro-
processor core and the storage subsystem. For information about other chips that might appear in POWER9
systems, see the functional specifications for these individual chips.

Who Should Read this Document

This manual is intended for system software and hardware developers and application programmers who
want to develop products for the POWER9 processor. It is assumed that the reader understands operating
systems, microprocessor system design, basic principles of reduced instruction set computer (RISC)
processing, and details of the Power ISA.

Conventions Used in This Document

This section explains numbers, bit fields, instructions, and signals that are in this document.

Representation of Numbers

Numbers are generally shown in decimal format, unless designated as follows:

• Hexadecimal values are preceded by an “x” and enclosed in single quotation marks.
For example: x‘0A00’.

• Binary values in sentences are shown in single quotation marks.
For example: ‘1010’.

Note: A bit value that is immaterial, which is called a “don't care” bit, is represented by an “X.”

Bit Significance

In the POWER9 documentation, the smallest bit number represents the most significant bit of a field, and the
largest bit number represents the least significant bit of a field.

Other Conventions

Instruction mnemonics are shown in lower-case, bold text. For example: tlbie. I/O signal names are shown in
upper case.

User’s Manual
OpenPOWER
POWER9 Processor

About this Document

Page 28 of 508
Version 2.1

10 October 2019

Related Documents

The following documents can be helpful when reading this specification. Contact your IBM representative to
obtain any documents that are not available through the IBM Portal for OpenPOWER or the OpenPOWER
foundation.

Power ISA User Instruction Set Architecture - Book I (Version 3.0B)

Power ISA Virtual Environment Architecture - Book II (Version 3.0B)

Power ISA Operating Environment Architecture - Book III (Version 3.0B)

POWER9 Processor Programming Model Bulletin

Linux on Power Architecture Platform Reference

PCI Express Base Specification, Revision 4.0

IBM EnergyScale for POWER8 Processor-Based Systems

Manual for Using WBEM CLI to Fetch Flexible Service Processor CIM Data

POWER9 Processor Programming Guide for the 25G Link with NVLink 2.0 Compliant Devices

Coherent Accelerator Interface Architecture (CAIA)

http://www.pcisig.com/specifications/pciexpress/base3/
https://www.ibm.com/systems/power/openpower/
https://openpowerfoundation.org/
https://openpowerfoundation.org/
https://ibm.box.com/s/8qsbki409iq704wx5gvikz8h6fj8ixre

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

POWER9 Processor Overview

Page 29 of 508

1. POWER9 Processor Overview

The POWER9 processor is a superscalar symmetric multiprocessor designed for use in servers and large-
cluster systems. It uses CMOS 14 nm technology with 17 metal layers.

The POWER9 processor supports direct-attach memory. It supports a maximum symmetric multiprocessing
(SMP) size of two sockets and is targeted for scale-out workloads. The POWER9 processor offers superior
cost and performance. The target market segments are:

• Technical Computing: The POWER9 processor provides superior floating-point performance and
high-memory bandwidth to address this market segment. It also supports off-chip floating-point accelera-
tion.

• Cloud Operating Environments: The POWER9 processor enables efficient cloud management software,
enforces service-level agreements, and provide facilities for charge-back accounting based on resources
consumed.

• Big Data Analytics: The POWER9 processor with CAPI attach, large caches, and on chip accelerators
provides a robust platform for analytics and big-data applications.

• Enterprise: Robust cache/memory for in-memory database applications.

From a logical perspective, the POWER9 processor consists of six main components:

• POWER9 processing core including the L1 cache

• L2/L3 caches and noncacheable unit (NCU)

• Processor bus fabric interconnect

• Memory subsystem

• PCIe I/O subsystem

• Accelerator subsystem

1.1 General Features

The POWER9 processor can have up to 24 cores enabled on a single chip and is offered with a direct-
attached memory for scale-out computers. Each core has four threads that use simultaneous multithreading
(SMT).

The POWER9 processor supports the following architectural features:

• Power ISA Architecture (Books I, II, and III), version 3.0B
• Linux on Power Architecture Platform Requirements
• I/O Design Architecture v2 (IODA2) Specification, Version 2.4+
• IEEE P754-2008 floating-point compliant
• Big-endian, little-endian, strong-ordering support extension
• 56-bit real address, 68-bit virtual address

Level 2

Level 3

Peripheral component interconnect express

Coherent accelerator processor interface

User’s Manual
OpenPOWER
POWER9 Processor

POWER9 Processor Overview

Page 30 of 508
Version 2.1

10 October 2019

Figure 1-1 provides a block diagram of the POWER9 processor.

The following features describe the main components of the 24-core POWER9 processor chip:

• POWER9 core and cache

– Up to 24 processor cores

– Four-slice design plus
— Branch unit
— Decimal floating-point unit
— Crypto unit

– Each slice can perform one FX or VSX operation per cycle and one LS operation

– Four SMT, O-o-O

– 32 GPR, 32 FPR, and 64 VSR registers per thread

– 20-deep primary and 96-deep secondary history buffer per slice

–

• Core pairs share

– 32 KB per core (not shared) instruction cache (I-cache)

– 32 KB per core (not shared) data cache (D-cache)

– 512 KB private L2 cache

– 10 MB eDRAM L3 cache

Figure 1-1. POWER9 Processor Block Diagram

Cache and Interconnect

C

M
em

o
ry

I/O

C
A

P
I 2

.0

O
p

en
C

A
P

I

N
V

L
in

k

S
M

P

A
cc

el

DDR PCIe 4.0 25G Link 16G

CC C C C C C C C C C

C CC C C C C C C C C C

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

POWER9 Processor Overview

Page 31 of 508

• DDR4 memory controllers

– Eight DDR4 ports, 1.2 V, two DIMMs per port

– Supports ×4, ×8, 4 - 16 Gb, R/LR, 3D devices

– DDR4 support: maximum 2667 MHz, one DIMM per channel

– DDR4 support: maximum 2400 MHz, two DIMMs per channel

– High-throughput atomic memory operations

– 133+ GBps streaming bandwidth at 2667 MHz

– 128-byte line with 64-byte sectoring

• POWER9 SMP on-chip interconnect

– 1600 - 2400 MHz frequency

– Eight 32-byte data buses

– Four address snoop buses

– 12 or 24 core ramps

– Fifteen nest ramps

• POWER9 SMP off-chip interconnect

– Two 30-bit + 2 spare electrical X buses at 16 GHz

– Maximum two socket SMP

• PCIe GEN4 support

– 16 GHz differential PCIe Generation 4 buses: 48 lanes grouped in three sets of 16 lanes
— 1 × 16 + 1× 16 that bifurcates to 2 × 8
— 1 × 8 + 1 × 8 that bifurcates to 2 × 4

– Six separate PCI host bridges (PHB)

– P3Virtualization controller

• NVIDIA NVLink protocol over the 25G Link interface:

– Six bricks

– Eight lanes per brick

– 25 Gbps transfer rate per lane

– Coherent memory operations

– GPU direct

– GPU-to-GPU connections

– Address translation services (ATS)

• Power management support

– Core/L2/L3 instant on/off

– Halt state support

– Controlled by 17 on-chip programmable PPE engines

– Hypervisor-directed power change requests using a Pstate mechanism

– Dynamic lane width reduction (SMP interconnect, PCI)

Dual in-line memory module

Symmetric multiprocessing

Programmable PowerPC-lite engine

User’s Manual
OpenPOWER
POWER9 Processor

POWER9 Processor Overview

Page 32 of 508
Version 2.1

10 October 2019

– Sensors
— Digital thermal sensor (DTS2) ±5°C
— On-chip analog thermal diode ±1 - 2°C
— Voltage drop monitor
— Dedicated performance, microarchitecture, and event counters

– On-chip controller (OCC)
— On-chip PowerPC 405 for thermal management control
— On-chiplet hardware assist (automated core chiplet management)
— On-chip power management controls automated communications to the voltage regulation mod-

ules (VRMs) and voltage and frequency sequencers for automated Pstate and idle state support

– Actuators
— Per-chiplet frequency control through the DPLL
— Architected idle states: nap, sleep, and winkle; each with increasing power savings capability

(and latency)
— SPR power management control registers (PMCR, PMICR, PMSR) for hypervisor support

– Memory/DIMM throttling for memory subsystem power and thermal management

• Clocking

– Reference clocks
— 133 MHz core/nest
— 100 MHz PCI
— 156 MHz optics
— 16 MHz TOD

– 26 PLLs and DDR DLLs
— Six core quads, six X bus, six PCI, three reference clock filters, two optics, two DDR, one nest

• Accelerators

– CAPI attachment options
— Legacy POWER8 CAPI adapter support
— 2 × 16 PCIe Gen4

– Single GZIP engine

– Two 842 compression engines

– Three AES/SHA engines

– Atomic memory operations (AMO)

– Nest MMU to enable user access to all accelerators

• Pervasive interface

– Two FSI slaves

– 2 × 8 FSI master

– 2 × I2C SEEPROM

– Quad SPI

– Low-pin count (LPC) connection to baseboard management control (BMC)

– Processor serial interface (PSI) for connection to flexible service processor (FSP)

• Cloud management quality of service (QoS) support

Phase-locked loop

Delay-locked loop

Digital phase-locked loop

Special purpose register

Time-of-day

Advanced Encryption Standard

Secure hash algorithm

Memory nanagement unit

Inter-integrated circuit

Serial electrically erasable programmable read-only memory

Serial peripheral interconnect

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

POWER9 Processor Overview

Page 33 of 508

• Features

– On-chip accelerators

— CAPI allows an FPGA or ASIC to connect coherently to the POWER9 processor SMP intercon-
nect via the PCIe.

— On-chip: compression, encryption, data move initiated by hypervisor, GZIP engine, nest MMU to
enable user access to all accelerators

— In-core: user invocation encryption (AES, SHA)

— OpenCAPI: industry-standard, high-speed, low-latency acceleration

– Cloud computing enhancements: page replacement/affinity assist, IPL time reduction, four concur-
rent LPARs per core

– Transactional memory

– Random number generator

– RAID6 support in VMX

– Support for industry standard BMC

– Multi-level TCE support

– Turbo mode support

– Details of CAPI can be found in the Coherent Accelerator Interface Architecture (CAIA) document
and the associated CAPI User Handbook document.

Field-programmable gate array

Application-specific integrated circuit

Initial program load

Baseboard management control

Translation control entry

User’s Manual
OpenPOWER
POWER9 Processor

POWER9 Processor Overview

Page 34 of 508
Version 2.1

10 October 2019

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

POWER9 Processor Core

Page 35 of 508

2. POWER9 Processor Core

This section provides an overview of the POWER9 microprocessor core, including key design fundamentals,
an overview of the master pipeline operation, and a detailed summary of key design features.

2.1 Key Design Fundamentals

This section describes the key design fundamentals of the POWER9 processor core.

2.1.1 64-bit Implementation of the Power ISA (Version 3.0)

• Compatibility for all Power ISA application-level code (problem state).

– Architecturally supports POWER8 mode.

– Supports partition mobility.

• Supports IEEE standard P754.

• Linux support.

• AIX support with backward operating-system capability. Backward compatible up to AIX 5.3, with PCR-
based compatibility mode.

Figure 2-1. POWER9 Processor Core

512KB, 8-way

L2 Cache

1024-entry
Translation
Lookaside
Buffer /

Page
Walk Cache

(TLB)

Instruction
Cache

32KB, 8-way

Instruction
Translation

32-entry
Segment

Lookaside
Buffer
(SLB)

3rd Level Translation

Predecode

8 instructions

Instruction Fetch
Buffer

Instruction
Processing

Instruction
Pre Dispatch

Effective Address
Table

Instruction
Completion

Table

Branch
Issue

Queue

Register Files /History Buffers
FP / VMX / FX / LSU
4 Issue Queue Slices

Branch
Execution

Unit

Load Miss
Queue

Translation
Data

64B reload

16B store data

8 instructions

Branch History
Table

Return
Stack
Count
Cache

Branch Prediction

Data Prefetch
Engine

6 instructions

Crypto
Unit

DFU
Unit

BTAC
TAGE

6 instructions

4 FXU / VSU
Execution Units

4 Load / Store Slices
32KB Data Cache

Double-Word Sliced
LRQ and SRQ

8 instructions

WB Bus

S2Q

1 instruction

Pattern
Cache

10MB, 20-way L3 Cache

Institute of Electrical and Elctronics Engineers

User’s Manual
OpenPOWER
POWER9 Processor

POWER9 Processor Core

Page 36 of 508
Version 2.1

10 October 2019

2.1.2 Layered Implementation Strategy for High-Frequency Operation

• Reduced pipelined design.

– 11 stages from I-cache access to writeback for most fixed-point register-to-register operations.

– 13 stages for most load/store operations (assuming an L1 D-cache hit) from I-cache to writeback.

– 17 stages for most floating-point operations from I-cache access to writeback.

• Dynamic instruction cracking1 for some instructions allows for simpler inner-core dataflow.

– Dedicated dataflow for cracking one instruction into two or more internal operations.

– Microcoded templates for longer emulation sequences.

2.1.3 Speculative Superscalar Inner Core Organization

• Multi-threaded core design.

– Single thread (ST), 2-way multi-thread (SMT2), and 4-way multi-thread (SMT4).

– Four logical partitions (LPARs) supported at a time.

• Aggressive branch prediction.

– Prediction for up to eight branches per cycle.

– Support for up to 40 predicted taken branches in-flight ST mode. Twenty predicted taken branches
per thread in SMT2 mode and 10 predicted taken branches per thread in SMT4 mode.

– Prediction support for branch direction and branch target addresses.

• In-order dispatch of up to six internal operations (iops) into five distributed issue queues per cycle.

– Up to two branches dispatched per cycle.

– Up to six non-branch instructions dispatched per cycle.

• Out-of-order issue of up to nine operations.

– Four load or store agen operations.

– Four 64-bit execution/computational operations, 128-bit operations are issued as a pair of 64-bit
issues.

– One branch operation.

• Register renaming on GPRs, FPRs, CR fields, XER (parts), FPSCR, VSCR, Link, TAR, and Count.

• Eleven execution units.

– Four symmetric load/store units (LSU).

– Four symmetric 64-bit VMX execution units capable of executing fixed point ALU, simple FX, complex
FX, permute, 128-bit fixed-point, single, double-precision, floating-point operations. Two execution
units are tied together to perform 128-bit execution.

– Four floating-point units (FPU). Each FPU supports a double-precision operation or up to two sin-
gle-precision operations each for SIMD and also supports fixed-point multiply and complex FX
operations.

– For each symmetric unit, only one operation per cycle can be issued.

– One decimal floating-point and quad-precision floating-point unit (DFU).

1. Process by which some complex instructions are broken into multiple simpler, more RISC-like instructions.

Instruction cache

Data cache

Simultaneous multithreading

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

POWER9 Processor Core

Page 37 of 508

– One crypto unit.

– One branch execution unit (BR).

• Large number of instructions in flight.

– 96 instructions deep, instruction-fetch buffer, split equally across the threads in SMT2 and SMT4
mode.

– Up to 24 instructions in four dispatch pipe stages.

– Up to 256 instructions from dispatch through instruction completion.

– Up to 64 stores queued in the SRQ (available for forwarding), shared by the available threads and
buffered en-route to the L2 cache through a 16-entry S2Q.

• Fast, selective flush of incorrect speculative instructions and results.

2.1.4 Specific Focus on Storage Latency Management

• Out-of-order and speculative issue of load operations.

• Support for up to eight outstanding L1 cache-line misses with critical data forwarding; critical sector first.

• Hardware-initiated instruction prefetching.

• Hardware-initiated or software-initiated data-stream prefetching. Support for up to eight active streams.

2.2 Pipeline Structure

The pipeline structure for the microprocessor can be subdivided into a master pipeline and several different
execution unit pipelines. The master pipeline presents speculative in-order instructions to the mapping,
sequencing, and dispatch functions, and ensures an orderly completion of the real execution path (throwing
away any other potential speculative results associated with mispredicted paths). The execution unit pipe-
lines allow out-of-order issuing of both speculative and non-speculative operations. The execution unit pipe-
lines progress independently from the master pipeline and from one another.

Store reorder queue

Store drain queue

User’s Manual
OpenPOWER
POWER9 Processor

POWER9 Processor Core

Page 38 of 508
Version 2.1

10 October 2019

Figure 2-2 illustrates these pipelines, where each box represents a pipeline stage. Definitions for Figure 2-2
are as follows:

Figure 2-2. Pipeline Structure

CA/fmt Data cache access and data formatting GCT Global completion table

comp Group completion ICA Instruction cache access

CRK Crack/instruction fuse IFAR Instruction Fetch Address Register

DCD Decode ifbx Instruction fetch buffer latches

DISP Dispatch pdx Pre-dispatch

DSP Group dispatch RF Register file

EA/CA Effective address generation and data
cache decode

ucode Microcode

ERS Issue queue WB Writeback to the register file

EX Execution WRT Format and write into the GCT

FP1 Floating-point alignment and multiply’ XFR Transfer

FP2 Multiply xmit Finish and transmit

FP3 Add Xmit Instruction transfer to dispatch

FP4 Normalize result

FP5 Round result and re-drive

DCD

IFAR

ICA

Br Pred

Br Pred

IFB1

IFB2

IFB3

IFB4

map issue RF EX xmit

EX

Agen

Decode, Crack/Fuse

Branch Instruction (1 BR)

Fixed-point instruction (4 FX)

(CR, LR, CTR) (CR, LR, CTR)

(GPR, XER, CR)

Fmt

issue Fin
(VR, FPR, FPSCR, VSCR)

PM1

XS1

XC1

FP1

CY1

XC2 XC3 XC4 XC5 XC6

CY3CY2 CY4 CY5 CY6

FP2 FP3 FP4 FP5 FWD

XFER DF1 DF2 DFN

comp

Binary FP (SP, DP)

Decimal FP / QP FP

Crypto (AES)

FX Complex

FX Simple, SHA

Instruction Fetch

Branch Misprediction

Interrupts and Flushes

Taken Branch

Out-of-order Execution

Dispatch

PD0 PD1

ucode

2 Independent
Decode and Dispatch Pipes

SMT4

Load – Store Agen (4 issue ports)

4 VSU Pipelines

PM2

DCD

CRK XFR

Permute / 128b FX

issue

issue

xmit

xmitFinDaccBdcst

Fin

Fin

xmit

Xmit Disp ERS

PD0 PD1CRK XFR Xmit Disp ERS

ucode ucode

WB

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

POWER9 Processor Core

Page 39 of 508

The processor core is divided into following six units:

2.3 Detailed Features of the Microprocessor Core

2.3.1 Instruction Fetching and Branch Prediction

• 32 KB, 8-way set associative I-cache

– 128-byte lines (broken into four 32-byte sectors).

– Dedicated 64-byte interface from the L2 cache that can supply 64-bytes in every processor clock. The
I-cache takes in only 32 bytes and buffers the other half.

– Critical-sector-first reload policy.

– Effective-address index, real-address tags.

– Banked I-cache, supports one read and one write per cycle when there is no bank conflict.

– Predecode bits to aid in fast decoding and group formation.

– Parity protected; force invalidate and reload on parity error.

• 64-entry effective-to-real address (ERAT) translation cache, fully associative

– Each entry can translate 4 KB, 64 KB, 2 MB, and 16 MB pages. For MSR[IR] = ‘1’ and nonhypervisor
real mode accesses, 1 GB and 16 GB pages take multiple 16 MB entries.

– In hypervisor real mode, entries are installed as 2 MB pages.

– In SMT mode, each entry is tagged to indicate invalid or valid for thread 0 - 3.

• Fetch one quadword aligned block of eight instructions per cycle

– In ST mode, instructions are fetched from the thread in every cycle.

In addition, for VMX operations

VF1 - VF6 Represent the pipeline stages for the 4-way SIMD single-precision pipeline stages

XS1 Represents the simple FX operation stage

XC1 - XC6 Represent the complex FX operation stages

CY1 - CY6 Represent the six Crypto execution cycles

PM1 - PM2 Represent the permute stages along with the 128-bit fixed-point operations

IFU Instruction fetch and decode unit

ISU Instruction dispatch and issue unit

LSU Load/store unit

VSU Vector and scalar unit (consists of fixed-point, VMX, binary floating-point, crypto, and VSX)

DFU Decimal floating-point and quad precision floating-point unit

PC Pervasive unit

User’s Manual
OpenPOWER
POWER9 Processor

POWER9 Processor Core

Page 40 of 508
Version 2.1

10 October 2019

– In SMT mode, instructions are fetched from a given thread based on thread priority. If the threads are
of equal priority, each thread gets approximately an equal number of fetch cycles, while optimizing
the core throughput.

• Branch prediction

– Scan all eight fetched instructions for branches in each cycle.

– Predict up to eight branches per cycle.

– Four table first-level prediction structure: global/local/global selector/local selector
global (8K entries × 2-bit) local (8K entries × 2-bit), global selector (8K entries × 2-bit), and
local selector (8K entries × 2-bit). Backed up by a TAGE predictor.

— In SMT modes, thread priority is factored in to determine which thread to fetch from to improve
overall fetch throughput.

2.3.2 Instruction Decode and Preprocessing

• One cycle pipeline to preprocess instructions

– Up to six instructions are decoded concurrently.

– Dedicated dataflow for cracking one instruction into two or three operations. The rest of the cracked
instructions use the ucode expansion templates.

– The expansion templates are used for longer emulation sequences of internal operations.

– All expanded instructions delay the pipe by two cycles.

• Logically, there is one instruction fetch buffer (IFB) per thread (sizes differ based on the ST, SMT2, SMT4
modes). Each IFB entry has one instruction. There are 96 entries in an IFB per thread in ST mode, 48 in
SMT2 mode, and 24 in SMT4 mode.

• Up to eight instructions can be placed in the IFB in a cycle.

• Up to six instructions can be taken out from the IFB in a cycle (ST or SMT mode).

• Instructions taken out for group formation and decode are from up to two threads; one thread in ST mode
and two threads in SMT2 and SMT4 modes.

• The microcode patch facility allows most instructions to trap to software for fix-up or emulation. There are
six full Instruction Mask Registers (IMRs) per core.

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

POWER9 Processor Core

Page 41 of 508

2.3.3 Instruction Dispatch, Sequencing, and Completion Control

• Three dispatch pipeline cycles hold up to 24 instructions when the ICT is full.

• Inter-instruction dependence generation for RAW and WAW dependences.

• 256-entry instruction completion table (ICT).

– Each entry is assigned to a particular thread at instruction dispatch.

– Tracks internal operations from dispatch-to-instruction completion for up to 256 operations.

– Capable of restoring the machine state for any of the instructions in flight.

• Supports precise exceptions (including machine-check exceptions).

• Register renaming resources. The POWER9 core uses a history buffer to allow out-of-order execution. All
renamed registers except the Link, TAR, and Count registers employ this mechanism.

– GPR/FPR/VR history buffer:

— Each of the four execution slices contain a 20-entry primary and 96-entry secondary history buf-
fer. For each instruction that updates a GPR/FPR or VR, a copy of each architected target regis-
ter is held to restore on a flush.

— In SMT2 mode, the four slices and history buffers are shared by the two threads.

— In SMT4 mode, two threads run on two slices of each cluster (the other two threads run on the
remaining two slices). Therefore, two threads each share the 40 primary and 192 secondary
available history buffer entries.

— In transactional memory mode, the history buffer is also used to contain the checkpoint of the
transaction.

– XER, CR, FPSCR history buffer: 12-entry primary and 12-entry secondary per slice shared amongst
all resources and on the same thread basis as the GPRs.

— XER is mapped to six fields: ov, ca/oc, fxcc, tgcc, sc, dc/ds

— FPSCR is mapped to four fields: fr/fi/c, fpcc, exceptions, control

— CR is mapped to eight subfields

— VSCR is mapped to two fields: sat, nj

– Any instruction that sets more than four renamed fields must be cracked.

– 20-entry mapper for LR/CTR/TAR (1 LR, 1 TAR, and 1 CTR per thread)

• Issue queues

– There are 13 issue queue slots per slice and they are shared by the threads in the same manner as
the history buffers. The issue queues hold all instructions except branches.

— VMX permute operations and 128-bit store operations take two slices (an even/odd slice pair) to
handle a 128-bit operation.

— The load/store is comprised of four slices. Each slice handles a doubleword dataflow. Double-
words 0, 4, 8, 12 of a line are handled by one slice. This pattern is repeated across the remaining
slices in the core. Therefore slice 1 contains doublewords 1, 5, 9, and 13.

— The load-reorder queue and load-store agen queue are merged on a quadword basis. They han-
dle the requests for two of the load-store unit slices.

– One 15-entry issue queue for branch instructions.

Read after write

Write after write

User’s Manual
OpenPOWER
POWER9 Processor

POWER9 Processor Core

Page 42 of 508
Version 2.1

10 October 2019

2.3.4 Fixed-Point Execution Pipelines

• Four fixed-point execution pipelines:

– All four are capable of basic arithmetic, logical, cr logical, and shifting operations.

– All four are capable of multiplies, divides, and SPR operations.

• Out-of-order issue with a bias toward oldest operations first.

• Symmetric forwarding between fixed-point and load/store execution pipelines.

2.3.5 Load and Store Execution Pipelines

• Four symmetric load/store execution pipelines, with a 4-cycle, load-to-use latency (3-cycle bubble). There
are four addresses generated per core per cycle that are picked up by 1 - 3 (misaligned operations) of the
the four LSU slices.

• Out-of-order issue with a bias toward oldest operations first. All stores are issued twice: an address gen-
eration operation (LD/ST) and a data steering operation (FX/FP/VSX/VMX).

• 32 KB, 8-way set associative, banked D-cache.

– Supports four reads and one write every cycle, when there is no bank conflict between a write and a
read. A given bank can support either one read or one write in a given cycle.

– Four cycle load-use penalty for loads (3-cycle bubble between a load and a dependent operation).

– Store-through (to L2 cache) policy; no allocate on store misses.

– 128-byte cache line with support for 64-byte sectors.

– Pseudo-LRU replacement policy.

– EA-based set predict is used to determine the initial hit information. RA-based directory and ERAT is
used to define real hit information. A flush can occur on a set-predict hit, directory miss.

– A dedicated 64-byte reload interface from the L2 cache can supply 64 bytes in every processor clock.

– Effective address index, real address tags (hardware fix-up on alias cases). That is, two different EAs
that map to the same RA are not allowed to co-exist in the D-cache.

– Parity-protected via recovery

• 64-entry, fully-associative data effective-to-real address (D-ERAT) translation cache.

– Each entry translates either 4 KB, 64 KB, 2 MB, or 16 MB pages.

— 16 GB pages take multiple 16 MB pages.

— 1 GB pages take multiple 16 MB pages.

— MSR[DR] = ‘0’ entries are also created in the D-ERAT and shared by all threads.

– Binary LRU replacement policy.

– In SMT mode, each entry is tagged by thread ID.

– Entries are dynamically shared between all threads.

• 32-entry, fully-associative segment lookaside buffer (SLB) per thread for HPT translation. The SLB is not
used for radix translation.

– Each entry can support 256 MB or 1 TB segment sizes.

– Multiple pages per segment (MPSS) feature is supported: 4 KB, 64 KB, and 16 MB pages.

Effective address

Real address

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

POWER9 Processor Core

Page 43 of 508

• 16-entry, store re-order queue per slice (real address based; CAM structure).

– Therefore, there are 64 total SRQ entries in the slices that can be forwarded out of.

— SRQ is dynamically shared among the available threads.
— SRQ entry is allocated at the time of a store agen getting access to the cache and deallocated

when the store is written in the cache or sent to the L2 cache (after the completion point).

– Store addresses and store data is supplied on different cycles.

– Stores wait in this queue until they are completed; then they write the cache and drain to the L2
cache.

– Supports store forwarding to include subsequent loads (even if both are speculative). Store forward-
ing takes two additional cycles compared to a D-cache hit for a load.

– For each SRQ entry, there is a store data queue (SDQ) entry of 8 bytes.

• There is a 16-entry second queue that buffers completed store data that is sent to the L2 cache. Each of
these queues is 16 bytes wide but do not forward data to loads in the pipe.

• 16 bytes of store data can be sent to the L2 cache (and also to the D-cache, on a hit) in every processor
cycle.

• Two 10-entry load re-order queues and 28-entry load reorder finish queue (real address based; CAM
structure).

– A total of 76 outstanding loads can be issued.

– LRQ is dynamically shared among the available threads.

– Keeps track of out-of-order loads and watches for hazards.

• 8-entry load-miss queue per cluster (real address based).

– Keeps track of loads that have missed in the L1 D-cache.

– Allows multiple loads from the same cache line to merge onto a single entry (the two loads can be
from different threads).

– Dynamically shared among the threads in SMT modes.

– Prefetches to L1 are also tracked using the LMQ.

– LMQ can merge two load operations from the same sector.

• Two 16-byte load and two 16-byte store operations are supported for VMX and VSX operations per cycle.
There is no penalty when the load/store operation is 8-byte or 16-byte aligned.

• True little-endian (LE) mode is supported.

2.3.6 Branch Execution Pipelines

• One branch execution pipeline.

– Computes actual branch address and branch direction for comparison with prediction.

– Redirects instruction fetching if either direction or target prediction was incorrect.

– Assists in training and maintaining the branch history table predictors, the link stack, and the count
cache.

• Out-of-order issue with a bias toward oldest operations first.

Content-addressable memory

Load reorder queue

Load-miss queue

User’s Manual
OpenPOWER
POWER9 Processor

POWER9 Processor Core

Page 44 of 508
Version 2.1

10 October 2019

2.3.7 Unified Second-Level Memory Management (Address Translation)

• 1024-entry, 4-way set-associative TLB per cluster.

– 4 KB, 64 KB, 2 MB, 16 MB, 1 GB, and 16 GB pages are supported in the TLB.

– TLB also supports “Virtualized Page Class Key Protection” with 32 keys.

– Indexed with partially hashed address to improve performance.

– Hardware-based reload (from the L2 cache interface; no L1 D-cache corruption).

– Hardware-based atomic and non-atomic update of the R-bit, C-bit, and TS-bit.

– Parity protected via recovery.

– In SMT mode, the TLB entries are shared by the four threads as long as the entry belongs to the log-
ical partition running on the core.

– 12-bit LPAR ID per entry.

• Hit-under-miss is allowed in the TLB.

• Support for four concurrent table walks (without any restriction on thread of D-side or I-side requests).

• 32-entry fully-associative SLB, one per thread.

– SLB miss results in an interrupt (a software reload of the SLB).

– SLB can also be loaded by using the software-initiated SLB instructions.

– SLB supports 256 MB and 1 TB segment sizes.

• A segment with 4 KB base page size is allowed to have mixed pages of sizes 4 KB, 64 KB, and 16 MB
pages.

• A segment with 64 KB base page size is allowed to have mixed pages of sizes 64 KB and 16 MB pages.

• Read of invalid SLB entry returns zeros for enhanced security.

• Supports 68-bit virtual address for HPT and 56-bit real address.

• Two outstanding table-walks per cluster and TLB hits-under-miss is allowed.

• There are no restrictions on the thread or D-side or I-side for the concurrency of the two table walks.

• Both software and hardware TLB management is allowed.

• True LRU replacement policy.

• Supports 52-bit guest effective address and 52-bit guest real address (host effective address) for radix.
Guest real address bits 0:11 are ignored by the hardware and treated as zeros.

2.3.8 Data Prefetch

• Eight independent data streams capable of striding up or down.

• Prefetches and allocates ahead of demand into the L1 D-cache from the L3 cache.

• Prefetches and allocates ahead of demand into the L3 cache from memory.

• Support for software-initiated stream startup (special variant of the dcbt instruction).

• Hardware and software-initiated streams can use eight data streams with sharing in SMT modes.

Translation lookaside buffer

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

POWER9 Processor Core

Page 45 of 508

2.3.9 VSU Execution Pipeline

The vector scalar unit has a merged fixed-point, floating-point, permute and vector dataflows. Up to four
instructions can be issued to the execution pipeline in a given cycle. It contains:

• Four fixed-point execution pipelines with 5 stage execution:

– All fully capable for the full set of floating-point instructions.

– All data formats are supported.

– Non-IEEE mode supported, which provides less precise results at lower divide/square root latencies.

• Out-of-order issue with bias toward oldest operations first.

• Symmetric forwarding between fixed-point and load/store execution pipelines.

• VSU unit contains binary floating-point execution unit, SIMD double-precision floating-point (VSX) execu-
tion unit, and the VMX execution unit.

• Up to four instructions can be issued to the VSU in a given cycle to the four pipelines.

– The instruction in the first pipeline can be a simple fixed-point, a complex fixed-point, a 4-way SIMD
single-precision FPU operation, a 2-way SIMD double-precision FPU operation (VSX), or a scalar
floating-point operation.

– The four pipes are symmetric.

– Two pipes (slices) are used to handle 128-bit operations.

– Out-of-order issue with bias toward oldest operations first.

– Four load result bus to the VRF, each supports up to 8-byte loads in a cycle.

– Store data bus from VRF to the SDQ supports four 8-byte stores or two 16-byte stores in a cycle.

• Floating-point execution:

– Four symmetric floating-point execution pipelines with 6-stage execution:

— All are capable of the full set of floating-point instructions.

— All data formats supported in hardware (no floating-point assist interrupts).

— A new test instruction facilitates execution of multiple concurrent divide or square-root operations.

— Back-to-back six cycles issue to local and eight cycles to the remote FPU.

— Non-IEEE mode supported, which provides less precise results at a lower latency for divide and
square-root operations.

• VSX execution:

– Four symmetric SIMD floating-point execution pipelines, with stage execution:

— Both capable of the full set of VSX instructions (single-precision and double-precision).

— All data formats supported in hardware (no assist interrupts).

— A new test instruction facilitates execution of multiple concurrent divide or square-root operations.

— Back-to-back 5-cycle issue to local and 7-cycle issue to the remote VSX pipe.

• VMX execution:

– Four execution pipelines within VMX: simple fixed-point, complex fixed-point, permute, and 4-way
SIMD single-precision floating-point unit.

User’s Manual
OpenPOWER
POWER9 Processor

POWER9 Processor Core

Page 46 of 508
Version 2.1

10 October 2019

— Simple fixed-point operations take two execution cycles.

— Complex fixed-point operations take five execution cycles.

— Permute operations take two execution cycles.

— Vector floating-point operations take five execution cycles.

2.3.10 Decimal Floating-Point Execution Pipeline

• DFP unit can execute 64-bit or 128-bit DFP operations.

• Allows out-of-order issue with bias toward oldest instruction.

• Pipelined execution.

• DFP unit shares VSU pipe 1 issue port with the VSU unit.

• 128-bit DFP instructions can be cracked into 2-way or microcoded internal operations.

• One quad-precision floating-point execution pipeline with 12-stage execution. Two issue pipes are used to
handle quad-precision execution.

Decimal floating-point

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Packages

Page 47 of 42

3. Packages

This chapter outlines the module packages for the POWER9 processor. An X bus is the socket-to-socket
SMP interconnect between two POWER9 processors.

3.1 POWER9 Single-Chip Module for Cloud and Data Center

Features:

• Body size: 50 mm × 50 mm

• Interconnect technology: Hybrid LGA socket

• 1.016 mm hexagonal LGA pitch and 2601 pins

• 4-4-4 organic package construction

Buses:

• Four DDR4 ports

• One 30-bit + 2 spare (4-byte) electrical X buses at 16 Gbps

• 48 lanes PCIe Gen4 at 16 Gbps

Figure 3-1. POWER9 Single-Chip Module for Cloud and Data Center

POWER9
Processor

50 mm × 50 mm

X Bus (4 bytes)4 DDR4
Memory Ports

48 Lanes of PCIe

Land grid array

Double data rate 4

Peripheral Component Interconnect Express

User’s Manual
OpenPOWER
POWER9 Processor

Packages

Page 48 of 42
Version 2.1

10 October 2019

3.2 POWER9 Single-Chip Module for High-Performance Computing and Cloud

Features:

• Body size: 68.5 mm × 68.5 mm

• Interconnect technology: Hybrid LGA socket

• 1.5 mm interstitial LGA pitch with a minimum pitch of 1.06 mm and 3899 pins

• 7-2-7 organic package construction

Buses:

• Eight DDR4 ports

• 25G Link: six bricks at 25 Gbps or
OpenCAPI: four bricks at 25 Gbps

Note: The basic building block for a 25G Link is a high-speed, 8-lane, differential, dual simplex bidirec-
tional link. In this document, the term “brick” is equivalent to the term “link.”

• One 30-bit + two spare (4-byte) electrical X buses at 16 Gbps

• 34 lanes PCIe Gen4 at 16 Gbps

Figure 3-2. POWER9 Single-Chip Module for HPC/Cloud

POWER9
Processor

68.5 mm × 68.5 mm

X Bus (4 byte)8 DDR4
Memory Ports

34 Lanes of PCIe

25G Link (6 Bricks) or OpenCAPI (4 Bricks)

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Packages

Page 49 of 42

3.3 POWER9 Single Chip Module for Commercial Entry

Features:

• Body size: 68.5 mm × 68.5 mm

• Interconnect technology: Hybrid LGA socket

• 1.5 mm interstitial LGA pitch with a minimum pitch of 1.06 mm and 3899 pins

• 7-2-7 organic package construction

Buses:

• Eight DDR4 ports

• 25G Link: two bricks at 25 Gbps or
OpenCAPI: two bricks at 25 Gbps

• Two 30-bit + two spare (4-byte) electrical X buses at 16 Gbps

• 42 lanes PCIe Gen4 at 16 Gbps

Figure 3-3. POWER9 Single-Chip Module for Commercial Entry

POWER9
Processor

68.5 mm × 68.5 mm

X Bus (4 byte)
8 DDR4 Memory Ports

42 Lanes of PCIe

25G Link (2 Bricks) or OpenCAPI (2 Bricks)

X Bus (4 byte)

User’s Manual
OpenPOWER
POWER9 Processor

Packages

Page 50 of 42
Version 2.1

10 October 2019

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Power Architecture Compliance

Page 51 of 508

4. Power Architecture Compliance

The following sections are intended to be read with their respective companion documents. Throughout these
sections, it is assumed that the reader is familiar with the following architecture documents:

• Power ISA User Instruction Set Architecture - Book I (version 3.0B)

• Power ISA Virtual Instruction Set Architecture - Book II (version 3.0B)

• Power ISA Operating Environment Architecture - Book III (version 3.0B)

• POWER9 Processor Programming Model Bulletin

Except for Table 4-8 on page 83, all references to the optional Secure Memory Facility (SMF) are found in
Section 24.3 Secure Memory Facility on page 326. The rest of this chapter applies regardless of whether or
not SMF is enabled by the POWER9 hardware.

4.1 Book I - User Instruction Set Architecture

This section of the document identifies version 3.0B architectural implications of the POWER9 design point
as they relate to the User Instruction Set Architecture (UISA). This is accomplished by walking through each
of the relevant sections of Book I and highlighting the POWER9 solution to the architectural flexibility provided
by the Power ISA.

4.1.1 Instruction Classifications

The POWER9 processor core implements all Book I instructions specified in the Power ISA (Version 3.0B).

4.1.1.1 Illegal Instructions

An attempt to execute an illegal instruction as defined in the Appendix A. Illegal Instructions of the Power ISA
(Version 3.0B) results in a hypervisor emulation assistance interrupt.

4.1.1.2 Instructions Supported

The POWER9 core supports all of the instructions described in the Power ISA User Instruction Set Architec-
ture - Book I (version 3.0B). Furthermore, it supports the Service Processor “Attention” described in Appendix
B. Reserved Instructions of the Power ISA (Version 3.0B). This instruction is conditionally enabled by
HID[3] = ‘1’. When enabled, this instruction is a user-level instruction.

4.1.1.3 Invalid Forms

In general, the POWER9 core handles invalid forms of instructions in the manner that is most convenient for
the particular case (within the scope of meeting the boundedly-undefined definition described in the Power
ISA). This document specifies the behavior for these cases. However, it is not recommended that software or
other system facilities make use of the POWER9 behavior in these cases because such behavior might be
different in another processor that implements the Power ISA.

The POWER9 core ignores the state of reserved bits in the instructions (denoted by “///” in the instruction defi-
nition) and executes the instruction normally. Software should set these bits to ‘0’ per the Power ISA.

https://ibm.box.com/s/8qsbki409iq704wx5gvikz8h6fj8ixre

User’s Manual
OpenPOWER
POWER9 Processor

Power Architecture Compliance

Page 52 of 508
Version 2.1

10 October 2019

4.1.2 Branch Processor

4.1.2.1 Instruction Fetching

In an effort to increase performance, the POWER9 processor does instruction prefetching before it deter-
mines whether or not particular instructions will actually execute. This prefetching follows all of the architec-
tural constraints relative to caching-inhibited and guarded regions of storage. More information on instruction
fetching is available in Section 25.1.3 Instruction Fetch on page 336.

4.1.2.2 Branch Prediction

The POWER9 processor core uses several dynamic branch prediction mechanisms to improve performance.
See Section 25.1.3.4 Branch Prediction on page 339. When enabled, software can override the hardware
mechanisms for branch prediction by using the architected BO field “a” and “t” hint bits in the instruction itself
as described in the Power ISA (Version 3.0B).

In addition, for bclr instructions, a link stack (or call-return stack) is used to predict the target address of the
branch. Similarly, for bcctr instructions, local and global count caches are used to predict the target address
for this type of branch. To improve the efficiency of these address predictors, the POWER9 core uses the
architected BH-field hints associated with several of the branch instructions. These hints are used by the
hardware to improve the accuracy of the link stack and the count cache.

Although the overall performance of the machine is strongly dependent on these branch prediction mecha-
nisms, a set of firmware-accessible mode bits is available to disable these features via scan initialization.

4.1.2.3 Instruction Cache Block Touch Hint

The POWER9 core supports the instruction cache block touch (icbt) instruction. However, instead of bringing
the instructions into the level 1 (L1) cache as described in the Power ISA, it prefetches the instructions into
the level 2 (L2) cache. Thus, icbt is implemented internally as a data cache block touch for store (dcbtst) hint
instruction.

4.1.2.4 Out-of-Order Execution and Instruction Flushes

The POWER9 processor uses out-of-order instruction execution. Instructions can be speculative on a
predicted branch direction, or simply speculative beyond an instruction that might cause an interrupt condi-
tion. In the event of a misprediction or an interrupt, instructions from the mispredicted path and the results
produced by those instructions are discarded, presenting the effect of sequentially executed instructions
down the appropriate branch paths and precise exceptions as required by the Power ISA (Version 3.0B). For
details and exceptions about the rules for obeying the sequential execution model, see the following sections:
Instruction Execution Order in Book I, Definitions in Book II, and Definitions and Notation in Book III.

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Power Architecture Compliance

Page 53 of 508

4.1.2.5 Branch Processor Instructions with Undefined Results

The results of executing an invalid form of a branch instruction or an instance of a branch instruction for which
the architecture specifies that some results are undefined are described as follows. Only results that differ
from those specified by the architecture are described in the following list.

• Instructions with reserved fields:
Bits in reserved fields including the z-bits in the BO field are ignored. The results of executing an instruc-
tion in which one or more of these bits are ‘1’ is the same as if the bits were ‘0’.

• bcctr and bcctrl instructions:
If BO[2] = ‘0’, the contents of CTR (before any update) are used as the target address and for the test of
the contents of CTR to resolve the branch. The contents of the CTR are then decremented and written
back to the CTR.

4.1.3 Fixed-Point Processor

4.1.3.1 Fixed-Point Exception Register

The Power ISA defines the Fixed-Point Exception Register (XER) bits: XER[0:15], XER[35:43] and
XER[46:56] as reserved. An mfxer returns the value as shown in Table 4-1.

In the POWER9 core, the XER is implemented in several parts:

• XER renamed fields F0:F6 (see Table 4-1) are stored in an architected register file (ARF). The ARF con-
tains latches that store the F0:F6 fields for each of four threads. The ARF contains four (one per thread)
transactional memory (TM) copies of the F0:F6 fields.

• The SO bit is not renamed and is only updated at completion time. One copy for each of the four threads
and four TM copies are shared by FX0, FX1, FX2, and FX3.

Table 4-1. XER Bits and Fields (Sheet 1 of 2)

XER Bits Name Field Read/Write Behavior

0:15 Reserved Unimplemented Returns zeros on mfxer.

16:31 Reserved Returns zeros on mfxer.

32 SO SO
Set to ‘1’ whenever OV = ‘1’, except when mtxer sets SO = ‘0’ and OV = ‘1’.
This bit can be set to ‘0’ or ‘1’ by mtxer. An mfxer reads the bit contents. This
bit is implemented inside the mapper, but it is only updated at completion time.

33 OV F1 Set to ‘0’ or ‘1’ by various fixed-point instructions with OE = ‘1’ or by mtxer. An
mfxer reads the bit contents.

34 CA F2 Set to ‘0’ or ‘1’ by add-carrying, subtract-from carrying, shift-right algebraic-type
instructions, and by mtxer. An mfxer reads the bit contents.

35:43 Reserved F2 Returns zeros on mfxer.

User’s Manual
OpenPOWER
POWER9 Processor

Power Architecture Compliance

Page 54 of 508
Version 2.1

10 October 2019

4.1.4 Storage Access Alignment Support Overview

Most storage accesses are performed without software intervention (such as, an alignment interrupt). For
more information on misaligned cases that do not result in an interrupt, see Section 25 Performance Profile
on page 333. The storage accesses that result in an interrupt condition are described in the following
sections.

4.1.4.1 Alignment Interrupts

The LSU reports an alignment interrupt for the following conditions:

• Storage operand is not on a natural alignment boundary.

– Halfword boundary:
— lharx
— sthcx.

– Word boundary:
— lwarx, lwat
— stwcx, stwat

– Doubleword boundary:
— ldarx, ldat
— stdcx, stdat

– Quadword boundary:
— lfdp, lfdpx, lq, stfdp, stfdpx, stq, stqcx, lqarx

– Cache-line (128-byte) boundary:
— copy, paste.

44 OV32/Reserved F2

There are two bits representing bit 44, an OV32 bit and a reserved bit.
• The mfxer reads the OV32 bit if PCR[v2.07] = ‘0’ and reads the reserved

bit if PCR[v2.07] = ‘1’; this applies independent of privilege state and is
the only PCR effect on bit 44.

• The mtxer instruction writes both bits.
• The mcrxrx instruction reads only the OV32 bit because it is an invalid

instruction independent of the PR bit when PCR[v2.07] = ‘1’.
• The instructions that implicitly set the OV bit also set the OV32 bit as

described in the Power ISA (Version 3.0B), and do not modify the
reserved bit.

45 CA32/Reserved F1

There are two bits representing bit 45, a CA32 bit and a reserved bit.
• The mfxer reads the CA32 bit if PCR[v2.07] = ‘0’ and reads the reserved

bit if PCR[v2.07] = ‘1’; this applies independent of privilege state and is
the only PCR effect on bit 45.

• The mtxer writes both bits.
• The mcrxrx reads only the CA32 bit because it is an invalid instruction

independent of the PR bit when PCR[vv2.07] = ‘1’.
• The instructions that implicitly set CA also set the CA32 bit as described

in the Power ISA (Version 3.0B) and do not modify the reserved bit.

46:56 Reserved F5 Written by mtxer. An mfxer reads the bit contents.

57:63 String length F6 String length field used lswx and stswx. Written by mtxer. An mfxer reads the
bit contents.

Table 4-1. XER Bits and Fields (Sheet 2 of 2)

XER Bits Name Field Read/Write Behavior

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Power Architecture Compliance

Page 55 of 508

• Atomic memory operations take an alignment interrupt for cases identified by ALI in Table 4-2. Some
cases only take an alignment interrupt for specific Function Code (FC) values as indicated. If no FC is
indicated but ALI is indicated, the alignment interrupt occurs for any FC value.

• Little-endian mode
– lmw, lswi, lswx
– stmw, stswi, stswx

• Caching-inhibited storage

– lfdp, lfdpx, lmw, lswi, lswx, lxvl, lxvll
– dcbz, stfdp, stfdpx, stmw, stswi, stswx, stxvl, stxvll

– Any load or store not on a natural alignment boundary:

— Halfword boundary:
– lha, lhau, lhaux, lhax, lhbrx, lhz, lhzcix, lhzu, lhzux, lhzx, lxsihzx
– sthbrx, sth, sthcix, sthu, sthux, sthx, stxsihx

— Word boundary:
– lfiwax, lfiwzx, lfs, lfsu, lfsux, lfsx, lwa, lwaux, lwax, lwbrx, lwz, lwzcix, lwzu, lwzux, lwzx,

lxssp, lxvwsx, lxsiwax, lxsiwzx, lxsspx
– stfiwx, stfs, stfsu, stfsux, stfsx, stwbrx, stw, stwcix, stwu, stwux, stwx, stxssp,

stxsiwx, stxsspx

— Doubleword boundary:
– ld, ldbrx, ldcix, ldu, ldux, ldx, lfd, lfdu, lfdux, lfdx, lxsd, lxsdx, lxvdsx
– std, stdbrx, stdcix, stdu, stdux, stdx,stfd, stfdu, stfdux, stfdx, stxsd, stxsdx

— Quadword boundary:
– lxvd2x, lxvw4x, stxvd2x, stxvw4x, lxv, stxv, lxvx, stxvx, lxvh8x, stxvh8x, lxvb16s, stx-

vb16x

Table 4-2. Alignment Interrupt for AMO Cases

AMO Instruction x‘00’ x‘04’ x‘08’ x‘0C’ x‘10’ x‘14’ x‘18’ x‘1C’

lwat FC ‘11100’
ALI

FC ‘11000’
ALI

FC ‘11001’
ALI

ldat FC ‘11100’
ALI ALI ALI ALI FC ‘11000’

ALI

FC ‘11001’
ALI ALI

stwat FC ‘11000’
ALI

stdat ALI ALI ALI FC ‘11000’
ALI ALI

Note: ALI = alignment interrupt; FC = function code

Alignment interrupt

User’s Manual
OpenPOWER
POWER9 Processor

Power Architecture Compliance

Page 56 of 508
Version 2.1

10 October 2019

4.1.4.2 Storage Control Attribute Caused Data Storage Interrupt or Hypervisor Data Storage Interrupts

The LSU reports either a data storage interrupt (DSI) or hypervisor data storage interrupt (HDSI) for the
following conditions as permitted by the Power ISA (Version 3.0B):

• The effective address specified by a lq, stq, lwat, ldat, lbarx, lharx, lwarx, ldarx, lqarx, stwat, stdat,
stbcx., sthcx., stwcx., stdcx., stqcx., copy or paste instruction refers to storage that is caching inhib-
ited; or the effective address specified by a lwat, ldat, stwat, or stdat instruction refers to storage that is
guarded.

• An attempt is made to execute one of the hypervisor accessible (Book IIIS) lbzcix, lhzcix, lwzcix, ldcix,
stbcix, sthcix, stwcix, or stdcix instructions with MSR[DR] = ‘1’ or specifying a storage location (page)
that was previously accessed as non-guarded using the Hypervisor Real Mode Storage Control facility.

4.1.5 Fixed-Point Load and Store Instructions

The POWER9 core implements the fixed-point load and store instructions per Power ISA (Version 3.0B). The
Power ISA specifies that fixed-point loads and stores to storage, which are neither caching inhibited nor write-
through and are aligned on their operand size boundary, are performed atomically. The POWER9 processor
exceeds this requirement such that all fixed-point loads and stores that do not cross a doubleword boundary
are performed atomically. As implied by Section 4.1.4.1 Alignment Interrupts on page 54, most forms of
unaligned load operations are executed entirely in hardware.

There are some cases where the Power ISA states that some portion of the results of the instructions are
undefined or some forms of the instructions are invalid. See Section 4.2 Fixed-Point Invalid Forms and Unde-
fined Conditions on page 58 for details.

4.1.5.1 Fixed-Point Load and Store Multiple Instructions

Note: These instructions are provided for compatibility with legacy software. Software should use a
sequence of load or store instructions for optimal performance.

The lmw and stmw instructions, regardless of operand alignment, are executed in hardware, even when they
cross page and segment boundaries. These instructions are not considered atomic. However, the individual
storage accesses associated within the instructions are atomic. If a stmw crosses a page boundary, and the
second page translation signals an exception condition, then after the interrupt is taken, it appears as though
none, some, or all of the accesses to the first page have occurred, and none of the accesses to the second
page have occurred. On the other hand, for the lmw instruction that cross a page boundary where the second
page translation signals an exception condition, some of the target registers might not be updated.

An attempt to execute a non-word-aligned lmw or stmw does not cause an alignment interrupt.

An attempt to execute an lmw or stmw to storage-marked cache inhibited causes an alignment interrupt.

See Section 4.1.4 Storage Access Alignment Support Overview on page 54 for details.

The architecture allows these instructions to be interrupted by certain types of asynchronous interrupts
(external interrupts, decrementer interrupts, machine check interrupts, and system reset interrupts).
However, the POWER9 core does not process an asynchronous interrupt in the middle of one of these
instructions.

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Power Architecture Compliance

Page 57 of 508

4.1.5.2 Fixed-Point Move Assist Instructions

Note: These instructions are provided for compatibility with legacy software. Software should use a
sequence of load or store instructions for optimal performance.

The lswi, lswx, and stswi stswx instructions, when aligned on a word boundary, are executed in hardware,
even when they cross page and segment boundaries. These instructions are not considered atomic. Further-
more, the individual storage accesses associated within the instructions are not atomic. If a store string
operand crosses a page boundary, and the second page translation signals an exception condition, then after
the interrupt is taken, it appears as though none, some, or all of the accesses to the first page have occurred,
and none of the accesses to the second page have occurred. On the other hand, for a load string operand
that crosses a page boundary where the second page translation signals an exception condition, some of the
target registers might not be updated.

An attempt to execute a non-word-aligned lswi, lswx, stswi, or stswx causes an alignment interrupt.

An attempt to execute an lswi, lswx, stswi, and stswx to storage marked cache inhibited causes an align-
ment interrupt.

See Section 4.1.4 Storage Access Alignment Support Overview on page 54 for details.

The architecture allows these instructions to be interrupted by certain types of asynchronous interrupts
(external interrupts, decrementer interrupts, machine check interrupts, and system reset interrupts).
However, the POWER9 core does not process an asynchronous interrupt in the middle of one of these
instructions.

4.1.5.3 Integer Select Instruction

The POWER9 core implements the integer select (isel) instruction as defined in the Power ISA.

4.1.5.4 Fixed-Point Logical Instructions

The architecture defines the preferred NOP to be ‘ori 0,0,0’. In the POWER9 processor, this NOP form is
recognized by the hardware and allowed to complete without taking any execution resources. This makes the
instruction valuable for padding other instructions to achieve better alignment or better separation

4.1.5.5 Access to Performance Monitor Special Purpose Registers

The POWER9 core supports the following performance monitor unit (PMU) special purpose registers (SPRs)
as specified in the Power ISA (Version 3.0B):

• PMC1 - Performance Monitor Counter 1
• PMC2 - Performance Monitor Counter 2
• PMC3 - Performance Monitor Counter 3
• PMC4 - Performance Monitor Counter 4
• PMC5 - Performance Monitor Counter 5
• PMC6 - Performance Monitor Counter 6
• MMCR0 - Monitor Mode Control Register 0
• MMCR1 - Monitor Mode Control Register 1
• SIAR - Sampled Instruction Address Register
• SDAR - Sampled Data Address Register

Content-addressable memory

User’s Manual
OpenPOWER
POWER9 Processor

Power Architecture Compliance

Page 58 of 508
Version 2.1

10 October 2019

4.1.5.6 Move to/from Condition Register Fields Instructions

The architecture warns that updating a subset of the CR fields on an mtcrf instruction might have poorer
performance than updating all of the fields. For best performance in the POWER9 processor, software should
use the single-field variants (mtocrf and mfocrf) of these instructions as described in the Power ISA. See
Appendix A Instruction Properties on page 375 for more details.

4.2 Fixed-Point Invalid Forms and Undefined Conditions

The results of executing an invalid form of a fixed-point instruction or an instance of a fixed-point instruction
when the architecture specifies that some results are undefined are described in the following list (for the
cases when executing an instruction does not cause an exception).

• Instruction with Reserved Fields
Bits in reserved fields are ignored; the results of executing an instruction in which one or more reserved
bits are ‘1’ is the same as if the bits were ‘0’.

• Load with Update Instructions (RA = 0)
EA is placed into R0.

• Load with Update Instructions (RA = RT)
The storage operand addressed by EA is accessed. The displacement field is added to the data returned
by the load and placed into RT.

• Load Quadword Instruction (RTp is odd or RTp = RA)
The POWER9 processor always takes a hypervisor emulation assistance interrupt anytime RTp is an odd
register, RTp = RA (including when RA = 0) or RTp = RB for lq.

• Load Quadword and Reserve Indexed Instruction (RTp is odd, RTp = RA, RTp = RB)
The POWER9 processor always takes a hypervisor emulation assistance interrupt anytime RTp is an odd
register, RTp = RA (including when RA = 0) or RTp = RB for lqarx.

• Load Multiple Instructions (RA in the range of registers to be loaded)
If an exception (for example, data storage or external) causes the execution of the instruction to be inter-
rupted, the instruction is restarted, RA has been altered by the previous partial execution of the instruc-
tion, and RA is less than or greater than ‘0’, the new contents of RA are used to compute EA.

• Load Multiple Instructions (causing a misaligned access)
For a Load Multiple Word instruction, if the storage operand specified by EA is not a multiple of 4, the
access is performed anyway (that is, naturally). No alignment interrupt is taken.

• Load String Instructions (zero length string)
RT is not altered.

• Load String Instructions (RA and/or RB in the range of registers to be loaded)
If RA and/or RB is in the range of registers to be loaded, the results are as follows.
Indexed Form: If RA = 0, let Rx be RB; otherwise let Rx be the register specified by the smaller of the two
values in instruction fields RA and RB. If RT = Rx, no registers are loaded; otherwise, registers RT
through RX - 1 are loaded as specified in the architecture (that is, only part of the storage operand is
loaded).
Immediate Form: If RA = 0, the instruction is executed as if it were a valid form. If RA = RT, no registers
are loaded; otherwise registers RT through RA - 1 are loaded as if the instruction were a valid form but
specifying a shorter operand length.

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Power Architecture Compliance

Page 59 of 508

• Store with Update Instructions (RA = 0)
EA is placed into R0.

• Store Quadword and Store Quadword Conditional Instruction (RSp is odd)
For the stq and stqcx. instructions, the contents of RSp are stored into the words of storage addressed
by EA and EA + 4 respectively. If RSp is odd, the low-order bit of the register number is considered to be
‘0’ such that RSp - 1 and RSp are stored into the words in storage addressed by EA and EA + 4 respec-
tively.

• subfic, subfc, and subfco Instructions and their Rc = 1 Forms
If RA[0:15] = x‘0000’, XER[CA] reflects the carry-out of bit 16; otherwise, it reflects the carry-out of bit 40.

• divw, divwo, divwu, and divwuo Instructions
RT[0:31] is set to x‘00000000’.

• mulhw and mulhwu Instructions
RT[0:31] contains the same result as RT[32:63].

• Divide Instructions (divide by zero)
If the divisor is 0, RT is set to zero. If Rc = ‘1’ also, CR0 is set to ‘0010’.

• Trap Word Immediate and Trap Word Instructions [TO = (‘11110’ | ‘11100’)]

• Move To/From Special Purpose Register Instructions
Table 4-8 on page 83 describes the read/write mtspr behavior for an spr value that is not defined for the
implementation.

• Move From Time Base Instruction
The mftb instruction is treated as an alias for the “mfspr Rx, 268” instruction. The results are the same as
when executing an “mfspr Rx, 268” instruction.

• Move From Condition Register Instruction
The entire CR is copied into RT[32:63]. RT[0:31] is set to zero.

• Move From One Condition Register Field Instruction (only 1 bit of FXM set to ‘1’)
Let n be the bit set to ‘1’ in the FXM field. The CR field n is copied to RT[(4 × n + 32):(4 × n + 35)]. The
remaining bits are set to zero.

• Move From One Condition Register Field Instruction (multiple bits of FXM set to ‘1’)
Let n be the first bit (from left to right) set to ‘1’ in the FXM field. The CR field n is copied to
RT[(4 × n + 32):(4 × n + 35)]. The remaining bits are set to zero.

User’s Manual
OpenPOWER
POWER9 Processor

Power Architecture Compliance

Page 60 of 508
Version 2.1

10 October 2019

4.3 Floating-Point Processor (FP, VMX, and VSX)

The POWER9 VSU contains four double-precision floating-point units. Each of these units is optimized for
fully pipelined double-precision multiply-add functionality. In addition, each unit is capable of performing the
floating-point divide and square root instructions. The complex integer instructions from the VMX architecture
are also executed on the floating-point unit datapath.

The POWER9 VSU implements the VSX architecture, specifying 2-way double-precision or 4-way single-
precision operations. Dependent floating-point instructions have a minimum issue-to-issue interval of six
cycles. The vector single precision throughput has improved because it is possible to execute two 4-way
single-instruction, multiple-data (SIMD), single-precision instructions per cycle.

Legacy binary floating-point and VMX architectures are also fully supported in the POWER9 VSU.

4.3.1 Vector Single-Precision Bandwidth

In the POWER9 core, the double-precision FPU supports simultaneous execution of two vector single-preci-
sion operations. This increases the single-precision bandwidth of the POWER9 core to 16 floating-point oper-
ations per second (FLOPs) per cycle.

In the POWER9 core, the convert and estimate instructions are executed in a fully pipelined manner, as well
as the increased bandwidth of the multiply-add and move instructions. From the floating-point instructions,
only the divide and square-root instructions cannot be started every cycle.

The compares, minimum/maximum, and test-for-software divide/square-root instructions are now executed
on the vector integer (XS) pipeline to take advantage of the shorter latency. Also, the move-from-FPSCR and
move-to-FPSCR instructions are separated from the floating-point datapath.

4.3.2 IEEE Compliance

The POWER9 implementation of binary floating-point (BFP), decimal floating-point (DFP), and vector-scalar
floating-point (VSX) architecture complies with the IEEE P754-2008 standard.

4.3.2.1 Non-IEEE Modes

If FPSCR[NI] is set, the architecture allows a change in the behavior of the binary floating-point unit (BFU)
instructions and the VSX floating-point instructions. See the sections Floating-Point Facility and Vector-Scalar
Floating-Point Instructions in the Power ISA (Version 3.0B). The intent is to be faster in some cases. This
feature is not implemented in the POWER9 core. Setting FPSCR[NI] does not have any effect.

The architecture requires implementation of VSCR[NJ]. This alters the behavior of the VMX floating-point
instructions [see the section Vector Facility in the Power ISA (Version 3.0B)] by replacing denormal operands
and results with the value ‘0’. There is no performance difference. Thus, there is no requirement to use
VSCR[NJ] = ‘1’ in the POWER9 implementation.

Denormal operands are always handled at full-speed. Denormal results are also handled at full-speed. The
only exception is for the double-precision divide instructions fdiv, xsdivdp, and xvdivdp. Their latency is five
cycles longer if the exact result is smaller than 2-1022.

Vector and scalar unit

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Power Architecture Compliance

Page 61 of 508

4.3.3 Floating-Point Exceptions

Precise floating-point exceptions are provided whenever either of the floating-point enabled exception mode
bits (MSR[FE0], MSR[FE1]) are set. In all cases, the floating-point instructions are executed out-of-order, and
any resulting exceptions are sorted out at completion time. In some cases, the hardware flushes the pipeline
and re-dispatches the instructions individually to provide the precise exception. Because this only happens if
an interrupt is to be taken, it does not represent a measurable slowdown in performance.

4.3.4 Floating-Point Load and Store Instructions

Most forms of unaligned floating-point storage accesses are executed entirely in hardware.

4.3.4.1 Scalar Load and Store Atomicity

The Power ISA (Version 3.0B) requires binary floating-point and VSX scalar load and store accesses be
treated as atomic provided they are aligned on an operand boundary and access storage that is not caching
inhibited. The POWER9 core complies with the Power ISA in this regard. Furthermore, binary floating-point
and VSX scalar load and store accesses, which do not cross a doubleword boundary and access storage that
is not caching inhibited, are also atomic.

4.3.4.2 Vector Load and Store Atomicity

The Power ISA (Version 3.0B) requires each doubleword of vector (both VMX and VSX) load and store
accesses be treated as atomic provided they are doubleword aligned and access storage that is not caching
inhibited. The POWER9 core complies with the Power ISA in this regard.

4.3.5 Heterogeneous Precision Arithmetic

The following instructions are referred to as scalar single-precision arithmetic instructions:

• fadds[.], xsaddsp, fsubs[.], xssubsp, fmuls[.], xsmulsp

• fmadds[.], xsmadd[am]sp, fmsubs[.], xsmsub[am]sp

• fnmadds[.], xsnmadd[am]sp, fnmsubs[.], xsnmsub[am]sp

• fsqrts[.], xssqrtsp, fdivs[.], xsdivsp

• fres[.], xsresp, frsqrtes[.], xsrsqrtesp

4.3.5.1 NaN Propagation

If a single-precision arithmetic instruction propagates a not-a-number (NaN) where any of the fraction bits
[24:52] is nonzero, the resulting quiet not-a-number (QNaN) has all of the fraction bits [24:52] cleared to zero.

4.3.5.2 Square Root Overflow and Underflow

Due to the compacting nature of the square-root operation, the instructions fsqrts, xssqrtsp, frsqrtes, and
xsrsqrtesp cannot underflow or overflow if their operands are representable in single-precision format.
However, if the operand is not representable in single-precision format, an underflow or overflow can occur.
This result is recorded in the FPSCR.

User’s Manual
OpenPOWER
POWER9 Processor

Power Architecture Compliance

Page 62 of 508
Version 2.1

10 October 2019

4.3.5.3 Hardware Behavior on Enabled Underflow and Enabled Overflow Exception

If FPSCR[UE] is enabled and an underflow occurs, the contents of the result register and FPSCR status are
not defined for scalar single-precision (SP) instructions. The hardware takes the following actions:

1. Underflow exception is set, FPSCR[UX] = ‘1’.

2. The exponent of the normalized intermediate result is adjusted by adding 192.

3. The double-precision bias of 1023 is added to the exponent.

4. The biased exponent is reduced to 11 bits by ANDing with x‘7FF’.

5. The adjusted rounded result is placed into the target FPR.

6. FPSCR[FPRF] is set to indicate a normalized number.

If FPSCR[OE] is enabled and an overflow occurs, the contents of the result register and the FPSCR status
are not defined for scalar SP instructions. The hardware takes the following actions:

1. Overflow exception is set, FPSCR[OX] = ‘1’.

2. The exponent of the normalized intermediate result is adjusted by subtracting 192.

3. The double-precision bias of 1023 is added to the exponent.

4. The biased exponent is reduced to 11 bits by ANDing with x‘7FF’.

5. The adjusted rounded result is placed into the target FPR.

6. FPSCR[FPRF] is set to indicate normalized number.

4.3.6 Handling of Denormal Single-Precision Values in Double-Precision Format

Unlike previous generation processors, such as the POWER8 processor, the POWER9 processor is capable
of handling denormal single-precision values as inputs for all subsequent instructions. Whereas, in some
cases, the POWER8 processor takes a soft-patch interrupt to allow the interrupt handler to reformat the input
operands to a double-precision format and then re-execute the instruction, the POWER9 processor simply
executes normally regardless of how that number was produced.

4.3.7 Floating-Point Invalid Forms and Undefined Conditions

The results of executing an invalid form of a floating-point instruction or an instance of a floating-point instruc-
tion when the architecture specifies that some results are undefined are described in the following list (for the
cases when executing an instruction does not cause an exception).

• Scalar single-precision instructions with operands not representable in single-precision format.
See Section 4.3.5 Heterogeneous Precision Arithmetic on page 61.

• Instructions with reserved fields.
Bits in reserved fields are ignored. The results of executing an instruction when one or more reserved bits
are ‘1’ is the same as if the bits were ‘0’.

• Load or store floating-point with update instructions (RA = 0).
EA is placed into R0.

• Floating-point store single instructions (exponent < 874 and FRS[9:31] less than or greater than ‘0’).
The value placed in storage is a ‘0’ with the same sign as the value in the register.

• Scalar floating-point instructions.
VSR[64:127] is set to x‘0000_0000_0000_0000’.

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Power Architecture Compliance

Page 63 of 508

• Scalar convert to integer word instructions (xscvdpuxws, xscvdpsxws, fctiwuz, fctiwz, ctiwu, fctiw).
VSR[0:31] is set to VSR[32:63].

• VSX scalar convert from double-precision to single-precision (xscvdpsp, xscvdpspn).
VSR[32:63] is set to VSR[0:31].

• Scalar convert to integer instructions.
FPSCR[FPRF] is set to ‘00000’.

• VSX vector convert from double-precision to single-precision (xvcvdpsp).
VSX vector convert double-precision to integer word (xvcvdpsxws, xvcvdpuxws).
VSX vector convert from integer doubleword to single-precision (xvcvsxdsp, xvcvuxdsp).

VSR[32:63] is set to VSR[0:31].
VSR[96:127] is set to VSR[64:95].

• Move from FPSCR instruction.
FRT[0:63] is set to FPSCR[0:63] with the first 29 bits set to zero.

• Scalar reciprocal estimate instructions: fre, fres, xsredp, xsresp, frsqrte, frsqrtes, xsrsqrtep,
xsrsqrtesp.
FPSCR[FR] and FPSCR[FI] are set to ‘0’ and FPSCR[XX] is unchanged, even if an overflow exception
occurs.

• VSX vector floating-point reciprocal estimate instructions: xvredp, xvresp, xvrsqrtedp, xvrsqrtesp.
FPSCR[XX] is unchanged, even if an overflow exception occurs.

• Disabled overflow exception (OX = ‘1’, OE = ‘0’).
For divide and square root instructions, FPSCR[FR] is set to ‘1’ if the result is rounded to ±∞, and set to ‘0’
if the result is rounded to the largest representable number. For scalar reciprocal estimate instructions,
FPSCR[FR] is set to ‘0’. For all other instructions, FPSCR[FR] is set to ‘1’ if a disabled overflow exception
occurs.

• Decimal floating-point quad instructions, where an odd target or source register is specified, are consid-
ered invalid forms. The POWER9 core always ignores the low-order VSR bit number and addresses the
even-odd resulting register pair. This applies to both the source and target register pairs.

• For cacheable (I = 0) memory accesses, the POWER9 core implements the load vector element instruc-
tions the same as lvx (same as the POWER8 core). Thus, those bytes in the target VSR that are unde-
fined in the Power ISA for the load vector element instructions contain the value that would be written
there if an lvx instruction was executed instead. For non-cacheable memory accesses, the load vector
element instructions are implemented as described in the Power ISA (Version 3.0B). Note that in terms of
Data Address Watchpoint Register (DAWR) match criteria, a match will only occur for the bytes specified,
as written to the target VSR by the Power ISA, regardless of whether the access is to cacheable or non-
cacheable storage.

• For the VSX scalar loads, the Power ISA defines the right-most elements of the target vector-scalar regis-
ter as undefined. For the POWER9 core, these bits are written with zero.

• VSX load and store vector with length (lxvl, stxvl, lxvll, stxvll) specify the number of bytes to load in
RB[0:7]. The architecture requires RB[8:63] to be equal to zero. For these instructions, for effective
address calculation purposes, the hardware will discard the upper 8 bits of RB in computing the effective
address EA; cycle time does not permit for zeroing out RB[8:63]. Therefore, the result of the address gen-
eration is: EA = RA[0:63] + RB[8:63].

• Because the binary floating-point registers (FPRs) are mapped to the vector-scalar registers 0 - 31 in the
Power ISA, the rightmost doubleword is updated with zero whenever a binary or decimal floating-point

User’s Manual
OpenPOWER
POWER9 Processor

Power Architecture Compliance

Page 64 of 508
Version 2.1

10 October 2019

instruction writes the target FPR. This behavior applies to any binary or decimal floating-point instruction
that writes an FPR, not just loads.

4.4 Optional Facilities and Instructions

There are no POWER Architecture optional facilities or instructions implemented.

4.5 Little-Endian Mode

The POWER9 core supports true little-endian mode. Byte swapping is performed before data is written to the
I-cache and before data is fetched into the execution units; that is, between the D-cache and the execution
units (for example, GPR, FPR/VR/VSR).

The load and store multiple instructions and the move-assist instructions are not supported in little-endian
mode. Attempting to execute any of these instructions in little-endian mode causes the system alignment
error handler to be invoked.

4.6 Book II - Virtual Environment Architecture

4.6.1 Cache

The POWER9 core supports a coherence block size of 128-bytes that is commonly referred to as a cache
line.

The POWER9 chip contains three levels of cache hierarchy. All the caches (L1 I-cache, L1 D-cache, and the
L2 and L3 caches) are dynamically shared among all the threads on a core. A cache block might be installed
by one thread and used by the other threads (as long as the architecture rules pertaining to transactional
accesses permit the sharing). The basic coherence block size for the POWER9 core is 128 bytes.

The POWER9 chip automatically maintains the coherency of all data cached in these caches. The L1 cache
employs Harvard cache organization, with separate L1 I-cache and L1 D-cache. L2 and L3 caches are
unified. Because some levels of the cache hierarchy contain both instructions and data, when an instruction
cache reload request is serviced by the L2 and/or the L3 caches, it is done so in a coherent manner.

The processor keeps the instruction storage consistent with the data storage. All cache lines in the L1 I-cache
and L1 D-cache are also present in the L2 cache (inclusive property maintained). Instruction fetches to lines
previously written by transactional stores executing from any thread will cause the hardware to fail the trans-
action.

The L1 I-cache is 8-way set associative and is indexed with five effective address bits (EA[51:55]). A partic-
ular physical block of memory with a given real address can be found in one of two positions in the L1
I-cache. The tag comparison associated with lookups in this cache (as well as all other caches in the system)
are done using physical addresses, so that there are no synonym or alias hazards that must be explicitly
handled by the system software.

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Power Architecture Compliance

Page 65 of 508

The L1 D-cache is 8-way set associative and is indexed with five effective address bits (EA[52:56]). A partic-
ular physical block of memory with a given real address can only be found at a particular location in the L1
D-cache. On each access, the tag comparison is done with the physical address. On a cache miss, the cache
reload mechanism searches the other seven related sets to determine if the required real address block is
located elsewhere in the cache, and if so, it appropriately eliminates these copies.

In addition to maintaining caches, the POWER9 chip also includes several types of queues that act as logical
predecessors and extensions to the caches. In particular, the machine contains store queues for holding
store data above the caches, cast-out queues for holding modified data that has been pushed out of the
caches (by the replacement algorithm, cache control instructions, or snoop requests), and others. All of these
queues are maintained coherent by the hardware. In general, their presence should not be observable by
either software or system hardware.

4.6.2 Classes of Instructions

The POWER9 core implements all of the Book II instructions as described in the following subsections.

4.6.2.1 Instruction Cache Block Touch Instruction

The POWER9 core also supports the instruction cache block touch (icbt) instruction by mapping it to dcbtst
to prefetch a 128-byte line into the L2 cache.

4.6.2.2 Instruction Cache Block Invalidate (icbi)

The POWER9 core implements a split instruction/data (I/D) L1 cache where both caches are kept coherent
with the L2 cache. Whenever any modification is made to the cache lines contained in the L2 cache, the L2
invalidates the copies in the L1 I-caches. Because of this, after an icbi instruction is translated, the processor
core converts it to a NOP and does not broadcast the cache line targeted by the icbi instruction as the archi-
tecture stipulates. As a result of this and other implementation-specific design optimizations, instead of
requiring the instruction sequence specified by the Power ISA to be executed on a per cache-line basis, soft-
ware must only execute a single sequence of three instructions to make any previous code modifications
become visible: sync, icbi (to any address), isync.

4.6.2.3 Instruction Cache Synchronize (isync)

As a performance optimization, the POWER9 core internally tracks and scoreboards icbi instructions that are
required to be synchronized by the isync instruction. When the isync instruction is executed, this scoreboard
bit is checked to see whether or not the machine must flush and refetch the instructions following the isync.

4.6.2.4 Vector Category Prefetch Instructions (dss, dst, and dstst)

The vector category data stream instructions dss, dst, and dstst are implemented as NOPs.

Instruction cache block invalidate

Instruction cache synchronize

Data stream stop

Data stream touch

Data stream touch for store

User’s Manual
OpenPOWER
POWER9 Processor

Power Architecture Compliance

Page 66 of 508
Version 2.1

10 October 2019

4.6.2.5 Data Cache Block Touch Instructions (dcbt and dcbtst)

The data cache block size for dcbt and dcbtst on the POWER9 core is 128 bytes.

With the exception of trace interrupts, these instructions do not take interrupts. That means, if they miss either
the SLB (for HPT translation) or the page table, or they encounter some other type of translation related
exception condition, no interrupt will be reported. This property applies regardless of which TH value is spec-
ified. Other details that are unique to specific TH values are documented in the following sections.

In general, the dcbt and dcbtst instructions check the state of the L1 D-cache; and if the address block is not
present, it initiates a reload. Note that this might also reload the L2 cache and/or the L3 cache with the
addressed block if it is not already present in these caches. If the address block is already present in the L1
D-cache, the cache content is not altered. If the dcbt or dcbtst instruction does reload the address blocks, it
affects the state of the cache replacement algorithm bits.

The dcbt and dcbtst instructions largely perform their intended operation independent of MSR state bits
such as HV, PR or DR. In other words, they perform their intended function as described in the Power ISA
(Version 3.0B) whether translation is enabled or disabled. Reference bit updates vary by TH value as
described in the various sections that follow. Change bits are never set in PTEs by either dcbt or dcbtst
instructions regardless of the TH value.

The POWER9 core implements the optional extension to the dcbt instruction that enables software to directly
engage a data stream prefetch from a particular address (see Section 4.6.2.11 Data Cache Block Touch -
Transient (TH = ‘10000’) on page 67).

4.6.2.6 Data Cache Block Touch Instructions (dcbt and dcbtst) - Single Cache Line (TH = ‘00000’)

The dcbt and dcbtst instructions operate on a single 128-byte cache (address) block specified by the effec-
tive address of the storage operand. The dcbtst instruction operates exactly the same way as the dcbt
instruction.

These instructions act as a touch for the D-cache hierarchy, ERAT and the TLB independent of MSR state
bits such as HV, PR, and DR. If data translation is enabled (MSR[DR] = ‘1’) and an SLB miss results, the
instruction is treated as a NOP. For HPT translation, if a TLB miss results, the instruction reloads the TLB
(and sets the reference bit if it is not already set). For Radix translation, if a TLB miss results, the instruction
reloads the D-cache hierarchy, ERAT and TLB if the reference bit is already set. However, if the reference bit
is not already set, the instruction will be treated as a no-op and the D-cache hierarchy, ERAT and TLB will not
be reloaded.

Once past translation, if the page protection attributes prohibit access, the page is marked cache inhibited or
the page is marked guarded, the instruction is finished as a no-op and does not reload the cache. Otherwise,
the instruction checks the state of the L1 D-cache, and if it is not present, it initiates a reload as described in
Section 4.6.2.5 Data Cache Block Touch Instructions (dcbt and dcbtst).

4.6.2.7 Data Cache Block Touch - Invalid TH Forms (TH = ‘00001’ through TH = ‘00111’)

The POWER9 core treats dcbt and dcbtst for the invalid TH values of ‘00001’ through ‘00111’ the same as
TH = ‘00000’. They do go through translation and they do set reference bits.

Data cache block touch

Translation Lookaside Buffer

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Power Architecture Compliance

Page 67 of 508

4.6.2.8 Data Cache Block Touch Data Stream (TH = ‘01000’)

The POWER9 core treats dcbt and dcbtst with a TH value of ‘01000’ as described in the Power ISA (Version
3.0B). For HPT translation, reference bits will not be set. For Radix translation, atomic PTE update interrupts
will not occur.

4.6.2.9 Data Cache Block Touch Data Stream Descriptor (TH = ‘01010’)

The POWER9 core treats dcbt and dcbtst with a TH value of ‘01010’ as described in the Power ISA (Version
3.0B). For HPT translation, reference bits will be set and instruction execution proceeds as described in the
Power ISA (Version 3.0B). For Radix translation, atomic PTE update interrupts will not occur. If the reference
bit is already set in the PTE, the instruction reloads the TLB. However, if the reference bit is not already set,
the instruction will be treated as a nop and the D-cache hierarchy, ERAT and TLB will not be reloaded.

4.6.2.10 Data Cache Block Touch Data Stream Stride Descriptor (TH = ‘01011’)

The POWER9 core treats dcbt and dcbtst with a TH value of ‘01011’ as described in the Power ISA (Version
3.0B). For HPT translation, reference bits will be set and instruction execution proceeds as described in the
Power ISA (Version 3.0B). For Radix translation, atomic PTE update interrupts will not occur. If the reference
bit is already set in the PTE, the instruction reloads the TLB. However, if the reference bit is not already set,
the instruction will be treated as a nop and the D-cache hierarchy, ERAT and TLB will not be reloaded.

4.6.2.11 Data Cache Block Touch - Transient (TH = ‘10000’)

The POWER9 core implements the load and store version of the following transient touch instructions:
dcbtct, dcbtds, dcbtt, dcbtstct, and dcbtstt. The transient property of a cache line is retained in the L3
cache for both the load and store version of the transient touch instructions. The transient property of a cache
line is retained in the L2 cache for the load version of the transient touch instruction for the case that the line
is loaded but not stored into it. In this transient state, the transient line becomes the most likely cache line in
its congruence class to be replaced next, thus preserving the other cache lines in that congruence class. This
behavior is useful if it is known that a set of lines will be loaded or stored with a low probability for temporal
cache reuse and it is desirable that they be as minimally intrusive to the cache as possible (for example,
displacing as few lines in the cache as possible). Reading or writing a large array with the help of transient
touch instructions only impacts one of the eight sets in the L3 cache. Reading a large array with the help of
transient touch instructions only impacts one of the eight sets of the L2 cache.

For HPT translation, reference bits will be set and instruction execution proceeds as described in the Power
ISA (Version 3.0B). For Radix translation, atomic PTE update interrupts will not occur. If the reference bit is
already set in the PTE, the instruction reloads the TLB. However, if the reference bit is not already set, the
instruction will be treated as a no-op and the D-cache hierarchy, ERAT and TLB will not be reloaded.

User’s Manual
OpenPOWER
POWER9 Processor

Power Architecture Compliance

Page 68 of 508
Version 2.1

10 October 2019

4.6.2.12 Data Cache Block Touch - No Access Needed Anymore (TH = ‘10001’)

The POWER9 core supports this instruction as specified in the Power ISA. For HPT translation, reference bits
will be set and instruction execution proceeds as described in the Power ISA (Version 3.0B). For Radix trans-
lation, atomic PTE update interrupts will not occur. If the reference bit is already set in the PTE, the instruction
reloads the TLB. However, if the reference bit is not already set, the instruction will be treated as a nop and
the D-cache hierarchy, ERAT and TLB will not be reloaded.

4.6.2.13 Data Cache Block Zero (dcbz)

The data cache block size for dcbz on the POWER9 core is 128 bytes.

The function of dcbz is performed in the L2 cache. As a result, if the block addressed by the dcbz is present
in the L1 D-cache, the block is invalidated before the operation is sent to the L2 cache logic for execution. The
L2 cache gains exclusive access to the block (without actually reading the old data) and performs the zeroing
function in a broadside manner.

If the cache block specified by the dcbz instruction contains an error (even one that is not correctable with
ECC), the contents of all locations within the block are set to zeros in the L2 cache. If the specified block in
the L2 cache does not contain a hard fault, a subsequent load from any location within the cache block
returns zeros and does not cause a machine-check interrupt.

If the block addressed by the dcbz instruction is in a memory region marked cache inhibited, or if the L1
D-cache or L2 cache is disabled, the instruction causes an alignment interrupt to occur.

4.6.2.14 Data Cache Block Store (dcbst)

The data cache block size for dcbst on the POWER9 core is 128 bytes.

The dcbst instruction has no direct effect on the L1 D-cache (because it is store-through and it never
contains modified data). The dcbst instruction also has no direct effect on the L2 cache or L3 cache (both of
these are kept coherent with memory and I/O, so that nothing special must be done). As a result, the instruc-
tion simply goes through address translation, reports any errors, and is completed. The instruction is not sent
to the storage subsystem, and consequently it does not broadcast any transactions onto the inter-processor
SMP interconnect.

4.6.2.15 Data Cache Block Flush (dcbf, dcbfl, and dcbflp)

The data cache block size for dcbf, dcbfl, and dcbflp on the POWER9 core is 128 bytes.

The POWER9 core supports dcbf (L = 0), dcbfl (dcbf with L = 1), and dcbflp (dcbf with L = 3) as specified
in the Power ISA.

Error correcting code

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Power Architecture Compliance

Page 69 of 508

4.6.2.16 Key Aspects of Storage Control Instructions

In the POWER9 core, all cache control instructions operate on aligned 128-byte sections of storage. Table 4-3
summarizes many of the key aspects of the storage control instructions.

4.6.2.17 Copy/Paste Instructions

As stated in the Power ISA (Version 3.0B), the copy instruction is only permitted to read from local address
space. The paste instruction is only permitted to write to foreign address space. See Section 4.9.2 Foreign
Address Space Definition and Accessibility on page 96 for the definition of local versus foreign address
space.

4.6.2.18 Near Memory Instruction Support

The POWER9 processor supports the Atomic Memory Operation (AMO) instructions as described in the
Power ISA (Version 3.0B). For details regarding when AMOs take alignment interrupts, see Section 4.1.4
Storage Access Alignment Support Overview on page 54.

Table 4-3. Storage Control Instructions

Aspect
Book II Cache Instructions

icbi dcbt icbt/dcbtst dcbz dcbst dcbf/dcbfl

Granularity 128 bytes 128 bytes 128 bytes 128 bytes 128 bytes 128 bytes

Semantic checking
load

(DSI on storage
exception)

load
(NOP on storage

exception)

load
(NOP on storage

exception)

store
(DSI on storage

exception)

load
(DSI on storage

exception)

load
(DSI on storage

exception)

“r” bit update yes yes yes yes yes yes

“c” bit update no no no yes no no

L1 I-cache effect
see

Section 4.6.2.3
on page 65

none none none none none

L1 D-cache effect none
see

Section 4.6.4.8
on page 74

see
Section 4.6.4.8

on page 74

as define in
architecture NOP as define in

architecture

L2 cache effect none
see

Section 4.6.4.8
on page 74

see
Section 4.6.4.8

on page 74

see
Section 4.6.2.13

on page 68

see
Section 4.6.2.14

on page 68

see
Section 4.6.2.15

on page 68

L3 cache effect none
see

Section 4.6.4.8
on page 74

see
Section 4.6.4.8

on page 74

see
Section 4.6.2.13

on page 68

see
Section 4.6.2.14

on page 68

see
Section 4.6.2.15

on page 68

TLB effect reload as required reload as required reload as required reload as required reload as required reload as required

SLB effect reload as required
None

(NOP if miss)
None

(NOP if miss)
reload as required reload as required reload as required

Segment lookaside buffer

User’s Manual
OpenPOWER
POWER9 Processor

Power Architecture Compliance

Page 70 of 508
Version 2.1

10 October 2019

4.6.2.19 Wait Instruction

The wait instruction is implemented as described in the Power ISA (Version 3.0B). However, in addition to
waking a thread up from the wait state via an interrupt or event-based branch, the thread can also be
removed from the wait state via a VAS_notify command sent on the SMP interconnect fabric generated by
the Virtual Accelerator Switchboard when there is work for the thread to perform. See Section 12.3 Core-Core
Wakeup Via ASB_Notify on page 202 for additional information.

See Section 4.9.2 Foreign Address Space Definition and Accessibility on page 96 for the definition of local
versus foreign address space.

4.6.3 Storage Model

4.6.3.1 Storage Access Ordering

The architecture defines a weakly ordered storage model for most types of storage access scenarios. For
these cases, the POWER9 processor takes advantage of this relaxed requirement to achieve better perfor-
mance through out-of-order instruction execution and out-of-order bus transactions. As a result, if strongly-
ordered storage accesses are required, software must use the appropriate synchronizing instruction (sync,
ptesync, eieio, or lwsync) to enforce order explicitly, or perform these accesses to pages marked with
address translation attributes that require the hardware to enforce strong ordering as defined in Power ISA
Operating Environment Architecture - Book III (version 3.0B).

In hypervisor real mode, the POWER9 core employs the page-based Real Mode Storage Control (RMSC)
facility described in Power ISA Operating Environment Architecture - Book III (version 3.0B).

In any addressing mode, stores to storage marked as non-guarded, can be performed out-of-order. Stores to
storage marked as guarded, cannot be performed out-of-order.

4.6.3.2 Atomicity

The POWER9 core is fully compliant with the architectural requirement for single-copy atomicity on naturally
aligned cacheable storage accesses. This includes the quadword data atomicity associated with the lq, lqarx,
stq, and stqcx. instructions. Additional information regarding which instruction accesses are performed
atomically are described in Section 4.1.5.1 Fixed-Point Load and Store Multiple Instructions on page 56 and
Section 4.3.4 Floating-Point Load and Store Instructions on page 61.

Furthermore, transactional mode accesses executed by a given thread appear to execute atomically to all
other threads in the system. For more information on transactional mode accesses, see Section 4.6.4 Trans-
actional Memory on page 71.

4.6.3.3 Atomic Updates and Reservations

Atomic accesses can be performed using the load and reserved and store conditional family of instructions. In
the Power ISA Virtual Instruction Set Architecture - Book II (version 3.0B), the load and reserve instructions
are: lbarx, lharx, lwarx, ldarx and lqarx. The store conditional instructions are: stbcx., sthcx., stwcx.,
stdcx., and stqcx. While these instructions differ in the size of the operand read or written, in regards to the
establishment or clearing of a reservation, all of the instructions operate on the same size reservation
granule. The reservation granule size in the POWER9 core is 128 bytes. There is at most one reservation per
thread at any point in time.

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Power Architecture Compliance

Page 71 of 508

Note: The load and reserve instructions and store conditional instructions are generically referred to as larx
and stcx in the remainder of this document.

4.6.4 Transactional Memory

Similar to the POWER8 chip, the POWER9 chip supports the transaction memory (TM) facility as described
in the Power ISA Virtual Instruction Set Architecture - Book II (version 3.0B). The transaction memory facility
can increase the scalability of multi-threaded applications, reduce the latency of synchronization operations,
improve programmability for the developers of multi-threaded applications, and enable speculative optimiza-
tions by programmers and compilers through support for fast checkpoint and rollback of the architectural
state. Applications that have not been heavily tuned to implement fine-grain locking can better use the large
number of available cores, while improved latency of synchronization operations require less fine-tuning of
multi-threaded code.

The transactional memory facility is controlled by using a set of instructions in the POWER instruction set.
Programmers and compilers can selectively mark a sequence of instructions that appear to execute atomi-
cally with respect to other processors and devices. These atomic sequences are called transactions, and can
be used to write shared memory applications with fewer sources of lock contention, while avoiding the perfor-
mance cost and software development cost burdens of the memory barriers required by the existing weak
POWER memory model. A transactional sequence is initiated using a tbegin instruction, and committed
using a tend instruction. A transaction can be intentionally aborted through the execution of an unconditional
or conditional tabort instruction within a transaction. A transaction can also fail for a variety of other reasons;
for example, due to conflicting access with another thread. Upon failure, all transactional updates to memory
are nullified, Book I registers are reverted to their pre-transaction values, and control flow is redirected to a
software-defined failure handler associated with each transaction.

The POWER9 transactional memory facility also includes support for the handling of exception conditions
and debugging through the use of suspend mode. Upon the taking of any interrupt during transactional mode,
transactional execution is suspended. Memory accesses performed while the thread is operating in suspend
mode occur according to the conventional POWER storage model. They are not part of the transaction’s
atomic access, nor are they discarded should the transaction abort. Transactions can also be directly
suspended and resumed using a tsr instruction. Through this suspension mechanism, it is possible to
support a mixture of transactional and nontransactional code, allowing for a variety of uses, from simple
printf debugging within a transaction, to transactional operating system services, to an inter-thread signaling
mechanism for distributed commit of a set of transactions.

4.6.4.1 TDOOMED

The Power ISA (Version 3.0B) defines the TDOOMED bit to be an indication as to whether or not a given
transaction has failed. The value of the TDOOMED bit is determined by executing the tcheck instruction. In
transactional and suspended states, the tcheck instruction returns the value of TDOOMED as described in
the Power ISA (Version 3.0B). However, the Power ISA (Version 3.0B) states that the value of TDOOMED is
undefined in the non-transactional state.

User’s Manual
OpenPOWER
POWER9 Processor

Power Architecture Compliance

Page 72 of 508
Version 2.1

10 October 2019

4.6.4.2 Transactional Lock Elision and Increased Scalability

Eliminating lock contention is one of the primary uses of the transactional memory facility. Through transac-
tion lock elision (TLE), conventional locking algorithms for mutual exclusion are augmented with code that
first attempts to speculatively execute the critical section as a transaction. Such speculation has a number of
advantages compared to a conventional lock. If the data protected by the lock is rarely contended, it is prob-
able that multiple threads will be able to concurrently execute the critical section. The false contention on the
lock variable is then avoided. In the event that the data is contended, the transaction fails and a failure
handler can acquire the lock as would happen in the absence of TLE. After collecting a history of transaction
failure rates, software can adaptively disable transactions for a critical section known to be a source of exces-
sive transactional conflicts. It is important to realize that when transactions are used as described previously,
the transactional code sequence must still check for the presence of a lock in the event that another thread is
performing the atomic accesses using conventional lock-based methods.

4.6.4.3 Reduced Latency of Synchronization Operations

For some applications, gains from the transactional memory facility come from increased concurrency.
Others that have frequent synchronization can benefit from the reduced latency of synchronization imple-
mented using transactional memory. Because a conventional lock acquire and release sequence requires
larx, stcx, isync, and lwsync instructions, while a TLE-enabled lock requires only a tbegin and tend instruc-
tion, some applications might observe better performance due to the lower total latency required to execute
these sequences.

4.6.4.4 Improved Programmability

In addition to these performance benefits, the transactional primitives also improve the programmability of
POWER systems in the following ways:

• Emerging transactional programming model. While still in its infancy, this programming model is emerg-
ing, with support in compilers already widespread. Hardware acceleration of the programming model is
expected to provide a competitive advantage for POWER systems to applications written to this interface.

• Shared memory programming without memory barriers. A burden to novice programmers, as well as
independent software vendors (ISVs) porting existing code to the POWER platform, the POWER memory
model requires significant thought in determining the correct sequence of memory barriers to be used in
different situations. With the use of the transactional memory primitives, updates to shared memory can
be encapsulated in a transaction, and the intricacies of the weak memory model can be largely ignored.

• Lock-free algorithms. Existing lock-free algorithms are limited by the width of memory atomically read and
updated by larx and stcx. The transactional memory facility provides new flexibility with the ability to
atomically modify a set of non-contiguous memory locations.

4.6.4.5 Rollback-Only Transaction Enablement of Speculative Optimizations

As described in Power ISA Virtual Instruction Set Architecture - Book II (version 3.0B), the tbegin instruction
can be used to specify that a rollback-only transaction (ROT) can be used for purposes that do not require
accesses to shared storage. While all of the previously described uses of the transactional memory facility
leverage its ability to atomically perform a set of shared memory operations with respect to other threads, its
support of architectural state checkpoint and rollback is also useful in its own right, as an enabler of specula-
tive optimization.

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Power Architecture Compliance

Page 73 of 508

Figure 4-1 illustrates two examples of speculative optimizations where a piece of code is speculatively trans-
formed, with support from hardware-based checkpoint and rollback. In Figure 4-1(A), a set of hot basic blocks
(a, b, c, f) are co-located and subsequently optimized, scheduling instructions across basic block boundaries
(labeled “aggressive”), while the original version of the code is retained (labeled “backoff”). In Figure 4-1(B), a
matrix is copied in column-major form, which leads to significant cache misses given the non-trivial size of “n”
because each iteration of the inner loop will be touching a different cache line. Because transforming the
code to use row-major form can cause exceptions, a simple transformation is not allowed by many
languages. Instead, a compiler must rely on a speculative transformation; in the absence of exceptions, the
transformation is correct; otherwise, the original version of the code must be executed.

Although both of these transformations can be implemented without hardware support, the bookkeeping that
is necessary to enable the successful rollback of architectural state in the case of an exceptional event would
likely cause overhead that exceeds any gains from the optimization. With the support of the transactional
memory facility, each speculative sequence can be wrapped in a ROT. Should an exceptional event occur,
transaction abort can be initiated by a tabort instruction and the nonspeculative version of the code immedi-
ately called.

4.6.4.6 Transactional Memory Footprint Capacity

Details regarding the transactional memory footprint capacity can be found in Section 6.6 Transactional
Memory Support on page 163.

4.6.4.7 Implementation-Specific Failure Causes

The Transaction Exception and Status Register (TEXASR) is used to record various failure conditions that
are described in the Power ISA. In addition, TEXASR[15] is used to specify various implementation-specific
transaction-failure causes that are not architected. The POWER9 processor sets TEXASR[15] = ‘1’ for the
following reasons (implementation-specific transactional failure causes):

Figure 4-1. Speculative Optimizations

a

b

c

f

e

d

(A)

a

b

c

f

a

b

e

d

f

Agressive Backoff for (int j = 0; j , n; j++)
for (int i = 0; i < n; i++)
Y[i][j] = X[i][j]

speculate (
for (int i = 0; i , n; i++)
for (int j = 0; j , n; j++)
Y[i][j] = X[i][j]
) catch (Exceptions e) (
for (int j = 0; j < n; ++)
for (int i = 0; i , n; i++)
Y[i][j] = X[i][j]
)

(B)

User’s Manual
OpenPOWER
POWER9 Processor

Power Architecture Compliance

Page 74 of 508
Version 2.1

10 October 2019

• Instruction fetch to caching-inhibited page in transactional mode

• Recovery in transactional or suspend mode

• Quiesce request in transaction or suspend mode

The persistent bit is set to ‘0’ for all of these cases.

4.6.4.8 Effects of Cache and Translation Management Instructions on Transactional Accesses

Table 4-4 lists how certain cache, SLB, and TLB management instructions affect transactions.

Table 4-4. Cache, SLB, and TLB Management Instruction Effects on Transactional Accesses (Sheet 1 of 2)

Mode

Instruction TM State Fails Transaction TEXASR Bit Set

slbmte T Always 8 - disallowed

slbmte S Never N/A

slbia T Always 8 - disallowed

slbia S Never N/A

slbie T Always 8 - disallowed

slbie S Never N/A

slbieg T Always 8 - disallowed

slbieg S When the virtual address it is attempting to invalidate
hits in the SLB bloom filter for the current transaction 14 - translation invalidation conflict

tlbie T Always 8 - disallowed

tlbie S When the virtual address it is attempting to invalidate
hits in the TLB bloom filter for the current transaction 14 - translation invalidation conflict

tlbiel T Always 8 - disallowed

tlbiel S Never N/A

dcbt (any TH) T Never (unless it causes a castout of the TM footprint) 10 - footprint overflow

dcbt (any TH) S Never (unless it causes a castout of the TM footprint) 10 - footprint overflow

dcbst T Always 8 - disallowed

dcbst S Never (dcbst is treated as a NOP in this case) 11 - self-induced conflict

dcbf (L = 0, 1) T Always 8 - disallowed

dcbf (L = 0, 1) S When the block (line) being pushed out of the cache is
part of the TM footprint 11 - self-induced conflict

dcbf (L = 3) T Always 8 - disallowed

dcbf (L = 3) S Never N/A

dcbz T Never (unless dcbz causes a castout of the TM foot-
print) N/A

dcbz S

Case 1: When the block (line) being zero’ed is part of
the TM footprint
Case 2: When the dcbz causes a castout of the TM
load or store footprint

Case 1: 11 - self-induced conflict
Case 2: 11 - footprint overflow

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Power Architecture Compliance

Page 75 of 508

4.6.5 Storage Ordering/Barrier Instructions

4.6.5.1 sync Instruction

The POWER9 design achieves high performance by exploiting speculative out-of-order instruction execution.
The heavyweight sync (hwsync) instruction, as defined in the architecture, acts as a serious barrier to this
type of aggressive execution and therefore, can have a dramatic effect on performance. Although the
POWER9 core has optimized the performance of hwsync to some degree, care should be exercised in the
indiscriminate use of this instruction. As a performance consideration, software should attempt to use the
lightweight version of sync (often referred to as lwsync in this document) whenever possible. Unless other-
wise stated, sync refers to hwsync.

The POWER9 core implements the ptesync for use in synchronizing both segment and page table updates
as described in the Power ISA Operating Environment Architecture - Book III (version 3.0B).

See the Power ISA Virtual Instruction Set Architecture - Book II (version 3.0B) and Power ISA Operating
Environment Architecture - Book III (version 3.0B) for a complete description of the different forms of the
sync instruction.

4.6.5.2 eieio Instruction

The POWER9 core implements the eieio instruction as described in the Power ISA.

In the POWER9 nest logic, the store queues above the L2 cache attempt to gather sequential cacheable and
cache-inhibited store operations to improve bandwidth. If this behavior is not required, software must insert
either an eieio (preferable for performance) or a sync to prevent it.

4.6.5.3 miso Instruction

The POWER9 core implements the miso instruction as a NOP. It has no effect on the execution of stores.

dcbtst T Never (unless dcbtst causes a castout of the TM
footprint) 10 - footprint overflow

dcbtst S Never (unless dcbtst causes a castout of the TM
footprint) 10 - footprint overflow

icbi T Always 8 - disallowed

icbi S Never (icbi is treated as NOP with regards to transac-
tion failure in suspend mode) N/A

icbt T Never (unless icbt causes a castout of the TM
footprint) 10 - footprint overflow

icbt S Never (unless icbt causes a castout of the TM
footprint) 10 - footprint overflow

Table 4-4. Cache, SLB, and TLB Management Instruction Effects on Transactional Accesses (Sheet 2 of 2)

Mode

Instruction TM State Fails Transaction TEXASR Bit Set

User’s Manual
OpenPOWER
POWER9 Processor

Power Architecture Compliance

Page 76 of 508
Version 2.1

10 October 2019

4.6.5.4 Transactional Memory Instructions

In general, the POWER9 core implements the transactional memory instructions as described in the Power
ISA Virtual Instruction Set Architecture - Book II (version 3.0B). The POWER9 core does not however imple-
ment the tbegin instruction as having an implicit memory barrier as described in the Power ISA. Instead, the
hardware applies the barrier effects described in the Power ISA as belonging to the tbegin instruction to the
tsr (tsuspend and tresume) instructions. In addition, the POWER9 core uses hypervisor software to fully
implement suspending and resuming transactions. This assistance is transparent to non-hypervisor software.
The tend instruction and all the conditional and unconditional tabort instructions have the associated barrier
functions as described in the Power ISA Virtual Instruction Set Architecture - Book II (version 3.0B).

4.6.6 Data Prefetch

The POWER9 core provides an aggressive hardware-based data-prefetching engine that is designed to work
well for stride-one technical workloads with up to eight streams. The eight streams can be dynamically shared
among all of the threads. The POWER9 core implements enhanced data prefetching (edcbt instruction),
where each thread can employ up to eight software-initiated streams in ST mode, four in SMT2 mode, and
two in SMT4 mode.

The POWER9 core uses an adaptive prefetch mechanism, which employs L3 nest feedback and long-term
averaging to automatically reduce prefetch aggressiveness and increase performance in areas where
prefetch consumption or memory bandwidth is low.

The POWER9 core supports instruction cache block touch (icbt) by mapping it to dcbtst to prefetch into the
L2 cache.

The POWER9 core also allows problem state access to DSCR[58], which turns off hardware load-stream
prefetching.

4.6.7 Timer Facilities

Time Base

Time base is designed to tick at the rate of time-of-day (TOD). In other words, bit 59 of the Time-Base
Register increments at the 32 MHz clock. There is one time base per processor core that is shared by all the
threads, running on a core. There is one decrementer per thread.

The POWER9 core implements two time-base modes: POWER9 time-base mode and non-POWER9 time-
base mode. They are selectable by setting a mode bit in the Time Facility Management Register (TFMR).

Time Facility Management Register

The Time Facility Management Register (TFMR) is an SPR that is accessible only in the hypervisor state.
Executing a move to or move from TFMR in a nonhypervisor state causes a privileged interrupt. There is one
TFMR per processor core that is shared among the threads. The TFMR is used as both a status and control
register.

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Power Architecture Compliance

Page 77 of 508

POWER9 Time-Base Mode

The time-base function uses an external time-of-day (TOD) clock, which is independent of the processor
frequency. This is required to support dynamic frequency variation for power management. The external TOD
oscillator can be 16 MHz or 32 MHz. The external TOD oscillator is sampled to provide a 32 MHz step signal,
which is distributed to all processors in the system.

Bits 0:59 of the TB are incremented at the 32 MHz frequency as provided by the distributed step signal. Bits
60:63 of the TB are incremented at a fixed frequency of 500 MHz. If the value of bits 60:63 is ‘1111’ (satu-
rated), it is held until the 32 MHz step signal causes bit 59 to change. At that time, bits 60:63 are allowed to
change to ‘0000’.

To support multi-node configurations across multiple oscillator domains, error detection and recovery, and
concurrent maintenance, the POWER9 core uses the following means of synchronizing the time bases
across all processors.Each multicore processor chip contains a Time-of-Day (TOD) Register. The chip TOD
registers are first synchronized across all the processor chips. Then, the time-base registers in each
processor core are synchronized to the chip TOD. Also encoded on the step signal is a synchronization pulse
that is used for synchronization and error checking. The synchronization mechanism requires system opera-
tions to complete within a synchronization interval. The synchronization interval can be set via the TFMR bits
to be, for example, 1μs, 2 μs (default, corresponds to TB bit 53), 4 μs, or 8 μs.

Error checking includes parity checks on all registers, and functional checking such as missing step signal
detection and synchronization errors. The step signal rate is defined in the POWER9 mode to be 32 MHz,
and the logic checks for the correct number of steps for each synchronization signal (which is selected by
TFMR). After the TB is operational, the hardware also detects a missing step signal, which requires speci-
fying in the TFMR the maximum number of processor cycles allowed without seeing a 32 MHz step signal, for
the fastest allowable operating frequency. The TFMR maximum cycle step time-out should be specified as
(2 × 31.25 ns) / (minimum processor cycle time in ns × 4).

The initial synchronization requires some software sequencing, which is performed by writing values to the
TFMR (via mtspr). The TFMR also indicates the status of the various time facilities. The status bits in the
TFMR are read-only, not modified by mtspr to the TFMR. The time facility logic implements error detection
for hardware and also for invalid software sequencing. Because synchronized time is critical to a system,
writes to the time base or the TFMR that would break synchronization cause the logic to enter an error state
and trigger a hypervisor maintenance interrupt.

To initially set the time and synchronize the time-base values, software must synchronize all processors in
the system and choose one processor to perform updates to the TFMR via a read-modify-write operation to
preserve the other bits. This sequence assumes the external TOD oscillator distribution is already running.

After the chip TOD is running on all chips and the TB is running on the processor that drove this sequence,
software must then release the remaining processors to synchronize their TB registers to their corresponding
chip TOD.

4.6.8 Hypervisor Decrementer (HDEC)

There is one hypervisor decrementer register per thread. HDEC decrements every time TB bit 63 is incre-
mented. The Power ISA (Version 3.0B) defines the HDEC as a 64-bit register architecturally but states that a
given implementation can implement fewer than 64 bits. The POWER9 implements 56 bits (that is, bits 8:63)
of the HDEC register. The number of bits is not changeable by the LPCR[LD] value.

User’s Manual
OpenPOWER
POWER9 Processor

Power Architecture Compliance

Page 78 of 508
Version 2.1

10 October 2019

4.6.9 Decrementer (DEC)

There is one decrementer register per thread. DEC decrements every time TB bit 63 is incremented. The
Power ISA (Version 3.0B) defines the DEC as a 64-bit register architecturally but states that a given imple-
mentation can implement fewer than 64 bits. The POWER9 implements 56 bits (that is, bits 8:63) of the DEC
register. The number of bits used in determining when a decrementer interrupt occurs is 56 bits when the
LPCR[LD] = ‘1’ but only 32 bits when LPCR[LD] = ‘0’.

4.6.10 Book II Invalid Forms

The results of executing an invalid form of an instruction in Book II or an instance of such an instruction for
which the architecture specifies that some results are undefined, are described here for the cases when
executing an instruction does not cause an exception. Only results that differ from those specified by the
architecture are described in the following list.

• Instruction with reserved fields
Bits in reserved fields are ignored; the results of executing an instruction in which one or more reserved
bits are ‘1’ is the same as if the bits were ‘0’.

• Transactional memory instructions and store conditional instructions (bit 31 is ignored)
Bit 31 of tbegin., tend., tabort., tabortwc., tabortdc., tabortwci., tabortdci., treclaim., stbcx., sthcx.,
stwcx., stdcx. and stqcx. is ignored. Bit 31 = ‘1’ or bit 31 = ‘0’ is treated the same given that other x-form
instructions implicitly set CR and have no “non-record” form variant. Ignoring bit 31 is an acceptable way
to handle this invalid form.

• mftb instructions
This instruction produces the same result as the mfspr instruction.

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Power Architecture Compliance

Page 79 of 508

4.7 Book III - Operating Environment Architecture

4.7.1 Classes of Instructions

4.7.1.1 Storage Control Instructions

The POWER9 core provides support for the following instructions:

• tlbie - TLB invalidate entry

• tlbiel - Processor local form of TLB invalidate entry

• tlbsync - TLB synchronize

• slbmte- Segment lookaside buffer move to entry

• slbmfev- Segment lookaside buffer move from entry VSID

• slbmfee- Segment lookaside buffer move from entry ESID

• slbfee.- Segment lookaside buffer find entry ESID

• slbie - SLB invalidate entry

• slbieg - SLB invalidate global

• slbsync - SLB synchronize

• slbia - SLB invalidate all

• mtmsr - Move to Machine State Register (32-bit)

• mtmsrd - Move to Machine State Register (64-bit)

• sc - System call

• scv - System call vectored

• rfscv - Return from system call vectored

• rfid - Return from interrupt doubleword

• hrfid - Hypervisor return from interrupt doubleword

The POWER9 core does not provide support for the following optional or obsolete instructions (attempted use
of these results in a hypervisor emulation assistance interrupt):

• tlbia - TLB invalidate all

• tlbiex - TLB invalidate entry by index (obsolete)

• slbiex - SLB invalidate entry by index (obsolete)

• dcba - Data cache block allocate (Book II; obsolete)

• dcbi - Data cache block invalidate (obsolete)

• rfi - Return from interrupt (32-bit; obsolete)

The following instruction variants are implemented:

• ptesync - Page table synchronize

• hwsync - Heavyweight synchronize

• lwsync- Lightweight synchronize

User’s Manual
OpenPOWER
POWER9 Processor

Power Architecture Compliance

Page 80 of 508
Version 2.1

10 October 2019

4.7.1.2 Reserved Instructions

The architecture breaks the reserved instruction class down into several categories as described in the
Reserved Instructions appendix of the Power ISA. The POWER9 processor core behaves in the following
manner with respect to these categories:

• The primary opcode of zero is treated as an illegal instruction.

• For the Power Architecture instructions not in the Power ISA, the POWER9 core takes a hypervisor
emulation assistance interrupt. See a complete list in the Power ISA (Version 3.0B) appendices.

• The service processor “Attention” instruction is treated as an illegal instruction unless HID[en_attn] = ‘1’.

In addition, there are several implementation-specific registers available for access through the mtspr and
mfspr instructions. These are described in Section 4.7.3.4 Move To/From Special Purpose Register Instruc-
tions on page 82.

4.7.2 Branch Processor

4.7.2.1 SRR1 Register

In the POWER9 processor core, the SRR1 is implemented per the Power ISA.

4.7.2.2 HSRR1 Register

In the POWER9 processor core, the HSRR1 is implemented per the Power ISA.

4.7.2.3 MSR Register

In the POWER9 processor core, the MSR is implemented per the Power ISA. All reserved bits should be set
to ‘0’ by software.

4.7.2.4 System Call and System Call Vectored Instructions

In the POWER9 core, the system call (sc) and system call vectored (scv) instructions are implemented as
described in Table 4-5 using primary opcode 17.

Table 4-5. System Call and System Call Vectored Invocation

Bits [30:31] Description

‘00’ sc instruction

‘01’ scv instruction

‘10’ sc instruction

‘11’ sc instruction

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Power Architecture Compliance

Page 81 of 508

4.7.2.5 Support Processor Attention Instruction

The POWER9 processor core supports a special, implementation-dependent instruction for signaling an
attention to the support processor.

The immediate field (I) has no effect on the operation of this instruction in the POWER9 processor core.

If HID[3] = ‘1’ (support-processor attention enable bit is set), this instruction causes all preceding instructions
to run to completion, the machine to quiesce, and the assertion of the support processor attention signal.
Instruction execution does not resume until the support processor signals it to do so. When setting
HID[3] = ‘1', the I-cache must be flushed by setting HID[2] so that all Attention instructions in the I-cache see
the effect of enabling the Attention Enable bit.

If HID[3] = ‘0’ (support-processor attention enable not set), this instruction causes a hypervisor emulation
assistance interrupt. Note that due to some design features unique to the POWER9 core, when the hyper-
visor emulation assistance interrupt occurs, the instruction opcode saved in the Hypervisor Emulation Assis-
tance Interrupt Register (HEIR) is slightly modified and appears as x‘001E0200’ when read.

4.7.2.6 Current Instruction Address Breakpoint Register (CIABR)

The POWER9 processor core supports the CIAB Register as implemented per the Power ISA.

4.7.3 Fixed-Point Processor

4.7.3.1 Processor Version Register (PVR)

The Process Version Register (PVR) is a 32-bit register that contains the version and revision level informa-
tion for the POWER9 core. Table 4-6 summarizes how to interpret the PVR.

Example: The PVR value for the 12-core POWER9 chip for design revision level 2.0 is: x‘004E0200’.

00 Immediate 256 /

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Table 4-6. PVR

Bits Field Name Description

32:47 Version Processor version number. The processor version number for the POWER9 core in both Nimbus
and Cumulus is x‘004E’.

48:51 Chip Type

POWER9 chip scaling factor.
x‘0’ Scale out 12 cores
x‘1’ Scale out 24 cores
x’2’ Scale up 12 cores
x’3’ Scale up 24 cores

52:55 Revision (major) Major revision level. The major processor revision level starts at x‘1’, indicating major revision ‘1’.
Subsequent major revisions will be x‘2’, x‘3’, and so on.

56:59 Revision (reserved) Read as zero.

60:63 Revision (minor) Minor revision level. Minor revisions are indicated in PVR[60:63]. Each major revision will reset
the minor revision field to x‘00’ and each minor revision will increment PVR[60:63] by x‘01’.

User’s Manual
OpenPOWER
POWER9 Processor

Power Architecture Compliance

Page 82 of 508
Version 2.1

10 October 2019

4.7.3.2 Processor ID Register (PIR)

The Processor Identification Register (PIR) is a 64-bit register that holds a processor identification tag in the
least-significant bits. This tag is used for tagging bus transactions and for processor differentiation in multipro-
cessor systems

Table 4-7 shows how to interpret the PIR values.

The PIR is a read-only register. During power-on reset, PIR is set to a unique value for each processor in a
multiprocessor system.

4.7.3.3 Chip Information Register (CIR)

The POWER9 processor implements the CIR per the Power ISA.

4.7.3.4 Move To/From Special Purpose Register Instructions

The POWER9 core supports the SPRs listed in Table 4-8 on page 83. Many of these SPRs are only acces-
sible in hypervisor or privileged modes. Additionally, some SPRs are only accessible in ultravisor privileged
mode when the optional Secure Memory Facility (SMF) is enabled. See Section 24.3 Secure Memory Facility
on page 326. A handful of these registers (for example, DSCR) are also user-mode accessible through a
second SPR number.

To support multithreading, some of the SPRs are replicated in the POWER9 core, while others are shared, as
shown in the SMT column in Table 4-8. In the table column headers, Prob indicates problem state (S = x,
HV = x, PR = 1), Priv indicates privileged state (S = x, HV = 0, PR = 0), Hyp indicates hypervisor state
(S = 0, HV = 1, PR = 0) and UV indicates ultravisor state (S =1, HV = 1, PR = 0). In the SPR-specific rows,
Priv indicates that a privileged instruction type program interrupt will occur in that state for the attempted read
or write of the SPR. Illegal indicates a hypervisor emulation assistance interrupt will occur. NOP indicates the
instruction will be treated as a NOP. A blank under each column indicates the access will be performed
normally.

Table 4-7. PIR

Bits Field Name Description

0:48 Reserved Read as zeros

49:52 Node ID Node ID.

53:55 ChID Chip ID

56 Reserved Read as zero

57:61 CoID Core number

62:63 TID Thread ID

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Power Architecture Compliance

Page 83 of 508

Table 4-8. SPR Table (Sheet 1 of 10)

SPR Name
Binary
SPR
Code

Decimal
SPR
Code

Thread /
LPAR

Replica

Length
(bits)

Read (MFSPR) Write (MTSPR)

Prob
S = x

HV = x
PR = 1

Priv
S = x

HV = 0
PR = 0

Hyp
S = 0

HV = 1
PR = 0

UV
S = 1

HV = 1
PR = 0

Prob
S = x

HV = x
PR = 1

Priv
S = X

HV = 0
PR = 0

Hyp
S = 0

HV = 1
PR = 0

UV
S = 1

HV = 1
PR = 0

FPSCR

VSCR

MSR

Special SPR 0 00000
00000

0 Illegal illegal illegal illegal illegal illegal illegal illegal

XER 00000
00001

1 Replicated
per PT

64

Reserved
(MTMSR)

 00000
00010

2

DSCR_RU
 (FSCR[61]=0)

 00000
00011

3 Replicated
per PT

25 FAC
Unavail

Intr

FAC
Unavail

Intr

DSCR_RU
(FSCR[61]=1)

 00000
00011

3 Replicated
per PT

25

Special SPR 4 00000
00100

4 Illegal illegal illegal illegal illegal illegal illegal illegal

Special SPR 5 00000
00101

5 Illegal illegal illegal illegal illegal illegal illegal illegal

Special SPR 6 00000
00110

6 Illegal illegal illegal illegal illegal illegal illegal illegal

LR 00000
01000

8 Replicated
per PT

64

CTR 00000
01001

9 Replicated
per PT

64

UAMR 00000
01101

13 Replicated
per PT

64

DSCR
(HFSCR[61] = 0)

 00000
10001

17 Replicated
per PT

25 Priv FAC
Unavail

Intr

Priv FAC
Unavail

Intr

DSCR
(HFSCR[61] = 1)

 00000
10001

17 Replicated
per PT

25 Priv Priv

DSISR 00000
10010

18 Replicated
per PT

32 Priv Priv

User’s Manual
OpenPOWER
POWER9 Processor

Power Architecture Compliance

Page 84 of 508
Version 2.1

10 October 2019

DAR 00000
10011

19 Replicated
per PT

64 Priv Priv

DEC 00000
10110

22 Replicated
per VT

32 Priv Priv

SRR0 00000
11010

26 Replicated
per PT

64 Priv Priv

SRR1 00000
11011

27 Replicated
per PT

64 Priv Priv

CFAR 00000
11100

28 Replicated
per PT

64 Priv Priv

AMR 00000
11101

29 Replicated
per PT

64 Priv Priv

PIDR 00001
10000

48 Replicated
per PT

32 Priv Priv

IAMR 00001
11101

61 Replicated
per PT

32 Priv Priv

Reserved (BHRB) 00010
00000
00010
11111

64 - 95

TFHAR 00100
00000

128 Replicated
per PT

64

TFIAR 00100
00001

129 Replicated
per PT

64

TEXASR 00100
00010

130 Replicated
per PT

64

TEXASRU 00100
00011

131 Replicated
per PT

32

CTRL_RU 00100
01000

136 Shared/LP
AR bit

manipula-
tion

32 Return
Bit 63
Only

 Illegal Nop_ev Nop_ev Nop_ev

CTRL 00100
11000

152 Shared 32 Priv Nop_ev Nop_ev Nop_ev Priv

FSCR 00100
11001

153 Replicated
per PT

64 Priv Priv

UAMOR 00100
11101

157 Replicated
per PT

64 Priv Priv

Table 4-8. SPR Table (Sheet 2 of 10)

SPR Name
Binary
SPR
Code

Decimal
SPR
Code

Thread /
LPAR

Replica

Length
(bits)

Read (MFSPR) Write (MTSPR)

Prob
S = x

HV = x
PR = 1

Priv
S = x

HV = 0
PR = 0

Hyp
S = 0

HV = 1
PR = 0

UV
S = 1

HV = 1
PR = 0

Prob
S = x

HV = x
PR = 1

Priv
S = X

HV = 0
PR = 0

Hyp
S = 0

HV = 1
PR = 0

UV
S = 1

HV = 1
PR = 0

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Power Architecture Compliance

Page 85 of 508

GSR 00100
11110

158 Priv Nop_ev Nop_ev Nop_ev Priv

PSPB 00100
11111

159 Replicated
per PT

32 Priv Priv

DPDES 00101
10000

176 Per Core 8 Priv Priv Priv_ev

DAWR0 00101
10100

180 Replicated
per PT

64 Priv Priv_ev HEAI
with

HSSR
(45)
SMF
CTRL
(D) = 1

Priv Priv_ev HEAI
with

HSSR
(45)
SMF
CTRL
(D) = 1

RPR 00101
11010

186 Per Core 64 Priv Priv_ev Priv Priv_ev

CIABR 00101
11011

187 Replicated
per PT

64 Priv Priv_ev HEAI
with

HSSR
(45)
SMF
CTRL
(D) = 1

Priv Priv_ev HEAI
with

HSSR
(45)
SMF
CTRL
(D) = 1

DAWRX0 00101
11100

188 Replicated
per PT

32? Priv Priv_ev HEAI
with

HSSR
(45)
SMF
CTRL
(D) = 1

Priv Priv_ev HEAI
with

HSSR
(45)
SMF
CTRL
(D) = 1

HFSCR 00101
11110

190 Replicated
per PT

64 Priv Priv_ev Priv Priv_ev

VRSAVE 01000
00000

256 Replicated
per PT

32

SPRG3_RU 01000
00011

259 Replicated
per PT

64 Illegal Nop_
ev

Nop_
ev

Nop_
ev

TB 01000
01100

268 Per LPAR
VT

64 Illegal Nop_
ev

Nop_
ev

Nop_
ev

TBU_RU 01000
01101

269 Per LPAR
VT

32 Illegal Nop_
ev

Nop_
ev

Nop_
ev

SPRG0 01000
10000

272 Replicated
per PT

64 Priv Priv

Table 4-8. SPR Table (Sheet 3 of 10)

SPR Name
Binary
SPR
Code

Decimal
SPR
Code

Thread /
LPAR

Replica

Length
(bits)

Read (MFSPR) Write (MTSPR)

Prob
S = x

HV = x
PR = 1

Priv
S = x

HV = 0
PR = 0

Hyp
S = 0

HV = 1
PR = 0

UV
S = 1

HV = 1
PR = 0

Prob
S = x

HV = x
PR = 1

Priv
S = X

HV = 0
PR = 0

Hyp
S = 0

HV = 1
PR = 0

UV
S = 1

HV = 1
PR = 0

User’s Manual
OpenPOWER
POWER9 Processor

Power Architecture Compliance

Page 86 of 508
Version 2.1

10 October 2019

SPRG1 01000
10001

273 Replicated
per PT

64 Priv Priv

SPRG2 01000
10010

274 Replicated
per PT

64 Priv Priv

SPRG3 01000
10011

275 Replicated
per PT

64 Priv Priv

SPRC 01000
10100

276 Replicated
per VT

64 Priv Priv_
ev

Priv Priv_
ev

SPRD 01000
10101

277 n/a (physi-
cal target
controlled
by SPRC)

64 Priv Priv_
ev

Priv Priv_
ev

CIR 01000
11011

283 Shared 32 Priv Priv NOP NOP NOP

TBL 01000
11100

284 Per LPAR
VT

32 Priv Nop_
ev

Nop_
ev

Nop_
ev

Priv Priv_
ev

TBU 01000
11101

285 Per LPAR
VT

32 Priv Nop_
ev

Nop_
ev

Nop_
ev

Priv Priv_
ev

TBU40 01000
11110

286 Per LPAR
VT

64 Priv Nop_ev Nop_ev Nop_ev Priv Priv_ev

PVR 01000
11111

287 Shared 32 Priv Priv Nop_ev Nop_ev Nop_ev

HSPRG0 01001
10000

304 Replicated
per PT

64 Priv Priv_ev Priv Priv_ev

HSPRG1 01001
10001

305 Replicated
per PT

64 Priv Priv_ev Priv Priv_ev

HDSISR 01001
10010

306 Replicated
per PT

32 Priv Priv_ev Priv Priv_ev

HDAR 01001
10011

307 Replicated
per PT

64 Priv Priv_ev Priv Priv_ev

SPURR 01001
10100

308 Replicated
per VT

64 Priv Priv Priv_ev

PURR 01001
10101

309 Replicated
per VT

64 Priv Priv Priv_ev

HDEC 01001
10110

310 Per LPAR
VT

32 Priv Priv_ev Priv Priv_ev

HRMOR 01001
11001

313 Shared 64 Priv Priv_ev Priv Priv_ev

Table 4-8. SPR Table (Sheet 4 of 10)

SPR Name
Binary
SPR
Code

Decimal
SPR
Code

Thread /
LPAR

Replica

Length
(bits)

Read (MFSPR) Write (MTSPR)

Prob
S = x

HV = x
PR = 1

Priv
S = x

HV = 0
PR = 0

Hyp
S = 0

HV = 1
PR = 0

UV
S = 1

HV = 1
PR = 0

Prob
S = x

HV = x
PR = 1

Priv
S = X

HV = 0
PR = 0

Hyp
S = 0

HV = 1
PR = 0

UV
S = 1

HV = 1
PR = 0

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Power Architecture Compliance

Page 87 of 508

HSRR0 01001
11010

314 Replicated
per PT

64 Priv Priv_ev Priv Priv_ev

HSRR1 01001
11011

315 Replicated
per PT

64 Priv Priv_ev Priv Priv_ev

TFMR 01001
11101

317 Shared
(partial)/

LPAR bits
26 and 45
replicated

64 Priv Priv_ev Priv Priv_ev

LPCR 01001
11110

318 Replicated
per PT

64 Priv Priv_ev Priv Priv_ev

LPIDR 01001
11111

319 Replicated
per PT

64 Priv Priv_ev Priv Priv_ev

HMER 01010
10000

336 Replicated
per VT

64 Priv Priv_ev Priv Priv_ev

HMEER 01010
10001

337 Shared 64 Priv Priv_ev Priv Priv_ev

PCR 01010
10010

338 Per LPAR
PT

64 Priv Priv_ev Priv Priv_ev

HEIR 01010
10011

339 Replicated
per PT

32 Priv Priv_ev Priv Priv_ev

AMOR 01010
11101

349 Per LPAR
PT

64 Priv Priv_ev Priv Priv_ev

TIR 01101
11110

446 Replicated
per PT

8 Priv Priv Nop_ev Nop_ev Nop_ev

Reserved
(PC internal)

447-463

PTCR 01110
10000

464 Per Core 64 Priv Priv_ev Priv Priv_ev HEAI w
HSSR1

(45)
SMFC-
TRL(E)

=1

Reserved
(PC internal)

465-475

Reserved (msgclr) 01110
11100

476

Reserved
(msgclrp)

01110
11101

477

Table 4-8. SPR Table (Sheet 5 of 10)

SPR Name
Binary
SPR
Code

Decimal
SPR
Code

Thread /
LPAR

Replica

Length
(bits)

Read (MFSPR) Write (MTSPR)

Prob
S = x

HV = x
PR = 1

Priv
S = x

HV = 0
PR = 0

Hyp
S = 0

HV = 1
PR = 0

UV
S = 1

HV = 1
PR = 0

Prob
S = x

HV = x
PR = 1

Priv
S = X

HV = 0
PR = 0

Hyp
S = 0

HV = 1
PR = 0

UV
S = 1

HV = 1
PR = 0

User’s Manual
OpenPOWER
POWER9 Processor

Power Architecture Compliance

Page 88 of 508
Version 2.1

10 October 2019

Reserved
(msgsndp)

01110
11110

478

Reserved
(msgclru)

01110
11111

479

USPRG0 01111
10000

496 Replicated
per PT

64 Priv Priv Priv Priv Priv Priv

USPRG1 01111
10001

497 Replicated
per PT

64 Priv Priv Priv Priv Priv Priv

URMOR 01111
11001

505 Replicated
per PT

64 Priv Priv Priv Priv Priv Priv

USRR0 01111
11010

506 Replicated
per PT

64 Priv Priv Priv Priv Priv Priv

USRR1 01111
11011

507 Replicated
per PT

64 Priv Priv Priv Priv Priv Priv

SMFCTRL 01111
11111

511 Replicated
per PT

64 Priv Priv Priv Priv Priv Priv

SIER_RU 11000
00000

768 Replicated
per PT

64 Illegal Nop Nop Nop

MMCR2_RU 11000
00001

769 Replicated
per PT

64 Illegal Nop Nop Nop

MMCRA_RU 11000
00010

770 Replicated
per PT

64 Illegal Nop Nop Nop

PMC1_RU 11000
00011

771 Replicated
per PT

32 Illegal Nop Nop Nop

PMC2_RU 11000
00100

772 Replicated
per PT

32 Illegal Nop Nop Nop

PMC3_RU 11000
00101

773 Replicated
per PT

32 Illegal Nop Nop Nop

PMC4_RU 11000
00110

774 Replicated
per PT

32 Illegal Nop Nop Nop

PMC5_RU 11000
00111

775 Replicated
per PT

32 Illegal Nop Nop Nop

PMC6_RU 11000
01000

776 Replicated
per PT

32 Illegal Nop Nop Nop

MMCR0_RU 11000
01011

779 Replicated
per PT

32 Illegal Nop Nop Nop

SIAR_RU 11000
01100

780 Replicated
per PT

64 Illegal Nop Nop Nop

Table 4-8. SPR Table (Sheet 6 of 10)

SPR Name
Binary
SPR
Code

Decimal
SPR
Code

Thread /
LPAR

Replica

Length
(bits)

Read (MFSPR) Write (MTSPR)

Prob
S = x

HV = x
PR = 1

Priv
S = x

HV = 0
PR = 0

Hyp
S = 0

HV = 1
PR = 0

UV
S = 1

HV = 1
PR = 0

Prob
S = x

HV = x
PR = 1

Priv
S = X

HV = 0
PR = 0

Hyp
S = 0

HV = 1
PR = 0

UV
S = 1

HV = 1
PR = 0

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Power Architecture Compliance

Page 89 of 508

SDAR_RU 11000
01101

781 Replicated
per PT

64 Illegal Nop Nop Nop

MMCR1_RU 11000
01110

782 Replicated
per PT

32 Illegal Nop Nop Nop

SIER 11000
10000

784 Replicated
per PT

64 Priv Priv

MMCR2 11000
10001

785 Replicated
per PT

64 Priv Priv

MMCRA 11000
10010

786 Replicated
per PT

64 Priv Priv

PMC1 11000
10011

787 Replicated
per PT

32 Priv Priv

PMC2 11000
10100

788 Replicated
per PT

32 Priv Priv

PMC3 11000
10101

789 Replicated
per PT

32 Priv Priv

PMC4 11000
10110

790 Replicated
per PT

32 Priv Priv

PMC5 11000
10111

791 Replicated
per PT

32 Priv Priv

PMC6 11000
11000

792 Replicated
per PT

32 Priv Priv

MMCR0 11000
11011

795 Replicated
per PT

32 Priv Priv

SIAR 11000
11100

796 Replicated
per PT

64 Priv Priv

SDAR 11000
11101

797 Replicated
per PT

64 Priv Priv

MMCR1 11000
11110

798 Replicated
per PT

32 Priv Priv

IMC 11000
11111

799 Shared 64 Priv Priv_ev Priv Priv_ev HEAI
with

HSSR1
(45)
SMF
CTRL
(E) = 1

Table 4-8. SPR Table (Sheet 7 of 10)

SPR Name
Binary
SPR
Code

Decimal
SPR
Code

Thread /
LPAR

Replica

Length
(bits)

Read (MFSPR) Write (MTSPR)

Prob
S = x

HV = x
PR = 1

Priv
S = x

HV = 0
PR = 0

Hyp
S = 0

HV = 1
PR = 0

UV
S = 1

HV = 1
PR = 0

Prob
S = x

HV = x
PR = 1

Priv
S = X

HV = 0
PR = 0

Hyp
S = 0

HV = 1
PR = 0

UV
S = 1

HV = 1
PR = 0

User’s Manual
OpenPOWER
POWER9 Processor

Power Architecture Compliance

Page 90 of 508
Version 2.1

10 October 2019

BESCRS 11001
00000

800 Replicated
per PT

64

BESCRSU 11001
00001

801 Replicated
per PT

32

BESCRR 11001
00010

802 Replicated
per PT

64

BESCRRU 11001
00011

803 Replicated
per PT

32

EBBHR 11001
00100

804 Replicated
per PT

64

EBBRR 11001
00101

805 Replicated
per PT

64

BESCR 11001
00110

806 Replicated
per PT

64

Reserved 11001
01000

808 NA Nop Nop Nop Nop Nop Nop Nop Nop

Reserved 11001
01001

809 NA Nop Nop Nop Nop Nop Nop Nop Nop

Reserved 11001
01010

810 NA Nop Nop Nop Nop Nop Nop Nop Nop

Reserved 11001
01011

811 NA Nop Nop Nop Nop Nop Nop Nop Nop

TAR 11001
01111

815 Replicated
per PT

64

ASDR 11001
10000

816 Replicated
per PT

64 Priv Priv_ev Priv Priv_ev

PSSCR_SU 11001
10111

823 Replicated
per PT

64 Priv Priv

Reserved
(MTXER)

11001
11001

825

Reserved (MFNIA) 11001
11010

826

IC 11010
10000

848 Replicated
per PT

64 Priv Priv Priv_ev

VTB 11010
10001

849 Per LPAR
VT

64 Priv Priv Priv_ev

Table 4-8. SPR Table (Sheet 8 of 10)

SPR Name
Binary
SPR
Code

Decimal
SPR
Code

Thread /
LPAR

Replica

Length
(bits)

Read (MFSPR) Write (MTSPR)

Prob
S = x

HV = x
PR = 1

Priv
S = x

HV = 0
PR = 0

Hyp
S = 0

HV = 1
PR = 0

UV
S = 1

HV = 1
PR = 0

Prob
S = x

HV = x
PR = 1

Priv
S = X

HV = 0
PR = 0

Hyp
S = 0

HV = 1
PR = 0

UV
S = 1

HV = 1
PR = 0

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Power Architecture Compliance

Page 91 of 508

LDBAR 11010
10010

850 Per LPAR
VT

64 Priv Priv_ev Priv Priv_ev HEAI
with

HSSR1
(45)
SMF
CTRL
(E) = 1

MMCRC 11010
10011

851 Shared 32 Priv Priv_ev Priv Priv_ev

PMSR 11010
10101

853 Shared 32 Priv Priv_ev Priv Nop_ev Nop_ev Nop_ev

PSSCR 11010
10111

855 Replicated
per VT

64 Priv Priv_ev Priv Priv_ev

L2QOSR 11010
11101

861 Per Core Priv Nop_ev Nop_ev Nop_ev Priv Priv_ev

TRIG0 11011
10000

880 Replicated
per PT

64 Priv Nop_ev Nop_ev Nop_ev Priv

TRIG1 11011
10001

881 Replicated
per PT

64 Priv Nop_ev Nop_ev Nop_ev Priv

TRIG2 11011
10010

882 Replicated
per PT

64 Priv Nop_ev Nop_ev Nop_ev Priv

PMCR 11011
10100

884 Per Core 64 Priv Priv_ev Priv Priv_ev

RWMR 11011
10101

885 Shared 64 Priv Priv_ev Priv Priv_ev

WORT 11011
11111

895 Replicated
per PT

18 Priv Priv

PPR 11100
00000

896 Replicated
per PT

64

PPR32 11100
00010

898 Replicated
per PT

32

TSCR 11100
11001

921 Shared 32 Priv Priv_ev Priv Priv_ev

TTR 11100
11010

922 Shared 64 Priv Priv_ev Priv Priv_ev

TRACE 11111
01110

1006 Shared 64 Illegal Nop_ev Nop_ev Nop_ev

HID 11111
10000

1008 Shared 64 Priv Priv_ev Priv Priv_ev

Table 4-8. SPR Table (Sheet 9 of 10)

SPR Name
Binary
SPR
Code

Decimal
SPR
Code

Thread /
LPAR

Replica

Length
(bits)

Read (MFSPR) Write (MTSPR)

Prob
S = x

HV = x
PR = 1

Priv
S = x

HV = 0
PR = 0

Hyp
S = 0

HV = 1
PR = 0

UV
S = 1

HV = 1
PR = 0

Prob
S = x

HV = x
PR = 1

Priv
S = X

HV = 0
PR = 0

Hyp
S = 0

HV = 1
PR = 0

UV
S = 1

HV = 1
PR = 0

User’s Manual
OpenPOWER
POWER9 Processor

Power Architecture Compliance

Page 92 of 508
Version 2.1

10 October 2019

4.7.3.5 SPRC/SPRD Usage

In the pervasive design, SPRC and SPRD are used as a pair to provide a programmable interface into
microarchitected SPRs using indirect addressing. The address of the SPR to access is written into SPRC and
then a following read or write to SPRD reads or writes the SPR addressed by SPRC. The SPRC and SPRD
can both be accessed using an mtspr/mfspr instruction or SCOM. An SPRC/SPRD pair is dedicated per
thread for SPR access and per core for SCOM access. Only 8 bits of the SPRC register [53:60] are imple-
mented, bits [61:63] are reserved for future use and must be set to ‘000’. SPRD is a full 64-bit register whose
meaning changes based on the contents of SPRC. This register is, in reality, an alias to microarchitected
hypervisor resources.

For mtsprc access, the thread determines which thread-specific SPRC to set. For SPRD access, each
thread-specific SPRC can be used to access the SPRs in normal-core mode. In normal core mode,
SPRC/SPRD can only access the logical thread of the requesting thread as shown in Table 4-9 SPRC Defini-
tion Normal Core Mode (1 LPAR per Thread) on page 92. The thread-specific SPRC can also be set via
SCOM using the SPR_MODE_REG.

For OCC SCOM access, a dedicated SPRC/SPRD only accesses the activity counters and auto-increments
as shown in Table 4-11 on page 93. SCOM (x‘0A83’) is used to read the data addressed by this SPRC
(x‘0A82’).

In Table 4-9, only core TFMR bits [0:56] can be accessed using an SCOM access.

PIR 11111
11111

1023 Replicated
per VT

32 Priv Priv Nop_ev Nop_ev Nop_ev

Unsupported
SPRs w/ SPR(0)=0

 xxxxx
0xxxx

Illegal Nop_ev Nop_ev Nop_ev Illegal Nop_ev Nop_ev Nop_ev

Unsupported
SPRs w/ SPR(0)=1

xxxxx
1xxxx

Priv Nop_ev Nop_ev Nop_ev Priv Nop_ev Nop_ev Nop_ev

Table 4-9. SPRC Definition Normal Core Mode (1 LPAR per Thread) (Sheet 1 of 2)

SPRC[54:60] SPRD Selection Notes

0 0 0 0 0 S S SCRATCH0 - 3; unique per core chiplet 1, 3

0 0 0 0 1 S S SCRATCH4 - 7 1, 3

0 0 0 1 0 0 0 TFMR (logical thread) 1

1. Registers can be accessed by both an mtspr/mfspr instruction and an SCOM. Only core TFMR bits [0:56] can be accessed using
an SCOM access.

2. Registers can only be accessed using mtspr/mfspr.
3. S = scratch register number; T = Thread; e = Empath counter number.

Table 4-8. SPR Table (Sheet 10 of 10)

SPR Name
Binary
SPR
Code

Decimal
SPR
Code

Thread /
LPAR

Replica

Length
(bits)

Read (MFSPR) Write (MTSPR)

Prob
S = x

HV = x
PR = 1

Priv
S = x

HV = 0
PR = 0

Hyp
S = 0

HV = 1
PR = 0

UV
S = 1

HV = 1
PR = 0

Prob
S = x

HV = x
PR = 1

Priv
S = X

HV = 0
PR = 0

Hyp
S = 0

HV = 1
PR = 0

UV
S = 1

HV = 1
PR = 0

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Power Architecture Compliance

Page 93 of 508

In Table 4-10, only core TFMR bits [0:56] can be accessed via an SCOM access.

0 0 1 0 0 0 0 PURR (logical thread) 2

0 0 1 1 0 0 0 SPURR (logical thread) 2

0 1 0 0 0 0 0 DEC (logical thread) 2

0 1 1 1 0 0 0 SPR_MODEREG SPR 2

0 1 1 1 0 0 1 AVP output pin 2

0 1 1 1 0 1 0 Core checkstop 2

0 1 1 1 0 1 1 SPATTN 2

0 1 1 1 1 0 0 Core Thread State 1

1 0 e e e e e Empath counters; always do autoincremen 2, 3

Table 4-10. SPRC Definition Normal Core Mode (1 LPAR per Core)

SPRC[54:60] SPRD Selection Notes

0 0 0 0 0 S S SCRATCH0 - 3; unique per core chiplet 1, 3

0 0 0 0 1 S S SCRATCH4 - 7 1, 3

0 0 0 1 0 T T TFMR (logical thread) 1, 3

0 0 1 0 0 T T PURR (logical thread) 2, 3

0 0 1 1 0 T T SPURR (logical thread) 2, 3

0 1 0 0 0 T T DEC (logical thread) 2, 3

0 1 1 1 0 0 0 SPR_MODEREG SPR 2

0 1 1 1 0 0 1 AVP output pin 2

0 1 1 1 0 1 0 Core checkstop 2

0 1 1 1 0 1 1 SPATTN 2

0 1 1 1 1 0 0 Core Thread state 1

1 0 e e e e e Empath counters; always do auto-increment 2, 3

1. Registers can be accessed by both an mtspr/mfspr instruction and an SCOM. Only core TFMR bits [0:56] can be accessed using
an SCOM access.

2. Registers can only be accessed using mtspr/mfspr.
3. S = scratch register number; T = Thread; e = Empath counter number.

Table 4-11. OCC SPRC Definition

SPRC[54:60] SPRD Selection

1 c e e e e e Empath counters (e); always do auto-increment

Note: c = select core chiplets; e = empath counter.

Table 4-9. SPRC Definition Normal Core Mode (1 LPAR per Thread) (Sheet 2 of 2)

SPRC[54:60] SPRD Selection Notes

1. Registers can be accessed by both an mtspr/mfspr instruction and an SCOM. Only core TFMR bits [0:56] can be accessed using
an SCOM access.

2. Registers can only be accessed using mtspr/mfspr.
3. S = scratch register number; T = Thread; e = Empath counter number.

User’s Manual
OpenPOWER
POWER9 Processor

Power Architecture Compliance

Page 94 of 508
Version 2.1

10 October 2019

4.8 HID Register

The POWER9 processor core includes several implementation-dependent mode bits that allow various
features of the chip to be enabled and disabled. These bits are included in the Hardware Implementation
Dependent Register (HID). In general, the HID Register controls high-level functions of the POWER9 core
and is only accessible in hypervisor mode. Reserved bits in the HID Register should not be set by software
and can return either a zero or one value depending on the bit if set. Attempts to set some of these bits might
enable functions that are no longer supported and thus could cause unpredictable behavior. Two values of
the contents of the register are shown in the descriptions.

Initial state:
This is the state of the register after a normal scan-based power-on-reset (POR). The actual and full POR
sequence can set bits beyond the scan-based POR.

Preferred state:
This is the preferred state of the register for optimal performance and function.

1. The following sequence must be used when modifying the HID Register:
sync
mtspr HID,Rx
isync

4.8.1 HID Register Description

Initial state: x‘0400_0000_0000_0000’
Preferred state: x‘0000_0000_0000_0000’

Table 4-12 describes the HID Register.

Table 4-12. HID Register (Sheet 1 of 2)

Bits Field Name Description

0 one_ppc
One (Power ISA) instruction is sent out of the ibuffers and decoded at a time. The IFU waits for ict
empty to let the next instruction go. Multi-thread mode uses a round-robin method through the
enabled threads.

1 en_instruc_trace Enable the enhanced trace facility, which requires special hardware initializations.

2 flush_ic Flush the instruction cache and the instruction EADIR on a transition from ‘0’ to ‘1’.

3 en_attn
Enable the support-processor attention instruction. This bit is used to enable the attn instruction to
quiesce the thread.
Note: The instruction cache must be flushed after changing the value of this bit.

4 hile The contents of this bit are copied into the MSR.

5 dis_recovery Disable the processor recovery mechanism.

6 megamouth Order stores for the Megamouth adapter when IG = ‘10’.

7 prefetch_reset Clear all streams from the prefetch unit and restart from an idle state.

8 tlb_config_radix
TLB configuration mode.
0 Supports HPT translation only. PWC is disabled.
1 Supports either HPT or Radix translation. PWC is enabled.

9 dcache_partitioned The D-cache is partitioned by the thread in a balanced method, such that each active thread can use
an equal portion of the cache.

Hashed page table

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Power Architecture Compliance

Page 95 of 508

4.8.2 Core-to-Core Trace SPR

The Trace SPR is used to access enhanced instruction trace information from the processor core trace logic.
This 64-bit register is read only and has a privileged read access. There is a protocol associated with the use
of this register to coordinate gathering instruction trace images from the other processor core.

4.8.3 Trigger Registers

Writes to the trigger registers (TRIG0, TRIG1, and TRIG2), can be inserted in the instruction stream to cause
triggers to the on-chip trace array debug logic. These registers are used for lab debug and bringup only and
architecturally behave as a NOP.

4.8.4 IMC Array Access Register

The Instruction Match CAM (IMC) array facility is used for performance monitoring instrumentation and for the
soft patch of instructions. (This latter use is restricted for the support processor and is not available through
the SPR access to this register array.) The array has privileged write access and user-level read access via
this SPR. Writes to the register array are used to configure the IMC, and reads return information about the
availability of registers within the facility.

4.8.5 Performance Monitor Registers

The performance monitor counter registers (PMC1 - PMC6), the performance monitor control registers
(MMCR0, MMCR1, MMCRA), and the sampled address registers (SIAR, SDAR) are supported in the
POWER9 processor core. The performance monitor counter registers PMC7 and PMC8 are not implemented
in the POWER9 processor core (an operation for these two performance counter registers is treated as a
NOP).

4.8.6 Other Fixed-Point Instructions

The POWER9 processor core supports both the 32-bit mtmsr instruction and the 64-bit mtmsrd instruction.

The POWER9 processor core optimizes the mtmsr and mtmsrd instructions by helping to speed up the
cases where little or no synchronization is required (such as, updates to the EE and RI bits). To exploit this
capability, software should set the L-bit of the desired instruction to ‘1’ as described in the Power ISA Oper-
ating Environment Architecture - Book III (version 3.0B).

Software must avoid placing mtmsr and mtmsrd instructions that change the SF bit at address
x‘00000000FFFFFFFC’ or x‘FFFFFFFFFFFFFFFC’.

10 icache_partitioned The I-cache is partitioned by the thread in a balanced method, such that each active thread can use
an equal portion of the cache.

11 en_spec_execution Enable speculative execution mode.

12 spare Spare.

13:63 reserved Reserved.

Table 4-12. HID Register (Sheet 2 of 2)

Bits Field Name Description

User’s Manual
OpenPOWER
POWER9 Processor

Power Architecture Compliance

Page 96 of 508
Version 2.1

10 October 2019

4.9 Storage Control

4.9.1 Effective, Virtual, and Physical Address Ranges Supported

The POWER9 processor core supports a 64-bit effective address (EA), 68-bit virtual address (VA), and a
56-bit host real (physical) address (RA). See Section 4.10.31 Processor Compatibility Mode on page 138 for
details specific to various translation modes. Host real addresses in this 56-bit range are hereafter referred to
as local address space accesses and are considered to be system-wide coherent.

4.9.2 Foreign Address Space Definition and Accessibility

The POWER9 processor core considers host real addresses with a nonzero value in RA(8:12) as foreign
address space, accessible only by the paste instruction. By specifying a host real address in this range for
the paste instruction, a copy and paste instruction pair can be used to invoke the Nest accelerator via the
Virtual Accelerator Switchboard (VAS). For more details on invoking the Nest accelerators, see Section 11.1
Features on page 196. A host real address containing a zero value in RA(8:12) is referred to as local address
space.

Attempts to access host real pages in this addressing range by an instruction fetch or any other data access
(that is, other than a paste instruction) results in a machine check interrupt per the Power ISA.

As described in the Power ISA (Version 3.0B), the copy instruction can copy a 128-byte cache line (block)
from a local address to a per thread noncoherent buffer. Similarly, a paste instruction reads the noncoherent
buffer and writes the contents of the buffer to a foreign address.

For more details on the copy and paste instructions, see the Power ISA (Version 3.0B).

4.9.3 Hypervisor Real Mode Addressing Using HRMOR

The POWER9 processor supports the Hypervisor Real Mode Offset Register (HRMOR) as described in the
Power ISA (Version 3.0B) for the purpose of accessing real memory when the processor thread is operating
in Hypervisor Real Mode. As described in the Power ISA Operating Environment Architecture - Book III
(version 3.0B), when EA(0) = ‘1’, the HRMOR is bypassed. When EA(0) = ‘0’, the HRMOR value is logically
OR’ed with the EA to produce the real address (RA). The ISA defines the number of implemented bits in the
HRMOR as implementation dependent. The POWER9 processor implements HRMOR[13:42]. All other
HRMOR bits are reserved and return zero when read.

4.9.4 Partition Table Control Register

The POWER9 processor supports the Partition Table Control Register (PTCR) mostly as described in the
Power ISA (Version 3.0B) for the purpose of accessing virtual memory either in virtual real mode (HPT) and
guest real mode (nested Radix) or when translation is enabled for either HPT or Radix. The PTCR imple-
ments bits 13:51 for the Partition Table Base (PATB) field and bits 59:63 for the Partition Table Size (PATS)
field. All other PTCR bits are reserved and return zero when read. The POWER9 processor core, however,
ignores the value in the PATS field and only supports a 64 KB partition table size.

4.9.5 Access Segment Descriptor Register

The POWER9 processor supports the Access Segment Descriptor Register (ASDR) as described in the
Power ISA (Version 3.0B).

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Power Architecture Compliance

Page 97 of 508

4.9.6 Real Mode Addressing for Operating Systems

The POWER9 processor does not implement the real mode offset (RMOR/RMLS) mechanism described in
the Power ISA (version 2.07). Instead, it implements the virtual real mode addressing mechanism for HPT
translation and guest real mode for Radix translation as described in the Power ISA (Version 3.0B).

4.9.7 HRMOR Update Sequence

Table 4-13 describes a sequence that the hypervisor privileged software might use to update the HRMOR.

4.10 Translation Architecture

The POWER9 processor supports the two translation mechanisms described in the Power ISA (Version
3.0B), specifically:

• The POWER9 processor uses the Partition Table Control Register (PTCR) to find the partition table entry.

• The LSU allows writes to LPCR[12:16], LPCR[41], and LPCR[53]. Bits 12:16 are considered reserved in
the new architecture and always return ‘00000’ when read using the mflpcr instruction. The page size
information for virtual real mode is taken from the partition table entry as described in the Power ISA (Ver-
sion 3.0B). The hardware ignores the value of bits 12:16. Bit 41 is the UPRT value and bit 53 is the GTSE
value. The mflpcr instruction returns the values in bits 41 and 53.

• When LPCR[GTSE] = ‘0’, slbiag, slbieg, slbsync, and tlbsync are hypervisor privileged only and take a
privileged instruction interrupt when HV = ‘0’ (independent of PR); or when HV = ‘1’ and PR = ‘1’.

• When LPCR[GTSE] = ‘1’, slbiag, slbieg, slbsync, and tlbsync are legal instructions when PR = ‘0’ and
take a privileged instruction interrupt when PR = ‘1’.

• The tlbie instruction is privileged except when LPCR[GTSE] = ‘0’ or when PRS = ‘0’ and R = ‘1’, making
it hypervisor privileged. Note that the POWER9 processor uses the “R” bit in the instruction instead of the
“HR” bit in the partition-table entry, as described in the Power ISA (Version 3.0B) for determining the
instruction’s privilege level.

• The tlbiel instruction is privileged except when PRS = ‘0’ and R = ‘1’, making it hypervisor privileged.
Note that the POWER9 processor uses the “R” bit in the instruction instead of the “HR” bit in the partition-
table entry as described in the Power ISA (Version 3.0B) for determining the instruction’s privilege level.

Table 4-13. HRMOR Update Sequence

Master Slave

Thread sync up point 1 Thread sync up point 1

EA[0] = 1 EA[0] = 1

Thread sync up point 2 Thread sync up point 2

Change HRMOR

Thread sync up point 3 Thread sync up point 3

isync isync

slbia IH = x‘7’ slbia IH = x‘7’

isync isync

Thread sync up point 4 Thread sync up point 4

User’s Manual
OpenPOWER
POWER9 Processor

Power Architecture Compliance

Page 98 of 508
Version 2.1

10 October 2019

4.10.1 Logical Partitioning Control Register (LPCR)

The POWER9 LPCR Register is illustrated as follows:

R
es

er
ve

d

VC Reserved DPFD Reserved PECEU Reserved

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Reserved ILE AIL U
P

R
T

E
V

IR
T

H
R

R
es

er
ve

d

O
N

L

LD PECEL M
E

R

G
T

S
E

TC Reserved H
E

IC

LP
E

S

R
es

er
ve

d

H
V

IC
E

H
D

IC
E

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0 Reserved Reserved.

1:3 VC Virtualization control.

4:8 Reserved Reserved.

9:11 DPFD Default prefetch depth.

12:16 Reserved Reserved.

17:19 PECEU Power-saving mode exit causes enable upper section.

20:37 Reserved Reserved.

38 ILE Interrupt little-endian mode.

39:40 AIL Alternate interrupt location.

41 UPRT Use process table Set this bit to ‘0’ when the thread is performing HPT translation and set to ‘1’
when the thread is performing Radix translation.

42 EVIRT Enhanced virtualization enable.

43 HR Host Radix.

44 Reserved Reserved.

45 ONL Online (PURR/SPURR incrementing control).

46 LD Large decrementer.

47:51 PECEL Power-saving mode exit causes enable lower section.

52 MER Mediated external exception request.

53 GTSE Guest translation shoot-down enable.

54 TC Translation control secondary PTEG is not searched if TC = ‘1’.

55:58 Reserved Reserved.

59 HEIC Hypervisor external interrupt control.

60 LPES Logical partitioning environment selector.

61 Reserved Reserved.

62 HVICE Hypervisor virtualization interrupt conditionally enable.

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Power Architecture Compliance

Page 99 of 508

Note: All fields except the AIL, EVIRT, ONL, HDICE, MER, PECE, HEIC, and HVICE fields must be set to
the same value by all sub-processors with the same LPIDR value.

4.10.2 Translation Modes

Within the translation architecture described in the Power ISA (Version 3.0B), there are two types of address
translation:

• Radix: A Radix guest (operating system) running on top of a Radix host (hypervisor) is also commonly
referred to as nested Radix. When there is no guest operating system, this is referred to as single-level
Radix.

• Hashed Page Table (HPT): Also, known as paravirtualized translation. For HPT translation, the processor
core supports only the behavior specified when the Logical Partition Control Register (LPCR) Use Pro-
cess Table (UPRT) bit is set to ‘0’.

In these modes, the Partition Table Control Register (PTCR) contains the host real address of the partition-
table base and the size of the table itself. In general, the partition table is indexed by the logical partition ID
(LPID) value specified in the Logical Partition ID Register (LPIDR).

When the partition-table entry is read, the host Radix (HR) bit determines which translation type is used by
the hardware to convert an effective address to a host real address. When either single-level or nested Radix
is used for translation, HR = ‘1’. When HPT translation is used, HR =‘0’. For either of the these translation
types, there exists a partition-scoped page table that translates a host virtual address (hVA) (referred to as a
guest real address or gRA for Radix) to a host real address (hRA).

For either of the translation types, the in-memory translation related tables managed by the operating system
(guest) are translated as though they reside in “normal” memory (such as, ATT = ‘00’ or WIMG = ‘0010’),
regardless of the storage attributes specified in the partition scoped page-table entries used to translate those
guest tables. These guest-managed translation tables include the process table for either Radix or HPT, the
guest Radix tree for Radix, and the segment table for HPT (for the in-memory segment table supported by the
Nest).

4.10.3 tlbie and tlbiel Instruction Format and Operands

When software changes a translation path that involves either a Radix or HPT page table, either the tlbie or
tlbiel instruction must be used in a manner as specified in the Power ISA (Version 3.0B). The ISA provides
the format for both the tlbie and tlbiel instructions, but the AP and L/LP encodings are implementation
specific. The format and operands are shown in Figure 4-2 on page 100 for the tlbie instruction and
Figure 4-4 on page 101 for the tlbiel instruction.

63 HDICE Hypervisor decrementer interrupt conditionally enable.

Bits Field Name Description

Logical Partition ID Register

User’s Manual
OpenPOWER
POWER9 Processor

Power Architecture Compliance

Page 100 of 508
Version 2.1

10 October 2019

Figure 4-2. tlbie Instruction Format for the POWER9 Core

Table 4-14. Description of tlbie Instruction Format for the POWER9 Core

Bits Description

RIC

Radix invalidation control.
0 Only invalidate the TLB and ERATs.
1 Invalidate only the page-walk cache (PWC).
2 Invalidate TLB/ERATs, PWC, and any caching of partition and process table entries.
3 Invalidate a series of consecutive translations (only in TLB/ERATs, cluster bomb).

PRS
Process scoped.
0 Invalidate partition-scoped translations.
1 Invalidate process-scoped translations.

R
Radix.
0 Invalidate HPT translations.
1 Invalidate Radix tree translations.

IS

Invalidation selector (specified in the RB Register).
0 Invalidate only the target VA for matching PID and LPID.
1 Invalidate matching PID (and matching LPID).
2 Invalidate matching LPID.
3 If MSR[HV] = ‘1’, invalidate all entries; otherwise, invalidate matching LPID.

31 RS / RIC P
R

S

R RB 306 /

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

tlbie RB,RS,RIC,PRS,R

Process ID

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Power Architecture Compliance

Page 101 of 508

The format and operands for the tlbie instructions are indicated in Figure 4-3. The R and RIC values deter-
mine the format of the RB operand.

Figure 4-3. tlbie Operands for the POWER9 Core

Figure 4-4. tlbiel Instruction Format for the POWER9 Core

0 31 32 63

RS

PID LPID

0 52 63

RB: IS = ‘00’ and (L = 0 or RIC = 3) case

AVA

54 56 59

IS B AP 0s L

0 52 63

RB: IS = ‘00’ case

EPN

54 56 59

IS 0s AP 0s 0

RB: R = ‘0’ (HPT) RB: R = ‘1’ (Radix)

0 44 63

RB: IS = ‘00’ and (L = 1 or RIC ≠ 3) case

AVA

52 54 56

LP IS B AVAL L

0 52 63

RB: IS = ‘01’, ‘10’, or ‘11’ (tlbie only)

0s

54

IS 0s

0 52 63

RB: IS = ‘01’, ‘10’, or ‘11’

0s

54

IS 0s

31 RS / RIC P
R

S

R RB 274 /

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

tlbiel RB,RS,RIC,PRS,R

User’s Manual
OpenPOWER
POWER9 Processor

Power Architecture Compliance

Page 102 of 508
Version 2.1

10 October 2019

The format and operands for the tlbiel instructions are indicated in Figure 4-5. The R and RIC values deter-
mine the format of the RB operand.

Table 4-15. Description of tlbiel Instruction Format for the POWER9 Core

Bits Description

RIC

Radix invalidation control.
0 Only invalidate TLB and ERATs.
1 Invalidate only page-walk cache (PWC).
2 Invalidate TLB/ERATs, PWC, and any caching of partition and process table entries.
3 Not supported.

PRS
Process scoped.
0 Invalidate partition-scoped translations.
1 Invalidate process-scoped translations.

R
Radix.
0 Invalidate HPT translations.
1 Invalidate Radix tree translations.

IS

Invalidation selector (specified in the RB Register).
0 Invalidate only the target VA for matching PID and LPID.
1 Invalidate all entries in specified TLB congruence class (SET) with a matching PID (and matching LPID).
2 Invalidate all entries in specified TLB congruence class (SET) with a matching LPID.
3 If MSR[HV] = ‘1’, invalidate all entries all entries in specified TLB congruence class (SET); otherwise, invalidate

all entries in specified TLB congruence class with a matching LPID.

Figure 4-5. tlbiel Operands for the POWER9 Core

0 31 32 63

RS

PID ///

0 52 63

RB: IS = ‘00’ and (L = 0 or RIC = 3) case

AVA

54 56 59

IS B AP 0s L

0 52 63

RB: IS = ‘00’ case

EPN

54 56 59

IS 0s AP 0s 0

RB: R = ‘0’ (HPT) RB: R = ‘1’ (Radix)

0 44 63

RB: IS = ‘00’ and (L = 1 or RIC ≠ 3) case

AVA

52 54 56

LP IS B AVAL L

0 52 63

RB: IS = ‘01’, ‘10’, or ‘11’

0s

54

IS 0s

RB: IS = ‘01’, ‘10’, or ‘11’

40

SET

0 52 63

0s

54

IS 0s

40

SET

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Power Architecture Compliance

Page 103 of 508

4.10.4 Radix Translation

When the partition-table entry has HR = ‘1’, the translation mechanism is referred to as Radix translation.
Radix translation can be either single-level or nested.

For nested Radix, there exists two sets of Radix trees:

• One set of Radix trees that is managed by the guest operating system, is determined by indexing a pro-
cess table using the process table ID (PID) value.

• A second set of Radix trees is managed by the host (hypervisor) software.

For a Radix host, the LPIDR value can be overridden using EA(0:1) to indicate which EA quadrant the thread
is accessing as described in the ISA. The term effective LPID (effLPID) is more commonly used to discuss
how the partition table is indexed. Analogous to how the effLPID is used to index the partition table for host
translation, an effective PID (effPID) is the commonly used term for indexing the process table. See the
Power ISA (Version 3.0B) for more details on EA quadrants, effLPID, and effPID. When the effLPID = ‘0’,
there exists only a single level of Radix translation. This translation is considered to be process-scoped (that
is, indexed by the effPID) and used to translate the EA directly to an hRA.

For Radix translation, the EA range is 64-bits, but as stated previously, EA(0:1) indicate which EA quadrant
the thread is in. When EA(2:11) are nonzero, a segment interrupt results. Thus, the usable EA space (when
the thread is not in hypervisor real mode) is limited to 52 bits. In addition, the gRA is limited to 52 bits, other-
wise a segment interrupt occurs. Table 4-16 shows the details of the address bit range checking by hardware.

Table 4-16. Address Bit Range Checking by Hardware (Sheet 1 of 2)

Mode
Instruction

or Data
EA(0:1)

EA(2:11)
(Nonzero)

Instruction
or Data

gRA(0:11)
(Nonzero)

Guest PDE
RPN(4:11)
(Nonzero)

Guest PTE
RPN(7:11)

Host PDE
RPN(4:7)
(Nonzero)

RPN(8:12)
Nonzero in
Host PDE

or Host
PTE1

Host PTE
RPN(7)

(Nonzero)

Host PTE for
Instruction/

Data
Access2

Guest Real
Mode
(IR/DR off)

Ignore
EA(0:1);

always treat
as ‘00’.

Segment
interrupt

(gEA = gRA)

Segment
interrupt N/A N/A Ignore Machine

check Ignore

Paste:
ignore;
otherwise,
machine
check

1. RPN(8:12) nonzero in any host PDE (that maps a guest table or instruction/data access) or in any host PTE that maps a guest
table.

2. Host PTE for instruction/data acess where RPN(8:12) is nonzero.
3. Hardware can generate a segment interrupt due to quadrants and HV/PR values. This assumes that IR = 1 for instruction access

and DR = 1 for data access.
4. Future processors might generate an instruction or data segment interrupt.

Page directory entry

Guest real address

User’s Manual
OpenPOWER
POWER9 Processor

Power Architecture Compliance

Page 104 of 508
Version 2.1

10 October 2019

4.10.4.1 Supported Radix Tree Configurations and Resulting Page Sizes

The Power ISA provides the general architecture to support implementations that might implement a variety
of page sizes. The POWER9 processor supports only the page sizes specified in Table 4-17 on page 104
when performing Radix translation. The values in the Level columns indicate the supported size of each level
of the Radix tree for each resulting page size. All other Radix tree configurations are unsupported and result
in the hardware generating an unsupported Radix tree type of DSI, HDSI, ISI, or HISI.

Nested Radix
with IR/DR
on

Quadrant
bits

Segment
interrupt Ignore3 Ignore4 Ignore Ignore Machine

check Ignore

Paste:
ignore;
otherwise,
machine
check

Process
scoped
single-level
Radix
(effLPID = 0)

Quadrant
bits

Segment
interrupt N/A3 N/A N/A Ignore Machine

check Ignore

Paste:
ignore;
otherwise,
machine
check

HPT Only part of
EA

Only part of
EA N/A N/A N/A Ignore Machine

check Ignore

Paste:
ignore;
otherwise,
machine
check

Table 4-17. Supported Radix Tree Configurations and Resulting Page Sizes

Page Size Level 1 Size Level 2 Size Level 3 Size Level 4 Size

4 KB 64 KB 4 KB 4 KB 4 KB

64 KB 64 KB 4 KB 4 KB 256 B

2 MB 64 KB 4 KB 4 KB

1 GB 64 KB 4 KB

Table 4-16. Address Bit Range Checking by Hardware (Sheet 2 of 2)

Mode
Instruction

or Data
EA(0:1)

EA(2:11)
(Nonzero)

Instruction
or Data

gRA(0:11)
(Nonzero)

Guest PDE
RPN(4:11)
(Nonzero)

Guest PTE
RPN(7:11)

Host PDE
RPN(4:7)
(Nonzero)

RPN(8:12)
Nonzero in
Host PDE

or Host
PTE1

Host PTE
RPN(7)

(Nonzero)

Host PTE for
Instruction/

Data
Access2

1. RPN(8:12) nonzero in any host PDE (that maps a guest table or instruction/data access) or in any host PTE that maps a guest
table.

2. Host PTE for instruction/data acess where RPN(8:12) is nonzero.
3. Hardware can generate a segment interrupt due to quadrants and HV/PR values. This assumes that IR = 1 for instruction access

and DR = 1 for data access.
4. Future processors might generate an instruction or data segment interrupt.

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Power Architecture Compliance

Page 105 of 508

4.10.4.2 TLB and PWC Hash Functions for Radix

The TLB is used to cache page table entries (PTEs). When the POWER9 core is running in Radix mode, the
TLB is reduced to 512 entries (128 entries × 4-way set-associative). The hash algorithm for the TLB operating
in this mode is specified in Table 4-18.

The other 512 entries (128 entries × 4-way set-associative) of the TLB array are used as a page-walk cache.
The PWC is used to cache page directory entries (PDEs). Each level of the Radix tree has a unique cache to
store entries (level 1 entries are not mixed with level 2 or level 3 entries in the cache). Entries are tagged with
the LPID and PIDR values used when performing the translation. The full EA must get to a particular level in
the tree and is also stored as part of the tag in an entry: level 1 EA(12:24), level 2 EA(12:33), level 3
EA(12:42). An entry must match the LPID, PID, and EA to hit within the PWC. The PWC is accessed after the
TLB lookup, and its results are only used in the event of a TLB miss. In a TLB miss/PWC hit translation, the
Radix walk begins using the PDE data retrieved from the PWC entry. The hash algorithm for the PWC is
specified in Table 4-19.

Table 4-18. TLB Hash for Radix Mode

Page Size TLB Hash Function

4 KB [LPIDR(29:31) XOR EA(45:47)] || [PIDR(28:31) XOR EA(48:51)]

64 KB [LPIDR(29:31) XOR EA(41:43)] || [PIDR(28:31) XOR EA(44:47)]

2 MB [LPIDR(29:31) XOR EA(36:38)] || [PIDR(28:31) XOR EA(39:42)]

1 GB [LPIDR(29:31) XOR EA(27:29] || [PIDR(28:31) XOR EA(30:33)]

1. The effPID and effLPID values are used to determine the hash.
2. Partition scoped translations force PID = 0 for the hash.
3. EA in the TLB hash function description means “guest EA” for process scoped translations when HV = 0; “host EA” when HV = 1

and LPID = 0; and “host EA” (which equals the “guest RA”) for partition scoped translations.

Table 4-19. PWC Hash for Radix Mode

PDE Level PWC Hash Function

1 [LPIDR(29:31) XOR EA(18:20)] || [PIDR(28:31) XOR EA(21:24)]

2 [LPIDR(29:31) XOR EA(27:29)] || [PIDR(28:31) XOR EA(30:33)]

3 [LPIDR(29:31) XOR EA(36:38)] || [PIDR(28:31) XOR EA(39:42)]

1. Partition scoped translations force PID = 0 for the hash.
2. EA in the PWC hash function description means “guest EA” for process scoped translations when HV = 0, “host EA” when HV = 1

and LPID = 0, and “host EA” (which equals the “guest RA”) for partition scoped translations.

User’s Manual
OpenPOWER
POWER9 Processor

Power Architecture Compliance

Page 106 of 508
Version 2.1

10 October 2019

4.10.4.3 tlbie and tlbiel Encodings for Radix Translations

When software must invalidate the translation caches for one of these page sizes, it should execute the
appropriate tlbie or tlbiel instruction sequence as specified in the Power ISA (Version 3.0B) with R = ‘1’ and
AP set to the corresponding value as indicated in Table 4-20, and a RIC value of either ‘0’ or ‘2’ for the
required outcome.

Alternatively, software can use the tlbiel instruction with IS ≠ 0 per the Power ISA (Version 3.0B) to perform a
congruence class invalidation of the TLB on the processor that executes the tlbiel instruction. When this
option is chosen, RB(45:51), select the congruence class of the TLB and/or PWC to be invalidated.

See Appendix B tlbie and tlbiel Encodings for Radix Translations on page 469 for details.

4.10.5 Changing the Process ID Register

The POWER9 processor implements 20-bits of process ID in the Process ID Register (PIDR).

When using Radix translation and software wants to change the PIDR value, it should do so in either guest
real mode (or hypervisor mode) or it should use the following sequence if translation is enabled:

1. branch to quadrant 3

2. mtpidr

3. isync

4. branch back to quadrant 0

4.10.6 Switching between Radix and HPT Partitions

To switch between running a Radix partition and an HPT partition, the following sequence must be observed:

1. Start in an HPT partition with translation on.

Note: HID[8] is likely set to ‘0’ at this point for full TLB mode.

2. Switch all active threads on the core to hypervisor real mode.

3. Invalidate all of the TLB, ERATs, and translation caching by executing one tlbie with RIC = ‘2’, IS = ‘3’,
R = ‘0’, PRS = ‘0’ and one tlbie with RIC = ‘2’, IS = ‘3’, R = ‘0’, and PRS = ‘1’.

Note: The PRS = ‘1’ form is only required for the nest MMU because the core does not support
UPRT = ‘1’ for HPT partitions.

4. Change LPIDR to point to a Radix partition.

Table 4-20. tlbie(l) Page Encodings for POWER9 Radix (R = ‘1’) Only RIC≠ 3 is supported

RB(32:51) RIC RB(56:58)
AP

Actual Page Size to be
Invalidated

vvvv vvvvvvvv vvvvvvvv 0, 2 000 4 KB

vvvv vvvvvvvv vvvvxxxx 0, 2 101 64 KB

vvvv vvvvvvvv xxxxxxxx 0, 2 001 2 MB

vxxx xxxxxxxx xxxxxxxx 0, 2 010 1 GB

1. All other values of AP should not be used when R = 1 and results in a machine check interrupt.
2. 2 MB and 1 GB page sizes are only supported for Radix.

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Power Architecture Compliance

Page 107 of 508

5. Execute a mthid instruction to set bit 8 to configure the TLB for half-TLB mode (required for Radix trans-
lation).

6. Change LPCR so that the following conditions are true: UPRT = ‘1’, HR = ‘1’, VC = ‘000’.

7. Execute an rfid to turn translation back on in Radix partition.

To switch from a Radix partition to an HPT partition, the following sequence must be observed:

1. Start out in a Radix partition with translation on.

Note: HID[8] is set to ‘1’ at this point for “half-TLB mode” (required for radix translation).

2. Switch all active threads on the core to hypervisor real mode.

3. Invalidate all of the TLB, ERATs, and translation caching by executing one tlbie with RIC = ‘2’, IS=’3’,
R = ‘1’, PRS = ‘0’ and one tlbie with RIC = ‘2’, IS = ‘3’, R = ‘1’ and PRS = ‘1’.

4. Change LPIDR to point to an HPT partition.

5. Optional: Execute a mthid instruction to clear bit 8 to configure the TLB for “full-TLB mode”. This allows
the TLB to be fully utilized for HPT partitions, which should improve performance.

6. Change LPCR so that the following conditions are true: UPRT = ‘0’, HR = ‘0’, and set VC accordingly for
the target partition.

7. Execute an rfid to turn translation back on in an HPT partition.

4.10.7 Hashed Page Table Translation

When the partition table entry has HR = ‘0’, the translation mechanism is referred to as either paravirtualized
or HPT. In HPT mode, there is no concept of an effPID or an effLPID, only PIDs and LPIDs. In other words,
only the values found in the PIDR and LPIDR, respectively, are used to index the appropriate translation
table. This translation mode is most similar to the legacy translation architecture supported on past proces-
sors such as the POWER8 processor. As state earlier, the POWER9 core only supports the
LPCR[UPRT] = ‘0’ submode of the HPT translation architecture. In this mode, the POWER9 core supports 32
software-managed SLB entries (the same as POWER8). The PIDR is not used in this submode in the
processor core, but is used by the NMMU.

In HPT mode, the effective address space is 64 bits (0:63), the virtual address space is implemented as
68 bits (10:77) of the 78-bit architected maximum virtual address space, and the real address space is 51 bits
(13:63).

4.10.7.1 In-Memory Segment Table and Bolted SLB Entries

The segment table is managed by the operating system running in a logical partition (LPAR) and resides in
virtual memory. At a high level, when operating in this mode, the hardware searches the in-memory segment
table for a matching effective segment ID (ESID) and caches matching segment table entries (STE) in the
SLB. Upon subsequent accesses to that same ESID, the hardware will hit on that entry in the SLB and only
walk the segment table if no matching entry is found. In addition to the segment table entries that are cached
in the SLB, the hardware provides the ability for software to manage four bolted entries in the SLB. Unlike the
cached segment table entries, these bolted entries are not eligible to be cast out of the SLB using the hard-
ware’s LRU policy. It is the responsibility of the operating system to manage these four bolted entries explic-
itly as described in the Power ISA (Version 3.0B). If a matching ESID is found in the SLB, that entry is used
regardless of whether another segment table entry resides in the in-memory segment table with a different
ESID to Virtual Segment ID (VSID) mapping. Software must prevent more than one matching ESID in the in-

User’s Manual
OpenPOWER
POWER9 Processor

Power Architecture Compliance

Page 108 of 508
Version 2.1

10 October 2019

memory segment table. Furthermore, an ESID that exists in the segment table must not overlap with one of
the bolted SLB entries. Violating any of these rules can result in an SLB multi-hit caused machine check inter-
rupt.

4.10.7.2 SLB Management Instructions

The POWER9 core implements the SLB management instructions as defined in the Power ISA (Version
3.0B). Specifically, the following instruction details are noteworthy:

• The slbmfee and slbmfev instructions can read any SLB entry when UPRT = ‘1’, if the L-bit in the
instruction image is set to a ‘1’. This is an implementation-specific feature that will only be used in the
future if and when the POWER9 processor core supports UPRT = ‘1’ for HPT translation.

• The slbfee. instruction writes ‘0’ to CR field 0 whenever UPRT = ‘1’.

Note: UPRT should always be set to ‘1’ (per the ISA) whenever Radix translation is being performed
(that is, LPCR[HR] = ‘1’).

• The slbia instruction with IH = ‘101’ (that is, a reserved value) is treated the same as IH = ‘111’.

4.10.7.3 Supported Segment and Page Sizes for HPT Translations

The POWER9 core supports two segment sizes for HPT translation: 256 MB and 1 TB. The POWER9 core
also provides support for 4 KB, 64 KB, 16 MB, and 16 GB page sizes for HPT translation. Translation infor-
mation for all these page sizes is kept in the TLB. Irrespective of the page size, a given page takes up only
one entry in the TLB.

If a virtual address is mapped into a small (large) page and then later mapped into a large (small) page
without invalidating TLB entries between changing page size, a machine check interrupt can result with an
indication that a parity error occurred when the TLB was accessed to translate an effective address. The error
condition can be corrected by invalidating the entire TLB and SLB.

The POWER9 core also supports multiple page sizes per segment (MPSS) as described in the Power ISA.
Specifically, the POWER9 core supports mixing page size in a single segment with the following combina-
tions only:

• 4 KB base / 64 KB actual
• 4 KB base / 16 MB actual
• 64 KB base / 16 MB actual

Table 4-21 on page 109 shows the correspondence between PTE[L, LP] values and STE[L, LP]/SLBE[L, LP]
values. The supported segment table and SLB entry sizes and page sizes are also shown in Table 4-21.
These same page sizes and their associated encodings are also used in the Partition Table Entry “PS” field.

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Power Architecture Compliance

Page 109 of 508

4.10.7.4 TLB Hash Function for HPT

In HPT mode, the entire 1024 entries in the TLB are used to cache HPT page table entries (PTEs). The TLB
is organized as 256 entries × 4-way set associative. The TLB hash function for 256 MB segments is shown in
Table 4-22 and for 1 TB segments is shown in Table 4-23. The corresponding hash function is used for TLB
reads, writes, and snooped tlbie operations.

Table 4-21. PTE and STE/SLBE Correspondence for HPT Translation

Entry
Number

PTE STE/SLBE Base Page
Size

Actual Virtual
Page Size Notes

L LP L LP

1 0 rrrr rrrr 0 00 4 KB 4 KB 1

2 1 0000 0000 1 00 16 MB 16 MB

3 1 rrrr 0001 1 01 64 KB 64 KB 2

4 1 0000 0011 1 10 16 GB 16 GB

5 1 rrrr 0111 0 00 4 KB 64 KB 1

6 1 0000 1000 1 01 64 KB 16 MB 2

7 1 0011 1000 0 00 4 KB 16 MB 1

1. Entries 1, 5, and 7 all use STE/SLBE[L, LP] = ‘000’ encoding for base page size 4 KB but have unique PTE[L, LP] encodings for
actual page size.

2. Entries 3 and 6 both use STE/SLBE[L, LP] = ‘101’ encoding for base page size of 64 KB but have unique PTE[L, LP] encodings for
actual page size.

3. Unimplemented STE/SLBE page size encodings are treated the same as the ‘000’ case.
4. If the STE/SLBE page size is ‘110’ (16 GB) and the segment size is small (256 MB), hardware treats the STE/SLBE page size the

same as the ‘000’ case.
5. The ‘r’ bits are part of the real page number. They can be any value.

Table 4-22. 256 MB Segments

Page Size Index

4 KB [VSID(46:49) XOR EA(44:47)] || EA(48:51)

64 KB [VSID(46:49) XOR EA(40:43)] || EA(44:47)

16 MB VSID(46:49) || EA(36:39)

16 GB Does not exist

Table 4-23. 1 TB Segments

Page Size Index

4 KB [VSID(34:37) XOR EA(44:47)] || EA(48:51)

64 KB [VSID(34:37) XOR EA(40:43)] || EA(44:47)

16 MB [VSID(34:37) XOR EA(32:35)] || EA(36:39)

16 GB [VSID(34:37) XOR EA(25:28)] || EA(26:29)

User’s Manual
OpenPOWER
POWER9 Processor

Power Architecture Compliance

Page 110 of 508
Version 2.1

10 October 2019

4.10.7.5 tlbie and tlbiel Usage for HPT Translations

For HPT translation, the following tables show the tlbie and tlbiel specifications for various page sizes
supported by the POWER9 core.

Table 4-24 shows the legal segment size and page size specifications for tlbie and tlbiel for the POWER9
HPT PTEs (R = ‘0’) when L = ‘0’, and RIC ≠ ‘3’.

Table 4-25 shows the legal segment size and page size specifications for tlbie and tlbiel for the POWER9
HPT PTEs (R = ‘0’) when L = ‘1’ and RIC ≠ ‘3’.

Table 4-24. Segment Size and Page Size Specifications for HPT tlbie and tlbiel (R = ‘0’, L = ‘0’, and RIC ≠ ‘3’)

RB[54:55]
Segment Size

RB[63]
L RIC

RB[56:58]
AP

(Same as
STE/SLBE[L||LP]

Encoding)

Actual Page Size to be Invalidated

00 0 0,2 000 4 KB

00 0 0,2 101 64 KB

00 0 0,2 100 16 MB

01 0 0,2 000 4 KB

01 0 0,2 101 64 KB

01 0 0,2 100 16 MB

1. All other AP values must not be used when L = ‘0’ (and R = ’0’) and results in a machine check interrupt.
2. RB[54:55] = ‘00’ corresponds to a 256 MB segment size and RB[54:55] = ‘01’ corresponds to 1 TB segment size.
3. 16 GB page with a small segment (RB(54:55] = ‘00’) is not a permitted combination.
4. PRS = ‘1’ and R = ‘0’ is an unsupported combination (invalid form)

Table 4-25. Segment Size and Page Size Specifications for HPT tlbie and tlbiel (R = ‘0’, L = ‘1’, and RIC ≠ ‘3’)

RB[54:55]
Segment Size

RB[63]
L RIC

RB[44:51]
LP

(same as STE/SLBE[L||LP]
encoding)

Base Page Size Actual Page Size to be Invalidated

00 1 0,2 0000 0000 16 MB 16 MB

00 1 0,2 VVVV 0001 64 KB 64 KB

00 1 0,2 0000 1000 64 KB 16 MB

01 1 0,2 0000 0000 16 MB 16 MB

01 1 0,2 VVVV 0001 64 KB 64 KB

01 1 0,2 0000 0011 16 GB 16 GB

01 1 0,2 0000 1000 64 KB 16 MB

1. All other LP values used when R = ‘0’, L = ‘1’, and RIC≠ ‘3’ result in a machine check interrupt.
2. ‘v’ corresponds to AVA (AVPN) bits.
3. RB[54:55] = ‘00’ corresponds to 256 MB segment size and RB[54:55] = ‘01’ corresponds to 1 TB segment size.
4. 16 GB page with a small segment (RB[54:55] = ‘00’) is not a permitted combination.

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Power Architecture Compliance

Page 111 of 508

See Appendix C tlbie and tlbiel Encodings for HPT Translations on page 485 for details.

4.10.8 Instruction Effective-to-Real Address Translation Cache

The POWER9 processor core includes a 64-entry, fully-associative instruction effective-to-real address trans-
lation (I-ERAT) for fast translation of instruction effective addresses into physical (real) addresses on a per
LSU slice basis. The ERAT is dynamically shared between all four threads.

For hypervisor real mode accesses, the I-ERAT entries are shared by all threads on a given core. The ERAT
is implemented as a CAM that supports page sizes of 4 KB, 64 KB, 2 MB (Radix translation only), and 16 MB.
Instruction accesses to 1 GB or 16 GB pages (HPT translations only) are installed in the I-ERAT as multiple
16 MB page entries as required.

Because addresses associated with nonhypervisor real mode accesses are translated differently than those
associated with virtual-mode accesses, the I-ERAT must keep the MSR[IR] and MSR[HV] bits (along with
various bits of translation information) in each entry. This allows the I-ERAT to distinguish between transla-
tions that are valid for the various modes of operation.

For HPT translation, the contents of each I-ERAT entry is the result of a page table search based on the
contents of an SLB or segment-table entry. To maintain consistency with the SLB, the following instructions
cause entries in the I-ERAT that belong to the thread executing the instruction to be invalidated:

• slbia - Use the appropriate IH field value as described in the Power ISA Operating Environment Architec-
ture - Book III (version 3.0B), some or all entries are invalidated for that thread.

• mtiamr - All entries are invalidated for that thread.

The slbie instruction causes invalidation of an I-ERAT entry belonging to the thread (no impact to the other
thread) only if there is a perfect address match (that is, for invalidation effective address bits, EA[0:35] are
matched for an slbie small 256 MB segment, EA[0:23] are matched for an slbie 1 TB segment) and the
Class bit specified by the slbie instruction matches the Class bit of the SLB/ERAT entry being invalidated.

Table 4-26. Segment Size and Page Size Specifications for HPT tlbie Cluster Bombs (R = ‘0’, L = ‘0’, and
RIC = ‘3’) Note: tlbiel with RIC = 3 is an invalid instruction form and is treated as a NOP.

RB[54:55]
Segment Size

RB[63]
L RIC

RB[56:58]
AP

(same as STE/SLBE[L||LP]
encoding)

Actual Page Size to be Invalidated

00 0 3 110 Eight consecutive 4 KB pages aligned on
32 KB boundary

00 0 3 111 Eight consecutive 64 KB pages aligned
on 512 KB boundary

01 0 3 110 Eight consecutive 4 KB pages aligned on
32 KB boundary

01 0 3 111 Eight consecutive 64 KB pages aligned
on 512 KB boundary

1. All other L and AP values and combinations used when R = ‘0’, L = ‘0’ and RIC = ‘3’ result in a machine check interrupt.
2. RB[54:55] = ‘00’ corresponds to 256 MB segment size and RB[54:55] = ‘01’ corresponds to 1 TB segment size.
3. PRS = ‘1’ and R = ‘0’ is an unsupported combination (invalid form)
4. The POWER9 core has dropped support of range bombs.

User’s Manual
OpenPOWER
POWER9 Processor

Power Architecture Compliance

Page 112 of 508
Version 2.1

10 October 2019

Because the POWER9 processor core does not support UPRT = ‘1’ mode for HPT translations, the core does
not invalidate any SLB or ERAT entries as the result of an slbieg instruction. The slbieg instruction is used
soley for invalidating the segment table entries cached by the nest MMU hardware.

The tlbie instruction (or the detection of snooped-tlbie operations) invalidates all I-ERAT entries (irrespective
of the thread) in the I-ERAT that have a perfect match. In other words, the entry is invalidated only if the
LPIDR value matches the LPID value from the snooped-tlbie and:

• EA[36:51] are matched for HPT tlbie 4 KB page
• EA[14:51] are matched for Radix tlbie 4 KB page
• EA[36:48] are matched for HPT tlbie 8 × 4 KB cluster bomb
• EA[36:47] are matched for HPT tlbie 64 KB page
• EA[14:47] are matched for Radix tlbie 64 KB page
• EA[36:44] are matched for HPT tlbie 8 × 64 KB cluster bomb
• EA[14:42] are matched for Radix tlbie 2 MB page
• EA[36:39] are matched for HPT tlbie 16 MB page
• EA[14:33] are matched for Radix tlbie 1 GB page
• EA[24:29] are matched for HPT tlbie 16 GB page

Note: EA refers to the effective address for process-scoped Radix translations, the guest real address for
partition-scoped Radix translations, and the virtual address for HPT translations.

For Radix translation, the I-ERAT caches the flattened guest effective address to host real address transla-
tion that results from searching both the guest and host page tables. The Class bit in the I-ERAT is set to ‘1’
for quadrants 0, 1,and 2 and is set to ‘0’ for quadrant 3 accesses (regardless of HV or PR). The preferred
method for invalidating the entire I-ERAT when using Radix translation is to execute an slbia with IH = x‘7’ or
an mtiamr instruction. For more precise ERAT invalidation where software must retain quadrant 0 accesses
(regardless of HV or PR), slbia with IH = x‘1’ or IH = x‘3’ can be used. Additionally, mtpidr and mtlpidr
instructions perform an implicit slbia with IH = x‘3’.

Upon power-on, each I-ERAT entry is set to the invalid state.

Table 4-27 on page 113 describes how the entries in the I-ERAT are created. For HPT translation (HR = ‘0’),
the resulting I and G values in the table are solely determined by the I and G values from the PTE in memory.
For Radix translation (HR = ‘1’), the resulting I and G values in the table reflect the net or effective I and G
values as derived from Figure 4-6.

Figure 4-6. Net or Effective I and G Values (I-ERAT)

Host ATT ‘00’ ‘01’ ‘10’ ‘11’

Guest ATT (SAO, I, G) ‘000’ ‘100’ ‘011’ ‘010’

‘00’ ‘000’ Normal Normal WIMG Miscompare WIMG Miscompare

‘01’ ‘100’ Normal Normal WIMG Miscompare WIMG Miscompare

‘10’ ‘011’ No Execute No Execute No Execute No Execute

‘11’ ‘010’ Normal Normal Cache-Inhibited
Fetch

Cache-Inhibited
Fetch

Notes:

• Dark green = no exception reported.
• Light green = instruction fetch from a caching inhibited page occurs.
• Light red = no execute (for example, SRR1[35] = ‘1’). ISI occurs per the Power ISA.
• Dark red = mismatched ATT. ISI occurs per bit SRR1[34] = ‘1’ in the Power ISA.

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Power Architecture Compliance

Page 113 of 508

The SAO bit is not applicable to instruction accesses and thus is not shown in Table 4-27. The exception
cases listed previously are either a mismatched ATT or “no-execute” type of exception as dictated by the
Power ISA (Version 3.0B).

4.10.9 Data Effective-to-Real-Address Translation

The POWER9 processor core includes a 64-entry, fully-associative data effective-to-real-address translation
(D-ERAT) for fast translation of data effective addresses into physical (real) addresses on a per LSU slice
basis. The ERAT is dynamically shared between all four threads.

For hypervisor real- mode accesses, the D-ERAT entries are shared by all threads on a given core. All other
accesses are not shared across threads, even when the LPIDR value is set to the same value on two or more
threads. The ERAT is implemented as a CAM that supports page sizes of 4 KB, 64 KB, 2 MB (Radix transla-
tion only), and 16 MB. Data accesses to 1 GB or 16 GB pages (HPT translations only) are installed in the
D-ERAT as multiple 16 MB page entries as required.

Because addresses associated with nonhypervisor real-mode accesses are translated differently than those
associated with virtual-mode accesses, the D-ERAT must keep the MSR[DR] and MSR[HV] bits (along with
various bits of translation information) in each entry. This allows the D-ERAT to distinguish between transla-
tions that are valid for the various modes of operation.

For HPT translation, because the contents of each D-ERAT entry is the result of a page-table search based
on the contents of an SLB or segment table entry, to maintain consistency with the SLB, the following instruc-
tion causes entries in the D-ERAT that belong to the thread executing the instruction to be invalidated:

• slbia using the appropriate IH field value as described in the Power ISA Operating Environment Architec-
ture - Book III (version 3.0B), some or all entries are invalidated for that thread

The slbie instruction causes invalidation of a D-ERAT entry belonging to the thread (no impact to the other
thread) only if there is a perfect address match (that is, for invalidation effective address bits, EA[0:35] are
matched for an slbie small 256 MB segment, EA[0:23] are matched for an slbie 1 TB segment). Unlike the

Table 4-27. I-ERAT I and G Bit Setting

Condition

I and G
Determined By: Resulting Action

MSR[IR] HR MSR[HV]

First
Access

I = 1
Fetch

1 X X PTE PTE
If G = ‘0’, the page is written into the I-ERAT using the I-bit value and
page size determined from the PTE as described previously.
If G = ‘1’, an ISI is taken.

0 0 0 PTE PTE

Virtual real mode.
If G = ‘0’, the page is written into the I-ERAT using the I-bit value and
page size is determined from the PTE as described previously.
If G = ‘1’, an ISI is taken.

0 1 0 PTE PTE
Guest real mode. An entry is created with the I and G values set from
the host PTE.
If G = ‘1’, an ISI is taken.

0 X 1 Yes 1 N/A
Page-based RMSC mode.
A 2 MB page is installed in the I-ERAT with I = ‘1’ and G = ‘0’.

0 X 1 No 0 N/A
Page-based RMSC mode.
A 2 MB page is installed in the I-ERAT with I = ’0’ and G = ‘0’.

User’s Manual
OpenPOWER
POWER9 Processor

Power Architecture Compliance

Page 114 of 508
Version 2.1

10 October 2019

I-ERAT, no Class bit match is required for slbie invalidation of the D-ERAT (nor the SLB). Note that the
preceding sentence is a design-implementation feature, not an architecture requirement. Similarly, because
the POWER9 processor core does not support UPRT = ‘1’ mode for HPT translations, the core does not
invalidate any SLB or ERAT entries as the result of an slbieg instruction. The slbieg instruction is used solely
for invalidating the segment table entries cached by the nest MMU hardware.

The tlbie instruction (or the detection of snooped-tlbie operations) invalidates all D-ERAT entries (irrespective
of the thread) in the D-ERAT that have a perfect match. In other words, the entry is invalidated only if the
LPIDR value matches the LPID value from the snooped-tlbie and:

• EA[36:51] are matched for HPT tlbie 4 KB page
• EA[14:51] are matched for Radix tlbie 4 KB page
• EA[36:48] are matched for HPT tlbie 8 × 4 KB cluster bomb
• EA[36:47] are matched for HPT tlbie 64 KB page
• EA[14:47] are matched for Radix tlbie 64 KB page
• EA[36:44] are matched for HPT tlbie 8 × 64 KB cluster bomb
• EA[14:42] are matched for Radix tlbie 2 MB page
• EA[36:39] are matched for HPT tlbie 16 MB page
• EA[14:33] are matched for Radix tlbie 1 GB page
• EA[24:29] are matched for HPT tlbie 16 GB page

Note: EA refers to the effective address for process-scoped Radix translations, the guest real address for
partition-scoped Radix translations, and the virtual address for HPT translations.

For Radix translation, the D-ERAT caches the flattened guest effective address to host real address transla-
tion resulting from searching both the guest and host page tables. The Class bit in the D-ERAT is set to ‘1’ for
quadrants 0, 1, and 2, and set to ‘0’ for quadrant 3 accesses (regardless of HV or PR). The preferred method
for invalidating the entire D-ERAT when using Radix translation is to execute an slbia with IH = x‘7’. For more
precise ERAT invalidation where software must retain quadrant 0 accesses (regardless of HV or PR), slbia
with IH = x‘1’ or IH = x‘3’ can be used. Additionally, mtpidr and mtlpidr instructions perform an implicit slbia
with IH = x‘3’.

Upon power-on, each D-ERAT entry is set to the invalid state.

According to the Power ISA, aliasing the I-bit storage attribute is prohibited. In the POWER9 core, due to the
caching of pages in the ERATs, software should avoid accessing the same real page with different values for
the I-bit storage attribute. Failure to follow this restriction can result in a cache paradox or other boundedly
undefined behavior.

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Power Architecture Compliance

Page 115 of 508

4.10.9.1 D-ERAT I and G Bit Setting

Entries in the D-ERAT are created as described in Table 4-28. For HPT translation (HR = ‘0’), the resulting I
and G values in Table 4-28 are solely determined by the I and G values from the PTE in memory. For Radix
translation (HR = ‘1’), the resulting I and G values in Table 4-28 reflect the “net” or “effective” I and G values
as derived from Figure 4-7.

The exception cases listed above are a mismatched ATT type of exception as dictated by the Power ISA
(Version 3.0B).

Figure 4-7. Net or Effective I and G Values (D-ERAT)

Host ATT ‘00’ ‘01’ ‘10’ ‘11’

Guest ATT (SAO, I, G) ‘000’ ‘100’ ‘011’ ‘010’

‘00’ ‘000’ ‘000’ ‘100’ Exception Exception

‘01’ ‘100’ ‘100’ ‘100’ Exception Exception

‘10’ ‘011’ ‘001’ ‘001’ ‘011’ ‘011’

‘11’ ‘010’ ‘000’ ‘000’ ‘010’ ‘010’

Note:

• Light Green means no exception reported.
• Red means "mismatched ATT" type of DSI occurs (for example,DSISR(34) = ‘1’ on DSI as per ISA).

Table 4-28. D-ERAT I and G Bit Setting

Condition

SAO I and G
Determined By: Resulting ActionMSR

[DR] HR MSR
[HV]

First
Access
HV CI

Instruction

1 X X 0 PTE PTE
When the WIMG (HPT) or net ATT (Radix) indicate the page is
not SAO, an entry is created with SAO = ‘0’ and the I and G val-
ues are set from the PTE.

1 X X 1 0 0 When the WIMG (HPT) or net ATT (Radix) indicate the page is
SAO, an entry is created with SAO = ‘1’ , I = ‘0’, and G = ‘0’

0 0 0 PTE PTE PTE
Virtual real mode.
An entry is created with the I and G values set from the host
PTE. The SAO bit is set if the PTE (WIMG) bits specify SAO.

0 1 0 PTE PTE PTE
Guest real mode.
An entry is created with the I and G values set from the host
PTE. The SAO bit is set if the PTE (ATT) bits specify SAO.

0 X 1 Yes 1 1

Page-based RMSC mode.
If the first access is caused by a hypervisor CI load or store (for
example, ldcix, stdcix, and so on), an entry is established as
I = ‘1’ and G = ‘1’.

0 X 1 No 0 0

Page-based RMSC mode.
If the first access is caused by any instruction other than a hyper-
visor CI load or store, storage is G = ‘0’ and an entry is estab-
lished as I = ‘0’ and G = ‘0’.

User’s Manual
OpenPOWER
POWER9 Processor

Power Architecture Compliance

Page 116 of 508
Version 2.1

10 October 2019

Caching-Inhibited Paradox Cases

If a caching-inhibited load instruction hits in the L1 data cache, the load data is serviced from the L1 data
cache and no request is sent to the NCU.

If a caching-inhibited store instruction hits in the L1 data cache, the store data is written to the L1 data cache
and sent to the NCU. Note that the L1 data cache and L2 cache are no longer coherent.

These scenarios are true both for storage accesess marked as caching-inhibited by the PTE I-bit and for the
hypervisor caching-inhibited load and store instructions.

The POWER9 core supports the page-based real-mode storage control (RMSC) mechanism that allows
speculative access to DR = ‘0’ space, if there is real memory there.

4.10.10 Translation Lookaside Buffer and PWC

The POWER9 core contains a unified (combined for both instruction and data), 1024-entry, 4-way set-
associative TLB (LRU-based replacement algorithm) for HPT mode. When the core is operating in Radix
mode, the TLB is logically cut in half with the other half being dedicated as a page walk cache (PWC).
Regardless of what translation mode the core is operating in, the TLB is 4-way set associative. The TLB is
used to cache PTEs. The PWC is used to cache page directory entries (PDEs) for Radix page tables. In addi-
tion, the POWER9 core contains one 64-entry, fully-associative I-ERAT and one 64-entry, fully-associative
D-ERAT. The TLB is a cache of recently-used page table entries. The PWC is a cache of recently used page
directory entries (for Radix). The ERATs are caches that contain flattened translations derived from informa-
tion in the various page tables, segment table entries, or bolted SLB entries. The TLB, PWC, and ERATs are
loaded and managed by hardware.

In the POWER9 core, the TLB entry stores the LPID in each TLB entry to indicate which partition loaded that
TLB entry. Because the virtual and real address space are the same for all software threads within a logical
partition, the TLB, which keeps the mapping from virtual-to-real address space, are completely shared by the
threads within a partition and there is no thread-ID bit required in the TLB to identify which entry belongs to
which thread. Different partitions have different mappings from virtual-to-real address space; therefore, TLB
entries cannot be shared between partitions. A given entry in the TLB can be used by all the threads within a
partition at the same time. Threads in different partitions are not able to access TLB entries from another
partition.

For more details on the organization and size of the TLB for each type of translation mode, see Table 4-18
TLB Hash for Radix Mode on page 105, Table 4-19 PWC Hash for Radix Mode on page 105, Table 4-22
256 MB Segments on page 109, and Table 4-23 1 TB Segments on page 109.

The POWER9 core supports a hardware update of the storage access recording bits (reference and change)
into the memory-based page table.

The POWER9 core supports a TLB hit under miss and two table concurrent tablewalks. The POWER9 core
also supports two outstanding I-ERAT misses (from the four threads) and four outstanding D-ERAT misses at
the same time.

The POWER9 core supports lockless TLBIE operations. The architectural requirement that only one thread at
a time can execute tlbie/tlbsync instructions during a page table modification need not be followed (see the
Page Table Updates section of the Power ISA Operating Environment Architecture - Book III (version 3.0B)).
This was traditionally implemented with a single global lock for the entire page table modification sequences.
The term lock-less TLBIEs refers to the POWER9 core’s ability to manage concurrent tlbie/tlbsync
sequences from multiple threads without this global lock.

Noncacheable unit

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Power Architecture Compliance

Page 117 of 508

However, software must still ensure that concurrent, conflicting, racing PTE updates from more than one
thread do not occur (the hardware performs the updates in some fashion, but the end result is undefined due
to the racing of the updates to the same PTE entry) and therefore, software locks or some other synchroniza-
tion discipline are still required to prevent these collisions as necessary.

The execution of tlbie instructions or the detection of snooped-tlbie operations off the bus cause an index-
based invalidate to occur in the TLB, if there is a match. In other words, an entry is invalidated only if there is
a perfect match of the effective address supplied by the tlbie operation and the content of the TLB entry.

The POWER9 core does not support the tlbia instruction.

Upon power-on, the POWER9 core initializes each TLB entry to the invalid state.

4.10.11 Segment Lookaside Buffer

For HPT translation, the POWER9 core contains a unified (combined for both instruction and data), 32-entry,
fully-associative SLB per thread. Although the Power ISA (Version 3.0B) supports both a hardware managed
SLB which caches the in-memory segment table (that is, UPRT = ‘1’) and a strictly software-managed SLB
(UPRT = ‘0’), the POWER9 core only supports UPRT = ‘0’ when performing HPT translation. Therefore, soft-
ware must set the LPCR[UPRT] = ‘0’ when using HPT translation or the results are undefined.

While the slbieg instruction does not invalidate SLB entries in the processor core when UPRT = ‘0’, it is used
to managed STEs cached by the NMMU. Outstanding slbieg instructions are ordered by the slbsync instruc-
tion per the Power ISA (Version 3.0B). When the LPCR[UPRT] = ‘0’, the segment table is not searched and
all 32 entries for each thread can only be updated by software by using the slbmte instruction.

Information derived from the SLB can also be cached in the I-ERAT or the D-ERAT along with information
from the TLB. As a result, many of the SLB management instructions have effects on the ERATs, as well as
on the SLB itself.

The POWER9 core supports both 256 MB and1 TB segment sizes. Bit 0 of the SLB[B] field is ignored by the
POWER9 core and should always be set to ‘0’ per the Power ISA for unimplemented segment size encod-
ings.

Because the SLB is managed by software (the operating system) either via the segment table or bolted
entries, it is possible that multiple entries can be incorrectly set up to provide translations for the same effec-
tive address. If an effective address is translated by more than one SLB entry (that is, the ESID fields of the
entries are identical or overlap), a machine check interrupt results with an indication that a parity error
occurred when the SLB was accessed. When this happens the hardware logically ORs the data in the
conflicting entries. The machine check handler can look at the SLB contents to try to determine if conflicting
entries have been provided. When a parity error occurs not due to multiple entries, the entire SLB must be
reloaded because the DAR does not contain an address indicating which entry caused the parity error. If the
source of the error was due to multiple entries, the conflicting entries must be corrected for the translation to
proceed, which might also be accomplished by reloading the entire SLB with good entries.

Effective segment identifier

User’s Manual
OpenPOWER
POWER9 Processor

Power Architecture Compliance

Page 118 of 508
Version 2.1

10 October 2019

4.10.12 Discontinued Translation Support Items

4.10.12.1 Address Space Register

Not to be confused with the Access Segment Descriptor Register (ASDR), the Address Space Register
(ASR) has been removed from the Power ISA and thus is not supported by the POWER9 processor. The
ASDR is supported as described in the Power ISA (Version 3.0B).

4.10.13 Block Address Translation

Although this facility existed in earlier versions of the architecture, it is no longer part of the Power ISA. As a
result, the POWER9 core does not support block address translation.

4.10.13.1 Support for 32-Bit Operating Systems

The POWER9 processor does not support the optional bridge facility and instructions for 64-bit implementa-
tions described in the Bridge-to-SLB Architecture section of the Power ISA Operating Environment Architec-
ture - Book III (version 3.0B).

As a result, the following instructions are not supported in the POWER9 processor:

• mtsr - Move to segment register
• mtsrin - Move to segment register indirect
• mfsr - Move from segment register
• mfsrin - Move from segment register indirect

4.10.13.2 Real Mode

The POWER9 core does not support real mode accesses that used the Real Mode Offset Register (RMOR)
and Real Mode Limit Selector (RMLS) on previous generation processors. As such, per the Power ISA
(Version 3.0B), LPCR[0] is considered reserved and, when using HPT translation, the POWER9 core
behaves like previous generation processors (such as the POWER8 core) did when LPCR[0] = ‘1’. In other
words, nonhypervisor real mode accesses for HPT translation are always treated as virtual real-mode
accesses as per the Power ISA (Version 3.0B). When Radix translation in guest real mode (that is, IR = ‘0’ or
DR = ‘0’) is being used, the guest EA (gEA) equals the guest RA (gRA), which is then translated by the parti-
tion-scoped Radix trees.

4.10.14 Reference and Change Bits

When performing Radix translation, the POWER9 hardware triggers the appropriate interrupt (DSI, HDSI, ISI,
or HISI) as defined in the Power ISA (Version 3.0B) for the mode and type of access whenever Reference (R)
and Change (C) bits require setting in either the guest or host page-table entry (PTE). When performing HPT
translation, the hardware performs the R and C bit updates nonatomically (same behavior as the POWER8
processor).

For HPT PTEs, the W and M bits in the PTE are assumed to be ‘01’ respectively. If the change bit is updated,
the W and M bit in the PTE are set to ‘01’ respectively by the hardware.

The POWER9 core can speculatively set R bits in the PTE. In some rare circumstances, the POWER9 core
can speculatively set the page table entry C bit.

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Power Architecture Compliance

Page 119 of 508

4.10.15 Storage Protection

For HPT translation, the Power ISA (Version 3.0B) states that whether an instruction fetch is permitted from a
page marked “no access” is implementation dependent. In the POWER9 core, these instruction fetches are
permitted to continue without signaling an exception. The POWER9 core supports storage protection modes
in the Power ISA, with 32 virtual-page class keys for HPT translation. IAMR, AMOR, and UAMOR are imple-
mented as 32-bit SPRs.

4.10.16 Hypervisor Real Mode Storage Control

The POWER9 core supports the ability to control cacheability of data and instruction accesses while in hyper-
visor real mode based on the history block (also known as, page-based) mechanism described in the Power
ISA section on the Hypervisor Real Mode Storage Control (RMSC). Accesses performed in hypervisor real
mode are cached in the I-ERAT and D-ERAT for instruction and data accesses respectively as 2 MB pages.

The POWER9 core supports RMSC for data storage and instruction storage. The real memory in a system is
often noncontiguous and the hypervisor data and instruction storage accesses can be scattered across the
address space. The page-based RMSC architecture and implementation allows speculative access safely in
system memory. The first time the HV = ‘1’ access is made in DR = ‘0’ and IR = ‘0’ mode, it is done
nonspeculatively. After the first access to a given real page, a D-ERAT entry or I-ERAT entry is established. If
the first access to the page was cacheable, the page is installed in the D-ERAT with IG = ‘00’ and thus, all
subsequent accesses to said page can be performed speculatively while still ensuring that the access is
made to system memory. However, if the first access to the page was a noncacheable access, the page is
installed in the D-ERAT with IG = ‘11’ and thus, all subsequent accesses to that page are considered nonca-
cheable and are performed nonspeculatively as well.

If a page is already installed in the D-ERAT as IG = ‘00’ and a subsequent caching inhibited load or store
instruction (for example, lbzcix, stbcix) accesses that same page, a DSI is taken with DSISR[62] set to ‘1’.

4.10.17 Storage Access Modes - WIMG and ATT Bits

Because the POWER9 processor supports both HPT and Radix translation, two methods of specifying
storage attributes on a per page basis exist in the Power ISA (Version 3.0B). For HPT, the WIMG bits deter-
mine this. For Radix, the ATT bits determine this and the Power ISA (Version 3.0B) shows how ATT values
correspond to their HPT WIMG equivalent values. The remainder of this section discusses storage attributes
in HPT terms, but the Radix ATT equivalent values also apply.

The POWER9 core always assumes W = ‘0’ and M = ‘1’ independent of the value of these bits in the page
table entry. For HPT PTEs, when the hardware is performing a change bit update, it writes the W and M bits
as W = ‘0’ and M = ‘1’. Per the Power ISA, accessing a page as both I = ‘0’ and I = ‘1’ is boundedly undefined.
Software should avoid aliasing the I-bit on a page basis. Failing to do so can result in cache paradox situa-
tions which can lead to memory corruption.

User’s Manual
OpenPOWER
POWER9 Processor

Power Architecture Compliance

Page 120 of 508
Version 2.1

10 October 2019

Table 4-29 summarizes the treatment of the WIMG bits in the POWER9 core.

For the noncacheable unit (NCU), the IG combination has the following meaning in the POWER9 core to
control the store ordering and store gathering (see Table 4-30).

In IG = ‘11’ mode, cache-inhibited loads cannot be reordered relative to loads, and cache-inhibited stores
cannot be reordered relative to cache-inhibited stores. Cache-inhibited loads can be reordered relative to
cache-inhibited stores and vice-versa (if it is necessary to maintain ordering between loads and stores,
barrier instructions must be used). There is no defined ordering between cache-inhibited load or store opera-
tions from different threads.

In IG = ‘11’ mode, gathering is not permitted for either load or store operations within or between threads.

In IG = ‘10’ mode, cache-inhibited loads or stores from a given thread can be gathered and can be reordered.
This mode allows for higher performance with a certain loss of control of the order in which the operations are
completed or whether operations are gathered (barriers can be used where necessary to re-establish order).
There is no defined ordering between cache-inhibited load or store operations from different threads.

4.10.18 Speculative Storage Accesses

The POWER9 core can execute load instructions to nonguarded storage speculatively. This can occur when
a load instruction is encountered on a predicted branch path or when a logically preceding instruction causes
an interrupt. As a result, it is possible for a speculative load that misses in the on-chip cache hierarchy to
initiate an external storage request even if that load instruction is not actually executed as part of the true
instruction stream.

Table 4-29. WIMG Bits

ATT WIMG Description

00 x0x0 Treated as WIMG = ‘0010’

01 1110 Treated as WIMG = ‘0010’ but accesses are strongly ordered

10 x1x1 Treated as WIMG = ‘0111’

11 01x0 Treated as WIMG = ‘0110’

Table 4-30. IG Bits

ATT IG Description

0x 10 Gather, reorder in NCU is allowed

1x 11 No gather, no reorder in NCU is allowed

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Power Architecture Compliance

Page 121 of 508

4.10.19 TLB Invalidate Entry (tlbie and tlbiel) Instruction

See Section 4.10 Translation Architecture on page 97 for details regarding whether tlbie and tlbiel are
considered privileged or hypervisor privileged instructions.

See Section 4.10.3 tlbie and tlbiel Instruction Format and Operands on page 99, Section 4.10.4 Radix
Translation on page 103, and Section 4.10.7 Hashed Page Table Translation on page 107 for details on tlbie
and tlbiel instruction usage.

The Power ISA (Version 3.0B) describes a number of cases for tlbie and tlbiel as invalid forms.

The POWER9 core truncates RS[0:31] and RS[32:63] to the supported size of PID and LPID respectively. No
interrupt is generated for values that exceed the implement PID and LPID sizes.

The POWER9 core ignores RB[54] when R = 0.

The POWER9 core reports a machine check interrupt for unsupported AP and LP values specified in the RB
register.

See Section 4.10.26.7 Machine Check Interrupt on page 130 for a list of invalid instructions forms for
tlbie/tlbiel that result in a machine check interrupt.

4.10.20 TLB Invalidate All (tlbia) Instruction

The tlbia instruction is not implemented in the POWER9 core and if detected causes a hypervisor emulation
assistance interrupt. The effects of the instruction can easily be emulated by executing a series of tlbiel
instructions to each congruence class in the TLB by incrementing the effective address bits [44:51] through
their full range, and by setting the IS field of the tlbiel instruction to the appropriate values as described in the
Power ISA. To invalidate all entries irrespective of the LPAR ID, MSR[HV] must equal ‘1’.

4.10.21 TLB Synchronize (tlbsync) Instruction

On a given thread, the tlbsync instruction is used to synchronize the completion of the tlbie instruction. Only
one tlbsync instruction is required to synchronize the completion of a group of tlbie instructions. See
Section 4.10 Translation Architecture on page 97 for details regarding when tlbsync is considered a privi-
leged or hypervisor privileged instruction. The instruction is otherwise implemented as described in the Power
ISA.

4.10.22 SLB Synchronize (slbsync) Instruction

On a given thread, the slbsync instruction is used to synchronize the completion of both the slbieg or the
slbiag instruction. Only one slbsync instruction is required to synchronize the completion of a group of
slbieg instructions. See Section 4.10 Translation Architecture on page 97 for details regarding when slbsync
is considered a privileged or hypervisor privileged instruction. The instruction is otherwise implemented as
described in the Power ISA.

User’s Manual
OpenPOWER
POWER9 Processor

Power Architecture Compliance

Page 122 of 508
Version 2.1

10 October 2019

4.10.23 Support for Store Gathering

The POWER9 core performs gathering of cacheable stores to reduce the store traffic into the L2 cache. For
cacheable stores, the gathering occurs in L2 store queues that sit above the L2 cache. The store queue is
shared by the threads. The store queue is comprised of two banks of sixteen 64-byte wide, fully-associative
entries or gather stations. Stores can be gathered while architecturally permitted (that is, there is no inter-
vening barrier operation) and the matching address is valid in the store queue. The conditions for pushing the
store queue data into the L2 cache are not visible to the programmer.

Gathering of cache-inhibited stores is also supported and can be disabled with a mode bit in the noncache-
able unit (NCU) configuration register. There are sixteen 64-byte gather stations in the NCU.

4.10.24 Cache Coherency Paradoxes

Accesses to a given cache line as both cacheable and caching inhibited are not supported in either the Power
ISA or the POWER9 chip. Because the value of the I-bit is cached by the ERATs inside the processor core,
cacheable accesses can be performed speculatively and thus, software should avoid aliasing the I-bit (that is,
caching-inhibited bit) on a per page basis. Failure for software to adhere to this restriction can lead to cache
corruption.

4.10.25 Handling Parity Error, Multi-Hit, and Uncorrectable Errors

4.10.25.1 Parity Error

If there is a parity error in the D-cache, I-cache, D-ERAT, I-ERAT, TLB or several other register files, SRAM
dataflow or control structures (but not the SLB), the POWER9 core sets the relevant FIR bit and initiates the
instruction retry and recovery (IRR) process to “clean up” all the architected states and flush the caches,
ERATs, and TLB, but keep the SLB as is. Software restores the SLB. After the recovery process, a hypervisor
maintenance interrupt (HMI) is generated. On a successful recovery, the HMER indicates a successful
recovery.

If the same parity error occurs several times and reaches a threshold, the hypervisor can decide that the core
is nonfunctional. The threshold counter is maintained by the hypervisor in software.

HID[5] must be set to ‘0’, otherwise processor recovery does not work.

Note: The IRR process is engaged for detection of any recoverable parity error in the core or due to the firing
of a control checker.

There is a separate FIR bit and FIR extension bits for a parity error in the I-cache, D-cache, SLB, D-ERAT,
I-ERAT, TLB, and a few other structures. For all the other register files, there is one shared FIR bit to indicate
parity error.

Static random-access memory

Hypervisor Maintenance Exception Register

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Power Architecture Compliance

Page 123 of 508

4.10.25.2 Multi-Hit

If there is a multi-hit in the D-ERAT, TLB, or SLB, the core finishes the operation with a machine check inter-
rupt and sets the proper DSISR bit to indicate where the multi-hit was detected.

A multi-hit in the D-ERAT and SLB can occur due to a hardware failure. Multi-hit means more than one entry
matched the EA in the D-ERAT (ESID in the case of an SLB). Due to their CAM structure, the result is a
“bitters logical or” of the RA of the multiple entries (VSID in case of SLB). Because of this “bit-wise logical or”,
multi-hit is very likely to generate a parity error as well.

Because the SLB is managed by software with the Power ISA, a software bug can result in a multi-hit in SLB
structures. There is no known case of multi-hit in I-ERAT that can produce a wrong result.

There are separate FIR bits for a multi-hit in the D-ERAT, TLB, and SLB.

4.10.25.3 Both Multi-Hit and Parity Error

If both multi-hit and parity errors happen in the D-ERAT or TLB, the processor core initiates an IRR process.
No machine check is presented. However, after the recovery operation, the processor core provides an HMI
interrupt.

For an SLB, any error causes the processor to take a machine check interrupt. The FIR bit setting indicates
both multi-hit and parity error.

4.10.25.4 Uncorrectable Error Handling

If there is an uncorrectable error (UE) for a translate or a load operation, the instruction finishes with a
machine check indication to the ISU. The instruction is flushed and re-executed without generating any
machine check, and a counter is maintained to see how many UEs occurred. If the UE occurs more than a
threshold, a machine-check interrupt is taken. For caching-inhibited load operation, a machine-check inter-
rupt is taken on the first occurrence of the UE.

For the instruction side (I-side), if an instruction is executed and in the nonspeculative path, only then is it
treated as a UE. Otherwise, the I-side UE handling mechanism is similar to the D-side.

The core provides the EA of the LSU operation that caused the UE in the DAR register. For a UE detected by
the IFU for instruction fetches, SRR0 is set to the EA.

Table 4-31 summarizes how the POWER9 processor handles parity, multi-hit, and unrecoverable errors.

Table 4-31. Summary of POWER9 Behavior on Parity Error, Multi-Hit, and Uncorrectable Error (Sheet 1 of 2)

Structure Parity Error Multi-Hit Both Parity Error and
Multi-Hit

Uncorrectable Error
(UE)

SLB: I-side translation MC, SRR1, SRR0 MC, SRR1, SRR0 MC, SRR1, SRR0 N/A

SLB: D-side translation, SLBFEE, MFSLB MC, DSISR, DAR MC, DSISR, DAR MC, DSISR, DAR N/A

TLB: I-side translation IRR, HMI MC, SRR1, SRR0 IRR, HMI N/A

TLB: D-side translation, MFTLB IRR, HMI MC, DSISR, DAR IRR, HMI N/A

Notes:

• SRR0, SRR1, DSISR, DAR are various SPRs set on a machine-check interrupt.
• In the TLB, a multi-hit cannot generate a parity error, but a parity error can generate a multi-hit. In the SLB and D-ERAT, a multi-hit

probably generates a parity error.

Machine check

Instruction retry and recovery

Hypervisor maintenance interrupt

User’s Manual
OpenPOWER
POWER9 Processor

Power Architecture Compliance

Page 124 of 508
Version 2.1

10 October 2019

4.10.25.5 TLB Parity Error and Multi-Hit Action

D-ERAT IRR, HMI MC, DSISR, DAR IRR, HMI N/A

Tablewalk: I-side initiated IRR, HMI N/A N/A MC, SRR1, SRR0

Tablewalk: D-side initiated IRR, HMI N/A N/A MC, DSISR, DAR

Load IRR, HMI N/A N/A MC, DSISR

CI Load MC, DSISR N/A N/A MC, DSISR

Store IRR, HMI N/A N/A MC, DSISR

Instruction fetch IRR, HMI N/A N/A MC, SRR1, SRR0

Any other structure (I-ERAT, other Register
file, I-cache, D-cache and other SRAMs,
data-flow hardware control checker)

IRR, HMI N/A N/A N/A

Parity = 0 and Multi-hit = 0: No action.

Parity = 1 and Multi-hit = 0: Parity error detected, IRR followed by HMI (no machine check).

Parity = 0 and Multi-hit = 1: This case is probably caused by software setting up two TLB entries pointing to
the same VSID.

Parity = 1 and Multi-hit = 1: Probably multiple bits flipped due to a soft-error that caused the parity error but
also made two VSIDs look the same. The POWER9 core does IRR and then
HMI.

Table 4-31. Summary of POWER9 Behavior on Parity Error, Multi-Hit, and Uncorrectable Error (Sheet 2 of 2)

Structure Parity Error Multi-Hit Both Parity Error and
Multi-Hit

Uncorrectable Error
(UE)

Notes:

• SRR0, SRR1, DSISR, DAR are various SPRs set on a machine-check interrupt.
• In the TLB, a multi-hit cannot generate a parity error, but a parity error can generate a multi-hit. In the SLB and D-ERAT, a multi-hit

probably generates a parity error.

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Power Architecture Compliance

Page 125 of 508

4.10.26 Interrupts

4.10.26.1 Interrupt Vectors

Exceptions implemented in the POWER9 core are listed in Table 4-32.

Table 4-32. Interrupt Vectors

Exception Type Exception Value

System Reset x‘00100’

Machine Check x‘00200’

Data Storage Interrupt (DSI) x‘00300’

Data Segment Interrupt x‘00380’

Instruction Storage Interrupt (ISI) x‘00400’

Instruction Segment Interrupt x‘00480’

External Interrupt x‘00500’

Alignment Interrupt x‘00600’

Program Interrupt x‘00700’

Floating-Point Unavailable x‘00800’

Decrementer Interrupt x‘00900’

Hypervisor Decrementer Interrupt x‘00980’

Directed Privileged Doorbell Interrupt x‘00A00’

Reserved x‘00B00’

System Call x‘00C00’

Trace Interrupt x‘00D00’

Hypervisor Data Storage Interrupt (HDSI) x‘00E00’

Hypervisor Instruction Storage Interrupt (HISI) x‘00E20’

Hypervisor Emulation Assistance Interrupt x‘00E40’

Hypervisor Maintenance Interrupt x‘00E60’

Directed Hypervisor Doorbell Interrupt x‘00E80’

Hypervisor Virtualization Interrupt x‘00EA0’

Performance Interrupt x‘00F00’

VMX Unavailable Interrupt x‘00F20’

VSX Unavailable Interrupt x‘00F40’

Facility Unavailable Interrupt x‘00F60’

Hypervisor Facility Unavailable Interrupt x‘00F80’

Soft Patch Interrupt x‘01500’

Debug Interrupt x‘01600’

User’s Manual
OpenPOWER
POWER9 Processor

Power Architecture Compliance

Page 126 of 508
Version 2.1

10 October 2019

4.10.26.2 Alternate Interrupt Location

Table 4-33 summarizes the alternate interrupt location (AIL) effects on interrupt processing when IR and DR
have the same value before the interrupt occurs. If IR and DR have different values before the interrupt
occurs, the interrupts are taken as if AIL = ’00’ per the Power ISA (Version 3.0B).

Table 4-33. AIL Effects on Interrupt Processing (IR = DR)

Interrupt Name Initial
HV

Sets
HV = 1?

IR = DR
before

Interrupt
AIL Value HPT Behavior Radix Behavior

Machine Check, SRI, HMI X Yes X 0, 2, 3 IR/DR = 0
No offset added

IR/DR = 0
No offset added

System call vectored

X No 0 0, 2, 3
IR/DR = 0
Normal effective address
(00 - 0001_7xxx)

IR/DR = 0
Normal effective address

X No 1 0
IR/DR = 0
Normal effective address
(00 - 0001_7xxx)

IR/DR = 0
Normal effective address

X No 1 2
IR/DR = 1
Normal effective address
(00 - 0001 7xxx)

IR/DR = 1
Normal effective address

X No 1 3 IR/DR = 1
Alternate effective address

IR/DR = 1
Alternate effective
address

Interrupts that (can) set HV = 1:
sc(LEV = 1), ext(LPES = 0),
program (priv, evirt=1), hypervisor
emulation assistance interrupt
(HEAI), hypervisor doorbell,
hypervisor decrementer, hypervisor
data storgage interrupt (HDSI),
hypervisor instruction storage inter-
rupt (HISI), hypervisor virtualization,
hypervisor facility unavailable

X Yes X 0 IR/DR = 0
No offset added

IR/DR = 0
No offset added

X Yes 0 2, 3 IR/DR = 0
No offset added

IR/DR = 0
No offset added

0 Yes 1 2, 3 IR/DR = 0
No offset added

IR/DR = 1
Offset

1 Yes 1 2, 3 IR/DR = 1
Offset

IR/DR = 1
Offset

Interrupts that preserve HV:
DSI, ISI, data/instruction segment,
alignment, FP/vector/VSX/facility
unavailable, sc (LEV = 0), trace,
performance monitor, ext (LPES = 1),
program (other), decrementer,
privilege doorbell

X No X 0 IR/DR = 0
No offset added

IR/DR = 0
No offset added

X No 0 2, 3 IR/DR = 0
No offset added

IR/DR = 0
No offset added

X No 1 2, 3 IR/DR = 1
Offset

IR/DR = 1
Offset

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Power Architecture Compliance

Page 127 of 508

4.10.26.3 Interrupt Definitions

Table 4-34 lists the implemented MSR and SRR1/HSRR1 bits.

Table 4-34. Implementation MSR and SRR1/HSRR1 Bits (Sheet 1 of 2)

Bits MSR SRR1/HSRR1

0 SF SF

1 Reserved Reserved

2 Not Implemented Not Implemented

3 HV HV

4 Not Implemented Not Implemented

5 Reserved Reserved

6:28 Not Implemented Not Implemented

29:30 TS (Transactional State) TS (Transactional State)

31 TM (Transactional Memory Available) TM (Transactional Memory)

32 Not Implemented Not Implemented

33 Not Implemented Specific Interrupt Information

34 Not Implemented Not Implemented

35:36 Not Implemented Specific Interrupt Information

37 Not Implemented Not Implemented

38 VMX VMX

39 Not Implemented Not Implemented

40 VSX VSX

41 Not Implemented Not Implemented

42:47 Not Implemented Specific Interrupt Information

48 EE EE

49 PR PR

50 FP FP

51 ME ME

52 FE0 FE0

53:54 TE TE

55 FE1 FE1

56 US US

57 Not Implemented Not Implemented

58 IR IR

59 DR DR

60 Not Implemented Not Implemented

61 PMM PMM

62 RI RI

User’s Manual
OpenPOWER
POWER9 Processor

Power Architecture Compliance

Page 128 of 508
Version 2.1

10 October 2019

4.10.26.4 Synchronous Interrupts

In addition to the synchronous interrupts described in the Power ISA (Version 3.0B), the POWER9 core
implements a soft-patch interrupt that can be used by hypervisor-level software to “trap” on particular instruc-
tions. When the conditions for trapping on the instruction are met (typically based on the instruction opcode),
the soft-patch facility in the hardware generates a soft-patch interrupt and the hardware fetches the interrupt
vector located at offset x‘01500’. In addition, the hardware updates the Hypervisor Emulation Assist Interrupt
Register (HEIR) with the 32-bit Power ISA instruction. In some cases, the hardware modifies bits of the
instruction image. A partial list of notable instructions that exhibit this behavior are listed in Table 4-35.

Note: For the instructions listed in Table 4-35, HEIR[11:14] is set to all ‘1’s. The remaining bits are set as
described in the Power ISA (Version 3.0B).

4.10.26.5 Asynchronous Interrupt Priorities

The POWER9 core processes asynchronous interrupts and event-based branches (EBBs) in the following
order:

1. System Reset Interrupt

2. Machine Check

3. Imprecise Floating Point Exceptions

4. Hypervisor Maintenance Interrupt

5. Hypervisor Virtualization External Interrupt

6. Mediated External Interrupt

7. Direct External Interrupt

8. Performance Monitor Interrupt

63 LE LE

Table 4-35. HEIR Instruction Formatting for Branch-Like Instructions

Instruction Primary Opcode Secondary Opcode Additional Fields

sc or scv 17

sp_attn 00 256

rfscv 19 82

rfid 19 82

hrfid 19 274

stop 19 370

rfebb 19 146

mtmsr 31 146 L = 0

mtmsrd 31 178 L = 0

ISTAT errors N/A N/A

Table 4-34. Implementation MSR and SRR1/HSRR1 Bits (Sheet 2 of 2)

Bits MSR SRR1/HSRR1

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Power Architecture Compliance

Page 129 of 508

9. Hypervisor Decrementer Interrupt

10. Decrementer Interrupt

11. Hypervisor Doorbell Interrupt

12. Privileged Doorbell Interrupt

13. Event Based Branch

4.10.26.6 System Reset Interrupt

The system reset interrupt is a nonmaskable, asynchronous interrupt that is caused by an SCOM command
for a soft reset.

Note: There is no explicit SRESET pin; SRESET must be invoked from the service processor.

The POWER9 core implements a 1-deep queue to remember the reason of a subsequent system reset inter-
rupt while a system reset interrupt is pending. The reason of the most important subsequent system reset
interrupt is remembered per the following priority:

Table 4-36. System Reset Interrupt

Register Bits Description

SRR0 0:63 Set to the effective address of the instruction that the processor would have.

SRR1

0:31 Implemented bits loaded from the MSR.

32 Set to ‘0’.

33 LPAR mode switch occurred while the thread was in power savings mode.

35:36 Set to ‘0’.

42:45

Interrupt caused by IFU detection of a hardware uncorrectable error (UE)
0000 Reserved by pervasive function.
0010 Interrupt caused by SCOM when not in power-saving mode or caused by back-to-back

SRESET.
0011 Interrupt caused by hypervisor door bell.
0101 Interrupt caused by privileged door bell.
0100 Interrupt caused by SCOM when in power-saving mode.
0110 Interrupt caused by decrementer wake-up when in power-saving mode.
1000 Interrupt caused by external interrupt wake-up when in power-saving mode.
1001 Interrupt caused by hypervisor virtualization wake-up when in power-saving mode.
1010 Interrupt caused by HMI wake-up when in power saving mode.
1100 Interrupt caused by implementation-specific wake-up when in power-saving mode.

46:47

Indicates if the interrupt occurs when the processor is in power-saving mode.
00 Interrupt did not occur while the processor was in power-saving mode.
01 Interrupt occurred while the processor was in power-saving mode. The state of all

resources was maintained as if the processor was not in power-saving mode
10 Interrupt occurred while the processor was in power-saving mode. The state of some

resources was not maintained but the state of all hypervisor resources, including TB,
PURR, and SPURR, was maintained as if the processor was not in power-saving mode
and the state of all other resources is such that the hypervisor can resume execution.

11 Interrupt occurred while the processor was in power-saving mode. The state of some
resources was not maintained, and the state of some hypervisor resources was not main-
tained or the state of some resources is such that the hypervisor cannot resume execution.

62 Loaded from MSR[62] if recoverable. Otherwise set to zero

Others Implemented bits loaded from MSR.

User’s Manual
OpenPOWER
POWER9 Processor

Power Architecture Compliance

Page 130 of 508
Version 2.1

10 October 2019

1. Hypervisor doorbell-initiated system reset

2. Privileged doorbell-initiated system reset

3. SCOM-initiated system reset

4. HMI-initiated system reset

5. External-initiated system reset

6. Decrementer-initiated system reset

7. Implementation-specific initiated system reset

4.10.26.7 Machine Check Interrupt

The are several possible causes of machine check interrupts in the POWER9 chip, some of which are gener-
ally recoverable and some of which are non-recoverable.

The following causes of machine check interrupts are precise and synchronous with the instruction that
caused the operation which encountered the error (that is, SRR0 contains the address of the instruction that
caused the operation).

1. The detection of either a parity error, or a multi-hit error, or both in the SLB during the execution of a load,
store slbfee, or mfslb instruction. If the interrupt is caused by a soft error, executing the appropriate
sequence of instructions in the machine-check handler program clears the error condition without causing
any loss of state, permitting the interrupted program to be resumed if MSR[RI] was a ‘1’ when the instruc-
tion that encountered the error was executed.

2. If there is a multi-hit in the D-ERAT or TLB, the core finishes the operation with a machine-check interrupt
and sets the proper DSISR bit to indicate where the multi-hit occurred.

3. If there is an uncorrectable ECC error when a load instruction is executed or when the page table is being
searched in the process of translating an address, the instruction finishes with a machine-check indica-
tion to the instruction-sequencing unit. The instruction is flushed and re-executed without generating any
machine check. A counter is maintained to see how many UEs occurred. If the UE occurs more than a
pre-established threshold, a machine-check interrupt is taken.

4. For a caching-inhibited load operation, the machine-check interrupt is taken on the first occurrence of the
UE.

5. For the I-side, if an instruction is executed and the instruction is in the nonspeculative path, only then will
it be treated as a UE. Otherwise, the I-side UE handling mechanism is similar to the D-side.

6. For the I side, when an instruction fetch causes an out-of-range real address (L2 address error) or a for-
eign link times out, a machine check interrupt is taken.

7. For the D side, when a load causes an out-of-range real address (L2 address error) or a foreign link times
out, a machine check interrupt is taken.

8. For the I and D side, if a tablewalk fetch causes an out-of-range address (L2 address error) or foreign link
times out, a machine check interrupt is taken.

9. Anytime that a tlbie or tlbiel instruction has either an instruction encoding or an unsupported page-size
encoding that is not supported by the hardware. The tlbie(l) instruction encoding cases are outlined
Appendix B on page 469 and Appendix C on page 485. The unsupported page-size cases correspond to
any page-size encodings not specified in Table 4-20 on page 106,Table 4-24 on page 110, Table 4-25 on
page 110, or Table 4-26 on page 111.

10. During translation, if a host real address is in the foreign address range (bits 8:12 are not zeros).

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Power Architecture Compliance

Page 131 of 508

11. If an instruction fetch is in the foreign address range (bits 8:12 are not zeros).

In the cases described in items (2), (3), (4), and (5), no state is lost in the processor, but recovery of the
correct data might not be possible.

For more traumatic errors or hard errors, these characteristics cannot be reliably provided on a machine
check because it is likely that the failure will prevent reliable execution. Additionally, a machine-check inter-
rupt that occurs when MSR[ME] = ‘0’ results in a checkstop.

The following are invalid forms for tlbie that result in a machine-check interrupt:

• PRS = 1 and R = 0 and RIC ≠ 2
• RIC = 1 and R = 0
• RIC = 3 and R = 1
• RIC = 1 and IS = 0
• RIC = 2 and IS = 0
• RIC = 3 and IS ≠ 0
• PRS = 0 and IS = 1
• R = 0 and IS = 1 and RIC ≠ 2
• L = 1 and IS ≠ 0
• L = 1 and R = 1

The following are invalid forms for tlbiel that result in a machine check interrupt:

• PRS = 1 and R = 0 and RIC ≠ 2
• RIC = 1 and R = 0
• RIC = 3
• RIC = 1 and IS = 0
• RIC = 2 and IS = 0
• PRS = 0 and IS = 1
• R = 0 and IS = 1 and RIC ≠ 2
• L = 1 and IS ≠ 0
• L = 1 and R = 1

In the POWER9 core, there are two asynchronous machine-check interrupts. One is taken when a store
instruction has an out-of-range real address associated with it. This is in general a programming error. The
core takes a machine check to help in debugging bad code. The second asynchronous case is when a store
is being performed and a foreign link times out. Again this presents an asynchronous machine check, both
machine checks set bits in the SRR1 to identify the cause. A machine-check interrupt is taken when the
machine-check input pin is asserted. The FIR, debug logic, and hang recovery logic can also be programmed
to induce machine check interrupts for various error conditions. In general, the POWER9 core works hard to
make these interrupts recoverable, but there are some scenarios where it cannot achieve this. Software can
use the MSR[RI] bit to help identify the cases where the machine-check interrupt is recoverable.

Information about the suspected source of the error condition is logged into either the SRR1 Register, the
DSISR Register, or both as defined in Table 4-37 on page 132 for synchronous and asynchronous machine
checks.

User’s Manual
OpenPOWER
POWER9 Processor

Power Architecture Compliance

Page 132 of 508
Version 2.1

10 October 2019

Table 4-37. Synchronous Machine Checks (Sheet 1 of 2)

Register Bits Description

SRR0 0:63

Effective address of the next instruction that would have executed if the machine-check inter-
rupt was not taken. For cases where this is a recoverable machine check due to a load that
has surfaced an error, this will be the address of the load instruction itself. (The POWER9 core
allows the instruction to execute to surface the error, but inhibits the commitment of the
results.) For cases where this is a recoverable machine check due to an instruction fetch sur-
facing an error, this will be the address of an instruction that initiated the memory/cache
access. for asynchronous machine checks this address is meaningless

SRR1

42 Interrupt caused by load/store detection of error (see DSISR).

36, 43:45

Interrupt caused by an instruction fetch, indicated by the following encoding:
0000 Reserved.
0001 Interrupt caused by a hardware uncorrectable error detected while doing an instruc-

tion fetch (but not translation related).
0010 Interrupt caused by an SLB parity error while translating an instruction fetch address.
0011 Interrupt caused by an SLB multiple hit, while translating an instruction fetch address.

Note: This condition occurs if the ESID fields of two or more SLB entries contain the
same value.

0100 Interrupt caused by an I-ERAT multi-hit error.
0101 Interrupt caused by a TLB multi-hit error detected while translating an instruction fetch

address. Note: This condition occurs if an address is mapped to both a small and
large page in the SLB. This condition can also occur due to a software bug, when a
software-managed TLB mechanism is used.

0110 Interrupt caused by a hardware UE detected while doing a TLB reload for the I-side.
0111 Instruction fetch to foreign address space
1000 Interrupt caused by an L2 abort on an instruction fetch due to foreign link time out.
1001 Interrupt caused by an L2 abort on an instruction tablewalk due to foreign link time

out.
1010 Reserved.
1011 Real address (CResp) error for an instruction fetch
1100 Real address (CResp) error for an instruction fetch tablewalk
1101 Asynchronous machine check due to a real address (CResp) error from a store
1110 Asynchronous machine check due to a foreign link time out (nest abort) due to a store

instruction.
1111 I-side tablewalk used a host real address in the foreign address range

62 Loaded from MSR[62] if recoverable. Otherwise, set to zero.

others Implemented bits loaded from MSR.

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Power Architecture Compliance

Page 133 of 508

DSISR Implementation Note: All the bits have been implemented in hardware.

DSISR

32:47 All zeros.

48 Interrupt caused by a UE deferred error, but not for a tablewalk (D-side only).

49 Interrupt caused by a UE deferred error during a tablewalk (D-side).

50 Foreign Link Time out (Nest abort) for a load.

51 Foreign Link Timeout (Nest abort) for tablewalk.

52 Interrupt caused by a D-ERAT multi-hit.

53 Interrupt caused by a TLB multi-hit due to translation (D-side only) or MFTLB operation.

54 Tlbie or tlbiel programming error.

55 Interrupt caused by an SLB parity error (translate lookup or mfslbfee) due to a translation
(D-side only), slbfee, or mfslb instruction.

56 Interrupt caused by an SLB multi-hit (might not be recoverable) for translation (D-side only),
slbfee, or mfslb instruction.

57 Bad real address (CResp) for a load.

58 Bad address (CResp) for a load or store tablewalk address.

59 Host real address to foreign space during translation

60 Host real address to foreign space on a load or store access

61:63 Set to zeros.

DAR 0:63

Effective address computed by a load or store instruction that caused the operation that
encountered a parity error, or multi-hit, or both in the SLB, or which encountered a multi-hit in
the TLB, or encountered a multi-hit in the D-ERAT, or encountered a UE while attempting to
reload a TLB entry. For all other types of machine check interrupts, the DAR is undefined
(including the case where the operand of the load instruction contains a UE).

1. SLB parity error, multi-hit, or both: DAR is loaded with the EA of the target of the load or
store instruction that caused the error.

2. TLB multi-hit: DAR is loaded with the EA of the target of the load or store instruction that
caused the error.

3. D-ERAT multi-hit: DAR is loaded with the EA of the target of the load or store instruction
that caused the error.

4. UE on D-side tablewalk: DAR is loaded with the EA of the target of the load or store
instruction.

5. UE on instruction fetch: DAR is undefined.
6. UE on I-side tablewalk: DAR is undefined.
7. UE on load or store instruction: DAR is undefined (EA is not available in LMQ for loads;

therefore, DAR cannot be loaded).
8. CResp for load: DAR is set to the EA of the load that caused the error
9. CResp for a dside table-walk: DAR is undefined

10. Host real address to foreign space: DAR is undefined
11. Tlbie or tlbiell programming error: DAR is Undefined
12. Asynch Machine cheks: DAR is not modified

Table 4-37. Synchronous Machine Checks (Sheet 2 of 2)

Register Bits Description

User’s Manual
OpenPOWER
POWER9 Processor

Power Architecture Compliance

Page 134 of 508
Version 2.1

10 October 2019

Machine-Check Interrupt Handler Notes:

As mentioned previously, the machine check interrupt handler is expected to help hardware recover from
certain types of D-ERAT, TLB, and SLB errors detected by the hardware. In general terms, the interrupt
handler must check whether or not the machine check interrupt is recoverable (by looking at the state of the
RI bit in SRR1). It must determine the type of error that caused the machine check (by looking at the state of
the SRR1 and DSISR Registers). It must flush the contents of the array that reported the detected error (this
process is slightly different for each of the possible arrays). Finally, it must return to the interrupted process.

4.10.26.8 Hypervisor Maintenance Interrupt

The POWER9 hypervisor maintenance interrupt is implemented to replace the malfunction alert and thermal
interrupt; and to provide support for recovery function. The HMER Register contains the sources of the inter-
rupt, which can be masked by setting the HMEER enable bits to zero. For successful recovery, HMER setting
indicates successful recovery.

4.10.26.9 External Interrupt

An external interrupt is classified as being either a direct external interrupt or a mediated external interrupt.
Both cause an interrupt to x‘500’.

Direct External Interrupt

The direct external interrupt is signaled by the assertion of the external interrupt input signal. The external
interrupt signal must remain asserted until the processor has actually taken the interrupt. Failure to meet this
requirement can lead the processor to not recognize the interrupt request.

When LPES = ‘0’, the following registers are set.

When LPES = ‘1’, the following registers are set.

Table 4-38. Direct External Interrupt (LPES = ‘0’)

Register Bits Description

HSRR0 0:63 Set to the effective address of the instruction that the thread would have attempted to execute
next if no interrupt conditions were present.

HSRR1

33:36 Set to ‘0’.

42:47 Set to ‘0’.

Others Loaded from the MSR.

MSR – See the Power ISA.

Table 4-39. Direct External Interrupt (LPES = ‘1’) (Sheet 1 of 2)

Register Bits Description

SRR0 0:63 Set to the effective address of the instruction that the thread would have attempted to execute
next if no interrupt conditions were present.

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Power Architecture Compliance

Page 135 of 508

Mediated Exernal Interrupt

Mediated external interrupts are caused by the LPCR[MER] = ‘1’, when the thread is in privileged (supervisor)
or problem state mode.

When LPES = ‘0’, the following registers are set.

When LPES = ‘1’, the following registers are set.

4.10.26.10 Alignment Interrupt

See Section 4.1.4.1 Alignment Interrupts on page 54 for details on when the POWER9 core takes alignment
interrupts. The DAR is updated on an alignment interrupt as described in the Power ISA (Version 3.0B). The
DSISR register is not updated on an alignment interrupts per the Power ISA (Version 3.0B).

SRR1

33:36 Set to ‘0’.

42:47 Set to ‘0’.

Others Loaded from the MSR.

MSR – See the Power ISA.

Table 4-40. Mediated External Interrupt (LPES = ‘0’)

Register Bits Description

HSRR0 0:63 Set to the effective address of the instruction that the thread would have attempted to execute
next if no interrupt conditions were present.

HSRR1

33:36 Set to ‘0’.

42 Set to ‘1’.

43:47 Set to ‘0’.

Others Loaded from the MSR.

MSR – See the Power ISA.

Table 4-41. Mediated External Interrupt (LPES = ‘1’)

Register Bits Description

SRR0 0:63 Set to the effective address of the instruction that the thread would have attempted to execute
next if no interrupt conditions were present.

SRR1

33:36 Set to ‘0’.

42:47 Set to ‘0’.

Others Loaded from the MSR.

MSR – See the Power ISA.

Table 4-39. Direct External Interrupt (LPES = ‘1’) (Sheet 2 of 2)

Register Bits Description

User’s Manual
OpenPOWER
POWER9 Processor

Power Architecture Compliance

Page 136 of 508
Version 2.1

10 October 2019

4.10.26.11 Trace Interrupt

In general, a trace interrupt is taken after every instruction when the MSR[TE] = ‘10’ and after every branch
instruction when MSR[TE] = ‘01’. In particular, for the case where MSR[TE] = ‘10’ before a mtmsr[d] instruc-
tion is executed that alters the MSR[TE] bits, a trace interrupt also occurs. There are several instructions and
conditions for which the preceding statements are not followed. See the Power ISA (Version 3.0B) for details.
Additionally, a trace interrupt is taken when a CIABR match occurs. After a trace interrupt is taken, SRR0,
SRR1, SIAR, and SDAR are set as shown in Table 4-42.

The contents of SIAR and SDAR are undefined until a trace interrupt occurs.

4.10.26.12 Performance Monitor Interrupt

The performance monitor interrupt is signaled when the MSR[EE] bit is set, the MMCR0[PMAE] bit is set, and
any of the performance monitor counters overflow (this includes the eight performance counters defined in
the SPR space, as well as the counters defined in MMIO space for the nest).

After such an event is detected, the POWER9 core waits for previously dispatched instructions to complete,
and then takes the interrupt.

4.10.26.13 Facility Unavailable Interrupt

The POWER9 core implements the facility unavailable interrupt as defined in the Power ISA.

Table 4-42. Trace Interrupt

Register Bits Description

SRR0 0:63 Set as specified in the architecture.

SRR1

0:32 Implemented bits loaded from the MSR.

33:34 ‘10’

35 Set for a load instruction; otherwise, cleared.

36 Set for a store instruction; otherwise, cleared.

37:41 Loaded from the MSR.

42 Loaded from the MSR, which is an unimplemented bit (therefore, always set to ‘0’).

43 Set to a ‘1’ if a CIABR trace.

44:47 Set to ‘0’.

48:63 Implemented bits loaded from the MSR.

Note: Bit 35 and 36 are not set if an X-form load string or store string instruction specifies an operand length of 0.

SIAR 0:63 Set to the effective address of the traced instruction; undefined if a CIABR trace.

SDAR 0:63
If the instruction that took the trace interrupt was a storage access instruction, the SDAR is set
to the effective address of the storage access. SDAR is not set if an X-form load string or store
string instruction specifies an operand length of 0; undefined if a CIABR trace.

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Power Architecture Compliance

Page 137 of 508

4.10.26.14 Hypervisor Emulation Assistance Interrupt

The POWER9 core implements the hypervisor emulation assistance interrupt as defined in the Power ISA.
However, the contents of the HEIR for the following instructions differ from the 32-bit Power ISA instruction
described as follows:

mfbhrbe - Power ISA instruction bits 11:20 are recoded to indicate the internal SPR number assigned to
each BHRB entry. SPR d‘80’ is assigned if the specified entry is outside of the available range. This instruc-
tion is sensitive to PCR and therefore can be made illegal.

clrbhrb - Power ISA instruction bits 11:20 are recoded to indicate the internal SPR address d‘80’. This
instruction is sensitive to PCR and therefore can be made illegal.

bctar, bctarl - This is what a recoded bctar looks like in the HEIR after an illegal instr interrupt, where '-' can
be either 0 or 1.

0 1 2 3

01234567890123456789012345678901

0-100------11-0----01--10110000-

This should only match the following ops, none of which go into HEIR. Therefore, assume bctar if the above
compare matches:

ori_nop
ori.0
ori.1
oris.0
oris.1
subfic.0
subfic.1

The following instruction fields can be found in the indicated HEIR bits. Note that bo(4) is lost.

lk = HEIR(1)
bo(0:3) = HEIR(5:8)
bo(4) = '0'
bi(0) = HEIR(10)
bi(1:4) = HEIR(15:18)
bh(0:1) = HEIR(21:22)

Stop fetch instructions - The following instructions have Power ISA instruction bits 11:14 recoded to all ‘1’s
to indicate the “stop fetch’ function:

scv
rfscv
sp_atten
rfebb

User’s Manual
OpenPOWER
POWER9 Processor

Power Architecture Compliance

Page 138 of 508
Version 2.1

10 October 2019

4.10.27 Logical Partitioning (LPAR) Support

Each thread on the POWER9 core is assigned to its own logical partition (LPAR). The associated architected
SPRs are replicated on a per thread basis. See Table 4-8 on page 83 for details on which SPRs are repli-
cated per thread per LPAR.

4.10.28 Strong Access Ordering Mode (SAO)

The POWER9 core supports the SAO mode defined in Power ISA.

4.10.29 Graphics Data Stream Support

For cache-inhibited stores, the POWER9 core provides store gathering with an intentional stall to maximize
the amount of gathering that can occur.

4.10.30 Performance Monitoring, Sampling, and Trace

Performance monitoring facilities have been incorporated into the POWER9 processor to enable the collec-
tion of performance related data and instruction traces. In general, the POWER9 core supports the recom-
mended architecture for performance monitoring as described in the Power ISA.

4.10.31 Processor Compatibility Mode

The POWER9 core implements the Processor Compatibility Register (PCR) as described in the Power ISA to
facilitate partition migration. Setting PCR[60] = ‘1’ disables all problem state instructions and facilities that
were added in Power ISA (Version 3.0B). Thus, setting this bit effectively makes a POWER9 core architectur-
ally appear to problem state software as a Power ISA version 2.07 core (that is, a POWER8 core). Setting
PCR[61] = ‘1’ disables all problem state instructions and facilities that were added in Version 2.07 of the
Power ISA. Thus, setting both bits 60 and 61 effectively makes a POWER9 core architecturally appear to
problem state software as a Power ISA version 2.06 core (that is, a POWER7 core). Likewise, setting
PCR[62] = ‘1’ disables all problem state instructions and facilities that were added in Version 2.06 of the
Power ISA. Therefore, to migrate a partition from a version 2.05 system to a POWER9 (Version 3.0) system,
PCR[60:62] must be set to ‘111’.

Unlike the POWER8 processor, there is no requirement to flush the I-cache using HID[2] after changing the
state of the PCR with an mtspr_PCR.

Reserved

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Reserved v2
.0

7

v2
.0

6

v2
.0

5

R
es

er
ve

d

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

User’s Manual
OpenPOWER
POWER9 Processor

Simultaneous Multithreading

Page 139 of 508
Version 2.1

10 October 2019

5. Simultaneous Multithreading

5.1 Overview

The POWER9 processor core supports ST, SMT2, and SMT4 modes. Any thread number can be run in any
SMT mode, on any thread set. Table 5-1 shows the SMT mode definitions.

5.2 Partitioning of Resources in Different SMT Modes

Table 5-2 lists the resources that are partitioned in certain SMT modes.

Table 5-1. SMT Modes

Description Number of Threads Enabled Switch to this SMT mode when ...

ST 0 - 1 POR state

SMT2 1 - 2 2 threads

SMT4 1 - 4 3 - 4 threads

Table 5-2. Front-End Execution Core Resource

Resource ST SMT2 SMT4

EAT Entries 40 20 per thread 10 per thread

Instruction Buffer Entries 96 48 per thread 24 per thread

Link Stack 32 32 per thread 16 per thread

D-ERAT Entries 64 64 shared 64 shared

Dispatch Groups 6 6 with cycle toggle between
threads

3 - 3 wide dispatch that each
thread set has a cycle toggle

History Buffers
VR/GPR/FPR renames

4 × (20 + 96) Both threads share the total 2 × 2(20 + 96) threads within the
thread set share

Unified Issue Queue Entries 52 52 shared 26 per thread set

FXU, VSU, agens
Four combined FXU/FSU

Four additional agens
Threads share all units Thread sets share and each get

two combined and two agen units

Completion Rates Up to 64 instructions per cycle Up to 64 instructions per cycle for
one thread

Up to 64 instructions per cycle for
one thread

Power-on reset

Effective address translation

Single thread

Simultaneous multithreading

User’s Manual
OpenPOWER
POWER9 Processor

Simultaneous Multithreading

Page 140 of 508
Version 2.1

10 October 2019

5.3 Control Register

The Control Register (CTRL) is an architected 32-bit register. The bit assignment for the thread control bits in
the CTRL supports up to four threads. The POWER9 core supports threads 0 - 3. A bit in the CTRL Register
represents the architected state for a particular thread.

The CTRL Register can be read with the mfspr instruction using SPR 136 in user, supervisor, or hypervisor
state.

The CTRL Register can be selectively written with the mtspr instruction using SPR 152 in the supervisor or
hypervisor state.

The CTRL Register is initialized to x‘0000_0000_0000_0000’ at power-on.

Even though a single CTRL Register is shared by the four threads, there is no need to obtain a lock before
updating the CTRL Register. There is only one bus that goes to the core pervasive unit, and the instruction
issue logic serializes all mtctrl instructions. Updating the Run Latch bit must be done in hypervisor mode.
When updating the Run Latch bit (in hypervisor mode), the software is recommended to set the Thread State
bits to ‘0000’. Setting the Thread State bits to ‘0000’ is not allowed. Therefore, this updates the run latch, but
there is no effect to the Thread State bits and no thread will be killed or woken up.

CTRL[52:55] contain the Run Latches for threads 0 - 3. A mtspr CTRL instruction does not modify
CTRL[52:55] based on GPR bits [52:55]. Instead, these bits are indirectly loaded by writing a value to
CTRL[63]. The value written to CTRL[63] is loaded into CTRL[52] if thread 0 issued the move to CTRL and
CTRL[53] if thread 1 issued the move to CTRL, and so on. A thread cannot update the thread Run Latch bit of
another thread.

The run latch bit is only used by software for status and is sent to the performance monitor for performance
analysis. For this purpose, the POWER9 processor core supports one run latch per thread. To use this func-
tion, if a thread is executing a dispatchable task, software must set the CTRL Run Latch bit for that thread to
‘1’ by writing a ‘1’ to CTRL[63]. If a thread is in a wait state, waiting for a dispatchable task, software must set
the CTRL Run Latch for that thread to ‘0’.

Reserved Thread State Reserved R
un

 L
at

ch

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

32:51 Reserved Reserved.

52:55 Thread State Thread State bits corresponding to threads 0 - 3 (indirectly written by supervisor and hypervisor
software) as described in the Power ISA (Version 3.0B).

56:62 Reserved Reserved.

63 Run Latch Run Latch for thread doing CTRL read/write (read only/rerouted supervisor or hypervisor write).

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Simultaneous Multithreading

Page 141 of 508

Software can load the CTRL Register with a Run Latch value for its thread by writing the Run Latch value to
CTRL[63]. Hardware routes data directed to CTRL[63] into the corresponding CTRL[52] to CTRL[55] bit,
depending on which thread is doing the write (see previous definition of CTRL[52:55]). When the CTRL
Register is read, data driven on CTRL[63] comes from CTRL[52] to CTRL[55], depending on which thread is
doing the read. CTRL[63] does not physically exist in hardware.

The data read on a mfspr(CTRL) is formatted differently based on the MSR[PR] and MSR[HV] bits. Bit 63 is
always the Run Latch of the thread executing the mfspr. Bits [52:55] are formatted as shown in Table 5-3,
where R0 equals run latch for thread 0 and RT equals run latch of thread executing mfspr.

5.4 Thread Priority, Status, and Control Requirements

Thread priority, control, and status registers enable software to do the following:

• Give a large percentage of execution resources to critical tasks.

• Reduce the amount of resources and power used by low-priority work.

• Read foreground and background thread priority and status.

• Save and restore priority during interrupts.

• Provide a controlled way to allow supervisor/user code to change priority.

• Provide a means to kill or revive a thread.

• Avoid fine-grain livelock or deadlock situations between threads.

5.5 Thread Balance Control Requirements

The following mechanisms can be used to balance work between threads:

• Reduce ifetch priority of a thread that uses too many resources.

• Reduce decode priority of a thread that uses too many resources.

• Hold decode of a thread with long latency events.

• Dispatch flush decode pipe to clean congested operations.

• Balance flush from next-to-complete plus one group and hold at IBUF until a miss resolves.

Table 5-3. mfspr CTRL Data Formatting

MSR[HV], MSR[PR] Bits [52:55]

‘00’ Privileged R0, R1, R2, R3

‘*1’ Problem RT, 0, 0, 0

‘10’ Hypervisor R0, R1, R2, R3

User’s Manual
OpenPOWER
POWER9 Processor

Simultaneous Multithreading

Page 142 of 508
Version 2.1

10 October 2019

5.6 Thread Switch Control Register (Hypervisor Access Only)

Thread priority controls are programmable. All bits are read/write. There is one Thread Switch Control
Register (TSCR) per core. TSCR is initialized to x‘0000_0000’ at power-on.

IC
T

 D
ec

od
e

T
hr

ea
d

P
rio

rit
y

B
al

an
ce

 F
lu

sh
 D

is
ab

le

T
hr

ea
d

B
al

an
ce

 D
is

pa
tc

h
F

lu
sh

 D
is

ab
le

Reserved B
al

an
ce

 F
lu

sh
 M

is
s

C
ou

nt
er

 T
hr

es
ho

ld

LM
Q

 D
ec

od
e

T
hr

ea
d

P
rio

rit
y

C
on

tr
ol

E
xt

er
na

l B
oo

st
 P

rio
rit

y

F
or

w
ar

d
P

ro
gr

es
s

C
ou

nt
 F

lu
sh

D
ec

od
e

S
to

p

R
es

er
ve

d

L2
 M

is
s

D
ec

od
e

P
rio

rit
y

C
on

tr
ol

T
LB

 M
is

s
D

ec
od

e
P

rio
rit

y
C

on
tr

ol

M
ul

tic
yc

le
 O

pe
ra

tio
n

D
ec

od
e

P
rio

rit
y

C
on

tr
ol

D
is

pa
tc

h
F

lu
sh

 S
yn

c
C

on
tr

ol
 E

na
bl

e

Reserved P
T

E
sy

nc
 D

is
pa

tc
h

S
ta

ll

Reserved

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description

0:1 ICT Decode
Thread Priority

ICT Decode Thread Priority.
If all threads are at the same software-thread priority, decrease the priority when a thread uses
more than the following number of ICT entries:
00 Function disabled.
01 SMT2: 80; SMT4: 40.
10 SMT2: 96; SMT4: 48.
11 SMT2: 112; SMT4: 56.

2 Balance Flush
Disable

Balance Flush Disable.
0 Enable NTCP1 balance flushes.
1 Disable NTCP1 balance flushes.

3
Thread Balance
Dispatch Flush

Disable

Thread Balance Dispatch Flush Disable.
0 Enable dispatch flush for the thread that was chosen for a balance flush if that thread is

stalled at dispatch. A dispatch flush is a lower-latency flush than a balance flush.
1 Disable.
Note: Conditions for dispatch flush are the same as a balance flush.

4:7 Reserved Reserved.

8:9
 Balance Flush

Miss
Counter Threshold

Balance Flush Miss Counter Threshold.
If a balanced flush occurs, apply a CLB hold until the counter threshold is released or the miss is
resolved.
00 Function is disabled, CLB hold is applied until the miss is resolved.
01 Scan-only latch, value is programmable, 10-bit LFSR. POR default is: 256 cycles

(x‘3C1’ LFSR).
10 Scan-only latch, value is programmable, 10-bit LFSR. POR default is: 384 cycles

(x‘0E4’ LFSR).
11 Scan-only latch value programmable, 10-bit LFSR. POR default is: 512 cycles

(x‘20F’ LFSR).

Linear Feedback Shift Register

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Simultaneous Multithreading

Page 143 of 508

The TSCR can be accessed with the mtspr and mfspr instructions using SPR 921.

An SCOM latch is added to make this register as read-only for debug purposes.

TSCR is initialized to x‘0000_0000’ at power-on.

The preferred setting is: x‘802C_7880’.

10:11
LMQ Decode

Thread Priority
Control

LMQ Decode Priority Control.
When the threads have the same software-set decode priority, decrease the thread’s priority if a
thread has more misses outstanding than described as follows:
00 Function disabled.
01 SMT2: 4; SMT4: 2.
10 SMT2: 5; SMT4: 3.
11 SMT2: 6; SMT4: 4.

12 External Boost
Priority

External Boost Priority.
If ‘1’ and an external interrupt request is active and the corresponding threads’ priority is less than
normal priority, set the threads’ priority to normal.
Note: This does not change the value in PPR[11:13] for the affected thread.

13
Enable Forward
Progress Count

Flush

Enable Forward Progress Count Flush.
Note: This bit only enables/disables the flush from occurring.

The forward progress timer does not stop decrementing when set to ‘0’.
SMT2 and higher: If one thread is not making progress, enable flushing the other active threads.

14 Decode Stop

Decode Stop.
When set to ‘0’, the forward progress timer (in PPR) is decremented even when the current thread is
in decode stop state. When set to ‘1’, the forward progress timer is not decremented when the cur-
rent thread is in decode stop state.

15:16 Reserved Reserved.

17 L2 Miss Decode
Priority Control

L2 Miss Decode Priority Control.
If all threads are at the same software set priority, then:
0 L2 miss is disabled for use in adjusting decode priority.
1 L2 miss is enabled for use in adjusting decode priority.

18 TLB Miss Decode
Priority Control

TLB Miss Decode Priority Control.
If all threads are at the same software set priority, then:
0 TLB miss is disabled for use in adjusting decode priority.
1 TLB miss is enabled for use in adjusting decode priority.

19
Multicycle

Operation Decode
Priority Control

If all threads are at the same software-set priority, then:
0 Multicycle operations are disabled for use in adjusting decode priority.
1 Multicycle operations are enabled for use in adjusting decode priority.

20
Dispatch Flush
Sync Control

Enable

Dispatch Flush Sync Control Enable.
Stop decode if the mode for the thread with sync instruction is outstanding, (always on in shipping
mode). Applies only to SMT2 and higher.

21:23 Reserved Reserved.

24 PTEsync Dispatch
Stall

Ptesync dispatch stall.
Set to ‘1’ to enable the following function for ptesync instruction. Hold the ptesync instruction at
dispatch until LMQ is empty, SRQ is empty, no I-side table walk pending, and wait for a minimum of
15 cycles. After these conditions are satisfied, dispatch the ptesync. Afterwards, wait for LMQ
empty and SRQ empty to continue with the dispatch of further instructions.

25:31 Reserved Reserved.

Bits Field Name Description

Store reorder queue

User’s Manual
OpenPOWER
POWER9 Processor

Simultaneous Multithreading

Page 144 of 508
Version 2.1

10 October 2019

5.7 Thread Time-Out Register (Hypervisor only)

The Thread Time-Out Register (TTR) is used to ensure forward progress. There is one TTR per core. For
more information see Section 5.9 Forward Progress Timer on page 146.

The TTR can be accessed with the mtspr and mfspr instructions using SPR 922.

The TTR is initialized to x‘0000_0000_0000_0000’ at power-on.

Reserved

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Reserved Thread Time-out Flush

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:43 Reserved Reserved.

44:63 Thread Time-out
Flush Value.

Thread Time-out Flush Value.
A x’00000’ value generates a maximum count.

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Simultaneous Multithreading

Page 145 of 508

5.8 Program Priority Register (PPR)

Each thread has a 64-bit status register associated with it. Some bits are read-only, while other bits are
read/write. There is one PPR per thread.

The local PPR can be accessed with the mtspr or mfspr instructions using SPR 896.

The PPR for each thread is initialized to x‘0010_0000_0000_0000’ at power-on.

Reserved T
hr

ea
d

P
rio

rit
y

Reserved

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Reserved

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Fields Name Description

0:10 Reserved Reserved (not implemented).

11:13 Thread
Priority

Thread Priority.
000 Not allowed
001 Very low
010 Low
011 Medium low
100 Normal
101 Medium high
110 High
111 Extra high
Set to ‘100’ on system reset interrupt.

14:63 Reserved Reserved (not implemented).

User’s Manual
OpenPOWER
POWER9 Processor

Simultaneous Multithreading

Page 146 of 508
Version 2.1

10 October 2019

5.9 Forward Progress Timer

For the POWER9 core, the forward progress timer bits were moved out of the PPR Register. A nonarchi-
tected latch bank holds these bits. For the POWER9 core, PPR[44:63] are reserved, non-implemented bits.

The forward progress latch bits are loaded from TTR[44:63] every time a group of instructions are retired on
the current thread.

If the current thread is not in a decode stop state, the counter is decremented by ‘1’ every time a completion
occurs on another thread (see TSCR[14] in Section 5.6 Thread Switch Control Register (Hypervisor Access
Only) on page 142).

For ST mode:
• Initialized by a scan flush to x‘00000’ (maximum count)
• Decrementer stops at x‘00001’ (minimum value)

For SMT2 and higher, a flush of the other active threads occurs when:
• The timer count reaches x‘00001’.
• The forward progress count flush is enabled TSCR[13] = ‘1’.
• The group completes on another thread.

After the threads are flushed, no dispatch slots are given to the flushed thread until one group has completed
for the current thread.

5.10 Thread Priority NOPs

The thread switch priority can be read or written by software using the mfspr and mtspr instruction to the
Thread Status Register. Thread priority can also be altered by executing special forms of the or x,x,x NOP.
The priority is changed upon completion of the operation, provided the function is enabled for the current priv-
ilege level. Thread priority can be set as follows:

• On the POWER9 core, problem-state programs can set their priority from very-low to medium priority.

• Supervisor programs can set their thread priority from very-low to high priority.

• Hypervisor code can set all levels.

Table 5-4 describes how to set the thread priority NOPs.

Table 5-4. Thread Priority Nops

Priority NOP/mtSPR PPR[11:13] Thread Priority Required Privilege Level to
Set Given Thread Priority Value

or 31,31,31 / mtPPR[11:13] ‘001’ Very Low Hypervisor, Supervisor, Problem

or 1,1,1 / mtPPR[11:13] ‘010’ Low Hypervisor, Supervisor, Problem

or 6,6,6 / mtPPR[11:13] ‘011’ Medium Low Hypervisor, Supervisor, Problem

or 2,2,2 / mtPPR[11:13] ‘100’ Medium (Normal) Hypervisor, Supervisor, Problem

or 5,5,5 / mtPPR[11:13] ‘101’ Medium High Hypervisor, Supervisor, Problem1

or 3,3,3 / mtPPR[11:13] ‘110’ High Hypervisor, Supervisor

or 7,7,7 / mtPPR[11:13] ‘111’ Extra High Hypervisor

1. See Section 5.12 on page 147.

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Simultaneous Multithreading

Page 147 of 508

5.11 Thread Priority Boosting

Hardware typically does not change the thread priority value in the PPR, unless an mtPPR or one of the
priority changing NOP instructions is committed. However, on the POWER9 core, problem-state programs
can change the thread priority value to medium-high (‘5’) depending on the contents of the Problem-State
Priority Boost Register (PSPBR). The problem-state boosting changes the contents of PPR[11:13].

The thread priority can be boosted internally by the hardware (in a software invisible manner) in certain cases
(as described in Section 5.13 Thread Priority Boosting on Asynchronous Interrupt on page 148) to medium
priority (‘4’). The boosting of thread priority for pending asynchronous interrupts does not affect the actual
architected thread priority value in the PPR. Therefore, if the software does an mfPPR at any time during the
asynchronous boosting, it always gets the last priority value that is explicitly set by the software for that
thread.

5.12 Priority Boosting to Medium-High in User Mode

The POWER9 core allows a problem-state program that executes on a thread to temporarily change the PPR
thread priority value to medium high (‘5’) by executing an mtPPR or priority NOP. The temporary thread
priority boost is controlled by a 32-bit privileged Problem-State Priority Boost (PSPB) Register. There is one
PSBPR per thread, which is set by a move-to PSPB.

A problem state program can set the program priority to medium-high only when the PSPB of the thread
contains a nonzero value. The maximum value to which the PSPB can be set must be a power of 2 minus 1.
Bits that are not required to represent this maximum value must return ‘0’s when read, regardless of what was
written to them.

When the PSPB of the thread is set to a value less than its maximum value but greater than ‘0’, its contents
decrease monotonically at the same rate as the SPURR until its contents minus the amount it is to be
decreased are ‘0’ or less. The PSPB contents can decrease to less than zero when a problem state program
is executing on the thread at a priority of medium high.

When the contents of the PSPB minus the amount it is to be decreased are ‘0’ or less, its contents are
replaced by ‘0’. When the PSPB is set to its maximum value or ‘0’, its contents do not change until it is set to
a different value.

Whenever the priority of a thread is medium high and either of the following conditions exist, hardware
changes the priority to medium:

• PSPB counts down to ‘0’

• PSPB = ‘0’ and the privilege state of the thread is changed to problem state (MSR[PR] = ‘1’)

While in problem state at medium-high priority, there can be the potential of the PSPBR reaching ‘0’ at the
same time a priority NOP or mtPPR is trying to lower the thread priority to a value less than medium. If the
attempted write to the PPR occurs in the same cycle, the priority NOP or mtPPR must update the PPR with
its thread priority instead of allowing the PSPB reset to set the PPR to medium priority.

Scaled Processor Utilization Resource Register

User’s Manual
OpenPOWER
POWER9 Processor

Simultaneous Multithreading

Page 148 of 508
Version 2.1

10 October 2019

5.13 Thread Priority Boosting on Asynchronous Interrupt

If a thread has a priority less than medium (‘4’), the priority of the thread is boosted on a pending asynchro-
nous interrupt. This allows the interrupt to be serviced faster for a thread (that is waiting for the interrupt at a
low-priority state). TSCR[12] is used to enable or disable priority boosting for any pending asynchronous
interrupt. The boosting of thread priority does not affect the actual architected thread priority value in the
PPR. Therefore, if the software does a move from PPR (mfPPR) at any time during asynchronous boosting, it
always gets the last priority value explicitly set by the software for that thread.

5.13.1 When to Boost Thread Priority

Thread priority is boosted internally by the hardware on an asynchronous interrupt based on Table 5-5 on
page 148. After the priority is boosted, the hardware continues to treat the thread at medium (‘4’) priority, until
there is an mtPPR or priority NOP instruction that changes the thread priority.

Thread priority is boosted to medium for enabled asynchronous interrupts. The reasons for not boosting the
priority in the previous cases include:

• Operating system and hypervisor: Spinning on a lock, the priority is low and MSR[EE] = ‘0’. Priority must
not be boosted because nothing useful is going to happen until the lock is acquired. Before the stdcx can
get the lock, high priority is asserted. Therefore, if a thread is holding a lock, its priority does not need to
be boosted when an external interrupt becomes pending.

• Operating system interrupt handler running with MSR[EE] = ‘0’. Priority is already at the desired level as
a result of the implicit or explicit boost. No additional boost is required by the hardware.

Table 5-5. Asynchronous Interrupt

Interrupt MSR Bits

Hmaintenance EE = 1 or HV = 0 or PR = 1

Directed External (EE = 1 and not (HV = 1 and PR = 0 and HEIC = 1)) or (lpes0 = 0
and (HV = 0 or PR = 1))

Mediated External EE = 1 and (HV = 0 or PR = 1)

Directed Privileged Doorbell EE = 1

Directed Hypervisor Doorbell EE = 1 or HV = 0 or PR = 1

Hypervisor Virtualization (EE = 1 or HV=0 or PR = 1) and HVICE = 1

Perfmon EE = 1

HDEC (EE = 1 or HV = 0 or PR = 1) and HDICE = 1

DEC EE = 1

System Reset Always (ignores TSCR[12])

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Simultaneous Multithreading

Page 149 of 508

5.14 Thread Prioritization Implementation

5.14.1 Thread Switch Fetch Priority

The thread priority is used to apportion fetch cycles. For example, if two threads have a priority weighting that
is different, the ratio of those two weights determines the relative number of cycles those two threads will be
given access to the I-cache. If all threads have equal priority, the threads are accessed in a round-robin
manner.

The instruction fetcher makes no priority provisions for an asymmetric SMT environment. For example, if one
side of the core has one thread, the other side has more then one thread, and all threads are of equal priority,
then each thread gets an equal number of fetch cycles, even though there are more decode resources avail-
able for the thread that is on its own side.

If all of the threads have the same priority, the fetcher fetches the threads in an order that tries to swap from
one core side to the other as much as it can. This is desirable because fetching multiple cycles on the same
core side increases the chance that no instructions are available to decode/dispatch on the other core side.

Normally, a thread uses its fetch cycle if there is a chance that the fetch can result in a transfer. There are
several cases where a thread relinquishes its fetch cycle and allows it to be skipped over. The cases where
this happens are as follows:

• The thread is an I-cache miss pending or I-ERAT miss pending.

• The IBuffer is full for eight cycles, such that it is unlikely that there is room in the IBuffer when the instruc-
tions are fetched from the I-cache.

• There is a hold fetch from either the ISU or the pervasive core unit that indicates a fetch cannot occur on
that thread.

When all the highest priority threads give up their cycle, there are times when the base hardware algorithm
cannot assign another thread based on the priority. On the cycles when this occurs, the other threads that
can be fetched take turns fetching, ignoring the thread priority.

If there is a flush on a thread and that thread is not already being selected, that thread is selected on the next
IFM1 cycle, which is done to reduce the average latency on a flush.

In SMT mode, the target of a predicted taken branch can be fetched three cycles after the branch instruction
is fetched. If threads are alternated in SMT2 mode, the earliest time that an instruction could be fetched would
be allocated to the other thread, and thus the taken branch penalty goes from three to four cycles.

To reduce this effect, use a pattern in SMT2 mode that in most cases allows the same thread to be allocated
every third cycle. The pattern implemented in SMT2 mode is ‘00100100 11011011’. This pattern causes the
same thread to be assigned three cycles later 87.5% of the time.

Instruction sequencing unit

User’s Manual
OpenPOWER
POWER9 Processor

Simultaneous Multithreading

Page 150 of 508
Version 2.1

10 October 2019

5.14.2 Thread Switch Decode Priority

The decode and dispatch pipes in SMT2 mode cycle share their resources. In SMT4 mode, they are divided
into two parallel groups. Each group has two threads that cycle share that half of their resource. This drives
the need for a pair of decode priority engines. In SMT2 mode, one engine controls the two threads. In SMT4
mode, both engines run in parallel: one for the threads assigned to thread set 0 and one for the threads
assigned to thread set 1. In SMT modes, each thread set operates in its own half of the dispatch group, inde-
pendent of the other thread set.

To support two independent thread sets dispatching in parallel, two SMT2 thread priority engines are used.
One controls the decode cycles of the threads assigned to thread set 0. The other controls thread set 1. Each
engine can manage 1 - 2 threads, depending on how many are assigned to the thread set.

In SMT mode, decode cycles (opportunities to form instruction groups out of the IBuffer) are given to a thread
based on the following ordered criteria:

1. Thread enabled, no slots given to a stopped thread, CTRL[12:15].

2. Per thread decode stops for decode hold. See Section 5.16 Controlling the Flow of Instructions in SMT on
page 152.

3. Instruction availability in the threads IBuffer. Used only if the priority in PPR[11:13] is equal for all enabled
threads.

4. Software-set thread priority, controlled in Thread Status Register (PPR[11:13]). See Section 5.14.3 Soft-
ware-Set Thread Priority on page 150.

5. Dynamically changing thread decode priority. See Section 5.14.5 Dynamic Thread Priority on page 151.

The first three criteria are only used to eliminate threads from consideration for the next decode cycle. If all
available threads are eliminated based on those three criteria, no thread forms an instruction group next
cycle. Otherwise, the remaining eligible threads are considered for the next decode cycle according to either
their software-set thread priority or a dynamic thread priority algorithm using the current state of each eligible
thread.

5.14.3 Software-Set Thread Priority

Software-set priority is used to determine the thread to receive the next decode cycle if at least one of the
enabled threads has a different Thread Priority value in PPR[11:13] than the other enabled threads. The
intention for the software-set priority algorithm is to divide decode cycles according to the relative values of
the thread priority values.

POWER9 core control is given by allowing the user to define the weightings between the seven priorities. A
64-bit SPR, relative priority register (RPR), is provided for the user to set any 6-bit value (0 - 63) for each of
the seven priority levels (very low, low, medium low, normal, medium high, high, extra high). Then,
PPR[11:13] for each active thread determines which value to read from the RPR.

Each active thread receives a number of decode cycles, relative to the other threads, equal to their priority
values. For example, within thread set 0, T0 has a relative priority of 17 (as defined by PPR[11:13] and the
RPR), T3 has a relative priority of 6. Within a window of 17 + 6 = 23 decode cycles, T0 gets 17 cycles and T3
gets 6 cycles. The pattern repeats every 23 decode cycles. Additionally, the cycles given to each thread are
distributed as evenly as is reasonably possible within the pattern.

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Simultaneous Multithreading

Page 151 of 508

5.14.4 Low-Power Modes for Application

The POWER9 core slows the rate of decode to reduce power whenever any enabled threads have a priority
of ‘001’, as set in each thread’s PPR[11:13].

Any time an enabled thread is set to the lowest priority, it is limited to one decode cycle every 128 cycles.

5.14.5 Dynamic Thread Priority

If all enabled threads have the same thread priority value, a dynamic thread priority algorithm based on the
state of the eligible threads determines which will get the next decode cycle. This algorithm uses a scoring
system built on the resources occupied by each thread, whether the thread has any outstanding L2 or TLB
misses, or if there is an active multicycle operation active for a thread. A final round-robin adder is used only
to break any ties between threads. This algorithm is implemented twice, once per thread set, where each
algorithm manages 1 - 2 threads. Section 5.14.2 Thread Switch Decode Priority on page 150.

The eligible thread with the highest overall score is given the next decode cycle. Note that the round-robin
pointer only affects results in the event of a tie from the other three adders. To ensure fairness between
threads when one or more threads are disabled, the round-robin pointer rotates between all threads that are
available in the current SMT mode regardless of whether the thread is enabled.

5.15 Support for Multiple LPARs

The POWER9 core runs in 4LPAR mode. Each thread has its own partition resources. Fetch and decode
cycles are handed out as described in the following sections.

5.15.1 Microcode Fairness

In multi-LPAR mode, the goal is to give each LPAR the same number of dispatch cycles. However, multi-
cycle microcode instructions can cause an LPAR to consume multiple consecutive cycles. To compensate,
the POWER9 core gives the other LPAR sharing the dispatch bandwidth extra decode cycles to compensate
for the loss of decode cycles. When microcode operations are in flight, each operation generates 32 groups
(such as, load multiples).

The counter handles 32 × 12 = 384 catch-up cycles for either LPAR. A 10-bit counter handles up to 512
cycles for each LPAR.

5.15.2 I-ERATs

In SMT2 and SMT4 mode, the instruction-side ERAT is split in two with even threads getting 32 entries and
odd threads getting the other 32 entries.

Effective-to-real address table

User’s Manual
OpenPOWER
POWER9 Processor

Simultaneous Multithreading

Page 152 of 508
Version 2.1

10 October 2019

5.16 Controlling the Flow of Instructions in SMT

The ability to control the relative flow of instructions in an SMT processor is important for optimal perfor-
mance. When one thread is not making good progress due to reasons such as an L2 miss, TLB miss, sync,
or other long-latency operations, the other thread can be given additional machine resources. The following
features are built into the POWER9 core for controlling SMT instruction flow.

5.16.1 Dispatch Flush

A dispatch flush is a low-latency flush that flushes the decode pipe. Ptesync, tlbie, and instructions with the
scoreboard bit set can cause a dispatch flush on the POWER9 core. Also, if enabled, a thread that was
balanced flushed is dispatch flushed if the chosen thread is stalled at dispatch.

5.16.1.1 Dispatch Flush Rules

1. Dispatch flushes are disabled if the core is in single-thread mode, or if the core is in SMT2 or SMT4 mode
and there is one or fewer than one threads active.

2. Dispatch flush occurs only if a thread shares a group with another thread.

3. If both threads are on group0, (not balanced), dispatch flush can still occur.

4. Never dispatch flush a thread if it is in the middle of a microcode. Dispatch flushes related to SMT perfor-
mance are never done in the middle of a microcode dispatch. Other dispatch flushes can happen to
microcode, such as quiesce, RAS, or a forward-progress time-out.

5. A ptesync instruction from thread A causes a dispatch flush of thread A (similarly, for other threads).

6. If the ICT thread is not empty, the tlbie instruction is dispatch flushed. The instruction following the tlbie is
dispatch flushed if the tlbie instruction has not received tlbie acknowledge from the Nest through the
LSU.

7. If thread A has its scoreboard bit set (such as, a non-renamed mtspr followed by mfspr), thread A is dis-
patch flushed (similarly, for other threads).

8. If TSCR[3] is enabled, dispatch flush the thread that was chosen for a balance flush if that thread is
stalled at dispatch.

9. Dispatch flush any instructions that are marked dispatch serialize by the cores debug and decode mech-
anisms.

Load reorder queue

Instruction completion table

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Simultaneous Multithreading

Page 153 of 508

5.16.1.2 Stall at Dispatch

A thread can be stalled at dispatch due to unavailability of a shared resource that it needs for the next
dispatch. When stalled, dispatch_hold is asserted to hold the decode pipe. The complete list of stall condi-
tions follows:

• Required reservation queue entries are not available
• Not enough history buffers are available
• ICT is full

Note:

1. A 5-cycle delay is expected between counting the ICT entries and taking any action based on that count.

2. A 4-cycle delay is expected between the detection of a stall condition and causing a dispatch flush.

5.16.2 Decode Hold

1. After a dispatch flush, a ptesync, instruction is held at IBUF until its dispatch conditions are met. This is
done irrespective of thread priority.

2. After a dispatch flush, a tlbie instruction is held at IBUF until the ICT thread is empty. After the tlbie
instruction is dispatched, the next instruction is dispatch flushed and then held at IBUF until ICT and the
SRQ are empty. This is done irrespective of thread priority.

3. After a balance flush due to an L3 or TLB miss, instructions on the balance flush thread are held at IBUF
until the miss is resolved or until the balance flush miss counter reaches the threshold value as deter-
mined by TSCR[8:9].

5.16.2.1 Balance Flush

A balance flush is an NTC+1 flush that flushes all instructions that are younger than the next-to-complete
instruction group on a selected thread. It flushes the execution units, ICT, and EAT for the selected thread.
Threads are considered for a balance flush only if any thread is stalled at dispatch or the dispatch buffer is
empty and the thread being considered has at least one instruction in the ICT. Balance flushes can be
disabled using TSCR[2].

Criteria for Selecting a Thread to be Balanced Flushed

If the core is in SMT mode and more than one thread is active, perform the following steps on a dispatch stall:

1. Select the threads with any number L3 or TLB misses, regardless of the balance flush miss counter
value. If enabled by a debug switch, select only the threads with any number of L3 or TLB misses, if the
balance flush miss counter for the thread is less than the counter threshold as described by TSCR[8:9]. If
the miss counter for the thread is greater than the threshold value, ignore the miss on that thread and do
not consider the thread for a balance flush.

2. If only one thread has an L3 or TLB miss, select that thread to be balanced flushed. Raise the CLB hold
on the thread that was chosen to be balanced flushed until either the miss has been resolved or the bal-
ance flush miss counter threshold has been reached as described by TSCR[8:9].

3. If in SMT4 mode and more than one thread is eligible to be balanced flushed based on having an L3 or
TLB miss, select all eligible threads to be balanced flushed. Raise the CLB hold on the threads that were
chosen to be balanced flushed until either the miss has been resolved or the balance flush miss counter
threshold for that thread has been reached as described by TSCR[8:9].

Effective address table

User’s Manual
OpenPOWER
POWER9 Processor

Simultaneous Multithreading

Page 154 of 508
Version 2.1

10 October 2019

4. If in SMT2 mode and both threads are eligible to be balanced flushed based on having an L3 or TLB
miss, do not balance flush either thread. Do not raise the CLB hold.

5. If the thread that is stalled at dispatch is also the thread that was chosen to be balanced flushed, then
also do a dispatch flush on that thread if TSCR[3] is enabled. Otherwise, do only a balance flush on the
chosen thread.

User’s Manual
OpenPOWER
POWER9 Processor

L2 Cache

Page 155 of 508
Version 2.1

10 October 2019

6. L2 Cache

6.1 Overview

The L2 cache unit is contained within the processor pair cache slice, which consists of: two POWER9 cores,
one 512 KB L2 cache, one 10 MB L3 cache, one NCU, and a portion of the internal Fabric interconnect logic
that is referred to as PBex. The L2 cache is a unified cache that is accessed privately by a given pair of
POWER9 cores. The L2 cache maintains full-hardware coherence within the system and can supply cache
on-chip intervention data to other cores on this POWER9 chip or off-chip intervention data to other POWER9
chips. The L2 unit is a store-in cache that is fully inclusive for a pair of POWER9 cores, each of which have an
L1 D-cache and I-cache (note that the POWER9 core is based on a store-through L1 D-cache design). The
L2 unit also supports private bus access to a 10 MB L3 cache that is also private to this pair of POWER9
cores for fast L3 hit data access and for storage of L2 victimization data.

Figure 6-1 shows a high-level POWER9 chip diagram with multiple POWER9 processor-pair cache slices
interconnected via the internal Fabric.

Figure 6-1. POWER9 Block Diagram of a Multiple Processor-Pair Cache Slice Interconnected via the Internal
Fabric

Core0

Internal Fabric Interconnect

L2 Cache

L3 Cache (10 MB)

N
C
U

Core1

Processor Pair Cache Slice

Memory I/O, CAPP, NX, and so on

Core0

L2 Cache

L3 Cache

N
C
U

Core1

(512 KB 8-way)

(512 KB 8-way)

(10 MB)

Core0

L2 Cache

L3 Cache

N
C
U

Core1

(512 KB 8-way)

(10 MB)

Core0

L2 Cache

L3 Cache

N
C
U

Core1

(512 KB 8-way)

(10 MB)

User’s Manual
OpenPOWER
POWER9 Processor

L2 Cache

Page 156 of 508
Version 2.1

10 October 2019

L2 cache feature summary:

• 512 KB private cache per core-pair:

– 128-byte line, 8-way set associative

– Both I-side and D-side inclusive for the pair of POWER9 4-threaded cores

– Double-banked cache design interleaved on even/odd cache-line boundary

– L2 cache can perform a read from one cache bank while writing to the other cache bank

• 8-way directory, dual-banked multi-ported:

– One processor read port, two snoop read ports, and one write port per physical bank

– The processor port operates at ½ the processor clock rate into a given bank (initiated on 2:1 clock
boundary)

– The snoop port into a given bank operates at ½ the processor clock rate (initiated on 2:1 clock bound-
ary) allowing for up to four snoops per 2:1 clock across the four banks.

– The dual banked directory can initiate:

— Up to five directory reads in a given 2:1 cycle (four on the snoop ports and one on the processor
port)

— One write in a given p-clocks cycle (where directory writes are scheduled on the second half of a
2:1 cycle, such that they never conflict with directory reads)

• 512 × 13-bit LRU arrays (logical configuration)

– 2 × 4 LRU vector tracking tree with cache invalidate state biasing

– Supports LRU, direct map, single-member, and pseudo-random modes

• Point of global coherency

• Reservation stations: one per processor thread (eight total across the pair of four threaded POWER9
cores)

• Support for transactional memory operations

• Four snoop-bus ports selected by the cache-line “real-address” bits [55:56]

• Support strong-access ordering (SAO) support

• Hardware directory line delete capabilities to support faulty L2 cache elements

L2 Feature RAS Summary
• Directory-array data protected by SECDED ECC

• Directory-array single-bit stuck-bit detection and correction

• Directory line-delete support

• Cache-array data protected by 8-byte SECDED ECC

• 8-byte ECC throughout the internal L2 data-flow and migration flow to the internal Fabric interconnect or
L3 cache

• FIR/SCOM support

• L2-cache purge support

• Various L2 hardware end-to-end type control checkers (for example, end-to-end type protocol checking
that checks for unexpected internal Fabric interconnect cresp or data)

Least-recently used

Single-error correction, double-error detection

Error correcting code

Fault Isolation Register

Scan communications

User’s Manual
OpenPOWER
POWER9 Processor

L2 Cache

Page 157 of 508
Version 2.1

10 October 2019

6.2 L2 Unit Internal Resources

The L2 unit contains a set of internal machine and enqueuing resources scheduled to handle the processing
of load and store type requests from the POWER9 cores and requests from the internal Fabric interconnect.
Table 6-1 lists the type of resource and the size and function of these resources within the L2 unit.

Table 6-1. L2 Resources (Share between a Pair of POWER9 Cores)

Resource Description Size Hash Bits

CIU_Load Request
Queues

Handle the staging for load requests from the POWER9 cores
that are pending access to the Read Claim (RC) machines dis-
patch pipe dispatch pipe to be assigned to an RC machine or
sent to an L3 prefetch machine.

16 demand
8 data prefetch

8 instruction fetch/prefetch
4 translate

none

L2 CIU_Store
Queue

Intermediate buffer for stores from a given POWER9 core. The
CIU_Store Queue contains six 16-byte entries per POWER9
core. This buffer unloads its stores into the L2 store gather sta-
tion as room becomes available.

2 banks of 6 × 16 bytes core ID

L2 Store Queue
(Gather Station)

Store requests from the POWER9 cores and gathers stores
that are from the same core thread and are to the same 128-
byte cache line. The L2 store-queues gathering mechanism
gathers stores into a single 64-byte block with up to two sectors
of clustering to be processed by the L2’s RC machine.

2 banks of 28 × 64 bytes addr(56)

Read Claim (RC)
Machines

Read claim machines manage all cacheable operations initi-
ated by the local core pair. The RC handles:

• Gaining ownership of the line (either via an L2 hit, L3 hit,
or internal Fabric interconnect access).

• Updating the core with data for its request.
• Updating the L2 cache with the data.
• Updating the L2 directory with the current coherent state

and inclusivity information for this line.
• Issuing any required I-side or D-side kills to the L1 caches

in the core.

2 banks of 8 addr(56)

Cast Out (CO)
Machines

Castout machines manage moving victimized lines from the L2
cache to the L3 cache and sending kills to the POWER9 core
when the L2 cache is no longer tracking this line. Under certain
conditions, the L2 castout machines can select to move the line
to the memory controller.

2 banks of 8 addr(56)

Snoop (SNP)
Machines

Snoop machines manage all cacheable operations initiated by
the incoming internal Fabric interconnect operations. The
snoop is responsible for:

• Representing the current L2 directory state to the internal
Fabric interconnect.

• Intervening data to the internal Fabric interconnect when
necessary.

• Updating the L2 directory with the current coherent state
for this line.

• Issuing any required I-side or D-side kills to the L1 caches
in the core based on internal Fabric interconnect activity.

• Pushing modified data to memory when required to by the
snooped operation.

4 banks of 4 addr(55:56)

Reservation The reservation logic provides for execution of larx/stcx
instructions. A reservation is provided each thread within the
core pair

2 (cores) × 4 (threads) thread

Transactional
Memory

Transactional memory tracking CAM for tracking the TM load
and store footprint structures across all threads along with an
LVDIR structure for tracking a larger load footprint for two
threads.

TMDIR: 4 banks of 16 entries
(shared by 8 threads))

LVDIR: 512 × 8-way entries
(shared by 2 threads)

addr(55:56)

Content-addressable memory

Transactional memory

User’s Manual
OpenPOWER
POWER9 Processor

L2 Cache

Page 158 of 508
Version 2.1

10 October 2019

6.2.1 Description of L2 Control Flow

The L2 control flow handles the coordination of dispatching load and store requests from the pair of POWER9
cores and dispatching snoop operations from the internal Fabric interconnect that were initiated by other
cores or I/O type devices. This L2 control logic manages these accesses such that when contention or
ordering is required among commands, the proper dispatch collision and ordering detection occurs such that
the RC/CO machines and SNP machines perform their data references and storage updates in a coherent
and consistent manner.

The L2 CIU_store queue consists of a “2 core banks × 6-entry × 16 bytes” buffer that has a bank dedicated
per core. Each bank serves as an intermediate buffering station for stores that are then forwarded onto the L2
store queue where they can be gathered with prior stores. The L2 CIU_store queue has six entries per core.
This buffer structure can unload up to two entries (one per core bank) per 1:1 clock cycle provided these
requests are going to different cache-line banks in the L2 store queue. The L2 CIU_store queue maximizes
its unload efficiency by selecting first entries from the two different core banks that are scheduled to go to
different L2 store queue cache-line banks.

The L2 store queue is a “2 bank × 28-entry × 64-byte” buffer that allows storage updates to the same cache
line from a given thread to be gathered before being issued into the RC machine dispatch pipe. The L2 store
queue issues stores into the RC dispatch pipe honoring the barriers that have been inserted by software. The
L2 store queue takes full advantage of the weakly-ordered nature of the PowerPC Architecture by allowing as
many RC machines to be running in parallel where ordering is not required.

The CIU load queues manage the enqueuing of load-type requests from the two POWER9 cores for I-side,
D-side, translate, and prefetch type requests that cannot be immediately serviced by the RC machines. When
a backlog of load-type requests occur, due to resource contention, the CIU manages the detection of when
the resource is free and the priority for which requests should be re-issued next into the RC dispatch pipe to
achieve best performance and for fairness.

The set of sixteen RC machines are dispatched on behalf of load/stores from its private core pair. This set is
responsible for acquiring the proper coherent authority to complete the command and is a unified cache that
is accessed privately by a given pair of POWER9 cores. Along with these RC machines, the CO machines
also are conditionally dispatched to move any victimized lines out of the L2 cache to make room for the new
line the RC is bringing in.

When a given command is sent down the RC dispatch pipe, one RC machine is assigned the command. The
RC machine then determines where it must go to acquire the proper coherency authority to perform the
command and, if required, acquire a copy of the data. The RC machine can find the line that is already in the
L2 cache (for example, an L2 hit), or in the L3 cache (for example, an L3 hit), or the RC machine might have
to proceed to the internal Fabric interconnect to gain ownership of the line. In addition, when an RC machine
is dispatched, a CO machine might also be assigned at RC dispatch time if the L2 cache must create a victim
line to make room for the line the RC is now installing. The L2 CO machine has the resources to work inde-
pendent of the RC machine and thus allow the CO machine to work in parallel to migrate the line down to its
private L3 cache. The L2 CO machines are also responsible for sending any required invalidates to the
POWER9 core pairs when lines are invalidated from the L2 cache.

The L2 unit has four SNP dispatch pipes that control the assignment of the SNP machines to work on
commands from the internal Fabric interconnect. These commands, initiated by internal Fabric interconnect
masters, might include other L2/L3 unit masters (on behalf of their cores commands) or by other masters
such as I/O type devices. The L2 SNP machines are used to service these requests (that is, L2 hits) by
granting coherent authority from the L2 directory during SNP dispatch and (if required) providing a copy of the

User’s Manual
OpenPOWER
POWER9 Processor

L2 Cache

Page 159 of 508
Version 2.1

10 October 2019

data via data intervention back to the requesting internal Fabric interconnect master. The L2 SNP machines
are also responsible for sending any required invalidates to the POWER9 core pairs when lines are invali-
dated from the L2 cache.

Both the RC dispatch pipe and the SNP dispatch pipe have the ability to detect when a given line has already
been assigned to either an RC, CO, or SNP machine. Contention by the subsequent command for the same
line is detected and thus delayed until after the previous machine has completed its work on the command it
is working on.

6.3 Interfaces

On the POWER9 chip, the L2 caches have interfaces to communicate with their respective POWER9 core
pair, its private L3 cache, and the internal Fabric interconnect (that provides access to the neighboring on-
chip and off-chip L2/L3 caches). These interfaces are described as follows:

• Core load request interface: Interface for loads, IFetch, and various prefetch operations that allow for
requests from the respective units to be sent every core clock cycle.

• Core reload bus: The reload bus is used to return data and L1 cache invalidate commands to the core.
The reload bus contains a data bus that is 64 bytes wide and runs at a 1:1 core-clock rate. Both data and
invalidates are returned to the core over this bus in a non-blocking fashion into the core (that is, no flow
control required).

• Core store interface: Each core has its own dedicated store request interface that provides one 16-byte
wide store data bus (per core) clocked at a 1:1 clock rate. Each of these interfaces is also used to send
barrier operations and various PowerPC architecture-specific commands from a POWER9 core. Flow
control is achieved through a core push/pop protocol, where the core holds an “L2 queue capacity
counter” to track the L2 store queue capacity.

• L2-to-L3 read interface: One private L2-to-L3 request interface that is used by the L2 cache to look up the
L3 cache on behalf of a request from this private core pair. This private interface serves as a dedicated
fastpath 64-byte data interface for L3 hit data transfer back to the L2 cache and core pair at a 2:1 clock
rate.

• L2-to-L3 castout interface: One private L2-to-L3 request interface that is used by the L2 cache for casting
data out of the L2 cache and into the L3 cache. This private interface consists of a dedicated 64-byte data
interface from the L2 to the L3 cache at a 2:1 clock rate.

• L2-to-internal Fabric interconnect: Request ports are provided for both address and data requests to be
sent to other nest units in the system (both on and off chip). The data interface consists of: one outbound
32-byte data port that runs at a 2:1 ratio to the core and one inbound 32-byte data port that also runs at a
2:1 clock ratio to the core. The internal Fabric interconnect also provides four instances of the snoop
interface for processing system coherence and control commands. An interface instance consists of three
ports: an address/cmd snoop port, a unit response port, and a system combined response port.

User’s Manual
OpenPOWER
POWER9 Processor

L2 Cache

Page 160 of 508
Version 2.1

10 October 2019

6.4 Operational Flows and Bandwidths

Figure 6-2 shows the general control and data flow within the POWER9 processor-pair cache slice. The
figure shows the internal buffer structures within the L2 and L3 cache and how these buffer structures are
connected within the private L2 and L3 units for processing L2 and L3 hits and any resulting castouts from the
L2 to the L3 or interaction with the internal Fabric interconnect.

Figure 6-3 on page 161 and Figure 6-4 on page 162 show additional details about the L2 unit. Figure 6-3
shows the details of the internal L2 dataflow. Figure 6-4 shows the L2 units major input/output buses and the
data bus bandwidth that represents the overall bandwidth capabilities in/out of the L2 cache.

Figure 6-2. High-Level Dataflow within the L2, L3, and NCU for a Processor Pair Cache Slice

Core0

LSU IFU

Core1

LSUIFU

Store DLDPF/XL

NCU L2 L3

PBex

8 Dpref +
5 Xlate

16 D-dem 8 I-fetch
or Ipref 2x16x128B

L3 prefetch
2x8 x 128B
Write Inject

2x8 Castin 10 MB (4096 x

2x8RD

4x4 x 128B
2x8 x 128B

2x28512K (512 x 8-way 128B)

4x4x128B 2x8x128B 2x8x128B8 load 2x16x

L2 Cache and Directory

Snp/push Castout Read/Claim

64B
STQ

64B
STQ

Snp/Push

20-way x 128B)

L3 Cache and
Directory

Castout

Data Out Cmd Data InSnoop Cmd

(to Snoopers)

.

.
...

.

.
. .

.

Speculative
fetch

Sq Sq
Stq
CIU

StoreDL DPF/XL

Processor Pair Cache Slice

2x4 x 128B
WIHPC

User’s Manual
OpenPOWER
POWER9 Processor

L2 Cache

Page 161 of 508
Version 2.1

10 October 2019

Figure 6-3 shows the data flow within the L2 cache unit.

Figure 6-3. L2 Data Flow Overview

256
KB

Even
lines

256cc
8
way

Odd
lines

256cc
8
way

CACHE

ECCGN

.

.

.
RCq

16 × 128 Bytes =

.

.

.

Stq
2 × 28 × 64 Bytes =

Store Data from LSU L2

L3

128 B/nclk

CPI
32 × 128 B =

.

.

.

InternalFabricBusOut (16 B/2:1clk)

64 B/nclk

64 B/nclk

64 B/pclk

32 B/nclk

64 B/pclk

32 B/nclk

128B/nclk128B/nclk

64 B/pclk

64 bytes/pclk

L2 Castout
Data

L3 Hit
Data

64 B/pclk

64 B/pclk

I/D/XReload
Data

error

32 Bytes

2 banks (28 × 74 bits) × 8

(32 × 74 bits) x 8

(64 × 73 bits) × 8

32 B 64 B

64 B/nclk

64 Bytes 2:1 clk
phase

32 Bytes2:1 clk phase

256
KB

16 bytes/pclk
64 B/pclk

store
byte merge

64 B/pclk

PGen

64 B

64 B

64B64B 64B

2:1 clk

eccck.

eccor/PGen

nc_t07

buffer

32 B/nclk

64B

InternalFabricBusIn (2 × 16 B/2:1clk)
PBi

L3PF

L2

 ecc

2:1

L3WI
L3CI

L3CO

64 B/nclk

L3CO
L3Snp

L3Hit

chk/cor

64 B/nclk

Bus

CIU_stq2 × 6 × 16 bytes

Interleave

User’s Manual
OpenPOWER
POWER9 Processor

L2 Cache

Page 162 of 508
Version 2.1

10 October 2019

Figure 6-4 shows the various control machines and address flow internal to the L2 cache unit.

Figure 6-4. L2 Bus Bandwidths

16B/pclk 64B/pclk

64 B/nclk

Internal Fabric Interconnect Bus

16 B/pclk

L3

L2

Core

pCLK domain

nCLK domain

Dstore Dload or Dtranslate or Ifetch

32 B/nclk

16B/pclk

32B/pclk32B/pclk

mix
nCLK
pCLK
domain

32 B/nclk

32 B/nclk

64 B/nclk

32 B/nclk

User’s Manual
OpenPOWER
POWER9 Processor

L2 Cache

Page 163 of 508
Version 2.1

10 October 2019

6.5 LRU

6.5.1 LRU modes

• Normal LRU mode (13 bit 2 × 4-way pointer mechanism)

• Direct Map: uses addr [45:47] (just above L2 cgc)

• Single-Member Mode: configuration register specifies one of eight members

• Pseudo-Random Static Mode: LFSR based.

6.5.2 Policies

• invalid_line_lru_bias: Moves members in I state toward LRU.

• id_state_mru_bias: Moves members in invalid line deleted (Id) state toward MRU.

6.5.3 Line Disable

• Directory support for line delete (ld) on a per directory location granularity.

• Hardware or software-initiated line delete policies.

6.6 Transactional Memory Support

6.6.1 Basic Policy

Transactional memory (TM) support is provided in a transaction tracking structure that exists in the L1 and L2
cache. With this tracking structure, the L2 cache is considered the final point of commitment for the TM
image, but the image is also allowed to initially bind in the L1 cache. The L1 and L2 caches each have a TM
tracking structure that tracks the overall footprint a given thread has accessed and if that set of lines that
makes up the footprint has been accessed as part of a TM load or TM store access. This TM mechanism
provide a means for tracking the TM load and store footprint, which is limited to the size of the L2 TM tracking
structure. In addition to the tracking structure, the L2 cache uses the L3 cache to hold any dirty lines that are
associated with the L2 cache’s pending speculative TM store footprint, such that if the L2 TM sequence fails,
the L3 image has preserved the original dirty cache lines.

6.6.2 L1 TM Filter Structure and L2 TM Tracking Structure
• L1 Set-P directory bits: 32 × 8-way × 4 bits. This Set-P structure (which is used for normal L1hit use) also

includes a TM bit, a Private bit, and a 2-bit thread ID.

• L2 TMCAM: 4 × 16-entry pointer structure, which is shared by the two POWER9 cores that manage the
tracking of the TM load and store footprint tracking and is shared by all eight threads across the two
POWER9 cores.

• L2 LVDIR: 512 KB tracking structure, which is shared by the two POWER9 cores that manage the track-
ing of a larger load footprint for up to two threads at any given time.

The L1 and L2 CAM structures hold an address and a set of status bits that indicate if this cache line is
currently associated with a TM load or TM store footprint for a given thread.

User’s Manual
OpenPOWER
POWER9 Processor

L2 Cache

Page 164 of 508
Version 2.1

10 October 2019

L1 Load/Store Footprint Filter Tracking

L2 Load Footprint TMDIR Tracking

L2 Store Footprint TMDIR Tracking

L2 Load Footprint LVDIR Tracking

L3 Cleaned Footprint Tracking

Structure • Marker bits in existing Set-P directory (for example, Set-P directory is the size of the L1
directory)

Entry tracking • A load/store footprint entry only tracks an entry for one thread at any given time.

• A given cache-line address is tracked as part of the load/store footprint after a transac-
tional memory load or store is performed to that line.

• The L1 TM tracking does not track TM for pass/fail correctness; TM correctness tracking
is done by the L2 tracking.

Structure • CAM of 16 entries × 4 banks (address[55:56] defines the four banks) that tracks both the
load and store footprints.

Entry tracking • Each entry is a “shared pool” type for a load footprint where a given entry can track when
it is associated with one or more threads each sharing this line as part of their TM load
footprint.

Structure • CAM of 16 entries × 4 banks (address[55:56] defines the four banks) that tracks both the
load and store footprints.

Entry tracking • A given cache-line address is tracked as part of the store footprint after a transaction
memory store is performed to that line.

Structure • This array structure is 512 entries × 8 ways × 2 threads, which is the same size as the L2
director and is used for tracking large TM load footprints.

Entry tracking • Threads are assigned to this structure when the L2 detects TM activity from any given
thread.

• The LVDIR array can track the TM load footprint image that is the size of the L2 cache for
up to two threads at any given time.

Structure • CAM of 16 entries × 4 banks (address[56:57] defines the four banks) with a thread
identifier field.

Entry tracking • This structure tracks lines cleaned by the L2 cache when the L2 cache formed the store
footprint on a line that was in either this core’s L2 or L3 cache at the time of the TM store.
These lines represent the “true image of memory”, which is re-exposed if the store foot-
print for these lines is discarded due to a TM transaction failing for a given thread.

User’s Manual
OpenPOWER
POWER9 Processor

L3 Cache

Page 165 of 508
Version 2.1

10 October 2019

7. L3 Cache

7.1 Overview

The L3 cache unit is contained within the processor-pair cache slice, which consists of: two POWER9 cores,
one 512 KB L2 cache, one 10 MB L3 cache, one NCU, and a portion of the internal Fabric interconnect logic,
which is referred to as PBex. The L3 cache is a unified cache that is accessed privately by the L2 cache in the
same processor-pair cache slice and nonprivately by other unit masters in the system via the internal Fabric
interconnect. The L3 cache maintains full hardware coherency within the system and can supply intervention
data to other unit masters in the system. The L3 cache is a victim cache and thus typically holds cache lines
that are different from those held by the L2 cache or the core L1 cache.

Figure 7-1 shows a high-level POWER9 chip diagram, that includes multiple processor-pair cache slices
interconnected via the internal Fabric.

Figure 7-1. Block Diagram of Multiple Processor-Pair Cache Slice Interconnected via the Internal Fabric

Core0

Internal Fabric Interconnect

L2 Cache

L3 Cache (10 MB)

N
C
U

Core1

Processor Pair Cache Slice

Memory I/O, CAPP, NX, and so on

Core0

L2 Cache

L3 Cache

N
C
U

Core1

(512 KB 8-way)

(512 KB 8-way)

(10 MB)

Core0

L2 Cache

L3 Cache

N
C
U

Core1

(512 KB 8-way)

(10 MB)

Core0

L2 Cache

L3 Cache

N
C
U

Core1

(512 KB 8-way)

(10 MB)

User’s Manual
OpenPOWER
POWER9 Processor

L3 Cache

Page 166 of 508
Version 2.1

10 October 2019

7.2 Interfaces

The interface to the L2 cache is used to service read (which include both load and store requests) and
castout requests from the L2 cache. The interface to the internal Fabric interconnect is used to snoop
requests from the internal Fabric, to prefetch cache lines into the L3 cache based on requests from the core,
and to castout evicted cache lines. Snooping can lead to providing intervention data to the internal Fabric
interconnect or generating cache-line pushes to the internal Fabric interconnect. The L3 cache also accepts
lateral-castouts from other on-chip L3 caches.

The L3 cache supports a fast broadcast request interface to other on-chip caches and the on-chip memory
controllers for high priority (demand) read requests, that are L2 and L3 misses. Upon the occurrence of such
a miss, the L3 cache broadcasts to these devices, ahead of the request to the slower coherent internal Fabric
interconnect. If any of the caches are in a state to deliver early data directly, it does so on the internal Fabric
interconnect data buses. That cache then waits for the coherent request on the internal Fabric interconnect
and responds in a manner that is consistent with its response to the fast request. In parallel to the cache
activity, the memory controller begins to fetch the data. It then examines the combined response to determine
if it should provide data.

7.3 List of Features and Resources
• Features:

– Private 10 MB L3 cache/shared L3.1 (lateral-castout target cache from other on-chip L3 caches).

– 20-way set associative.

– 128-byte cache lines with 64-byte sector support.

– 10 EDRAM banks (interleaved for access overlapping).

– 64-byte wide data bus to L2 for reads.

– 64-byte wide data bus from L2 for L2 castouts.

– Eighty, 1 Mb EDRAM macros configured in ten banks, with each bank having a 64-byte wide data
bus.

– All cache accesses have the same latency.

– 20-way directory organized as four banks, with up to 4 reads or 2 reads and 2 writes every 2 pclks to
differing banks. The directory is physically implemented as twenty 1024 × 4w × 51 bits SRAMs.

– LRU algorithm for castin selection using 4-bit per member recency/frequency utilization tracking.

• Functionality:

– Victim cache for local L2 cache (L3.0).

– Victim cache for other on-chip L3 caches (L3.1).

– Services read requests from the local L2 cache due to core loads or stores that miss in the L2 cache.

– Services prefetch requests that originate from a local core and are pass through by the local L2
cache.

– Four snoop ports, address banked by address bits 55 and 56.

– Internal Fabric interconnect support.

– Cache inject support, including partial line inject on any byte boundary.

Enhanced dynamic random access memory

Static random access memory

Least-recently used

User’s Manual
OpenPOWER
POWER9 Processor

L3 Cache

Page 167 of 508
Version 2.1

10 October 2019

– Dual-class L3.0/L3.1 LRU support and L3.1 activity throttling

– Support for speculative memory transactions by acting as backing store of previous version of cache
lines until outcome of transaction is known. 64-entry CAM to track Sc lines.

– Fast broadcast on-chip load request to other caches and memory controllers for L2 demand load that
miss in the L3 cache.

– 3-hop internal Fabric interconnect topology with multi-level command scope support.

– Entire L3 clocked at one half core frequency.

• Peak bandwidths:

– 64 bytes, 2:1 clock L2 reload bus capacity

– 64 bytes, 2:1 clock L2 castout capacity

– 32 bytes, 2:1 clock prefetch capacity

– 32 bytes, 2:1 clock L3 castout capacity

– 32 bytes, 2:1 clock full-line cache-inject capacity

– 32 bytes, 2:1 clock intervention capacity

• RAS features:

– Data cache contents protected by 8 bits per 8 bytes SECDED ECC

– Directory contents protected by SECDED ECC

– ECC propagation throughout interface dataflow and buffers

– Support for directory single stuck bit

– Physical data line delete support

7.4 Queues

The L3 cache has multiple sets of state machines that act as queues for various types of requests.

7.4.1 Read Machines

The L3 has 16 instances of read (RD) state machines that handle L2 read requests. L2 read requests are a
consequence of core loads and stores that miss in the L2 cache. The L3 first attempts to service an L2 read
request from the L3 cache. If the request misses the L3 cache, the request is either sent to the internal Fabric
interconnect (though handled by the L2 controller thereafter) or returned (with a miss indicator) to the L2
cache, which subsequently sends a request to the internal Fabric interconnect. Details about the RD state
machines follow:

• 16 RD machines.

• Address protection provided.

• Carries out an L3 directory invalidate on an L3 hit.

• CI/CO machines are not coupled to an RD machine.

• No speculative cache reads. Directory is read first.

• Request to the fast bus when an L2 read request misses the L3 cache and the L2 read request enables
fast handling. Request to the fast bus is in parallel with an L3 miss indication to the L2 cache.

Content-addressable memory

Store clean

Single-error correction, double-error detection

Error correcting code

Castin

Castout

User’s Manual
OpenPOWER
POWER9 Processor

L3 Cache

Page 168 of 508
Version 2.1

10 October 2019

• L3 cache data is initially sent to the L2 cache on a cache hit without ECC correction. In the case of a cor-
rectable data error, the RD machine re-reads the cache line from the L3 cache and re-sends the data to
the L2 cache after running it through an inline ECC correction.

7.4.2 Castin/Castout Machines

The L3 cache has 16 CI state machines that handle L2 castouts, prefetched data that arrives from the internal
Fabric interconnect, lateral castouts (LCOs) that arrive from the internal Fabric interconnect, and full or partial
cache-line injections that arrive from the internal Fabric interconnect. The castin state machines read the L3
directory, then write the directory and the data cache.

The L3 cache has 16 CO state machines that handle writing displaced dirty cache lines (displaced by a
castin) to the internal Fabric interconnect. Details about the CI and CO state machines follow:

• CI machines:

– 16 CI machines.

– Address protection provided.

– Handles 128/64-byte CI that results from an L2 CO, prefetches, incoming LCOs, and incoming partial
or full cache-line injects.

– Private control/data interface for moving data from the L2 CO buffers to the L3 cache (no extra stor-
age in the L3 cache).

– TM footprint (Sc) established in the L3 cache at the CI allocation time to provide protection and colli-
sion detection. The cache line is held in the Sc state until the completion point of the transaction is
detected. The Sc cache line can be evicted to memory if necessary.

– Flow control mechanisms to provide fairness and to prevent L2 COs, PF, and WI from overflowing CI
machines.

– Handles purge/flush function initiated via the SCOM register interface.

• CO machines:

– 16 CO machines. Each CO machine is paired with a CI machine.

– Address protection provided.

– Handles L3 COs due to L3 CIs.

– Handles L3 cast-through operations of cache lines not to be installed in the L3 cache.

– Detects overflow of the TM footprint.

– 1 × 128-byte buffer per CO machine (physically in the CPI buffer).

– Cache interlock: CI cache write held off until a CO cache read is done.

– Directory interlock: CO active for protection until a CI completes a directory write to destroy an old
entry.

Prefetch

Write inject

User’s Manual
OpenPOWER
POWER9 Processor

L3 Cache

Page 169 of 508
Version 2.1

10 October 2019

7.4.3 Prefetch Machines

The L3 cache has 32 prefetch (PF) state machines that make read requests to the internal Fabric intercon-
nect. Each PF machine starts with a request that originates from a local core and is passed through the L2
cache. When a PF state machine receives a request to make a prefetch, it first reads the L3 directory. If the
L3 cache already has the cache line, the PF machine does nothing further and goes idle. If the cache line is
not in the L3 cache, the PF machine makes a read request to the internal Fabric interconnect. The internal
Fabric interconnect request might indicate that the memory controller is allowed to discard the request if the
memory controller is currently busy with higher priority requests. If prefetch data arrives from the internal
Fabric interconnect, the PF machine determines if a demand request has arrived for that cache line while the
prefetch request to the internal Fabric interconnect was pending. If no such request is pending, the PF
machine forwards the request to a CI machine to have it put in the L3 cache. However, if a demand request
has arrived, the data is forwarded directly to the L2 cache and is not installed in the L3 cache. Details about
the PF state machines follow:

• 32 L3 PF machines.

• Address protection provided.

• Handles prefetch requests from a local core.

• For entries that are L3.0 misses, the PF machine sends a request to the internal Fabric interconnect.

• PF data bypasses to the L2 cache without installing the cache line in the L3 cache when the RD machine
is waiting for data.

• When no RD machine is waiting for the data, the L3 PF machine uses the CI/CO machine to move data
from the PFWI buffer to the L3 data cache.

7.4.4 Snoop Machines

The L3 cache has four snoop dispatch pipes that handle incoming reflected-command (snoop) requests from
the internal Fabric interconnect. The snoop dispatch pipes perform an L3 directory read to determine how to
handle the request. If the request requires either sending intervention data, execution of a snoop push, or
invalidation of the associated cache line, then the snoop dispatch pipes forward the request to one of 16
snoop state machines (SN). If the request is an incoming lateral castout (LCO) or cache-injection that is
accepted, the request is forwarded to the write inject (WI) state machine. A request to an SN machine to
invalidate the cache line can occur in parallel to a request to a WI machine. Details about the SN state
machines follow:

• 16 SN machines.

• Address protection provided.

• Handles intervention for snoops.

• Handles LCOs without data movement (state merge).

• Handles detection of bus operation collisions with local speculative TM footprint.

Prefetch write inject

User’s Manual
OpenPOWER
POWER9 Processor

L3 Cache

Page 170 of 508
Version 2.1

10 October 2019

7.4.5 Write Machines

There are 16 write inject (WI) state machines that are started by the snoop dispatch pipes on incoming LCO
requests or incoming write injection requests. For these types of requests, the WI machine waits for data to
arrive from the internal Fabric interconnect, then passes the request to a CI machine to have the cache line
inserted into the L3 cache. Details about the WI state machines follow:

• 16 WI machines, eight that can be used for partial-line cache injects.

• Address protection provided.

• Handles LCOs with data movement from on-chip L3 caches and cache injects.

• L3 WI machine uses CI/CO machine to move data from PFWI buffer to the L3 data cache.

7.4.6 Transaction Memory Machines

There are four transactional memory (TM) state machines for handling transactional memory requests from
the L2 cache. Details about the TM state machines follow:

• Four transactional memory machines.

• 64 CAM entries (16 entries per each of the four directory banks). Flash validate and pseudo-flash invali-
date via the Store Invalid (SInv) bit.

• Tend_pass handling for clearing the L3 cache of speculative Sc cache lines.

• Tend_fail handling for flash clearing of the Sc lines to restore them to the normal state.

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

SMP Interconnect

Page 171 of 42

8. SMP Interconnect

The POWER9 SMP interconnect is the underlying hardware used to create a scaleable cache-coherent multi-
processor system. The POWER9 SMP interconnect controller provides coherent and non-coherent memory
access, I/O operations, interrupt communication, and system controller communication. The SMP intercon-
nect provides all of the interfaces, buffering, and sequencing of command and data operations within the
storage subsystem. The SMP interconnect is integrated on the POWER9 chip with 24 processor cores and
an on-chip memory subsystem. The POWER9 chip has up to two SMP external links that can be used to
connect to other POWER9 chips.

The external SMP interconnect link is a split-transaction, multiplexed command and data bus that can support
up to two POWER9 chips in a system. Aggregation of data links between the same source and destination
chips is supported to increase data bandwidth.

Cache coherence is maintained by using a snooping protocol. Address broadcasts are sent to the snoopers,
snoop responses are sent back in order to the initiating chip, and a combined snoop-response broadcast is
sent back to all of the snoopers. Multiple levels of snoop filtering are supported to take advantage of the
locality of data and processing threads. This approach reduces the amount of interlink bandwidth required,
reduces the bandwidth required for system-wide command broadcasts, and maintains hardware enforced
coherency using a single-snooping protocol. When the transaction cannot be completed coherently using
chip scope, the coherency protocol forces the command to be re-issued to an increased scope of the system.

8.1 SMP Interconnect Features

8.1.1 General Features

• Master command/data request arbitration.

• Command requests are tagged and broadcast using a snooping protocol that enables high-speed cache-
to-cache transfers.

• Multiple command scopes are used to reduce the bus-utilizations system wide. The SMP interconnect
architecture uses cache states indicating the last known location of a line (sent off chip), information
maintained in the system memory (memory domain indicator [MDI] bits), a coarse grained directory that
indicates when a line has gone off the chip, and combined response equations that indicate if the scope
of the command is sufficient to complete the command or if a larger scope is necessary.

• The command snoop responses specified by the SMP interconnect implementation are used to create a
combined response that is broadcast to maintain system cache state coherency. Combined responses
are not tagged. Instead, the order of commands from a chip source, using a specific command-broadcast
scope, is the same order that combined responses are issued from that source. The order is also affected
by the snoop bus usage as well.

• Data is tagged and routed along a dynamically selected path using staging/buffering along the way to
overcome data routing collisions.

• Command throttling and retry command back-off mechanisms for livelock prevention.

• Multiple data links between chips are supported (link aggregation).

User’s Manual
OpenPOWER
POWER9 Processor

SMP Interconnect

Page 172 of 42
Version 2.1

10 October 2019

8.1.2 POWER9-Specific Features

Some features for the POWER9 SMP interconnect are as follows:

• Command broadcast scopes (such as, snoop filtering)

– Local Node Scope (LNS): Broadcast within a local chip with nodal scope. Node is defined as one
chip.

– Remote Node Scope (RNS): Broadcast to a local chip and targeted chip on a remote group.
– Group Scope (GS): Broadcast to a local chip with access to the memory coherency directory (MCD).

– Vectored Group Scope (VGS): Broadcast to a local chip and targeted remote chip.

• 1 - 2 socket system configuration support

• 4× snoop bus support

• MC FastPath support

• 256 Local master (LM) system-pump queue size (64 per snoop bus)

• 256 Group master (NM) group-pump queue size (64 per snoop bus)

• Service processor accessible SCOM registers for configuration setup

8.1.3 On-Chip Features

• Six EQ core chiplets. Each chiplet contains four cores with a shared PBIEQ chiplet interface.
– Asynchronous chiplet with a128-byte incoming data port and 64-byte outgoing data port.
– Four cache-line PBI data buffers (incoming and outgoing data ramps to and from the EQ chiplet)

• Four memory controller (MC) chiplets (2× data port)

• Synchronous chiplet I/F (3× NPU, 3× PE, 2× CXA, nMMU, INT, MCD, VAS, NX, TP, Fabric master)
(1× data port)

• Centralized command-request arbitration

• Dynamic command rate throttling

• TLBI tokenizer

• Decentralized data-request arbitration

• Eight horizontal, 32-byte data buses

• 32-byte data arbitration size; unit specifies total transfer size

Scan communications

translation look-aside buffer invalidate

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

SMP Interconnect

Page 173 of 42

8.1.4 Off-Chip External SMP Features

• 2× (X bus) 2 × 15-bit or 1 × 15-bit EDI + inter-group links at 16 Gbps (asynchronous clocking)
– 1.0 M length (module + board)

• Aggregate data-link support

8.1.5 Power Management Features

• 1× - 4× core chiplet frequency support

• EQ chiplet power-management support

• Dynamic PHY power-savings support

8.1.6 RAS Features

• CRC link-level retry on external SMP links

• 100% ECC protection on internal data flow

• Hang recovery mechanism

• Trace array

• Performance monitor

• FIR error reporting
– Protocol errors
– Underflow/overflow checkers
– Asynchronous drop/repeat checkers
– Parity checkers on coherency register files

• Error injection
– Single- and double-bit errors on external SMP links

User’s Manual
OpenPOWER
POWER9 Processor

SMP Interconnect

Page 174 of 42
Version 2.1

10 October 2019

8.2 SMP Interconnect Architecture Coherency Protocol

Figure 8-1 illustrates the SMP interconnect command and data sequence. To simplify the following discus-
sion, the topology of the system assumes that all SMP interconnect attached units are serviced by a single
instance of the SMP interconnect controller, and all responses from the SMP interconnect controller are seen
by all SMP interconnect attached units in the same cycle.

The block on the left of the figure represents all the masters and slave attached units in the system. The
blocks on the right of the diagram indicate functions provided by an SMP interconnect implementation. A brief
overview of the protocol follows:

Figure 8-1. SMP Interconnect Coherency Protocol

1 A unit attached to the SMP interconnect (master) places a command request on the command
interface to the SMP interconnect. The command request specifies the transaction type (tType),
as well as an identification of the requester that is provided in the transfer tag (tTag).

2 The SMP interconnect control logic selects one of the commands presented by all of the masters
of this chip and reflected commands received from other chips as the next command to be issued.

3 The selected command becomes a reflected command and is visible to all SMP interconnect
attached units (snoopers). If the selected command is from one of the masters of this chip, the
reflected command is queued for transmission to all of the other chips in the system.

1. Command + command tags

3. Reflected Command + command tags

4. Partial response + Acknowledge tag

6. Combine response + command tags + acknowledge tag

3a. Early data transfer (read); Route tag = f(command tag)

7r. Data transfer (read); Route tag = f(command tag)

7w. Data transfer (write); Route tag = f(Acknowledge tag)

2. Command selection

5. Partial response
accumulation and
combined response
generation

Data Transport

 SMP

 Attached Unit
Interconnect

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

SMP Interconnect

Page 175 of 42

Steps 3a, 7r, and 7w are data transfer steps and occur only for read or write type operations. The order of
data movement is not required to follow the order that reflected commands are issued. This is accomplished
by tagging the data with an identifier and allows for more efficient use of the data transport facilities provided
by the SMP interconnect.

3a For read operations, there are cases where a holder of the data can determine without waiting for
the combined response that it is the source of the data. In those cases, the holder of the data
transfers the data before the SMP interconnect controller issues a combined response. This is
referred to as “early data”.

The SMP interconnect specifies that data routing is based on destination addressing. The address
contained in the route tag specifies the destination SMP interconnect attached unit. The route tag
is derived from the transfer tag described in step 1.

The order in which read data is returned to the master might not be in command order. Because
the route tag is the same as the original command tag, the unit is responsible for associating the
data with the command.

4 A fixed amount of time (tsnoop) after the reflected command has been issued, all SMP interconnect
attached units (snoopers) on this chip provide a partial response and an acknowledge tag. The
acknowledge tag is provided only for write operations.

5 The SMP interconnect control logic combines the partial responses from all the chips within the
commands original broadcast scope and generates a combined response.

6 The combined response, with the original command tag and the acknowledge tag, is sent to all
snoopers on this chip and queued for transmission to all the other chips in the system.

The combined response indicates to the master the success or failure of the operation and, if any,
the state transition for any line requested as well as any subsequent action the master takes.

Units that hold data that is specified by the operation, but were not able to determine if they were
to provide the data based solely on the command and the state of the line held, examine the
combined response to determine if they are to provide the data.

7r At some later time, read data is moved for the read command. The route tag used is derived from
the original command tag. The order in which read data is returned to the master might not be in
command order. The route tag contains the original command tag, which allows for this out-of-
order property.

7w At some later time, the write data is moved for the write command. The route tag is derived from
the acknowledge tag that was provided by the slave performing the write operation. The master
provides the data. Note that the order in which write data is provided to the slave might not be in
command order. The route tag contains the acknowledge tag, which allows for this out-of-order
property.

User’s Manual
OpenPOWER
POWER9 Processor

SMP Interconnect

Page 176 of 42
Version 2.1

10 October 2019

8.3 External POWER9 Fabric

The off-chip POWER9 Fabric supports up to two SMP X-bus links (X1:X2). The X-bus links connect up to two
POWER9 processor chips in a system. One X link carries both coherency traffic and data and is interchange-
able as inter-group processor links. The second X link can be configured as an aggregate data-only links.

Figure 8-1 shows the protocol layers.

8.4 Terminology

Table 8-1 defines some common terms used in this section.

Figure 8-2. Protocol Layers

Table 8-1. Terminology

Term Description

Lane Single Tx/Rx bit.

Link Consists of multiple bit lanes organized by protocol layer in packets (DLL).

Single Link Single link interconnect between two processors.

Paired Link Pair of link interconnects between two processors.

Packet Data payload generated by the data link layer.

Frame Data payload generated by the transaction layer.

Physical Layer

Data Link Layer

Transaction Layer

Fabric Cmd/Rsp/Data

Processor 1

Physical Layer

Data Link Layer

Transaction Layer

Fabric Cmd/Rsp/Data

Processor 2

Tx Rx Tx Rx

Physical Link

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

SMP Interconnect

Page 177 of 42

8.5 Protocol Layer Payload

Figure 8-3 illustrates the protocol layer payload.

8.5.1 Physical Layer

The PHY layers supported for fabric external SMP links on the die are listed as follows:

• 2 × EDI+ at 16 Gbps (also known as, Electrical X1:X2) {Asynchronous to Nest Clock}
(2 × 2 × 15 bit for the X-bus)

The PHY layer includes the transmitter and receiver, serializer/deserializer, and receiver clock recovery
circuitry. The PHY initialization includes continuity checking, calibration, equalization, and deskew.

8.5.2 Data Link Layer

8.5.2.1 Electrical Data Link Layer

The electrical data link layer (ELL) interfaces to the EDI+ PHY. The latter is a “thick” PHY class that includes
all spare/shadow maintenance. The ELL is responsible only for the CRC insertion/checking, replay buffers,
and link layer retry protocols.

8.5.3 Data Link Layer Packet Format

The data link layer packet is 30 bytes (240 bits).

The service packet identifies the special packets required for training and other uses. The payload of a TOD
packet contains a byte plus an ECC to correct errors and make the TOD packet more reliable. The link fail
packet has data to indicate the reason the link should be brought down. The T-start and T-complete packets
have a payload data byte used to match a received T-complete with the transmitted T-start. The other service
packets have no other data payload (set to ‘0’s).

Figure 8-3. Protocol Layer Payload

Link
CRCStatus

8 bits 28 bits (E)

TL Data PayloadData Link Layer SEQSEQ

1bit 3 bits200 bits (E)

Frame
Header

8 bits

Frame DataTransaction Layer

0 - 128 bits

Frame
Header

8bits

Frame Data

0 - 128 bits

Frame
Header

8 bits

Frame Data

0 - 128 bits

SMP PacketPhysical Layer

240 bits

User’s Manual
OpenPOWER
POWER9 Processor

SMP Interconnect

Page 178 of 42
Version 2.1

10 October 2019

For the electrical links, the ACK for a transmitted packet appears a fixed number of cycles after the packet is
transmitted (determined during initialization), because the two sides are in synchronization. When a packet is
received, the ACK/NAK indication for it is placed in the next packet transmitted.

The logical link number keeps the links and their sequence numbers separate, even when both halves of a
link pair are physically sent on one link. When a packet has good CRC, it is checked for the sequence number
based on the link number received, and then passed to that extractor for processing.

A 9-bit sequence number supports 256 outstanding packets. By not using half the sequence numbers, a
received packet can be determined to be a duplicate or missing packet. Using a sequence number encode for
service packets means 255 packets can be outstanding.

8.5.4 Transaction Layer

The transaction layer (TL) has a common 128-bit interface to the electrical data link layer. The transaction
layer includes the framing function (transmit) and parsing function (receive). The TL interfaces with the
internal SMP interconnect command/response/data buses.

8.5.5 POWER9 Fabric SMP Topology

Figure 8-4 illustrates the external SMP topology.

8.5.6 Protocol and Data Routing in Multi-Chip Configurations

The SMP ports configured for coherency are used for both data and control information transport. The use of
the buses is as follows:

1. The chip containing the master that is the source of the command issues the reflected command and the
combined response to all other chips in the SMP system. Partial responses are collected and returned to
the chip containing the master.

2. Data is moved point-to-point. For read operations, the chip containing the source of the data directs the
data to the chip containing the master. For write operations, the chip containing the master, directs the
data to the slave that performs the write operation. The routing tag contains the chip and unit identifier
information for this purpose.

Figure 8-4. External SMP Topology

POWER9
X1

X2S
POWER9

T

2 Socket

Note: Dotted line indicates aggregate data-only link.

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

SMP Interconnect

Page 179 of 42

8.6 POWER9 Coherency Flow

8.6.1 Broadcast Scope Definition

Table 8-2 describes the physical broadcast scope and the equivalent coherency scope.

8.6.2 Address Definition

Figure 8-5 illustrates the POWER9 system real-address map.

Table 8-2. Broadcast Scope Definition

Command Scope Physical Broadcast

LNS Local node scope Local chip

 GS Group scope Local chip

 RNS Remote node scope Local chip and targeted remote chip1

 VGS Vectored group scope Local chip and remote chip

1. Requires X-bus BAR lookup.

Figure 8-5. POWER9 System Real-Address Map

8 12

5 2

18 21

3

63

42

Chip Address Range (4 TB)

Chip Select (within a group)

Group Select ((within an SMP)

Memory Select (LPC, I/O, and so on)

14

4

System Select (0:4)

User’s Manual
OpenPOWER
POWER9 Processor

SMP Interconnect

Page 180 of 42
Version 2.1

10 October 2019

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

NCU

Page 181 of 508

9. NCU

The POWER9 Non-Cacheable Unit (NCU) is responsible for processing noncacheable load and store opera-
tions (load and store operations with a WIMG “I” bit setting of ‘1’ as described in the Power ISA), word and
doubleword load and store atomic instructions (lwat, ldat, stwat, stdat), and certain other uncacheable oper-
ations such as tlbie, portions of the various sync and ptesync instructions, and so on. All of these instruc-
tions support the behavioral definitions given in the Power ISA. One NCU unit is instantiated per pair of
simple four thread cores. This NCU handles appropriate operations for all eight threads in the two associated
simple cores.

The POWER9 NCU provides one dedicated cache-inhibited load station (LDS) per thread to process cache-
inhibited loads and load word or doubleword atomics (lwat, ldat). Cache inhibited loads (whether guarded
[meaning the G bit of WIMG is set to ‘1’] or not) and load atomics are neither gathered nor are they reordered
in the POWER9 implementation. Although, with the exception of guarded cache-inhibited loads, they might
be in future implementations. If ordering and/or non-gathering is required on unguarded caching-inhibited
loads or on load atomics, appropriate barriers should be inserted to ensure future compatibility.

For cache-inhibited stores and store word and doubleword atomics (stwat, stdat), a store queue (STQ)
consisting of sixteen 64-byte store gather stations is provided. The store gather stations are shared across
the eight core threads and hardware prevents any thread from blocking other threads in the store queue. A
pair of 64-byte stations can “chain” together to gather up to 128 bytes.

The POWER9 NCU supports gathering and reordering for cache-inhibited stores in the unguarded caching-
inhibited (IG = ‘10’) space. In caching-inhibited, but guarded space (IG = ‘11’), cache-inhibited stores are
neither reordered nor gathered as required by the architecture. Similarly, atomic word and doubleword stores
(stwat, stdat) are never gathered, but might be re-ordered.

Figure 9-1. NCU Block Diagram

Core CI Loads

LDS

×8

SAM

×8

SDM

×2

STQ
16 4 byte

Chainable to
8 × 128 byte

TLBS
×8

SLBS
×4

NCU

Snooped
TLBIE/SLIG

User’s Manual
OpenPOWER
POWER9 Processor

NCU

Page 182 of 508
Version 2.1

10 October 2019

The POWER9 NCU only gathers naturally aligned 4-, 8-, or 16-byte unguarded cache-inhibited stores. Gath-
ering starts at the first such 4-, 8-, or 16-byte store in a 128-byte region and continues if the next such store
(which might be of a different size than the previously gathered store) is contiguous with the previously gath-
ered store and does not cross over a 128-byte boundary.

The POWER9 NCU provides eight store address machines (SAM) that manage the address tenure of the
store allowing for up to eight outstanding cache-inhibited or store atomic word or doubleword instructions
(stwat, stdat). A set of two store data machines (SDM) are used to manage the data tenures for the store
address machines after the address tenures are complete.1

The POWER9 NCU also masters hypervisor broadcast MSGSEND instruction through the store queue and
store address and data machines. MSGSEND instructions are treated as a special type of store instruction.

Finally, the NCU provides eight snoop queues (TLBS) to process snooped TLBIE operations and four snoop
queues (SLBS) to process SLBIE operations and forward these to the core. The instruction sequences
provided in the Power ISA documentation for page table modification should be followed in using the TLBIE
and SLBIEG instructions that cause these bus operations.

9.1 NCU Characteristics

9.1.1 Store Queue (STQ)

• 16 × 64 byte store gather stations (chainable to 8 × 128 byte gathered stores).

• The gather stations are shared across threads.

9.1.2 Store Modes (IG = ‘1X’)

• IG = ‘11’ mode, stores are done in-order and no gathering is allowed.

• IG = ‘10’ mode, stores can be gathered and reordered.

• Atomic stores (stwat, stdat) are not gathered but can be reordered.

9.1.3 LOADS

• One outstanding cache-inhibited (guarded or unguarded) load or atomic word or doubleword load (lwat,
ldat) per thread.

1. Address tenures take longer than data tenures and data tenures can be fully satisfied by two store data machines.

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Memory Controller

Page 183 of 508

10. Memory Controller

The POWER9 memory controller unit (MCU) provides the system memory interface between the on-chip
SMP interconnect fabric and the DDR PHY unit, which in turn directly connects to industry standard memory
DDR4 DIMM interfaces. The MCU acts as a slave only. It does not source any commands to the SMP fabric.
There are logically eight essentially independent MCUs on the chip interfacing to eight 9-byte wide DDR4
JEDEC standard memory buses. Each memory channel (or ‘port’) supports up to two DDR4 DIMM slots.
Physically, the MCUs are grouped into two instances of an EMC chiplet. Each EMC chiplet contains four
MCUs. The EMC is simply a physical level of hierarchy on the chip that contains the MCU plus pervasive
logic. The MCUs process 64-byte and 128-byte read and write requests from processor cores and I/O host
bridges, 1 - 128-byte partial-line writes, atomic memory operations (AMOs), and also handle address-only
operations for the purpose of address protection, acting as the lowest-point of coherency (LPC).

While executing these operations, the MCU is also managing DRAM memory refresh, DRAM power states,
and also communicates with the DDR PHY to initiate periodic memory bus calibration sequences.

The eight MCUs on the chip can be configured into one or more address interleave groups. Within each
group, the address space is divided into portions, such that each sequential portion is handled by a different
MCU in a round-robin fashion. The maximum memory addressing capability per interleave group is 4 TB. The
maximum memory addressing per POWER9 chip is 8 TB.

Figure 10-1. POWER9 Memory Controller

EMC

D
I
M
M

D
I
M
M D

I
M
M

D
I
M
M

D
D
R
P
H
Y

SMP Fabric EMC
D
I
M
M

D
I
M
M D

I
M
M

D
I
M
M

D
D
R
P
H
Y

D
D
R
P
H
Y

D
D
R
P
H
Y

D
D
R
P
H
Y

D
D
R
P
H
Y

D
I
M
M

D
I
M
M

D
I
M
M

D
I
M
M

D
D
R
P
H
Y

D
I
M
M

D
I
M
M

D
I
M
M

D
I
M
M

D
D
R
P
H
Y

POWER9

Double data rate

Dual in-line memory module

Joint Electron Device Engineering Council

Dynamic random access memory

User’s Manual
OpenPOWER
POWER9 Processor

Memory Controller

Page 184 of 508
Version 2.1

10 October 2019

10.1 EMC Major Features
• Physical Organization:

– Each POWER9 chip contains two EMC chiplets

– Each EMC chiplet contains:

— Four memory controller units (MCUs)

— One MCBIST/maintenance/CCS unit shared across the four MCUs

— Pervasive chiplet infrastructure (scan, trace, and so on)

• SMP Fabric Interface:

– Four each reflected command, partial response, early combined response, and combined response
interfaces. All four buses are snooped in parallel.

– Four 32-byte read data ramps (one per memory port).

– Four 32-byte write data ramps (shared across four memory ports).

– Speculative fastpath read command bypass.

– Speculative fetch filtering: Five types:

— SMP Fabric ttype based

— SMP Fabric hint bit based

— SMP Fabric command source and scope based

— Command list queue fullness based (threshold exceeded)

— Hashed address range based (2048 ranges)

– Fastpath interface (from local chip L3 caches).

– Support for 64-byte and 128-byte data transfers.

– Cache-line interleaving on a 32-byte basis when returning read data to the SMP fabric.

– Hardware management of domain bits for multi-node systems.

– LPC coherency support for address-only commands.

– Delivery of the critical 32 bytes of read data not gated by reading the entire cache line.

– Secure memory facility (SMF) support. This support accomplishes enabling a programmable configu-
ration of ranges of memory as secure or not secure; and preventing access of secure memory by
entities that are not secure.

– Prefetch drop protocol support.

– Prefetch promote protocol support.

– I-side speculation avoidance supported via partial response.

– Memory ECC bypass protocol for improved latency.

• Pervasive Interfaces:

– Performance monitor interface

– Nest (sync) and memory (async) clock domain SCOM interfaces

– Nest domain debug bus interfaces (to shared trace arrays in SMP fabric logic)

– Memory domain debug bus interfaces (to EMC contained trace arrays)

Memory card built in self-test

Configured command sequencer

Scan communications

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Memory Controller

Page 185 of 508

• Resources (per MCU port):

– 76 snoop command list entries

— 64 read/write memory entries

— 12 address protection-only entries

– Sixteen 128-byte read data buffers (managed as thirty-two 64-byte buffers)

— Read commands to memory stalled on full condition

– Thirty-two 128-byte write data buffers (managed as sixty-four 64-byte buffers)

— SMP fabric write operations retried on full condition

– Thirty-two 128-byte read-modify-write (RMW) data buffers:

— One of 32 buffers reserved for maintenance operations

— Managed as a cache to provide for high-throughput AMOs.

— Up to 62 concurrent 64-byte AMO operations.

• DRAM interface (per MCU port)

• DRAM widths supported: ×4, ×8

– DRAM densities supported: 4 Gb, 8 Gb, 16 Gb

– ISDIMM types supported: DDR4 RDIMM, DDR4 LRDIMM (with and without 3D stacking)

– Maximum DIMM size: 256 GB (2 master ranks × 4-high stacked 16 Gb DRAMs)

– DRAM command scheduling

– Support for page-mode reads and writes

– 1 TB maximum memory capacity per port

– Speculative read cancel protocol

— Provides for cancellation of speculative reads if a bad combined response is received before the
issuance of the read command to memory.

– 17 read reorder queue entries (one of 17 reserved for maintenance operations)

– 17 write reorder queue entries (one of 17 reserved for maintenance operations)

– DRAM power state controller

— Power control state status register

— Programmable dynamic command throttling: credit based.

— Self-Timed-Refresh (STR) based power reduction.

— C/A outputs tri-stated in PD or STR modes

— Programmable minimum/maximum ranks allowed to be powered up

— Programmable number of idle cycles between commands

— Emergency power throttle mode

– DRAM refresh controller

— Thermal-based dynamic tREFI setting.

— Hardware support only. Also requires OCC code support.

User’s Manual
OpenPOWER
POWER9 Processor

Memory Controller

Page 186 of 508
Version 2.1

10 October 2019

– DRAM interface calibration timers.

– Synchronous and asynchronous operation relative to the nest clock.

– Support DDR4 bin speeds: 1866, 2133, 2400, 2667.

• RAS features

– 64-byte memory ECC

— Dual packet analysis for 128-byte reads

— Address parity encoded into ECC code

— Correction of up to one symbol in a known location plus up to two unknown symbol errors

— Correction of up to one symbol in a known location plus a new ×4 chip kill

— Correction of one ×4 chip in a known location plus either a known symbol or one unknown symbol
error

– Flexible chip and symbol marking storage

— Per bank, bank group, slave rank, master rank, DIMM, and port granularities

— CE retry before new mark placed for confirmation

– Read operation retry upon detection of uncorrectable errors (UEs)

— 64-byte reads retried as 128-byte reads under some conditions for improved RAS

– DDR4 CRC support on writes

– Maintenance engine supports runtime diagnostics and error logging

— Includes background memory scrubbing

— Eight MCE symbol counters per port.

– Time-out counters for various events.

– DIMM RCD parity error handling

• Manufacturing, test, and bringup

– Firmware driven system memory built-in-self-test (MCBIST) engine

– Maintenance engine for IPL memory initialization and diagnostics

– Configured command sequencer (CCS)

— Provides user-defined sequences for memory interface debug

— Can be used concurrently with mainline operations (for MRS commands, and so on)

– Extensive error-injection capabilities to provide means to test all FIR bits

– Debug buses and trace arrays

Machine check exception

Registered clock driver

Mode register set

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Memory Controller

Page 187 of 508

Table 10-1. Frequencies

Synchronous/Asynchronous Mode Nest Frequency (GHz) Bin Speed (MTps)

Asynchronous 1.600 1866, 2133, 2400

Asynchronous 1.866 1866, 2133, 2400, 2667

Asynchronous 2.000 1866, 2133, 2400, 2667

Asynchronous 2.133 1866, 2133, 2400, 2667

Asynchronous 2.400 1866, 2133, 2400, 2667

Synchronous 1.866 1866

Synchronous 2.133 2133

Synchronous 2.400 2400

Table 10-2. Allowable DIMM Mixing

Type of Mixing On any Single Port Across Different Ports Comments

DRAM width (×4, ×8) No Yes

DIMM size (# ranks) No (1) Yes 1. Single-port mixing barred due to loading
issues.

DIMM size (DRAM density) Yes (2) Yes 2. Only power of 2 densities can be mixed.

DIMM type: RDIMM and LRDIMM No Yes

Stacking: 3DS and non-3DS No Yes

DIMM speeds No (3) No (3) 3. However, ports controlled by one EMC can
run at a different speed than ports controlled
by the other EMC.

User’s Manual
OpenPOWER
POWER9 Processor

Memory Controller

Page 188 of 508
Version 2.1

10 October 2019

10.2 Basic Configuration/Grouping

The MCU architecture allows for 1, 2, 3, 4, 6, or 8 MCUs to be grouped together for address interleaving. As
a group, the MCU ports then hash a contiguous address space amongst themselves to more efficiently
distribute the memory workload.

For 2, 3, 4, 6, or 8 MCUs to be grouped, the total amount of memory defined by each MCU’s primary memory
configuration facilities must be the same. The DIMM configurations and sizes that make up the total amount
of memory can be different, but the total memory size plugged behind each MCU in the group must be the
same.

The total amount of physical memory behind an MCU can be less than the memory size specified by that
MCU’s primary memory configuration register. However, if the MCU decodes an address that falls within its
programmed address range, but does not decode to a valid physical DRAM address, a Fault Isolation
Register (FIR) bit is set.

Each MCU receives a 56-bit address for each snoop operation from the SMP fabric, and forwards a 40-bit
(1 TB) logical address to the DRAM address translation logic. This logic converts the real address to a DRAM
rank/bank/row/column address.

Figure 10-2. EMC Logical Partitioning

Add/
Cmd
Dcd

D
I
M
M

D
D
R
P
H
Y

Port 0

RMW
Buffers

Snoop
CmdList

76 entries
(64 r/w,

 12 APO)

Sched,
Pwr Cntl,
Refesh,
Timers

RRQ
WRQ

Fastpath

Snoop
Addr (x4)

ECresp (x4)
Cresp (x4)
Presp (x4)

Wr (2x32B)

Rd (32B)

D
I
M
M

D
D
R
P
H
Y

Repeats for Ports 2,3
MCBIST/Maint, Pervasive shared across all four ports

RMW
Buffers

Snoop
CmdList

76 entries
(64 r/w,

 12 APO)

Sched,
Pwr Cntl,
Refesh,
Timers

RRQ
WRQ

MCBIST
Maint

Rd (32B)

Wr (2x32B)

EMC

Port 1

Asynchronous Interface
Nest Mem

Read
Buffers

Write
Buffers

MBX

MBX

Read
Buffers

Write
Buffers

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Memory Controller

Page 189 of 508

The address interleaving granularity, meaning the amount of contiguous addresses handled by each group
member, is programmable from 128 bytes to 32 KB. For example, if set to 512 bytes, memory accesses to a
contiguous 512-byte block of memory are all handled by one group member MCU. Then, the next 512-byte
block is handled by the next MCU in the group, and so on.

10.3 Command Dispatch and Snoop Pipeline Collision Detection

For a snooped operation to be dispatched into a MCU command list queue entry, the operation must:

1. First successfully pass through the snoop pipeline collision detection logic.

2. Then pass through the command list fullness logic and L3 prefetch limit logic.

3. Then successfully pass through the MCU address collision rules table.

The memory controller logic compares incoming reflected command and fastpath command addresses to
queued addresses in the CAR1 cycle. However, newly dispatched operations do not begin address protection
in the ACAM until the CAR4 cycle. The MCU compares addresses in the CAR2 and CAR3 pipeline stages to
incoming CAR1 addresses. If the operation in CAR2 or CAR3 matches the CAR1 address, and the CAR2 or
CAR3 operation is dispatched, then a retry response is driven for the CAR1 address operation.

The MCU logic compares incoming RCMD ttags to queued tags in the CAR1 cycle to associate a RCMD with
a previously dispatched fastpath read. However, ttags for newly dispatched operations do not begin ttag
comparison until the CAR4 cycle. The MCU logic compares ttags in the CAR2 and CAR3 pipeline stages to
incoming CAR1 ttags. If the operation in CAR2 or CAR3 matches the CAR1 ttag, the CAR2 or CAR3 fastpath
read operations is dispatched, and then the command in CAR1 is associated with the CAR2 or CAR3 fast-
path operation.

10.4 Epsilon Protection

The MCU provides epsilon protection for command list operations. Epsilon protection guarantees that the
command list stays active; protecting a cache-line address from the time a good combined response is
received to the time the epsilon counter expires. The epsilon counters are loaded when a combined response
is received and decremented once every four nest cycles. The starting point of epsilon counting occurs in the
cac3 cycle of a good combined response, which might not align with the epsilon count decrement pulse.
Thus, the actual epsilon protection window could be up to four nest cycles greater than the programmed
value.

The epsilon protection window ends when the epsilon count reaches zero. The epsilon protection window can
end before the command list queue entry goes idle. An example is a non-speculative read operation. Read
data is returned after the epsilon window expires for cases where the epsilon value is less than the read
latency of the operation.

10.5 Read Speculation Filtering

The MCU employs read speculation under certain conditions to improve average memory latency. A specula-
tive read is a memory read operation where the read to memory is initiated before the coherency response is
received from the SMP fabric. Speculation filtering is used to determine when to speculate on a read opera-
tion or not. There are five types of filtering:

Remote command

User’s Manual
OpenPOWER
POWER9 Processor

Memory Controller

Page 190 of 508
Version 2.1

10 October 2019

• Filtering by Ttype: The enabling of read speculation for various fabric ttypes is programmable. Because
only speculative read types are received on the fastpath interface, the entire fastpath interface can also
be disabled.

• Filtering by command source and scope: The enabling of speculative reads for non-DMA groups or sys-
tem pump operations from a local chip master is programmable. A group or system pump read is likely
generated because the cache line was not found on-node. Group and system pump reads issued by off-
node masters are issued speculatively if the read operation passes the other speculation filters.

• Filtering using the SMP fabric hint bit: Read speculation is disabled if the fabric hint bit is set, indicating a
local cache found the line in the In/Ig state. This indicates that the line has been intervened on-node (In),
or off-node (Ig). In either case, a cache is likely to contain the cache line. The enabling of this type of filter-
ing is programmable. The hint bit is defined for certain ttypes as specified in the SMP fabric architecture
document.

• Filtering if the number of read command-list entries exceeds a threshold: The number of active read oper-
ations queued in the command list beyond which additional reads will not be performed speculatively is
programmable.

• Filtering by hashed-address range: The MCU contains 2048 latches that are used to aid in the specula-
tion decision. Each of the 2K latches represents a specific address hash. If the MCU returns read data
whose address hashes to a particular bit, that bit is set. If a read that was initiated speculatively receives
a coherency response indicating that the MCU will not return data, the bit selected by that read’s address
hash is reset. This setting/resetting of a bit in the filter can be modified by an LFSR increment/decrement
filter.

Latches can be reset immediately if a snoop operation with the hint bit set is dispatched to the counter’s
hashed address range. If the latch is set, speculative reads to that hashed address range are allowed. If not
set, speculative reads to the hashed address range are inhibited.

10.6 SMP Fabric Fastpath Interface

The fastpath interface is an early version of the reflected command (rcmd) interface, and is sourced from the
L3 cache units. Only read commands are sent via the fastpath interface. If no reflected commands targeting
an MCU are received in the same cycle as a fastpath read, the fastpath read is allowed into the snoop pipe-
line. Otherwise, it is discarded. If the fastpath command passes the address protection and speculation filters,
it is dispatched to the command list queue and forwarded to the DRAM interface command scheduler. At the
time a fastpath read command is dispatched, address protection for the fastpath operation starts, and the ttag
is loaded into the tag CAM register associated with the dispatched command list index. A partial response is
not generated.

A reflected command and combined response always follows a fastpath command. If the fastpath command
has been dispatched to a command list entry, the subsequent reflected command is detected with a ttag
compare. At the time of the reflected command, the operation ticket is loaded into the ticket register associ-
ated with the command, and a SMP fabric partial response is generated. The reflected command can be
retried subject to the address-collision rules.

A fastpath command can be dropped depending in the command list fullness, or if a spare rcmd slot is not
available at the time the fastpath command is received.

A fastpath command is always issued with nodal scope. The rcmd associated with the fastpath command is
also always issued with nodal scope. If a fastpath command is issued with non-nodal scope, the MCU sets a
FIR bit.

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Memory Controller

Page 191 of 508

10.7 Read Data ECC Bypass

To improve read latency from memory, data returned from a read operation can be forwarded directly to the
SMP fabric, bypassing the memory ECC check logic and the read data buffers, if all of the following are true:

• The ‘speculative’ (ECC bypass capable) bit is set in the fabric secondary command tsize encode.

• The targeted DRAM rank is in an ECC state that supports ECC bypass (that is, no chip mark placed).

• Good combined response is received before the arrival of the read data from memory or the read data is
of the type exclusive.

• The scope of the read operation is nodal.

• ECC bypass is enabled for the read ttype.

10.8 Atomic Memory Operations

Each MCU supports the processing of a set of atomic memory operations (AMOs). AMOs are read-modify-
write type operations, and as such have store data associated with them. The MCU implements an arithmetic
logic unit (ALU) that operates on the store and memory fetch data. The intent is to provide high throughput of
multiple AMOs targeting the same address. There are two major features that enable this high level of
throughput:

• Multiple AMOs targeting the same address are allowed to be queued in the command list queue such that
they are not serialized via retries on the SMP fabric interface. Each AMO command must be performed
atomically, but there is no requirement that they be executed in the order in which there are snooped on
the SMP fabric.

• The 31 entry × 128-byte RMW buffer is managed as a cache. When one AMO completes, its data is
maintained in the RMW buffer so that a subsequent AMO to the same address receives its data directly
from the buffer instead of having to re-fetch the data from memory. This caching capability is also used for
partial writes, providing for the ‘gathering’ of multiple partial writes before writing back to memory, and for
MDI bit updates. The command list logic controls the deallocation of the RMW buffer entries in response
to snoop traffic and requests from the memory interface sequencer (SRQ) to free up room in the RMW
buffer.

AMOs are only supported in 4 and 8 byte sizes. Both big-endian and little-endian modes are supported.
There are 23 different AMO types supported:

• Store Add
• Store XOR
• Store OR
• Store AND
• Fetch and ADD
• Fetch and XOR
• Fetch and OR
• Fetch and AND
• Compare and swap equal
• Compare and swap not equal
• Swap unconditional
• Fetch and increment bounded
• Fetch and increment equal
• Fetch and decrement bounded

User’s Manual
OpenPOWER
POWER9 Processor

Memory Controller

Page 192 of 508
Version 2.1

10 October 2019

• Store twin
• Store maximum unsigned
• Store maximum signed
• Store minimum unsigned
• Store minimum signed
• Fetch and maximum unsigned
• Fetch and maximum signed
• Fetch and minimum unsigned
• Fetch and minimum signed

All of the “fetch and …” operations return the unmodified memory data to the SMP fabric, except the fetch and
increment bounded, fetch and increment equal, and fetch and decrement bounded. Those three operations
return either the unmodified memory data, or the minimum unsigned-integer value based on the result of a
compare of two adjacent granules of memory data.

From an MCU data flow/sequencing perspective, AMO operations are always 64 bytes in length, and partial
writes and MDI updates are always 128 bytes in length.

10.9 Write Operations

The MCU command list machines wait for both a good combined response and write data arrival before
issuing a write command to the memory interface command sequencer/scheduler (SRQ). Up to four CRESPs
and four write data available indications can occur in a single cycle.

The SRQ treats 128-byte writes as two 64-byte writes, and signals write done on a per 64-byte basis. The
write buffer allocation logic deallocates a 64-byte write buffer with each write done, and the command list
counts two write done indications for each 128-byte write operation.

Each MCU port command list dispatch block maintains a count of available 64-byte write buffers. The
dispatch block is responsible for not overrunning the write data buffer. The dispatch block always waits for at
least two 64-byte buffer slots to be free before dispatching a new write operation to avoid a stream of 64-byte
writes blocking a 128-byte write.

The write done indicator from the SRQ is used to decrement the count of 64-byte write buffer slots available.
Write done is issued after the SRQ has waited a programmable guard time to ensure that the write to memory
does not have to be retried due to a DIMM RCD error.

10.10 Prefetch Promote/Drop Protocol

To increase the efficiency of pre-fetch commands to memory, the MCU supports a prefetch drop/promote
protocol. If a prefetch operation is experiencing a long latency and a demand load to the same cache line is
issued before the return of the prefetch data, the prefetch can be promoted to demand read status by
increasing the priority of the queued command in the MCU. Conversely, the longer an outstanding prefetch
sits in a queue without completing, the less likely it is that the prefetch data will ever be needed by the core. In
this case, the MCU has the ability to drop a prefetch based on a decrementing timer.

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Memory Controller

Page 193 of 508

10.10.1 Prefetch Promote

The L3 cache can send a prefetch promote command after combined response for the original prefetch
command if it chooses to update a low or high priority prefetch to a low or high priority demand read. This
increases the priority of the prefetch command and prevents it from potentially being dropped. The prefetch
promote occurs in the MCU non-speculative queues and the SRQ read reorder queues.

The SMP fabric prefetch promote command contains the master tag associated with the prefetch. If the rtag
is active in the MCU tag storage at the time of the promote command, and the prefetch operation is found in
the MCU command-list queue, the operation is updated from low or high priority prefetch, to a low priority
demand read. If the rtag is not active in the TCAM at the time of the promote command or the operation
cannot be found in the command list queue, no action is taken.

The promote operation is not always precise in the MCU. The promote can be missed if the prefetch
command is crossing the asynchronous boundary (Nest → Mem) between the command list queue and the
SRQ or can be applied to the next prefetch operation using the same command list entry. If this happens,
data integrity is maintained, but the promote might be missed. However, for the vast majority of the timing
cases, the promote is precise. The enabling/disabling of the MCU prefetch promotion function is program-
mable.

10.10.2 Prefetch Drop

The SMP fabric prefetch commands contain a 2-bit ‘confidence level’ that is encoded into the secondary
encode field of the ttype. The MCU converts this value into a 3-bit ‘prefetch-drop’ field that is carried through
the command list and SRQ queues.

The MCU command queue prefetch drop value is decremented every “N” nest cycles (where N is program-
mable). When the drop value reaches ‘000’, the prefetch operation is in the drop state and is not forwarded to
the next command queue or to memory. If the prefetch is dropped in the command list queue or the SRQ’s
read-reorder queue, a command is sent to the read data flow logic instructing it to send a 32-byte dummy
read-data packet back to the requesting prefetch master. The SRQ prefetch drop value is decremented at
half the rate of the command-list queue’s drop value.

The drop operation is not always precise in the MCU. The prefetch drop value decrement could be missed if
the prefetch command is crossing the asynchronous boundary (Nest → Mem) between the command list
queue and the SRQ at the time the decrement pulse is active. If this happens, data integrity is maintained, but
it could take longer for the prefetch to be dropped. However, for the vast majority of the timing cases, the drop
value decrement is precise. The enabling/disabling of the MCU prefetch drop function is programmable.

User’s Manual
OpenPOWER
POWER9 Processor

Memory Controller

Page 194 of 508
Version 2.1

10 October 2019

User’s Manual
OpenPOWER
POWER9 Processor

Nest Accelerator

Page 195 of 508
Version 2.1

10 October 2019

11. Nest Accelerator

The Nest Accelerator unit (NX) consists of cryptographic and memory compression/decompression engines
(coprocessors) with support hardware. Figure 11-1 shows a block diagram of the NX.

Figure 11-1. NX Block Diagram

User’s Manual
OpenPOWER
POWER9 Processor

Nest Accelerator

Page 196 of 508
Version 2.1

10 October 2019

11.1 Features

The NX coprocessors and their features are as follows:

Cryptographic Engines

Advanced encryption standard (AES) engine:

• Modes: Electronic Codebook (ECB), Cipher Block Chaining (CBC), Count (CTR), Counter with CBC-
MAC (CCM), Galois Counter Mode (GCM), XCBC-MAC-96 (XMAC)

• Key lengths: 128 bits, 192 bits, 256 bits

• Two engines

Secure Hash Algorithm (SHA) engine:

• Modes: SHA-1, SHA-256, SHA-512, Message Digest 5 (MD5).

• Keyed-hash message authentication code (HMAC) supported for SHA.

• Two engines.

• Combined AES and SHA operations are supported on a single movement of data through an AES/SHA
engine pair.

Random Number Generator (RNG):

• All digital design with dual noise sources

• NIST 800-90B draft standard compliant

• Hardware random number (RN) conditioning

• Continuously running health tests with noise source failover on test failure

• Produces 64-bit conditioned random numbers (CRN) and raw random numbers (RRN) readable by the
darn instruction

Compression and Decompression:

• 842 compression/decompression

• IBM-proprietary algorithm with 8-byte, 4-byte, and 2-byte phrase parsings

• High throughput and low latency with good compression and silicon efficiency

• Two engines

Gzip Compression and Decompression:

• Industry standard DEFLATE RFC 1951 compliant

• Supports RFC 1950 (zlib) and RFC 1952 (gzip) file formats

• Fixed and dynamic Huffman table support

• Assist for dynamic Huffman table creation

• Ability to suspend an operation when a byte count limit is hit
– Software can resume operation from a suspend point after adjusting the job parameters

• Bypass mode for data move

• High throughput with better compression efficiency (relative to 842)

Deliver a random number

User’s Manual
OpenPOWER
POWER9 Processor

Nest Accelerator

Page 197 of 508
Version 2.1

10 October 2019

Each one of the AES/SHA, 842, and Gzip units consist of a coprocessor type (CT). As such, NX has three
coprocessor types.

To support coprocessor invocation by user code, use of effective addresses, high-bandwidth storage
accesses, and interrupt notification of job completion, NX includes the following support hardware:

SMP interconnect unit (SIU):

• Interfaces to SMP interconnect and direct memory access (DMA) controller
– Provides 16-bytes per cycle data bandwidth per direction to both

• Employs SMP interconnect common queue (SICQ) multiple parallel read and write machine architecture
to maximize bandwidth

– 16 DMA read machines, each with one cache-line data buffer storage
– 16 DMA write machines, each with one cache-line data buffer storage
– Three UMAC read machines, each with one cache-line data buffer storage
– Three UMAC write machines, each with one doubleword data buffer storage
– Eight RN read machines with buffer storage for eight doubleword CRN plus eight doubleword RRN

• User-mode access control (UMAC) coprocessor invocation block
– After the Virtual Accelerator Switchboard (VAS) accepts a CRB that was initiated by a copy/paste

instruction, the UMAC snoops the VAS’s notification for an available coprocessor request block (CRB
or job).

– Supports one high- and one low-priority queue per coprocessor type
– Retrieves CRBs from queues and dispatches CRBs to the DMA controller

• Effective-to-real address translation (ERAT) table stores 32 recently used translations
– Interfaces to nest memory management unit (NMMU) for address translation services
– Translates all effective addresses (EA) from DMA controller to real addresses (RA)
– Returns translation faults to DMA controller

• Snoops darn instruction command for RN delivery

DMA Controller:

• Decodes CRB to initiate coprocessor and move data on behalf of coprocessors

• Uses effective addresses for all CRB storage accesses
– Issues paste command to VAS to dispense CRB with translation fault to per-partition fault queue

• 5-channel data mover, one per each instance of AES/SHA, 842, Gzip engine, with buffers for data to and
from engines

• Two CRB queue positions per channel: one for current CRB (currently executing on a coprocessor) and
one for pending CRB (awaiting execution)

– Can prefetch coprocessor parameter block (CPB) and source data for pending CRB

• Provides prefetch hints to memory controller to reduce read latency

• Supports byte-aligned source and target data

• Supports scatter/gather through data descriptor list (DDL)

• Supports interrupt notification on CRB completion

• 16 bytes per cycle data bandwidth per direction to/from SIU

• 16 bytes per cycle data bandwidth toward 842 engines, 8 bytes per cycle toward AES/SHA, Gzip

• 16 bytes per cycle data bandwidth from 842 engines, 8 bytes per cycle from AES/SHA, Gzip

User-mode access control

User’s Manual
OpenPOWER
POWER9 Processor

Nest Accelerator

Page 198 of 508
Version 2.1

10 October 2019

Most of the NX unit operates on the nest clock domain, but the DMA controller operates on a clock period
twice that of the nest clock (see “2:1 clock domain” in Figure 11-1 on page 195). To match the SIU data band-
width, the DMA controller buses are twice as wide as the SIU buses, as shown in the figure.

11.2 Using NX Coprocessors

NX coprocessors can be invoked through library or operating system kernel calls that use the Power ISA
copy/paste facility. See GITHUB for links to both Linux and AIX operating systems, as well as low-level gzip
engine invocation details for library or kernel coders.

11.3 Reliability, Availability, and Serviceability

NX integrates many features to improve Reliability, Availability, and Serviceability (RAS), including the
following:

• Error correction code (ECC) or parity on all data arrays

• ECC or parity on ERAT and other address-carrying structures

• Parity on key configuration registers

• Control checkers on many state machines and other control structures

• High degree of error tolerance

– Many errors simply write error CC to CSB and hardware operation continues
– Ability to unit checkstop on severe error and become benign on the SMP interconnect interface
– Failover on single RNG noise source fail, fail-safe on dual fail, or other severe error

• Per-channel watchdog timers to detect and terminate hung coprocessor

• DMA hang timer to detect DMA controller hang

• Hang timers on SMP interconnect operations

• Unit checkstop upon VAS or NMMU unit checkstop

https://github.com/abalib/power-gzip

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Virtual Accelerator Switchboard

Page 199 of 508

12. Virtual Accelerator Switchboard

12.1 Overview

The main function of the Virtual Accelerator Switchboard (VAS) unit is to allow user-level software code
running on a processor core direct access to the Nest Accelerator (NX) unit accelerator engines without the
requirement for an expensive hypervisor call to initiate accelerator usage. This allows user-level code direct
access to the cryptographic and compression accelerator engines on the POWER9 chip.

12.2 Flow for NX Invocation Through the VAS

When an operating system wants to initially allow a user process access to an NX accelerator, it must
communicate with the hypervisor. The hypervisor sets up a Send Window Table Entry (STE). A send window
can be unique per process, or can be shared by an operating system among its many user processes. When
the hypervisor establishes the send window, it assigns it a quantity of credits indicating how many operations
are allowed at one time, and returns an address handle to the operating system. Then the operating system
returns an effective address to the user. This effective address allows the user process to directly post entries
to the FIFOs associated with the NX accelerators. A separate send window is necessary for each accelerator
a process uses.

First-in, first-out

User’s Manual
OpenPOWER
POWER9 Processor

Virtual Accelerator Switchboard

Page 200 of 508
Version 2.1

10 October 2019

1. After a send window has been established, the user process can begin using the NX accelerator. To do
so, it must create a coprocessor request block (CRB). The NX specification defines the format of the
CRB. This CRB is sent to the VAS unit by using the POWER9 copy/paste instructions. The copy instruc-
tion places the CRB into the copy buffer. The user process then issues a paste instruction using the effec-
tive address given by the operating system during send window creation to store the copy data to the
VAS. The copy data contains the 128-byte CRB. The effective address is translated to a real address by
translation hardware in the core. The store to the real address is issued to the SMP interconnect as a
remote memory access write (RMA_write) command and has the send window identifier embedded
within the real address. The 128-byte RMA_write payload (the CRB) is stored into one of 64 VAS data
buffers.

The VAS has the ability to hold 128 unique window contexts. Upon snooping the RMA_write, the VAS
uses the send window identifier to fetch the Send Window Table Entry from memory if not already resi-
dent with the VAS window cache logic.

2. The VAS reads the Receive Window Identifier field in the send window context to determine which
receive window the send window from the RMA_write points to. Each NX coprocessor type (CT) has a
unique receive window corresponding to a unique FIFO for each of the accelerators.

If the receive window is not cached, it will be fetched from memory.

Figure 12-1. Flow for NX Invocation through the VAS

NX CT A eft

NX CT B crypto

notify

Send Table Receive Table

receive FIFO A

credit
return

1. Window ID matches
STE (cache fill if miss)

2. Map to RTE
3. Write message
(CRB) to FIFO A.
Stamp with WC

ID

4. Send asb_notify
LPID:PID:TID =
FIFO A handle

6. When CRB
queue empty, read
CRB from FIFO A;
aQueued--; fetch

info from WC

7. Dispatch and
execute job

8. Returns credits (ci
store)

VAS

NX
rma_write

(paste)

9. Write CSB,
optional

interrupt, write
XPBC

CSB

FIFO A head,
aQueued

5. FIFO A Handle
matches reg;
aQueued++

LPID:PID:TID

FIFO B head,
bQueuedLPID:PID:TID

FIFO B

RTESTE
window
context

MEMORY

NX CT C gzip

FIFO C head,
cQueuedLPID:PID:TID

FIFO C

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Virtual Accelerator Switchboard

Page 201 of 508

As shown on the left side of Figure 12-1 on page 200, many different send windows, each associated
with a user process, can point to the same receive window. In fact, all send windows that are using the
same NX CT can point to the same receive window, because there is one receive FIFO per CT.

3. Using the FIFO address from the receive window context, VAS stores the RMA_write payload to memory,
thereby placing the CRB onto the NX accelerator FIFO. VAS stamps, or overlays, a portion of the CRB
with the send and receive window identifiers. NX uses this information when processing the CRB. In par-
ticular, the send window identifier in the CRB is used by NX to fetch the send window and obtain transla-
tion information for the addresses contained within the CRB.

The receive FIFOs are implemented as circular queues. After reaching the end of the FIFO, VAS wraps
back to the beginning of the FIFO and writes the next entry.

4. After writing the CRB to the FIFO, VAS sends an ASB_notify command on the SMP interconnect. The
ASB_notify contains a logical partition identifier (LPID), process identifier (PID), and thread identifier
(TID).

5. Each NX FIFO has a particular LPID:PID:TID combination associated with it. When NX snoops an
ASB_notify that matches its programmed LPID:PID:TID, it increments the corresponding counter for the
associated FIFO, indicating a new work item has been placed on the accelerator FIFO.

6. When an NX CT queue is empty and its counter is nonzero, NX reads the next CRB from the receive
FIFO. As soon as the CRB is read from the FIFO, NX does a memory mapped (MMIO) store to the VAS
unit to return a credit. VAS ensures that the receive FIFO does not overflow by managing credits. The
hypervisor initializes the receive window with credits equal to the number of CRBs that can be stored to
the receive FIFO based on the size of the FIFO. VAS decrements the receive credit count when it stores
a CRB to the receive FIFO and increments the count when NX returns a credit via MMIO store after NX
pulls the CRB off of the FIFO.

NX uses the stamped information from the CRB to read the send window context from memory and dec-
rements its internal counter.

7. NX dispatches the job to the associated CT, which can have multiple acceleration engines, and executes
the CRB.

8. Upon completion of the job, NX returns a send window credit to VAS via an MMIO store. Each send win-
dow, when created by the hypervisor, is assigned a number of send credits. This allows the hypervisor to
implement quality of service by managing numerous users sharing the same accelerator resource, and
preventing one process from using more than its share. When an RMA_write command is received by
VAS, VAS decrements the send credit for the associated send window. VAS increments the count when
NX completes the CRB and returns a send credit with an MMIO store.

9. NX writes a coprocessor status block (CSB) and can optionally send an interrupt, which notifies the user
that the job has completed. NX also updates the accelerator processed byte count (XPBC) in the send
window indicating the number of bytes that were processed on behalf of the user.

As shown in Figure 12-1 on page 200, many different send windows can point to the same receive window.
This occurs when many different processes are using and sharing the same NX CT. Each process writes a
FIFO entry onto the NX queue, independently, with no ordering implied nor maintained between different
processes/different send windows.

Memory-mapped input/output

User’s Manual
OpenPOWER
POWER9 Processor

Virtual Accelerator Switchboard

Page 202 of 508
Version 2.1

10 October 2019

12.3 Core-Core Wakeup Via ASB_Notify

A copy-paste pair can be used to initiate core-core wake up with an ASB_Notify command. This can be used
to wake up a core from the wait instruction. This feature is only supported on DD2.0 hardware.

An example implementation follows:

• Define a receive window for each core that it is desired to wake up and initialize its Local Notify Process
ID Register, Local Notify Logical Partition ID Register, and Local Notify Thread ID Register to point to the
core/thread that should be notified to wake up.

• Define a send window that points to this receive window.

• Initialize the send and receive windows to not use credits by setting bits [3:4] of the Window Control Reg-
ister to zero. This step is not required. However, if this step is not done, credits must be returned by some
mechanism or future paste operations will be retried indefinitely after credits are exhausted.

• Set the “Disable FIFO Writes” bit in the local DMA cache and FIFO Control Register of the receive win-
dow. This step is not required but reduces the SMP interconnect traffic and speeds up notification.

• Initialize the receive window to do the ASB_Notify (instead of an interrupt) notification.

• Initiate a copy-paste pair to the send window to cause an ASB_Notify command to be sent to the core.

12.4 Features

The following features are implemented in support of NX:

• 64 KiB window support per VAS. For a large SMP with 16 VAS in the system, this gives 1 MiB window
accessibility.

• Data stamping of send and receive window information into the CRB.

• Send window credits.

• Receive window credits.

• N → 1 support. Multiple sending windows are allowed to point to one receive window.

• NX utilization reporting (XPBC support).

• ASB_Notify notification.

• Ability to pin send or receive window contexts in the cache to avoid casting out frequently-used windows.

• Caching of 128 unique windows contexts.

• Core-core wakeup via ASB_Notify

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Virtual Accelerator Switchboard

Page 203 of 508

Figure 12-2 shows a high-level block diagram of the VAS unit.

12.4.1 Ingress

Ingress snoops the SMP reflected command bus for RMA_write commands. RMA_write commands are only
accepted if they arrive on reflected command bus 0 (address bits 55:56 = ‘00’). When Ingress detects that a
command is for this VAS, it is sent to the Ingress pipe logic. The pipe logic verifies that both the send and
receive windows are cached, performs credit checking/updating, and confirms buffer availability before
sending the command to the Egress logic.

The Ingress contains logic for combining the partial responses from the MMIO and RMA_write snooping
logic, and driving this partial response onto the SMP interconnect. Ingress also monitors the combined
responses on the SMP interconnect to see the resolved response for RMA_write commands it has snooped
and aborts RMA_write commands it had accepted if the combined response is not acceptable.

Ingress implements a logical CAM to manage the 128 window contexts that can be cached. Ingress checks
the CAM to ensure both the send and receive windows are cached before accepting an incoming RMA_write
command. If either window is not cached, Ingress initiates a cache fill and, if necessary, a castout operation
to bring the required window contexts into window cache. Ingress implements a pseudo-least recently used
(LRU) algorithm to determine which entry to replace on a castout.

Figure 12-2. VAS Block Diagram

Window Cache

128 × 96 bytes

CAM
128

Entries

Rcmds

Presp
Combining

SMP Interconnect Data In (16 bytes) SMP Interconnect Data Out (16 bytes)

MMIO
Load

Response

Write
Machine
Buffers

16 × 128 B

Read
Machine
Buffers

16 × 128 B

RMA
Buffer

64 × 128 B

Egress State
Machines

Notify

SMP Interconnect
Partial Response

Castouts

Cache Fills

Rcv Crd,
Data Buffer Avail

Send Crd,
Rcv Win ID

Start SM

MMIO
Q
16

Entries

MMIO Rsp Data

Ingress Egress Window Cache RegsSMP Interconnect
Common Queue

Content-addressable memory

User’s Manual
OpenPOWER
POWER9 Processor

Virtual Accelerator Switchboard

Page 204 of 508
Version 2.1

10 October 2019

VAS has the ability to pin entries in the CAM/Window Cache. Pinning an entry prevents it from being castout.
It is expected that the NX receive windows will be pinned to avoid a cache miss penalty when using the NX
accelerators.

12.4.2 Egress

Egress receives RMA_write commands from Ingress. Egress has 64 data buffers for holding RMA_write
payload (CRB) data. Once a command is received from Ingress and it has received a good combined
response as well as its payload data, the RMA_write command arbitrates for one of 16 Egress unload state
machines.

The unload state machines request window context information from the window cache unit. Egress uses
information in the window context to process the RMA_write command. In particular, Egress determines the
receive FIFO write address from the base address register in the context, plus an offset indicating the current
offset into the FIFO. Egress reads many other control fields (receive FIFO size, notification controls, and so
on) which manage the operations that are performed as part of the RMA processing.

After reading the window context and determining the receive FIFO address, Egress issues a store to the
SMP interconnect common queue logic to store the CRB payload to the receive FIFO. VAS then issues an
ASB_Notify, using the LPID:PID:TID from the receive window context. This ASB_Notify informs NX that a
new operation has been written to the receive FIFO.

After the SMP interconnect common queue completes the FIFO write and ASB_Notify, the Egress unload
state machine frees up the data buffer and returns to idle, allowing it to begin processing another RMA_write
command.

12.4.3 Window Cache

VAS implements a window context cache for holding window contexts that are frequently accessed. When
VAS gets a hit in its window cache, it can avoid fetching a window context from memory every time an
RMA_write command is accepted by VAS. VAS is able to hold a total of 128 window contexts, each of which
is 96 bytes in length.

When a VAS subunit (Egress or MMIO) needs the window context, the window context cache provides the
information. If the window context is not resident in the cache, it is fetched from main memory, casting out an
entry to make room in the cache if necessary.

12.4.4 MMIO Registers

The MMIO unit handles MMIO loads and stores to context registers. To set up a send or receive window
context, software does a series of a few dozen MMIO stores to the window context.

To reduce the amount of memory that is consumed when a window context must be stored back to memory
for a castout, VAS does not store reserved or unused bits and packs the register data into a condensed
format. For example, while the FIFO base address register is initialized as an 8-byte MMIO store, only 48 of
the 64 bits are stored in the window context cache. The MMIO unit is responsible for understanding the
packed format and updating the appropriate portion of the window context when an MMIO store is received.

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Virtual Accelerator Switchboard

Page 205 of 508

The MMIO unit has a 16-deep queue for holding MMIO commands. A command reads one row of the window
cache array to obtain the respective register’s data. For an MMIO load, the appropriate bits of the packed
data are selected and returned to the SMP interconnect as MMIO load payload data. For an MMIO store, the
received store data is merged into the packed data, leaving adjacent register fields unaltered.

12.4.5 SMP Interconnect Common Queue

The VAS SMP interconnect common queue (CQ) logic contains 16 read machines and 16 write/ASB_Notify
machines. These machines track outbound commands through their entire life cycle on the SMP intercon-
nect. The 16 multipurpose write machines are shared by Egress and window cache, but only Egress issues
ASB_Notify commands. The read machines are only used by the window cache for performing cache fill
operations.

The CQ logic also handles inbound data and outbound data. An inbound data controller determines whether
data belongs to a cache fill operation, an RMA_write operation, or to an MMIO store operation and routes the
data accordingly. The outbound data controller takes requests from the write machines, as well as data
returns for MMIO load commands.

12.5 Reliability and Serviceability (RAS) Features

VAS implements ECC on all arrays. The ECC algorithm is a single-bit error correct detect, double-bit error
detect algorithm.

Error correcting code

User’s Manual
OpenPOWER
POWER9 Processor

Virtual Accelerator Switchboard

Page 206 of 508
Version 2.1

10 October 2019

User’s Manual
OpenPOWER
POWER9 Processor

NVLink Processing Unit

Page 207 of 508
Version 2.1

10 October 2019

13. NVLink Processing Unit

This section describes the NVLink processing unit (NPU) and the corresponding 25G Link interface.

13.1 Overview

The POWER9 chip includes the high-speed 25G Link, which creates an interface between chips that provides
both cache coherence and very high data bandwidth. For example, this structure can be used to connect a
CPU chip to a cluster of GPU chips. The CPU and GPU cluster can coherently read and write to each other’s
memory. The GPU can use non-caching (DMA) reads and writes for high-bandwidth data moves between
GPU memory and CPU memory. The 25G Link interconnect is included on the POWER9 chip and requires
PHYs, datalink-layer logic, and transaction-layer logic. The PHYs are the physical connection to the 25G
Link. The datalink layer provides link training, CRC generation and checking, and the replay of failed packets.
The transaction layer executes the cache coherent and data movement commands on the POWER9 chip.

The 25G Link on the POWER9 chip supports the NVLink protocol. The NPU provides the transaction layer
functionality for this protocol. The NPU accepts commands from the NVLink datalink logic and converts them
into sequences of on-chip SMP interconnect commands. It then generates responses based on the results of
the on-chip SMP interconnect commands. The responses are sent back to the 25G Link through the datalink
logic. The supported commands include reads, writes, probes, and flushes. The NPU can send reads and
writes. It also sends upgrade and downgrade commands to the GPU cluster over the 25G Link as a result of
operations seen on the processor bus reflected command buses. In addition, transaction-layer command,
response, and data credits are passed in both directions over the link.

The 25G Link can be made up of one or more units, which are referred to as bricks. Each brick provides a
separate stream of commands. All ordering requirements are enforced independently for each brick. The
POWER9 NPU supports up to six bricks. The six bricks can be connected to one or more external chips. If
more than one external chip is attached to a POWER9 chip over multiple 25G Links, the external chips can
be connected to each other using separate NVLink interconnects. To the POWER9 chip, they can appear to
represent a single external memory region.

The NPU has three on-chip SMP interconnect unit interfaces. Each of the on-chip SMP interconnect inter-
faces supports two 25G Link bricks. The NPU implements a static connection of bricks to the on-chip SMP
interconnect interfaces. For example, bricks 0 - 1 are connected to on-chip SMP interconnect interface 0,
bricks 2 - 3 are connected to on-chip SMP interconnect interface 1, and bricks 4 - 5 are connected to on-chip
SMP interconnect interface 2. If bricks 2 - 3 are not connected to an external chip or network of chips, on-chip
SMP interconnect interface 1 goes (mostly) unused.

Central processing unit

Graphics processing unit

Physical layer

Cyclic redundancy check

Symmetric multiprocessing

User’s Manual
OpenPOWER
POWER9 Processor

NVLink Processing Unit

Page 208 of 508
Version 2.1

10 October 2019

13.2 Features

An NPU feature summary follows:

• 25G Link brick bandwidths are as follows:

– Peak read bandwidth per brick: 25 GBps
– Peak write bandwidth per brick: 25 GBps

• The NPU supports up to six 25G Link bricks.

• On-chip SMP interconnect interface bandwidths are as follows:

– Peak read bandwidth per interface: 64 GBps
– Peak write bandwidth per interface: 64 GBps

• The NPU connects to three on-chip SMP interconnect interfaces.

• Effective bandwidths including command and response overhead are as follows:

– Read bandwidth per brick: 23.5 GBps
– Write bandwidth per brick: 21.1 GBps
– Total read bandwidth for the NPU: 141 GBps
– Total write bandwidth for the NPU: 127 GBps

• Transfer sizes supported are as follows:

– Minimum transfer size: 1 byte
– Maximum transfer size: 256 bytes

• The NPU performs coherent operations on 128-byte cache-line boundaries.

• Address translation services sizes are as follows:

– Bus device functions supported: 15
– Process address space IDs supported: 256
– Logical partition ID/process ID pairs supported: 256
– Translation contexts supported: 256

• Translation control element table sizes are as follows:

– Translation validation table: 16 entries
– Translation control element table: 4K - 1T entries

User’s Manual
OpenPOWER
POWER9 Processor

NVLink Processing Unit

Page 209 of 508
Version 2.1

10 October 2019

13.3 Interfaces

The interfaces to and from the NPU include the on-chip SMP interconnect command and data ports, NVLink
transaction layer (NTL) receive and transmit ports, and the NVLink datalink layer (NDL)/PHY Private Register
interface.

13.3.1 On-Chip SMP Interconnect Ports

The NPU attaches to three on-chip SMP interconnect ports. The three ports are independent from each other.
Each port includes a command request interface, four snoop interfaces, and data in and out interfaces.

13.3.1.1 Command Request

On each of the three command request interfaces, the NPU must be able to request a command every two
cycles. This gives an aggregate command rate for the NPU of 1.5 on-chip SMP interconnect commands
every cycle.

13.3.1.2 Command Snoop

The NPU snoops the on-chip SMP interconnect for the following functions:

• Accesses to GPU memory

• MMIO loads and stores to NPU, NDL, and PHY registers

13.3.1.3 Data to On-Chip SMP Interconnect

The three data bus ports from the NPU to the on-chip SMP interconnect are each 32 bytes wide. To sustain
the DMA write bandwidth from the 25G Link bricks, the NPU must be able to send cache lines to the on-chip
SMP interconnect in back-to-back cycles for relatively long periods of time.

13.3.1.4 Data from On-Chip SMP Interconnect

The three data bus ports to the NPU are each 32 bytes wide. The NPU must be able to receive data for any
octword of any outstanding read in any cycle.

13.3.2 NTL Interfaces

13.3.2.1 NTL Receive Interface

The unit of transfer across the NTL receive interface is a 16-byte flow control digit (FLIT). There are four
parity bits associated with the FLIT. Each parity bit covers 32 bits of the FLIT.

13.3.2.2 NTL Transmit Interface

The unit of transfer across the NTL transmit interface is a 16-byte FLIT. There are four parity bits associated
with the FLIT. Each parity bit covers 32 bits of the FLIT.

Memory-mapped input/output

User’s Manual
OpenPOWER
POWER9 Processor

NVLink Processing Unit

Page 210 of 508
Version 2.1

10 October 2019

13.3.2.3 NDL/PHY Private Register Interface

The NPU provides MMIO register access to NDL and PHY registers using the private register interface (PRI).
There are separate PRI interfaces for the NDLs located on the left and right sides of the POWER9 chip.

13.3.3 Interface Diagram

Figure 13-1 on page 210 shows the interfaces attached to the NPU unit.

13.4 Block Diagram

Figure 13-2 shows the major blocks within the NPU. Section 13.4.1 on page 211 through Section 13.4.5 on
page 212 give a brief description of each of the blocks in the diagram.

Figure 13-1. NPU Interface Diagram

On-Chip SMP Interconnect Port 1

On-Chip SMP Interconnect Port 2On-Chip SMP Interconnect Port 0

Left PRI Right PRI

 25G Link Brick 0

 25G Link Brick 1

 25G Link Brick 2 25G Link Brick 3

 25G Link Brick 4

 25G Link Brick 5

User’s Manual
OpenPOWER
POWER9 Processor

NVLink Processing Unit

Page 211 of 508
Version 2.1

10 October 2019

13.4.1 NPU Common Queue

The NPU common queue (NPCQ) performs the following functions:

• Provides a command and data interface to the on-chip SMP interconnect (SMPI).

• Provides state machines for executing on-chip SMP interconnect and NVLink commands coherently
between the POWER9 and GPU cluster.

• Performs buffering for data going to or coming from the SMPI.

There are three copies of this block in the NPU.

13.4.2 NVLink Transaction Layer

The NVLink transaction layer (NTL) block contains the receive and transmit interfaces between the NPU and
the NDL blocks. The NTL performs the following functions:

• Validates commands and data from the 25G Link.

• Buffers commands and data from the 25G Link.

• Formats commands and responses going to the 25G Link.

• Manages transaction layer credits.

• Controls the Private Register Interface (PRI) to the 25G Link NDL and PHY functions

There are six copies of this block in the NPU.

Figure 13-2. NPU Block Diagram

SMPI P0 SMPI P1 SMPI P2

ATS

XTS

MISC

NDL0 NDL1 NDL2 NDL3 NDL4 NDL5

NTL NTL NTL NTL NTL NTL

NPCQ NPCQ NPCQ

User’s Manual
OpenPOWER
POWER9 Processor

NVLink Processing Unit

Page 212 of 508
Version 2.1

10 October 2019

13.4.3 Extended Translation Services

The extended translation services (XTS) block is used to support the 25G Link address translation services
operations. This block accepts address translation requests from the GPU, looks up the necessary translation
context, and creates translation requests for the POWER9 nest memory management unit (NMMU). Transla-
tion contexts are kept in a table in the XTS unit. When the NMMU responds to a translation request, the XTS
block creates an address translation response that is sent to the GPU over the 25G Link. The XTS block also
generates address shoot-down requests based on the snooping of translation lookaside-buffer invalidate
(TLBI) operations on the on-chip SMP interconnect.

There is one copy of this block in the NPU.

13.4.4 Address Translation Services

The address translation services (ATS) block provides address relocation and validation when untranslated
addresses are used in commands from the GPU. Relocation and validation are done using the translation
control element (TCE) mechanism. The ATS block contains a cache of TCEs and performs a table search
operation when a cache miss occurs. The ATS block can generate interrupts when certain error conditions
occur.

There is one copy of this block in the NPU.

13.4.5 Miscellaneous

The miscellaneous (MISC) block includes the common functions for the NPU. These include the register
access, array built-in self-test controller, and error gathering and reporting. There is one copy of this block in
the NPU.

User’s Manual
OpenPOWER
POWER9 Processor

NVLink Processing Unit

Page 213 of 508
Version 2.1

10 October 2019

13.5 Logical Command/Data Flow

Figure 13-3 shows the logical command and data flow for the NPU. The diagram shows two NDL interfaces
and one on-chip SMP interconnect port. This represents one third of the complete NPU flow.

In Figure 13-3, the blocks are represented as follows:

• The NTL is represented by: 25GL Pkt Validate, 25GL Cmd Buf, 25GL Data Buf, Out Cmd/Rsp

• The NPCQ is represented by: SM Ctl, SM, In Data Buf, Out Data Buf, SMPI Cmd Req, SMPI Cmd Snoop,
SMPI Data Port

Also note that the Pocket Cache is shown as dashed lines because it is a logical entity that is actually made
up of all of the state machines (SM) and their inbound data buffers (In Data Buf). If a cache line is valid in the
pocket cache, a state machine and data buffer are being used to hold and check for snoop hits on the cache
line.

Figure 13-3. NPU Command/Data Flow

SMPI
Cmd
Req

SMPI
Cmd

Snoop

SMPI
Data
Port

Pocket
Cache

Out
Data

Buffer

In
Data

Buffer

SM

SMPI

SM
Ctl

25GL
Cmd

Buffer

25GL
Data

Buffer

25GL
Pkt

Validate

25GL
Pkt

Validate
25GL
Cmd

Buffer

25GL
Data

Buffer

Out Cmd/Rsp

Out Cmd/Rsp

NDL Intf1

NDL Intf0

(x)

User’s Manual
OpenPOWER
POWER9 Processor

NVLink Processing Unit

Page 214 of 508
Version 2.1

10 October 2019

13.5.1 Inbound Command/Data Flow

Figure 13-4 shows the flow for commands and data coming from the NVLink protocol over the 25G Link to the
POWER9 chip.

The flow in Figure 13-4 is as follows:

1. A packet that arrives on the NDL interface must be validated. This includes checking for the correct parity
and the CRC status, as well as checking for proper syntax.

2. Commands that pass the validation check are stored in the 25GL command buffer. For write commands,
the data is stored in the 25GL data buffer. NTL credits are maintained based on available space in these
buffers.

3. Commands in the 25GL command buffer are arbitrated against commands in the 25GL command buffer
servicing the other NTL in this pair, as well as against commands coming from the on-chip SMP intercon-
nect.

4. When a command in the 25GL command buffer wins arbitration, it is assigned to a state machine. For
writes, the data is moved from the 25GL data buffer to the In data buffer.

5. The state machine controls the execution of the command. Any required on-chip SMP interconnect com-
mands are sent to the SMPI command request port.

6. On-chip SMP interconnect data transfers related to requested SMPI commands are handled through the
SMPI data ports.

7. Data for read commands is stored in the Out data buffer.

8. When the state machine indicates that it is time to send a response for the command, the Out command/
response block generates the response and includes any required data from the Out data buffer.

Figure 13-4. NPU Inbound Command/Data Flow

SMPI
Cmd
Req

SMPI
Cmd

Snoop

SMPI
Data
Port

Pocket
Cache

Out
Data

Buffer

In
Data

Buffer

SM

SMPI

SM
Ctl

25GL
Cmd

Buffer

25GL
Data

Buffer

25GL
Pkt

Validte

25GL
Pkt

Validate
25GL
Cmd

Buffer

25GL
Data

Buffer

Out Cmd/Rsp

Out Cmd/Rsp

NDL Intf1

NDL Intf0

(x)

2
1

3
4

5

6

7

8

User’s Manual
OpenPOWER
POWER9 Processor

NVLink Processing Unit

Page 215 of 508
Version 2.1

10 October 2019

13.5.2 Outbound Command/Data Flow

Figure 13-5 shows the command and data flow for commands coming from the on-chip SMP interconnect
and going to the GPU.

The flow in Figure 13-5 is as follows:

1. A command that accesses GPU memory space is seen by the SMPI command snoop logic. For write or
push operations, data is received on the SMPI data port.

2. A state machine is assigned to process the command. Any data that is received is stored in the Out data
buffer.

3. The state machine signals that a command must be sent to the GPU. The Out command/response func-
tion creates the command and includes any required data from the Out data buffer.

4. When the response for the command is received on the NDL interface, it must be validated, which
includes checking parity and the CRC status as well as the response syntax.

5. If the response is validated, it is passed to the state machine that is processing the command. Any data
associated with the response is placed in the In data buffer. When there is data returned as part of the
response, it is held in the pocket cache until it is requested by another unit on the on-chip SMP intercon-
nect.

6. Later, a command is seen by the SMPI command snoop logic that requires the data in the pocket cache.
The command is acknowledged on the on-chip SMP interconnect, and the data is provided from the Out
data buffer.

Figure 13-5. NPU Outbound Command/Data Flow

SMPI
Cmd
Req

SMPI
Cmd

Snoop

SMPI
Data
Port

Pocket
Cache

Out
Data

Buffer

In
Data

Buffer

SM

SMPI

SM
Ctl

25GL
Cmd

Buffer

25GL
Data

Buffer

25GL
Pkt

Validate

25GL
Pkt

Validate
25GL
Cmd

Buffer

25GL
Data

Buffer

Out Cmd/Rsp

Out Cmd/Rsp

NDL Intf1

NDL Intf0

(x)

4

5

16

2

3

User’s Manual
OpenPOWER
POWER9 Processor

NVLink Processing Unit

Page 216 of 508
Version 2.1

10 October 2019

13.6 POWER9/GPU Transaction Examples

The following sections contain examples of transactions between the POWER9 and GPU chips using the
25G Link and the on-chip SMP interconnect.

13.6.1 GPU Read from POWER9 Memory

Table 13-1 shows an example of a 128-byte read command sent over a 25G Link brick.

The steps for Table 13-1 are explained as follows:

Table 13-1. Example of 128-Byte Read Command

Step
GPU

Drives
25GL

25G Link
NPU

Drives
25GL

NPU
Drives
SMPI

SMPI From
SMPI Comment

1 → NON_CACHING_
READ

→ NON_CACHING_
READ

2 Memory_Ack ← Read acknowledged by memory.

3 Data ← Memory sends data for the read.

4 READ_RESP DATA ← NPU sends read response to GPU.

Note: 25GL = 25G Link; Ack = Acknowledge; Resp = Response

Step Description

1 GPU sends a NON_CACHING_READ command to the POWER9 chip over the 25G Link. The NPU
sends a NON_CACHING_READ on the SMPI.

2 The POWER9 memory controller acknowledges the command.

3 The POWER9 memory controller sends data for the read to the NPU over the SMPI data bus.

4 The NPU sends a response to the GPU for the read command.

User’s Manual
OpenPOWER
POWER9 Processor

NVLink Processing Unit

Page 217 of 508
Version 2.1

10 October 2019

13.6.2 GPU Posted Writes to the POWER9 Memory

Table 13-2 shows an example of a series of posted 128-byte write commands sent over the same 25G Link
brick. Posted writes do not receive responses; therefore, they do not require transaction done commands to
complete them.

The steps for Table 13-2 are explained as follows:

Table 13-2. Example of Series of Posted 128-Byte Write Commands

Step
GPU

Drives
25GL

 25G Link
NPU

Drives
25GL

NPU
Drives
SMPI

SMPI From
SMPI Comment

1 → WRITE_0 DATA → DMA_INJECT_0 Stream of noncaching writes.

2 → WRITE_1 DATA → DMA_INJECT_1

3 → WRITE_2 DATA → DMA_INJECT_2

4 → FLUSH GPU checks for write stream globally visi-
ble.

5 Cache_Ack_1 ← Writes can finish out of order. An inject hits
the cache.

6 Memory_Ack_0 ← Inject handled by POWER9 memory.

7 Memory_Ack_2 ←

8 FLUSH.RESP ← → data_1 Data sent to memory in order of responses.

9 → data_0

10 → data_2

11 → WRITE_3 DATA → DMA_INJECT_3 Write_3 becomes globally visible after
writes 0 - 2.

12 Memory_Ack_3 ←

13 → data_3

Note: 25GL = 25G Link; Ack = Acknowledge; Resp = Response

1 - 3 The GPU sends a stream of three posted, noncaching writes on the same 25G Link brick. The writes
are sent to the SMPI as DMA_INJECTs by the NPU.

4 The GPU sends a FLUSH command to determine when the previous writes are complete.

5 - 7 The SMPI responses arrive out-of-order. All responses indicate that the writes are globally visible.

8 The NPU can now respond to the FLUSH command. Also shown in this cycle, the NPU sends the
data for the second write onto the SMPI.

9 - 10 The NPU sends the data onto the SMPI for the remaining two writes.

11 The GPU sends a fourth write that had an ordering dependency on the first three writes. The NPU
converts the posted, noncaching write to a DMA_INJECT command on the SMPI.

12 The SMPI response for the fourth write indicates that the inject command is complete.

13 The NPU sends the data onto the SMPI for the fourth write.

User’s Manual
OpenPOWER
POWER9 Processor

NVLink Processing Unit

Page 218 of 508
Version 2.1

10 October 2019

13.6.3 POWER9 Caching Read from GPU Memory

Table 13-3 shows an example of a 128-byte read command that was sent onto the SMPI by a POWER9
cache and that references GPU memory.

The steps for Table 13-3 are explained as follows:

Table 13-3. Example of a POWER9 Caching Read from GPU

Step
GPU

Drives
25GL

 25G Link
NPU

Drives
25GL

NPU
Drives
SMPI

SMPI From
SMPI Comment

1 CACHING_READ ← Cache controller sends a caching read
command.

2 → NPU_Reject NPU must reject the command and get
ownership and data from the GPU.

3 CACHING_READ ← NPU sends a caching read command to
the GPU.

4 → READ_RESP
OWNERSHIP
DATA

GPU sends a read response command to
the NPU. The NPU stores the read data in
its pocket cache.

5 READ_TDONE ← The NPU completes the read with a trans-
action done command.

6 CACHING_READ ← The cache controller resends its caching
read command.

7 → NPU_Ack A read hits the NPU pocket cache.

8 → Data The NPU sends the data to the requesting
cache over the SMPI.

Note: 25GL = 25G Link; Ack = Acknowledge; Resp = Response; Tdone = Transaction done

1 A cache controller on the POWER9 chip, while handling a cache miss, sends a CACHING_READ
command over the SMPI. The read command references GPU memory; therefore, the NPU snoops
the command.

2 The NPU cannot acknowledge the read command until it first receives ownership and data from the
GPU. Therefore, the NPU must reject the read command from the SMPI. This causes the cache
controller to resend the command later.

3 The NPU sends a CACHING_READ command over the 25G Link to the GPU.

4 The GPU sends a read response, which provides data and ownership for the cache line. The NPU
stores the cache-line data into its pocket cache.

5 The NPU completes the 25G Link read command with a transaction done.

6 The cache controller resends the CACHING_READ command.

7 The CACHING_READ command hits the NPU pocket cache. Therefore, the NPU can acknowledge
the command.

8 The NPU sends the data to the cache controller over the SMPI.

User’s Manual
OpenPOWER
POWER9 Processor

NVLink Processing Unit

Page 219 of 508
Version 2.1

10 October 2019

13.6.4 POWER9 Cache Releasing a Cache Line from GPU Memory

Table 13-4 shows an example of a cache controller on the POWER9 releasing ownership of a cache line that
came from GPU memory. In this example, the data has been modified; therefore, it must be given back to the
GPU. If the data has not been modified, the POWER9 cache controller can drop the cache line without
informing the GPU.

The steps for Table 13-4 are explained as follows:

Table 13-4. Example of Cache Controller on POWER9 Chip Releasing Cache Line from GPU

Step
GPU

Drives
25GL

 25G Link
NPU

Drives
25GL

NPU
Drives
SMPI

SMPI From
SMPI Comment

1 PUSH ← Cache controller sends a push command
to release a modified cache line.

2 → NPU_Ack The push command references GPU
memory; therefore, the NPU acknowl-
edges it.

3 Data ← Cache controller sends data for the push
command.

4 DOWNGRADE ← NPU sends a downgrade command to the
GPU.

5 → DOWNGRADE_
RESP

GPU sends a response for the downgrade
command.

6 DOWNGRADE_
TDONE DATA

← NPU completes the downgrade command
with a transaction done indication.

Note: 25GL = 25G Link; Ack = Acknowledge; Resp = Response; Tdone = Transaction done

1 A cache controller on the POWER9 chip releases ownership of a cache line by sending a PUSH
command over the SMPI. The PUSH command references GPU memory; therefore, the NPU snoops
the command.

2 The NPU acknowledges the PUSH command.

3 When the cache controller sees the NPU acknowledgment, it sends the data for the PUSH command
to the NPU using the SMPI.

4 The NPU sends the PUSH command to the GPU using a DOWNGRADE command on the 25G Link.

5 The GPU responds to the DOWNGRADE command.

6 The NPU completes the DOWNGRADE command with a transaction done. On the 25G Link, the
data for a DOWNGRADE command is sent with the transaction done indication.

User’s Manual
OpenPOWER
POWER9 Processor

NVLink Processing Unit

Page 220 of 508
Version 2.1

10 October 2019

13.6.5 GPU Reclaiming a Cache Line from GPU Memory

Table 13-5 shows an example of the GPU requesting the return of a cache line from GPU memory that is held
in a cache on the POWER9 chip. In this example, the data has been modified; therefore, it must be given
back to the GPU. The cache controller releases the data by sending a PUSH command on the SMPI, which
the NPU forwards to the GPU as a DOWNGRADE. If the data had not been modified, no PUSH occurs and
the NPU responds to the PROBE command without sending any data.

The flow for Table 13-5 is explained as follows:

Table 13-5. Example of GPU Reclaiming a Cache Line from GPU Memory

Step
GPU

Drives
25GL

 25G Link
NPU

Drives
25GL

NPU
Drives
SMPI

SMPI From
SMPI Comment

1 → PROBE → CACHE_FLUSH GPU reclaims a cache line using a probe
command. The NPU forwards the probe
command to the SMPI as a cache_flush
command.

2 CACHE_REJECT The cache controller rejects the cache_-
flush until it can push the cache line out.

3 PUSH ← Cache controller pushes the cache line.

4 → NPU_Ack NPU acknowledges the push command.

5 Data ← Cache controller sends data for the push
command.

6 DOWNGRADE ← NPU sends a downgrade command to the
GPU.

7 → DOWNGRADE_
RESP

GPU sends a response for the downgrade
command.

8 DOWNGRADE_
TDONE DATA

← NPU completes the downgrade command
with a transaction done.

9 → CACHE_FLUSH NPU re-sends the cache flush command.

10 No_Hits ← There are no hits in any cache.

11 PROBE_RESP ← NPU responds to the probe command with
no data.

Note: 25GL = 25G Link; Ack = Acknowledge; Resp = Response; Tdone = Transaction done

1 The GPU sends a PROBE command on the 25G Link to regain ownership of a cache-line that is held
in a POWER9 cache. The NPU sends the command onto the SMPI as a CACHE_FLUSH command.

2 A cache controller for a cache that has the cache-line modified rejects the CACHE_FLUSH command
until it can push the cache line out.

3 The cache controller releases ownership of the cache line by sending a PUSH command over the
SMPI. The PUSH command references GPU memory; therefore, the NPU snoops the command.

4 The NPU acknowledges the PUSH command.

5 When the cache controller sees the NPU acknowledgment, it sends the data for the PUSH command
to the NPU using the SMPI.

6 The NPU sends the PUSH command to the GPU using a DOWNGRADE command on the 25G Link.

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

NVLink Processing Unit

Page 221 of 508

7 The GPU responds to the DOWNGRADE command.

8 The NPU completes the DOWNGRADE command with a transaction done. On the 25G Link, the data
for a DOWNGRADE command is sent with the transaction done indication.

9 The NPU resends the CACHE_FLUSH command onto the SMPI.

10 The NPU receives a response from the SMPI indicating that there are no cache hits on the resent
CACHE_FLUSH command.

11 The NPU responds to the GPU’s PROBE command and does not send any data. No data is required
because the cache line has already been returned with the DOWNGRADE command.

User’s Manual
OpenPOWER
POWER9 Processor

NVLink Processing Unit

Page 222 of 508
Version 2.1

10 October 2019

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

OpenCAPI Processing in the POWERAccel Unit

Page 223 of 508

14. OpenCAPI Processing in the POWERAccel Unit

This section describes the OpenCAPI interfaces and the parts of the POWERAccel unit (PAU) that provide
the transaction layer functionality for those interfaces.

14.1 Overview

The Open Coherent Accelerator Processor Interface (OpenCAPI) enables an attached functional unit (AFU)
to connect to the POWER9 on-chip SMP interconnect bus in a high-speed, cache-coherent manner. For
example, this structure can be used to connect a POWER9 chip to an FPGA containing a DMA controller or a
data storage function. The DMA controller and data storage function represent the AFUs on the FPGA. The
POWER9 chip and the AFU have the ability to coherently read and write memory attached to either chip. The
AFU can use noncaching (DMA) reads and writes for high-bandwidth data moves between AFU memory and
POWER9 memory. Supporting OpenCAPI on the POWER9 chip requires OpenCAPI-capable PHYs, data-
link-layer logic, and transaction-layer logic. The PHYs are the physical connection to the OpenCAPI intercon-
nect. The datalink layer provides link training, CRC generation and checking, and the replay of failed packets.
The transaction layer executes the cache-coherent and data-movement commands on the POWER9 chip.

The PAU provides provides the transaction layer functionality for the OpenCAPI links on the POWER9 chip.
This functionality includes accepting commands from the OpenCAPI datalink logic, converting them into
sequences of on-chip SMP interconnect commands, and then generating responses based on the results of
the on-chip SMP interconnect commands. The responses are sent back to the OpenCAPI link through the
datalink logic. The supported commands include reads, writes, and interrupts. The PAU sends reads and
writes to the AFU over the OpenCAPI link as a result of operations seen on the on-chip SMP interconnect
buses. In addition, transaction-layer command response and data credits are passed in both directions over
the link.

An OpenCAPI connection to the POWER9 chip is composed of one or more individual links. Each link
provides a separate stream of commands. All ordering requirements are enforced independently for each
link. The POWER9 PAU supports up to four OpenCAPI links. The four links can be connected to one or more
external chips.

The PAU has three on-chip SMP interconnect interfaces. Two of the on-chip SMP interconnect interfaces
each support two OpenCAPI links. The third on-chip SMP interface is used for accessing PAU registers and
for other maintenance functions. The PAU implements a static connection of links to on-chip SMP intercon-
nect interfaces. For example, links 0 - 1 are connected to on-chip SMP interconnect interface 1, and
links 2 - 3 are connected to on-chip SMP interconnect interface 2. If links 2 and 3 are not connected to an
external chip or chips, on-chip SMP interconnect interface 2 is (mostly) unused.

Symmetric multiprocessing

Field-programmable gate array

Direct memory attach

Cyclic redundancy check

User’s Manual
OpenPOWER
POWER9 Processor

OpenCAPI Processing in the POWERAccel Unit

Page 224 of 508
Version 2.1

10 October 2019

14.2 Features

A summary of the features are as follows:

• OpenCAPI link bandwidths are as follows:

– Peak read bandwidth per link: 25.78 GBps

– Peak write bandwidth per link: 25.78 GBps

• The PAU supports four OpenCAPI links

• Effective bandwidths including command and response overhead are as follows:

– Read bandwidth per link: 22.5 GBps

– Write bandwidth per link: 22.5 GBps

– Total read bandwidth for the PAU: 90 GBps

– Total write bandwidth for the PAU: 90 GBps

• Address translation sizes and rates are as follows:

– Effective-to-real address table (ERAT): 64 entry (16 × 4)

– Context cache: 64 entry (16 × 4)

14.3 Interfaces

The interfaces to and from the PAU include on-chip SMP interconnect command and data ports, as well as
the OpenCAPI transaction layer receive and transmit ports.

14.3.1 On-Chip SMP Interconnect Ports

The PAU attaches to three on-chip SMP interconnect ports. The three ramps are independent from each
other. Each ramp includes a command request interface, four snoop interfaces, and data in and data out
interfaces.

14.3.1.1 Command Request

For each of the three command request interfaces, the PAU must be able to request a command every two
cycles. This gives an aggregate command rate for the PAU of 1.5 on-chip SMP interconnect commands
every cycle.

14.3.1.2 Command Snoop

The PAU snoops the on-chip SMP interconnect buses for the following functions:

• Access to the AFU memory

• MMIO loads and stores to the AFU configuration space

• MMIO loads and stores to PAU registers

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

OpenCAPI Processing in the POWERAccel Unit

Page 225 of 508

14.3.1.3 Data to On-Chip SMP Interconnect

The three data bus ports from the PAU to the on-chip SMP interconnect are each 32 bytes wide. To sustain
DMA write bandwidth from the OpenCAPI links, the PAU must be able to send cache lines to the on-chip
SMP interconnect in back-to-back cycles for relatively long periods of time.

14.3.1.4 Data from On-Chip SMP Interconnect

The three data bus ports to the PAU are each 32 bytes wide. The PAU must be able to receive data for any
octword of any outstanding read in any cycle.

14.3.2 OpenCAPI Transaction Layer Interfaces

14.3.2.1 OTL Receive Interface

The unit of transfer across the OpenCAPI transaction layer (OTL) receive interface is a 64-byte flow control
digit (FLIT).

14.3.2.2 OTL Transmit Interface

The unit of transfer across the OpenCAPI transaction layer transmit interface is a 64-byte FLIT.

14.3.3 Interface Diagram

Figure 14-1 shows the interfaces attached to the PAU unit.

Figure 14-1. PAU Interface Diagram

PAU

OpenCAPI Link 0
OpenCAPI Link 1

OpenCAPI Link 2
OpenCAPI Link 3

On-Chip SMP Interconnect Port 0

On-Chip SMP Interconnect Port 1

On-Chip SMP Interconnect Port 2

User’s Manual
OpenPOWER
POWER9 Processor

OpenCAPI Processing in the POWERAccel Unit

Page 226 of 508
Version 2.1

10 October 2019

14.4 Block Diagram

Figure 14-2 shows the major blocks within the PAU. The following sections give a brief description of each of
the blocks in the diagram.

14.4.1 PAU Common Queue

The PAU common queue (CQ) performs the following functions:

• Provides a command and data interface to the on-chip SMP interconnect (SMPI).

• Provides state machines for executing on-chip SMP interconnect and OpenCAPI commands coherently
between the POWER9 and AFU.

• Performs buffering for data going to or coming from the SMPI.

There are three copies of this block in the PAU.

14.4.2 OpenCAPI Transaction Layer

The OpenCAPI transaction layer (OTL) block contains the receive and transmit interfaces between the PAU
and the OpenCAPI datalink layer (ODL) blocks. The OTL performs the following functions:

• Validates commands and data from the OpenCAPI link.

• Buffers commands and data from the OpenCAPI link.

• Formats commands and responses going to the OpenCAPI link.

• Manages transaction layer credits.

There are four copies of this block in the PAU.

Figure 14-2. PAU Block Diagram

ODL0 ODL1 ODL2 ODL3

MISC
OTLOTLOTLOTL

XTS

XSL

XSL

CQ CQCQ

SMPI0 SMPI1 SMPI2

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

OpenCAPI Processing in the POWERAccel Unit

Page 227 of 508

14.4.3 Extended Translation Services

The extended translation services (XTS) block is used to support the OpenCAPI address translation opera-
tions. This block accepts address translation checkout requests from the address translation (XSL) blocks
and creates translation requests for the POWER9 nest memory management unit (NMMU). When the NMMU
responds to a translation request, the XTS block forwards it to the requesting XSL. The XTS block also
snoops translation lookaside-buffer invalidate (TLBI) operations on the on-chip SMP interconnect and
forwards them to the XSL blocks.

There is one copy of this block in the PAU.

14.4.4 Address Translation

The address translation (XSL) block provides address translation for the effective address that is sent with
read, write, interrupt, and wake commands from the AFU. The XSL block includes a cache of the address
translation contexts as well as an effective-to-real address table (ERAT). A miss on the context cache results
in a read request being sent to the CQ block. A miss on the ERAT results in a checkout request being sent to
the XTS block.

There are two copies of this block in the PAU.

14.4.5 Miscellaneous

The miscellaneous (MISC) block includes the common functions for the PAU. These include the register
access, array built-in-self-test, and error gathering and reporting.

There is one copy of this block in the PAU.

14.5 Logical Command/Data Flow

Figure 14-3 on page 228 shows the logical command and data flow for the PAU. The diagram shows two
ODL interfaces and one on-chip SMP interconnect port. This represents half of the complete PAU flow.

User’s Manual
OpenPOWER
POWER9 Processor

OpenCAPI Processing in the POWERAccel Unit

Page 228 of 508
Version 2.1

10 October 2019

The OTL is represented by: OTL Pkt Validate, OTL Cmd Buf, OTL Data Buf, Cmd Order Xlate, Out Cmd/Rsp.

The XSL is represented by: Context Cache and the ERAT.

The XTS is represented by: Checkout Request and TLBI Snoop.

The CQ is represented by: SM Ctl, SM, In Data Buf, Out Data Buf, SMPI Cmd Req, SMPI Cmd Snoop, and
SMPI Data Ramp.

Figure 14-3. PAU Command Data Flow

Cmd
Order
Xltate

OTL
Cmd
Buf

OTL
Data
Buf

OTL
Pkt

Validate

ODL Interface 0

ODL Interface 1

Out Cmd/Rsp

Out Cmd/Rsp

OTL
Pkt

Validate
OTL
Cmd
Buf

OTL
Data
Buf

Cmd
Order
Xltate

SM
Ctl

Context
Cache

ERAT

SMPI

Checkout
Request

TLBI
Snoop

In
Data
Buf

Out
Data
Buf

SM
(x)

SMPI
Cmd
Req

SMPI
Cmd

Snoop

SMPI
Data

Ramp

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

OpenCAPI Processing in the POWERAccel Unit

Page 229 of 508

14.5.1 Inbound Command/Data Flow

Figure 14-4 shows the flow for commands and data coming from the OpenCAPI link to the POWER9 chip.

The flow in Figure 14-4 is described as follows:

Figure 14-4. PAU Inbound Command/Data Flow

1 A packet that arrives on the ODL interface must be validated. This includes checking the CRC status
as well as checking for proper syntax. Additionally, the packet must be parsed into individual
commands.

2 Commands that pass the validation check are stored in the OTL command buffer. For write
commands, the write data is stored in the OTL data buffer. OpenCAPI transaction layer credits are
maintained based on available space in these buffers.

3 OpenCAPI read and write commands contain effective addresses. These addresses must be trans-
lated to real addresses before the command can be sent to the on-chip SMP interconnect.

4 The first step in translating an effective address to a real address is to look up the translation context
in a context cache. If the required context is found in the cache, the information is used in step 11. If
the required context is not found in the cache, a context cache miss process is executed as shown in
steps 5 - 10.

5 To load the required context into the context cache, a read from system memory must be done. The
context cache control logic requests the read from the SM control logic.

6 The context read is assigned to a state machine (SM) for processing.

7 The state machine requests a read command on the on-chip SMP interconnect.

Cmd
Order
Xltate

OTL
Cmd
Buf

OTL
Data
Buf

OTL
Pkt

Validate

ODL Interface 0

ODL Interface 1

Out Cmd/Rsp

Out Cmd/Rsp

OTL
Pkt

Validate
OTL
Cmd
Buf

OTL
Data
Buf

Cmd
Order
Xltate

SM
Ctl

Context
Cache

ERAT

SMPI

Checkout
Request

TLBI
Snoop

In
Data
Buf

Out
Data
Buf

SM
(x)

SMPI
Cmd
Req

SMPI
Cmd

Snoop

SMPI
Data

Ramp

1

2 3

4

27

11

21

26

22

25

24

23
20

10

7

6

5

9

818

14

17

13

12

19

16

15

User’s Manual
OpenPOWER
POWER9 Processor

OpenCAPI Processing in the POWERAccel Unit

Page 230 of 508
Version 2.1

10 October 2019

8 Data for the read is returned on the outbound on-chip SMP interconnect data port.

9 The data is stored in the outbound data buffer associated with the state machine that is processing
the context read command.

10 The context data is sent to the context cache where it is loaded into the cache and used for step 11.

11 The context along with the effective address from the original command is used to find the real
address in the ERAT. If the real address is found, it is returned to the command queuing structure in
step 20. If the real address is not found in the ERAT, a checkout request must be sent to the nest
MMU to obtain it. This process is contained in steps 12 - 19.

12 The ERAT control logic sends a checkout request to the checkout request tracking logic. The
checkout request tracking logic manages the channels that can be used by the PAU to request real
address checkouts from the nest MMU.

13 When a checkout channel to the NMMU is available, the check request tracking logic sends a
checkout request to the state machine control (SM Ctl).

14 The checkout request is placed in a pre-reserved location in the inbound data buffer.

15 The checkout request is sent to the NMMU over the on-chip SMP interconnect inbound data ramp.

16 The response from the NMMU for the checkout request is returned over the on-chip SMP intercon-
nect and arrives on the outbound data ramp.

17 The checkout response is placed in a pre-reserved location in the outbound data buffer.

18 The checkout response is sent to the checkout request tracking logic.

19 The checkout response is sent to the ERAT logic where it is loaded into the ERAT.

20 The real address is sent to the command queuing and ordering structure.

21 Commands in the OTL command queuing and ordering structure that are ready to be sent to the on-
chip SMP interconnect are arbitrated against commands in the command queuing and ordering
structure servicing the other OTL in this pair, as well as against commands coming from the on-chip
SMP interconnect.

22 When a command in the OTL command queuing and ordering structure wins arbitration, it is
assigned to a state machine. For writes, the data is moved from the OTL data buffer to the inbound
data buffer.

23 The state machine controls the execution of the command. Any required on-chip SMP interconnect
commands are sent to the on-chip SMP interconnect via the on-chip SMP interconnect command
request port.

24 On-chip SMP interconnect data transfers related to requested on-chip SMP interconnect commands
are handled through the on-chip SMP interconnect data ramps.

25 Data for read commands is stored in the outbound data buffer.

26 When all of the on-chip SMP interconnect command and data operations are complete for the
command, the state machine indicates that it is time to send a response.

27 The out command/response block generates the response and includes any required data from the
out-data buffer.

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

OpenCAPI Processing in the POWERAccel Unit

Page 231 of 508

14.5.2 Outbound Command/Data Flow

Figure 14-5 shows the command and data flow for commands coming from the on-chip SMP interconnect
and going to the AFU.

The flow in Figure 14-5 is described as follows:

Figure 14-5. PAU Outbound Command/Data Flow

1 A command that accesses AFU memory space is seen by the on-chip SMP interconnect command
snoop logic. For write operations, data is received on the on-chip SMP interconnect data ramp.

2 A state machine is assigned to process the command. Any data that is received is stored in the out-
data buffer.

3 The state machine signals that a command must be sent to the AFU.

4 The out command/response function creates the command and includes any required data from the
out-data buffer.

5 When the response for the command is received on the ODL interface, it must be validated. Valida-
tion includes checking the CRC status as well as the response syntax.

6 If the response is validated, it is passed to the state machine that is processing the command. Any
data associated with the response is placed in the in-data buffer.

7 If the on-chip SMP interconnect command required data to be returned, the data is read from the in-
data buffer and is put onto the inbound on-chip SMP interconnect data ramp.

Cmd
Order
Xltate

OTL
Cmd
Buf

OTL
Data
Buf

OTL
Pkt

Validate

ODL Interface 0

ODL Interface 1

Out Cmd/Rsp

Out Cmd/Rsp

OTL
Pkt

Validate
OTL
Cmd
Buf

OTL
Data
Buf

Cmd
Order
Xltate

SM
Ctl

Context
Cache

ERAT

SMPI

Checkout
Request

TLBI
Snoop

In
Data
Buf

Out
Data
Buf

SM
(x)

SMPI
Cmd
Req

SMPI
Cmd

Snoop

SMPI
Data

Ramp

5

4

3

6

2

7

1

User’s Manual
OpenPOWER
POWER9 Processor

OpenCAPI Processing in the POWERAccel Unit

Page 232 of 508
Version 2.1

10 October 2019

14.6 POWER9 AFU Transaction Examples

The following sections contain examples of transactions between POWER9 and OpenCAPI AFU chips using
the OpenCAPI link and the on-chip SMP interconnect.

14.6.1 Read from AFU to POWER9 Memory

Table 14-1 shows an example of a 128-byte read command sent over an OpenCAPI link.

Table 14-1. Read from AFU to POWER9 Memory

Step
AFU

Drives
OCL

OpenCAPI Link
PAU

Drives
OCL

PAU
Drives
SMPI

On-Chip SMP Interconnect From
SMPI Comment

1 → RD_WNITC → NON_CACHING_READ The AFU requests a read-with-no-
intent-to-cache (RD_WNITC). The
PAU sends a non-caching read com-
mand to the on-chip SMP intercon-
nect.

2 Memory_Ack ← The POWER9 memory controller
acknowledges the command.
The read command is acknowledged
by memory.

3 Data ← The POWER9 memory controller
sends data for the read command to
the PAU over the SMPI data bus.
Memory sends data for the read com-
mand.

4 READ_RE-
SPONSE Data

← The PAU sends a response contain-
ing the data over the OpenCAPI link
to the AFU.

Note: OCL = OpenCAPI Link; Ack = Acknowledge; Resp = Response

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

OpenCAPI Processing in the POWERAccel Unit

Page 233 of 508

14.6.2 AFU Writes to POWER9 Memory

Table 14-2 shows an example of a series of 128-byte write commands sent over the OpenCAPI link to the
POWER9 chip. In this example, it is assumed that the final write must occur after the previous writes have
completed. A case where this is required is when the final write is an indication to software that the previous
writes were completed.

Table 14-2. AFU Writes to POWER9 Memory

Step
AFU

Drives
OCL

OpenCAPI Link
PAU

Drives
OCL

PAU
Drives
SMPI

On-Chip SMP
Interconnect

from
SMPI Comment

1 → DMA_W_0 → DMA_INJECT_0 The AFU sends a stream of three DMA write
commands on the same link. The PAU sends
the write commands onto the on-chip SMP
interconnect as DMA_INJECT commands.

2 → DMA_W_1 → DMA_INJECT_1

3 → DMA_W_2 → DMA_INJECT_2

4 Cache_Ack_1 ← The responses for the inject commands can
arrive out of order. All responses indicate that
the writes are globally visible.
The inject hits the cache and is handled by the
POWER9 memory.

5 Memory_Ack_0 ←

6 Memory_Ack_2 ←

7 Write-Response_1 ← → data_1 The PAU sends the data for the inject com-
mands and sends responses for each of the
DMA write commands.
Write responses can be sent on the Open-
CAPI link out of order.

8 Write-Response_0 ← → data_0

9 Write-Response_2 ← → data_2

10 → DMA_W_3 → DMA_INJECT_3 Because the final write must occur after the
previous writes are done, the AFU waits for all
of the responses for the previous writes before
sending the final one. The PAU sends this
write command onto the on-chip SMP inter-
connect as a DMA_INJECT command.
The write_3 command is sent after writes 0 - 2
have completed.

11 Memory_Ack_3 ← The combined response indicates that the
inject command has completed on the on-chip
SMP interconnect.

12 Write-Response_3 ← → data_3 The PAU sends the data for the inject com-
mand and sends a response for the final write.

Note: OCL = OpenCAPI Link; Ack = Acknowledge; Resp = Response

User’s Manual
OpenPOWER
POWER9 Processor

OpenCAPI Processing in the POWERAccel Unit

Page 234 of 508
Version 2.1

10 October 2019

14.6.3 Read from POWER9 to AFU Memory

Table 14-3 shows an example of a POWER9 read of the AFU memory.

14.6.4 Write from POWER9 to AFU Memory

Table 14-4 shows an example of a POWER9 write to the AFU memory.

Table 14-3. POWER9 Read of AFU Memory

Step
AFU

Drives
OCL

OpenCAPI Link
PAU

Drives
OCL

PAU
Drives
SMPI

On-Chip SMP
Interconnect

From
SMPI Comment

1 READ ← Read command from POWER9 requester.
A read of AFU memory appears on the on-
chip SMP interconnect.

2 RD_MEM ← → PAU_Ack The PAU accepts the read command and
sends the read to the AFU.
The PAU responds with an acknowledge and
sends a RD_MEM command on the Open-
CAPI link.

3 → MEM_RD_
RESPONSE

→ Data When the AFU responds with the data for the
read, the PAU places it on the on-chip SMP
interconnect as the data transfer for the read
command that was accepted in step 1 and
sends the data to the requester.

Note: OCL = OpenCAPI Link; Ack = Acknowledge; Resp = Response

Table 14-4. POWER9 Write to the AFU Memory

Step
AFU

Drives
OCL

OpenCAPI Link
PAU

Drives
OCL

PAU
Drives
SMPI

On-Chip SMP
Interconnect

from
SMPI Comment

1 WRITE ← A write command from the POWER9
requester to the AFU memory appears on the
on-chip SMP interconnect.

2 → PAU_Ack The PAU accepts the write command and
responds with an acknowledge.

WRITE_MEM ← Data ← The requester of the write command sends
the write data to the PAU. The PAU then
sends a write command to the AFU over the
OpenCAPI link.

3 → MEM_WRITE_
RESPONSE

 When the AFU responds to the write, the com-
mand is complete.

Note: OCL = OpenCAPI link; Ack = Acknowledge; Resp = Response

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

CAPP

Page 235 of 508

15. CAPP

CAPP is the part of coherent accelerator processor interface (CAPI) that is on the POWER9 chip. CAPI is a
means of attaching a remote accelerator to the POWER9 chip in a coherent manner. CAPP is the logic that
connects to the local fabric that enables the remote accelerator to be able to be coherent. CAPP connects to
the accelerators via PCIe.

CAPP supports a cache for the accelerators, as well as translation, and other miscellaneous functions.

Peripheral component interconnect express

User’s Manual
OpenPOWER
POWER9 Processor

CAPP

Page 236 of 508
Version 2.1

10 October 2019

User’s Manual
OpenPOWER
POWER9 Processor

Nest MMU

Page 237 of 508
Version 2.1

10 October 2019

16. Nest MMU

This chapter describes the overall microarchitecture for the nest memory management unit (NMMU) imple-
mented in the POWER9 processor. The primary goal of this unit is to provide effective address (EA) to real
address (RA) translation for the various accelerator agents within the processor’s storage subsystem. In addi-
tion, the NMMU protects the pages that are being translated by ensuring that only tasks with the proper
authorization are allowed to access them.

16.1 Overview

The NMMU resides within each POWER9 chip with coverage encompassing multiple classes of customers,
including the on-chip NX, NPU, and CAPP0/1 units. The NMMU’s primary function is to translate effective
(logical) addresses into real (physical) addresses for memory accesses on behalf of these accelerator
agents. The unit focuses on data accesses to memory generated by loads and stores. In its primary PowerPC
mode, the NMMU’s translation mechanism is defined by segment descriptors and page tables, as set up by
the hypervisor. In addition to translation, the NMMU provides various levels of access protection on a per
segment and page basis.

As shown in Figure 16-1, the POWER9 nest MMU primarily communicates with external units through the
system bus (Fabric). All translation protocols with the accelerator units are run over the Fabric via data-only
operations. The NMMU also interacts with memory to perform tablewalks and to update the page tables, as
needed. In addition, cache management instructions (SLB and TLB invalidates) are sourced by the core/NCU
of an EX chiplet in the system and are snooped and managed by the NMMU on behalf of the attached inclu-
sive accelerator units.

Figure 16-1. POWER9 Nest MMU

Segment lookaside buffer

Translation lookaside buffer

Noncacheable unit

User’s Manual
OpenPOWER
POWER9 Processor

Nest MMU

Page 238 of 508
Version 2.1

10 October 2019

16.2 NMMU Features

A summary of the NMMU features follows:

• Translation mechanisms supported:

– Single-level translation
— PowerPC hashed page table (HPT) approach (via POWERVM)

– Dual-level translation
— Radix-on-radix page table approach (via Linux over KVM)

• Functions supported:

– EA-to-RA translations

– Memory protection at segment and page levels

– Page sizes supported:
— Radix: 4 KB, 64 KB, 2 MB, 1 GB
— HPT: 4 KB, 64 KB, 16 MB, 16 GB

– Segment sizes supported: 256 MB, 1 TB for HPT translations

– 64-bit effective address (EA), 68-bit virtual address (VA), 56-bit real address (RA)

– Supports 12 simultaneous tablewalks

– Responsible for acquiring segment table entries (STEs) and page table entries (PTEs) from seg-
ment and page tables residing in main memory

– Optional TLB/SLB invalidation management on behalf of the inclusive accelerators (NMMU supports
slbie and tlbie)

• Translation protocol:

– Checkout phase
— Agent requests that the tandem NMMU resolve a given translation

– Check-in phase (applies to inclusive agents only)
— Upon completion of relevant processing (active eviction) or local cache castout (passive eviction),

the agent signals that the translation is no longer in use by checking it back into the NMMU’s TLB.

– Invalidation phase (applies to inclusive agents only)
— Due to SLB/TLB invalidations snooped by the NMMU (slbie, tlbie)
— Due to LRU castout of NMMU cache (TLB/SLB)

• Primary customers (nest accelerators that require translation):

– NX: eight concurrent checkout/check-in operations total, one invalidate/barrier operation

– NPU: eight checkout operations

– CAPP0, CAPP1: eight checkout operations per unit

• Accelerator agent/NMMU interface communication mechanism

– Via Fabric data bus (for common platform, floorplan flexibility, and future extendability)

• Cache resources available for translations

– Local cache (ERAT) resides within accelerator agent
— NX: 32-entry local cache (ERAT) arranged in a CAM/RAM structure
— CAPP0/1: Assuming a 32-deep intermediate buffer for each CAPP ahead of the PSL ERAT
— NPU: Assuming a 64-deep intermediate buffer ahead of the ERAT held in NVIDIA’s GPU chip

Kernal-based virtual machine

Content-addressable memory

Random access memory

User’s Manual
OpenPOWER
POWER9 Processor

Nest MMU

Page 239 of 508
Version 2.1

10 October 2019

– SLB
— 256-entry, 16-way set associative (number of entries targeted at matching number of cached win-

dows)
— Used to cache the most recent copies of STEs

– TLB
— 8192-entry, 16-way set associative
— Used to cache the most recent copies of PTEs
— Inclusive of NX agent’s ERAT
— Partially inclusive for NPU/CAPP agents due to the volume of cached translations required and

agent self-management of invalidations

• Radix Page Walk Cache (PWC):

– L1: 256-entry, 16-way set associative (128 LPID/PID pairs per guest and host)

– L2: 512-entry, 16-way set associative (128 pairs × 2 branches per guest and host)

– L3: 1024-entry, 16-way set associative (128 pairs × 2 branches × 2 sequential entries/branch per
guest/host)

– L4: 2048-entry, 16-way set associative (128 pairs × 2 branches × 4 sequential entries/branch per
guest/host)

• Fabric snoop interface:

– Four sets of snoop and partial response interfaces

– One 16-byte inbound data ramp

– One 16-byte outbound data ramp

– Primarily for agent communication, SLBI/TLBI-related commands (assuming no MMIOs required)

• Fabric master interface:

– One master interface (single command bus, four combined response ports)

– Used for in-memory table reads (for example, process table), STEG/PTEG lookups, and PTE
updates

• Clocking/frequencies:

– Nest clock frequency (2 GHz), 1:1 with Fabric

16.3 Window/Process Element Context

For the accelerators in the nest, a window or process element (PE) is the communication mechanism where
trusted software provides the context required by the hardware to process a given packet or message. The
context for a window/process element is located in main memory, as illustrated in the following diagram, and
is maintained by the hypervisor. A window/process element is the portal that links system software and hard-
ware together and provides the common structures that dictate how tasks through this window are
processed. Ultimately, a window ID (or process element ID) is the index into the context stored in memory.

Memory-mapped input/output

Segment table entry group

Page table entry

User’s Manual
OpenPOWER
POWER9 Processor

Nest MMU

Page 240 of 508
Version 2.1

10 October 2019

Any agent that requires use of the NMMU to translate an effective address (or guest virtual address) must
provide the address translation context (see Figure 16-2) with the corresponding checkout request. For the
format of the address translation context within a process element, see the Coherent Accelerator Interface
Architecture.

Figure 16-2. Window/Process Element Context

User’s Manual
OpenPOWER
POWER9 Processor

Nest MMU

Page 241 of 508
Version 2.1

10 October 2019

16.4 Nest Translation Cache Pipeline

Figure 16-3 on page 242 gives a high-level view of the pipeline used to satisfy translation requests within the
nest.

While processing a packet, an agent determines that it needs a translation for a given effective address and
pulls its corresponding window/PE context. The agent first performs a lookup of its local cache (ERAT) to see
if the translation has already been checked out. An agent can hold onto a translation within the processing
engine or at the window level. If the translation is available locally, the agent services the translation request
from its own cached copy. If the translation is not available (for example, an ERAT miss), the agent forwards
a translation request to the NMMU.

The translation request travels over the Fabric via a 32-byte data-only tenure on its way to the agent’s partner
NMMU. After the translation request arrives in the NMMU, it collects in an agent input buffer. The depth of the
queue equates to the total number of outstanding requests for a given source into the NMMU, which corre-
sponds to eight checkout requests, eight check-in requests (for inclusive agents only), and one barrier/invali-
date operation (for inclusive agents only). The requests are generally serviced in a round-robin fashion.

An arbiter selects which operation to send into the NMMU’s SLB/TLB pipe. Highest priority are the invalidate
(TLBIE/SLBIE) commands that arrive downstream from the Fabric. The other legs that feed into the arbiter
are the requests from the agent input buffer and any internal operations that are needed (for example, direc-
tory updates into SLB/TLB). Because these internal operations release dependencies for previously
requested operations, they are generally prioritized over new translation requests from the agent input buffer.

After a request is granted access to the NMMU’s pipe, it performs a lookup of the SLB (for HPT translations)
to find the corresponding virtual address. The NMMU searches (based upon a congruence class hash) the
SLB directory for a matching ESID from the EA to derive the VSID from the SLB cache, which allows the VA
to be formed. For Radix translations, the SLB is bypassed and the guest translation is forwarded to the TLB
for resolution leading to a guest RA (host VA).

When the VA is determined, it is used to access the TLB. A hash of the VA is executed to isolate the congru-
ence class (cgc) of the TLB to search the cache directory. Compares are executed to find the corresponding
PTE for the translation request. The NMMU looks for a matching VPN, LPAR ID, PID, page size, hash type,
and so on, among its criteria to find the appropriate PTE. The NMMU also performs protection checks in
conjunction with key bits from the SLB and PP bits from the TLB.

If a matching PTE is found, the RA, page size, qualified C-bit, and status is returned to the agent immediately.
For non-inclusive agents, some additional information is returned with the response to help with its subse-
quent slbie/tlbie management. If an error (for example, a segment fault or page fault) is discovered, fail status
is returned to the agent and an error interrupt is sent by the agent to alert software of the problem.

If a matching PTE is not found, the miss is dispatched to a tablewalk state machine to resolve the translation
request. The tablewalk machine drives read requests to memory to pull in the STE and/or PTE for the transla-
tion. After the STE/PTE data arrives, it is allocated into the SLB and/or TLB, respectively. After the cache and
directory are updated, the tablewalk state machine recycles the translation request through the SLB/TLB pipe
on behalf of the corresponding agent, which causes the entry to be re-run through the SLB/TLB pipe. This re-
run should cause an SLB/TLB hit to occur, which allows the RA and status for the translation to be returned to
the agent.

User’s Manual
OpenPOWER
POWER9 Processor

Nest MMU

Page 242 of 508
Version 2.1

10 October 2019

Figure 16-3. Nest Translation Pipeline

User’s Manual
OpenPOWER
POWER9 Processor

Nest MMU

Page 243 of 508
Version 2.1

10 October 2019

16.5 Nest Translation Protocol (for Fabric-Attached Agents)

The nest translation protocol is partitioned into three primary phases: the checkout of a translation, the check-
in of a translation, and the invalidation of a translation due to a snoop TLB invalidation hit or due to the evic-
tion of a NMMU cache entry. The following sections describe these various phases with a particular focus on
agent communications being performed over the Fabric.

16.5.1 Translation Checkout

For an agent to obtain a translation, it must request that the translation be checked out. To do this, the accel-
erator agent initially captures the corresponding window/PE context for the access to pull in the relevant infor-
mation pertaining to the address translation. If the translation has not already been checked out, the
accelerator agent forwards a 32-byte, data-only operation on the Fabric, along with the agent’s ERAT index,
which is logged in the NMMU agent request-in buffer. The data tenure routes the operation to the destination
NMMU using the RTag, which includes the payload (EA, plus translation context data optimal for an NMMU
hit [for example, an LPID or PID]). After resolving the translation request, the NMMU returns a translation
response to the agent that initiated the request. This is done by another data-only tenure on the Fabric with
the corresponding real address, the associated status for the translation request, and the page size for the
translation. After the agent acquires the translation, it is valid until the NMMU indicates that it must be invali-
dated, until the agent checks in the translation after it is done with its processing, or until the page boundary is
crossed. See Figure 16-4 on page 246 for more details.

Within the unit, the NMMU snoops the checkout request and performs a lookup of its SLB/TLB to see if the
translation already exists. If there is a hit in the NMMU cache, the corresponding real address is provided to
the accelerator agent immediately. If the request misses the SLB and/or TLB, the NMMU performs a table-
walk to obtain the targeted RA. This is done by acquiring the corresponding segment table entry (STE) and/or
by claiming the required page table entry (PTE) from main memory. The NMMU sets a flag in its TLB and/or
SLB to represent that the translation is in use by an inclusive accelerator only. The inUse flag remains set
until an agent check-in occurs or until the entry is invalidated.

16.5.2 Translation Check-in

When an inclusive agent is finished with a specific translation that it knows is no longer required,1 it drives a
request to the NMMU with the corresponding ERAT index to check-in the translation. If handled correctly, this
can lessen the impact of an invalidation for a given translation. This is in contrast to allowing it to turn into an
asynchronous forced invalidation at some point in the future when the NMMU snoops a tlbie/slbie (or when a
NMMU TLB/SLB cache eviction occurs due to capacity reasons) and the corresponding NMMU TLB/SLB
entry has the inUse flag set. The primary intent of an active eviction policy within an accelerator is to aid the
NMMU TLBIE/SLBIE management. By clearing the corresponding inUse bit within a given NMMU TLB/SLB
entry due to a check-in, the entry can be invalidated for a subsequent TLBIE/SLBIE without invoking a back-
invalidation sequence with an agent. Figure 16-4 on page 246 shows a high-level view of the check-in flow
between an accelerator agent and the NMMU.

1.Translations can be held in the agent on a per window basis or within a common pool across windows.

User’s Manual
OpenPOWER
POWER9 Processor

Nest MMU

Page 244 of 508
Version 2.1

10 October 2019

16.5.3 Translate Invalidation Interface

At times, the NMMU initiates an invalidation sequence with an inclusive agent to indicate that a translation is
no longer valid. An invalidate sequence can be triggered by either of the following two scenarios:

• A snoop invalidate (slbie/tlbie) that hits an entry in the SLB or TLB.

• When the NMMU evicts a valid SLB or TLB entry.

For both cases, the valid SLB or TLB entry must have its inUse flag set. which means that the translation is
currently being used by an inclusive agent. In this scenario, the NMMU accepts the tlbie/slbie operation and
protects the page/segment accordingly until the invalidation sequence with the agent is completed. The
NMMU drives an invalidation request to any agent whose inUse bit is set for a matching SLB or TLB entry,
along with the affected ERAT index, which is held within the NMMU inUse scoreboard. The sequence is
completed when the agents drive a response back to the NMMU that indicates that the agent has quiesced by
draining all pending operations for any outstanding translations for the targeted ERAT index (or transaction ID
for non-inclusive agents) to the Fabric. After the barrier is detected, subsequent operations to the Fabric are
halted within the agent until the drain is completed and new translations are obtained from the NMMU. Also,
this invalidation sequence can additionally be initiated by the NMMU when its LRU algorithm leads to evicting
a valid TLB/SLB entry with its inUse flag set.

To coordinate this event between an inclusive agent and the NMMU, the following sequence is executed:

1. When the NMMU detects an inUse flag that is set for a given cgc, it sends a raise-barrier request to the
targeted agent to initiate a back-invalidate sequence.

The NMMU asserts an internal retry window for subsequent in-flight checkout/check-in requests from the
given agent.

2. Upon receiving the raise-barrier operation, the agent stops sending any new checkout/check-in requests
to the NMMU until it detects a lower-barrier operation.

Checkout/check-in operations that are already in the outbound request queue can be sent as the ERAT
cannot pull these back.

3. The corresponding agent waits for a response from the NMMU for all outstanding checkout/check-in
requests.

If tablewalk or check-in machines have been started already, the NMMU allows those to finish before pro-
viding a response.

Note that a tablewalk state machine is forced to abort if a castout of a cache member is detected with its
inUse flag set. This is required to ensure that the NMMU can always provide an xlat response.

The NMMU drives a “retry due to invalidate” status for all in-flight operations into its SLB/TLB pipe
sourced by the targeted agent.

Upon receiving a retry status, the agent can recycle the request after the barrier clears.

4. When the agent receives responses for all pending checkout/check-in requests, it sends an acknowledge
for the raise barrier to establish the barrier and indicate that it is ready to receive the invalidate.

5. After it detects the raise barrier acknowledgment from the agent, the NMMU drives an invalidate request
to the corresponding accelerator.

6. Upon receiving the invalidate request, the agent does the following actions before invalidating its local
ERAT entry (or transaction ID for non-inclusive agents):

User’s Manual
OpenPOWER
POWER9 Processor

Nest MMU

Page 245 of 508
Version 2.1

10 October 2019

• Compares the ERAT index for the invalidate request with any pending check-in requests. If a match is
found, the ERAT index is implicitly checked in (that is, removed from the queue as though the opera-
tion completed).

• If an ERAT index is in use by a DMA read/write machine, the agent waits for the corresponding
index’s access count to drain to zero (that is, no pending accesses to the Fabric for the given index).

7. The targeted agent drives a response to the NMMU for the invalidate request.

8. After detecting the agent’s response, the NMMU invalidates its local SLB or TLB entry (dependent upon
which cache entry is being invalidated) and updates its inUse flags accordingly.

9. For a given cgc, if the NMMU still has other members to invalidate with an inUse flag, it loops back to step
5 in the sequence to process the next cgc member under the current raised barrier.

Note: The NMMU might amortize the barrier for processing subsequent cgc’s if the invalidate is one in
which the entire TLB is scrubbed (that is, for a tlbie for all entries or those matching an LPID/PID combo).

10. When the NMMU finishes cleaning the inUse flags for the cgc (or a larger working set), it sends the tar-
geted agent a lower barrier request.

11. Upon receiving the lower-barrier request, the agent sends an acknowledge to the NMMU. This allows the
agent to resume sending checkout/check-in requests to the NMMU.

12. The NMMU detects the lower-barrier response and drops its retry window for in-flight xlat operations.

16.5.4 Flow Diagrams of Agent/NMMU Translation Operations

This section summarizes the primary flows between an agent and the NMMU on behalf of address transla-
tion.

16.5.4.1 Checkout/Check-In Sequence

This section illustrates the sequence of events that an agent performs to checkout and check-in a translation
from the NMMU. When an agent detects an ERAT miss (and there is an available ERAT entry), it forwards a
checkout request to the NMMU. The NMMU services the translation and returns a response to the given
agent for its checkout response. Coincidentally, the NMMU logs the ERAT entry in its inUse scoreboard as a
part of its filtering mechanism for snoop invalidates and local castouts on behalf of inclusive agents.

When an inclusive agent is ready to evict a translation from its ERAT, it masters a check-in request to the
NMMU. Upon receipt, the NMMU removes the entry from its inUse scoreboard and clears the corresponding
inUse flags from the SLB and/or TLB.

After the inclusive agent receives a clean check-in response, it invalidates the targeted ERAT entry and is
able to re-use the entry.

User’s Manual
OpenPOWER
POWER9 Processor

Nest MMU

Page 246 of 508
Version 2.1

10 October 2019

16.5.4.2 Back-Invalidate Sequence

This section highlights the back-invalidate process between the NMMU and its inclusive agents. The trigger
for this sequence is a snoop invalidate or local castout that hits an inUse flag (that is, translation has not been
checked in). When this occurs, the NMMU initiates a raise barrier phase to warn the agent that an ERAT
invalidate is coming. The agent withholds a response for the raise barrier until it receives responses for all
pending xlat operations (that is, the interface has quiesced). When this phase completes, the NMMU cycles
through targeted ERAT invalidates one at a time. An invalidate response from the agent indicates that it has
drained all references for the translation. The NMMU lowers the barrier when it permits the agent to resume
its normal traffic flow for translation operations.

Figure 16-4. Agent/NMMU Flow Diagram (Checkout/Check-in)

User’s Manual
OpenPOWER
POWER9 Processor

Nest MMU

Page 247 of 508
Version 2.1

10 October 2019

Figure 16-5. Agent/NMMU Flow Diagram (Back-Invalidate Sequence)

User’s Manual
OpenPOWER
POWER9 Processor

Nest MMU

Page 248 of 508
Version 2.1

10 October 2019

16.5.5 NMMU Cache Pipeline

Figure 16-6 on page 249 illustrates a high-level view of the NMMU’s cache pipeline after an accelerator agent
issues a translation request to the NMMU. Note that this is primarily an HPT translation path, but a Radix
translation has a similar flow.

The process begins as the NMMU arbitrates to select the next request to be serviced by the SLB pipe
resource. Highest priority is given to SLBIE broadcast commands that are snooped via the Fabric bus. These
commands require a unit partial response on the Fabric in a guaranteed time (TLAR), so that they are consid-
ered non-blocking operations. The next highest-priority level is aimed at completing updates for commands
that have already been issued through the pipeline and are being processed by a tablewalk or invalidate state
machine. These updates include directory writes and if needed, cache writes, internal tablewalk directory
reads, and also recycled translations that should now hit in the SLB. By allowing these internal operations to
complete, downstream resources are freed up to accept new translation requests. The third priority level is
assigned to retry requests. These are requests that were sent through the pipe, but the NMMU could not
resolve the translation at the time due to a dependency. Typical dependencies include congruence class colli-
sions against pending queues in the NMMU that are processing misses or invalidations. The lowest priority
for the SLB pipe arbitration point is designated for new translation requests that have not been issued to the
pipeline yet.

After a request is selected to enter the SLB pipe, a lookup of the SLB is performed to obtain the virtual
address for the corresponding effective address. If the virtual address is not cached within the SLB, the miss
is dispatched to a tablewalk state machine to find a matching entry in the corresponding segment table
located in main memory.

Once resolved in the SLB, the NMMU’s pipe continues with arbitration for the TLB lookup phase. Similar to
the SLB resource, the highest priority is assigned to TLBIE broadcast commands that are snooped via the
Fabric. Likewise, these are considered nonblocking operations because they require a unit partial response
on the Fabric within a TLAR interval. The next highest priority targets TLB directory/cache updates, internal
tablewalk directory reads, and tablewalk recycles of newly installed translations for pending misses that the
NMMU is processing. The third priority belongs to new translation requests, which would arrive downstream
from the SLB pipe for HPT-based requests or from the SLB pipe’s bypass path for Radix-based translations.

After the TLB pipe arbitration grants the next request, the pipeline continues with a lookup of the unit’s TLB.
The TLB lookup allows the NMMU to check its local cache to determine if a valid copy of the real address is
present. If a matching page table entry is not found in the NMMU’s TLB, a tablewalk machine is dispatched to
search for one in the corresponding page table residing in main memory.

When the real address is successfully found at the end of the SLB/TLB pipe, the result is forwarded to the
NMMU response out FIFO to be transferred through the Fabric to the accelerator agent that originally
requested the translation.

If the operation sent through the SLB/TLB pipe is a snoop invalidate command (SLBIE/TLBIE), the NMMU
looks up the corresponding SLB or TLB to determine if one or more matching translations are currently
checked out by an accelerator. If the operation misses the NMMU’s cache, a null partial response is returned
to the Fabric indicating that the segment or page is not present within the given NMMU’s scope. If the TLBIE
or SLBIE operation hits in the NMMU’s cache and a corresponding inUse flag is set, a retry partial response
is returned to the Fabric until the NMMU can successfully drain all references for pending translations in the
associated accelerators. If the SLBIE operation hits in the NMMU’s SLB cache, no drain is required within the
accelerators, but it is performed for simplicity and uniformity with TLBIE behavior with respect to the agents.

User’s Manual
OpenPOWER
POWER9 Processor

Nest MMU

Page 249 of 508
Version 2.1

10 October 2019

Figure 16-6. High-level NMMU Translation Pipeline

User’s Manual
OpenPOWER
POWER9 Processor

Nest MMU

Page 250 of 508
Version 2.1

10 October 2019

16.5.6 NMMU Control State Machines

There are several types of control state machines that manage the processing of the various translation
requests that the NMMU receives. An engine ID is used to uniquely identify a given state machine.

16.5.6.1 Tablewalk State Machine

In the POWER9 NMMU, a tablewalk state machine is responsible for resolving a miss for a translation
checkout request from an accelerator. It can service an SLB miss or a TLB miss. For the SLB miss case, the
tablewalk engine searches for a valid matching segment table entry (STE) in memory that it can then install in
the SLB cache. Likewise, for a TLB miss scenario, a tablewalk state machine searches memory for a valid
matching page table entry (PTE) that it subsequently allocates in the TLB cache. After the respective cache
miss is satisfied, the tablewalk state engine recycles the original checkout request through the SLB/TLB
cache pipeline with the expectation of a subsequent hit within the NMMU. Upon a hit, the NMMU returns the
RA and corresponding status to the targeted accelerator.

16.5.6.2 PTE Update State Machine

When a tablewalk state machine must update the PTE, it farms this task out to a PTE update state machine
for this back-end processing. That is, R,C updates on behalf of a given PTE are all routed through the Fabric
by these partner PTE update engines. Likewise, there is a 1:1 correspondence with the tablewalk engines,
which means that there are 12 PTE update state machines for the POWER9 processor. The PTE update
state machine’s responsibility is simply to manage these updates to memory by mastering partial writes
(ARMWF operations) on the Fabric. The PTE update state machine is allowed to go idle when it receives a
clean cresp and it has evaluated the corresponding PTE valid bit from memory. There is a dedicated address
queue slot per PTE update state machine to process these requests.

In the POWER9 processor, PTE updates are atomic updates of the PTE. They are treated just like atomic
RMW with fetch operations on the Fabric with a special ttype (pteUpdt2). All updates of the PTE are consid-
ered to be atomic, including the R, C, and timestamp bits. The RMW is conditional in the targeted memory
controller based upon the PTE valid bit being set for the appropriate PTE format. If the PTE valid is set, the
RMW is allowed to occur. If the PTE valid bit is not set, the RMW is aborted in the memory controller. The
memory controller returns the original PTE state to the NMMU with the fetch portion of this operation. The
NMMU tablewalk state machine determines the success or failure of the atomic PTE update based on
sampling the fetch data matching the expected PTE data. If the PTE update fails, a fail response status is
returned to the corresponding agent. All data tenures are cache-line transfers with an address offset to target
a given PTE. The address for a PTE update is the PTEG RA for HPT or the targeted PTE for a Radix transla-
tion.

Because the fetch data for a PTE update is returned to the NMMU and stored in the tablewalk’s read buffer in
the Fabric macro, the tablewalk state machine must ensure that it has no outstanding reads on the Fabric
before executing an atomic PTE update.

User’s Manual
OpenPOWER
POWER9 Processor

Nest MMU

Page 251 of 508
Version 2.1

10 October 2019

16.5.6.3 Castout State Machine Overview

At times, the NMMU must evict a member from its SLB or TLB cache according to its LRU algorithm. When
the member is clean (the entry is valid and its inUse flag is not set), the existing LRU member is simply over-
written by the new member data. However, if the member is dirty (entry is valid and its inUse flag is set), a
castout state machine must process the eviction in much the same way as the snoop slbie/tlbie invalidate
scenarios described earlier. The primary difference, though, is that the invalidate due to a castout is guaran-
teed to be for a single member (LRU member) for a given congruence class, whereas a snoop invalidate can
impact multiple members within a cgc.

When a dirty checkout miss is detected, the SLB or TLB pipe simultaneously dispatches a tablewalk state
machine for the new request and a castout state machine to clear out the old entry. Likewise, there is a 1:1
correspondence between a tablewalk state machine and its partner castout state machine, so that there are
12 castout engines for the POWER9 processor. The tablewalk state machine is allowed to search for a
matching STE/PTE for the new request during the castout phase, but it cannot allocate the new STE/PTE
until the castout state machine completes its eviction of the old STE/PTE.

Similar to an invalidate state machine, the castout state machine takes the following steps to evict a given
SLB or TLB index (cgc/member):

• At cache pipe dispatch, a castout engine is invoked because of a dirty checkout miss. The castout state
machine captures the cgc and the LRU member for the SLB or TLB (the primary index).

• The castout state machine issues a request to the global inUse scoreboard to map the SLB or TLB index
for the castout to the corresponding ERAT index, which correlates to the entry in the agent that must be
torn down.

• After a response is provided by the inUse scoreboard, the castout state machine captures the ERAT
index for the targeted SLB/TLB cache member and the SLB or TLB index (secondary index) that is not
directly being invalidated.

• The castout engine drives invalidate requests to the corresponding inclusive agents for the given ERAT
index.

• In the case of an SLB castout, there might be multiple invalidate requests in-flight under a barrier. Like-
wise, for Radix translations, there might be multiple invalidate requests to an agent for a TLB castout.

• When the castout state machine detects an invalidate response from the agent, the engine issues a
directory write to the primary index (SLB or TLB) to clear the valid bit and to reset the inUse flag for an
SLB/TLB castout. The castout state machine also issues a directory write to the counterpart cache to
simply update its inUse flag.

• The castout state machine issues a clear command to the global inUse scoreboard to invalidate the cor-
responding ERAT index entry.

• While the castout state machine is processing a primary index eviction, it issues a query to the inUse
scoreboard to see if any translations to the targeted primary index are still active. If there are still pending
translations for the primary cgc member, the castout state machine wraps back to the step where it
attempts to find the next ERAT index that must be processed.

• When agent shootdowns complete for the cgc member, the castout state machine sends a done pulse to
its partner tablewalk state machine to give it clearance to allocate the new member in the cache. The
castout state machine subsequently goes idle at this juncture.

User’s Manual
OpenPOWER
POWER9 Processor

Nest MMU

Page 252 of 508
Version 2.1

10 October 2019

16.5.6.4 Radix Page Walk Cache Overview

The Radix page-walk cache (PWC) is used by the tablewalk state machine to help it resolve a Radix transla-
tion. The tablewalk state machine stores guest and host page directory entries (PDEs) and PTEs for each
level of the Radix tree (L1 - L4) in the cache.

Figure 16-7 shows an overview of the Radix PWC. A guest TLB miss can cause a tablewalk state machine to
look in its PWC for a matching entry based upon the LPID/PID and the guest VA (GVA). Likewise, a host TLB
miss can cause a tablewalk state machine to look in its PWC for a matching entry based upon the LPID and
the host VA (HVA). When a matching PTE is found, the tablewalk state machine allocates it into the TLB for
subsequent processing. L3 and L4 contain two to four consecutive PDE/PTEs to further help with prefetching
for a sequential stream. Note that 1 GB pages map to a PTE found in the L2 of the PWC, 2 MB pages map to
a PTE found in L3 of the PWC, and 4 KB/64 KB pages map to a PTE found in L4 of the PWC.

Figure 16-7. Radix Page-Walk Cache

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Nest MMU

Page 253 of 508

16.5.6.5 Check-in State Machine Overview

A check-in request is initiated by an inclusive accelerator when it is finished using a translation that was previ-
ously checked out. From an accelerator’s perspective, it essentially correlates to a castout of its local “cache”
for a given translation. However, an accelerator can also implement more proactive measures to evict an
entry out of its ERAT to check-in a translation. A check-in operation causes the NMMU to reset the corre-
sponding inUse flag in its TLB and SLB to indicate that a given PTE or STE (alternatively, two PTEs with TLB-
g, TLB-h for Radix translations) is no longer actively being used. This has the side effect of speeding up the
resolution of tlbie/slbie commands on the Fabric.

An outline of the steps involved with the NMMU servicing a check-in request are as follows:

1. Check-in request is sent by an accelerator with a tag that indicates the agent ERAT index. The ERAT
index is the globally unique identifier for a given translation between an agent and the NMMU.

2. The NMMU receives the check-in request into its agent input buffer.

3. When a downstream resource frees up, the NMMU pulls the request out of its agent input buffer and
routes it to an available check-in state machine. A total of eight check-in engines are available for the
POWER9 processor.

4. The check-in state machine issues a request to the global inUse scoreboard to map the ERAT index for
the translation to the corresponding NMMU cache resources, which correlate to the cgc/member pair for
the SLB and TLB.

5. When a response is provided by the inUse scoreboard with the corresponding SLB and TLB indices, the
check-in engine issues SLB and TLB directory writes (or both to the TLB for guest and host indices for a
Radix translation) to obtain congruence class locks for both halves of the nested translation.

6. When locks are secured, the check-in state machine issues a request to the inUse scoreboard to clear
the valid bit for the entry of the targeted ERAT index.

7. At this point, the check-in state machine must verify whether the primary and secondary indices are still in
use (that is, STE maps to multiple PTEs for HPT translations or multiple guest pages map to a single host
page in Radix translations). This is done by another query to the inUse scoreboard for the primary and
secondary indices, respectively.

8. If the corresponding primary or secondary index is no longer in use, the check-in state machine masters
a directory write to the SLB or TLB to clear the inUse flag for the cache member and to reset the cgc lock
for the respective index.

9. When the query operation completes within the inUse scoreboard, the check-in state machine drives a
check-in response back to the agent to signal completion of the operation. This is arbitrated through the
Fabric Dout path.

10. Upon receipt of the check-in response, the agent clears the valid bit of the corresponding ERAT index that
was checked in.

16.5.6.6 NMMU Invalidate State Machine Overview

The high-level steps that the NMMU performs in executing an invalidation sequence are as follows:

1. The NMMU snoops an slbie/tlbie operation command and initiates an FBC invalidate state machine,
which manages the command’s protection window.

2. The NMMU snoops a corresponding slbie/tlbie set command, which is forwarded out of the Fabric macro
and into the corresponding CTL invalidate state machine.

User’s Manual
OpenPOWER
POWER9 Processor

Nest MMU

Page 254 of 508
Version 2.1

10 October 2019

3. The CTL invalidate state machine forwards the set command to the respective SLB/TLB cache pipe to
determine if it is a cache hit or miss.

4. At SLB or TLB dispatch time, the CTL invalidate engine receives hit/miss information for the snoop invali-
date. It is initiated due to a snoop invalidate scenario. If the snoop hits in the NMMU, the invalidate engine
captures the LRU member valid vector and the inUse vector for the targeted cgc. Note that there are a
total of 12 invalidation state machines in the POWER9 processor to support up to four SLBIEs and eight
TLBIEs.

5. The invalidate state machine issues a request to the global inUse scoreboard to map the SLB or TLB
index for the invalidation to the corresponding ERAT index, which correlates to the entry in the agent that
must be torn down.

6. After a response is provided by the inUse scoreboard, the invalidate engine captures the ERAT index for
the targeted SLB/TLB cache member (primary index) and the secondary index (the SLB or TLB index
that is not directly being invalidated).

7. The invalidate engine drives invalidate requests to the corresponding agent for the given ERAT index.

8. When the invalidate state machine detects a response from the inclusive agent, the engine progresses to
the next member bit that is set in its inUse vector and repeats the previous process by identifying the cor-
responding ERAT index and by shooting down the required ERAT index in the agent. This process contin-
ues until all valid members have been drained for the respective congruence class.

9. When the agent shootdowns complete, the invalidate engine (similar to a check-in engine) issues SLB
and TLB directory writes to clear the valid bit for the corresponding primary cgc members in the respec-
tive caches and to update the inUse flags for the secondary indices.

10. When clean dispatch results are detected for both the primary and secondary (SLB and/or TLB) directory
writes, the invalidate engine issues a request to the inUse scoreboard to clear the valid bit for the targeted
entries that map to an affected ERAT index.

11. When the clear operation completes within the inUse scoreboard, the CTL invalidate state machine
drives an invalidate-complete pulse to the FBC invalidate state machine to terminate the command pro-
tection window and to end the sequence.

16.6 Unit RAS Overview

16.6.1 RAS Features

• No custom circuits required for arrays in the NMMU. Numerous arrays are all C8Ts and SSAs.

• All arrays have error detection and are recoverable.

– Fabric data buses arrive and are sent with ECC. Associated buffers/arrays contain ECC. When data
is manipulated, ECC errors are checked and reported with failing syndrome. Single-bit errors are cor-
rected.

– Other arrays (for example, SLB/TLB directory and cache) are primarily parity-protected.

– Exception for unprotected arrays are those that cannot cause data integrity issues (for example, the
SLB and TLB LRU).

• All ECC/parity generation includes error injection points to allow for single-bit and double-bit errors.

• Fabric command, snoop, and response buses are parity-protected.

• Control checkers:

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Nest MMU

Page 255 of 508

– Interface protocol checks for the various agents to verify correctness.

– Timeout conditions detected, primarily through state machine non-idle scenarios.

– As Fabric master/snooper, NMMU supports a hang-recovery mechanism.

– Illegal state machine transitions are detected and verified through BugSpray checkers.

• Error Reporting:

– Fault Isolation Register (FIR) is used to log various errors and failure conditions.

16.6.2 NMMU Error Handling Policies

The NMMU and its attached accelerator agents form a translation complex on POWER9 processor where all
parties are notified if the other unit is down and unable to service requests normally. There are two broad
categories of NMMU unit behavior in the presence of errors:

• Faults that occur during the process of translating an EA mastered by an accelerator:

– In these scenarios, the NMMU returns the status to the corresponding accelerator with an encoding
that provides the reason for the fault.

– The corresponding agent can report the status to software in a variety of ways (for example, an inter-
rupt or stamping the status into its packet header/control block).

– The agent reports the original EA (or gVA for Radix translations) and the failing status code to soft-
ware. Software is notified by using an interrupt that causes the code to touch the failing page. The
touch causes the translation to be replayed out of the core MMU, which runs into the same error as
detected by the NMMU. The core MMU provides its typical diagnostics to software for fault resolution
(for example, DAR, HDAR, DSISR, HDSISR).

• Errors that cause the NMMU to drive a system checkstop, which is considered catastrophic.

User’s Manual
OpenPOWER
POWER9 Processor

Nest MMU

Page 256 of 508
Version 2.1

10 October 2019

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Interrupt Controller

Page 257 of 508

17. Interrupt Controller

The POWER9 interrupt controller (INT) consists of three major units: the virtualization controller (P3VC), the
presentation controller (P3PC), and the POWER9 fabric bus interface common queue (P3CQ). These units
work together to take triggers from interrupt sources and deliver exceptions to the appropriate processor
thread. This section provides an overview of the interrupt architecture, describes the INT units and their inter-
faces, and also describes how they operate with the interrupt sources and software in the POWER9 infra-
structure.

Note: The “P3” prefix in the unit acronym name refers to version 3 of the interrupt architecture. The previous
version was referred to as version 2.

17.1 External Interrupt Virtualization Engine

The POWER9 interrupt architecture significantly reduces the interrupt code overhead/path length and
improves performance compared to the previous architecture. Other advantages of this architecture over
previous versions are:

• Enables direct user-level I/O device drivers:
– Direct I/O adapter interrupts to user-level event-based branches
– Significantly simplifies CAPI models and path length

• Enables direct user-level virtual I/O signalling:
– Significantly simplifies scalable inter-processor/partition signalling
– Compliments scalable virtual super-sockets

• Combines all notification mechanisms into one architecture:

– External interrupts, including inter-processor interrupts (IPI), targeting:
— Operating dystem (OS)
— Hypervisor
— Event-based branch (EBB)

– Enables authorized signalling by:
— I/O device
— Platform service
— Program at any privilege level

– Adds routing to dispatched logical server in addition to physical thread:
— Desired combination of LPID, VP/VT, PID, TID

– Removes hypervisor from the path, except:
— When required to dispatch a logical server
— To handle extreme scalability
— To handle corner cases in page migration

Coherent accelerator processor interface

Logic partition ID

Process ID

Thread ID

User’s Manual
OpenPOWER
POWER9 Processor

Interrupt Controller

Page 258 of 508
Version 2.1

10 October 2019

17.2 High-Level Block Diagram

The high-level diagram, Figure 17-1 on page 259, depicts the conceptual interaction among sources and the
controller blocks in interrupt signalling and notification. The individual elements are interconnected and
communicate via the POWER9 Fabric bus.

The P3VC receives notification triggers from interrupt source controllers (P3SCs) via a POWER9 Fabric bus
store operation (for example, cache-inhibited write: ci_wr). It processes the notification using information
contained in the event assignment entry (EAE) that is located in main memory and associated with the
specific trigger. This processing might include updating an event queue entry, and then forwarding the notifi-
cation to the P3PC, which signals an exception to one of the processor threads. The P3VC also handles noti-
fication redistribution if a state change to the assigned processor thread preclude it from handling the
interrupt, or notification escalation if there is no processor thread that is currently capable of handling the
interrupt.

The P3PC has exception notification wires connected to individual processor threads. Three wires exist for
each thread. The processor thread uses one exception wire to generate hypervisor interrupts, another to
generate operating-system interrupts, and a third wire to generate an event-based branch. Associated with
each of the exception-notification wires in the P3PC is prioritization and exception-queueing logic that
prevents less favored events from pre-empting more favored ones or from loss due to dropping an event.
Associated with each of the exception notification wires is one or more logical server numbers stored in CAM-
like lines. This structure is also referred to as the thread context (TCTXT). These logical server numbers iden-
tify which software entities are currently dispatched on the specific physical processor thread. When the
P3VC issues Fabric bus operations to route an event notification, these CAM-like lines are searched to iden-
tify candidate processor threads. In addition to the CAM-like lines, priority and exception-queuing logic
mentioned previously, each interrupt-generating exception has logic to track how much interrupt work has
been handled by the associated processor thread. This information is used to evenly distribute interrupt
processing load among the candidates.

The P3CQ serves as the POWER9 fabric bus interface controller between the interrupt logic and the rest of
the POWER9 chip. This unit is responsible for sequencing the appropriate fabric bus protocol when the inter-
rupt controller drives or receives commands. It performs compares to determine if the interrupt controller is
the destination of a command (for example, a store operation used for an interrupt trigger). It is also respon-
sible for driving the fabric bus histogram, poll, and assign commands to find the correct presentation
controller for an interrupt trigger. Another key P3CQ function is sending and receiving the AIB interface to the
virtualization and presentation controllers.

ASIC interface bus

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Interrupt Controller

Page 259 of 508

Figure 17-1. Interrupt Presentation Interaction

(IPI)

Core

POWER9

Memory
Controller

P3SC P3SC

(NX/PCIe)(PCIe)

Coalesced interrupt requests
Uncoalesced interrupt requests
Memory table and backing-storeacesses
Processor bus interrupt request (broadcs)

P3VC INT P3PC

SMP Interconnect

User’s Manual
OpenPOWER
POWER9 Processor

Interrupt Controller

Page 260 of 508
Version 2.1

10 October 2019

17.3 INT Unit Overview

Figure 17-2 shows the detailed structure and implementation of the three major units. Within each unit, the
major sub-blocks and interfaces are outlined. This section provides more description and details on the three
major units.

Note: The INT unit adheres to the POWER9 RAS requirements with parity on latches and ECC on SRAMs
and major interfaces.

Figure 17-2. Interrupt Controller Microarchitecture

SMP Interconnect

Core

Critical tsnoop path

eFIFO-based
IRQs are “safe
haven”

Extensive command typing with
separate credits and reserved
resources to guarantee forward
progress

Reliability, availability, and serviceability

Error correcting code

Static random access memory

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Interrupt Controller

Page 261 of 508

17.3.1 P3 Common Queue (P3CQ)

The interrupt controller common queue (CQ) is the bridge between the fabric bus and the presentation and
virtualization controllers.

The CQ is connected to the PC and VC through two AIB ports. The AIB arbitration and muxing exists within
the CQ logic. The AIB interface logic also allows PC-VC communication for local accesses.

The P3CQ features/functions are:

• CI load/store machines, each machine handles one processor bus operation at a time.

• Read/write/interrupt machines, drive DMA read/write, CI read/write, and interrupt commands.

• Block routing and tracking for storing target addresses for block CI operations and scope tracking for
interrupt commands.

• BARs for scope generation based on the fixed address mapping scheme used for POWER9.

• Migration registers for memory migration secondary BAR information.

• One interrupt controller PB BAR register.

• One thread management PB BAR register.

• Four configurable PB BAR Registers (1 spare/reconfiguration)

• DMA scope generation using BAR registers

• Block-based CI address generation.

• Snoop directory with 16 entries for cache-line protection during pull-push mode.

• 16 cache-line data buffer slots for push-pull operation.

17.3.2 P3 Virtualization Controller (P3VC)

The virtualization controller is the main interrupt processing unit. It takes triggers from the fabric bus and
processes them using information found in the corresponding event queue entry.

The P3VC main features/functions are:

• Five interrupt trigger queues (IPI, hardware, first-level escalation, second-level escalation, redistribution)
that can be extended in main memory

• 16-way set-associative cache for 1K event assignment entries (EAEs)

• 16-way set-associative cache for 32K states (1K groups of states)

• 32-way set-associative cache for 1K event notification descriptors (ENDs)

• Support for cache-scrubbing and cache-watch commands

• Support for sync commands on all interrupt queues in the event notification descriptor cache (ENDC)

• Up to 16 blocks owned by P3VC

The P3VC main processing flow is:

• Interrupt triggers come in as CI store operations. Depending on the interrupt source, it is stored into one
of the five interrupt queues.

• The queue is read and the interrupt request is either dropped if the mask bit is set, directly sent to the
ENDC block if no event assignment structure cache (EASC) lookup and state bit check are required (a

Presentation controller

Virtualization controller

cache inhibited

Direct memory attach

Base Address Register

User’s Manual
OpenPOWER
POWER9 Processor

Interrupt Controller

Page 262 of 508
Version 2.1

10 October 2019

case where the trigger is an event-queue trigger and therefore holds EQ information), or an EASC lookup
is performed.

• The EASC does an EAE lookup to get EQ trigger information.

• State bit check is executed if the interrupt controller does the interrupt coalescing. If the current state is
reset, the state is switched to pending. If the current state is Pending, the state is switched to queued.

• The EAE is returned to the IRQ subunit. The mask bit is asserted in the following case: EAE valid bit = ‘0’,
or EAE mask bit = ‘1’, or SB check was required, and PQ state was not reset; which means the interrupt
was already presented or the SB entry is disabled.

• If the EASC lookup response has the mask bit set, the interrupt process ends. Otherwise, EQ trigger is
forwarded to the EQC block for processing. At this point, the interrupt trigger becomes an Event Queue
trigger.

• The ENDC block checks that it owns the EQ block. If the current interrupt controller does not own the EQ
block, the EQ trigger is forwarded to the owner using a CI store operation. The target queue is configu-
rable. Otherwise, the ENDC does an END cache lookup to get the corresponding EQ descriptor.

• Depending on the END content, the ENDC can:
– Do nothing
– Post an event in the event queue and increment the EQ pointer
– Execute an SB check and update
– Generate an interrupt request
– Increment per the priority backlog counter in the Notification Virtual Target (NVT)
– Set per the priority pending bit in NVT
– Issue an EOI command

• Depending on the interrupt response, the ENDC can:
– End the interrupt process
– Increment per the priority backlog counter in NVT
– Set per the priority pending bit in NVT
– Escalate
– Issue an EOI command

In addition to EQ triggers processing, P3VC processes end-of-interrupts. EOI comes as a CI load operation.
When EOI is received by either the event state buffer cache (ESBC) or the ENDC, the corresponding state
bits are updated according to the PQ state bit state machine definition.

17.3.3 P3 Presentation Controller (P3PC)

The presentation controller unit holds state information regarding which software entity is dispatched on each
processor thread. The P3PC is responsible for responding to the fabric bus interrupt histogram, poll, and
assign commands and participating in selecting the best thread for the interrupt. The P3PC drives exception
wires connected to the individual processor threads. It also maintains the logic server structure cache which
contains backlog counters and virtual processor control and pending bits.

The P3PC main features/functions are:

• CAM pipeline with 96 thread contexts (24 cores × 4 threads)

• Local load/store machines (eight load and six store per type)

• LSI logic for creating and handling LSI interrupts

End of interrupt

Level signaled interrupt

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Interrupt Controller

Page 263 of 508

• Notification virtual descriptor cache (NVC) for caching notification virtual target entries (NVTs) and pro-
cessing NVT requests from the CAM pipeline

– Single snoop bus 3 used for interrupt commands

– EBB, operating system, and hypervisor-level interrupt line per thread

– Works on NVT data

– Can own up to 16 blocks and the associated NVTs

– Push-pull mode selectable on a per block basis for the NVC

The major subunits of P3PC are:

• Thread context (TCTXT) Pipe: Contains interrupt-related processor physical thread information (thread
context) used for routing and processor bus responses. Has a ‘direct’ fabric bus interface through the
P3CQ and drives exception wires to each processor thread.

• Notification virtual descriptor cache (NVC): Responsible for caching notification virtual descriptor entries
used for escalation, backlog, and redistribution processing.

• AIB interface (Rx/Tx): Primary communication interface between P3PC and P3CQ/VC for register, CAM
pipe, and NVC cache access.

• LSI: Responsible for handling level-sensitive interrupts from the pervasive. The LSI contains a direct inter-
face with TP.

P3PC has three exception signals that it sends or presents to each processor thread:

• Hypervisor exception

• Operating system exception

• Event based branch (EBB)

The P3PC also sends the Msgsend signal to each processor thread. There are a total of 384 interrupt wires
on a POWER9 chip (24 cores × 4 threads/core × 4 exception wires).

The msgsend exception line is only one pulse wide, the other exception lines are held HIGH until an interrupt
acknowledge command is received from the core.

Figure 17-3. Exception Wire Activation Example

User’s Manual
OpenPOWER
POWER9 Processor

Interrupt Controller

Page 264 of 508
Version 2.1

10 October 2019

In addition to the processor bus interrupt commands: histogram, poll, and assign, the interrupts can also be
triggered by a level sensitive interrupt (LSI) event trigger from the pervasive unit. The LSI trigger can be
communicated to the presentation engine via the LSI hardwire or a CI store operation to the LSI notification
register inside the presentation engine.

17.4 Fabric Bus Interrupt Command

A P3PC receives interrupt fabric bus commands (histogram, poll, and assign) and generates responses
based on the contents of the CAM lines and other state information in the unit. Figure 17-5 through
Figure 17-7 on page 265 show the fabric bus command and response sequences for the P3PC.

Figure 17-4. LSI Activation Example

Figure 17-5. Transaction Diagram for Histogram, Poll, and Assign (Part 1 of 3)

The notification to the best server is done in three steps:

• A P3VC issues a Histogram command to all P3PC in the system
or group.

• a1 Each P3PC sends a pResp (partial response) containing the
largest age field of its matching servers.

• B The processor bus returns the cResp (combined response)
indicating the largest age fields among all P3PCs.
Based on that, P3VC issues a Poll command supplying the
received age field as a parameter.

• b1 Each P3PC sends a pResp indicating a match (including age).

• b2 The processor bus returns a cResp, which indicates if note 1
or multiple P3PC reported a match in pResp and the cResp
indicates one match. Then P3PC notifies its attached threads
(see part 3).

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Interrupt Controller

Page 265 of 508

Figure 17-6. Transaction Diagram for Histogram, Poll, and Assign (Part 2 of 3)

Figure 17-7. Transaction Diagram for Histogram, Poll, and Assign (Part 3 of 3)

• C If the cResp indicates multiple matches, the P3VC issues an
Assign command to a specific P3PC.
If the cResp indicates no match, the P3VC repeats the whole
process (starting with the histogram).

• c1 The addressed P3PC indicates in the pResp if there is a
match.

• c2 If a P3PC reported a match in pResp, it will on arrival of the
cResp notify its attached threads (see part 3).

• c3 If the cResp indicates no match, P3VC executes its escalation
process.

• b2/c2 Either if the poll is already indicating that only one P3PC has a
match or after the dedicated poll with match, the thread
attached to the CAM line is notified via assert of the dedicated
interrupt signal.

• D As an acknowledgement, the first-level interrupt handler
performs an MMIO read of the interrupt management area (4
CAM lines, that contribute to the interrupt signal).

• d2 Upon arrival of the cResp in the data phase is the the
dedicated exception line de-asserted and the interrupt
management area information (indicating the server to be
interrupted) is transferred.

• E End of interrupt operation.

User’s Manual
OpenPOWER
POWER9 Processor

Interrupt Controller

Page 266 of 508
Version 2.1

10 October 2019

17.5 Interrupt Processing Flow Examples

Figure 17-8 through Figure 17-11 on page 269 depict interrupt processing examples. Figure 17-8,
Figure 17-9 on page 267, and Figure 17-10 on page 268 show trigger operations and reset for individual
interrupt triggers. Figure 17-11 shows event queue enqueues and presentation to the cores common to all
Figures 17-8 through 17-10.

17.5.1 Inter-Processor Interrupts Example

Figure 17-8 is an example of the inter-processor interrupt (IPI).

Figure 17-8. Inter-Processor Interrupts (IPI) Example

Optional - s tate cacheable

Optional - s tate cacheable

Can be omitted if full state "cache" is implemented
(recommended implementation to avoid complexity of EO I ci_read operation)

Thrd0M em oryThrd1 P3VC

P3VC / P3PC / Thread Processing

c i_wr_w (chp)
N otify trigger
wr data is int #

R ead of s tate bits
for new requestc l_rd_nc (chp)

W B of cached s tate
c l_pr_w (grp)

c l_pr_w (grp)

R ead s tate bits
C hip scopec l_rd_nc (chp)

c i_rd (chp/sys)
EOI + Q bit check

Q bit check

S tate bit update
- Q bit set -> Q reset
- Q not set -> P reset

R eturn Q s tate
before update

"EO I" w/ SW reissue

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Interrupt Controller

Page 267 of 508

17.5.2 Hardware Interrupt with State Bit Check in P3VC

Figure 17-9 is an example of a hardware interrupt with the State bit check in P3VC.

Figure 17-9. Hardware P3SC Interrupt Trigger and Completion (State Bit Check in VC)

Optional - state cacheable

Optional - state cacheable

Can be omitted if full state "cache" is implemented
(recommended implementation to avoid complexity of EOI ci_read operation)

P3SCMemoryThread P3VC

ci_wr_w (chp)
Notify trigger
wr data is int #

Read of state bits
for new requestcl_rd_nc (chp)

W B of cached state
cl_pr_w (grp)

cl_pr_w (grp)

Read state bits
Chip scopecl_rd_nc (chp)

ci_rd (chp/sys)
EOI + Q bit check

Q bit check

State bit update
- Q bit set -> Q reset
- Q not set -> P reset

Return Q state
before update

"EOI" w/ SW reissue

P3VC / P3PC / Thread Processing

User’s Manual
OpenPOWER
POWER9 Processor

Interrupt Controller

Page 268 of 508
Version 2.1

10 October 2019

17.5.3 Hardware Interrupt with State Bit Check in P3SC

Figure 17-10 is an example of a hardware P3SC interrupt trigger and completion.

Figure 17-10. Hardware P3SC Interrupt Trigger and Completion (State Bit Check in SC)

Optional - state bits cacheable

Optional - state bits cacheable
State bit set

cl_pr_w (grp)

State bit update
- Q bit set -> Q reset
- Q not set -> P reset

cl_pr_w (grp)

Read state bits
Chip scopecl_rd_nc (chp)

Can be omitted if full state "cache" is implemented
(recommended implementation to avoid complexity of EOI ci_read operation)

ci_rd (chp/sys)

EOI + Q bit check "EOI" w/ SW reissue

P3SCMemoryThread P3VC

Q bit check

Read state bits
cl_rd_nc (chp)

ci_wr_w (chp)
Notify trigger
wr data is int #

Return Q state
before update

P3VC / P3PC / Thread Processing

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Interrupt Controller

Page 269 of 508

17.5.4 P3VC and P3PC Basic Interrupt Handling

Figure 17-11 is an example of P3VC and P3PC basic interrupt handling.

17.5.5 Message Send (Msgsend) and Wakeup

The interrupt controller logic supports the internal Fabric bus msgsend command. The P3CQ snoops the
SMP Fabric for msgsend commands. If it determines an address match, it asserts lpc_ack and passes the
command on to the thread context (TCTXT) portion of the P3PC. This logic then decodes the appropriate
threads and activates a wire to the appropriate threads of the POWER9 chip.

The interrupt controller logic does not support the wakeup function.

Figure 17-11. Basic Interrupt Handling

Cacheable + Prefetchable

Optional – poll m ulti-h it

c i_pr_w (grp/sys)

EQE post

c l_pr_w (grp/sys)

EQ pointer update
R ead + inc

H is t (sys)

Poll (sys)

Ass ign (sys)

Background cache prefetch possible without latency impact
Can be omitted if full state "cache" is implemented
(recommended implementation to avoid complexity of EO I ci_read operation)
Requirements changing at run-time for each Interrupt

c i_rd (chp)

Interrupt line
Int ack
from core to P3PC

Only needed
if multiple
Servers on
D ifferent chips

P3VCM em oryThread P3PC

R ead XIVE if not in
cachec l_rd_nc (chp)

User’s Manual
OpenPOWER
POWER9 Processor

Interrupt Controller

Page 270 of 508
Version 2.1

10 October 2019

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

PCI Express Controller

Page 271 of 508

18. PCI Express Controller

The PCIe Express controller (PEC) provides PCIe Gen4 root-complex ports to connect to an adapter slot or
as a link to a PCIe switch. It acts as a PCIe host bridge (PHB) from the internal, coherent SMP interconnect
(also known as the processor bus) to the PCIe I/O.

18.1 Overview

The PEC is composed of six major building blocks:

• Processor bus common queue (PBCQ) logic

• Processor bus to AIB interface (PBAIB)

• Express transaction unit (ETU)

• PCIe ASIC building blocks (PCIASIC)

• Physical coding sublayer (PCS)

• Physical media access (PMA)

Figure 18-1 shows an overview of the major blocks and defined interfaces.

Figure 18-1. High-Level Block Diagram

PHY clocks (multiple)

Nest clock

PCI clock

SMP Interconnect

Common Queues (PBCQ)

Asynchronous Crossing (PBAIB)

PCI Host Bridge (ETU)
5 macros: RSB/RXE_TCE/RXE_MRG/RXE_ARB/TXE

ASIC Stack (PCIe)
_PLB/PTL/TLDLP/CFG

Physical Coding Sublayer (PC)

Physical Media Attachment Layer (PMA)
Hard IP

Chip C4s

PIPE Bus
PIPE TxPIPE Rx

BLIF Bus
BLIF TxBLIF Rx

AIB Bus
AIB TxAIB Rx

OCF

1 - 16 Byte Data Ramp4 RCmd/PResp/CResp1 Command Ramp

ASIC interface bus

User’s Manual
OpenPOWER
POWER9 Processor

PCI Express Controller

Page 272 of 508
Version 2.1

10 October 2019

18.1.1 Processor Bus Common Queues

The processor bus common queue (PBCQ) logic is responsible for managing the transactions on the
coherent processor/cache fabric, the SMP interconnect.

Key features of the PBCQ are as follows:

• CAPI support

• Tunnelled operations

– Atomics

– AS_Notify support

• Inbound DMA capability

– Supports 64 DMA read transactions (128 on PEC0) on the SMP interconnect. DMA read transactions
are sourced from non-posted read transactions from the PCIe.

– Supports 32 DMA write transactions on the SMP interconnect. DMA write transactions are sourced
from write transactions posted from the PCIe.

– Peer-to-peer write capability.

• Tunnelled operations

– Atomics: Atomic transactions are sourced from posted write transactions on the PCIe and, if neces-
sary, return data back to the PCIe using an MMIO store.

– AS_Notify: Quick method to communicate with the core.

– CAPI support.

• Outbound MMIO capability

– Two Base Address Registers (BARs) for external MMIO address ranges

– 16 MMIO stores

– 16 MMIO loads

• The ability to share resources with more than one PHB stack

18.1.2 Processor Bus AIB Interface

The PBAIB logic provides an asynchronous boundary crossing between the PBCQ and the AIB 2.0 interface.

Coherent accelerator processor interface

Direct memory attach

Memory-mapped input/output

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

PCI Express Controller

Page 273 of 508

18.1.3 Express Transaction Unit

The ETU is responsible for address translation, interrupt management, and error isolation.

Key features of the ETU (×8 or ×4 lane versions) are as follows:

• 512 KB (256 KB) partitionable endpoints

• 1 KB (512 KB) 4-way set-associative translation cache

• 4K (2K) MSI interrupts supported

• Eight LSI interrupts supported

18.1.4 PCIe ASIC Intellectual Property

The PCIe ASIC building block is composed of the packet buffer layer (PBL), the packet transaction layer
(PTL), the transaction and data link layer (TLDLP), and the PCIe Configuration Register core (CFG). These
blocks implement the PCIe transaction and data link layers.

18.1.5 Physical Coding Sublayer

The PCS manages the low-level networking protocol and signaling between the physical media and the
higher-level link protocol layer across the PIPE interface. The 16 lanes of the PCS can be bifurcated into two
×8 lanes or trifurcated into one ×8 and two ×4 lanes.

18.1.6 Physical Media Access

The PMA provides the SERDES and analog protocols necessary to connect to the chip C4s. It also provides
the PLLs used to drive the PCI clock grid.

18.2 POWER9 Configurations

The POWER9 chip has three PCIe controllers of 16 lanes each for a total of 48 lanes of PCIe Gen4 I/O. The
three PECs can support 4 - 6 PCIe stacks and can be configured as follows:

• PEC0: One ×16 lanes

• PEC1: Two ×8 lanes (bifurcation)

• PEC2: One ×16 lanes, two ×8 lanes (bifurcation), or one ×8 and two ×4 lanes (trifurcation)

Each grouping of lanes is called a stack and each stack has dedicated ETU and PCIe blocks. Each set of 16
lanes have only one PBAIB and PBCQ pair to interface to the SMP interconnect. The resources of the PBCQ
are shared between the stacks that it services.

The logic in the nest clock domain is designed to run at the frequency of 2 GHz. The PCI clock domain runs at
a frequency asynchronous to the nest and also at 2 GHz, with some logic running slower based on the PCI
link training(1 GHz Gen3, 500 MHz Gen 2, 250 MHz Gen 1).

Within a stack grouping, the lanes can be swapped to facilitate board wiring.

Serializer/Deserializer

Phase-locked loop

User’s Manual
OpenPOWER
POWER9 Processor

PCI Express Controller

Page 274 of 508
Version 2.1

10 October 2019

18.3 Reliability, availability, and serviceability (RAS)

18.3.1 Bit-Level RAS

• End-to-end data protection from the processor bus ECC to the PCI packet LCRC/ECRC

• Arrays have SEC/DED ECC

• Register files have parity (some have SEC/DED)

• Support all processor bus parity/ECC

• Major control registers have parity protection

18.3.2 Enhanced Error Handling (EEH)

If an error can be isolated to an endpoint, this endpoint is blocked from introducing new transactions until the
error can be resolved.

Figure 18-2. POWER9 PCIe High-Level Diagram

IOP0 IOP1 IOP2

PCIe

16
8
8

−
8
8

−
−
8

16 8 8 16

PCS

PMA

PCS

PMA

PCS

PMA

TLDLP TLDLPTLDLP TLDLPTLDLPTLDLP

PTL PTLPTL PTLPTLPTL

PBL PBLPBL PBLPBLPBL

PEC0 PEC1 PEC2

PIPE

DLIF

TLIF

BLIF BLIFBLIF BLIF BLIF BLIF

ETU×16 ETU×16ETU×8ETU×8 ETU×8 ETU×8
(PHB1)(PHB0) (PHB2) (PHB3) (PHB4) (PHB5)

PBCQ PBCQ PBCQ

PBAIB PBAIB PBAIB

AIB AIBAIBAIBAIBAIB

SMP Interconnect

O
C

F

O
C

F

O
C

F

O
C

F

O
C

F

C
A

P
P

0

C
A

P
P

1

Error correcting code

Single-error correction, double-error detection

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

PCI Express Controller

Page 275 of 508

18.3.3 Freeze Mode

An error that requires a reset of a stack enters freeze mode. Freeze mode blocks all new transactions to and
from the stack. Outstanding operations on the SMP interconnect run to completion, marking data as bad if
required. Reset and initialization can be performed on the stack without a checkstop of the chip. A freeze on
a stack does not affect the actions of another stack even if they share a PEC.

User’s Manual
OpenPOWER
POWER9 Processor

PCI Express Controller

Page 276 of 508
Version 2.1

10 October 2019

User’s Manual
OpenPOWER
POWER9 Processor

Elastic Differential Interface Plus

Page 277 of 508
Version 2.1

10 October 2019

19. Elastic Differential Interface Plus

This section describes the Elastic Differential Interface Plus at 16 Gbps. Figure 19-1 shows a system context-
level diagram of a general bus system that connects two chips “A” and “B” using two uni-directional buses.
Also shown is a separation between the core functions of the chip, the bus interface protocol layer, and the
bus physical layer. This section gives an overview of the physical layer and on-chip initialization provided by
the POWER9 processor.

The POWER9 Elastic Differential Interface Plus supports the following types of driver and receivers:

• X-bus interface: high-speed differential at 16 Gbps for chip-to-chip interconnect

Figure 19-1. System-Level I/O Interface

Physical
Layer
Driver

Physical
Layer
Driver

Physical
Layer

Receiver

Physical
Layer

Receiver

Chip/ModuleChip/Module

System-Level
Initialization/
Test/Clock

Control
Logic/Microcode

On-Chip
Clock Gen

(PLL)

On-Chip
Clock Gen

(PLL)

On-Chip
Initialization/
Test/Control

Logic/
Microcode

Protocol
Layer
Logic

Protocol
Layer
Logic

Chip-to-Chip Bus

Initialization/Control/Reconfiguration/Status Signals Initialization/Control/Reconfiguration/Status Signals

Reference Clock
(No Source-Synchronous Buses)

Chip-to-Chip
Module-to-Module

Board Wiring/Cabling

On-Chip WiringOn-Chip Wiring

A-to-B
Transmitted

Signals

A-to-B
Received
Signals

n Data Signals

(Differential Pairs)

n bits × m data
beats wide

n bits × m data
beats wideClock Signals

(Source-Synchronous Buses)

(Differential Pairs)

B-to-A
Received
Signals

n bits × m data
beats wide

n bits × m data
beats wide

B-to-A
Transmitted

Signals

n Data Signals

(Differential Pairs)

Clock Signals
(Source-Synchronous Buses)

(Differential Pairs)
On-Chip

Initialization/
Test/Control

Logic/
Microcode

User’s Manual
OpenPOWER
POWER9 Processor

Elastic Differential Interface Plus

Page 278 of 508
Version 2.1

10 October 2019

19.1 Elastic Interface Features

The supported features are summarized in Table 19-1. Requirements are defined relative to the operational-
mode definitions.

Initialization mode specifications are as follows:

• Protocols: 5-stage custom training states

• Frame alignment: Within clock group lane alignment only via initialization deskew

• Frequency: 16 Gbps

• Software: FSP1 service processor via GFW

• Spare-lane detect: Data failover (two signals total per bus/port)

• Workaround methods: Mostly-to-all initialization steps are software controllable

• Supported analog calibration methods: See Section 19.2 Driver Features on page 281 and Section 19.3
Receiver Features on page 281.

In addition to the initialization specifications, the functional mode specifications are as follows:

• Frequency: 16 Gbps

• Serialization ratio: 8:1

• Scrambling: Full scrambling is enabled during initialization

• Dynamic lane repair during run-time

Power-saving mode specifications are as follows:

• Power-saving mode is supported (light power down with fast wakeup).

• Frequencies: No special frequencies are required.

• Software: FSP1 service processor or host code via GFW; software maintains system status of spares and
modes.

• Diagnostic/unused and spare lane logic: Lane control via clock off at LCB, and/or software controlled.

• IDDQ following MPG design rules.

• Analog control: Supported driver amplitudes and receiver channel-level detection

Table 19-1. Interface Operational Mode Definitions

Mode Name Definition

Initialization The act of aligning and locking the data eye and bit lanes plus additional deltas relative to re-alignment and
re-locking.

Functional Passing workload data and maintaining signal integrity post-initialization.

Power Saving All related capabilities for minimizing unused and idle lane power consumption.

Test Capabilities related to hardware manufacturability.

Diagnostic Bringup lab characterization of interface performance capabilities.

Global firmware

User’s Manual
OpenPOWER
POWER9 Processor

Elastic Differential Interface Plus

Page 279 of 508
Version 2.1

10 October 2019

Test mode specifications are as follows:

• Frequency: 16 Gbps subject to PLL range limitations and a slow test frequency of 200 MHz.

• LBIST: AC and DC.

• Hardware-BIST: Built-in and independent TX and RX PHYBIST modes (see diagnostics list).

• PHYBIST: Real-time pattern generation test based on reused logic at product frequencies + margin.

• Wiretest: PHYs require support of 1149.x features for ASICs commonality. Also quick power-on diagnos-
tics are supported through initialization.

• LSSD: Scan testing per MPG methodology.

• Software and test controls.

Diagnostics mode specifications are as follows:

• TX and RX internal PHYBIST

• Data sample observability

• SCOM control of all hardware functionality

• Per-bit receiver/sampler offset margining

• Phase rotator values read/write/bias

• Programmable IREF

• Programmable phase detector loop sensitivity

• Programmable DFE parameter loop sensitivity

• Analog net sniffer

• Per-bit power down

• Per-bit quiesce

• Scramble disable

• TX amplitude adjustment

Phase-locked loop

Logic built-in self test

Application-specific integrated circuit

Scan communications

Decision feedback equalizer

User’s Manual
OpenPOWER
POWER9 Processor

Elastic Differential Interface Plus

Page 280 of 508
Version 2.1

10 October 2019

Figure 19-2. Top-Level Interface Block Diagram

Processor
CNTL

or
Memory
Interface

Core
Logic

Augment
Scramble

Test
Repair

Dataflow
Controls

Driver “Thin” Physical Layer
(Custom Analog Logic)

Bus Wiring

Receiver “Thick” Physical LayerReceiver “Thin” Physical Layer
(Custom Analog/Digital) (RLM/Synthesized Logic)

TX PLL
Clock

Distribution

TX
FIFO

Differential
Drivers with FFE

Data
N Lanes

of 4:1
Serializer

Clock 2.4 GHz

Driver “Thick” Physical Layer
(RLM/Synthesized Logic)

TX DATA 0 × m beats

TX DATA 1 × m beats

TX DATA n-1 × m beats Lane n-1 × m beats

Lane 1 × m beats

Lane 0 × m beats

Lane n-1 × m beats

Lane 1 × m beats

Lane 0 × m beats

n Differential pairs
X Bus: 15 + 1 spare + 1 cal

Differential
Drivers with FFE

1 Differential pair
X Bus: 1/8 data-rate clock

X Bus: 17 × 8

X Bus: 2000 MHz load clock

X Bus: 8000 MHz unload drive clock

Sampler
Deserializer

and
Phase

Detectors/
Rotators

Cleanup
PLL/DLL

Clock
Generator

FIFO/
Bitlock

Deskew
Detect

Descramble
and

Repair

Processor
CNTL

or
Memory
Interface

Core
Logic

PLL/Mesh
Clock

Generator

Differential
Receivers

Differential
Receivers

Differential
Data
Input
Signals

Differential
Clock
Input
Signal

n differential pairs
X Bus: 15 + 1 spare + 1 cal

Bus Wiring

200 MHz Ref Clk

X Bus: 8000 MHz

Lane 0 beats (0-[m-1])

Lane 1 beats (0-[m-1])

Lane 2 beats (0-[m-1])

Lane (n-1) beats (0-[m-1])

Lane 0 clock

Lane 1 clock

Lane 2 clock

Lane (n-1) clock

Lane 0 beats (0-[m-1])

Lane 1 beats (0-[m-1])

Lane 2 beats (0-[m-1])

Lane (n-1) beats (0-[m-1])

X Bus: 8000 MHzX Bus: 8000 MHz

X Bus: 17 × 8 X Bus: 15 lanes

n-sp lanes
m beats wide

X Bus: 1/8 data-rate clock

Note: For the X Bus: m beats = 8

User’s Manual
OpenPOWER
POWER9 Processor

Elastic Differential Interface Plus

Page 281 of 508
Version 2.1

10 October 2019

19.2 Driver Features

The driver features are summarized as follows:

• 16 Gbps with 8:1 serializer.

• Full-rate SST driver.

• Selectable 8:1 serializer with pre-cursor FFE.

• Rpre up to 1.30.

• Selectable AC boost: analog post-cursor FFE.

• Set and forget impedance calibrator.

• Drive amplitude reduction (margining) up to 50%. For characterization only, not mission mode.

• BIST error detector for at-speed loopback testing.

• Shared test pin mode. Differential driver output only.

• Time domain reflectometer (TDR).

19.3 Receiver Features

The receiver features are summarized as follows:

• Rx clock macro with PLL

– Same I/O specifications as the POWER8 processor: 2.0 - 2.4 GHz bus clock range

– Programmable feedback divider for POWER8 Memory Buffer backward compatibility

• Rx data mac

– Each data bit with a single data path (single bank) using shadow lane protocol for calibration

– Long-tail equalizer (LTE) for improved eye margins on lossiest channels

– Continuous time linear equalizer (CTLE) with 12 dB of peaking range, 6 dB of gain range

– CTLE applies common mode (differential zero) for DAC calibrations

– 12-Tap DFE with current integrating summer. Modes: no-DFE, DFE1, DFE12)

– 16 Gbps with 1:8 deserialization mode

– Cross coupled PRBS streams for RX BIST testing

There are also some auxiliary test and characterization features, and individual tuning aspects of the DFE
control loop. All of these features have dependencies on external logic blocks.

Feed-forward equalizer

built-in self-test

User’s Manual
OpenPOWER
POWER9 Processor

Elastic Differential Interface Plus

Page 282 of 508
Version 2.1

10 October 2019

19.4 PLL Features

The LC PLL takes a reference clock (60 MHz - 1 GHz; 200 MHz POR) and produces a half-rate clock
(8.0 GHz or 4.8 GHz) for both the transmit and receive slices. The PLL architecture is based on standard
Torrent /HSS topology with PFD and charge pump. In the PLL, two full-rate LC VCOs are used for tuning the
16 GHz mode with a range of 14.4 - 17.6 GHz. Also included is a ring VCO that is used for testing and
schmooing (4.3 GHz - 8.6 GHZ). The output frequency range is ½ the VCO range (I-only) phase. The LC
VCO implements a band-switched feature to achieve low gain across a wide range. The half-rate clock is
generated by a divide-by-2 I/Q clock generation circuit. The VCO bands are selected using a logic algorithm
run during initialization that uses the internal FMIN, FMAX, and CVHOLD bits to place the VCO into its
minimum, maximum, and central frequencies for each band, respectively.

The mode bit selects the ring VCO and loop filter components so that the PLL can attempt to compensate for
the noise of various applications.

Figure 19-3. Block Diagram of PLL

High-speed serial

Phase-frequency detector

Voltage-controlled oscillator

User’s Manual
OpenPOWER
POWER9 Processor

OpenPOWER Interface at 25.78125 Gbps

Page 283 of 508
Version 2.1

10 October 2019

20. OpenPOWER Interface at 25.78125 Gbps

Figure 19-2 on page 280 shows a system context-level diagram of a general bus system that connects two
chips “A” and “B” with two uni-directional buses. Also shown is a separation between the core functions of the
chip, the bus interface protocol layer, and the bus physical layer. This section gives an overview of the phys-
ical layer and on-chip initialization provided by the POWER9 processor.

The POWER9 OpenPOWER interface supports the following types of driver and receivers:

• SMP interconnect

• NVLink 1.0 and NVLink 2.0

• SMP A-bus link

• OpenCAPI is available over the 25G Link (SMP A-bus link). There are 32 lanes available, each supporting
a 25 Gbps transfer rate.

20.1 Interface Features

The supported features as summarized in Table 19-1 on page 278. Requirements are defined relative to the
operational-mode definitions.

Initialization mode specifications are as follows:

• Protocols: 5-stage custom training states

• Frequencies: 25.78125 Gbps, 19.2 Gbps, half rates using 2:1 gear ratio

• Software:
– FSP1 service processor via Global firmware (GFW)
– MMIO

• Workaround methods: mostly-to-all initialization steps are software controllable

• Supported analog calibration methods: See Section 20.2 Driver Features on page 284 and Section 20.3
Receiver Features on page 285.

In addition to the initialization specifications, the functional-mode specifications are as follows:

• Frequencies: 25.78125 Gbps, 19.2 Gbps, half rates using 2:1 gear ratio

• Serialization ratios: 16:1

• Scrambling: Full scrambling is enabled during initialization.

Power-saving mode specifications are as follows:

• Frequencies: No special frequencies are required. Also see prior bullet.

• Ability to power down unused bricks to consume 10% of active power.

• Software:
– FSP1 service processor or host code via GFW; software maintains system status of spares and

modes.
– MMIO

User’s Manual
OpenPOWER
POWER9 Processor

OpenPOWER Interface at 25.78125 Gbps

Page 284 of 508
Version 2.1

10 October 2019

Test mode specifications are as follows:

• Frequencies: 25.78125 Gbps, 19.2 Gbps, half rates

• LBIST: AC and DC

• Hardware-BIST: Built-in and independent TX and RX PHYBIST modes (See diagnostics mode list)

• PHYBIST: Real-time pattern generation test based on reused logic at product frequencies + margin

• Wiretest: PHYs require support of 1149.x features for ASICs commonality. Also quick power-on diagnos-
tics are supported through initialization.

• LSSD: Scan testing per MPG methodology

• Software and test controls

Diagnostics mode specifications are as follows:

• TX and RX internal PHYBIST

• Data sample observability

• RX FIFO pointer collision observability

• SCOM control of all hardware functionality

• MMIO

• Per-bit receiver/sampler offset margining

• Phase rotator values read/write/bias

• Programmable Iref

• Programmable phase detector loop sensitivity

• Programmable DFE parameter loop sensitivity

• Analog net sniffer

• Per-bit power down

• Per-bit quiesce

• Scramble disable. No scrambling in 25 Gbit PHY

• TX amplitude adjustment

20.2 Driver Features

Driver features are as follows:

• 25.78125 Gbps with 16:1 serializer.

• 19.2 Gbps with 16:1 serializer.

• Half-rate series source terminated (SST) with precursor FFE, amplitude margin function, impedance cali-
bration, and postcursor FFE for IOO driver.

• Selectable AC boost: precursor FFE.

• Set and forget impedance calibrator.

• Drive amplitude reduction (margining) up to 50%. For characterization only, not mission mode.

• Full TX power-down mode when port is not required.

• Individual TX lane power-down mode when lanes are not required.

Physical layer

User’s Manual
OpenPOWER
POWER9 Processor

OpenPOWER Interface at 25.78125 Gbps

Page 285 of 508
Version 2.1

10 October 2019

• BIST error detector for at speed loopback testing.

• Shared test pin mode. Differential driver output only.

• Time domain reflectometer.

20.3 Receiver Features

Receiver features are as follows:

• CTLE peaking

• Gain calibration

• 1-tap speculative DFE

• Local offset calibration compatible with floating body devices

• Common mode calibration

• Recovered clock
– NVLink: 1/16 baud rate CDR clock
– POWER9 optics: 1/16 baud rate CDR clock
– Loop bandwidth greater than 3 MHz for good low-frequency jitter correlation with good crosstalk

jitter rejection
– Tolerates at least 100 ppm drift, 100 ppm fixed-frequency offset, and 1000 ppm spread-spectrum

support

• SCOM support

• JTAG wire test support

• Eye metrics available on spare lanes with full vertical and horizontal eye scan capability

• Full RX power-down mode when group is not needed

• Individual RX lane power-down mode when lanes are not needed

• CDR must run continuously

• Other parameters are calibrated every 50 ms

There are also some auxiliary test and characterization features, and individual tuning aspects of the DFE
control loop. All of these features have dependencies on external logic blocks that are described in the
detailed design workbook.

User’s Manual
OpenPOWER
POWER9 Processor

OpenPOWER Interface at 25.78125 Gbps

Page 286 of 508
Version 2.1

10 October 2019

20.4 PLL Features

The dual LC PLL takes a reference clock between 60 MHz - 1 GHz ; with the plan-of-record being 133 MHz .
The dual LC PLL produces a half-rate clock of 9.6 GHz or 12.890625 GHz for both the transmit and receive
slices. The PLL architecture is based on standard topology with PFD, charge pump, and loop filter. In the
PLL, dual full-rate LC VCOs are used for two tuning ranges, the 25.78125 GHz mode with a 28.36 -
23.20 GHz range and a 19.6 GHz mode with a 21.12 - 17.28 GHz range. A ring VCO is also included for
testing and schmooing. The output frequency range is ½ the VCO range (I only) phase at the ranges of
14.18 - 11.60 or 10.56 - 8.64 GHz. The LC VCO implements a band-switched feature to achieve low gain
across a wide range. The half-rate clock is generated by a divide-by-two clock generation circuit. The VCO
bands are selected using a logic algorithm that is run during initialization. The algorithm uses the internal cali-
bration to obtain the optimum VCO band.

The mode bit selects the ring VCO and loop filter components so that the PLL can attempt to compensate for
the noise of various applications. (See Figure 19-3 Block Diagram of PLL on page 282.)

User’s Manual
OpenPOWER
POWER9 Processor

DDR4 Interfaces

Page 287 of 508
Version 2.1

10 October 2019

21. DDR4 Interfaces

21.1 Overview

The POWER9 processor incorporates DDR PHY memory interface physical units capable of supporting
several memory topologies. It is optimized for DDR4 memories as defined by the JEDEC, and incorporates all
of the required features and many optional ones.

At a high level the DDR unit is responsible for:

• Transporting and mapping command, control, address, and data signals presented from the embedded
memory controller.

• Providing all necessary configuration registers, state machines, control logic, and status monitoring to
execute all required DDR calibration functions (that is, read calibration, fine and coarse write leveling, ZQ
calibration, and so on).

• Providing elastic interface style FIFOs (PHYs) for purposes of sampling, de-skewing, bit aligning incom-
ing data, buffering, and launching outgoing data. These FIFOs also assist in crossing clock domains.

Each DDR unit is self-contained and consists of four independent ports that connect to DIMM slots. This unit
is replicated twice on the POWER9 processor to provide a maximum of eight ports.

The DDR PHY supports the following memory devices on each port.

• DDR4 RDIMMs and DDR4 LRDIMMs, including 3D stacks up to eight high

• DRAM data widths of ×4, ×8

• DRAM densities of 4 Gb, 8 Gb, 12 Gb, 16 Gb

• One or two DIMMs per port

• DRAM speeds of 1866, 2133, 2400, and 2667 Mbps

To accommodate DRAM timing variability, and POWER9 process, voltage, and temperature corners, the
DDR PHY implements the following calibration sequences:

• Write leveling

• DQS alignment

• Read clock alignment

• Read centering

• Write centering

• Coarse write alignment

• Coarse read alignment

• Tx output impedance calibration

• Read voltage reference (VREF) calibration

• Write voltage reference (VREF) calibration

To accommodate voltage and temperature drifts, DQS alignment, read clock alignment, and read centering
can be run periodically after the initial calibrations.

Double data rate

Joint Electron Device Engineering Council

First-in, first-out

Dual in-line memory module

Registered dual in-line memory module

Load-reduced dual in-line memory module

User’s Manual
OpenPOWER
POWER9 Processor

DDR4 Interfaces

Page 288 of 508
Version 2.1

10 October 2019

The DDR PHY on the POWER9 processor supports two ranks per DIMM and rank-switching in a minimum of
three memory clock cycles. The DDR PHY maximum read latency is eight memory cycles.

To support DDR4 JEDEC specifications above speeds of 2400 Mbps, the following features are supported:

• Programmable preamble

• CRC support

• Rx Vref training

Other features include:

• Per buffer addressability mode (PBA)

• Per DRAM addressability mode (PDA)

• DDR4 maximum power-saving mode

• Per-bit tuning on all address, command, control, clock, data, and strobe signals

• Programmable output impedance and slew rates

• Rank grouping feature

• Extensive RAS support

• Power-down modes

• Custom calibration modes to support custom calibration patterns

21.2 Mainline Operation

The DDR unit must support all mainline functions initiated by the POWER9 memory controller. This includes:

• CKE controls for powering down and powering up ranks and entering and exiting self-refresh mode

• Bank activate commands

• Burst length 8 and burst chop 4 read and write operations

• Periodic refreshes

The memory controller (MC) ensures proper spacing and timing of all command, control, data signals, and
adherence to the JEDEC specifications. The primary responsibility of the DDR unit is to propagate all
command, address, data, and control signals from the MC unit to and from the DRAM devices. Communica-
tion between the MBA and DDR units is done by using an internal bus. The command, control, and address
bits flow through a unidirectional ADR43 unit in each DDR PHY port that can drive up to 43 interface pins.
Data is transceived through four bidirectional DP16 units and one DP8 unit in each DDR PHY port that can
accommodate 72 bits (9 bytes) per port.

Memory buffer asynchronous

User’s Manual
OpenPOWER
POWER9 Processor

PCIe Interface

Page 289 of 508
Version 2.1

10 October 2019

22. PCIe Interface

22.1 Overview

The PCIe interface macro, IOP_X844_TOP, contains the physical coding sublayer (PCS) and physical media
attach (PMA) hardware layers for implementing the PCI Express GEN4 standard.

The PCS layer is responsible for interfacing the transaction and data link layers with the physical layer. This
layer has two main sections. The first is a transmit section that prepares outgoing information passed from
the data link layer for transmission by the physical media layer. The other main section is a receiver section
that identifies and prepares information received by the physical media layer for consumption by the data link
layer.

The PMA layer is responsible for serializing data provided by the PCS layer and transmitting on to the link per
PCIe electrical specifications. It is also responsible for receiving serial data from the link and provided deseri-
alized data to the PCS.

The IOP_X844_TOP supports a number of PCI Express Gen4 link options. These link options include 1 - 16
lane link, 2 - 8 lane links, 1 - 8 lane link, and 2 - 4 lane links. All link options support 2.5 GTps (GEN1),
5.0 GTps (GEN2), 8.0 GTps (GEN3) and 16.0 GTps (GEN4) rates of data transfer.

Figure 22-1. PCI Express Functional Layers Diagram

Transaction Layer

Data Link Layer

Physical Layer

Physical Coding Sublayer (PCS)

Physical Media Attach Layer (PMA)

TX RX

Peripheral component interconnect express

Gigatransfers per second

User’s Manual
OpenPOWER
POWER9 Processor

PCIe Interface

Page 290 of 508
Version 2.1

10 October 2019

Figure 22-2. IOP_X844_TOP Hierarchy Diagram

IOP_X884_TOP

IOP_X844

PIE8 Interface Staging Registers IOP_X16_GBOX_WRAP

IOP_X844_PCS

PCS / PMA Interface Staging Registers

IOP_PMA_X16

IOP_TXBS8_RLM_MAC IOP_RXBS8_RLM_MAC

IOP_SCOM_CNTL_RLM_MAC

IOP_PCS_RLM_MAC

IOP_PMA_H16ZCALSLICE

IOP_PMA_H16RXSLICE (x16)

IOP_PMA_CLKDIFFSEGATE IOP_PMA_CLKDIFFSEGATE

IOP_PMA_H16COMMONGLUE_X16_RLM_MAC

IOP_PMA_H16ZCAL_RLM_MAC

IOP_PMA_ZCAL_CUST_MAC

IOP_PMA_H16JTAGTDR_RLM_MAC

IOP_PMA_REFCLKSEL2_RLM_MAC

IOP_PMA_H16PLLCNTL_COMMON_RLM_MAC IOP_PMA_H16PLLCNTL_COMMON_LBIST_RLM_MAC

IOP_PMA_H16PLLCNTL_LOGIC_CAL_RLM_MAC IOP_PMA_H16PLLCNTL_LOGIC_CAL_LBIST_RLM_MAC

IOP_PMA_H16PLLCNTL_LOGIC_CAL_RLM_MAC IOP_PMA_H16PLLCNTL_LOGIC_CAL_LBIST_RLM_MAC

IOP_PMA_H16RXCDR_RLM_MAC

IOP_PMA_H16RXLINKLOGIC_RLM_MAC

IOP_PMA_RX_CUST_MAC

IOP_PMA_CLK_CUST_RX16_MAC IOP_PMA_CLK_CUST_TX16_MACIOP_PMA_PLL_CUST_MAC

= Top Level Soft Hierarchy = Top Level Hard Hierarchy = Soft Hierarchy

= Random Logic Macro (RLM) = Custom Macro = Staging Registers

IOP_PMA_H16TXSLICE (x16)

IOP_PMA_H16TXLINK_RLM_MAC

IOP_PMA_TX_CUST_MAC

IOP_TXBS8_RLM_MAC IOP_RXBS8_RLM_MAC

User’s Manual
OpenPOWER
POWER9 Processor

PCIe Interface

Page 291 of 508
Version 2.1

10 October 2019

The IOP_X844_TOP design hierarchy is depicted in Figure 22-2 on page 290 and briefly described as
follows:

• IOP_X844_TOP: Top-level soft hierarchy

– PIE8 Interface Staging Registers: 2-deep pipeline staging registers on PIE8 interface signals
between IOP and ES units

– IOP_X16_GBOX_WRAP: LBIST stump mux Logic

– IOP_X844: Top-level hard hierarchy

— IOP_X844_PCS: Physical coding sub-layer soft hierarchy wrapper

• IOP_PCS_RLM_MAC: PCS logic RLM

— PCS / PMA Interface Staging Registers: 1-deep pipeline staging register between PCS and PMA
interface signals

— IOP_SCOM_CNTL_RLM_MAC: Serial communications port logic RLM

— IOP_TXBS8_RLM_MAC: 8-lane transmitter boundary scan logic RLM

— IOP_RXBS8_RLM_MAC: 8-lane receiver boundary scan logic RLM

— IOP_PMA_X16: 16-lane physical media attach layer soft hierarchy

• IOP_PMA_CLKDIFFSEGATE: Custom differential clock buffers for reference clock

• IOP_PMA_REFCLKSEL2_RLM_MAC: Power management token logic RLM

• IOP_PMA_CLK_CUST_RX16_MAC: Custom 16-lane receiver C1 clock distribution

• IOP_PLL_CUST_MAC: Custom dual LC tank VCO PLL with current reference generators

• IOP_PMA_CLK_CUT_TX16_MAC: Custom 16-lane transmitter C1 clock distribution

• IOP_PMA_H16PLLCNTL_COMMON_RLM_MAC: PLL IREF and VREG control logic RLM

• IOP_PMA_H16PLLCNTL_COMMON_LBIST_RLM_MAC: PLL common logic LBIST RLM

• IOP_PMA_H16PLLCNTL_LOGIC_CAL_RLM_MAC: PLL VCO calibration logic RLM

• IOP_PMA_H16PLLCNTL_LOGIC_CAL_LBIST_RLM_MAC: PLL VCO calibration logic LBIS
RLM

• IOP_PMA_H16COMMONGLUE_X16_RLM_MAC: Unit level glue logic RLM

• IOP_PMA_H16JTAGTDR_RLM_MAC: JTAG and test data register logic RLM

• IOP_PMA_H16TXSLICE: Single lane transmitter soft hierarchy

– IOP_PMA_H16TXLINK_RLM_MAC: Transmitter control logic RLM

– IOP_PMA_TX_CUST_MAC: Transmitter custom analog macro

• IOP_PMA_H16ZCALSLICE: Transmitter impedance calibration soft hierarchy

– IOP_PMA_H16ZCAL_RLM_MAC: Transmitter impedance calibration logic RLM

– IOP_PMA_ZCAL_CUST_MAC: Transmitter impedance calibration custom analog Macro

• IOP_PMA_H16RXSLICE: Single lane receiver soft hierarchy

– IOP_PMA_H16RXLINKLOGIC_RLM_MAC: Receiver link control logic RLM

– IOP_PMA_H16RXCDR_RLM_MAC: Receiver clock and data recovery logic RLM

Multiplexer

User’s Manual
OpenPOWER
POWER9 Processor

PCIe Interface

Page 292 of 508
Version 2.1

10 October 2019

– IOP_PMA_RX_CUST_MAC: Receiver custom analog macro

The IOP_X844_TOP unit is constructed using the FX14HP technology and provides a total of 16 full duplex
lanes of communication support. Each link is independently capable of operating at 2.5 GTps (Gen1),
5.0 GTps (Gen2), 8.0 GTps (Gen3), or 16.0 GTps (Gen4) data rates. The IOP_X844_TOP contains a phase
lock loop (PLL) macro that was two independent oscillators. One oscillator is used to produce a 10 GHz clock
from a 100 MHz reference clock source. This clock is used to produce 2.5 GTps signaling by dividing the PLL
oscillator clock by 4 (¼ rate mode) and to produce 5.0 GTps signalling by dividing the PLL oscillator clock by
2 (½ rate mode). The second PLL oscillator produces a 16 GHz clock from a 100 MHz reference clock
source. This clock is used to produce 8.0 GTps signaling by dividing the PLL oscillator by 2 (½ rate mode)
and to produce 16 GTps signaling by dividing the PLL oscillator by ‘1’ (full-rate mode).

The IOP_X844_TOP unit provides point-to-point data transmission over media with a differential character-
istic impedance of 100 Ω. This transmission media can be a combination of printed circuit board, connectors,
backplane wiring, fiber, or cable. The length of the transmission path is maximized in applications where
impedance characteristics are well-matched and the frequency response of the media does not create exces-
sive distortion of the transmitted signal.

The IOP_X844_TOP unit employs numerous equalization schemes to address media losses and crosstalk
challenges. The transmitter implements feed forward equalization (FFE) by using a programmable 3-tap,
baud-spaced, finite impulse response (FIR) driver with the following equation:

The driver amplitude (K) is adjusted in the range 200 - 1200 mVppd in 47 power settings. The relative weights
of C0 to C2 are user-configurable to create a wide variety of transmitter FIR pulse-shaping filters. Reducing
the driver amplitude, in general, increases the power consumed by the driver.

The receiver provides a combination of an automatic gain control (AGC) amplifier with dynamic peaking
control (DPC) plus a baud-spaced decision feedback equalizer (DFE) circuit that complements the transmitter
equalization capability. Twelve taps of DFE equalization are available at data rates 5.0 GTps, 8.0 GTps, and
16.0 GTps. The DFE adaptation circuit examines the incoming serial stream and dynamically adjusts coeffi-
cients to maximize the internal eye opening. Two distinct modes of operation for the receive clock and data
recovery (CDR) are possible: traditional non return to zero with high frequency-peaking equalization and
automatic gain control (non-DFE mode) and DFE mode, which also includes automatic gain control and some
high-frequency peaking. The non-DFE mode, combined with transmitter side pre-emphasis filtering and the
receiver AGC amplifier, provides a powerful set of equalization capabilities for channel applications where the

Table 22-1. Data Rates and Receiver Modes Supported by the IOP_X844_TOP Unit

Data Rate High-Speed PLL A High-Speed PLL B

2.5 GTps (Gen1) [Non-DFE] N/A

5.0 GTps (Gen2) [Non-DFE] N/A

8. 0 GTps (Gen3) N/A [DFE12], DFE5, DFE1, Non-DFE

16.0 GTps (Gen4) N/A [DFE12], DFE5, DFE1, Non-DFE

DFE12 = 12-tap DFE
DFE5 = 5-tap DFE
DFE1 = 1-tap DFE
Non-DFE = Standard receiver equalization (high-frequency peaking)

H(Z) = K (C0 z+1 + C1 z
 0+ C2 z

-1)

Decision-feedback equalizer

User’s Manual
OpenPOWER
POWER9 Processor

PCIe Interface

Page 293 of 508
Version 2.1

10 October 2019

losses are low to moderate. When the channel losses are substantial, the PCIe interface can be operated in a
DFE mode. The main advantage of DFE mode is that the receiver CDR can correctly deserialize received
eyes that are closed with improved bit error ratio (BER). Three selectable DFE modes are available: 1 tap
(DFE1), 5 taps (DFE5), and 12 taps (DFE12) providing optimal user performance trade-off capability.

Using the equalization capability of the IOP_X844_TOP, losses up to -28 dB at the fundamental frequency
(that is, 8.0 GHz at 16.0 Gbps operation) can be recovered at BER < 10-12.

22.2 Key Features

The IOP_X844_TOP unit in FX14HP includes the following features:

• Supports 2.5 GTps (Gen1), 5.0 GTps (Gen2), 8.0 GTps (Gen3), and 16.0 GTps (Gen4) data rates.

• Contains two independent LC tank-based VCOs operating from a common differential 100 MHz reference
clock source that produce 10.0 GHz and 16.0 GHz differential clocks to support internal unit operation.
Additionally a 2 GHz single-ended clock is provided to support nest grid clocking.

• Four preprogrammable transmitter and receiver configurations selectable by port using hardware pins or
registers. Facilitates fast speed switching during speed negotiation routines.

• Support for spread spectrum clocking of up to ±6000 ppm difference between TX and RX sections at up
to 33 KHz modulation. Supports PCIe separate reference clock with independent spread spectrum
(SRIS) support.

• Integration of greater than 80 channels per chip.

• Aggressive equalization capability to enable legacy system upgrades.

– 3-tap FFE driver equalization, baud-spaced
– Dual-mode CDR: non-DFE or DFE
– 12-tap Decision Feedback Equalizer (DFE) for use in 8.0 GTps and 16 GTps modes.

• Programmable DFE length: 1, 5, or 12 taps
– Variable AGC amplifier
– Dynamic peaking control
– Programmable driver launch levels
– On-chip 100 Ω termination

• Power supply: VDN (nominal): 0.8 V, HSSAVDD1/2 (nominal): 1.5 V, VIO (nominal): 1.1 V

• Multiple Link configurations

– 1:16 lane bidirectional link
– 2:8 lane bidirectional links
– 1:8 lane bidirectional link with additional 2:4 lane bidirectional links

• Asynchronous clock-data recovery.

• Parallel data path width support

– 2.5 GTps (Gen1) and 5.0 GTps (Gen2): 10-bit width
– 5.0 GTps (Gen3) and 16.0 GTps (Gen4): 8-bit width

• Driver impedance calibration by using an off-chip precision resistor for accuracy

• Integrated receiver AC-coupling capacitors

• Compatible with PCI Express Base Specification 4.0 supporting 2.5 Gbps, 5.0 Gbps, 8.0 Gbps, and
16 Gbps data rates

Feed-forward equalizer

Decision-feedback equalizer

User’s Manual
OpenPOWER
POWER9 Processor

PCIe Interface

Page 294 of 508
Version 2.1

10 October 2019

• Support for manufacturing and system test

– Generalized scan design (GSD) compliant with manufacturing functional (macro) tests
– Full-rate PRBS built-in self-test (BIST)
– Compatible with the IBM at-speed structure-test (ASST) at the high-speed data interfaces
– Compatible with IEEE 1149.6-2003 AC JTAG
– TDR hardware support
– Insitu receiver eye monitoring hardware support

22.3 Typical Application

The IOP_X844_TOP unit is used to provide PCI Express Gen4 communication links to systems requiring this
communications standard. Multiple IOP_X844_TOP unit instances can be employed to provide greater
communications bandwidth. Figure 22-3 on page 295 shows an example configuration of the IOP_X-
844_TOP units in a system environment. The IOP_X844_TOP unit can support an integration count of more
than 80 transmit/receive lanes, depending on chip periphery, I/O count, power dissipation, and other pack-
aging constraints.

The high-speed PLLs in the IOP_X844_TOP unit require a reference clock, HSSREFCLK. These clocks are
distributed to all of the IOP_X844_TOP units by using a differential clock-tree topology. The reference clocks
are provided by using a high-quality off-chip clock source operating at 100 MHz.

Joint Test Action Group

User’s Manual
OpenPOWER
POWER9 Processor

PCIe Interface

Page 295 of 508
Version 2.1

10 October 2019

Each IOP_X844_TOP unit PMA block consists of sub functional blocks known as slices. Slices are internal
subdivisions in the core and are not visible to the core user. These slices are the PLL slice, the TX slice, the
RX slice, and the ZCAL slice. The PLL slice implements the two HS PLLs and related logic. The TX slice
implements one transmitter, and the RX slice implements one receiver. The IOP_X844_TOP unit PMA block
contains one PLL slice, 16 TX slices, and 16 RX slices.

Figure 22-3. Typical IOP_X844_TOP Unit Application

Chip A Chip B

Card A Card B

Backplane

Connector

Cables

Connector

IOP_X844
Transmitters

IOP_X844
Transmitters

IOP_X844
Transmitters

IOP_X844
Transmitters

IOP_X844
Receivers

IOP_X844
Receivers

IOP_X844
Receivers

IOP_X844
Receivers

User’s Manual
OpenPOWER
POWER9 Processor

PCIe Interface

Page 296 of 508
Version 2.1

10 October 2019

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Power Management

Page 297 of 508

23. Power Management

Like the last several POWER processor generations, the POWER9 processor uses a number of traditional
dynamic power-savings techniques. For example, clock gating1 latches and arrays when they are not
required to reduce peak power and, therefore, the thermal design point, also referred to as total design power
(TDP). The POWER9 processor can also dynamically clock gate or power gate2 individual processor cores,
or collections of cores and their associated caches when they are not being used.

Additionally, the POWER9 processor continues to support “adaptive power management” techniques to
reduce average power and to proactively take advantage of variations in workload, environmental conditions,
and overall system usage. The EnergyScale firmware, coupled with the policy direction from both the
customer and feedback from the hypervisor and operating system that is running on the machine, determine
the modes of operation and the best power and performance trade-off to implement during runtime to meet
customer goals and achieve the best possible performance. Like the POWER8 processor, the POWER9
processor contains an on-chip controller (OCC) to run the EnergyScale firmware, which supports software-
requested performance states (Pstates), Idle (Stop) states, chip and system thermal management and
protection, and power-supply current over-limit protection.

Managing the power and performance trade-off is a complex problem. There are many ways to control the
behavior of the hardware, but these also have a number of side effects that vary based on the workload being
processed. Because there is no single policy that can be implemented, the POWER9 processor, like its
predecessors, supports an adaptive approach to the problem in the form of a joint hardware, firmware, and
software solution, collectively known as EnergyScale. EnergyScale provides the mechanisms that enable the
customer to observe the power, performance, and usage of the processors and other components of the
system.

23.1 Policies and Modes of Operation

EnergyScale removes the “ugly” details of a low-level hardware implementation to provide policies (opera-
tional modes) that allow the customer to achieve the required level of power and performance efficiency
within specified bounds. Implementations differ depending on which hypervisor is running on the system:
Power KVM or PowerVM.

The POWER9 chip supports multiple power management choices for system operation, which can be
selected by the customer depending on the situation at any given time or for a particular datacenter’s
constraints.

The POWER9 power management supports IBM’s second generation of Workload Optimized Frequency
(WOF), a mechanism where the OCC can take advantage of the available socket power to increase
processor core frequency. The OCC power-management firmware components consider, in “real time”,
factors such as workload intensity, Pstates in use across the chip, and powered-off cores to boost the
maximum allowed frequency within the socket power, electrical current, and thermal budgets.

1. Clock gating involves deactivating clocks for portions of a circuit that are not in use.
2. Power gating involves turning off the current to portions of a circuit that are not in use.

User’s Manual
OpenPOWER
POWER9 Processor

Power Management

Page 298 of 508
Version 2.1

10 October 2019

23.1.1 Power Management in Linux-Based Systems (Power KVM)

OpenPOWER systems run a Linux-based hypervisor. The primary interface to EnergyScale in Linux-based
systems is from the Linux Governor1. The following links describe the available capabilities:

• CPU frequency scaling

• The Ondemand Governor

23.1.2 Power Management in PowerVM-Based Systems

On IBM-branded PowerVM-based systems, the modes and policies provided to the customer are similar to
previous Power systems and are described in greater detail in the following white-papers:

• IBM EnergyScale for POWER8 Processor-Based Systems

• Manual for Using WBEMCLI Tool to Fetch Flexible Service Processor CIM Data

23.2 Base Enablement Summary

Power Management consists of four major elements, each requiring a set of functions available in the hard-
ware to accomplish these elements. EnergyScale firmware requires a processor on which to run decision-
making code, a way to measure what the processor and other system elements are doing, a way to actuate
(control) the runtime operation of the system, and a way to shut off components that are not currently being
used.

23.2.1 On-Chip EnergyScale Microcontroller

Real-time monitoring and decisions must be made to optimize the power and performance of the system
while maintaining safe operational parameters for the chips and the other system components. To accom-
plish this, a dedicated on-chip microcontroller (OCC) is included on the POWER9 chip. This is an embedded
PPC-405 core that runs at ¼ of the nest frequency (typically between 400 - 600 MHz). The OCC complex
also contains local SRAM, access to system DRAM memory, and access to on-chip SCOM (clocks-running
scan communication) registers via the on-chip pervasive control bus (PCB) network.

23.2.2 Measurement Capability

To make intelligent decisions, the OCC must be able to measure the state of the system during runtime.
Sensors embedded in the system components (processor chips, memory chips, power supplies, and so on)
enable access to various aspects of the system components:

• Temperature

• Power (voltage and current)
– Analog sampling on the various voltage rails
– Note that the POWER9 processor does not include digital power proxy (per-core power estimation

circuitry)

• Activity metrics
– Utilization, usage, and performance

1. The Governor is the component of Linux software responsible for managing the work allocation, power, and performance of
the microprocessor cores.

https://wiki.archlinux.org/index.php/CPU_frequency_scaling
https://wiki.archlinux.org/index.php/CPU_frequency_scaling
https://www.kernel.org/doc/ols/2006/ols2006v2-pages-223-238.pdf
https://www.kernel.org/doc/ols/2006/ols2006v2-pages-223-238.pdf
http://www.ibm.com/common/ssi/cgi-bin/ssialias?subtype=WH&infotype=SA&appname=STGE_PO_PO_USEN&htmlfid=POW03125USEN&attachment=POW03125USEN.PDF#loaded
http://www.ibm.com/common/ssi/cgi-bin/ssialias?infotype=SA&subtype=WH&htmlfid=POW03127USEN#loaded
Static random access memory

Dynamic random access memory

Scan communications

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Power Management

Page 299 of 508

These are outlined in more detail in Section 23.5.2 Sensors on page 305.

23.2.3 Dynamic Voltage and Frequency Scaling (DVFS)

On PowerVM-based systems, EnergyScale firmware chooses the optimal frequency and voltage during
runtime in response to the workload running and the policy selected by the customer.

Linux-based systems use power/performance states (Pstates) as an abstract representation of frequency and
voltage on a per-thread basis. EnergyScale firmware must then combine the “votes” in an “auction” process
to choose the optimal operating point.

23.2.3.1 Pstates

Pstate requests are represented as an 8-bit unsigned value, where Pstate0 is FMAX at VMAX supported for the
core on this particular system and chip sort point. Each increase in Pstate request value represents a drop in
frequency of 16.67 MHz assuming a 133 MHz reference clock input, meaning 4.2 GHz of Pstate space can
be regulated in theory. For each of the discrete Pstates, EnergyScale calculates values derived from manu-
facturing test characterization data.

23.2.3.2 Actuation

DVFS involves more than changing the frequency and voltage to a processor. To change Pstates, Energy-
Scale firmware must control analog iVRM tune settings for VDD (based on maximum current ratios) and
manage resonant clocking mode and sector buffer strength settings for the clock grid and voltage droop
monitor compare and threshold settings.

To accomplish DVFS, the following actuation is required:

• Processor core frequency control

• External voltage regulation module (VRM) control

• Internal voltage regulation module (iVRM) control

• Pstate clipping function to enforce a power cap and support deterministic workload optimization

23.2.3.3 Instrumentation

 To perform DVFS intelligently and safely requires the following:

• Thermal measurement to know if thermal constraints are being maintained

• Power measurement to know how power supplies (either current or power) are performing

• Power measurement distribution to allow all chips in a system to have access to measurements

• Activity counters to gain insight in the workload characteristics to make good frequency choices

Coordination of all the measurements within socket constraints of power delivery and thermal limits requires
the use of a highly programmable OCC complex.

User’s Manual
OpenPOWER
POWER9 Processor

Power Management

Page 300 of 508
Version 2.1

10 October 2019

23.2.4 Processor Idle (Stop States)

To enter the processor idle state, the following elements are required:

• Stop instruction
– Executed by the software running on each thread of the processor core
– Requests entry into a specified Stop level via the PSSCR
– Stop level specifies the allowed wakeup latency and dictates the amount of power saved

• Coherently disconnect cores and also their caches from the SMP Fabric

• Clock and power gating in response to executing the Stop instruction on all threads of the core

• Restoration of cores and caches to operational mode in response to wakeup events (interrupts)

These elements with their underlying functions are further broken down to elements that are core centric and
chip centric.

23.3 Feature Summary

A few strategic design changes were made in the POWER9 chip to provide additional high-value power
management capability. These features include:

• Workload optimized frequency support:

– Deterministically increase the frequency (and performance) of the processor based on the combined
power consumption of the workloads running on the cores of each processor chip.

– Hardware includes higher-priority communication channels between on-chip microcontrollers.

• Stop states for idle cores (similar to the x86 notion of C-states):

– Replace the doze, nap, sleep, winkle instructions, and their fast and deep variants, which were pres-
ent in previous POWER processor chip architectures.

– Support a set of numbered stop levels, each with increasing power savings and exit latency.

– Enable a core instant-on mode, supporting a rapid exit from a core powered-off state (for example,
about 250 ms).

– Enable lighter guest or OS-level stop states, without incurring the latency of state loss and restore.

• Dynamic I/O bus width modes:

– Adapt to periods of lower activity or phases of low-system usage, especially in a cloud environment.

– Adapt to periods of lower link activity or phases of low-system utilization:

— Fabric links dynamic 2-byte mode for systems with 4-byte links

— NVLink 1/8 mode

— PCIe ×1 mode capability (requires device driver and system software support)

• Fully programmable PowerPC-lite Engine (PPE) instances:

– This new design for the POWER9 chip is an embedded PowerPC core based on a subset of the
PPC405.

– Distributed throughout the chip in proximity to localized power and performance management func-
tions:

Operating-system

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Power Management

Page 301 of 508

— Off-loads the lower-level power management functions, replacing previously fixed-state
machines.

— Enables more flexibility to work around unforeseen problems without requiring a hardware
change.

— Implements improved mechanisms and algorithms.

23.4 Power Management Infrastructure

The POWER9 processor does not support per-core frequency control because of physical chip layout and
wiring constraints. Instead, SMT4 processor cores are arranged in groups of four, along with their respective
L2 and L3 caches, into a structure known as a Quad. The frequency is managed at the Quad level. This
means DVFS must be managed at a Quad level based on the fastest Pstate request of the four cores that
occupy the same Quad. Independent per-core voltage control is therefore only possible when a core enters a
Stop state and is clocked off. Otherwise, the voltage and frequency of all cores in the Quad must track in
unison. When a core enters a Stop state and is powered off, its L3 cache remains active until all four cores in
the Quad enter into a sufficiently deep Stop state at the same time.

Likewise, within a quad, pairs of SMT4 cores (or each SMT8 core) share an L2 and L3 cache. The L2 cache
can only be clock gated if both cores using that L2 cache enter a Stop state that will allow it.

23.4.1 Quad Voltage and Clock Domains

The Quad voltage control can be visualized as shown in Figure 23-1.

A more detailed visualization of the Quad with power management related infrastructure, as well as clock and
voltage domains is shown in Figure 23-2 on page 302. Each Quad is replicated six times on the POWER9
chip and contains five synchronous chiplets (four core chiplets plus one cache chiplet). Each core chiplet
contains four SMT threads. The cache chiplet contains three clock grids, one full-speed grid for each L2
cache unit, and one half-speed clock grid shared by both L3 cache domains. Each of the two instances of L2
and L3 cache domains are functionally dedicated to a core pair. Each pair of physical core chiplets can
appear to software as either a single SMT8 core or a pair of SMT4 cores depending on which POWER9 chip
part was manufactured. In all chip configurations, the physical SMT4 core chiplets are clocked and powered
off independently.

Figure 23-1. Quad Voltage Control

Core
Chiplet

iVRM
Chip VDD Rail
from external VRMs

Core
Chiplet

iVRM

Core
Chiplet

iVRM

Core
Chiplet

iVRMiVRM

Cache Chiplet

Quad

Quad

DPLL

. . .
PFET Header PFET Header

PFET Header

PFET Header PFET Header

Simultaneous multithreading

User’s Manual
OpenPOWER
POWER9 Processor

Power Management

Page 302 of 508
Version 2.1

10 October 2019

The POWER9 processor implements a hierarchical power-management solution. Power Management
controls are applied at the lowest level possible to allow the greatest flexibility and to reduce overall
complexity of the hardware design.The hypervisor runs Energy Management algorithms controlling power
and performance of the cores at the partition and micropartition level by requesting Pstates and Stop states.
The OCC manages controls at the processor chip and memory level. In general, power management hooks
exist inside the processor core itself, inside the Quad, in the chip-level “nest” unit level, and at the chip level.
This hierarchy affects how the features are implemented and therefore, laid out in the SCOM registers. For
example, internal voltage and power gating can be controlled at both the core and Quad level (the external
voltage level continues to be shared at the chip level), frequency at the Quad level, and software-directed
modes and instruction throttling controls inside the core itself.

Figure 23-2. Detailed Quad Voltage and Clock Domains

= VREG and VDM per chiplet

= DPLL (shared by all quad chiplets)

= PCB_Slave

512 KB
L2

10 MB
L3

512 KB
L2

10 MB
L3

Core Chiplet 3
(4 threads)

Clock & Vd3 Voltage Domain

EPS

EPS

EPS
EPS

Cache Chiplet

= Chiplet pervasive macrosEPS

= CME

= PCB_MUX

= L2-1 full-speed clock domain
CC

= PPM (power management)

= L2-0 full-speed clock domain

Core Chiplet 2
(4 threads)

Clock & Vd2 Voltage Domain

Core Chiplet 1
(4 threads)

Clock & Vd1 Voltage Domain

Core Chiplet 0
(4 threads)

Clock & Vd0 Voltage Domain = L3-0 half-speed domain

PCB
Network

Cache Chiplet clock domains: (VDD cache)

CC

Key

Nest Clock Grid and Vdn (Vdnest)

= L3-1 half-speed domain

EPS

= Non-partial good L3 region
(“vital” pervasive region and
4 Fabric staging latch banks)

C
or

e
P

ai
r

1
C

or
e

P
ai

r
0

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Power Management

Page 303 of 508

23.4.2 On-Chip Microcontrollers

Figure 23-3 is an abstract visualization of the power management-related hardware on the POWER9 chip.
Shown are the twenty-one instances of the PPE plus the OCC microprocessor, that together enable the
power management functions. The IO-PPE and SMP Fabric PPE are also tasked to do other non power-
management related functions; as well as the self-boot engine (SBE), which is responsible for IPL of the chip
and for chip access security during runtime.

Figure 23-3. High-Level Diagram of POWER9 PPE Instances

OCC
Complex

OCC
(405)

GPEGPE

GPE GPE

768 KB
SRAM

POWER9 Chip

AVSBus
Interfaces

DPLLQuad

SMT4 Core
Chiplet CMENCU

10 MB
L3SMT4 Core

Chiplet

L2

SMT4 Core
Chiplet

CMENCU

10 MB
L3

SMT4 Core
Chiplet

L2

DPLLQuad

SMT4 Core
Chiplet CMENCU

10 MB
L3SMT4 Core

Chiplet

L2

SMT4 Core
Chiplet

CMENCU

10 MB
L3

SMT4 Core
Chiplet

L2

SBE

(Self-Boot Engine)

96 KB
PIB

MEM

FastI2C

32 KB
SRAM

32 KB
SRAM

32 KB
SRAM

32 KB
SRAM

I/O
PPE

64 KB
SRAM

DPLL Quad

SMT4 Core
ChipletCME NCU

10MB
L3 SMT4 Core

Chiplet

L2

SMT4 Core
Chiplet

CME NCU

10MB
L3

SMT4 Core
Chiplet

L2

DPLL Quad

SMT4 Core
ChipletCME NCU

10MB
L3 SMT4 Core

Chiplet

L2

SMT4 Core
Chiplet

CME NCU

10MB
L3

SMT4 Core
Chiplet

L2

32 KB
SRAM

32 KB
SRAM

32 KB
SRAM

32 KB
SRAM

DPLL Quad

SMT4 Core
ChipletCME NCU

10 MB
L3 SMT4 Core

Chiplet

L2

SMT4 Core
Chiplet

CME NCU

10 MB
L3

SMT4 Core
Chiplet

L2

DPLL Quad

SMT4 Core
ChipletCME NCU

10 MB
L3 SMT4 Core

Chiplet

L2

SMT4 Core
Chiplet

CME NCU

10 MB
L3

SMT4 Core
Chiplet

L2

32 KB
SRAM

32 KB
SRAM

32 KB
SRAM

32 KB
SRAM

I/O
PPE

64KB
SRAM

IO
PPE

64 KB
SRAM

Nest
PPE

24 KB
SRAM

SMP Fabric PPE

Initial program load

User’s Manual
OpenPOWER
POWER9 Processor

Power Management

Page 304 of 508
Version 2.1

10 October 2019

23.5 Chip Hardware Features

23.5.1 Communication Paths for Firmware

• Dedicated special wakeup bit per core and cache chiplet for four different firmware components

• EnergyScale firmware communication

– Four independent messaging queues (up to 64 bytes each) in the OCC SRAM, intended to be used
by the hypervisor and service processor firmware to communicate with the OCC via the respective
SCOM operations.

– OCC is attached to the on-chip pervasive PCB network, enabling the OCC firmware to access the
various functional units on the chip.

– OCC firmware accesses the controlled regions of system memory via the on-chip fabric.

– CME firmware communicates with the hypervisor by writing the Power Management Status Register
(PMSR), which is available to the hypervisor as a special purpose register (SPR). See
Section 23.5.8.3 Power Management Status Register (PMSR) on page 312 for more information.

– The hypervisor communicates to the EnergyScale firmware by writing the Power Management Con-
trol Register (PMCR) SPR (for example, Pstate requests). See Section 23.5.8.1 Power Management
Control Register (PMCR) on page 312 for more information.

Figure 23-4. OCC Complex

SMP Fabric Network

OCC

NHTM

ICP

PSI

PBA

ADU
Rcv

ADU
Snd

BCE

T
P

C
 B

rid
ge

M

S

S

S

S

S

S

M

M

M

M

M

S

M M

768 KB
(16 x 32 KB)Interrupts

Interrupts

SRAM

405

OCC
ARB

(PLB4)

Control/

PBAX

PPE0

PPE1

PPE2

PPE3

OCB

PMC

JTAG

A
V

S
B

us
0

A
V

S
B

us
1

PCB Network

PIB
ARB

PCB Master

itrS

TOD

SBE
PPE

I2C-M

SPIPSS
ADC
Devc

FSI
Shit

FSI2PIB

Lo
ca

l B
us

FSI-S

FSI-S

FSI-M

I2C-M

S

S
S

S

S

S

M

M

M

M

M

M

M

M

M

I2
C

 B
us

es
S

P
IP

S
S

S
E

E
P

R
O

M
F

S
I-

M
F

S
I-

S

Interrupts

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Power Management

Page 305 of 508

23.5.2 Sensors

This section describes various power management sensors.

23.5.2.1 Analog On-Chip Thermal Sensor (OCTS)

• Reduced set of analog thermal diodes available as on-chip thermal sensors (OCTS), available only via
C4s.

• Only used for calibration of the DTS during manufacturing test.

23.5.2.2 Digital Thermal Sensor (DTS)

• Diode bandgap design with built-in A/D converter to provide digital readout.

• Sensor collection macro converts to °C on read (using calibration settings from manufacturing test that is
loaded during IPL).

• Two implemented per core chiplet; two implemented per cache chiplet; three in the nest region at the chip
level.

• Available via SCOM during runtime, used by the OCC to safely implement DVFS and to protect the chip
from over-temperature conditions. Thirty-two SCOMs are required to access all the chiplets (24 core +
6 cache + 2 nest chiplets).

• Not available to CME; only available to OCC, SBE, or the service element

• No automated hardware thermal over-temperature protection.

23.5.2.3 Voltage Droop Monitor

• The voltage droop monitor (VDM) includes a detection circuit that monitors deviation of the local power
grid from a target voltage. The VDM is configurable to indicate one level above and three levels below that
voltage.

• The VDM is implemented on the core VDD and cache VDD power grids: one per core chiplet and one per
cache chiplet; five instances per Quad region.

• The VDM allows for guardband reduction via DPLL frequency feedback and as a protection mechanism
from sudden voltage droop excursions.

Digital phase-locked loop

User’s Manual
OpenPOWER
POWER9 Processor

Power Management

Page 306 of 508
Version 2.1

10 October 2019

23.5.3 Dedicated Activity/Event Counters

23.5.3.1 Processor Core EMPATH Counters

• Dedicated to power management firmware, not shared with the performance monitor unit (PMU).

• Used for processor and memory usage measurement to direct power and performance trade-off deci-
sions and the selection of appropriate power-management techniques.

• Addressable by the hypervisor as SPRs or to EnergyScale firmware as SCOM registers.

• Free-running (not cleared on a read) and wraps (roll over) upon reaching the maximum value, to support
noncritical timed access and use by multiple firmware entities. 32-bits wide, with pre-counters where nec-
essary for high-frequency or multiple events, to ensure roll-over occurs in more than one second.

– Firmware reads these registers, and therefore must sample these registers twice and subtract the
values to determine the elapsed count after detecting and accounting for the wrapping in the calcula-
tion.

• The following counters are important inside the processor core:

– For per-core accounting:
— Raw cycle count
— Stall counters (workrate busy and finish)
— Two programmable memory subsystem hierarchy counters
— System memory (DRAM) access counter

– For per-thread accounting:
— Active run cycles (how often the operating system sets the CTRL run latch, indicating that active

work is being processed off the run queue)
— Instruction dispatch
— Instruction completion
— System memory (DRAM) access counter

23.5.3.2 Nest SMP Fabric Usage Counters

• Implemented as SCOM registers that can be accessed by the OCC

• Over-commit rate/retry counters in the OCC SMP Fabric attach macro

• Other counters embedded in the SMP Fabric

• Fabric PPE can summarize the SMP Interconnect activity for sampling by the OCC complex

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Power Management

Page 307 of 508

23.5.4 On-Chip Microcontroller Complex

The OCC complex provides on-chip microcontrollers along with a communication support infrastructure that
enables them to communicate to other components on the chip and in the system.

23.5.4.1 On-Chip Microcontroller (OCC)

The OCC includes:

• An embedded PowerPC 405 with 16 KB instruction and data caches.

• On-chip 768 KB SRAM tank.

• Runs at ¼ frequency of the Nest interconnect.

• Access to system DRAM memory via the Nest Fabric for instruction and data area overflow (firmware
managed).

• Access to full chip pervasive infrastructure (PIB/PCB) via a bridge from the native 405 processor local
bus (PLB). The PLB is termed the on-chip controller interconnect (OCI) on the POWER9 chip.

23.5.4.2 General Purpose Engines (GPEs) for OCC Function Off-Load

• Two dedicated instances of the PPE are used to off-load mundane tasks. They are necessary to free up
the OCC to run its real-time operating system and to properly protect and optimize system functionality.

• One GPE is targeted to run operations as scheduled by OCC firmware as part of the real-time control
loop (for example, sensor collection from each chiplet or selected actuation functions).

• One GPE is targeted to run operations as scheduled by OCC firmware as part of the real-time control
loop or for background tasks for data collection and other OCC support functions (such as, performance
monitor PMU-let collection and atomic memory counter updates, memory thermal-sensor collection, and
so on).

• GPE programs are OCC SRAM resident. Data areas can be in either SRAM or system memory.

23.5.4.3 GPEs for Chip-Level Function Management

Two GPEs that are also part of the OCC complex are dedicated to support particular chip-level power
management functions.

S-GPE: This third PPE instance in the OCC complex primarily manages entry and exit from Quad-level Stop
states. When the Stop state powers off an entire Quad chiplet, that state must be restored in the form of a
mini-IPL of the cache chiplet, including restoration of the CME code image.

P-GPE: This fourth PPE instance in the OCC complex manages Pstate transitions (Quad DVFS) in response
to processor core Pstate requests, protection functions (system power capping, thermal over-temperature
limit, power supply over-current limit), and to support OCC-directed WOF direction. This PPE also manages
the sequencing of external VRMs and other devices by driving high-level SPI interface protocols. Other auxil-
iary functions can share this PPE as additional threads of execution (for example, performance monitoring
support).

User’s Manual
OpenPOWER
POWER9 Processor

Power Management

Page 308 of 508
Version 2.1

10 October 2019

23.5.5 Dedicated Core Management Engines (CME)

The dedicated core management engine has the following features:

• One PPE instance per core chiplet pair (two per Quad) to manage local power management functions
and algorithms.

• 32 KB local SRAM with block-copy engine access to memory via the NCU and L3 cache unit, which pro-
vides access to the SMP interconnect.

• Runs at ¼ frequency of the L3 cache (1/8 speed of the processor cores).

• Necessary for “core instant-on” to minimize Stop state transition latency for levels below Level 8.

• Responds to changes to PMCR and PSSCR SPRs and can update PMSR SPR back to the cores.

• Off-loads intensive chores from the centralized system power controller:
– Core chiplet Stop state sequencing
– Localized quad (core and cache chiplet) Pstate management

23.5.6 On-Chip Accelerators

23.5.6.1 Chiplet Pervasive-Power Management (PPM) Extension

Macros are associated with each core and cache chiplet to enable the CME and OCC Complex to communi-
cate and control the Quads. In addition, it provides access to the chiplet pervasive network control registers in
the neighboring PCB-slave macros associated with the Quad.

PFET Power Gate Control State Machine:

• Necessary for di/dt management of core and cache chiplet power-on and off transitions

• Used for entry and exit of iVRM regulation mode

• Programmable 8-step on and 8-step off sequences for full on/off

• Subset used for entering and exiting iVRM enablement (for example, enter and exit internal regulation)

PCB-Network Interrupt Generation Mechanism:

• Provides communication mechanism to chip-level OCC-complex, either:

– Used by code running on CME, or

– Automatically generated by hardware for the unlikely case of CME errors or for Quad wakeup events
that require Stop-GPE assistance

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Power Management

Page 309 of 508

23.5.7 Actuator and Control Features

23.5.7.1 On-Chip Frequency Control

• Frequency can be varied at the Quad level (four cores plus the cache chiplet) and not at the core level
because of the POWER9 chip physical infrastructure.

• The DPLL has a requested dynamic frequency range from 0.5 GHz to greater than 5 GHz. Note that the
full range is not supported or achievable by every chip or every system.

• Reference clock mode saves clock grid power when the core or cache chiplets are in a clocked-off but still
powered-on idle state.

23.5.7.2 External (Off-Chip) VRM Voltage Control

Connectivity from the POWER9 chip to the external VRMs via off-module C4s is supported.

• Access to an I2C master is provided.

• Two industry-standard PMBus (AVSBus) interfaces are available:
http://pmbus.org/Specifications/CurrentSpecifications

– Low-level AVSBus communication protocol is handled by the P-GPE or OCC firmware.

– VRMs can return a status frame for command confirmation of VID write validity.

These connections are used to send VID codes to VRMs associated with a given chip. Actual connectivity is
dependent on system implementation.

– VDD (core and cache logic) voltage targets (required for DVFS)

– VDN (nest logic, optional control that is based on the service element structure)

– VCS (SRAM and array in the cache and nest domains) voltage targets (optional control that is based
on the service element structure)

External VRMs that use load-line sensing, automatically ramp each voltage rail to the given target without
stepping assistance from the POWER9 chip or firmware.

23.5.7.3 External Sampling

When connected, the AVSBus or I2C interfaces can also be used to read voltage, current, and VRM status.

An industry-standard SPI bus (via off-module C4s) can be connected to a system-level analog-to-digital
converter that enables OCC firmware to read the current and voltage (such as, power) sampled on various
voltage rails in the system. Low-level SPI communication protocol Is handled by hardware.

http://pmbus.org/Specifications/CurrentSpecifications
Voltage identification

User’s Manual
OpenPOWER
POWER9 Processor

Power Management

Page 310 of 508
Version 2.1

10 October 2019

23.5.7.4 On-Chip Voltage (iVRM) Control

Per-Quad DVFS is enabled by on-chip voltage regulation of the VDD rail. Note that VCS is not power gated.
Each of the five chiplets in the Quad has an internal VRM (iVRM) with controls to enable their proper opera-
tion. Because all chiplets in the Quad share the same frequency, during runtime operation the iVRMs must be
set to the same value. The iVRMs can potentially be used for a Stop state to drop a clocked-off core chiplet to
VMIN. The iVRMs enable Quads requesting a lower-performance Pstate to have a voltage reduction and the
accompanying drop in power, despite the external rail being at a higher voltage because other Quads on the
chip are requesting a higher-performance Pstate.

23.5.7.5 Core and Cache Chiplet Power-Down

P-FET devices are used as switches to independently power off core and cache chiplets during runtime in
response to all threads on a core or in the Quad executing the Stop instruction. The power-down and power-
up sequences on both VDD and VCS follow an 8-step ramp process to avoid injecting droop or noise on the
neighboring power grids.

23.5.7.6 Resonant Clocking Mode Support

For the high-speed core and L2-cache clock grids, a resonance mode is provided to save active clock grid
power. In this mode, on-chip inductance on the grid is tuned to minimize the power consumed. Power-
management firmware must tune these controls across certain DVFS ranges. Pulsed clock mode and clock
sector strengths are also controlled.

23.5.7.7 Voltage Droop Protection

A voltage droop monitor (VDM) is instantiated per core and in the cache region of the Quad. To protect circuit
margin in the case of an unexpected instantaneous drop in voltage, the DPLL can be configured to reduce
the operating frequency to preserve guardband. In response to detection of a small droop event, the DPLL
can be configured to reduce a small percentage of the operating frequency, which also serves to mitigate via
a more timely reaction should a future larger droop also occur. In response to a large droop event, the DPLL
can be configured to reduce a larger percentage of frequency. Lastly, if a droop event begins to approach
operational VMIN in an extreme case, the core can be configured to temporarily throttle back instruction fetch
and issue in the processor cores as an emergency protection measure.

With this detection and protection, the POWER9 processor can ship at higher operational frequencies while
still preserving guardband for safe, reliable operation. The definition of small, large, and extreme droop are
programmable in the power management logic. Droop events are expected to be rare and the protection
mechanisms do not measurably affect performance because they impact performance by only a fraction of
one percent.

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Power Management

Page 311 of 508

23.5.7.8 OCC Hang Detection Hardware

An OCC heartbeat register is implemented per quad, as a timer that must be reset periodically. If the OCC
becomes nonresponsive and the hardware timer overflows:

• A malfunction alert can be generated to the processor cores to communicate lack of OCC health to the
hypervisor firmware running on the POWER9 cores.

• A local external interrupt is generated to the P-GPE so that it will enter safe mode (reduced frequency
with a potential reduction in voltage, and if necessary, some amount of instruction throttling) while the
OCC is unavailable to manage the chip’s health.

23.5.7.9 Active Power-Down of Unused I/O PHYs

The POWER9 processor supports static disablement of active power for unused PHYs and I/O clocks in
systems where an interface is not populated.

Elastic-interface buses support hardware driven dynamic spare lane power down. If another lane on the inter-
face fails, these spare lanes are immediately powered up and ready for use.

23.5.7.10 Partial Good and Runtime Deallocation

The POWER9 processor supports static partial-good capability. This means that during IPL, deconfigure bad
cores or their associated caches that have manufacturing defects and prevent their enablement. The
POWER9 processor supports dynamic deconfiguration of cores and quads should they not all be licensed for
use during runtime. In PowerVM-based systems, the POWER9 processor supports runtime de-allocation of
bad cores and quads, which permanently deconfigures them in response to a GARD operation that is caused
by a detected hardware error. Bad or deconfigured cores are considered to be in the deepest Stop state (Stop
level 15), such that the other SMT4 or SMT8 core in the pair or the entire Quad can enter deeper states if
required. As many as possible of the deconfigured cores and quads are turned off to save power:

• Deconfigured single cores are completely power gated.

• Deconfigured core pairs drop to slightly lower power stopping the associated L2 clock grid and powering
off both cores.

• Deconfigured quads (including four-core chiplets, their cache chiplet, and the SMP fabric interface) are
completely power gated.

User’s Manual
OpenPOWER
POWER9 Processor

Power Management

Page 312 of 508
Version 2.1

10 October 2019

23.5.8 Architected Control Registers

23.5.8.1 Power Management Control Register (PMCR)

The PMCR is the mechanism used by the hypervisor firmware (for example, PowerKVM) to request Pstate
changes. The 8-byte register is implemented as a generic special purpose register per core. The format and
content of the register is defined by firmware and is intended to contain Pstate requests along with other
performance and power optimization hints, such as workload priority and quality of service expectation,
dependent on the version of firmware using it.

Note: The layout of this register differs from the POWER8 definition. Except for Pstate0, perform a two’s
complement of the POWER8 Pstate value and multiply it by ‘2’ to convert it to the equivalent POWER9 Pstate
value.

Table 23-1 describes the PMCR.

23.5.8.2 Power Management Idle Control Register (PMICR)

The PMICR is not implemented on the POWER9 chip. The function is subsumed by the new per-thread
PSSCR Register, which is defined in the Stop instruction architecture.

23.5.8.3 Power Management Status Register (PMSR)

The PMSR enables Energy Management firmware to communicate to the hypervisor running on the
POWER9 core. The 8-byte register is implemented as a generic special purpose register with only one
instance per core. The format and content of the register is defined by firmware to communicate metrics for
energy efficiency and Quality of Service, such as the actual Local and Global Pstates that are achieved.

Note: The format of the upper word of this register is unchanged from the POWER8 definition and the lower
word is defined for the POWER9 core.

Table 23-1. PMCR Description (Version 0x1)

Bits Field Description

0:7 UpperPS

Upper Pstate request (for future enhanced Pstate support).
This field is ignored in Version 0x1of this register format.
Note: Unlike in the POWER8 core, separate Global Pstate requests are not supported in the POW-
ER9 core.

8:15 LowerPS

Lower Pstate request.
In this field, x‘00’ represents the fastest frequency supported and subsequent increasingly positive
values (x‘00’, x‘01’, x‘02’, …) are decreasing frequency in 16.667 MHz steps from the fastest fre-
quency as the base.
In Version 0x1 of this register format, this field provides both the Local and Global Pstate request.
Note: For comparison, the POWER8 processor used increasingly negative values (x‘00’, x‘FF’,
x‘FE’, …), in 33.333 MHz steps in this field and in the previous field.

16:59 Reserved
Reserved for future enhancements.
Note: In version 0x1, these bits are ignored and must be all 0’s.

60:63 Version

Indicates the format of the fields in this register expected by firmware.
x‘0’ POWER8 format, not supported but treated the same as version x‘1’ by the POWER9 core.
x‘1’ POWER9 format, using only bits 8:15.
x‘2’ Future extensions for enhanced Pstate support.

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Power Management

Page 313 of 508

Table 23-2 describes the PMSR.

Table 23-2. PMSR Description (Sheet 1 of 2)

Bits Field Description

0:7 Global Actual Pstate Global Actual Pstate.
Represents the Pstate value that pertains across all cores on the chip and represents the maximum
value currently possible.
The value x‘00’ represents the fastest frequency supported and subsequent positive values are
decreasing frequency in 16.667 MHz steps from the fastest frequency as a base.

8:15 Local Actual Pstate Local Actual Pstate.
Represents the presently operating Pstate value for this core. This value is less than or equal to the
Global Actual Pstate.
The value x‘00’ represents the fastest frequency supported and subsequent positive values are
decreasing frequency in 16.667 MHz steps from the fastest frequency as a base.
Engineering Note: For the POWER9 core, the Local Actual Pstate present in the core where the
PMSR is accessed, also pertains to the three other cores associated with the Quad where the core
exists.

16:23 Pmin Pstate Minimum.
Reads from this field return the presently established minimum Pstate for this core as set by the
platform. This value can change autonomously based on the current policy in place and the physical
constraints of the platform.
The value x‘00’ represents the fastest frequency supported and subsequent positive values are
decreasing frequency in 16.667 MHz steps from the fastest frequency as a base.

24:31 Pmax Pstate Maximum.
Reads from this field return the presently established maximum Pstate for this core as set by the
platform. This value can change autonomously based on the current policy in place and the physical
constraints of the platform.
The value x‘00’ represents the fastest frequency supported and subsequent positive values are
decreasing frequency in 16.667 MHz steps from the fastest frequency as a base.

32 PMCR Disabled SPR-Based Energy Management Disabled.
Reads from this field indicate whether the platform has disabled the PMCR SPR to control the core
PState.
0 PMCR enabled.
1 PMCR disabled.

33 Safe Mode Safe Mode.
Reads from this field indicates whether the chiplet has been put into a fixed safe mode (frequency
and voltage setting), where Pstate requests have been suspended due to errors or for externally
forced reasons (such as, firmware updates).
0 Not in safe mode.
1 Safe mode engaged.

34 IVRM Allowed Internal Voltage Management Allowed.
Reads from this field indicate whether this system allows the chiplet internal voltage regulation to be
enabled for localized voltage control.
0 iVRMs are never used for regulation on this system.
1 iVRMs are allowed to regulate the voltage on this system.
Engineering Note: Generally, this bit reflects the enablement by platform firmware upon IPL. How-
ever, in PowerVM systems, this bit can change due to errors with the iVRM during run time (loss of
reference voltage and internal errors). If these types of errors occur and checkstops are not pro-
duced, the platform disables the iVRMs and continues running. If checkstops are produced and
error analysis indicates that the iVRMs were the cause, the platform can re-IPL with the iVRMs dis-
abled as the means of recovery action.

User’s Manual
OpenPOWER
POWER9 Processor

Power Management

Page 314 of 508
Version 2.1

10 October 2019

23.5.8.4 Power Management Memory Activity Register (PMMAR)

The PMMAR is not implemented on the POWER9 processor.

23.5.9 Architected Idle Modes (Stop States)

A new Stop instruction has been added to the POWER ISA for the POWER9 processor. The Stop instruction
replaces the previously architected nap, sleep, and winkle (and unimplemented doze) instructions that are not
supported by the POWER9 processor. This instruction works in conjunction with the per thread Power Save
Status and Control Register (PSSCR). See the Power ISA (Version 3.0B) for details.

With this instruction, the operating system or hypervisor can stop a nonrequired thread from occupying the
core pipeline. The hypervisor can disable the thread to free up core resources to the remaining threads or
enable the core to switch SMT modes. The chiplet powered-off states can also be used in PowerVM-based
systems to apply concurrent patches and to perform runtime array repair when required.

When all threads on a core enter the Stop state, the entire core enters into a Stop state; thereby, saving addi-
tional power. This enables varying levels of power savings, each with an increasing amount of power saved
but higher latency to resume operation. Sixteen Stop levels can be requested, defined as four ranges of state
loss each, with four levels of “deepness” encoded in the requested Stop level:

• Level 0 - 3: Lowest latency. There is no state loss when PSSCR[ESL] = ‘0’. This can be executed by the
operating system. The SMT thread switch is selectable (via PSSCR[ESL]) when executed by the hypervi-
sor. These levels can be configured to wake up to the next instruction or to SRESET when executed by
the hypervisor (like previous generation idle states). An operating-system request does not involve the
hypervisor. Timing facilities are maintained. The hypervisor can convert an operating-system request into
an interrupt back to the hypervisor. Level 1 is equivalent to the legacy nap mode if executed by the hyper-
visor and doze mode if executed by the operating system. Level 2 clocks off the entire core, thus it is
equivalent to the legacy fast-sleep mode.

The POWER9 processor does not support level 3. Level 3 is reserved as a placeholder to additionally
drop the core to VMIN (minimum operational voltage) if iVRMs are enabled in future system designs.

• Level 4 - 7: Some hypervisor state loss is possible; therefore, its execution is only supported by the hyper-
visor. Timing facilities are maintained. Because PSSCR[EC] must be set to ‘1’, these levels (like legacy
stop states) always wake up to an SRESET vector and not the address of the exception that caused the
wakeup. Level 4 is similar to the legacy deep-sleep state that powers off the POWER9 core for the chip,
with the exception that timing facilities are preserved and the L2 cache also remains running.

35 IVRM Enabled Internal Voltage Regulation Enabled.
Reads from this field indicate whether the chiplet internal voltage regulation is active for localized
voltage control. Note this is a snapshot taken when the PMSR was last written.
0 iVRMs are not currently regulating voltage for this core.
1 iVRM regulation is enabled for this core.

36:59 Reserved Reserved for future enhancements. Set to all 0’s.

60:63 Version Version of PMCR (and PMSR) format supported by the current version of EnergyScale Firmware
running on this system.

Table 23-2. PMSR Description (Sheet 2 of 2)

Bits Field Description

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Power Management

Page 315 of 508

• Level 8 - 11: Quad-level states. All hypervisor states, including timing facilities might be lost. Level 8
clocks off the powered-off cores’ L2 cache so that it has no state equivalent to previous POWER proces-
sors. Level 11 powers off the entire Quad, which is comparable to the legacy deep-winkle state. Level 9 or
10 clocks off but does not power down the entire Quad, which is comparable to the legacy fast-winkle
state and is not supported because the power and latency tradeoff does not warrant its use.

• Level 12 - 15: Reserved for future chip or system idle states.

Not all possible Stop levels are supported by EnergyScale firmware. If a nonimplemented Stop level is
requested, the POWER9 processor enters the next lower implemented state.

Software requests a Stop state per thread. If any thread is still running, the core cannot enter a Stop state.
The core only requests a Stop state based on the lowest Stop state of all its threads (for example, on an
SMT4 normal core, if three threads request Stop state 15 and one thread requests Stop state 2, the core
enters Stop state 2). The CME receives the Stop request and performs the entry (turn off the requested
clocks and/or power). The CME only controls the core chiplet Stop transitions. In Stop states greater than
seven, the CME must ask Stop-GPE (in the OCC complex) for assistance to perform Quad-level Stop states.

Idle state sequencing is almost completely managed by PPE microcode on the POWER9 core instead of
hardware state machines.

23.5.9.1 Wake-Up Events

When PSSCR[EC] = ‘0’, any interrupt causes an exit from the STOP state.

When PSSCR[EC] = ‘1’, only interrupts enabled by PECE fields in the LPCR causes a STOP exit.

When PSSCR[ESL] = ‘1’, any hypervisor state loss that is required for the core to resume execution is first
restored by the hardware before an SRESET is seen by the hypervisor.

23.5.9.2 State Loss and Restoration

Only the hypervisor can initiate state loss with PSSCR[ESL] = ‘1’. The hypervisor is responsible for saving
any nonhypervisor thread context (such as, GPRs, VSRs, FPRs) that must not be lost upon execution of the
Stop instruction and then restore those values after wakeup. On the POWER9 core, the only state that can be
lost for Stop levels less than four, when PSSCR[ESL] = ‘1’ are the following SPRs: CR, FPSCR, VSCR, XER,
DSCR, AMR, IAMR, UAMOR, AMOR, DAWR, DAWRX.

Note: Although some minimal hypervisor state (AMOR, DAWR, DAWRX) might be lost, the POWER9 core
reports SRR1[46:47] as ‘10’; otherwise, the hypervisor cannot distinguish between states when the Timebase
is preserved (Stop levels 4 - 7) versus lost and requiring restoration. This deviates from the description in the
Power ISA (Version 3.0B), which states that any hypervisor state loss should be reported as ‘11’.

Before executing the Stop instruction for levels greater than three, the hypervisor is responsible for calling a
Stop-API supported by the power-management firmware for saving a subset of hypervisor SPR values
necessary to properly execute the SRESET interrupt vector immediately upon wakeup. These values are
restored during wakeup by the power-management infrastructure before the SRESET interrupt is taken by
the hypervisor, appearing as if they were not lost. These registers typically include SPRs important to the
initial processor context such as the HRMOR, LPCR, and HSPRG0. The PSSCR and LPCR are required to
be saved by the hypervisor via the Stop API for Stop levels greater than three. Otherwise, after a special
wakeup the following scenarios might occur:

User’s Manual
OpenPOWER
POWER9 Processor

Power Management

Page 316 of 508
Version 2.1

10 October 2019

• An unintended Stop11 can result while in the Stop state because PSSCR scan flushes to Stop level 15 by
default.

• The wakeup conditions might no longer be honored.

Although not necessarily required for the hypervisor to resume operation, other registers that are supported
by this mechanism include the HMEER, PMCR, HID, MSR, and DAWR. These SPRs, handled by the
StopAPI, are only restored for Stop levels greater than three (for example, calling the StopAPI to save DAWR
does not restore it for Core Stop levels less than or equal to three).

For Stop states less than eight, the timing facilites (TB, VTB, DEC, PURR, SPURR, HDEC) are preserved,
including any state required to maintain operation of those facilities, (such as, RWMR, TFMR, CTRL). Addi-
tionally, the following POWER9 registers are also preserved for states less than eleven: DPDES, SPRC,
SPRD, HMER, HMEER, PSSCR, PMSR, PMSCR, PMCR, L2QOSR.

For Stop states greater than seven, the timer facilities might be lost. Therefore, the hypervisor is responsible
for restoring the timebase and associated timer-based registers after wakeup, as well as all other SPR states.

The CME is responsible for restoring the core and cache scan state and SCOM values, and for causing the
core to restore the previously listed subset of hypervisor SPRs during the wakeup (via a special “self-restore”
step after the core is powered on). System and host firmware is also required to call an SCOM restore API for
any SCOM registers changed during runtime that must be restored on a core or cache power-on during Stop
wakeup.

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Power Management

Page 317 of 508

Table 23-3 summarizes by unit which functions in the Quad are clocked and powered off by the various Stop
levels.

Any Stop levels not listed in Table 23-3 are rounded down to the the next smallest numbered level (for
example, a Stop 9 request is rounded down to Stop 8).

As per the ISA, on wakeup from a core Stop state, SRR1[46:47] on every thread indicates the amount of
architected state lost.

If Stop level ≥ 8, all processor states might be lost and SRR1[46:47] = ‘11’.

Else, if Stop level ≥ 4, or if PSSCR[ESL] = ‘1’, SRR1[46:46] = ‘10’ because the timing facilities are pre-
served, but other hypervisor state loss is allowed.

Otherwise, SRR1[46:47] = ‘01’ because the system wokeup from Stop levels < 4 and PSSCR[ESL] was
not set to enable state loss.

23.5.9.3 Auto-Promote of Stop Levels

The POWER9 cores does not honor the optional auto-promote feature provided in the PSSCR. The
requested level field (PSSCR[RL]) in conjunction with PSSCR[PSLL] is always used. The values in the
maximum transition level field (PSSCR[MTL]) and PSSCR[TR] are ignored in this design.

Table 23-3. Stop Instruction to Unit Mapping

Stop Level Stop 0 Stop 1 Stop 2 Stop 4 and 5 Stop 81 Stop 11

VSU, ISU Instruction Stop Clock off Clock off each
core ≥ Stop 2

Power off ≥ Stop Level 4

IFU, LSU – –

PC, Core EPS – –

L2-EX0 – – – – Clock off if both
corresponding

cores in EX0 are
≥ Stop Level 8

Powered off if
both core pairs
(all four cores)

are
≥ Stop Level 11

L2-EX1 – – – – Clock off if both
corresponding

cores in EX1 are
≥ Stop Level 8

NCU-EX0, NCU-EX1
L3-EX0, L3-EX1
CME-0, CME-1

Quad EPS, DPLL

– – – – –

SRR1[46:47] ‘01’ if PSSCR[ESL] = ‘0’, else ‘10’ ‘10’ ‘11’ ‘11’

1. Currently, Stop 8 is not supported. However, it might be supported in future POWER9 designs.

User’s Manual
OpenPOWER
POWER9 Processor

Power Management

Page 318 of 508
Version 2.1

10 October 2019

23.5.9.4 Latency and Power Savings in each Stop Level

Figure 23-5 shows the relative latency and power saving features of the various supported Stop levels.
Latency is generally exponential with the amount of power saved; therefore, it is described with a logarithmic
scale. These power and latency numbers are estimated targets and are subject to change.

Figure 23-5. Supported Stop Levels

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Power Management

Page 319 of 508

23.5.9.5 Stop Level Examples

Figure 23-6 through Figure 23-9 on page 320 are graphical depictions of the various stop states, using the
high-level Quad diagram in Figure 23-3 on page 303.

Stop states 0 - 7 affect only the processor cores. Stop 0 only stops the core from dispatching instructions.
Stop 1 clocks off a portion of the core, and Stop 2 clocks off the entire core. Stop 4 powers off the entire core,
but leaves the L2 cache and timebase running. Stop 3 is an optional state that might in subsequent designs
support lowering the voltage of a clocked off core to VMIN to save additional leakage power.

See Figure 23-6 for more information.

Stop level 8 is possible only if both cores in the pair are in at least level 8, such that the L2 cache can be
clocked off. For this level, the Stop-GPE is invoked for assistance in controlling L2 unit clocks. The L2 cache
unit is clocked off independently for each core pair. See Figure 23-7 for more information.

Figure 23-6. Stop States (0 - 7)

Figure 23-7. Stop Level 8

Core 0

iVRM
Chip VDD Rail
from external VRMs

Stop2 Clock Off
Core 1

iVRM

Stop 3 VMIN
Core 2

iVRM

Stop 4 Power Off
Core 3

iVRMiVRM

Cache Chiplet

Quad

QuadDPLL

. . .
PFET Header PFET Header

PFET Header

PFET Header PFET Header

Stop 1 Clock Stop

CME0 CME1

Core 0
PPM

Core 1
PPM

Core 2
PPM

Core 3
PPM

Quad
PPM

L2 L2

IFU LSU

iVRM
Chip VDD Rail
from external VRMsiVRM iVRM iVRMiVRM

Cache Chiplet

Quad

Quad

DPLL

. . .
PFET Header PFET Header

PFET Header

PFET Header PFET Header

CME0 CME1

Core 0
PPM

Core 1
PPM

Core 2
PPM

Core 3
PPM

Quad
PPM

Stop 8 Power Off
Core 1

Stop 8 Power Off
Core 0

L2 (Clock Off) L2
L3 L3NCU NCU

Core
Chiplet

Core
Chiplet

Stop GPE

iVRM iVRM

User’s Manual
OpenPOWER
POWER9 Processor

Power Management

Page 320 of 508
Version 2.1

10 October 2019

Both core pairs in Stop level 8 leave the L3 cache running even though both L2 caches are clocked off (see
Figure 23-8).

The deepest implemented Stop level is 11. All five chiplets in the Quad are powered off. This implementation
requires a complete IPL-like restoration of the Quad on wakeup, which includes restoration of the CME
SRAMs (see Figure 23-9).

Note: Deconfigured or “bad” cores are considered to be in Stop level 15.

Figure 23-8. Stop Level 8 (both Core Pairs)

Figure 23-9. Stop Level 11

iVRM
Chip VDD Rail
from external VRMsiVRM iVRM

Cache Chiplet

Quad

Quad

DPLL

. . .
PFET Header PFET Header

PFET Header

CME0 CME1

Core0
PPM

Core1
PPM

Core2
PPM

Core3
PPM

Quad
PPM

Stop 8 Power Off
Core 1

Stop 8 Power Off
Core 0

L2 (Clock Off)
L3 L3NCU NCU

Stop GPE

iVRM iVRM

PFET Header PFET Header

Stop 8 Poweroff
Core 3

Stop 8 Poweroff
Core 2

L2 (Clock Off)

iVRM
Chip VDD Rail
from external VRMsiVRM iVRM iVRMiVRM

Quad

Quad

. . .
PFET Header PFET Header

PFET Header

PFET Header PFET Header

Core 0
PPM

Core 1
PPM

Core 2
PPM

Core 3
PPM

Quad
PPM

Stop 11 Power Off
Core 1

Stop 11 Power Off
Core 0

Stop 11 Power Off
Core 1

Stop 11 Power Off
Core 0

Cache Chiplet

DPLL

CME0 CME1

L2
L3 L3NCU NCU

L2

Stop GPE

iVRM iVRM iVRM iVRM iVRM

DPLL

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Specific Security Features

Page 321 of 508

24. Specific Security Features

Secure boot and security capabilities in the POWER9 processor include those security enhancements made
in legacy designs, as well as several additional features. The POWER9 design includes support for a secure
and trusted boot of the hypervisor through a sequence of verification operations that extend the initial trust in
the hardware and embedded firmware through the remaining firmware components and finally to the hyper-
visor itself. The security design for the POWER9 processor also includes hardware features to protect the
processor state and customer data from unauthorized access once the system is up and running. The
POWER9 design also adds dynamic root of trust for measurement (DRTM) support; a blacklist mechanism to
control access to a sensitive processor state; and a capability to securely dump the processor state in the
event of a checkstop.

Some members of the POWER9 processor family enable the optional secure memory facility (SMF). This
function can be leveraged to create the protected execution facility (PEF). Combined with a trusted and
protected execution ultravisor and co-requisite customizations in the hypervisor, the secure memory facility
enables the creation of protected partitions whose memory or register state cannot be accessed by other
partitions or by the hypervisor. The data integrity of the protected partitions are only dependent on the trusted
ultravisor software constructs and guaranties provided by the secure memory facility in hardware. Hypervisor
customizations are required for launching or operating with protected partitions. However, the aspect of data
integrity is completely detached from hypervisor behavior; that is, as long as the ultravisor and hardware are
implemented correctly, even a malicious hypervisor will not be able to extract any data from protected parti-
tions.

24.1 Secure Boot

The goal of a secure boot is to extend the initial trust in hardware and secure code to each successively
executed firmware and software component so that a chain of trust is established all the way up to the hyper-
visor. Trusted boot refers to a secure boot process in which secure measurements of code and configuration
are maintained, such that a third party can determine the security of the system. Secure boot and trusted boot
capabilities included in the POWER9 design are summarized in this section. The POWER9 processor also
supports a DRTM, or late launch, capability that allows a system to rebuild a chain of trust after the initial one
has been broken.

24.1.1 Secure Boot Sequence

The security threat model for POWER9 systems assumes that the development and manufacturing
processes are secure. Therefore, the hardware itself is trusted. In addition, because it is maintained securely
from the time a system is built, certain firmware is also trusted. That firmware is the security verification code
(what was the security ROM code in POWER8) and the self-boot engine (SBE) code. These code compo-
nents are trusted because their initial image is committed to a secure non-volatile memory (SEEPROM)
during manufacture, and can only be modified by a secure process. The hardware and these firmware
components comprise the initial root of trust for the system.

The flexible service processor (FSP), on the other hand, is not trusted because it is exposed to the network
through potentially weak passwords and to incorrect or malicious use by a sysadmin. Any host code running
on the system that is outside the chain of trust established during boot is also not trusted in our threat model,
including operating systems and application code running within logical partitions. Software can implement
processes to extend trust to additional code components, but that cannot be assumed in designing the hard-
ware.

Serial electrically erasable programmable read-only memory

User’s Manual
OpenPOWER
POWER9 Processor

Specific Security Features

Page 322 of 508
Version 2.1

10 October 2019

To extend the initial root of trust to the boot firmware and hypervisor, the following sequence is used:

1. FSP powers the system on, applies clocks, and then starts the SBE.

2. SBE initializes one core, then loads the bootloader and verification code from the SEEPROM.

3. SBE asserts the instruction_start signal to initiate load and verification of Hostboot on the master core.

4. Verification code authenticates the Hostboot code and then begins to execute it.

5. Hostboot code performs various boot procedures to initialize system components.

6. Hostboot code authenticates and then securely stores core power-restore images (winkle images).

7. Hostboot loads and authenticates the hypervisor, and then begins to execute it.

24.1.1.1 Code Authentication

Trust is extended from one code component to another by having the first authenticate the second. This is
done through the use of cryptographic operations applied to the header and payload of a code container that
contains the code to be authenticated. The container header includes a number of public keys and the signa-
ture of other parts of the container using those keys. The signature is an encrypted hash of some piece of
data. It is authenticated by recomputing the hash, and then decrypting the signature and verifying that the
result matches the hash.

The authentication procedure is summarized as follows. The container is loaded into memory. The code to be
trusted is the payload of the container. It is signed using one or more (up to three) software private keys. The
corresponding public keys are supplied in the header, as are the corresponding signatures. Each signature is
verified by decrypting with the public key, hashing the payload, and comparing the results of these two opera-
tions. If all valid signatures are verified, the code is authenticated with respect to the software keys. However,
the software public keys in the header must themselves be authenticated. The header segment containing
those is signed by one or more hardware private keys, the corresponding signatures and hardware public
keys also being included in the header. Those signatures are verified in a similar way. Finally, the hardware
public keys are validated by hashing them and comparing to a hash that has been placed in the secure
SEEPROM for this purpose. Successful validation of all signatures and keys is required for the code to be
trusted and allowed to execute.

24.1.2 Trusted Boot

The term “trusted boot’ is used to refer to a procedure that not only boots securely, but provides a means of
securely recording the conditions and content of the boot procedure. That secure recording can later be used
by the system to attest to the software that is currently running (and any that has been run since the last boot)
so that a third party (called a remote party) can decide whether to interact with the system or not.

For example, a particular version of the hypervisor that is properly signed can be securely booted and used
on many systems over some period of time. The trust in that code has to do with verifying its source, but does
not imply correctness. If a security vulnerability is eventually discovered in that code, a new version is
released to correct that vulnerability. Now, a third party that needs to provide sensitive information to the
system will want to ensure that the system is running the new version of the hypervisor. Trusted boot of that
hypervisor provides the system with the ability to securely attest to that hypervisor version number.

POWER9 systems use a Trusted Platform Module (TPM) version 2.0 to securely store the measurements
associated with the various software components loaded during the trusted boot. The TPM contains a
number of Platform Configuration Registers (PCRs) that can be used by firmware to securely record
measurements. A measurement is a cryptographic hash of code or other data and is recorded in a PCR by an

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Specific Security Features

Page 323 of 508

“extend” operation to that PCR. The extend operation combines the new measurement with the previous
PCR value to prevent insecure manipulation of these measurements. For this process to be secure, a reset to
those PCR values must always be accompanied by a reboot of the system, and vice versa. In the POWER9
processor, this is guaranteed by the board wiring which connects the TPM reset pin and the processor
standby_reset pin.

The POWER9 processor communicates with the TPM using an I2C bus that is isolated from the FSP. Firm-
ware uses that bus to send commands to the TPM, such as that for extending PCR values, and for obtaining
a secure quote of current PCR values from the TPM. In this way, firmware maintains the PCR values based
on configuration and code measurements that it takes during boot and beyond, and can provide those PCR
values to a third party in a secure manner to support the remote attestation capability. The TPM can be used
for several other security-related functions, including NV storage, random number generation, binding data
and sealed storage. These additional features are available to software with no special hardware support on
the processor chip.

To support trusted boot in a multi-node environment, a secure channel between nodes is needed early in the
boot process so that nodes can exchange cryptographic material (nonces) that can later be used for inter-
node authentication.

In the POWER9 processor, this secure channel is provided by the A-bus connecting each pair of nodes. Each
A-bus link has four sets of mailbox registers associated with it. One of those is dedicated to this secure
channel function, while the other three are available for general use. Hostboot uses the secure channel to
exchange nonces, and then sets a security bit in pervasive to disable the channel. On the POWER9
processor, when this security bit is set, it prevents reads from the security mailbox register on all A-bus links.
The security bit is sticky, such that once it is set, it cannot be reset by host code.

The sequence for making use of this secure channel is the following:

1. Train the A-bus links.

2. Use the security mailbox register on each A-bus link to trade nonces.

3. Assert the security bit to disable reads from the security mailbox on all A-bus links.

4. Set IOvalid for the A-bus links.

24.1.3 Dynamic Root of Trust for Measurement

A DRTM capability allows the system to re-establish trust after some untrusted code has been run, typically
during the boot process. For example, the device firmware required to initialize the boot device might be resi-
dent on the device itself and not otherwise known to or trusted by the system. When this firmware runs during
the boot sequence, the secure boot chain of trust is broken. The DRTM mechanism can then be invoked,
causing the processor hardware to quiesce and then to come back-up through a partial re-boot in which trust
is again established and extended to firmware and eventually to the hypervisor. The DRTM sequence can
similarly be invoked sometime after the initial boot, when for example, a new Linux kernel is to be run such
that its security does not depend on that of the previous version. As in the previous case, the security of the
system after the DRTM operation should not depend on an assumption of trust prior to that operation.

24.1.3.1 DRTM Sequence

The DRTM procedure is implemented by a combination of new hardware mechanisms and changes to the
boot firmware. The primary use case for DRTM is in booting a KVM-based system when untrusted device
firmware is part of that boot sequence. In that case, the boot sequence proceeds as in a non-DRTM scenario,

Inter-integrated circuit

User’s Manual
OpenPOWER
POWER9 Processor

Specific Security Features

Page 324 of 508
Version 2.1

10 October 2019

including initialization of the processor and its interfaces, up to the point that the hypervisor is to be loaded.
The untrusted device firmware is then executed to initialize the boot device. HAL_boot firmware then
performs the following sequence to initiate the late launch.

Firmware Sequence Executed by HAL_boot Running on One Core

The firmware sequence executed by HAL_boot running on one core is as follows:

1. Load Linux/KVM into memory. This is the measured launch environment (MLE) to be authenticated by the
authenticated code (AC).

2. Load the HAL_runtime into memory. This is the authenticated code. The AC must be loaded at a memory
location known to the secure verification code that will authenticate it.

3. Put all other cores on this chip and on other chips in the system into a quiescent state (winkle mode).

4. Quiesce the NX, VAS, PHB, NPU/GPU, and CAPP/CAPI units on all chips.

5. Stop clocks to the OCC unit on all chips

6. Set the primary late_launch bit on this chip, and the secondary late_launch bit on all other chips. These
are bits in the security register in the pervasive unit that when set, initiate the hardware DRTM sequence.
When either of these late_launch bits transitions from ‘0’ to ‘1’, the local_quiesce_achieved and locali-
ty_4_access bits, also in the pervasive security register, are forced to ‘0’.

7. Put this core in winkle mode.

Hardware Sequence Executed by the SBE on Each Chip

The hardware sequence executed by the SBE on each chip is as follows:

1. When the SBE detects the assertion of either late_launch bit, it jumps to the appropriate entry point for
late launch, as specified in the SBE base table in OTPROM. Hardware must ensure that the correspond-
ing code is copied from the SEEPROM, to ensure a fresh copy in PIBMEM.

2. The SBE checks to see that all cores on its chip have been quiesced, by checking a pervasive bit for each
that indicates it is in winkle mode.

3. The SBE code checks to see that the OCC clocks are stopped.

4. The SBE code asserts the quiesce_request SCOM bit in all PHB, CAPP, VAS, NX, and NPU units. With
the cores quiescent, that bit remains asserted until the AC resets it. When the bit is asserted, the I/O and
accelerators must go to a quiescent state and remain in the quiescent state until the bit is reset.

5. Now the SBE checks to see that the chip is quiescent. It checks the quiesce_achieved SCOM bit in each
I/O and accelerator unit. It also checks again the status of each core.

6. Once the system has quiesced, the SBE checks to see that one and only one primary late_launch bit is
set among all the chips. It also checks to see that all other chips have the secondary late_launch bit set. If
these conditions are not met, the SBE forces a checkstop.

7. The SBE sets the local_quiesce_achieved bit in the pervasive security register, indicating that this chip is
quiesced.

8. In a multi-chip system, the SBE now queries the local_quiesce_achieved bit of all other chips, and waits
until all are set.

9. The SBE now sets the locality_4_access bit in the pervasive security register, allowing access to the
locality 4 PCR in the TPM.

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Specific Security Features

Page 325 of 508

10. After the locality_4_access bit is set, each non-initiating SBE (having the secondary late_launch bit
asserted) resets its late_launch bit and exits the late launch routine. The initiating SBE (having the pri-
mary late_launch bit asserted) resets its late_launch bit, scans one core to its IPL image, loads the
DRTM security verification code from the SEEPROM, sets the NIA register in the core and asserts
instruction_start.

The assertion of instruction_start causes the security verification code to start executing from an entry point
specific to this DRTM sequence. This code verifies the AC that was previously loaded, and checks that it has
the appropriate key code for an AC. After the AC is verified, the verification code jumps to it and the AC
begins to execute.

24.2 Protection of Sensitive State

The secure boot process implemented on the POWER9 processor establishes a chain of trust from hardware
and secure firmware to the running hypervisor. When a secure state is reached, it must be protected from
potential attacks by untrusted code running on either host or auxiliary processors. Untrusted host code runs
at a lower privilege level, and so can be controlled by higher privilege code such as the hypervisor. Untrusted
code running on the FSP, which has side-band access to processor facilities through debug interfaces, must
be explicitly controlled by limiting what it can access through those interfaces.

24.2.1 Blacklist for SCOM Write Access

The FSP uses the serial communication (SCOM) mechanism to read and write processor resources that it
must control and monitor to properly boot and manage the system. However, allowing the FSP access to
certain other facilities exposes the system to security attacks. The FSP must therefore request SCOM access
to processor facilities such that untrusted access to sensitive facilities can be blocked.

The filtering of SCOM write requests from untrusted masters, including the FSP, is implemented in the
POWER9 processor by the SBE using a blacklist approach. The blacklist identifies all sensitive facilities that
must only be accessible to trusted masters.

In addition to filtering write requests, the SBE also filters read requests to a short list of facilities contained in
a “read blacklist”. The facilities on this read blacklist are ones that produce a security-related side effect when
read.

24.2.2 Secure Dump

The FSP is prevented by pervasive hardware from scanning the processor before clocks are started to boot
the system, to prevent access to sensitive facilities that might open security holes. Scanning is also not
possible while functional clocks are running. When clocks are stopped due to a checkstop, it is important to
be able to scan out the system state for the sake of debug and diagnostics, but allowing the FSP to do so
presents two potential security risks.

• Allowing the FSP to scan the data gives the FSP access to its content. This risk is considered small, as
the data in the scan rings is not considered sensitive.

• Giving the FSP access to the scan rings allows it to manipulate the content of those rings. This is consid-
ered a significant risk, and so is addressed by the secure dump capability.

User’s Manual
OpenPOWER
POWER9 Processor

Specific Security Features

Page 326 of 508
Version 2.1

10 October 2019

As with the dump procedure in previous systems, the secure dump is initiated by the FSP when a checkstop
occurs. Instead of accessing the scan rings directly, which access is blocked by hardware, the FSP makes a
request to the SBE for the dump of each ring. Using its hardware dump table, the FSP provides the length of
the data it expects to receive. The SBE validates the request before performing the scan operation. If the
request is valid, the SBE provides the ring contents to the FSP. The validation includes checking the ring
length provided by the FSP against the SBE’s own table of scan ring attributes to ensure that the FSP is
requesting a full scan of the given ring.

24.3 Secure Memory Facility

The overall goal of the secure memory facility (SMF) is to provide register and memory isolation of a client
compute stack (such as, a secure VM) from the rest of the untrusted system software stack (such as, an
untrusted hypervisor or other untrusted VMs executing on the same machine). The POWER9 Processor
Programming Model Bulletin provides this facility by implementing a privilege state bit defined as the Secure
[S] bit in the Machine State Register (see Section 3.2.1 Machine State Register of the POWER9 Processor
Programming Model Bulletin). The state bit is used in conjunction with existing privilege-level state bits to
implement a higher privilege state known as the “ultravisor” state, which is defined as S = ‘1’, HV = ‘1’, and
PR = ‘0’. This ultravisor state supersedes the hypervisor state (S = ‘0’, HV = ‘1’, PR = ‘0’) in both system priv-
ilege and trust. Any software executing in this privilege state is known as the ultravisor and its correctness is
critical to fulfill the goals of SMF function, such as register isolation. In addition, the host real address space is
divided up into secure and nonsecure regions, demarcated by a designated host real address bit, thus
providing memory isolation. The PEF requires hardware support in the form of the SMF, ultravisor software
support, and certain customizations to the hypervisor to interact with the ultravisor to create and maintain
protected partitions, which are also known as secure virtual machines. Some members of the POWER9
processor family implement the optional secure memory facility as described in the POWER9 Processor
Programming Model Bulletin.

24.3.1 Protected Execution Facility in the POWER9 Processor

In the virtualized cloud-computing model, client-provided virtual machines (VMs) or logical partitions are often
hosted by third-party open-source hypervisors such as XEN or KVM. Because a hypervisor can typically
access any memory location in the host real address space, as well as observe any residual register state
during a hypervisor call or hypervisor interrupt, all client data is effectively available to the hypervisor. Hyper-
visors are complex with many million lines of code. Over the years, many security exploitations have been
found in hypervisors, whereby user code running under a VM breaks out into the hypervisor via privilege
escalation attacks. Once they compromise the hypervisor from a VM, an attacker can compromise all client
data from all VMs running in a server. Moreover, if the cloud provider is complicit, the hypervisor itself can be
actively malicious and intentionally compromise client data.

The PEF, which leverages the SMF function, provides protection against this type of attack by creating the
abstraction of a protected partition known as a secure virtual machine (secure VM or SVM), preventing the
previously mentioned attacks from extracting any information. To achieve this, the ultravisor privilege layer
intercepts any call or interrupt into the hypervisor, which enables it to clean up the VM’s register state and
provide register isolation before handing off control to the hypervisor. The ultravisor also establishes and
manages memory regions (known as secure memory regions) that are exclusively accessible to trusted parts
of the client computing stack (the applications and operating system belonging to a particular secure VM) and
the ultravisor. This achieves memory isolation of trusted software components. The ultravisor system soft-
ware component is considered trusted. This solution is also referred to as coarse-grain SMF, because this
solution provides isolation at the granularity of an entire VM.

Kernal-based virtual machine

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Specific Security Features

Page 327 of 508

The security claims of the PEF are upheld by a combination of the following:

• SMF facility in hardware which provides:

– Translation-based isolation in the memory management unit (MMU).

– Interception of hypervisor interrupts to ultravisor privilege state in hardware.

• Ultravisor software guaranties:

– Code procedural sequences to conceal state information of secure virtual machines on interrupt
interception.

– Page table structure layout for isolation of secure VMs.

– Checks to be implemented in software as secondary mechanisms.

24.3.2 Deviations from the SMF Architecture Specification in the POWER9 Implementation

Certain architectural features described in the POWER9 Processor Programming Model Bulletin are not
supported, or have restricted use in the POWER9 implementation of the secure memory facility, or deviate
considerably from the description found in the POWER9 Processor Programming Model Bulletin. The
following subsections describe these unsupported and restricted use features, as well as any notable devia-
tions. Note that these deviations have no impact on data integrity guaranties of secure virtual machines
provided by the PEF. The impact of these deviations only results in restricted software implementation
choices or longer code sequences in the ultravisor/hypervisor software stack.

24.3.2.1 Unsupported Instructions: Processor Control Instructions Related to Ultravisor Doorbell
Interrupts are not Available

Ultravisor privileged msgsndu and msgclru instructions described in Section 10.4 “Processor Control
Instructions” of the POWER9 Processor Programming Model Bulletin are unavailable in the POWER9 imple-
mentations that support SMF. Any attempt to execute those instructions results in a system checkstop. It is
recommended that ultravisor developers use msgsnd and msgclr instructions (which are available to hyper-
visor and ultravisor privilege states, and can cause hypervisor doorbell interrupts on targeted threads) in
combination with an ultravisor call on the targeted threads (implemented by “sc 2” instruction) alongside soft-
ware implementation-specific data structures to achieve the end goal of a directed ultravisor interrupt doorbell
if necessary.

24.3.2.2 Implementation Restriction: Only URMOR[13:42] Bits are Implemented

Some members of the POWER9 processor family implement the secure memory facility described in the
POWER9 Processor Programming Model Bulletin. Similar to the HRMOR register, only bits 13:42 of the
URMOR Register are implemented. All other bits are reserved and return zero when read.

24.3.2.3 Implementation Deviation: Move to URMOR Instruction

Some members of the POWER9 processor family implement the secure memory facility as described in the
POWER9 Processor Programming Model Bulletin. The ultravisor privileged mturmor instruction has a
non-compliant implementation, where the instruction machine code of the mturmor instruction is added to
the lower 32 bits of the source register value provided before the mturmor instruction is performed. Hence,
the value to be placed into the source register must be the intended value of the URMOR value subtracted by
the opcode for the instruction.

User’s Manual
OpenPOWER
POWER9 Processor

Specific Security Features

Page 328 of 508
Version 2.1

10 October 2019

An example of this behavior follows:

If the instruction “mturmor r31” (big-endian machine code x‘7FF97BA6’) executes with a value of
GPR31 = x‘8FFF00000’ (there is an extra bit set in the value given the intended value is x‘8FFE0000’),
the value to be moved into the URMOR will be x‘7FF97BA6’ + x‘8FFF00000’ = x‘97FE97BA6’. Because
only bits [13:42] are implemented, the actual value moved into the URMOR will be x‘97FE00000’. Hence,
in this case, the intended value to be moved into the register was x‘8FFE00000’; therefore, the value
(x‘8FFE00000’ - x‘7FF97BA6’) = x‘87FE6845A’ needs to be programmed into GPR31.

24.3.2.4 Implementation Restriction: UILE Bit is not Implemented and is a Constant Zero, Ultravisor
Must Execute in Big-Endian Mode

Some members of the POWER9 processor family implement the secure memory facility described in the
POWER9 Processor Programming Model Bulletin. The implementation-specific UILE bit, defined in Section
3.3 “Ultravisor Interrupt Little-Endian (UILE) Bit” of the POWER9 Processor Programming Model Bulletin, is
not implemented in any special purpose register in the POWER9 processor family. The POWER9 processor
assumes a fixed value of zero. Therefore, MSR[LE] is set to ‘0’ whenever an interrupt that results in an ultra-
visor state occurs. In the POWER9 processor family, the ultravisor software must also ensure that the
MSR[LE] is set to ‘0’ when operating in the ultravisor state.

24.3.2.5 Implementation Restriction: SMFCTRL[62:63] Bits are Restricted to ‘10’ Value Only

Some members of the POWER9 processor family implement the secure memory facility described in the
POWER9 Processor Programming Model Bulletin. The implementation-specific bits [62:63] of the ultravisor
privileged special purpose register SMFCTRL, described in Section 3.4 “Secure Memory Facility Control
Register (SMFCTRL)” of the POWER9 Processor Programming Model Bulletin, must be set to ‘10’ for correct
operation of the secure memory facility when enabled by SMFCTRL[E] = ‘1’ in the POWER9 processor.
Other values can result in an erroneous system behavior.

24.3.3 Secure Memory Bit in System Memory Map

In the POWER9 processor family, host real address bit 15 is designated to differentiate secure versus nonse-
cure real-address access. Bit 15 in the system (host) real address is set to ‘1’ to indicate an attempt to access
secure memory.

24.3.4 Mandatory Software Procedures Followed by Ultravisor for Launching and Maintaining a
Secure Virtual Machine

Because the security guarantees of the PEF are upheld by a combination of ultravisor software and SMF
hardware extensions, it is imperative for the ultravisor to follow certain guidelines and implement certain
checks. The ultravisor software layer can implement additional functions and checks, but the listed items are
a bare minimum necessity.

Table 24-1. System Memory Map for 56-Bit System Address (8:63)

Bit 8:12 Bit 13:14 Bit 15 Bit 16:18 Bit 19:21 Bit 22:63

System Select Memory Select Secure Bit Group Select Chip Select Chip Internal
Address

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Specific Security Features

Page 329 of 508

Even though the architecture and implementation does not limit SMF to only radix translation, it is expected
that SMF will only be used in radix translation mode in IBM products. Therefore, the following discussions
only provide examples relevant to radix translation mode.

24.3.4.1 Essential Elements of Code Sequence to Convert a Non-Secure Virtual Machine into a Secure
Virtual Machine

The actual code sequence to launch a secure VM by converting a non-secure VM might have many addi-
tional steps and actions in an actual implementation. However, the following steps must be present in some
form. Supervisor software from a non-secure virtual machine invokes the ultravisor via an ultravisor system
call (sc 2) with an indication of converting the non-secure VM into a secure VM. Ultravisor code prepares a
VM to transform into a secure VM, which involves moving or copying all or some of its pages into secure
memory and creating duplicates of all the necessary page tables in secure memory. Then, the ultravisor sets
up USRR0/1 to the entry point of the secure VM: USRR0 = “EA of VM entry point”,
USRR1(S, HV, PR) = ‘100’, and performs an urfid instruction.

24.3.4.2 Ensuring Isolation of Register State of a Secure VM from the Hypervisor

This section describes the procedure used to ensure that the isolation of the register state of a secure VM
from the hypervisor by intercepting guest SVM hypervisor privileged interrupts by the ultravisor.

All hypervisor interrupts (hypervisor decrementer interrupt [HDEC], hypervisor instruction storage interrupt
[HISI], hypervisor data storage interrupt [HDSI], hypervisor emulation interrupt, machine check, hypervisor
mediated external) or a software-initiated system call to the hypervisor (sc 1) that causes hypervisor inter-
rupts are intercepted by the ultravisor when SMF is enabled and are routed to an effective address of the
associated interrupt + URMOR offset in ultravisor real mode. Note that on such an intercept, MSR[LE] is
always set to zero, which implies all ultravisor code must be big endian.

Upon invocation of the ultravisor execution context via the previous mechanism, the following steps must be
performed by the ultravisor to ensure that no residual register state from the secure VM is left over for the
hypervisor to access.

1. Save all the context-specific registers that are considered sensitive data and should not be read by an
untrusted hypervisor in secure memory. This includes general purpose registers (GPR), vector-scalar
registers (VSR), floating-point registers (FPR), and any sensitive SPRs such as decrementer (DEC), and
depending on the interrupt type SRR0/SRR1 or HSRR0/HSRR1. The register contents must be saved to
secure memory (RA[15] = ‘1’).

2. Populate the registers saved in step 1 with random values except for (H)SRR0/(H)SRR1, because these
two registers are used to convey information regarding the interrupt to the hypervisor.

Table 24-2. Essential Elements of Code Sequence to Launch a Secure Virtual Machine

VM requesting conversion to secure VM makes an ultracall (sc 2) to the ultravisor.

After performing necessary validation on this ultracall, the ultravisor marks the partition table entry of this partition as secure and begins
editing the entire translation structure of this partition.

The ultravisor moves the data pages and page tables of the non-secure VM into secure memory. This involves moving all the host real
pages into secure memory and also moving all guest and host page tables associated with those translation into secure memory, as
well as editing all necessary table entries to point to the new secure memory addresses.

Set USRR0 = <target instruction address in new secure VM>

Set USRR1(S, HV, PR) = ‘100’

urfid

User’s Manual
OpenPOWER
POWER9 Processor

Specific Security Features

Page 330 of 508
Version 2.1

10 October 2019

3. Encrypt the pages that might be required by the hypervisor and store the encrypted data in the normal
memory area (RA[15] = ‘0’).

4. Update (H)SRR1[S] = ‘1’ before the interrupt is reflected into the hypervisor as if it came from the VM
directly. The S bit in HSRR1 is used to indicate to the hypervisor that this interrupt originated from a
secure VM and did not originate from a non-secure VM.

5. Setup USRR0/1 to reflect the interrupt to the hypervisor: USRR0 = “EA of interrupt”,
USRR1(S, HV, PR) = “010”.

6. The ultravisor performs an urfid instruction to start execution in the HV state at the USRR0 address +
HRMOR value.

7. The hypervisor handles the interrupt.

8. At the exit of the hypervisor, the handler tests the (H)SRR1[S] bit:

– If (H)SRR1[S] = ‘1’: perform an sc 2 (ultravisor call) to return to the ultravisor, because the original
interrupt came from a secure VM.

– If (H)SRR1[S] = ‘0’: perform a (h)rfid instruction to directly return to the non-secure VM.

– Note that if a malicious hypervisor does not implement this step properly, it creates a disruption of
execution but does not violate the memory and register state isolation guaranties.

9. Ultravisor restores the saved registers in step 1.

10. Check that (H)SRR0 (H)SRR1 are still the same as when the interrupt came to the UV (to prevent any
misdirection attack from the hypervisor via returning to a different address in the secure VM).

11. Perform a (h)rfid in the ultravisor to return to the guest secure VM.

24.3.4.3 Ensuring Secure VM Translations for Secure Pages are Immutable by Hypervisor

To ensure that translations to secure memory pages can only be altered by the ultravisor, the following struc-
tures must be maintained within secure memory so that the hypervisor is required to make ultravisor system
calls (ucall) to perform any changes. Hence, ultravisor software can perform the necessary checks. Hard-
ware ensures that the root register for locating the partition table, namely the Partition Table Control Register
(PTCR) is only ultravisor writable. The rest of the conditions must be enforced by the ultravisor software.

1. Partition table is maintained by the ultravisor and must be placed in secure memory.

2. Partition-scoped page tables (used during guest real address translation for the guest operating system)
for a secure partition/SVM must be kept in secure memory.

3. Process-scoped page table (used during translation from a guest application, as well as when the guest
operating system runs with translation enabled) must be kept in secure memory.

Alongside these restrictions, the ultravisor must also ensure that there is no code path in the ultravisor that
can be called by the hypervisor to change the PTCR.

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Specific Security Features

Page 331 of 508

24.3.4.4 Ensuring Secure Memory Region Separation between Different Secure VMs

The ultravisor must ensure that during creation of a secure VM, all of the host real pages that are mapped to
the secure VM belong within the bounds of the allocated area for that particular logical partition within the
secure memory region. This is analogous to how hypervisors maintain partition separation.

In addition to original allocation during creation of the secure VM, the ultravisor must act on behalf of the
hypervisor whenever a hypervisor fault (HISI, HDSI) occurs on the secure memory pages belonging to a
SVM, because the host page tables for secure VMs are located in secure memory. The hypervisor can
perform page table allocation and all policy decisions, but must use an ultravisor system call (sc 2) to ulti-
mately update the page table entries in secure memory.

The ulravisor must check the following when such a page installation is taking place.

1. The LPID for which the translation is being installed is indeed a secure partition as per the partition table.

2. The secure host real address (RA[15] = ‘1’) being installed in a leaf page-table entry must be checked
against the data structures in the ultravisor, which contain the host real-size bounds of each secure parti-
tion to ensure that one secure VM is not overlapping with another secure VM.

24.3.5 Code Sequence to Change Value of URMOR Register

Table 24-3 shows a code sequence that the ultravisor privileged software can use to update the URMOR
value in a core with multiple hardware threads and also potentially across the multiple cores of a system. The
thread changing the value of URMOR is considered to be the master thread while all others are considered to
be slave threads.

24.3.6 Machine Check Conditions Specific to SMF

There are no SMF-specific machine check conditions in the POWER9 implementation.

Table 24-3. Code Sequence to Set Value of URMOR

Master Slave

Thread sync up point 1 Thread sync up point 1

Jump to instruction EA[0] = ‘1’ Jump to instruction EA[0] = ‘1’

Thread sync up point 2 Thread sync up point 2

Change URMOR
(via mtspr on same core, SCOM write to other cores)

Thread sync up point 3 Thread sync up point 3

isync isync

slbia IH = x‘7’ slbia IH = x‘7’

isync isync

Thread sync up point 4 Thread sync up point 4

Jump to instruction EA[0] = ‘0’,
new URMOR value will take effect now

Jump to instruction EA[0] = ‘0’,
new URMOR value will take effect now

User’s Manual
OpenPOWER
POWER9 Processor

Specific Security Features

Page 332 of 508
Version 2.1

10 October 2019

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Performance Profile

Page 333 of 508

25. Performance Profile

This chapter supplements the POWER9 design descriptions and architectural features supported with addi-
tional specifications relevant for software optimization.

25.1 Core

25.1.1 Microarchitecture and Pipeline Overview

Figure 25-1 shows the POWER9 core pipeline functions.

Figure 25-1. POWER9 Microarchitecture

User’s Manual
OpenPOWER
POWER9 Processor

Performance Profile

Page 334 of 508
Version 2.1

10 October 2019

The POWER9 core includes the following features, which are described in further detail in subsequent
sections:

• Instruction fetch of up to eight instructions per cycle from the L1 instruction cache into the processor pipe-
line and buffered into a fetch instruction buffer (IBUF).

• Improved branch predictors for both direction and target.

• Instruction decode, cracking, resource allocation and dispatch of up to six internal-operations (iops) per
cycle. Figure 25-1 on page 333 shows this pipeline shaded in blue.

• Issue of up to nine iops per cycle.

• Execution across four execution slices, each slice contains a floating-point pipeline (DP) that supports
multiply-add, divide, and square-root, as well as fixed-point multiply-add (MUL) and complex (XC) opera-
tions, a pipeline for arithmetic/logical unit (ALU) and simple (XS) operations, and 64-bit store data produc-
tion (ST-D).

• Execution across two execution superslices, that each provide 128-bit dataflow through the execution
slice pipelines and additionally provide: a permute (PM), a 128-bit fixed-point and BCD pipeline (DX), and
a 64-bit fixed-point divide pipeline (DIV). Figure 25-1 on page 333 shows each superslice (shaded in
green); each superslice is composed of a pair of slices.

• Execution pipelines for cryptographic (CY), as well as decimal floating-point and quad-precision floating
point operations (DFU).

• Execution of four load/store address generations per cycle, each broadcast to load/store slices (LS slices)
together with store data from the execution slices. Figure 25-1 on page 333 depicts load/store broadcasts
outlined in blue.

• Execution across four LS slices providing independent access to one of four doubleword slices of the L1
data cache.

• LS slices supporting enhanced store forwarding and local re-issue from the load queue (LRQ) and store
queue (SRQ) to handle cache misses, translation misses, and pipeline hazards.

• A connected cache subsystem providing a dedicated L2 and L3 cache region per pair of cores, as well as
shared and local-castout (LCO) utilization of on-chip caches; providing up to 120 MB of on-chip L3 cache.

• Support for accessing the on-chip accelerator subsystem (NX) via the cut and paste architecture and for
accessing an on-chip random number generator.

• Simultaneous multi-threading (SMT) that allows for up to four threads to share each processor core in
one of three modes: ST (single-thread), SMT2 (up to two threads), and SMT4 (up to four threads).

25.1.2 SMT Modes and Thread Count Sensitivity

Generally, all resources are shared within the pipeline between threads unless otherwise stated. Portions of
the POWER9 pipeline and other resources are partitioned between threads depending on the active SMT
mode.

The most significant partitioning related to threads occurs when more than two threads are active, placing the
core in SMT4 mode. In SMT4 mode, the decode/dispatch pipeline, shown in the blue shaded area in
Figure 25-1 on page 333, is split into two pipelines, each pipeline is three iops wide and each pipeline serves
two threads. The split decode/dispatch pipes each feed one of the two superslices, shown in the green
shaded box in Figure 25-1, providing two execution slices for each pair of threads. The branch slice and
LS-slices are shared between all threads.

Binary coded decimal

Level 2

Level 3

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Performance Profile

Page 335 of 508

Major partitioning of resources between thread modes is further depicted in Figure 25-2.

Additionally, the instruction completion table (ICT), which tracks iops in flight, is statically partitioned between
two threads in SMT2 mode and between four threads in SMT4 mode.

Other pipeline and resource implications of SMT mode are discussed in subsequent sections.

As the number of active cores on the chip drops below the maximum, it is advantageous for the operating
system and hypervisor to preserve only one active core per L2/L3 cache when possible. This has the advan-
tage of providing the entire L2/L3 bandwidth and capacity to a single core as shown in Figure 25-3 on
page 336.

Figure 25-2. Partitioning of Resources Between Thread Modes

8i

6i
Decode

Dispatch
Execution Slice

LS Slice LS 0 LS 1 LS 2 LS 3

3i
Decode

Dispatch
Execution Slice

LS Slice LS 0 LS 1 LS 2 LS 3

T0/T1

T0/T1/T2/T3
T0/T1

I$

Ibuf

Ibuf

T2/T3

Split

Dynamic Assign

Time Sliced

Thread Sharing Key:

3i

8i
I$

ST / SMT2

SMT4

User’s Manual
OpenPOWER
POWER9 Processor

Performance Profile

Page 336 of 508
Version 2.1

10 October 2019

25.1.3 Instruction Fetch

In each cycle, up to eight instructions (4 bytes each) are retrieved from the L1 instruction cache (I-cache),
branch prediction is performed on all valid instructions, and an instruction prefetcher fetches lines specula-
tively to reduce I-cache miss occurrences. The compiler should align critical-code segments (targets, inner
loops) on a quadword boundary.

The fetched instructions are packed eight at a time into the IBUF or bypassed, up to six at a time, into the
decode stage.

In SMT2 and SMT4 modes, fetches are rotated between threads, round-robin style, until the IBUF is full for
the thread. Requests for thread priority at fetch and decode are honored per specification of thread priority
(see Section 4 Power Architecture Compliance on page 51). The POWER9 core also optimizes thread-
priority selection to improve inter-thread efficiency during long latency stall events. By lowering thread priority
during a low-productivity state, additional processing resources are provided to higher-priority threads.

Lowering the priority of a thread to “very low” causes the instruction fetch for that thread to enter a low-energy
consumption state (low-power mode). In low-power mode, each thread performs one fetch of up to eight
instructions approximately every 128 cycles. Low-power mode can also be used as a pacing mechanism for

Figure 25-3. Single Core Active per L2/L3 Cache

LS 0 LS 1 LS 2 LS 3 LS 0 LS 1 LS 2 LS 3
Power Gate

8i

6i

II (32k)

16B store
data to L2

64B reload
from L2

Shared L2: 512k 8W

Shared L3: 10MB 20W

CoreCore

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Performance Profile

Page 337 of 508

thread execution. The context-synchronizing instruction, OR R31 R31 R31, has been implemented to enable
entering low-power mode deterministically and executing instructions with paced execution. Use the following
instruction sequence:

OR R31 R31 R31 // Sets the CSI-bit and requests low-power mode
isync // Causes a pipeline flush due to the CSI-bit being

set to force entry into low-power mode
loop:

<groups of eight instructions> // Each group is executed approximately every 128
cycles

...

OR R2 R2 R2 // Return to normal priority

The I-cache can be accessed on any 16-byte quadword boundary and returns up to two 32 consecutive bytes
per cycle, which results in fetching eight instructions for in-line code. Branch target fetches fetch 5 - 8 instruc-
tions in one cycle depending on quadword alignment, except when crossing a 128-byte cache-line boundary.
Instruction fetches do not span a cache-line boundary in a single cycle.

25.1.3.1 L1 Instruction Cache

Each core contains a 32 KB, 8-way set-associative L1 instruction cache (I-cache). The I-cache is allocated in
128-byte lines with 32-byte sector valid tracking. The replacement algorithm is pseudo LRU. The I-cache is
banked and allows concurrent reads and writes to different banks. The I-cache and associated effective
address directory (EADIR) are accessed using EA bits 52:56 and tagged using EA bits 41:51. Entries in the
I-cache directory are also tagged with MSR bits PR, LE, and HV. The EADIR is used to predict the way selec-
tion for each I-cache access. An EADIR hit that is later determined to be an I-cache miss adds approximately
eight cycles to the base miss latency.

For each thread, aliasing can occur when a given EA(41:56) cache line is required for more than one real
address, or a combination of MSR bits. Only one of the two combinations can be valid in the I-cache for a
given thread at any one time, and an EADIR invalidate is required before fetching the other alias. Multi-thread
EADIR aliasing results when two threads map the same EA(41:56) to two different real addresses or MSR
combinations. When address aliasing occurs between threads, lines are brought in as private to the thread
after first invaliding the existing entries.

On instruction fetches, effective address bits are used to index into the I-cache, the directory, and the instruc-
tion effective-to-real-address-translation (I-ERAT) table. The I-ERAT is a fully-associative 64-entry table and
contains both the effective addresses and the associated real addresses. For an I-ERAT hit, the effective
address of the instruction must match the effective address contained in the I-ERAT entry being indexed, and
the I-ERAT entry must be valid. In addition, the IR, US, HV, and PR bits from the MSR at the time of I-ERAT
miss are stored in the I-ERAT when the I-ERAT is loaded on an I-ERAT miss. These bits must match the
corresponding bits in the MSR at the time of instruction fetch for an I-ERAT hit. The I-ERAT minimum miss
penalty (assuming a TLB hit) is 18 cycles.

The I-ERAT directly supports 4 KB, 64 KB, and 16 MB page sizes. Other page sizes are stored in multiple
entries using the next smaller supported page-size granule.

Least-recently used

Translation lookaside buffer

User’s Manual
OpenPOWER
POWER9 Processor

Performance Profile

Page 338 of 508
Version 2.1

10 October 2019

25.1.3.2 Instruction Prefetch

An instruction prefetch mechanism is used to fetch additional lines after an I-cache miss is detected. The
instruction prefetcher uses the I-cache miss history to make decisions about the depth of prefetching on a per
miss basis, ranging from 0 - 7 lines ahead. The mechanism is not active in SMT4 mode. The bandwidth of the
instruction prefetcher is extended when the sibling core is inactive.

The banked cache design of the POWER9 instruction cache allows a concurrent read and write (as long as
they reference different cache banks), so that writing prefetched lines into the instruction cache does not steal
cycles from the fetching of instructions from the cache.

25.1.3.3 Software-Initiated Instruction Prefetch

An icbt instruction initiates the prefetch of a line into the L3 cache for use by the instruction cache. For
processors on which the static hint bits are enabled, the static hint bits can be used to force an instruction
prefetch by intentionally predicting down the wrong path. Note that the default setting for the POWER9
processor is to ignore the static hint bits. Because this method causes a pipeline flush, it should only be used
when experimentation to demonstrate performance advantage can be performed on the target system. With
this method, some instructions are speculatively executed or processed to some extent by the instruction
fetch logic before they are discarded. The instruction in the (wrongly) predicted path can be used as a hint
instruction to the memory subsystem. For example, software prefetching of instructions from location
“Line_to_touch” can be initiated by forcing a branch misprediction as follows (the “a” bit in the bc instruction
indicates “must agree with static prediction”).

Short distance touches:

bc Line_to_touch // Static prediction taken, but CR bit is set to
“not-taken”

Long distance touches:

bc Next // Static prediction not-taken, but CR bit is set to
“taken”

b Line_to_touch // Initiate prefetch for cache line “Line_to_touch”
Next:... // Instructions in the actual instruction stream

This type of software prefetching is useful if the line to prefetch is in the L3 cache or beyond. Because of the
high penalty for branch misprediction, it might not be beneficial if the referenced line is already in the L2
cache and even harmful if it is already in the I-cache. It is beneficial if the compiler makes special attempts to
schedule code around such a branch that reduces the misprediction penalty. Attempts to reduce the forced
branch misprediction penalty can be made by:

• Setting the CR bit used by the “bc” as early as possible.

• Scheduling such a branch in a code segment, where there are relatively few branches so that the branch
does not wait too long in the branch issue queue behind other branches.

• Trying to overlap a likely D-cache miss with the forced branch misprediction.

• Scheduling such a branch after an existing long chain of flow dependency.

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Performance Profile

Page 339 of 508

25.1.3.4 Branch Prediction

As instructions are fetched, they are scanned for branches. Up to eight branches are simultaneously
processed by the branch prediction logic that predicts both the direction and/or target of the branches,
depending on the branch type.

Branch direction prediction for conditional branches is performed using four branch history tables and a
TAGE predictor. For nonrelative branches, target prediction is performed using a link stack for link returns
and a count cache and pattern cache for other indirect branches. For relative branches, the target address is
computed precisely. All conditional branches are predicted using the branch predictors. An incorrectly
predicted branch results in a pipeline flush after the branch is executed.

The pipeline latency for a predicted taken branch from one of the predictors other than the TAGE is three
cycles, and the latency for a TAGE prediction is five cycles. The POWER9 processor also includes a BTAC
predictor that reduces the predicted branch taken latency to one cycle.

Static branch direction prediction is performed using hints as defined by Power ISA User Instruction Set
Architecture (Book I). Branches that are statically predicted are treated as unconditional branches.

These predictors are described in more detail in the following subsections.

Branch Direction Prediction Using the Branch History Tables

The POWER9 core uses a set of four branch history tables (BHTs) to predict the direction of branch instruc-
tions, supplemented by a TAGE predictor. Each of the four tables has 8K entries:

• Local predictor: Predict branch taken based on history. Indexed by the branch address.

• Global predictor: Predict branch taken based on the path of execution to reach the branch. Indexed with a
global-history-vector (GHV), formed from a taken branch history hashed with the address of the branch.

• Selector: Track which of the local or global predictor results should be used. Indexed by the global predic-
tor index.

• Local selector: Tracks branches predicted well by the local predictor and prevents them from installing in
(polluting) the global predictor. Indexed by the global predictor index.

Unconditional branches (including branches with the BO field set to ‘1z1zz’) and statically predicted condi-
tional branches (such as branches with the “a” bit set to ‘1’) do not have an entry in the BHTs.

Branch Direction Prediction Using the TAGE

While the main BHTs are not tagged, the tagged geometric history length predictor (TAGE) has a 10-bit tag
per entry to uniquely identify the optimal GHV length for a particular branch. The TAGE consists of four
different global history predictors, each uses a different length of GHV. All four predictors are accessed
concurrently and the longest predictor with a matching tag is used. The TAGE maintains a usefulness indi-
cator with each table entry, when the indicator is showing poor prediction, the next longest table is updated.

Branch Direction Prediction Using Static Prediction

The POWER9 core normally ignores any software that attempts to override the dynamic branch prediction by
setting the “a” bit in the BO field. This is done because historically programmers and compilers have made
poor choices for setting the “a” bit, which limited the performance of codes where the hardware can do a

User’s Manual
OpenPOWER
POWER9 Processor

Performance Profile

Page 340 of 508
Version 2.1

10 October 2019

superior job of predicting the branches. However, the “a” bit can still be an important tool for certain perfor-
mance-sensitive cases, such as those identified after careful analysis of branch misprediction on a POWER9
system. To force the honoring of the “a” bit, a change in firmware settings is required.

Incorrect setting of the “at” bits results in a pipeline flush; therefore, setting of the “a” bit should be avoided
except in extraordinary cases where a thorough analysis has been performed.

The following cases are the only suggested uses of the “a” bit. When the “a” bit is set, then the “t” bit of the BO
field specifies ‘1’ for taken and ‘0’ for not-taken. These uses are honored even when the hardware is config-
ured to ignore the “a” bit.

• For the branches that close out a lock acquisition sequence, it is desirable to force the branch prediction
to be not taken. This provides the best performance for the most common case where the lock is suc-
cessfully acquired. Even if the lock is not successfully acquired on this iteration, it is still best for the
branch predictor to behave as if the lock will be acquired in the next iteration.

– Without static prediction, if the lock is not acquired in the first iteration, the branch history mechanism
works to update the prediction to predict taken; that is, predict lock acquisition failure and cause more
“lwarx” traffic for the next iteration. When the hardware detects a l*arx instruction near a static pre-
diction, the static prediction is honored.

top: lwarx
 add
 stwcx
 bc- top <-- POWER9 core predicts this branch to be not taken, through
 software directives that properly set the “a” and “t” bits.

Branch Target Address Prediction Using the Link Stack

The POWER9 core uses a link stack to predict the target address for a branch-to-link instruction that it
believes corresponds to a subroutine return. By setting the hint bits in a branch-to-link instruction, software
communicates to the processor whether the instruction represents a subroutine return, or a target address
that is likely to repeat, or neither (see Table 25-1).

When instruction fetch logic fetches a branch and link instruction either unconditional or conditional but
predicted taken, it pushes the address of the next instruction into the stack. When it fetches a branch-to-link
instruction with “taken” prediction and with hint bits indicating a subroutine return, the stack is popped and
instruction fetching starts from the popped address.

In the POWER9 core, the link stack is 64-entries deep and is split per thread mode: 32 entries per thread in
SMT2 and 16 entries per thread in SMT4 mode.

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Performance Profile

Page 341 of 508

Table 25-1 summarizes the handling of the POWER9 bclr and bclrl instructions.

Branch Target Address Prediction Using the Count Cache

The count cache is used to predict the target address for branch to count (bcctr[l]) instructions and branch-
to-link (bclr[l]) instructions which do not set the BH field to indicate a subroutine return and are therefore not
predictable by the link stack.

The count cache predicts the branch target based on previous target addresses from previous executions of
the same instruction. By setting the hint bits appropriately, software communicates to the hardware whether
the target address for such branches are predictable using a cache. See Table 25-1 and Table 25-2.

Note: The count caches can only be accessed for one branch per cycle. The bcctr[l] and bclr[l] instructions
use the count cache, Therefore, no more than one such branch should be place per aligned 32-byte or
octword block. Other branches that do not access the count cache are still predicted using the other predic-
tors.

The POWER9 core maintains two count cache arrays:

• A global 512-entry array maintaining only the lower 32 bits of the target address (the upper bits are
assumed to be unchanged). It is indexed similar to the global BHT using a GHV hashed with the instruc-
tion address.

• A local 256-entry array with a full 64 bit target address in each entry. It is indexed using the instruction
address.

A 2-bit selector value is stored in the local array to select between use of the local and global caches.

Table 25-1. Handling of bclr and bclrl Instructions

Instruction BH Field POWER9 Design Power ISA

bclrl xx If the branch is predicted taken, the link stack address is used as the
predicted target address; however, the link stack is not popped.

Reserved.

bclr 00 If the branch is predicted taken, the link stack is popped and the popped
address is used as the predicted target address.

The branch is a subroutine
return.

bclr 01 If the branch is predicted taken, the target is predicted using the count
cache. The count cache data and confidence fields might be updated
when the branch is executed and resolved. No action is taken by the
link stack.

Target address is likely to
repeat.

bclr 10 Same as BH = ‘00’. Reserved.

bclr 11 Same as BH = ‘01’. Target is not predictable.

Table 25-2. Handling of bcctr and bcctrl Instructions (Sheet 1 of 2)

Instruction BH field POWER9 Design Power ISA

bcctr, bcctrl 00 If the branch is predicted taken, the target address is predicted
using the count cache. Update the count cache when the branch
is executed, if the branch is resolved as taken. For the bcctrl
instruction, if the branch is predicted taken, push in the link stack
the address of the next sequential instruction when the bcctrl
instruction is fetched.

Target address is likely to
repeat.

bcctr, bcctrl 01 Same as BH = ‘00’. Reserved.

bcctr, bcctrl 10 Same as BH = ‘00’. Reserved.

User’s Manual
OpenPOWER
POWER9 Processor

Performance Profile

Page 342 of 508
Version 2.1

10 October 2019

Branch Target Address Prediction using the Pattern Cache

The POWER9 core also predicts target addresses using a pattern cache, which predicts future targets based
on a pattern relative to previous targets.

The pattern cache is a 256-entry table that is indexed and tagged by the previous instruction target address
and is used to predict the lower 32 bits of the next target address.

When the pattern cache encounters a hit and the usefulness field is above a threshold, the pattern-cache
target prediction is used instead of the address predicted by the count cache.

Branch Target Address Prediction Using the BTAC

The branch target address calculation (BTAC) is used to provide target fetch addresses for the current fetch
group without wasting any fetch cycles due to a delay in a taken branch prediction. That is, the BTAC has a
1-cycle latency versus the 3 - 5 cycles of latency for other predictors.

The BTAC is only active in ST mode.

Obtaining the Next Instruction Address/BC+4 Handling

On the POWER9 core, the preferred method of obtaining the next instruction address is to use the addpcis;
for example, addpcis with a displacement of 0.

Codes that instead use unconditional branches with the link bit set and a displacement of ‘4’ to set the
address of the next instruction into the link register are handled specially. Architecturally, these branches are
taken and go to the next instruction. The hardware handles BCL + 4, with a BO = 20 (unconditional taken) as
a special case. For this special case, the branch is always treated as not taken for fetch, resulting in no fetch
penalty. When the special branch executes, it updates the link register, and does not cause a flush (even
though fetch processed it as not taken and architecturally it was taken). The PMU sees these special
branches as requiring direction prediction, direction predicted correctly, and branch not taken counts.

Branch Prediction Power Down

Branch history tables can be disabled based on sequences of consecutively predicted branches.

25.1.4 Instruction Decode and Dispatch Pipeline

After instructions are fetched from the I-cache, they are decoded into iops and then dispatched to slices for
execution scheduling. The decode/dispatch pipeline can process up to six iops per cycle. In SMT4 mode, it is
split into two independent pipelines, each handling up to two threads and each processing up to three iops
per cycle.

bcctr, bcctrl 11 Same as BH = ‘00’. Target is not predictable.

Table 25-2. Handling of bcctr and bcctrl Instructions (Sheet 2 of 2)

Instruction BH field POWER9 Design Power ISA

Performance monitor unit

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Performance Profile

Page 343 of 508

25.1.4.1 Instruction Buffer

When the decode stage cannot accept all the fetched instructions due to the high fetch rate, or due to stalls in
the pipeline, instructions are stored in the IBUF. This allows the instruction fetch and branch prediction to
proceed during the pipeline stall condition.

Instructions that are not bypassed are written into the IBUF. Bypass from instruction fetch occurs even when
instructions remain in the IBUF, such that six instructions are fed to the decode pipeline each cycle; either
from the IBUF, fetch, or a combination of both. The IBUF holds 96 instruction entries and is partitioned per
thread statically in SMT2 mode and SMT4 mode. Fetch for a given thread does not occur unless there are at
least eight entries available in the IBUF.

25.1.4.2 Effective Address Tracking

The effective address table (EAT) stores branches and retains a correlation of branches to instruction
addresses. The EAT hold 40 entries, 20 entries per thread in SMT2 mode and 10 entries per thread in SMT4
mode. A new EAT entry is consumed for each new 128-byte cache line that is accessed as part of the in-flight
instruction stream and for each predicted-taken branch. Fetch is held for a thread when there are no
remaining EAT entries for the thread, thus limiting the number of predicted-taken branches in flight to 40 for
the core.

25.1.4.3 Instruction Decode/Cracking

Instruction decode maps instructions into iops.

Most instructions in the Power ISA are not cracked and are decoded into a single iop. However, some instruc-
tions are cracked or expanded into more than one iop. There are three categories of instruction
cracking/expansion:

• 2-way crack: the operation is cracked in-line into two decode slots.
– Cracking is done independently per split pipeline in SMT4 mode.
– The cracked iops must decode together. For example, this might cause iops to shift decode to the fol-

lowing cycle if the first iop takes the last decode slot.

• 3-way crack: the operation is cracked into three decode slots that consume a decode cycle; that is, no
additional instructions can be decoded in the same cycle.

– Cracking is done independently per split pipeline in SMT4 mode.

• Microcode expansion: expanded instructions include those that crack into more than three iops or those
that have a variable number of iops.

– There is one microcode expansion engine per core, meaning only one expansion can be decoded at
a time. This engine is shared between the two split decode pipelines in SMT4 mode.

– The microcode expander produces up to three iops per cycle.
– There is a 2-cycle decode startup penalty for each expanded instruction; that is, there are two cycles

in the pipeline for which no instructions are decoded. In SMT4 mode, the decode penalty applies only
to the split decode pipeline on which the expansion instruction is detected.

A listing of cracked and expanded instructions can be found in Table A-1. Instruction Properties on page 375,
by examining the “Instruction Type” column.

When the decode/dispatch pipeline is empty, such as after a pipeline flush condition, the decode/crack pipe-
line bypasses two instructions, skipping one pipeline stage only if they do not require cracking or microcode
expansion. If there were more than two instructions in the fetch group, or if the decode pipe backs up due to

User’s Manual
OpenPOWER
POWER9 Processor

Performance Profile

Page 344 of 508
Version 2.1

10 October 2019

downstream stalls, cracking, or expansion, the subsequent instructions go through the entire decode/crack
pipeline without a stage bypass at the maximum rate. For example, up to six iops per cycle or three iops per
cycle per pipeline half in SMT4 mode.

25.1.4.4 Instruction/IOP Completion Table

The instruction/iop completion table (ICT) tracks iops from dispatch through completion and is allocated at
decode time. Each iop from a crack or microcode expansion consumes one entry in the ICT.

The ICT tracks 256 iops and is split for SMT: 128 entries per thread in SMT2 mode and 64 entries per thread
in SMT4 mode.

25.1.4.5 IOP Dispatch

The iop dispatcher routes instructions to execution slices, the branch slice, and the ICT.

Resource availability per slice can limit which slices are dispatchable or the number of iops that can dispatch
to a particular slice. Required resources for iops to dispatch to a given slice must be available in some cases
in the cycle of dispatch, even if the specific iop does not absolutely require that resource. All iops dispatch as
an execution slice iop with respect to resource requirements, unless they are executed by the branch (BR)
unit as specified in the “Pipe Class” column of Table A-1. Instruction Properties on page 375. The required
slice resources are as follows:

• Execution slice:
– One issue queue entry available
– One history buffer entry available

• Branch slice:
– One issue queue entry available
– One history buffer entry available
– One link/count mapper entry available

When a single slice is busy, it does not preclude dispatch to other slices. If there are not sufficient resources
in any of the slices for an iop, that iop will stall at dispatch for that thread until a resource becomes available.

Up to three iops can dispatch to each execution superslice (pair of slices) each cycle, with each slice
receiving a maximum of two iops per cycle. Certain iops are precluded from dispatching as part of a 3-tuple to
a superslice and can therefore limit the maximum dispatch rate in the cycle in which they are dispatched. See
the “Tuple Restricted” dispatch rule in the following list.

The following list of iop attributes and dispatch rules provide additional requirements and behaviors for
specific instructions. See the “Dispatch Rules” column of Table A-1. Instruction Properties on page 375 for
which of these attributes are relevant for a given instruction/iop.

• Even slice (“E”)- certain operations must be sent only to an even slice.
– For example, this includes instructions that use the DIV (fixed-point divide) engine and SPR instruc-

tions.
– Also consumes odd dispatch slice slot of the same superslice at dispatch
– When a multiple of these instructions, such as a fixed-point divide, are scheduled in proximity and

might be able to execute in parallel, it is ideal to have these instructions balanced between supers-
lices. To achieve an optimal balance of these instructions between superslices, it is suggested to pair
these types of instructions back-to-back.

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Performance Profile

Page 345 of 508

• Vector (“V”) - vector iops (128-bit operand) take only one decode and dispatch slot but are dispatched to
both the even and odd slices of a superslice.

– Both the even and odd slice of a superslice must have resources for dispatch.
– Store-vector instructions are considered as vector for dispatch requirements, whereas load vector

instructions are not.

• Paired (“P”) - certain cracked and expanded iops are paired such that they must dispatch together to the
same superslice.

– Similar to a vector iop, a pair of slices on the same superslice must have sufficient resources for dis-
patch to occur.

• Tuple Restricted (“R”) - certain iops preclude dispatching more than one operation per slice for the super-
slice to which they are dispatched. The following list shows the primary types of operations with this
restriction:

– Load vector operations, unless dispatched with a vector
– Scalar operations with FPR/VSR targets.
– Scalar operations with certain source operand attributes, includes most stores and three

(GPR/FPR/VSR) source operations.

Iops are routed to the execution slices based on slice resource availability and iop requirements. The
dispatcher generally rotates the distribution of iops to each slice, but might bias toward sending particular iops
to the same slice or superslice.

The dispatcher can dispatch up to six iops per cycle, but some of these can be multi-routed to more than one
slice, including 128-bit vector iops (vector dispatch rule) that go to two execution slices (one superslice), and
mf/mt LINK/CNT/TAR that go to both the branch slice and an execution slice.

Load-vector iops consume only one decode and one dispatch slot and can dispatch up to two per superslice.

Branch Slice Iops

Each execution and branch slice can receive up to two iops per cycle, with the maximum total iops dispatched
numbering six. In SMT4 mode, the branch slice can receive a maximum of one iop from each set of three
decode pipes or one branch per two threads.

Operations that are routed to the branch slice include all branch iops, mf/mt LINK/CNT/TAR, addpcis, and
svc.

Dispatch Interlock and Stop Conditions

Pipe drain conditions can stop dispatch for a thread and can cause a dispatch flush in SMT mode to clear the
decode pipe to allow another thread to use the pipe. A dispatch flush removes iops from the decode/dispatch
pipe and causes them to refetch into the IBUF until the stop condition is removed. See the Dispatch Interlock
column of Table A-1. Instruction Properties on page 375.

A list of dispatch interlock conditions follows:

• tlbie, ptesync, tlbsync, eieio must wait for older loads and stores to drain

• tbegin: outer tbegin must wait for a previous transaction to complete

• eieio, tsuspend, tresume, trechkpt must wait for older operations in the pipeline to complete and drain

• Certain SPR access instructions are dispatch scoreboard checkers and must wait for certain older SPR
writers (dispatch scoreboard writers) to drain the pipe

User’s Manual
OpenPOWER
POWER9 Processor

Performance Profile

Page 346 of 508
Version 2.1

10 October 2019

• Certain SPR access instructions must wait for the EAT to be drained

Dispatch Rules Summary

Basic rules are as follows:

• A maximum of six iops can dispatch per cycle.

• Up to three iops can be dispatched to each superslice (even/odd slice pair) each cycle.

• Each vector or even type operation consumes a slot for both slices of a superslice at dispatch.

• Each execution slice and branch slice can receive up to two iops per cycle.

• Dispatching an iop requires at least one issue queue entry and one history buffer entry.

• If it is a branch iop, one additional link/count mapper entry is required.

• NOPs count as one of six per cycle that can be dispatched.

• NOPs and branches consume at least one of the three execution superslice slots, unless there are no
younger execution slice operations that can dispatch concurrently.

• The dispatcher rotates the distribution of iops to each slice subject to various optimizations.

Exceptions:

• In SMT4 mode, the branch slice can receive a maximum of one iop from each set of three decode pipes
or one branch per two threads.

• If it is an even-slice instruction, it can dispatch only to an even slice (example: fx divide, spr instructions)
but also requires that the odd slice be available at dispatch.

• If it is a vector operation (includes vector arithmetic or vector store iop), both slices in a superslice must
be available for concurrent dispatch.

• Paired instructions must dispatch to the same superslice together.

• Certain iops cannot be part of the 3-tuple per superslice, for the superslice to which they are routed; limit-
ing the superslice to receive one iop per slice. The operation set includes load vector (except with vector),
scalar operations with three sources or special restrictions, and scalar writers of FPR/VSR registers.

• Dispatcher biases that are first to send iops requiring both slices of a superslice be together when
allowed by program order.

Optimizing for Dispatch Rate

The available slice destinations are shown in Figure 25-4 on page 347, where:

• The candidate iops for dispatch are shown in the register “pd1”.

• x0, x1, x2, and x3 are the dedicated slice dispatch ports, where each corresponds to one of the four exe-
cution slices.

• b0 and b1 are dedicated dispatch ports into the branch slice.

• The third iop slots per superslice are labeled xa and xb, and correspond to superslice-0 and superslice-1
respectively. The xa and xb ports can be used to send an iop to either of the two slices of the superslice,
but are restricted to iops with only two primary sources.

• A dotted line illustrates the split that occurs in SMT4 mode, where candidate dispatch iops are only dis-
patched to the slice dispatch ports shown on the same side of the line.

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Performance Profile

Page 347 of 508

Optimizing Load-Vector Instructions Example

When interleaving load vectors with nonvector instructions, the compiler should bias toward dispatching load-
vectors in pairs to maximize the dispatch rate. When interleaving load vector with vector instructions, optimal
dispatch rate is obtained when the vector operations and load-vector operations are alternated in program
order.

Similarly, the compiler should bias toward sending scalar iops in pairs or triplets (if they qualify for a 3-tuple
dispatch to a superslice) when they are interleaved with vector operations to achieve the maximum dispatch
rate.

Vector (SIMD) code that includes loads can benefit from pairing load vector operations together and inter-
leaving with vector operations to maximize the dispatch rate. Consider the following example:

Scheduling for a loop with four 128-bit SIMD operations (V1,V2,V3,V4) and four 128-bit load-
vector operations (LV1, LV2,LV3,LV4):

Option A: V1 V2 V3 V4 LV1 LV2 LV3 LV4
Option B: V1 LV1 V2 LV2 V3 LV3 V4 LV4

Option A dispatches as follows in ST and SMT2 modes across a minimum of three cycles

Cycle 1: V1 V2 # note vector dispatch rate limited to 2 per cycle

Cycle 2: V3 V4

Cycle 3: LV3 LV4

Option B dispatches as follows in ST and SMT2 modes across a minimum of two cycles

Cycle 1: V1 LV1 V2 LV2

Cycle 2: V3 LV3 V4 LV4

Optimal scheduling in the example is shown in Option B. The same scheduling is preferred for SMT4 mode.

Figure 25-4. Available Slice Destinations

pd1 i0 i1 i2 i3 i4 i5

x0 x1 xa

x2 x3 xb

even odd
uq - ss0

uq - ss1

brq b0 b1

User’s Manual
OpenPOWER
POWER9 Processor

Performance Profile

Page 348 of 508
Version 2.1

10 October 2019

Note that vector and even routed iops should also be scheduled in pairs to maximize execution bandwidth for
independent operations. Two independent fixed-point divide operations can execute in parallel on each core
if they are routed to separate superslices. This is more probable when the two iops are scheduled back-to-
back.

Optimizing Dispatch for Issue Latency

It is advantageous for dependent iops routed to the PM, DX, and DP pipelines to be routed to the same
superslice, because this minimizes the issue latency of the dependent iop. See Section 25.11 Instruction
Properties on page 372 for additional information.

Placement of dependent scalar DP iops back-to-back in the instruction stream increases the probability for
placement into the same superslice. To increase the probability of being placed in the same superslice,
dependent vector DP routed iops should not be placed back-to-back, because back-to-back placement
increases the chance of not being dispatched to the same superslice.

25.1.4.6 Register Renaming

A register mapper renames target and source registers enabling out-of-order execution. Renaming is
performed for GPR, FRP, VR, VSX, CR, as well as for fields of the XER and FPSCR. A history buffer (HB)
provides a backing store for the previous architected mappings associated with each iop target register being
executed and restores the register state after a pipeline flush.

The HB also serves as the backing store for active TM transactions. The HB tracks the pre-transactional
registers so that they can be restored if a transaction is aborted.

The HB is kept per execution slice and handles the backup of all targets dispatched to the slice. The HB is
partitioned into a primary and secondary level. The primary HB tracks previous targets until after the previous
iop writing the same register is finished. The secondary HB tracks previous targets after the previous writing
iop is finished. Therefore, codes with very high instruction-level parallelism should use multiple target regis-
ters and extend the same register target reuse distance to minimize chances of encountering HB resource
limitations.

HB entries each track 64 bit operations, such that 128-bit target registers are backed up by two entries; for
example, one in each of two slices.

The sizes for each HB are shown in Table 25-3. While there is ample room in the HBs to handle most trans-
actions, if a program writes a very large number of registers in each transaction, they consume HB entries
and can reduce the performance of the transaction, as well as degrade performance of other active threads.

The LNK, CNT, and TAR Registers are renamed to a physical register pool using a mapper with ROB with 20
rename entries.

Table 25-3. History Buffer Sizes

Primary Secondary Total Notes

64 bit GR/FR/VR/VSR 20 per slice x 4 = 80 96 per slice x 4 = 384 464 128 bit targets take two
entries

CR/XER/FPSCR 12 per slice x 4 = 48 12 per slice x 4 = 48 96

Transaction memory

Re-order buffer

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Performance Profile

Page 349 of 508

25.1.5 Iop Issue and Execution Slices

As iops are dispatched to a slice, they are held in an independent slice issue queue until all register sources
and other dependencies have been resolved and they can be issued. Each of four execution slices has a
13-entry iop issue queue and the branch slice has a 16-entry iop issue queue, for a maximum of 68 issueable
iops.

Each POWER9 core includes nine slice issue ports:

• One address generation (AGEN) issue per execution slice (×4)

• One execution (EXEC) issue per execution slice (×4)

• One branch (BR) issue from the branch slice (×1)

In each cycle, each issue port of each slice selects for issue of the oldest eligible iop, if any, from the set of
iops held in its issue queue.

Iops that have 128-bit sources are issued synchronously from both slices of a superslice on the EXEC issue
port. This includes iops that are vector, as well as paired and is indicated in the Issue Synchronization column
in Table A-1. Instruction Properties on page 375. Examples of paired operations include cracked iops
providing 128-bit operands to quad-precision operations.

Store iops are dual issued from a single-issue queue entry to both the AGEN and EXEC issue ports. Store-
vector iops are both vector operations and dual issue operations, such that they are dual issued from one of
the two slices and they perform a data only issue from a second slice. If the store iop’s data source is ready,
the store data can issue to the EXEC issue port as quickly as two cycles after the AGEN issue, or as quickly
as three cycles after the AGEN issue for a store-vector.

Load/store iops issued from the AGEN ports are consumed by one or more LS slices for further processing.
Once accepted, each LS slice takes over responsibility for executing the iop including the finishing of the iop,
as well as the handling of all execution hazards encountered thereafter.

A data and address recirculation queue (DARQ) is provided to stage load/store addresses computed after
AGEN issue and store data computed after EXEC issue, as needed, en route to each LS slice. The DARQ
allows for iops issued for processing in LS slices to be released quickly from the issue queue.

User’s Manual
OpenPOWER
POWER9 Processor

Performance Profile

Page 350 of 508
Version 2.1

10 October 2019

25.1.5.1 Load/Store AGEN Issue

The AGEN port handles iops routed to the following pipelines (see Pipe Class in Table A-1. Instruction Prop-
erties on page 375):

• LD: load iop address generation, headed to load/store pipeline within LS slice

• LD2: +1 cycle to execute versus a normal LD iop
– Includes load string indexed expansions
– Includes lvx, lvxl, lvebx, lvehx, lvewx, when their computed EA(60:63) ≠ 0

• LD3: +3 cycles to execute versus a normal LD iop
– Includes lq, lfdp, lqarx

• ST: store iop address generation, headed to load/store pipeline within LS slice

• ST2: +1 cycle to execute versus the normal ST
– Includes store string indexed expansions
– Includes stvx, stvxl, stvebx, stvehx, stvewx, when their computed EA(60:63) ≠ 0

An AGEN port iop is eligible to be issued in the next cycle on the AGEN port, if in the current cycle:

1. Its sources are ready.

2. It has not been flushed.

3. It was marked as an NTC issue (see Table A-1. Instruction Properties on page 375), the next older ITAG
has completed.

4. DARQ has available entries to hold the AGEN result.

5. If it is a load and if there is an older store on which it is dependent because of LHS/SHL optimization, then
that store agen has been launched in the LSU.

6. The same instruction was not issued in the current cycle.

Next-to-complete

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Performance Profile

Page 351 of 508

25.1.5.2 EXEC Issue

The EXEC port handles iops routed to the following pipelines (see Pipe Class in Table A-1. Instruction Prop-
erties on page 375):

• ST/ST2 data pipeline - per slice (4)
– store data (64 bit/128 bit) issued to the LS slice store queue (STQ)

• ALU/ALU2 pipeline - per slice (4)
– ALU: 2-cycle arithmetic/logical iops
– ALU2: 3-cycle arithmetic/logical iops

• DP/DP-XC/DP-MUL pipeline - per slice (4)
– DP: double-precision iops
– DP-XC: vector complex iops
– DP-MUL: GPR target: fixed-point multiply iops (MUL)
– Supports multi-cycle operations with interleaved issue. In Table A-1. Instruction Properties on

page 375 note the Busy cycles for a count of cycles in which pipelined operations cannot issue while
the multicycles operation is in progress. Figure 25-5 on page 352 shows the interleaving opportuni-
ties for various length multicycle floating-point iops.

• PM/DX pipeline - per superslice (2)
– PM: (128 bit) permute iops
– DX: (128 bit) fixed-point and BCD iops
– Operations issue from both slices synchronously

• DIV/SPR pipeline - per superslice (2)
– DIV: fixed-point divide iops - entries can have a note indicating that the minimum latency is for early-

out scenarios, such as for a power of 2 operand or for a value of ‘0’ operand.
– SPR: used for move-to special purpose register
– Multi-cycle operations only

• CY pipeline - per core (1)
– CY: cryptographic iops

• DFU pipeline - per core (1)
– DFU: decimal floating-point iops and quad-precision floating-point iops
– Multi-cycle operations and pipelined operations

• SPR - per core (1)
– SPR-CTR/LR: move to CNT/LR/TAR registers
– SPR: move to other SPR registers

User’s Manual
OpenPOWER
POWER9 Processor

Performance Profile

Page 352 of 508
Version 2.1

10 October 2019

An EXEC port iop is eligible to be issued in the next cycle, if in the current cycle:

• Its sources are ready.

• It has not been flushed.

• It was marked NTC issue at dispatch, then the next older ITAG has completed.

• It is a store data, then DARQ has room to accept the store data.

• There is not a higher latency operation already in the pipe (already issued from the same slice) that will
produce the result in the same cycle as the one that is trying to get ready to issue in the next cycle.

– There is only one writeback port per issue port such that as iops of different latencies are executed,
only iops which will not produce writeback results at the same time can be chosen for issue.

– The issue selection policy can schedule an iop of compatible length in lieu of an older iop with incom-
patible length.

– The issue selection policy employs an arbitration policy for iops of different execution length and rela-
tive age.

• There is a long latency iop in the pipeline issued from this slice, such as floating-point divide (see Table
A-1. Instruction Properties on page 375 for execution latencies over 13), then there is a cycle where
issue is blocked for other iops to allow dependent iop wakeup.

• For the iop’s execution pipeline, there cannot be a non-fully-pipelined operation causing a busy of the
pipe; for example, DP/DP-XC pipe.

– Non-fully-pipelined iops are identified in Table A-1. Instruction Properties on page 375 as those iops
with busy cycles greater than one.

• If it is a non-fully-pipelined iop (see Table A-1. Instruction Properties on page 375 for instructions with
busy cycles greater then one), there is not another non-fully-pipelined iop executing on the same pipeline;
for example, DP/DP-XC pipe.

• If the same instruction was not issued in the current cycle.

Figure 25-5. Double-Precision Pipeline Multicycle Busy versus Issueable Cycles

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Performance Profile

Page 353 of 508

25.1.5.3 Branch Issue

The BR port handles iops routed to the following pipelines (see Pipe Class in Table A-1. Instruction Proper-
ties on page 375):

• BR: per core (1)
– BR-CR - CR dependency feeding branch pipe.

• SPR: per core (1)
– SPR-CTR/LR - move from CTR/LR/TAR/NIA

A BR port iop is eligible to be issued in the next cycle, if in the current cycle:

• Its sources are ready.

• It has not been flushed.

• It was marked NTC issue at dispatch, then the next older ITAG has completed.

• It is an SPR instruction, then it has arbitrated successfully for a slice writeback port.
– SPR-CTR/LR/TAR/NIA results use a slice writeback port and steal the port as long as there is not

already a longer latency result scheduled for writeback in the same cycle.

25.1.5.4 Execution Pipeline Issue to Issue Latencies

Iops with register dependencies become eligible for issues as the register results are written back, or 1 - 2
cycles before depending on the respective iop pipeline. The pipeline-to-pipeline latencies for dependent issue
between each execution pipeline are shown in Table 25-4 on page 354. When forwarding data between PM,
DX, or DP pipelines in a different superslice, an additional delay of 1 - 2 cycles occurs, depending on the
specific pipeline, as shown in the +SS column of Table 25-4.

The POWER9 core is optimized to exchange data between various data types and registers providing ALU
latency to exchange data between register types including GPR, FPR, VR, VSR, CR, XER; allowing for
optimal movement via register in place of exchanges through storage. This has the effect of reducing the
overhead for spilling registers, such as between GPR and FR.

Additional latency might be required for dependent iop issue in the following cases:

• Iops with a synchronous superslice issue (“S”) subject to a +1 cycle issue-to-issue delay if they are
dependent on the source iop, which did not have a synchronous superslice issue. For example, a 1-cycle
delay might apply to an mtvsrd feeding an xvadddp, but would not apply for an mtvsrd iop feeding an
xsadddp. This additional delay might be hidden by the processor by converting nonsynchronous issue
operations to have the same issue pipeline as synchronous issue operations. When this occurs, the addi-
tional latency between an mtvsrd feeding an xvadddp would not be realized. However, in this mode
loads feeding the nonsynchronous issue operation experience the same latency as feeding synchronous
operations, see Section 25.1.7.8 Load-to-Use Latency on page 359.

• An additional issue delay of +3 cycles can be encountered when forwarding CR, XER, or FPSCR results
between instructions. This delay is captured in the “Additional Latency for CR/XER/FPSCR/VSCR
Source” column of Table A-1. Instruction Properties on page 375. Note that XER has a grouped field,
CA/CA32/OC. For grouped fields, this delay applies when the producing iop is writing a field within the
same group as the source field. See Move-To and Move-From FPSCR on page 354 for additional details
related to latencies incurred for FPSCR exception summary, “sticky” field dependencies.

Next instruction address

Superslice

User’s Manual
OpenPOWER
POWER9 Processor

Performance Profile

Page 354 of 508
Version 2.1

10 October 2019

Move from LNK, CNT, and TAR Registers are executed in the branch slice and have a latency of six cycles.
These iops borrow a write-back port from an execution slice and therefore, consume an issue/writeback slot
from the execution slice similar to an ALU operation. Move to LNK, CNT, and TAR Registers are executed
from the execution slice and have a latency of five cycles. Other move from and SPR instructions are
executed by one of two pipelines:

• LD pipeline: iop issue to dependent iop issue = 14 cycles

• SPR pipeline: iop issue to dependent iop issue = 12 cycles

25.1.6 Iop Execution

25.1.6.1 Execution Pipeline Hazards

XER-SO

The processor core speculates that the XER[SO] bit will not change during execution of operations; for
example, that the SO bit is rarely cleared. When a change to SO is detected, the instruction that changes SO
is flushed from the pipeline once it becomes NTC and is re-fetched for execution.

Move-To and Move-From FPSCR

The processor core manages a mode that speculates on the value of the FPSCR exception/sticky bits. The
core favors speculation that sticky bits are not changing during the pipeline lifetime of sticky field readers,
including certain move-from FPSCR instructions as well as certain move-to FPSCR instructions, see the iops
marked with “F” in the “Next to Complete” column in Table A-1. Instruction Properties on page 375. This
speculative FPSCR mode allows these instructions to execute without delay in an out-of-order fashion. When
sticky field changes are encountered by these iops, they can cause a pipeline flush and the core will enter a
nonspeculative mode for these iops. In the nonspeculative mode, the iops execute when they are next-to-
complete. The processor maintains the nonspeculative mode while sticky changes continue to be observed.

Table 25-4. Issue-to-Issue Latencies between Execution Pipelines

Consumer:
Producer WB AGEN ALU/

ALU2
PM/
DX +SS DP +SS DP-XC +SS MUL +SS DIV CY DFU BR-CR

ALU 2 2 2 2 2 2 2 2 2 2 2

ALU2 3 3 3 3 3 3 3 3 3 3 3

PM 3 - 3 3 3 +1 3 - - 3 3 3

DX 3 - 3 3 3 +1 3 - - 3 3 3

DP 7 - 7 6 +1 5 +2 6 +1 - - 7 7 7

DP-XC 7 - 7 7 7 7 - - 7 7 7

MUL 5 5 5 - - - 5 5 - - 5

DIV 12 12 12 - - - 12 12 - - 12

CY 6 - 6 6 6 6 - - 6 6 6

DFU 12 - 12 12 12 12 - - 12 12 12

BR-CTR/LR/NIA 6 6 6

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Performance Profile

Page 355 of 508

Note: Lightweight move-to FPSCR instructions that only modify the control field of the FPSCR including
mffscrn, mffscrni, mffscdrn, mffscdrni, mffsl, as well as mtfsb0, and mtfsb1 that only update the control
field, will never cause a flush and can always execute out-of-order.

25.1.6.2 FPR Result Forwarding Restrictions

The internal dataflow was optimized for common cases of data type exchange. Certain internal data type
representations are not eligible for fowarding. If forwarding occurs due to an instruction dependency, a flush
is generated. Avoid the following dependent scenarios:

• Convert float-to-integer feeding a floating-point input

• Floating-point output feeding convert integer-to-float

• 64-bit floating-point result feeding a 32-bit floating-point input operand; for example, xvadddp feeding
xvcvspuxds

• 32-bit floating-point result feeding a 64-bit floating-point input operand; for example, xscvdpsp feeding
fadd

25.1.7 Load/Store Processing

Load and store iops are broadcast to the four LS slices on address and store-data buses. Each iop is
received by 1 - 3 of the doubleword (DW) aligned slices based on the computed operand effective address
(EA) and length of the load or store operation as shown in Table 25-5. Each doubleword slice starts at one of
four values of EA bits 59:60, each specifying one of slices 0, 1, 2, 3, and includes bytes from EA(61:63) = 0
through EA(61:63) = 7.

The “Fits in Aligned Doubleword” column (applicable to operations less then or equal to 8 bytes) means that
the EA bits(59:60) of all bytes of the operation are equal; that is, the operation does not cross a doubleword
boundary. Whereas, the column “Aligned to Doubleword Boundary” (applicable to 16-byte operations) means
that the computed operation EA(61:63) = 0; that is, the operation is doubleword aligned.

All operations of less then or equal to 8 bytes that do not cross a doubleword boundary (which includes all
naturally aligned operation sizes) and all 16-byte operations, which are either doubleword or quadword
aligned, consume the minimum number of LS slices for execution: one slice for 8 bytes or less and two slices
for 16 bytes.

For example:

A 4-byte load with EA(59:60) = 1 and EA(61:63) = {0, 1, 2, 3} goes to LS slice 1.
A 4-byte load with EA(59:60) = 1 and EA(61:63) = {5, 6, 7, 8} goes to LS slices 1 and 2.

Table 25-5. Slices per Load/Store Operation

Operation Length Fits in Aligned Doubleword? Aligned to Doubleword
Boundary? Number of Slices

1 Byte - - 1

2 - 8 Bytes Y - 1

2 - 8 Bytes N - 2

16 Bytes - Y 2

16 Bytes - N 3

User’s Manual
OpenPOWER
POWER9 Processor

Performance Profile

Page 356 of 508
Version 2.1

10 October 2019

A 16-byte load with EA(59:60) = 3 and EA(61:63) ≠ 0 starts at LS slice 3 and also goes to LS slices 0 and
1.

25.1.7.1 Tracking Load and Store Ordering

Load iops are tracked by a load reorder queue (LRQ) and store iops are tracked by a store reorder queue
(SRQ) to maintain correct architectural storage ordering and cache coherency. The LRQ and SRQ are shown
in Figure 25-1.

There is one LRQ per pair of LS slices, one for LS slices 0/1, and one for LS slices 2/3. The LRQ tracks each
load iop which is executed in one of its slices and tracks up a 16-byte load in each entry.

A 16-byte load, which is naturally (quadword) aligned, is therefore tracked in a single LRQ entry. Whereas,
16-byte loads that span a quadword boundary are tracked in two LRQ entries; one in each LS slice pair.

The LRQs are two level: the first level (pre-finish) LRQ tracks loads that have not yet executed successfully,
while the second level finish-LRQ tracks loads after they have finished and until they are completed. Each of
the two LS slice pair LRQs has 10 pre-finish and 28 post-finish entries, for a total of 76 LRQ entries per core.

There is one SRQ for each of the four LS slices. The SRQ tracks each store iop which is executed in the slice.
Therefore the number of SRQ entries per iop is given by the number of slices indicated in Table 25-5 on
page 355. Each slice SRQ holds 16 entries for a total of 64 SRQ entries per core.

25.1.7.2 LS Slice Execution

Load/store iops are received by the LS slices and are bypassed to each LS-slice pipeline for execution if the
pipeline is not already processing a previously received load or store operation. When the load/store iop is
not able to execute immediately, it is queued in either the Data Address Recirculation Queue (DARQ) or the
Load Store Address Queue (LSAQ) per LS-slice pair for issue into the pipeline in a future cycle.

Queuing in the LSAQ allows iops to be freed from the main slice issue queues after their dependencies are
met. Dependent operations for load/store iops are issued only after the load/store iop is finally issued into the
pipeline.

Iops that have been executed but encounter an execution hazard, such as an L1 D-cache miss or effective-
to-real address translation for data (D-ERAT) miss are re-issued from their LRQ or SRQ entry back into the
slice pipeline after their hazard condition is resolved. See Section 25.1.7.10 Load/Store Pipeline Hazards for
a complete list of LS-slice execution hazards that are tracked in the LRQ and SRQ entries.

Iop execution takes place in each LS slice independently from each other LS slice, such that iops that are
routed to more then one slice are not completely finished with execution until they are finished in each slice
on which they are executing.

25.1.7.3 L1 D-Cache

The L1 D-cache is the first level of cache available to load and store operations. It is 32 KB and organized as
8-way set-associative with 128-byte cache lines. Half cache lines, with 64 bytes of data each, are supported.

The L1 D-cache is sliced by a doubleword providing four independent ports (one per LS slice) each returning
up to 8 bytes, for a total of 32 bytes of cache access per cycle. The L1 D-cache is reloaded by the L2 cache
at a rate of up to 64 bytes per cycle. The L2 reload bus is dynamically shared with the other core of a core-
pair (when active).

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Performance Profile

Page 357 of 508

The L1 D-cache has eight banks. Cache writes and reads to different banks occur simultaneously from each
LS slice.

When load and store operations execute, they use a set prediction directory (SETP) to reduce cache access
latency. The SETP provides a cache-hit and set selection indication. In parallel to accessing the SETP, the L1
D-cache directory and ERAT are also accessed and are used to confirm the SETP cache-hit and set-selec-
tion.

When a load encounters an SETP hit and ERAT miss, a translation is performed to confirm the SETP predic-
tion. If the translation results in a TLB miss or an SLB miss for a hashed-page table (HPT) translation mode,
the load is flushed from the pipeline and is re-fetched while the translation process proceeds.

When a load encounters an L1 D-cache miss, the following occurs:

• A request is made to the L2 to retrieve the cache line.

• A load miss queue (LMQ) entry is allocated for the cache line or the request is merged into an existing
LMQ entry for a matching cache line.

• An LRQ entry associated with the load waits for the cache line to return from the cache hierarchy before
waking the load back up for re-issue into the execution pipeline.

The LMQ holds 12 cache-line miss requests per core, eight for general loads and one per thread to handle
load-and-reserve operations, which are discussed in Section 25.1.8.1 larx/stcx Instruction on page 365.

If there is already an LMQ entry active for the same cache line, the load becomes dependent on the same
LMQ entry for re-execution, with no limit on the number of loads that are dependent on a particular LMQ
entry. Otherwise, if there are no remaining LMQ entries, the load re-arbitrates for an LMQ entry once an entry
becomes available.

The L1 D-cache is store-through. Stores that miss the cache write into the L2 cache after they are complete,
but do not allocate an entry in the L1 D-cache. If a store hits the SETP/L1 D-cache, it writes the cache once it
is complete as it is being sent to the L2 cache.

A write into the L1 D-cache by a store makes the line private to the thread of the store performing the write. If
any other thread requests to access the line that is marked as private, the line is evicted from the L1 D-cache.
If the request from the other thread was a load, the line is brought back into the cache in a non-private state
available to all threads.

25.1.7.4 D-ERAT

Each pair of LS slices has two D-ERAT structures for performing address translation. The two pairs of
D-ERAT are kept synchronized. Each D-ERAT is implemented as a fully-associative 64-entry array, with a
binary LRU replacement algorithm. D-ERAT entries are created for 4 KB, 64 KB, 2 MB, and 16 MB pages
only. 1 GB and 16 GB pages are broken into 16 MB entries in the D-ERAT, where the installed page contains
the referenced address. Each D-ERAT can support one lookup per cycle and also supports hit-under-miss.

D-ERAT misses are tracked in a 4-entry ERAT miss queue (EMQ). One EMQ entry is allocated per cycle per
core. EMQ entries arbitrate with I-ERAT misses to perform translation. The EMQ holds the ERAT miss while
translation is being performed. After translation has been performed, all D-ERATs are loaded with the new
effective-to-real address translation. Both load and store translations are requested and performed specula-
tively. That is, as iops miss the ERAT during execution, translations are performed and the D-ERATs are
loaded based on the speculative translations.

User’s Manual
OpenPOWER
POWER9 Processor

Performance Profile

Page 358 of 508
Version 2.1

10 October 2019

D-ERAT entries are invalidated based on any tlbie for which a match is architecturally required. For a
256 MB, 1 GB, or 16 GB tlbie invalidate, all D-ERAT entries for the matching LPID/PID are invalidated.

25.1.7.5 Translation Look-Aside Buffer

The TLB has 1024 entries and is four-way associative. It supports translation for both D-ERAT and I-ERAT
misses. The TLB uses a true LRU replacement algorithm.

When any thread is initialized on the processor that supports Radix page table (RPT) mode, the TLB is also
used as a page-walk cache (PWC), which holds individual page table references cached from previous trans-
lations. In RPT mode, the TLB has 512 entries and the PWC has 128 entries for the L1, 128 entries for the L2,
and 128 entries for L3 references. The PWC is implemented as direct mapped.

After a thread is activated with RPT mode active, the processor core TLB remains in the TLB/PWC split
mode.

The TLBs are indexed with a hashed address calculated from portions of the virtual address and the page
size. Each entry in the TLB represents a particular page size: 4 KB, 64 KB, 2MB, 1 GB, and 16 GB, that is, all
page sizes are natively supported in the TLB and consume only one entry.

If a translation request does not hit in the TLB, a tablewalk is initiated that loads the TLB and either the
D-ERAT or I-ERAT depending on if it was a load/store data access or instruction access respectively. Up to
two outstanding tablewalks can be active at one time. The implementation allows tablewalks for speculative
instructions but does not update the Ts or change (C) bit in a PTE entry unless the instruction is NTC when
the PTE entry is found. The TLB is reloaded with the corresponding PTE entry even if the instruction that
requested the translation is speculative.

If a store misses the TLB after missing translation, and the C bit is not on, then a second tablewalk is done
after the iop is NTC, so that the C bit can be updated.

There are four 32-entry SLBs, one per thread, that are accessed before accessing the TLB during HPT mode.
If there is an SLB miss, a segment tablewalk is performed. Four entries of the SLB are architected and can be
loaded by the software (one per thread). The SLB supports FIFO replacement for the other 28 entries.

25.1.7.6 Store Forwarding

As loads are issued into each LS-slice pipeline, they check each SRQ entry for older stores on which they are
dependent (that is, for stores with overlapping address ranges). A load-hit-store (LHS) is when an overlap-
ping store is found. When a store with an overlapping EA(44:63) is found, the load is identified as a candidate
for store-forwarding and its execution is delayed by two cycles, allowing store forwarding to take place. Any
iop selected for issue within the same LS slice that collides with the execution of the two-cycle delayed iop, is
also delayed by two cycles, instead of being rejected or recycled for future execution. This allows for a fully
pipelined execution of iops that are able to perform store forwarding.

In addition to matching EA(44:63) bits between a load iop and a STQ entry, the rest of the EA, as well as the
RA, is also compared to confirm the store forwarding condition. When the RA compare matches between a
load and the store but the EA compare does not match, or vice-versa, and store forwarding was not restricted
due to another reason, then the load iop is flushed from the pipeline and re-fetched for execution.

Store forwarding is supported within each LS slice by taking overlapping bytes from a single store and non-
overlapping bytes from an L1 D-cache hit. However, in the following cases, store forwarding cannot take
place:

Page table entry

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Performance Profile

Page 359 of 508

• Forwarding is required from more than one store per LS slice; for example, different byte ranges within a
single LS slice are being stored to by more than one store iop. The load iop must wait for an overlapping
store to drain from the STQ after completion and be written to and read from the cache hierarchy before it
is able to successfully execute.

• Forwarding is required from both a single store in the STQ-slice, and from non-overlapping bytes of the
same cache line but the cache line data is not in the L1-D-cache; for example, an L1-D-cache miss. The
load iop must wait for the store to drain and for a miss condition to bring the updated line back into the L1
D-cache.

• If the load iop or store iop are on pages that are caching inhibited or guarded.

To increase store forwarding opportunities, stores are kept in the STQ after they are drained when they were
an L1 D-cache miss to allow for loads to perform store forwarding. These stores are evicted from the STQ if
their STQ entry is required by younger executing stores.

25.1.7.7 Out-of-Order Load/Store Execution

As stores execute they check each LRQ entry for the corresponding LS slice for any younger loads accessing
overlapping bytes of storage that have already accessed the cache or generated a cache miss. Any matching
loads are flushed from the pipeline and re-executed. Such a condition is called store-hit-load (SHL) flush.

To avoid the SHL flush condition, the POWER9 core has mechanisms to restrict load execution ahead of
older stores, as in the following cases:

• When a load detects an older store in the pipeline with a matching base register and displacement and/or
base and index register, an execution ordering dependency is created between the load and the older
store. This mechanism is subject to the distance of the load from the store.

• When a load at the same instruction EA has previously encountered an SHL flush. Upon re-execution, the
load is made dependent on an older store. This mechanism is not employed for load-string and load-mul-
tiple. This mechanism is subject to the distance of the load from the store.

Because of the risk for an SHL flush, compilers should generally avoid producing loads dependent on older
stores in near proximity, especially those where the base and displacement, and/or base/indexed registers do
not match.

25.1.7.8 Load-to-Use Latency

Iops dependent on register results from older loads are able to issue with a nominal issue-to-issue latency of
four core cycles. Table 25-6 lists the full set of issue-to-issue latencies for various iop types and alignments
when data is resident in the L1 D-cache or is available to be forwarded from an older store. Each of these
latencies is further dependent on the actual LS-slice execution time per the description in Section 25.1.7.2 LS
Slice Execution on page 356.

User’s Manual
OpenPOWER
POWER9 Processor

Performance Profile

Page 360 of 508
Version 2.1

10 October 2019

Dependent iops that have a synchronous issue, including iops marked as having vector-dispatch and/or
paired-issue in Table A-1. Instruction Properties on page 375, have a 5-cycle nominal issue latency after the
load issues. Nonsynchronous iops that are concurrent in the execution pipeline together with synchronous
iops can be issued with synchronous issue latency, nominal five cycles, to improve pipeline usage.

Load iops that take more then the minimum number of LS slices due to alignment, see Table 25-5 on
page 355, have a 6-cycle nominal issue latency to a dependent iop issue of any type.

Load iops that cross a 32-byte aligned granule take an additional three cycles to execute.

Note: The effective issue latency for single-precision floating-point load iops and load algebraic iops feeding
dependent instructions is increased because they are cracked instructions. Each instruction is cracked into a
load iop followed by a conversion iop that takes an additional two cycles to execute before a dependent
instruction can issue.

25.1.7.9 Load/Store Throughput

Each of the two LS-slice pairs is capable of executing the following iops per cycle:

• An 8-byte load/store per slice; for example, either two doubleword contained iops or one iop spanning
both slices

• A combination of any one load iop and any one store iop, each spanning one or both slices
– For example, includes one 16-byte load and one 16-byte store per cycle per LS-slice pair if quadword

aligned
– For example, includes one unaligned 8-byte load and one unaligned 8-byte store per cycle per LS-

slice pair

After they complete, stores are drained from each LS-slice STQ at a rate one iop (8 bytes) per cycle per STQ
into a 16-entry per core store drain queue (S2Q), with each entry holding up to 16 bytes. For example, store-
vector and store-quad instructions can store up to 16 bytes per cycle. The stores are then pipelined through a
core interface unit queue (CIU-STQ) to the L2 STQ at a rate of one instruction per cycle, up to 16 bytes, into
two L2 STQ banks, even and odd lines.

In the L2 STQ, the stores are gathered before writeback of up to 128 bytes per 2:1 clock.

Table 25-6. Load Issue to Dependent Iop Issue Latencies for L1 Hit or Store Forwarding

Load Iop Dependent Iop Nominal Latency
(core cycles)

Additional Latency
(core cycles) Notes

Base Nonsynchronous Issue 4 -

Base Synchronous Issue 5 - 128-bit Operand
Dependent Iops

≤8 bytes and Does Not
‘Fit in Aligned DW’

- 6 -

16 byte and
Not ‘DW Aligned’

- 6 -

Crosses Aligned 32-byte
Granule

- - +3

Store Forwarding - - +2

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Performance Profile

Page 361 of 508

The store drain interface to the L2 CIU STQ is private to a given core, but shares L2 STQ entries with the
other core of the core pair, allowing up to 16 bytes per core to drain to the L2 STQ when stores are going to
different L2 STQ banks. The two CIU STQs maximize their unload rate by searching for even/odd bank
entries that can be unloaded in the same cycle.

In the L2 STQ, the stores are gathered before writeback to the L2 cache of up to 128 bytes per 2:1 clock. This
allows stores with line locality to sustain a drain rate of 16 bytes per core into the L2 cache.

Note: When a load is detected as overlapping a store in the L2 STQ, the STQ entry is marked for quick write-
back to allow the load request to be processed.

Figure 25-6. Store Drain Path from Core-to-L2 Cache

SRQ SDQ

DW1/5

LSU

DW2/6

LSU

DW3/7

LSU

DW0/4

LSU

Core 0 Core 1

SRQSDQ

LMQ S2Q
16 Entry x 16B

CIU STQ

Shared L2: 512k 8W

Shared L3: 10MB 20W

DIR

Store Data

LMQS2Q

Check Dir:
miss @ agen

store hit reload

SRQ SDQSRQSDQ

8B x4

Core-0 Q
6 Entry + 1 MB

Even Lines
16B

16B

L2 STQ
Odd Lines

24 Entry (1 stcx)
64B Gathering

16B

Odd Lines
16B

64 B / cycle

STQ:
16 x 8B

L2 STQ
Even Lines

24 Entry (1 stcx)
64B Gathering

D$ DW0

Write
for Hit

STQ:
16 x 8B

D$ DW1

Write
for Hit

STQ:
16 x 8B

D$ DW2

Write
for Hit

STQ:
16 x 8B

D$ DW3

Write
for Hit

8B 8B 8B 8BDIR
Check Dir:

miss @ agen
store hit reload

Core-1 Q
6 Entry + 1 MB

128B (Clustered drain of 2 entries)

CIU Load Q
Detect LHS

Core-0 CIU STQ

6 Entry + 1 MB

Core-1 CIU STQ

6 Entry + 1 MB

L2 STQ
Even Lines

28 Entry (1 stcx)
64-byte Gathering

L2 STQ
Odd Lines

28 Entry (1 stcx)
64-byte Gathering

User’s Manual
OpenPOWER
POWER9 Processor

Performance Profile

Page 362 of 508
Version 2.1

10 October 2019

25.1.7.10 Load/Store Pipeline Hazards

The following conditions detected in the load/store pipeline result in a pipeline flush at or after the problem
instruction:

• SETP hit but tag miss, see Section 25.1.7.3 L1 D-Cache on page 356.

• TLB miss after an SETP hit, ERAT miss, see Section 25.1.7.3 on page 356.

• TLB miss followed by SETP/L1 D-cache miss, ERAT miss; invalidate or eviction in translation window.

• Load-hit-store flush: RA does not match, but forwarding was selected, see Section 25.1.7.6 Store For-
warding on page 358.

• Store-hit-load flush: Older store executes after younger load to same address, see Section 25.1.7.7 Out-
of-Order Load/Store Execution on page 359.

• Cache inhibited load (I = ‘1’) detected in PTE entry (not explicit cache-inhibited instruction).

• Out-of-order larx detected for same thread

• Snoop or store from the other thread, invalidates the younger load data while the older load in the pipeline
is flushed.

• SAO mode: Snoop or store from the other thread invalidates the younger load data while the older load to
same address in the pipeline is flushed.

• Snoop or store from other thread invalidates part of load-quad

• Snoop or store from other thread invalidates load while sync is pending

• Snoop or store from other thread invalidates load while tend is pending

• TLBIE snoop response expedited and flush impacted stores and load misses

• ECC: UE on data from memory

25.1.7.11 64-Byte Cache-Line Data

The POWER9 core implements a memory controller with adaptive behaviors to manage high-memory band-
width utilization effectively. One of these features is the capability to fetch only 64 bytes of data (half cache
lines), instead of the normal full cache-line size of 128 bytes of data from the memory when memory band-
width utilization is very high.

The processor core is responsible for indicating on all cache-hierarchy requests if the request is allowed to
return as 64 bytes; for example, 64B_ok. When this 64B_ok indication is not set, the memory controller must
return the full 128-byte cache line. Additionally, the processor dynamically forces the 64B_ok indication to ‘0’
to optimize performance. The 64B_ok indication is set to ‘0’ in the following cases; otherwise, it is set to ‘1’:

• Instruction fetch
• Data prefetch
• Translation tablewalks
• IOP crosses 64-byte granule
• Larx
• Partial hit in the L1 cache
• Control register specifies require-128B

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Performance Profile

Page 363 of 508

25.1.7.12 Data Prefetch

The data prefetch engine can recognize sequentially increasing or decreasing accesses to adjacent cache
lines and then request anticipated lines from more distant levels of the cache/memory hierarchy. The useful-
ness of these prefetches is reinforced, as repeated demand references are made along such a path or
stream. The depth of prefetch is then increased until enough lines are being brought into L1, L2, and L3 that
much or all of the load latency can be hidden. The most urgently needed lines are prefetched into the nearest
cache levels.

Data Prefetch Features

• Eight active streams tracked

• EA based

• Software eDCBT/ST control support

• L1 and L3 prefetching

• Stride-N detection

• Duplicate stream removal

• Finite stream length support

• Full LRU

• Full set of user controls (HID, LPCR, DSCR, SCAN)

• Fully pipelined, 4 prefetches in-flight in core

• 32 prefetch engines in L3 shared by up to two paired cores

• Bandwidth sensitivity controls: adaptive prefetch

Track all Load and Store Addresses to Identify Stream Patterns

The prefetch subunit tracks load and store addresses using a register file referred to as the prefetch queue
(PRQ). Loads that miss the L1 data cache, and which do not appear to be part of an existing stream that the
PRQ is already tracking, are eligible for consideration to be added to PRQ as a new potential stream to track.
This is referred to as allocating a new stream. When streams are allocated, the address of the next predicted
cache line in the stream is written into the PRQ.

After a stream has been allocated, subsequent loads and stores that match the next predicted address in the
stream are said to confirm the stream. This confirmation results in an update to the PRQ for that entry. The
entry is updated to the address of the next predicted in the stream.1

During stream start up (allocate), a burst of lines can be requested from the memory subsystem, depending
on the measured confidence. After a steady state is achieved, each stream confirm causes the engine to
bring one additional line into the L1/L2 cache, and one additional line into the L3 cache.

1. The stream is always assumed to be going up in address space on an allocate (for example, N+ 1). However, if the next
sequential load is going downward (for example, N-1 is seen), the stream direction is reversed. This reversal can happen
again (for example, if N+1 is seen again), the stream direction is then reversed to an upward direction again.

User’s Manual
OpenPOWER
POWER9 Processor

Performance Profile

Page 364 of 508
Version 2.1

10 October 2019

PRQ tracks load and store addresses as they are accessed by the program. After a pattern has been identi-
fied and a stream is established, the prefetch subunit begins making L1/L3 prefetch requests by injecting into
one of the LS-slice execution pipes for a single cycle and inserting the L1/L3 prefetch address into the data-
flow. If the prefetch hits the L1 data cache, it is discarded.

L1 prefetches are then placed in the LMQ and the request is sent to the memory subsystem to bring the data
back into the L1/L2 cache. L3 prefetches bypass the LMQ and are sent to the memory subsystem using the
shared translate interface. Unlike L1 prefetch requests, the L3 prefetch requests only indicate to the memory
subsystem that the data should be brought into the L3 cache.

Adaptive Prefetching

The POWER9 core implements a memory controller with adaptive behaviors to manage high-memory band-
width use effectively. One of these features is the capability to drop prefetch requests based on the demands
for memory bandwidth observed at the memory controller.

The data prefetcher is designed to provide guidance to the memory controller to control the priority per
prefetch, by assigning a confidence level to each prefetch request. This allows the memory controller to drop
less confident prefetches while holding on to more confident prefetches, depending on the extent of memory
bandwidth contention. The data prefetcher predicts the confidence based on stream and program history.

The data prefetcher is able to identify phases of program execution where prefetching might be more effec-
tive. It uses this information, and also receives feedback from the memory controller to assist with making
decisions about the ramp (how many prefetches to send relative to the number of confirms), and the depth
(how far ahead to prefetch).

Adaptive prefetch assists programs in achieving optimal performance without detailed prefetch tuning.
However, for data sensitive programs, it is recommended to perform prefetch tuning to achieve optimal
performance. A DSCR URG setting of ‘1’ forces the machine into the most conservative adaptive prefetch
mode. Conversely, a DSCR URG setting of ‘7’ precludes the adaptive mechanism from entering a conserva-
tive mode of operation.

As streams are detected, initial prefetches are sent out to look ahead; initially between 0 - 4 lines depending
on urgency and the adaptive prefetch state. As load and store addresses for subsequent operations are
detected to align with the ongoing stream, the stream is advanced. The stream can move ahead of the
current load/store address position to a maximum depth, which is configurable. The default is between 4 - 24
lines ahead depending on the DSCR DPFD setting and SMT mode (other depths are available based on the
configuration).

Stride-N prefetching on the POWER9 processor operates in all SMT modes. The hypervisor and operating
system should initialize the DSCR with stride-N active.

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Performance Profile

Page 365 of 508

25.1.7.13 Software-Initiated Data Prefetch

The dcbt TH = ‘0’ and dcbtst instructions cause a single-line prefetch (dcbt into the L1 cache and dcbtst
into the L3 cache).

The dcbt/dcbtst TH = x‘8’, x‘B’, x‘A’ values identify start and stop streams that bring data into the L1 cache:

• A stream takes a PRQ entry

• Streams can specify a finite length (UNITCNT) or unlimited. If the UNITCNT is never reached, the stream
stays active occupying a PRQ entry until it is converted to a software stream on a context switch.

• At creation, software streams initiate prefetches until either the specified depth (as indicated in DSCR or
LPCR DFPD) is reached or the UNITCNT is reached, which ever comes first.

• Software streams are converted to hardware streams as follows:

– On a context switch
– When prefetch stop is indicated
– When the UNITCNT is reached

• Transient indication impacts L3 cache replacement, biasing toward being more easily replaced when set.

In practice, scheduling the prefetch (dcbt/dcbtst) far enough ahead for misses is challenging due to aggres-
sive pipelining. To hide the latency of a memory miss, a long stream or a long lead time is required to start
prefetching. However, when used effectively, software prefetch streams are a very powerful tool for boosting
performance.

Software streams can also be used to guarantee that a particular stream of importance is allowed to gain
maturity and remain active and not be evicted if it is deemed critical. This is because the software streams are
able to stay resident and are eligible for eviction from the PRQ until they are either stopped or encounter a
context switch.

DCBZ

The dcbz instruction enables invalidation and zeroing of lines before storing to them, which reduces traffic to
the memory controller and reduces time to ownership of a line. The dcbz instruction is a powerful tool when
software knows that a line is fresh (writable) without consequence.

The best practices are to issue the dcbz ahead of where stores will occur to a region.

25.1.8 Special Instruction Sequences

25.1.8.1 larx/stcx Instruction

Load reserved and store reserved sequences give the programmer/compiler the ability to share storage in an
effective manner by exchanging locks and updating atomic variables between program threads.

The POWER9 core has improved lock performance for both uncontested and contested locks. However, care
must be taken to follow the coding guideline reservations.

User’s Manual
OpenPOWER
POWER9 Processor

Performance Profile

Page 366 of 508
Version 2.1

10 October 2019

EH Bits

The EH hint bits are honored by the POWER9 core and should be used diligently to distinguish between:

• Critical sections (EH = ‘1’), where the lock-line is held while work is performed and the lock will later be
released with a store to the lock granule.

• Atomic updates (EH = ‘0’), where a passing stcx completes the use of the lock.

If the correct usage is unknown, the compiler should set the EH hint bits to favor the atomic update case.

Contested Locks

Contested locks should be kept on separate and unique lines relative to shared data. To achieve this separa-
tion might require padding by the programmer. This allows the locks to be contested by the caches without
the side effect of the lock granule false sharing in the same cache line as the critical section data. Looping on
a contested lock is a common strategy. While looping, it is preferred to poll the lock with a load and then
attempt a larx instruction after the lock is free. It is also common to go into a lower-thread priority state while
polling. However, priority NOPs should be avoided within the inner polling loop, and instead the NOPs should
be inserted before starting and after exiting the polling loop.

25.1.8.2 icbi Instruction

The icbi is treated as a NOP on the POWER9 core, except that it provides isync with the required synchroni-
zation around storing into the instruction stream.

25.1.8.3 isync Instruction

An isync pauses briefly at NTC to check if any special conditions have occurred. If no special conditions have
occurred, it completes with no effect. However, if a special condition has occurred since the last flush of the
pipeline, all subsequent instructions are flushed from the pipeline and re-fetched.

Some isync special conditions are as follows:

• Store invalidate to I-cache

• CSI required by move-to SPR scoreboard operations (see Power ISA Operating Environment Architec-
ture - Book III (version 3.0B) for CSI registers)

• Set by the following operations when they are NTC: icbi, ptesync, tlbie, tlbiel, slbie, slbia, mtsr, mts-
rin, slbmte

25.1.8.4 ptesync Instruction

A ptesync is held at dispatch until all loads have been executed; for example, including no outstanding load
misses. It synchronizes at NTC with the L2 cache to ensure that no snoop or store from another thread
matches any of the loads in the pipeline. If any does match, it causes a flush of the pipeline and a refetch of
subsequent instructions.

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Performance Profile

Page 367 of 508

25.1.8.5 sync Instruction

The sync (hwsync) instruction synchronizes at NTC with the L2 cache to ensure no snoop or store from
another thread matches any loads in the pipeline. If a match is detected, a pipeline flush occurs along with a
refetch of the subsequent instructions.

25.1.8.6 eieio Instruction

An eieio instruction is held at dispatch until all loads have been executed; for example, including no
outstanding load misses. Cache-inhibited loads are rejected when an older eieio is active in the pipeline.

25.2 Cache and Memory Hierarchy

Each L2 and L3 cache are connected to a pair of processors and also to other caches and services on the
chip through a fabric bus. Both caches support 128-byte cache lines and also support 64-byte cache line data
valids allowing for half cache-line memory reads. Cache coherency is maintained on a 128-byte line size.

When the processor core requests the invalid portion of a 64-byte valid cache line, the L2 or L3 cache
performs a read of only the other half of the cache line from memory and returns the entire 128-byte cache
line to the L1 cache.

25.2.1 L2 Cache

Each L2 cache is 512 KB and 8-way set associative with fast access to its own private 10 MB L3 cache region
through a private low-latency bus. The L2 cache maintains full hardware coherence within the system and
can supply intervention data to the other cores on this POWER9 chip or to other cores on other POWER9
chips. Logically, the L2 cache is an in-line cache. Unlike the L1 caches, which are store-through, it is a store-
in cache. The L2 cache is fully inclusive of the L1 D-caches and the L1 I-caches.

The L2 replacement policy uses an LRU with a vector-tracking tree that includes cache-invalidate state
biasing and takes L1 access updates from each core.

The L2 cache is dual-banked, even versus odd lines, and can support a read to one bank while performing a
write on a different bank.

On an L2 hit, the L2 cache returns data to the core at a rate of 64 bytes per core cycle, installing a full cache
line over two back-to-back core cycles. On an L2 miss, the L2 cache returns 32 bytes per core cycle.

25.2.2 L3 Cache

Each L3 cache region on the POWER9 chip is a unified victim cache for its respective core/L2 cache, as well
as for other L3 caches on chip. The resident cache lines installed from the attached L2 cache are referred to
as L3.0 lines, and the resident cache lines installed from other on-chip L3 caches are referred to as L3.1
lines. When castout from an L3 cache are victimized, L3.1 lines go to memory and L3.0 lines have the option
of being castout to other L3 caches on chip. The L3 cache is a 20-way associative 10 MB cache. The L3
cache maintains full hardware coherence within the system and can supply intervention data to the other
cores on this POWER9 chip or to other cores on other POWER9 chips. Logically, the L3 cache is an in-line
cache. The L3 cache is a victim cache1 of the L2 cache. The L3 cache is not inclusive of the L2 cache.

1. All valid lines that are victimized in the L2 cache are castout to the L3 cache.

User’s Manual
OpenPOWER
POWER9 Processor

Performance Profile

Page 368 of 508
Version 2.1

10 October 2019

The L3 replacement policy uses a per entry state that is based on historical access rates, data sources, and
requesting transfer types. The state is kept as multiple bits per entry over two sets of 10 entries. The decay
rate for entries controls the stickiness of previously referenced cache lines and can be adjusted via SCOM.
The install stickiness can be tuned and adjusted at IPL time for instruction-cache and translation operations.

The L3 cache returns data to the core at a rate of 32 bytes per core cycle, with a full cache line delivered over
four core cycles.

The L3 cache supports full and partial cache line injection that allows for updates from the PCIe and other
sources.

25.2.3 Cache Latencies and Bandwidth

Table 25-7 lists several key bandwidth and latency values for the chip. These represent best case values
under ideal conditions. Actual values can vary due to resource limitations or queueing effects. The pclk in
Table 25-7 is the clock rate of the processor core and the latency is relative to the four core cycle nominal
latency for load to a dependent issue.

Table 25-7. Cache and Memory Hierarchy Load to Issue Latencies and Bandwidth

Description Latency Bandwidth

L2 D-cache load hit (bypass) 15.5 pclks 64 bytes/pclk

L2 I-cache load hit (bypass) 16.5 pclks 64 bytes/pclk

L3 load hit 35.5 pclks 32 bytes/pclk

L2.1 load hit variable 16 bytes/pclk

L3.1 load hit variable 16 bytes/pclk

Memory load (local)2 68 ns (see Section 25.4 on page 369)

1. Pclks represent one processor core clock.
2. DDR4-2400, CAS latency = 17 tCK, 2 GHz nest, 4 GHz core, nominal wire length, no refresh. Note that single and double refresh,

along with memory speed, rank, and core location relative to the memory controller impacts memory latency.

Peripheral component interconnect express

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Performance Profile

Page 369 of 508

25.3 NX Accelerators

The NX accelerators support the throughput shown in Table 25-8.

25.4 Direct Attach Memory

There are eight memory controllers on each POWER9 chip that can be configured into address interleave
groupings. The maximum memory that a grouping can address is 4 TB and the maximum that can be
addressed from a single chip is 4 TB. The maximum memory speed supported is 2667.

Table 25-9 shows the sustained memory bandwidth for a selection of workloads with single-refresh on, two
ranks and one DIMM for each of the eight channels.

Table 25-8. NX Accelerator Throughput

Operation Engine Single-Engine Throughput at 2 GHz1

AES CBC encrypt 128-bit key 4 KB block AES 8 Gbps

AES CBC encrypt 256-bit key 4 KB block AES 6.4 Gbps

SHA 256 256-byte block SHA 3.7 Gbps

SHA 512 256-byte block SHA 5.8 Gbps

Compression 842 16 GBps peak into compressor2

Decompression 842 16 GBps peak out of decompressor2

Compression Gzip 16 GBps peak into compressor2, 3

Decompression Gzip 16 GBps peak out of decompressor2, 3

Random number output stream RNG 80 Mbps4

Note:

1. Aggregate throughput can be less than the sum of individual engine peak throughputs. Processor bus ramp is limited to 32 GBps
per direction. Use of indirect DDEs reduces throughput. ERAT hit assumed on all memory accesses. Not reduced for any copro-
cessor invocation overhead. Memory is assumed to be nodal and engine throughput is not limited by memory bandwidth.

2. Throughput in the reverse direction depends on compression ratio.
3. Dependent on compression ratio, fixed or dynamic Huffman coding, and data size.
4. Subject to lab validation. The stated bit rate assumes the RNG can deliver a high-quality random number stream with the RNG

Pacing Control Register set to deliver this rate.

Table 25-9. POWER9 Memory Bandwidth for Eight Channels Active

Workload Bin Speed POWER9 Bandwidth (GBps)

Read-only (ddot) 2400 141

2:1 stream (daxpy) 2400 132

1:1 stream (copy) 2400 127

User’s Manual
OpenPOWER
POWER9 Processor

Performance Profile

Page 370 of 508
Version 2.1

10 October 2019

25.5 PCI Express

PCIe supports PCIe Gen4 with payload sizes of 512-byte write and 256-byte read, delivering an effective
bandwidth of 28 GBps read and write.

The PCIe can process writes into the on-chip cache using DMA inject, which can write in increments as small
as one byte.

25.6 CAPI

The POWER9 processor supports both the CAPI 2.0 interface that operates over the PCIe and the Open-
CAPI 3.0 interface operating on up to 32 lanes of 25G link.

25.7 Interrupt Controller

The interrupt controller supports up to 40 million interrupts per second, requiring about 18 GBps read and
18 GBps write bandwidth onto the fabric.

25.8 Nest MMU

The Nest MMU (NMMU) processes address translation requests for the NX accelerators, NPU, and CAPI
interfaces.

Table 25-10 shows the range of expected peak latencies and throughput (translations per second) that can
be performed by the 12 tablewalk state machines.

Table 25-10. NMMU Translation Latency and Throughput

Streaming Random

Average Latency (ns) 46 - 52.5 76 - 85

Translation Rate (translations per second) 221 - 261 million 141 - 158 million

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Performance Profile

Page 371 of 508

25.9 NVLink

The NPU provides a cache coherent interconnect between POWER9 and GPU chips over the NVLink inter-
face. The NPU maintains cache coherency on 128-byte cache lines.

The NPU can process writes into the on-chip cache using DMA inject, which can write in increments as small
as 1 byte.

The POWER9 processor supports up to six NVLink bricks. Each NVLink brick supports the following peak
bandwidth shown in Table 25-11 on page 371.

Each pair of bricks is connected to the fabric bus with a 64 GBps link, providing an effective 32 GBps per
brick to handle the NVLink data, as well as address translation.

25.10 WOF/Power Management

The POWER9 processor provides the capability to automatically boost the processor frequency for perfor-
mance when there is available power headroom. Workload optimized frequency (WOF) enables various
workloads to achieve optimal performance. To enable the full benefits of WOF, programs should make make
use of the low-power mode capabiity per thread as described in Section 25.1.3 Instruction Fetch on
page 336.

The POWER9 processor provides enhanced power management controls including a new STOP instruction.
This instruction can be used to reach power-savings states, including sleeping (power-gate) the entire core
with reduced overhead compared with prior designs, providing greater utility and opportunity to save power.
Together with the WOF, appropriate use of the STOP instruction can provide increased total system perfor-
mance.

Table 25-11. NVLink Peak Bandwidths Per Brick

Workload NVLink Bandwidth (GBps) P9 SMP Bandwidth (GBps) Effective Bandwidth (GBps)
with Command Overhead

Chip Total Effective
Bandwidth

Read 25 32 23.5 141

Write 25 32 21.1 127

User’s Manual
OpenPOWER
POWER9 Processor

Performance Profile

Page 372 of 508
Version 2.1

10 October 2019

25.11 Instruction Properties

Characteristics for instructions are listed in Table A-1. Instruction Properties on page 375 including various
latency, throughput, and interlock specifications:

• Instruction Mnemonic and Name: For cracked and expanded operations, this field is only valid for the
first iop and subsequent rows indicate the behaviors for additional iops. Includes the architectural name
for this instruction. A small number of instructions differ in their behavior between little-endian and big-
endian modes. These instructions are listed with “_le” and “_be” suffix to distinguish behavior. When
applicable, the mask or sub fields are shown as a hexadecimal suffix appended to the mnemonic.

• Cracked/Expanded:

– C2 - cracked into 2 iops
– C3 - cracked into 3 iops
– X - expanded

• Operation Number: the number of the iop for the instruction

– “-” - single iop instruction
– 1-N - iop number
– Nu - Nth iop in the sequence is repeated depending on length field

• Pipe Class: designates the pipeline

– ALU
– ALU2
– BR
– CY
– DIV
– DFU
– DP
– DP-XC
– DP-MUL
– DX
– PM
– LD
– LD2 - LD3
– NOP
– ST
– ST2

• Main Dst: Indicates the main register target type.

– GPR, FPR, VR, or VSR

• CR Dst: Indicates a CR target, if any.

• XER/FPSCR/VSCR Dst: Indicates XER, FPSCR, or VSCR target field, if any.

– XER field groupings: ca/oc, dcds, fxcc, ov, reserved, string, tgcc
– FPSCR field groupings: ctlr, excp, fpcc, fric (Note: excp is a sticky field)
– VSCR field groupings: nj, sat

• Maximum Operations Per Cycle: The maximum rate of executing this iop within the processing pipeline:
for multicycle instructions, this is shown as a ratio less than one. This is not always an indication of the
peak sustainable execution rate for the specific instruction as various throughput limitations might apply.

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Performance Profile

Page 373 of 508

• Latency (Minimum): The minimum latency for executing a dependent iop relative to execution of this iop
for the main register destination, if any. Additional latency for the non-main register destinations is added
as specified in the consuming iop’s field “Additional Latency for CR/XER//FPSR/VSCR Source”. Note that
issue-to-issue latencies should be consulted in Section 25.1.5.4 Execution Pipeline Issue to Issue Laten-
cies on page 353 to identify additional latency components incurred when exchanging data between
pipelines and between various data types. For load instructions, the latency reflects optimal address
alignment. Additional latency can also be incurred as shown in Section 25.1.7.8 Load-to-Use Latency on
page 359.

• Latency (Maximum): The maximum latency for executing a dependent iop relative to execution of this iop
for the main register destination, if any. Additional latency for nonmain register destinations is added as
specified in the consuming iop’s field “Additional Latency for CR/XER//FPSR/VSCR Source”. Note that
issue-to-issue latencies should be consulted in Section 25.1.5.4 Execution Pipeline Issue to Issue Laten-
cies on page 353 to identify additional latency components incurred when exchanging data between
pipelines and between various data types. For load instructions, the latency reflects optimal address
alignment. Additional latency can also be incurred as shown in Section 25.1.7.8 Load-to-Use Latency on
page 359.

• Pipe Busy Cycles (Minimum): The number of cycles for which the execution pipeline is blocked by exe-
cuting this iop. Multicycle instructions have a cycle count greater than one. Note that pipe-busy cycles are
shared across shared pipeline groups {DIV}, {CY, DFU}, {DP, DP-XC, DP-MUL}, precluding execution
within the group, during the busy cycles. See Section 25.1.5.4 Execution Pipeline Issue to Issue Laten-
cies on page 353 for a description of multicycle instruction interactions.

• Dispatch Rule: See section Section 25.1.4.5 IOP Dispatch on page 344 for additional details.

– “E” - Must dispatch to even slice, also consumes odd dispatch slice slot of the same superslice at dis-
patch

– “P” - Dispatches together with previous iop from the same cracked instruction to the same superslice

– “R” - Dispatch of this iop to a superslice restricts dispatch of a tuple of iops (restricts a second iop
from going to either of the two slices of a superslice that cycle).

– “R-st” - For ST and SMT2 modes, the dispatch of this iop to a superslice restricts dispatch of a tuple
of iops (restricts a second iop from going to either of the two slices of a superslice that cycle).

– “V” - Dispatches as a vector iop, a single decode iop is routed to both the even and odd slices of a
superslice at dispatch

• Dispatch Interlock: See section Section 25.1.4.5 IOP Dispatch on page 344 and Section 25.1.8 Special
Instruction Sequences on page 365 for additional details.

– “WB” - This iop is held at dispatch if outstanding entries remain in the EAT; that is, until all older
branches are completed and deallocated from the EAT.

– “WS” - This iop is held at dispatch if any older dispatch score-board setting iops
(Dispatch Interlock = SS) remain in the ICT; that is, until all older SS iops are completed.

– “SS” - This iop sets a dispatch score-board. The score-board remains set while this iop is in the ICT.

• Additional Dispatch to Issue Latency: The number of additional minimum cycles that an iop must wait
for issue beyond the nominal pipeline delay after first dispatched. This delay can overlap with source
dependency delays.

• Additional Latency for CR/XER/FPSR/VSCR Source: The number of additional cycles that an iop must
wait to issue relative to the producing iop if the iop is dependent on a register target other than the main
register destination (CR/XER/FPSCR/VSCR). For dependency on a sticky field (such as FPSCR excp),

User’s Manual
OpenPOWER
POWER9 Processor

Performance Profile

Page 374 of 508
Version 2.1

10 October 2019

an “F” is shown indicating that the iop will issue depending on the current state of the FPSCR speculation
mode, as described in Move-To and Move-From FPSCR on page 354.

• Issue Synchronized: “S” indicates that the iop issues concurrently across the even/odd slices of a super-
slice as a vector or with a paired iop from the same cracked instruction.

• Issue Depend on Previous Iop: For a cracked instruction, this iop is dependent on a register destination
of a prior iop from the same instruction:

– “D1P” - this iop is dependent on the previous iop (OpNum - 1).
– “D2P” - this iop is dependent on the second previous iop (OpNum - 2).

• Issue Next-to-Complete: This iop is held from issue until all older instructions in program order are com-
plete. If this iop is a cracked iop, it is also held from issue until all previous iops from the same instruction
(lower OpNum) are finished. For dependency on a sticky field (such as FPSCR excp), an “F” is shown
indicating that the iop will issue depending on the current state of the FPSCR speculation mode as
described in Move-To and Move-From FPSCR on page 354.

U
ser’s M

anual
O

penP
O

W
E

R

P
O

W
E

R
9 P

ro
cesso

r

V
ersion 2.1

10 O
ctober 2019

Instruction P
roperties

P
age 375 of 508

Appendix A. Instruction Properties

Table A-1. lists the POWER9 instruction characteristics including latency, throughput, and interlock specifications. See Section 25.11 Instruc-
tion Properties on page 372 for descriptions of the table headings and values.

Table A-1. Instruction Properties (Sheet 1 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n
N

um
be

r

P
ip

e
C

la
ss

M
ai

n
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns

pe
r

C
yc

le

La
te

nc
y

(M
in

im
um

)

La
te

nc
y

(M
ax

im
um

)

P
ip

e
B

us
y

C
yc

le
s

(M
in

im
um

)

D
is

pa
tc

h
R

ul
e

D
is

pa
tc

h
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h

to
 Is

su
e

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e
S

yn
ch

ro
ni

ze
d

Is
su

e
D

ep
en

d
on

 P
re

vi
ou

s
Io

p

Is
su

e
N

ex
t-

to
-C

om
pl

et
e

add Add - - ALU GPR 4 2 2 1 - - - - -

add. Add and Record - - ALU GPR CR fxcc 4 2 2 1 - - - - -

addc Add Carrying - - ALU GPR caoc 4 2 2 1 - - - - -

addc. Add Carrying and Record - - ALU GPR CR caoc,fxcc 4 2 2 1 - - - - -

addco Add Carrying and Record OV - - ALU GPR caoc,ov 4 2 2 1 - - - - -

addco. Add Carrying and Record OV and
Record

- - ALU GPR CR caoc,fxcc,ov 4 2 2 1 - - - - -

adde Add Extended - - ALU GPR caoc 4 2 2 1 - - 3 - - -

adde. Add Extended and Record - - ALU GPR CR caoc,fxcc 4 2 2 1 - - 3 - - -

addeo Add Extended and Record OV - - ALU GPR caoc,ov 4 2 2 1 - - 3 - - -

addeo. Add Extended and Record OV
and Record

- - ALU GPR CR caoc,fxcc,ov 4 2 2 1 - - 3 - - -

addex Add Extended Using Alternate
Carry Bit

- - ALU GPR ov 4 2 2 1 - - 3 - - -

addg6s Add and Generate Sixes C2 1 ALU dcds 4 2 2 1 - - - - -

2 ALU2 GPR 4 3 3 1 - - 3 - D1P -

addi Add Immediate - - ALU GPR 4 2 2 1 - - - - -

addic Add Immediate Carrying - - ALU GPR caoc 4 2 2 1 - - - - -

addic. Add Immediate Carrying - - ALU GPR CR caoc,fxcc 4 2 2 1 - - - - -

addis Add Immediate Shifted - - ALU GPR 4 2 2 1 - - - - -

U
ser’s M

anual
O

penP
O

W
E

R
P

O
W

E
R

9 P
ro

cesso
r

Instruction P
roperties

P
age 376 of 508

V
ersion 2.1

10 O
ctober 2019

addme Add to Minus One Extended - - ALU GPR caoc 4 2 2 1 - - 3 - - -

addme. Add to Minus One Extended and
Record

- - ALU GPR CR caoc,fxcc 4 2 2 1 - - 3 - - -

addmeo Add to Minus One Extended and
Record OV

- - ALU GPR caoc,ov 4 2 2 1 - - 3 - - -

addmeo. Add to Minus One Extended and
Record OV and Record

- - ALU GPR CR caoc,fxcc,ov 4 2 2 1 - - 3 - - -

addo Add and Record OV - - ALU GPR ov 4 2 2 1 - - - - -

addo. Add and Record OV and Record - - ALU GPR CR fxcc,ov 4 2 2 1 - - - - -

addpcis Add PC Immediate Shifted - - BR GPR 1 5 5 1 - - 2 - - -

addpcis Add PC Immediate Shifted C2 1 BR GPR 1 5 5 1 - - 2 - - -

2 ALU GPR 4 2 2 1 - - - D1P -

addze Add to Zero Extended - - ALU GPR caoc 4 2 2 1 - - 3 - - -

addze. Add to Zero Extended and Record - - ALU GPR CR caoc,fxcc 4 2 2 1 - - 3 - - -

addzeo Add to Zero Extended and Record
OV

- - ALU GPR caoc,ov 4 2 2 1 - - 3 - - -

addzeo. Add to Zero Extended and Record
OV and Record

- - ALU GPR CR caoc,fxcc,ov 4 2 2 1 - - 3 - - -

and AND - - ALU GPR 4 2 2 1 - - - - -

and. AND and Record - - ALU GPR CR fxcc 4 2 2 1 - - - - -

andc AND with Complement - - ALU GPR 4 2 2 1 - - - - -

andc. AND with Complement and
Record

- - ALU GPR CR fxcc 4 2 2 1 - - - - -

andi. AND Immediate and Record - - ALU GPR CR fxcc 4 2 2 1 - - - - -

andis. AND Immediate Shifted and
Record

- - ALU GPR CR fxcc 4 2 2 1 - - - - -

Table A-1. Instruction Properties (Sheet 2 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n
N

um
be

r

P
ip

e
C

la
ss

M
ai

n
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns

pe
r

C
yc

le

La
te

nc
y

(M
in

im
um

)

La
te

nc
y

(M
ax

im
um

)

P
ip

e
B

us
y

C
yc

le
s

(M
in

im
um

)

D
is

pa
tc

h
R

ul
e

D
is

pa
tc

h
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h

to
 Is

su
e

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e
S

yn
ch

ro
ni

ze
d

Is
su

e
D

ep
en

d
on

 P
re

vi
ou

s
Io

p

Is
su

e
N

ex
t-

to
-C

om
pl

et
e

U
ser’s M

anual
O

penP
O

W
E

R

P
O

W
E

R
9 P

ro
cesso

r

V
ersion 2.1

10 O
ctober 2019

Instruction P
roperties

P
age 377 of 508

b Branch - - BR 1 2 2 1 - - - - -

ba Branch Absolute - - BR 1 2 2 1 - - - - -

bc Branch Conditional - - BR 1 2 2 1 - - - - -

bca Branch Conditional Absolute - - BR 1 2 2 1 - - - - -

bcctr Branch Conditional to CTR - - BR 1 2 2 1 - - - - -

bcctrl Branch Conditional to CTR and
Link

- - BR 1 2 2 1 - - - - -

bcdadd. Decimal Add Modulo and Record - - DX VR CR 2 3 3 1 V - 1 S - -

bcdcfn. Decimal Convert From National
and Record

- - DX VR CR 2 3 3 1 V - 1 S - -

bcdcfsq. Decimal Convert From Signed
Qword and Record

- - DFU VR CR 1/26 37 37 25 V - 1 S - -

bcdcfz. Decimal Convert From Zoned and
Record

- - DX VR CR 2 3 3 1 V - 1 S - -

bcdcpsgn. Decimal CopySign and Record - - DX VR CR 2 3 3 1 V - 1 S - -

bcdctn. Decimal Convert to National and
Record

- - DX VR CR 2 3 3 1 V - 1 S - -

bcdctsq. Decimal Convert to Signed Qword
and Record

- - DFU VR CR 1/12 23 23 11 V - 1 S - -

bcdctz. Decimal Convert to Zoned and
Record

- - DX VR CR 2 3 3 1 V - 1 S - -

bcds. Decimal Shift and Record - - DX VR CR 2 3 3 1 V - 1 S - -

bcdsetsgn. Decimal Set Sign and Record - - DX VR CR 2 3 3 1 V - 1 S - -

bcdsr. Decimal Shift and Round and
Record

- - DFU VR CR 1 12 12 1 V - 1 S - -

bcdsub. Decimal Subtract Modulo and
Record

- - DX VR CR 2 3 3 1 V - 1 S - -

Table A-1. Instruction Properties (Sheet 3 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n
N

um
be

r

P
ip

e
C

la
ss

M
ai

n
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns

pe
r

C
yc

le

La
te

nc
y

(M
in

im
um

)

La
te

nc
y

(M
ax

im
um

)

P
ip

e
B

us
y

C
yc

le
s

(M
in

im
um

)

D
is

pa
tc

h
R

ul
e

D
is

pa
tc

h
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h

to
 Is

su
e

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e
S

yn
ch

ro
ni

ze
d

Is
su

e
D

ep
en

d
on

 P
re

vi
ou

s
Io

p

Is
su

e
N

ex
t-

to
-C

om
pl

et
e

U
ser’s M

anual
O

penP
O

W
E

R
P

O
W

E
R

9 P
ro

cesso
r

Instruction P
roperties

P
age 378 of 508

V
ersion 2.1

10 O
ctober 2019

bcdtrunc. Decimal Truncate and Record - - DX VR CR 2 3 3 1 V - 1 S - -

bcdus. Decimal Unsigned Shift and
Record

- - DX VR CR 2 3 3 1 V - 1 S - -

bcdutrunc. Decimal Unsigned Truncate and
Record

- - DX VR CR 2 3 3 1 V - 1 S - -

bcl Branch Conditional and Link - - BR 1 2 2 1 - - - - -

bcla Branch Conditional and Link
Absolute

- - BR 1 2 2 1 - - - - -

bl Branch and Link - - BR 1 2 2 1 - - - - -

bla Branch and Link Absolute - - BR 1 2 2 1 - - - - -

bpermd Bit Permute Dword - - ALU2 GPR 4 3 3 1 - - - - -

cbcdtd Convert Binary Coded Decimal to
Declets

- - ALU2 GPR 4 3 3 1 - - - - -

cdtbcd Convert Declets to Binary Coded
Decimal

- - ALU2 GPR 4 3 3 1 - - - - -

cmp Compare - - ALU CR fxcc 4 2 2 1 - - - - -

cmpb Compare Bytes - - ALU2 GPR 4 3 3 1 - - - - -

cmpeqb Compare Equal Byte - - ALU2 CR fxcc 4 3 3 1 R - - - -

cmpi Compare Immediate - - ALU CR fxcc 4 2 2 1 - - - - -

cmpl Compare Logical - - ALU CR fxcc 4 2 2 1 - - - - -

cmpli Compare Logical Immediate - - ALU CR fxcc 4 2 2 1 - - - - -

cmprb Compare Ranged Byte - - ALU2 CR fxcc 4 3 3 1 R - - - -

cntlzd Count Leading Zeros Dword - - ALU2 GPR 4 3 3 1 - - - - -

cntlzd. Count Leading Zeros Dword and
Record

- - ALU2 GPR CR fxcc 4 3 3 1 - - - - -

cntlzw Count Leading Zeros Word - - ALU2 GPR 4 3 3 1 - - - - -

Table A-1. Instruction Properties (Sheet 4 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n
N

um
be

r

P
ip

e
C

la
ss

M
ai

n
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns

pe
r

C
yc

le

La
te

nc
y

(M
in

im
um

)

La
te

nc
y

(M
ax

im
um

)

P
ip

e
B

us
y

C
yc

le
s

(M
in

im
um

)

D
is

pa
tc

h
R

ul
e

D
is

pa
tc

h
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h

to
 Is

su
e

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e
S

yn
ch

ro
ni

ze
d

Is
su

e
D

ep
en

d
on

 P
re

vi
ou

s
Io

p

Is
su

e
N

ex
t-

to
-C

om
pl

et
e

U
ser’s M

anual
O

penP
O

W
E

R

P
O

W
E

R
9 P

ro
cesso

r

V
ersion 2.1

10 O
ctober 2019

Instruction P
roperties

P
age 379 of 508

cntlzw. Count Leading Zeros Word and
Record

- - ALU2 GPR CR fxcc 4 3 3 1 - - - - -

cnttzd Count Trailing Zeros Dword - - ALU2 GPR 4 3 3 1 - - - - -

cnttzd. Count Trailing Zeros Dword and
Record

- - ALU2 GPR CR fxcc 4 3 3 1 - - - - -

cnttzw Count Trailing Zeros Word - - ALU2 GPR 4 3 3 1 - - - - -

cnttzw. Count Trailing Zeros Word and
Record

- - ALU2 GPR CR fxcc 4 3 3 1 - - - - -

copy Copy - - LD 4 4 4 1 - - - - -

cp_abort CP_Abort - - LD 4 4 4 1 - - - - -

crand CR AND - - ALU CR 4 2 2 1 R - 3 - - -

crandc CR AND with Complement - - ALU CR 4 2 2 1 R - 3 - - -

creqv CR Equivalent - - ALU CR 4 2 2 1 R - 3 - - -

crnand CR NAND - - ALU CR 4 2 2 1 R - 3 - - -

crnor CR NOR - - ALU CR 4 2 2 1 R - 3 - - -

cror CR OR - - ALU CR 4 2 2 1 R - 3 - - -

crorc CR OR with Complement - - ALU CR 4 2 2 1 R - 3 - - -

crxor CR XOR - - ALU CR 4 2 2 1 R - 3 - - -

dadd DFP Add - - DFU FPR fpcc,fric,excp 1 12 12 1 E - 3 - - -

dadd. DFP Add and Record C2 1 DFU FPR fpcc,fric,excp 1 12 12 1 E - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

daddq DFP Add Quad C3 1 ALU VSR 2 2 2 1 V - 1 S - -

2 DFU FPR fpcc,fric,excp 1 12 12 1 P - 3 S - -

3 DFU FPR 1 12 12 1 P - 3 S - -

Table A-1. Instruction Properties (Sheet 5 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n
N

um
be

r

P
ip

e
C

la
ss

M
ai

n
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns

pe
r

C
yc

le

La
te

nc
y

(M
in

im
um

)

La
te

nc
y

(M
ax

im
um

)

P
ip

e
B

us
y

C
yc

le
s

(M
in

im
um

)

D
is

pa
tc

h
R

ul
e

D
is

pa
tc

h
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h

to
 Is

su
e

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e
S

yn
ch

ro
ni

ze
d

Is
su

e
D

ep
en

d
on

 P
re

vi
ou

s
Io

p

Is
su

e
N

ex
t-

to
-C

om
pl

et
e

U
ser’s M

anual
O

penP
O

W
E

R
P

O
W

E
R

9 P
ro

cesso
r

Instruction P
roperties

P
age 380 of 508

V
ersion 2.1

10 O
ctober 2019

daddq. DFP Add Quad and Record X 1 ALU VSR 2 2 2 1 V - 1 S - -

2 NOP 6 0 0 1 - - - - -

3 NOP 6 0 0 1 - - - - -

4 DFU FPR fpcc,fric,excp 1 12 12 1 P - 3 S - -

5 DFU FPR 1 12 12 1 P - 3 S - -

6 ALU2 CR 4 3 3 1 - - F - - F

darn Deliver A Random Number - - LD GPR 4 4 4 1 - - - - -

darn Deliver A Random Number - - NOP 6 0 0 1 - - - - -

dcbf Data Cache Block Flush - - LD 4 4 4 1 - - - - -

dcbst Data Cache Block Store - - LD 4 4 4 1 - - - - -

dcbt.
TH00xxx

Data Cache Block Touch - - LD 4 4 4 1 - - - - -

dcbt.
TH01000

Data Cache Block Touch - - LD 4 4 4 1 - - - - -

dcbt.
TH01001

Data Cache Block Touch - - LD 4 4 4 1 - - - - -

dcbt.
TH01010

Data Cache Block Touch - - LD 4 4 4 1 - - - - -

dcbt.
TH01011

Data Cache Block Touch - - LD 4 4 4 1 - - - - -

dcbt.
TH011xx

Data Cache Block Touch - - LD 4 4 4 1 - - - - -

dcbt.
TH10000

Data Cache Block Touch - - LD 4 4 4 1 - - - - -

dcbt.
TH10001

Data Cache Block Touch - - LD 4 4 4 1 - - - - -

Table A-1. Instruction Properties (Sheet 6 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n
N

um
be

r

P
ip

e
C

la
ss

M
ai

n
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns

pe
r

C
yc

le

La
te

nc
y

(M
in

im
um

)

La
te

nc
y

(M
ax

im
um

)

P
ip

e
B

us
y

C
yc

le
s

(M
in

im
um

)

D
is

pa
tc

h
R

ul
e

D
is

pa
tc

h
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h

to
 Is

su
e

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e
S

yn
ch

ro
ni

ze
d

Is
su

e
D

ep
en

d
on

 P
re

vi
ou

s
Io

p

Is
su

e
N

ex
t-

to
-C

om
pl

et
e

U
ser’s M

anual
O

penP
O

W
E

R

P
O

W
E

R
9 P

ro
cesso

r

V
ersion 2.1

10 O
ctober 2019

Instruction P
roperties

P
age 381 of 508

dcbt.
TH1001x

Data Cache Block Touch - - LD 4 4 4 1 - - - - -

dcbt.
TH101xx

Data Cache Block Touch - - LD 4 4 4 1 - - - - -

dcbt.
TH11000

Data Cache Block Touch - - LD 4 4 4 1 - - - - -

dcbt.
TH11001

Data Cache Block Touch - - LD 4 4 4 1 - - - - -

dcbt.
TH1101x

Data Cache Block Touch - - LD 4 4 4 1 - - - - -

dcbt.
TH111xx

Data Cache Block Touch - - LD 4 4 4 1 - - - - -

dcbtst.
TH00xxx

Data Cache Block Touch for Store - - LD 4 4 4 1 - - - - -

dcbtst.
TH01000

Data Cache Block Touch for Store - - LD 4 4 4 1 - - - - -

dcbtst.
TH01001

Data Cache Block Touch for Store - - LD 4 4 4 1 - - - - -

dcbtst.
TH01010

Data Cache Block Touch for Store - - LD 4 4 4 1 - - - - -

dcbtst.
TH01011

Data Cache Block Touch for Store - - LD 4 4 4 1 - - - - -

dcbtst.
TH011xx

Data Cache Block Touch for Store - - LD 4 4 4 1 - - - - -

dcbtst.
TH10000

Data Cache Block Touch for Store - - LD 4 4 4 1 - - - - -

dcbtst.
TH10001

Data Cache Block Touch for Store - - LD 4 4 4 1 - - - - -

dcbtst.
TH1001x

Data Cache Block Touch for Store - - LD 4 4 4 1 - - - - -

Table A-1. Instruction Properties (Sheet 7 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n
N

um
be

r

P
ip

e
C

la
ss

M
ai

n
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns

pe
r

C
yc

le

La
te

nc
y

(M
in

im
um

)

La
te

nc
y

(M
ax

im
um

)

P
ip

e
B

us
y

C
yc

le
s

(M
in

im
um

)

D
is

pa
tc

h
R

ul
e

D
is

pa
tc

h
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h

to
 Is

su
e

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e
S

yn
ch

ro
ni

ze
d

Is
su

e
D

ep
en

d
on

 P
re

vi
ou

s
Io

p

Is
su

e
N

ex
t-

to
-C

om
pl

et
e

U
ser’s M

anual
O

penP
O

W
E

R
P

O
W

E
R

9 P
ro

cesso
r

Instruction P
roperties

P
age 382 of 508

V
ersion 2.1

10 O
ctober 2019

dcbtst.
TH101xx

Data Cache Block Touch for Store - - LD 4 4 4 1 - - - - -

dcbtst.
TH11000

Data Cache Block Touch for Store - - LD 4 4 4 1 - - - - -

dcbtst.
TH11001

Data Cache Block Touch for Store - - LD 4 4 4 1 - - - - -

dcbtst.
TH1101x

Data Cache Block Touch for Store - - LD 4 4 4 1 - - - - -

dcbtst.
TH111xx

Data Cache Block Touch for Store - - LD 4 4 4 1 - - - - -

dcbz Data Cache Block Zero - - LD 4 4 4 1 - - - - -

dcffix DFP Convert From Fixed - - DFU FPR fpcc,fric,excp 1/21 32 32 20 E - 3 - - -

dcffix. DFP Convert From Fixed and
Record

C2 1 DFU FPR fpcc,fric,excp 1/21 32 32 20 E - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

dcffixq DFP Convert From Fixed Quad C2 1 DFU FPR fpcc,fric,excp 1/21 32 32 20 P - 3 S - -

2 DFU FPR 1/21 32 32 20 P - 3 S - -

dcffixq. DFP Convert From Fixed Quad
and Record

C3 1 DFU FPR fpcc,fric 1/21 32 32 20 P - 3 S - -

2 DFU FPR 1/21 32 32 20 P - 3 S - -

3 ALU2 CR 4 3 3 1 - - F - - F

dcmpo DFP Compare Ordered - - DFU CR excp,fpcc 1 12 12 1 E - 3 - - -

dcmpoq DFP Compare Ordered Quad C3 1 ALU VSR 2 2 2 1 V - 1 S - -

2 DFU CR fpcc,excp 1 12 12 1 P - 3 S - -

3 DFU 1 12 12 1 P - 3 S - -

dcmpu DFP Compare Unordered - - DFU CR excp,fpcc 1 12 12 1 E - 3 - - -

Table A-1. Instruction Properties (Sheet 8 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n
N

um
be

r

P
ip

e
C

la
ss

M
ai

n
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns

pe
r

C
yc

le

La
te

nc
y

(M
in

im
um

)

La
te

nc
y

(M
ax

im
um

)

P
ip

e
B

us
y

C
yc

le
s

(M
in

im
um

)

D
is

pa
tc

h
R

ul
e

D
is

pa
tc

h
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h

to
 Is

su
e

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e
S

yn
ch

ro
ni

ze
d

Is
su

e
D

ep
en

d
on

 P
re

vi
ou

s
Io

p

Is
su

e
N

ex
t-

to
-C

om
pl

et
e

U
ser’s M

anual
O

penP
O

W
E

R

P
O

W
E

R
9 P

ro
cesso

r

V
ersion 2.1

10 O
ctober 2019

Instruction P
roperties

P
age 383 of 508

dcmpuq DFP Compare Unordered Quad C3 1 ALU VSR 2 2 2 1 V - 1 S - -

2 DFU CR fpcc,excp 1 12 12 1 P - 3 S - -

3 DFU 1 12 12 1 P - 3 S - -

dctdp DFP Convert to DFP Long - - DFU FPR fpcc,fric 1 12 12 1 E - 3 - - -

dctdp. DFP Convert to DFP Long and
Record

C2 1 DFU FPR fpcc,fric,excp 1 12 12 1 E - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

dctfix DFP Convert to Fixed - - DFU FPR fpcc,fric,excp 1/14 25 25 13 E - 3 - - -

dctfix. DFP Convert to Fixed and Record C2 1 DFU FPR fpcc,fric,excp 1/14 25 25 13 E - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

dctfixq DFP Convert to Fixed Quad C2 1 DFU FPR fpcc,fric,excp 1/14 25 25 13 P - 3 S - -

2 DFU 1/14 25 25 13 P - 3 S - -

dctfixq. DFP Convert to Fixed Quad and
Record

C3 1 DFU FPR fpcc,fric,excp 1/14 25 25 13 P - 3 S - -

2 DFU 1/14 25 25 13 P - 3 S - -

3 ALU2 CR 4 3 3 1 - - F - D2P F

dctqpq DFP Convert to DFP Extended C2 1 DFU FPR fpcc,fric,excp 1 12 12 1 P - 3 S - -

2 DFU FPR 1 12 12 1 P - 3 S - -

dctqpq. DFP Convert to DFP Extended
and Record

C3 1 DFU FPR fpcc,fric,excp 1 12 12 1 P - 3 S - -

2 DFU FPR 1 12 12 1 P - 3 S - -

3 ALU2 CR 4 3 3 1 - - F - D2P F

ddedpd DFP Decode DPD to BCD - - DFU FPR 1 12 12 1 E - - - -

ddedpd. DFP Decode DPD to BCD and
Record

C2 1 DFU FPR 1 12 12 1 E - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - - F

Table A-1. Instruction Properties (Sheet 9 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n
N

um
be

r

P
ip

e
C

la
ss

M
ai

n
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns

pe
r

C
yc

le

La
te

nc
y

(M
in

im
um

)

La
te

nc
y

(M
ax

im
um

)

P
ip

e
B

us
y

C
yc

le
s

(M
in

im
um

)

D
is

pa
tc

h
R

ul
e

D
is

pa
tc

h
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h

to
 Is

su
e

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e
S

yn
ch

ro
ni

ze
d

Is
su

e
D

ep
en

d
on

 P
re

vi
ou

s
Io

p

Is
su

e
N

ex
t-

to
-C

om
pl

et
e

U
ser’s M

anual
O

penP
O

W
E

R
P

O
W

E
R

9 P
ro

cesso
r

Instruction P
roperties

P
age 384 of 508

V
ersion 2.1

10 O
ctober 2019

ddedpdq DFP Decode DPD to BCD Quad C2 1 DFU FPR 1 12 12 1 P - 3 S - -

2 DFU FPR 1 12 12 1 P - 3 S - -

ddedpdq. DFP Decode DPD to BCD Quad
and Record

C3 1 DFU FPR 1 12 12 1 P - 3 S - -

2 DFU FPR 1 12 12 1 P - 3 S - -

3 ALU2 CR 4 3 3 1 - - F - - F

ddiv DFP Divide - - DFU FPR fpcc,fric,excp 1/28 39 99 27 E - 3 - - -

ddiv. DFP Divide and Record C2 1 DFU FPR fpcc,fric,excp 1/28 39 99 27 E - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

ddivq DFP Divide Quad C3 1 ALU VSR 2 2 2 1 V - 1 S - -

2 DFU FPR fpcc,fric,excp 1/28 39 171 27 P - 3 S - -

3 DFU FPR 1/28 39 171 27 P - 3 S - -

ddivq. DFP Divide Quad and Record X 1 ALU VSR 2 2 2 1 V - 1 S - -

2 NOP 6 0 0 1 - - - - -

3 NOP 6 0 0 1 - - - - -

4 DFU FPR fpcc,fric,excp 1/28 39 171 27 P - 3 S - -

5 DFU FPR 1/28 39 171 27 P - 3 S - -

6 ALU2 CR 4 3 3 1 - - F - - F

denbcd DFP Encode BCD to DPD - - DFU FPR fpcc,fric,excp 1 12 12 1 E - 3 - - -

denbcd. DFP Encode BCD to DPD and
Record

C2 1 DFU FPR fpcc,fric,excp 1 12 12 1 E - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

denbcdq DFP Encode BCD to DPD Quad C2 1 DFU FPR fpcc,fric,excp 1 12 12 1 P - 3 S - -

2 DFU FPR 1 12 12 1 P - 3 S - -

Table A-1. Instruction Properties (Sheet 10 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n
N

um
be

r

P
ip

e
C

la
ss

M
ai

n
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns

pe
r

C
yc

le

La
te

nc
y

(M
in

im
um

)

La
te

nc
y

(M
ax

im
um

)

P
ip

e
B

us
y

C
yc

le
s

(M
in

im
um

)

D
is

pa
tc

h
R

ul
e

D
is

pa
tc

h
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h

to
 Is

su
e

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e
S

yn
ch

ro
ni

ze
d

Is
su

e
D

ep
en

d
on

 P
re

vi
ou

s
Io

p

Is
su

e
N

ex
t-

to
-C

om
pl

et
e

U
ser’s M

anual
O

penP
O

W
E

R

P
O

W
E

R
9 P

ro
cesso

r

V
ersion 2.1

10 O
ctober 2019

Instruction P
roperties

P
age 385 of 508

denbcdq. DFP Encode BCD to DPD Quad
and Record

C3 1 DFU FPR fpcc,fric,excp 1 12 12 1 P - 3 S - -

2 DFU FPR 1 12 12 1 P - 3 S - -

3 ALU2 CR 4 3 3 1 - - F - D2P F

diex DFP Insert Exponent - - DFU FPR 1 12 12 1 E - - - -

diex. DFP Insert Exponent and Record C2 1 DFU FPR 1 12 12 1 E - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - - F

diexq DFP Insert Exponent Quad C2 1 DFU FPR 1 12 12 1 P - 3 S - -

2 DFU FPR 1 12 12 1 P - 3 S - -

diexq. DFP Insert Exponent Quad and
Record

C3 1 DFU FPR 1 12 12 1 P - 3 S - -

2 DFU FPR 1 12 12 1 P - 3 S - -

3 ALU2 CR 4 3 3 1 - - F - - F

divd Divide Dword - - DIV GPR 2/9 12 24 8 E - - - -

divd. Divide Dword and Record C2 1 DIV GPR 2/9 12 24 8 E - - - -

2 ALU CR fxcc 4 2 2 1 - - - D1P -

divde Divide Dword Extended - - DIV GPR 2/9 12 40 8 E - - - -

divde. Divide Dword Extended and
Record

C2 1 DIV GPR 2/9 12 40 8 E - - - -

2 ALU CR fxcc 4 2 2 1 - - - D1P -

divdeo Divide Dword Extended and
Record OV

- - DIV GPR ov 2/9 12 40 8 E - - - -

divdeo. Divide Dword Extended and
Record OV and Record

C2 1 DIV GPR ov 2/9 12 40 8 E - - - -

2 ALU CR fxcc 4 2 2 1 - - 3 - D1P -

divdeu Divide Dword Extended Unsigned - - DIV GPR 2/9 12 40 8 E - - - -

Table A-1. Instruction Properties (Sheet 11 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n
N

um
be

r

P
ip

e
C

la
ss

M
ai

n
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns

pe
r

C
yc

le

La
te

nc
y

(M
in

im
um

)

La
te

nc
y

(M
ax

im
um

)

P
ip

e
B

us
y

C
yc

le
s

(M
in

im
um

)

D
is

pa
tc

h
R

ul
e

D
is

pa
tc

h
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h

to
 Is

su
e

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e
S

yn
ch

ro
ni

ze
d

Is
su

e
D

ep
en

d
on

 P
re

vi
ou

s
Io

p

Is
su

e
N

ex
t-

to
-C

om
pl

et
e

U
ser’s M

anual
O

penP
O

W
E

R
P

O
W

E
R

9 P
ro

cesso
r

Instruction P
roperties

P
age 386 of 508

V
ersion 2.1

10 O
ctober 2019

divdeu. Divide Dword Extended Unsigned
and Record

C2 1 DIV GPR 2/9 12 40 8 E - - - -

2 ALU CR fxcc 4 2 2 1 - - - D1P -

divdeuo Divide Dword Extended Unsigned
and Record OV

- - DIV GPR ov 2/9 12 40 8 E - - - -

divdeuo. Divide Dword Extended Unsigned
and Record OV and Record

C2 1 DIV GPR ov 2/9 12 40 8 E - - - -

2 ALU CR fxcc 4 2 2 1 - - 3 - D1P -

divdo Divide Dword and Record OV - - DIV GPR ov 2/9 12 24 8 E - - - -

divdo. Divide Dword and Record OV and
Record

C2 1 DIV GPR ov 2/9 12 24 8 E - - - -

2 ALU CR fxcc 4 2 2 1 - - 3 - D1P -

divdu Divide Dword Unsigned - - DIV GPR 2/9 12 24 8 E - - - -

divdu. Divide Dword Unsigned and
Record

C2 1 DIV GPR 2/9 12 24 8 E - - - -

2 ALU CR fxcc 4 2 2 1 - - - D1P -

divduo Divide Dword Unsigned and
Record OV

- - DIV GPR ov 2/9 12 24 8 E - - - -

divduo. Divide Dword Unsigned and
Record OV and Record

C2 1 DIV GPR ov 2/9 12 24 8 E - - - -

2 ALU CR fxcc 4 2 2 1 - - 3 - D1P -

divw Divide Word - - DIV GPR 2/9 12 16 8 E - - - -

divw. Divide Word and Record C2 1 DIV GPR 2/9 12 16 8 E - - - -

2 ALU CR fxcc 4 2 2 1 - - - D1P -

divwe Divide Word Extended - - DIV GPR 2/9 12 24 8 E - - - -

divwe. Divide Word Extended and
Record

C2 1 DIV GPR 2/9 12 24 8 E - - - -

2 ALU CR fxcc 4 2 2 1 - - - D1P -

divweo Divide Word Extended and
Record OV

- - DIV GPR ov 2/9 12 24 8 E - - - -

Table A-1. Instruction Properties (Sheet 12 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n
N

um
be

r

P
ip

e
C

la
ss

M
ai

n
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns

pe
r

C
yc

le

La
te

nc
y

(M
in

im
um

)

La
te

nc
y

(M
ax

im
um

)

P
ip

e
B

us
y

C
yc

le
s

(M
in

im
um

)

D
is

pa
tc

h
R

ul
e

D
is

pa
tc

h
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h

to
 Is

su
e

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e
S

yn
ch

ro
ni

ze
d

Is
su

e
D

ep
en

d
on

 P
re

vi
ou

s
Io

p

Is
su

e
N

ex
t-

to
-C

om
pl

et
e

U
ser’s M

anual
O

penP
O

W
E

R

P
O

W
E

R
9 P

ro
cesso

r

V
ersion 2.1

10 O
ctober 2019

Instruction P
roperties

P
age 387 of 508

divweo. Divide Word Extended and
Record OV and Record

C2 1 DIV GPR ov 2/9 12 24 8 E - - - -

2 ALU CR fxcc 4 2 2 1 - - 3 - D1P -

divweu Divide Word Extended Unsigned - - DIV GPR 2/9 12 24 8 E - - - -

divweu. Divide Word Extended Unsigned
and Record

C2 1 DIV GPR 2/9 12 24 8 E - - - -

2 ALU CR fxcc 4 2 2 1 - - - D1P -

divweuo Divide Word Extended Unsigned
and Record OV

- - DIV GPR ov 2/9 12 24 8 E - - - -

divweuo. Divide Word Extended Unsigned
and Record OV and Record

C2 1 DIV GPR ov 2/9 12 24 8 E - - - -

2 ALU CR fxcc 4 2 2 1 - - 3 - D1P -

divwo Divide Word and Record OV - - DIV GPR ov 2/9 12 16 8 E - - - -

divwo. Divide Word and Record OV and
Record

C2 1 DIV GPR ov 2/9 12 16 8 E - - - -

2 ALU CR fxcc 4 2 2 1 - - 3 - D1P -

divwu Divide Word Unsigned - - DIV GPR 2/9 12 16 8 E - - - -

divwu. Divide Word Unsigned and
Record

C2 1 DIV GPR 2/9 12 16 8 E - - - -

2 ALU CR fxcc 4 2 2 1 - - - D1P -

divwuo Divide Word Unsigned and
Record OV

- - DIV GPR ov 2/9 12 16 8 E - - - -

divwuo. Divide Word Unsigned and
Record OV and Record

C2 1 DIV GPR ov 2/9 12 16 8 E - - - -

2 ALU CR fxcc 4 2 2 1 - - 3 - D1P -

dmul DFP Multiply - - DFU FPR fpcc,fric,excp 1/11 24 39 12 E - 3 - - -

dmul. DFP Multiply and Record C2 1 DFU FPR fpcc,fric,excp 1/11 22 27 10 E - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

Table A-1. Instruction Properties (Sheet 13 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n
N

um
be

r

P
ip

e
C

la
ss

M
ai

n
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns

pe
r

C
yc

le

La
te

nc
y

(M
in

im
um

)

La
te

nc
y

(M
ax

im
um

)

P
ip

e
B

us
y

C
yc

le
s

(M
in

im
um

)

D
is

pa
tc

h
R

ul
e

D
is

pa
tc

h
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h

to
 Is

su
e

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e
S

yn
ch

ro
ni

ze
d

Is
su

e
D

ep
en

d
on

 P
re

vi
ou

s
Io

p

Is
su

e
N

ex
t-

to
-C

om
pl

et
e

U
ser’s M

anual
O

penP
O

W
E

R
P

O
W

E
R

9 P
ro

cesso
r

Instruction P
roperties

P
age 388 of 508

V
ersion 2.1

10 O
ctober 2019

dmulq DFP Multiply Quad C3 1 ALU VSR 2 2 2 1 V - 1 S - -

2 DFU FPR fpcc,fric,excp 1/7 18 84 6 P - 3 S - -

3 DFU FPR 1/7 18 84 6 P - 3 S - -

dmulq. DFP Multiply Quad and Record X 1 ALU VSR 2 2 2 1 V - 1 S - -

2 NOP 6 0 0 1 - - - - -

3 NOP 6 0 0 1 - - - - -

4 DFU FPR fpcc,fric,excp 1/7 18 84 6 P - 3 S - -

5 DFU FPR 1/7 18 84 6 P - 3 S - -

6 ALU2 CR 4 3 3 1 - - F - - F

dqua DFP Quantize - - DFU FPR fpcc,fric,excp 1 12 12 1 E - 3 - - -

dqua. DFP Quantize and Record C2 1 DFU FPR fpcc,fric,excp 1 12 12 1 E - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

dquai DFP Quantize Immediate - - DFU FPR fpcc,fric,excp 1 12 12 1 E - 3 - - -

dquai. DFP Quantize Immediate and
Record

C2 1 DFU FPR fpcc,fric,excp 1 12 12 1 E - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

dquaiq DFP Quantize Immediate Quad C2 1 DFU FPR fpcc,fric,excp 1 12 12 1 P - 3 S - -

2 DFU FPR 1 12 12 1 P - 3 S - -

dquaiq. DFP Quantize Immediate Quad
and Record

C3 1 DFU FPR fpcc,fric,excp 1 12 12 1 P - 3 S - -

2 DFU FPR 1 12 12 1 P - 3 S - -

3 ALU2 CR 4 3 3 1 - - F - D2P F

dquaq DFP Quantize Quad C3 1 ALU VSR 2 2 2 1 V - 1 S - -

2 DFU FPR fpcc,fric,excp 1 12 12 1 P - 3 S - -

3 DFU FPR 1 12 12 1 P - 3 S - -

Table A-1. Instruction Properties (Sheet 14 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n
N

um
be

r

P
ip

e
C

la
ss

M
ai

n
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns

pe
r

C
yc

le

La
te

nc
y

(M
in

im
um

)

La
te

nc
y

(M
ax

im
um

)

P
ip

e
B

us
y

C
yc

le
s

(M
in

im
um

)

D
is

pa
tc

h
R

ul
e

D
is

pa
tc

h
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h

to
 Is

su
e

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e
S

yn
ch

ro
ni

ze
d

Is
su

e
D

ep
en

d
on

 P
re

vi
ou

s
Io

p

Is
su

e
N

ex
t-

to
-C

om
pl

et
e

U
ser’s M

anual
O

penP
O

W
E

R

P
O

W
E

R
9 P

ro
cesso

r

V
ersion 2.1

10 O
ctober 2019

Instruction P
roperties

P
age 389 of 508

dquaq. DFP Quantize Quad and Record X 1 ALU VSR 2 2 2 1 V - 1 S - -

2 NOP 6 0 0 1 - - - - -

3 NOP 6 0 0 1 - - - - -

4 DFU FPR fpcc,fric,excp 1 12 12 1 P - 3 S - -

5 DFU FPR 1 12 12 1 P - 3 S - -

6 ALU2 CR 4 3 3 1 - - F - - F

drdpq DFP Round to DFP Long C2 1 DFU FPR fpcc,fric,excp 1/13 24 24 12 P - 3 S - -

2 DFU FPR 1/13 24 24 12 P - 3 S - -

drdpq. DFP Round to DFP Long and
Record

C3 1 DFU FPR fpcc,fric,excp 1/13 24 24 12 P - 3 S - -

2 DFU FPR 1/13 24 24 12 P - 3 S - -

3 ALU2 CR 4 3 3 1 - - F - D2P F

drintn DFP Round to FP Integer Without
Inexact

- - DFU FPR fpcc,fric,excp 1 12 12 1 E - 3 - - -

drintn. DFP Round to FP Integer Without
Inexact and Record

C2 1 DFU FPR fpcc,fric,excp 1 12 12 1 E - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

drintnq DFP Round to FP Integer Without
Inexact Quad

C2 1 DFU FPR fpcc,fric,excp 1 12 12 1 P - 3 S - -

2 DFU FPR 1 12 12 1 P - 3 S - -

drintnq. DFP Round to FP Integer Without
Inexact Quad and Record

C3 1 DFU FPR fpcc,fric,excp 1 12 12 1 P - 3 S - -

2 DFU FPR 1 12 12 1 P - 3 S - -

3 ALU2 CR 4 3 3 1 - - F - D2P F

drintx DFP Round to FP Integer With
Inexact

- - DFU FPR fpcc,fric,excp 1 12 12 1 E - 3 - - -

drintx. DFP Round to FP Integer With
Inexact and Record

C2 1 DFU FPR fpcc,fric,excp 1 12 12 1 E - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

Table A-1. Instruction Properties (Sheet 15 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n
N

um
be

r

P
ip

e
C

la
ss

M
ai

n
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns

pe
r

C
yc

le

La
te

nc
y

(M
in

im
um

)

La
te

nc
y

(M
ax

im
um

)

P
ip

e
B

us
y

C
yc

le
s

(M
in

im
um

)

D
is

pa
tc

h
R

ul
e

D
is

pa
tc

h
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h

to
 Is

su
e

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e
S

yn
ch

ro
ni

ze
d

Is
su

e
D

ep
en

d
on

 P
re

vi
ou

s
Io

p

Is
su

e
N

ex
t-

to
-C

om
pl

et
e

U
ser’s M

anual
O

penP
O

W
E

R
P

O
W

E
R

9 P
ro

cesso
r

Instruction P
roperties

P
age 390 of 508

V
ersion 2.1

10 O
ctober 2019

drintxq DFP Round to FP Integer With
Inexact Quad

C2 1 DFU FPR fpcc,fric,excp 1 12 12 1 P - 3 S - -

2 DFU FPR 1 12 12 1 P - 3 S - -

drintxq. DFP Round to FP Integer With
Inexact Quad and Record

C3 1 DFU FPR fpcc,fric,excp 1 12 12 1 P - 3 S - -

2 DFU FPR 1 12 12 1 P - 3 S - -

3 ALU2 CR 4 3 3 1 - - F - D2P F

drrnd DFP Reround - - DFU FPR fpcc,fric,excp 1 12 12 1 E - 3 - - -

drrnd. DFP Reround and Record C2 1 DFU FPR fpcc,fric,excp 1 12 12 1 E - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

drrndq DFP Reround Quad C2 1 DFU FPR fpcc,fric,excp 1 12 12 1 P - 3 S - -

2 DFU FPR 1 12 12 1 P - 3 S - -

drrndq. DFP Reround Quad and Record C3 1 DFU FPR fpcc,fric,excp 1 12 12 1 P - 3 S - -

2 DFU FPR 1 12 12 1 P - 3 S - -

3 ALU2 CR 4 3 3 1 - - F - D2P F

drsp DFP Round to DFP Short - - DFU FPR fpcc,fric,excp 1/13 24 24 12 E - 3 - - -

drsp. DFP Round to DFP Short and
Record

C2 1 DFU FPR fpcc,fric,excp 1/13 24 24 12 E - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

dscli DFP Shift Significand Left
Immediate

- - DFU FPR 1 12 12 1 E - - - -

dscli. DFP Shift Significand Left
Immediate and Record

C2 1 DFU FPR 1 12 12 1 E - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - - F

dscliq DFP Shift Significand Left
Immediate Quad

C2 1 DFU FPR 1 12 12 1 P - 3 S - -

2 DFU FPR 1 12 12 1 P - 3 S - -

Table A-1. Instruction Properties (Sheet 16 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n
N

um
be

r

P
ip

e
C

la
ss

M
ai

n
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns

pe
r

C
yc

le

La
te

nc
y

(M
in

im
um

)

La
te

nc
y

(M
ax

im
um

)

P
ip

e
B

us
y

C
yc

le
s

(M
in

im
um

)

D
is

pa
tc

h
R

ul
e

D
is

pa
tc

h
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h

to
 Is

su
e

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e
S

yn
ch

ro
ni

ze
d

Is
su

e
D

ep
en

d
on

 P
re

vi
ou

s
Io

p

Is
su

e
N

ex
t-

to
-C

om
pl

et
e

U
ser’s M

anual
O

penP
O

W
E

R

P
O

W
E

R
9 P

ro
cesso

r

V
ersion 2.1

10 O
ctober 2019

Instruction P
roperties

P
age 391 of 508

dscliq. DFP Shift Significand Left
Immediate Quad and Record

C3 1 DFU FPR 1 12 12 1 P - 3 S - -

2 DFU FPR 1 12 12 1 P - 3 S - -

3 ALU2 CR 4 3 3 1 - - F - - F

dscri DFP Shift Significand Right
Immediate

- - DFU FPR 1 12 12 1 E - - - -

dscri. DFP Shift Significand Right
Immediate and Record

C2 1 DFU FPR 1 12 12 1 E - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - - F

dscriq DFP Shift Significand Right
Immediate Quad

C2 1 DFU FPR 1 12 12 1 P - 3 S - -

2 DFU FPR 1 12 12 1 P - 3 S - -

dscriq. DFP Shift Significand Right
Immediate Quad and Record

C3 1 DFU FPR 1 12 12 1 P - 3 S - -

2 DFU FPR 1 12 12 1 P - 3 S - -

3 ALU2 CR 4 3 3 1 - - F - - F

dsub DFP Subtract - - DFU FPR fpcc,fric,excp 1 12 12 1 E - 3 - - -

dsub. DFP Subtract and Record C2 1 DFU FPR fpcc,fric,excp 1 12 12 1 E - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

dsubq DFP Subtract Quad C3 1 ALU VSR 2 2 2 1 V - 1 S - -

2 DFU FPR fpcc,fric,excp 1 12 12 1 P - 3 S - -

3 DFU FPR 1 12 12 1 P - 3 S - -

Table A-1. Instruction Properties (Sheet 17 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n
N

um
be

r

P
ip

e
C

la
ss

M
ai

n
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns

pe
r

C
yc

le

La
te

nc
y

(M
in

im
um

)

La
te

nc
y

(M
ax

im
um

)

P
ip

e
B

us
y

C
yc

le
s

(M
in

im
um

)

D
is

pa
tc

h
R

ul
e

D
is

pa
tc

h
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h

to
 Is

su
e

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e
S

yn
ch

ro
ni

ze
d

Is
su

e
D

ep
en

d
on

 P
re

vi
ou

s
Io

p

Is
su

e
N

ex
t-

to
-C

om
pl

et
e

U
ser’s M

anual
O

penP
O

W
E

R
P

O
W

E
R

9 P
ro

cesso
r

Instruction P
roperties

P
age 392 of 508

V
ersion 2.1

10 O
ctober 2019

dsubq. DFP Subtract Quad and Record X 1 ALU VSR 2 2 2 1 V - 1 S - -

2 NOP 6 0 0 1 - - - - -

3 NOP 6 0 0 1 - - - - -

4 DFU FPR fpcc,fric,excp 1 12 12 1 P - 3 S - -

5 DFU FPR 1 12 12 1 P - 3 S - -

6 ALU2 CR 4 3 3 1 - - F - - F

dtstdc DFP Test Data Class - - DFU CR fpcc 1 12 12 1 E - - - -

dtstdcq DFP Test Data Class Quad C2 1 DFU CR fpcc 1 12 12 1 P - 3 S - -

2 DFU 1 12 12 1 P - 3 S - -

dtstdg DFP Test Data Group - - DFU CR fpcc 1 12 12 1 E - - - -

dtstdgq DFP Test Data Group Quad C2 1 DFU CR fpcc 1 12 12 1 P - 3 S - -

2 DFU 1 12 12 1 P - 3 S - -

dtstex DFP Test Exponent - - DFU CR fpcc 1 12 12 1 E - 3 - - -

dtstexq DFP Test Exponent Quad - - DFU CR fpcc 1 12 12 1 E - 3 - - -

dtstsf DFP Test Significance - - DX CR fpcc 2 3 3 1 E - 3 - - -

dtstsfi DFP Test Significance Immediate - - DX CR fpcc 2 3 3 1 E - - - -

dtstsfiq DFP Test Significance Immediate
Quad

C2 1 DX CR fpcc 2 3 3 1 P - - - -

2 DX 2 3 3 1 P - - - -

dtstsfq DFP Test Significance Quad C2 1 DX CR fpcc 2 3 3 1 P - - - -

2 DX 2 3 3 1 P - - - -

dxex DFP Extract Exponent - - DFU FPR 1 12 12 1 E - - - -

dxex. DFP Extract Exponent and
Record

C2 1 DFU FPR 1 12 12 1 E - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - - F

Table A-1. Instruction Properties (Sheet 18 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n
N

um
be

r

P
ip

e
C

la
ss

M
ai

n
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns

pe
r

C
yc

le

La
te

nc
y

(M
in

im
um

)

La
te

nc
y

(M
ax

im
um

)

P
ip

e
B

us
y

C
yc

le
s

(M
in

im
um

)

D
is

pa
tc

h
R

ul
e

D
is

pa
tc

h
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h

to
 Is

su
e

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e
S

yn
ch

ro
ni

ze
d

Is
su

e
D

ep
en

d
on

 P
re

vi
ou

s
Io

p

Is
su

e
N

ex
t-

to
-C

om
pl

et
e

U
ser’s M

anual
O

penP
O

W
E

R

P
O

W
E

R
9 P

ro
cesso

r

V
ersion 2.1

10 O
ctober 2019

Instruction P
roperties

P
age 393 of 508

dxexq DFP Extract Exponent Quad - - DFU FPR 1 12 12 1 E - - - -

dxexq. DFP Extract Exponent Quad and
Record

C2 1 DFU FPR 1 12 12 1 E - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - - F

eieio Enforce In-order Execution of I/O - - LD 4 4 4 1 - - - - -

eqv Equivalent - - ALU GPR 4 2 2 1 - - - - -

eqv. Equivalent and Record - - ALU GPR CR fxcc 4 2 2 1 - - - - -

extsb Extend Sign Byte - - ALU GPR 4 2 2 1 - - - - -

extsb. Extend Sign Byte and Record - - ALU GPR CR fxcc 4 2 2 1 - - - - -

extsh Extend Sign Hword - - ALU GPR 4 2 2 1 - - - - -

extsh. Extend Sign Hword and Record - - ALU GPR CR fxcc 4 2 2 1 - - - - -

extsw Extend Sign Word - - ALU GPR 4 2 2 1 - - - - -

extsw. Extend Sign Word and Record - - ALU GPR CR fxcc 4 2 2 1 - - - - -

extswsli Extend Sign Word and Shift Left
Immediate

- - ALU GPR 4 2 2 1 - - - - -

extswsli. Extend Sign Word and Shift Left
Immediate and Record

C2 1 ALU GPR 4 2 2 1 - - - - -

2 ALU CR fxcc 4 2 2 1 - - - D1P -

fabs Floating Absolute - - ALU FPR 4 2 2 1 R - - - -

fabs. Floating Absolute and Record C2 1 ALU FPR 4 2 2 1 R - - - -

2 ALU2 CR 4 3 3 1 - - F - - F

fadd Floating Add - - DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

fadd. Floating Add and Record C2 1 DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

fadds Floating Add Single - - DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

Table A-1. Instruction Properties (Sheet 19 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n
N

um
be

r

P
ip

e
C

la
ss

M
ai

n
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns

pe
r

C
yc

le

La
te

nc
y

(M
in

im
um

)

La
te

nc
y

(M
ax

im
um

)

P
ip

e
B

us
y

C
yc

le
s

(M
in

im
um

)

D
is

pa
tc

h
R

ul
e

D
is

pa
tc

h
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h

to
 Is

su
e

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e
S

yn
ch

ro
ni

ze
d

Is
su

e
D

ep
en

d
on

 P
re

vi
ou

s
Io

p

Is
su

e
N

ex
t-

to
-C

om
pl

et
e

U
ser’s M

anual
O

penP
O

W
E

R
P

O
W

E
R

9 P
ro

cesso
r

Instruction P
roperties

P
age 394 of 508

V
ersion 2.1

10 O
ctober 2019

fadds. Floating Add Single and Record C2 1 DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

fcfid Floating Convert From Integer
Dword

- - DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

fcfid. Floating Convert From Integer
Dword and Record

C2 1 DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

fcfids Floating Convert From Integer
Dword Single

- - DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

fcfids. Floating Convert From Integer
Dword Single and Record

C2 1 DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

fcfidu Floating Convert From Integer
Dword Unsigned

- - DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

fcfidu. Floating Convert From Integer
Dword Unsigned and Record

C2 1 DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

fcfidus Floating Convert From Integer
Dword Unsigned Single

- - DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

fcfidus. Floating Convert From Integer
Dword Unsigned Single and
Record

C2 1 DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

fcmpo Floating Compare Ordered - - ALU2 CR excp,fpcc 4 3 3 1 R - 3 - - -

fcmpu Floating Compare Unordered - - ALU2 CR excp,fpcc 4 3 3 1 R - 3 - - -

fcpsgn Floating Copy Sign - - ALU FPR 4 2 2 1 R - - - -

fcpsgn. Floating Copy Sign and Record C2 1 ALU FPR 4 2 2 1 R - - - -

2 ALU2 CR 4 3 3 1 - - F - - F

fctid Floating Convert to Integer Dword - - DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

Table A-1. Instruction Properties (Sheet 20 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n
N

um
be

r

P
ip

e
C

la
ss

M
ai

n
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns

pe
r

C
yc

le

La
te

nc
y

(M
in

im
um

)

La
te

nc
y

(M
ax

im
um

)

P
ip

e
B

us
y

C
yc

le
s

(M
in

im
um

)

D
is

pa
tc

h
R

ul
e

D
is

pa
tc

h
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h

to
 Is

su
e

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e
S

yn
ch

ro
ni

ze
d

Is
su

e
D

ep
en

d
on

 P
re

vi
ou

s
Io

p

Is
su

e
N

ex
t-

to
-C

om
pl

et
e

U
ser’s M

anual
O

penP
O

W
E

R

P
O

W
E

R
9 P

ro
cesso

r

V
ersion 2.1

10 O
ctober 2019

Instruction P
roperties

P
age 395 of 508

fctid. Floating Convert to Integer Dword
and Record

C2 1 DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

fctidu Floating Convert to Integer Dword
Unsigned

- - DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

fctidu. Floating Convert to Integer Dword
Unsigned and Record

C2 1 DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

fctiduz Floating Convert to Integer Dword
Unsigned truncate

- - DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

fctiduz. Floating Convert to Integer Dword
Unsigned truncate and Record

C2 1 DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

fctidz Floating Convert to Integer Dword
truncate

- - DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

fctidz. Floating Convert to Integer Dword
truncate and Record

C2 1 DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

fctiw Floating Convert to Integer Word - - DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

fctiw. Floating Convert to Integer Word
and Record

C2 1 DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

fctiwu Floating Convert to Integer Word
Unsigned

- - DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

fctiwu. Floating Convert to Integer Word
Unsigned and Record

C2 1 DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

fctiwuz Floating Convert to Integer Word
Unsigned truncate

- - DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

fctiwuz. Floating Convert to Integer Word
Unsigned truncate and Record

C2 1 DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

Table A-1. Instruction Properties (Sheet 21 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n
N

um
be

r

P
ip

e
C

la
ss

M
ai

n
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns

pe
r

C
yc

le

La
te

nc
y

(M
in

im
um

)

La
te

nc
y

(M
ax

im
um

)

P
ip

e
B

us
y

C
yc

le
s

(M
in

im
um

)

D
is

pa
tc

h
R

ul
e

D
is

pa
tc

h
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h

to
 Is

su
e

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e
S

yn
ch

ro
ni

ze
d

Is
su

e
D

ep
en

d
on

 P
re

vi
ou

s
Io

p

Is
su

e
N

ex
t-

to
-C

om
pl

et
e

U
ser’s M

anual
O

penP
O

W
E

R
P

O
W

E
R

9 P
ro

cesso
r

Instruction P
roperties

P
age 396 of 508

V
ersion 2.1

10 O
ctober 2019

fctiwz Floating Convert to Integer Word
truncate

- - DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

fctiwz. Floating Convert to Integer Word
truncate and Record

C2 1 DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

fdiv Floating Divide - - DP FPR fpcc,fric,excp 4/21 27 33 7-8 R - 3 - - -

fdiv. Floating Divide and Record C2 1 DP FPR fpcc,fric,excp 4/21 27 33 7-8 R - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

fdivs Floating Divide Single - - DP FPR fpcc,fric,excp 4/20 22 22 5 R - 3 - - -

fdivs. Floating Divide Single and Record C2 1 DP FPR fpcc,fric,excp 4/20 22 22 5 R - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

fmadd Floating Multiply-Add - - DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

fmadd. Floating Multiply-Add and Record C2 1 DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

fmadds Floating Multiply-Add Single - - DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

fmadds. Floating Multiply-Add Single and
Record

C2 1 DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

fmr Floating Move Register - - ALU FPR 4 2 2 1 R - - - -

fmr. Floating Move Register and
Record

C2 1 ALU FPR 4 2 2 1 R - - - -

2 ALU2 CR 4 3 3 1 - - F - - F

fmrgew Floating Merge Even Word - - ALU FPR 4 2 2 1 R - - - -

fmrgow Floating Merge Odd Word - - ALU FPR 4 2 2 1 R - - - -

fmsub Floating Multiply-Subtract - - DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

Table A-1. Instruction Properties (Sheet 22 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n
N

um
be

r

P
ip

e
C

la
ss

M
ai

n
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns

pe
r

C
yc

le

La
te

nc
y

(M
in

im
um

)

La
te

nc
y

(M
ax

im
um

)

P
ip

e
B

us
y

C
yc

le
s

(M
in

im
um

)

D
is

pa
tc

h
R

ul
e

D
is

pa
tc

h
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h

to
 Is

su
e

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e
S

yn
ch

ro
ni

ze
d

Is
su

e
D

ep
en

d
on

 P
re

vi
ou

s
Io

p

Is
su

e
N

ex
t-

to
-C

om
pl

et
e

U
ser’s M

anual
O

penP
O

W
E

R

P
O

W
E

R
9 P

ro
cesso

r

V
ersion 2.1

10 O
ctober 2019

Instruction P
roperties

P
age 397 of 508

fmsub. Floating Multiply-Subtract and
Record

C2 1 DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

fmsubs Floating Multiply-Subtract Single - - DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

fmsubs. Floating Multiply-Subtract Single
and Record

C2 1 DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

fmul Floating Multiply - - DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

fmul. Floating Multiply and Record C2 1 DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

fmuls Floating Multiply Single - - DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

fmuls. Floating Multiply Single and
Record

C2 1 DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

fnabs Floating Negative Absolute Value - - ALU FPR 4 2 2 1 R - - - -

fnabs. Floating Negative Absolute Value
and Record

C2 1 ALU FPR 4 2 2 1 R - - - -

2 ALU2 CR 4 3 3 1 - - F - - F

fneg Floating Negate - - ALU FPR 4 2 2 1 R - - - -

fneg. Floating Negate and Record C2 1 ALU FPR 4 2 2 1 R - - - -

2 ALU2 CR 4 3 3 1 - - F - - F

fnmadd Floating Negative Multiply-Add - - DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

fnmadd. Floating Negative Multiply-Add
and Record

C2 1 DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

fnmadds Floating Negative Multiply-Add
Single

- - DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

Table A-1. Instruction Properties (Sheet 23 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n
N

um
be

r

P
ip

e
C

la
ss

M
ai

n
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns

pe
r

C
yc

le

La
te

nc
y

(M
in

im
um

)

La
te

nc
y

(M
ax

im
um

)

P
ip

e
B

us
y

C
yc

le
s

(M
in

im
um

)

D
is

pa
tc

h
R

ul
e

D
is

pa
tc

h
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h

to
 Is

su
e

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e
S

yn
ch

ro
ni

ze
d

Is
su

e
D

ep
en

d
on

 P
re

vi
ou

s
Io

p

Is
su

e
N

ex
t-

to
-C

om
pl

et
e

U
ser’s M

anual
O

penP
O

W
E

R
P

O
W

E
R

9 P
ro

cesso
r

Instruction P
roperties

P
age 398 of 508

V
ersion 2.1

10 O
ctober 2019

fnmadds. Floating Negative Multiply-Add
Single and Record

C2 1 DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

fnmsub Floating Negative Multiply-
Subtract

- - DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

fnmsub. Floating Negative Multiply-
Subtract and Record

C2 1 DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

fnmsubs Floating Negative Multiply-
Subtract Single

- - DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

fnmsubs. Floating Negative Multiply-
Subtract Single and Record

C2 1 DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

fre Floating Reciprocal Estimate - - DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

fre. Floating Reciprocal Estimate and
Record

C2 1 DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

fres Floating Reciprocal Estimate
Single

- - DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

fres. Floating Reciprocal Estimate
Single and Record

C2 1 DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

frim Floating Round to Integer Minus - - DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

frim. Floating Round to Integer Minus
and Record

C2 1 DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

frin Floating Round to Integer Nearest - - DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

frin. Floating Round to Integer Nearest
and Record

C2 1 DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

frip Floating Round to Integer Plus - - DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

Table A-1. Instruction Properties (Sheet 24 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n
N

um
be

r

P
ip

e
C

la
ss

M
ai

n
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns

pe
r

C
yc

le

La
te

nc
y

(M
in

im
um

)

La
te

nc
y

(M
ax

im
um

)

P
ip

e
B

us
y

C
yc

le
s

(M
in

im
um

)

D
is

pa
tc

h
R

ul
e

D
is

pa
tc

h
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h

to
 Is

su
e

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e
S

yn
ch

ro
ni

ze
d

Is
su

e
D

ep
en

d
on

 P
re

vi
ou

s
Io

p

Is
su

e
N

ex
t-

to
-C

om
pl

et
e

U
ser’s M

anual
O

penP
O

W
E

R

P
O

W
E

R
9 P

ro
cesso

r

V
ersion 2.1

10 O
ctober 2019

Instruction P
roperties

P
age 399 of 508

frip. Floating Round to Integer Plus
and Record

C2 1 DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

friz Floating Round to Integer Zero - - DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

friz. Floating Round to Integer Zero
and Record

C2 1 DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

frsp Floating Round to SP - - DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

frsp. Floating Round to SP and Record C2 1 DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

frsqrte Floating Reciprocal Square Root
Estimate

- - DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

frsqrte. Floating Reciprocal Square Root
Estimate and Record

C2 1 DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

frsqrtes Floating Reciprocal Square Root
Estimate Single

- - DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

frsqrtes. Floating Reciprocal Square Root
Estimate Single and Record

C2 1 DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

fsel Floating Select - - DP FPR 4 5 7 1 R - - - -

fsel. Floating Select and Record C2 1 DP FPR 4 5 7 1 R - - - -

2 ALU2 CR 4 3 3 1 - - F - - F

fsqrt Floating Square Root - - DP FPR fpcc,fric,excp 4/37 36 36 10 R - 3 - - -

fsqrt. Floating Square Root and Record C2 1 DP FPR fpcc,fric,excp 4/37 36 36 10 R - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

fsqrts Floating Square Root Single - - DP FPR fpcc,fric,excp 4/20 26 26 5 R - 3 - - -

Table A-1. Instruction Properties (Sheet 25 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n
N

um
be

r

P
ip

e
C

la
ss

M
ai

n
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns

pe
r

C
yc

le

La
te

nc
y

(M
in

im
um

)

La
te

nc
y

(M
ax

im
um

)

P
ip

e
B

us
y

C
yc

le
s

(M
in

im
um

)

D
is

pa
tc

h
R

ul
e

D
is

pa
tc

h
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h

to
 Is

su
e

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e
S

yn
ch

ro
ni

ze
d

Is
su

e
D

ep
en

d
on

 P
re

vi
ou

s
Io

p

Is
su

e
N

ex
t-

to
-C

om
pl

et
e

U
ser’s M

anual
O

penP
O

W
E

R
P

O
W

E
R

9 P
ro

cesso
r

Instruction P
roperties

P
age 400 of 508

V
ersion 2.1

10 O
ctober 2019

fsqrts. Floating Square Root Single and
Record

C2 1 DP FPR fpcc,fric,excp 4/20 26 26 5 R - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

fsub Floating Subtract - - DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

fsub. Floating Subtract and Record C2 1 DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

fsubs Floating Subtract Single - - DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

fsubs. Floating Subtract Single and
Record

C2 1 DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

ftdiv Floating Test for Software Divide - - ALU2 CR 4 3 3 1 R - - - -

ftsqrt Floating Test for Software Square
Root

- - ALU2 CR 4 3 3 1 R - - - -

icbi Instruction Cache Block Invalidate - - LD 4 4 4 1 - - - - N

icbt Instruction Cache Block Touch - - LD 4 4 4 1 - - - - -

isel Integer Select - - ALU GPR 4 2 2 1 R - 3 - - -

isync Instruction Synchronize - - LD 4 4 4 1 - - - - -

lbarx Load Byte And Reserve Indexed - - LD GPR 4 4 4 1 - - - - -

lbz Load Byte and Zero - - LD GPR 4 4 4 1 - - - - -

lbzcix Load Byte and Zero Caching
Inhibited Indexed

- - LD GPR 4 4 4 1 - - - - -

lbzu Load Byte and Zero with Update C2 1 LD GPR 4 4 4 1 - - - - -

2 ALU GPR 4 2 2 1 - - - - -

lbzux Load Byte and Zero with Update
Indexed

C2 1 LD GPR 4 4 4 1 P - - - -

2 ALU GPR 4 2 2 1 P - - - -

lbzx Load Byte and Zero Indexed - - LD GPR 4 4 4 1 - - - - -

Table A-1. Instruction Properties (Sheet 26 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n
N

um
be

r

P
ip

e
C

la
ss

M
ai

n
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns

pe
r

C
yc

le

La
te

nc
y

(M
in

im
um

)

La
te

nc
y

(M
ax

im
um

)

P
ip

e
B

us
y

C
yc

le
s

(M
in

im
um

)

D
is

pa
tc

h
R

ul
e

D
is

pa
tc

h
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h

to
 Is

su
e

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e
S

yn
ch

ro
ni

ze
d

Is
su

e
D

ep
en

d
on

 P
re

vi
ou

s
Io

p

Is
su

e
N

ex
t-

to
-C

om
pl

et
e

U
ser’s M

anual
O

penP
O

W
E

R

P
O

W
E

R
9 P

ro
cesso

r

V
ersion 2.1

10 O
ctober 2019

Instruction P
roperties

P
age 401 of 508

ld Load Dword - - LD GPR 4 4 4 1 - - - - -

ldarx Load Dword And Reserve Indexed - - LD GPR 4 4 4 1 - - - - -

ldat Load Dword Atomic X 1 NOP 6 0 0 1 - - - - -

2 ST 4 - - 1 R - - - -

3 ST 4 - - 1 R - - - -

4 LD 4 4 4 1 - - - - -

5 LD GPR 4 4 4 1 - - - - N

6 LD 4 4 4 1 - - - - -

ldbrx Load Dword Byte-Reverse
Indexed

- - LD GPR 4 4 4 1 - - - - -

ldcix Load Dword Caching Inhibited
Indexed

- - LD GPR 4 4 4 1 - - - - -

ldmx Load Dword Monitored Indexed C2 1 LD GPR 4 4 4 1 - - - - -

2 NOP 6 0 0 1 - - - - -

ldmx Load Dword Monitored Indexed C2 1 LD GPR 4 4 4 1 - - - - -

2 NOP 6 0 0 1 - - - - -

ldmx Load Dword Monitored Indexed C2 1 LD GPR 4 4 4 1 - - - - -

2 LD 4 4 4 1 - - - D1P -

ldu Load Dword with Update C2 1 LD GPR 4 4 4 1 - - - - -

2 ALU GPR 4 2 2 1 - - - - -

ldux Load Dword with Update Indexed C2 1 LD GPR 4 4 4 1 P - - - -

2 ALU GPR 4 2 2 1 P - - - -

ldx Load Dword Indexed - - LD GPR 4 4 4 1 - - - - -

lfd Load Floating Double - - LD FPR 4 4 4 1 R - - - -

Table A-1. Instruction Properties (Sheet 27 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n
N

um
be

r

P
ip

e
C

la
ss

M
ai

n
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns

pe
r

C
yc

le

La
te

nc
y

(M
in

im
um

)

La
te

nc
y

(M
ax

im
um

)

P
ip

e
B

us
y

C
yc

le
s

(M
in

im
um

)

D
is

pa
tc

h
R

ul
e

D
is

pa
tc

h
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h

to
 Is

su
e

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e
S

yn
ch

ro
ni

ze
d

Is
su

e
D

ep
en

d
on

 P
re

vi
ou

s
Io

p

Is
su

e
N

ex
t-

to
-C

om
pl

et
e

U
ser’s M

anual
O

penP
O

W
E

R
P

O
W

E
R

9 P
ro

cesso
r

Instruction P
roperties

P
age 402 of 508

V
ersion 2.1

10 O
ctober 2019

lfdp Load Floating Double Pair C2 1 LD3 FPR 4 6 6 1 P - - - -

2 LD3 FPR 4 6 6 1 P - - - -

lfdpx Load Floating Double Pair
Indexed

C2 1 LD3 FPR 4 6 6 1 P - - - -

2 LD3 FPR 4 6 6 1 P - - - -

lfdu Load Floating Double with Update C2 1 LD FPR 4 4 4 1 R - - - -

2 ALU GPR 4 2 2 1 - - - - -

lfdux Load Floating Double with Update
Indexed

C2 1 LD FPR 4 4 4 1 R - - - -

2 ALU GPR 4 2 2 1 - - - - -

lfdx Load Floating Double Indexed - - LD FPR 4 4 4 1 R - - - -

lfiwax Load Floating as Integer Word
Algebraic Indexed

C2 1 LD FPR 4 4 4 1 R - - - -

2 ALU FPR 4 2 2 1 R - - D1P -

lfiwzx Load Floating as Integer Word
and Zero Indexed

- - LD FPR 4 4 4 1 R - - - -

lfs Load Floating Single C2 1 LD FPR 4 4 4 1 R - - - -

2 ALU2 FPR 4 3 3 1 R - - D1P -

lfsu Load Floating Single with Update C3 1 LD FPR 4 4 4 1 R - - - -

2 ALU2 FPR 4 3 3 1 R - - D1P -

3 ALU GPR 4 2 2 1 - - - - -

lfsux Load Floating Single with Update
Indexed

C3 1 LD FPR 4 4 4 1 R - - - -

2 ALU2 FPR 4 3 3 1 R - - D1P -

3 ALU GPR 4 2 2 1 - - - - -

lfsx Load Floating Single Indexed C2 1 LD FPR 4 4 4 1 R - - - -

2 ALU2 FPR 4 3 3 1 R - - D1P -

Table A-1. Instruction Properties (Sheet 28 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n
N

um
be

r

P
ip

e
C

la
ss

M
ai

n
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns

pe
r

C
yc

le

La
te

nc
y

(M
in

im
um

)

La
te

nc
y

(M
ax

im
um

)

P
ip

e
B

us
y

C
yc

le
s

(M
in

im
um

)

D
is

pa
tc

h
R

ul
e

D
is

pa
tc

h
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h

to
 Is

su
e

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e
S

yn
ch

ro
ni

ze
d

Is
su

e
D

ep
en

d
on

 P
re

vi
ou

s
Io

p

Is
su

e
N

ex
t-

to
-C

om
pl

et
e

U
ser’s M

anual
O

penP
O

W
E

R

P
O

W
E

R
9 P

ro
cesso

r

V
ersion 2.1

10 O
ctober 2019

Instruction P
roperties

P
age 403 of 508

lha Load Hword Algebraic C2 1 LD GPR 4 4 4 1 - - - - -

2 ALU GPR 4 2 2 1 - - - D1P -

lharx Load Hword And Reserve Indexed
Xform

- - LD GPR 4 4 4 1 - - - - -

lhau Load Hword Algebraic with
Update

C3 1 LD GPR 4 4 4 1 - - - - -

2 ALU GPR 4 2 2 1 - - - - -

3 ALU GPR 4 2 2 1 - - - D2P -

lhaux Load Hword Algebraic with
Update Indexed

C3 1 LD GPR 4 4 4 1 P - - - -

2 ALU GPR 4 2 2 1 P - - - -

3 ALU GPR 4 2 2 1 - - - D2P -

lhax Load Hword Algebraic Indexed C2 1 LD GPR 4 4 4 1 - - - - -

2 ALU GPR 4 2 2 1 - - - D1P -

lhbrx Load Hword Byte-Reverse
Indexed

- - LD GPR 4 4 4 1 - - - - -

lhz Load Hword and Zero - - LD GPR 4 4 4 1 - - - - -

lhzcix Load Hword and Zero Caching
Inhibited Indexed

- - LD GPR 4 4 4 1 - - - - -

lhzu Load Hword and Zero with Update C2 1 LD GPR 4 4 4 1 - - - - -

2 ALU GPR 4 2 2 1 - - - - -

lhzux Load Hword and Zero with Update
Indexed

C2 1 LD GPR 4 4 4 1 P - - - -

2 ALU GPR 4 2 2 1 P - - - -

lhzx Load Hword and Zero Indexed - - LD GPR 4 4 4 1 - - - - -

lmw Load Multiple Word X 1u LD GPR 4 4 4 1 - - - - -

Table A-1. Instruction Properties (Sheet 29 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n
N

um
be

r

P
ip

e
C

la
ss

M
ai

n
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns

pe
r

C
yc

le

La
te

nc
y

(M
in

im
um

)

La
te

nc
y

(M
ax

im
um

)

P
ip

e
B

us
y

C
yc

le
s

(M
in

im
um

)

D
is

pa
tc

h
R

ul
e

D
is

pa
tc

h
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h

to
 Is

su
e

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e
S

yn
ch

ro
ni

ze
d

Is
su

e
D

ep
en

d
on

 P
re

vi
ou

s
Io

p

Is
su

e
N

ex
t-

to
-C

om
pl

et
e

U
ser’s M

anual
O

penP
O

W
E

R
P

O
W

E
R

9 P
ro

cesso
r

Instruction P
roperties

P
age 404 of 508

V
ersion 2.1

10 O
ctober 2019

lq Load Qword C2 1 LD3 GPR 4 6 6 1 P - - - -

2 LD3 GPR 4 6 6 1 P - - - -

lqarx Load Qword And Reserve
Indexed

C2 1 LD3 GPR 4 6 6 1 P - - - -

2 LD3 GPR 4 6 6 1 P - - - -

lswi Load String Word Immediate X 1u LD GPR 4 4 4 1 - - - - -

lswx Load String Word Indexed X 1 DIV 2 12 12 1 E - 3 - - -

2u LD2 GPR 4 5 5 1 - - - - -

lvebx Load Vector Element Byte
Indexed

- - LD VR 2 5 5 1 - - - - -

lvehx Load Vector Element Hword
Indexed

- - LD VR 2 5 5 1 - - - - -

lvewx Load Vector Element Word
Indexed

- - LD VR 2 5 5 1 - - - - -

lvsl Load Vector for Shift Left - - PM VR 2 3 3 1 V - 1 S - -

lvsr Load Vector for Shift Right - - PM VR 2 3 3 1 V - 1 S - -

lvx Load Vector Indexed - - LD VR 2 5 5 1 - - - - -

lvxl Load Vector Indexed Last - - LD VR 2 5 5 1 - - - - -

lwa Load Word Algebraic C2 1 LD GPR 4 4 4 1 - - - - -

2 ALU GPR 4 2 2 1 - - - D1P -

lwarx Load Word and Reserve Indexed - - LD GPR 4 4 4 1 - - - - -

Table A-1. Instruction Properties (Sheet 30 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n
N

um
be

r

P
ip

e
C

la
ss

M
ai

n
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns

pe
r

C
yc

le

La
te

nc
y

(M
in

im
um

)

La
te

nc
y

(M
ax

im
um

)

P
ip

e
B

us
y

C
yc

le
s

(M
in

im
um

)

D
is

pa
tc

h
R

ul
e

D
is

pa
tc

h
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h

to
 Is

su
e

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e
S

yn
ch

ro
ni

ze
d

Is
su

e
D

ep
en

d
on

 P
re

vi
ou

s
Io

p

Is
su

e
N

ex
t-

to
-C

om
pl

et
e

U
ser’s M

anual
O

penP
O

W
E

R

P
O

W
E

R
9 P

ro
cesso

r

V
ersion 2.1

10 O
ctober 2019

Instruction P
roperties

P
age 405 of 508

lwat Load Word Atomic X 1 NOP 6 0 0 1 - - - - -

2 ST 4 - - 1 R - - - -

3 ST 4 - - 1 R - - - -

4 LD 4 4 4 1 - - - - -

5 LD GPR 4 4 4 1 - - - - N

6 LD 4 4 4 1 - - - - -

lwaux Load Word Algebraic with Update
Indexed

C3 1 LD GPR 4 4 4 1 P - - - -

2 ALU GPR 4 2 2 1 P - - - -

3 ALU GPR 4 2 2 1 - - - D2P -

lwax Load Word Algebraic Indexed C2 1 LD GPR 4 4 4 1 - - - - -

2 ALU GPR 4 2 2 1 - - - D1P -

lwbrx Load Word Byte-Reverse Indexed - - LD GPR 4 4 4 1 - - - - -

lwz Load Word and Zero - - LD GPR 4 4 4 1 - - - - -

lwzcix Load Word and Zero Caching
Inhibited Indexed

- - LD GPR 4 4 4 1 - - - - -

lwzu Load Word and Zero with Update C2 1 LD GPR 4 4 4 1 - - - - -

2 ALU GPR 4 2 2 1 - - - - -

lwzux Load Word and Zero with Update
Indexed

C2 1 LD GPR 4 4 4 1 P - - - -

2 ALU GPR 4 2 2 1 P - - - -

lwzx Load Word and Zero Indexed - - LD GPR 4 4 4 1 - - - - -

lxsd Load VSX Scalar Dword - - LD VR 2 5 5 1 - - - - -

lxsdx Load VSX Scalar Dword Indexed - - LD VSR 2 5 5 1 - - - - -

lxsibzx Load VSX Scalar as Integer Byte
and Zero Indexed

- - LD VSR 2 5 5 1 - - - - -

Table A-1. Instruction Properties (Sheet 31 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n
N

um
be

r

P
ip

e
C

la
ss

M
ai

n
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns

pe
r

C
yc

le

La
te

nc
y

(M
in

im
um

)

La
te

nc
y

(M
ax

im
um

)

P
ip

e
B

us
y

C
yc

le
s

(M
in

im
um

)

D
is

pa
tc

h
R

ul
e

D
is

pa
tc

h
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h

to
 Is

su
e

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e
S

yn
ch

ro
ni

ze
d

Is
su

e
D

ep
en

d
on

 P
re

vi
ou

s
Io

p

Is
su

e
N

ex
t-

to
-C

om
pl

et
e

U
ser’s M

anual
O

penP
O

W
E

R
P

O
W

E
R

9 P
ro

cesso
r

Instruction P
roperties

P
age 406 of 508

V
ersion 2.1

10 O
ctober 2019

lxsihzx Load VSX Scalar as Integer
Hword and Zero Indexed

- - LD VSR 2 5 5 1 - - - - -

lxsiwax Load VSX Scalar as Integer Word
Algebraic Indexed

C2 1 LD VSR 2 5 5 1 - - - - -

2 ALU VSR 2 2 2 1 - - - D1P -

lxsiwzx Load VSX Scalar as Integer Word
and Zero Indexed

- - LD VSR 2 5 5 1 - - - - -

lxssp Load VSX Scalar Single C2 1 LD VR 2 5 5 1 - - - - -

2 ALU2 VR 2 3 3 1 - - - D1P -

lxsspx Load VSX Scalar SP Indexed C2 1 LD VSR 2 5 5 1 - - - - -

2 ALU2 VSR 2 3 3 1 - - - D1P -

lxv Load VSX Vector - - LD VSR 2 5 5 1 - - - - -

lxvb16x Load VSX Vector Byte*16 Indexed - - LD VSR 2 5 5 1 - - - - -

lxvd2x Load VSX Vector Dword*2
Indexed

- - LD VSR 2 5 5 1 - - - - -

lxvdsx_be Load VSX Vector Dword and
Splat Indexed

C2 1 LD VSR 2 5 5 1 - - - - -

2 NOP 6 0 0 1 - - - - -

lxvdsx_le Load VSX Vector Dword and
Splat Indexed

C2 1 LD VSR 2 5 5 1 - - - - -

2 PM VSR 2 3 3 1 V - 1 S D1P -

lxvh8x_be Load VSX Vector Hword*8
Indexed

C2 1 LD VSR 2 5 5 1 - - - - -

2 NOP 6 0 0 1 - - - - -

lxvh8x_le Load VSX Vector Hword*8
Indexed

C2 1 LD VSR 2 5 5 1 - - - - -

2 PM VSR 2 3 3 1 V - 1 S D1P -

lxvl Load VSX Vector with Length - - LD2 VSR 2 6 6 1 - - - - -

lxvll Load VSX Vector Left-justified
with Length

- - LD2 VSR 2 6 6 1 - - - - -

Table A-1. Instruction Properties (Sheet 32 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n
N

um
be

r

P
ip

e
C

la
ss

M
ai

n
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns

pe
r

C
yc

le

La
te

nc
y

(M
in

im
um

)

La
te

nc
y

(M
ax

im
um

)

P
ip

e
B

us
y

C
yc

le
s

(M
in

im
um

)

D
is

pa
tc

h
R

ul
e

D
is

pa
tc

h
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h

to
 Is

su
e

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e
S

yn
ch

ro
ni

ze
d

Is
su

e
D

ep
en

d
on

 P
re

vi
ou

s
Io

p

Is
su

e
N

ex
t-

to
-C

om
pl

et
e

U
ser’s M

anual
O

penP
O

W
E

R

P
O

W
E

R
9 P

ro
cesso

r

V
ersion 2.1

10 O
ctober 2019

Instruction P
roperties

P
age 407 of 508

lxvw4x_be Load VSX Vector Word*4 Indexed C2 1 LD VSR 2 5 5 1 - - - - -

2 NOP 6 0 0 1 - - - - -

lxvw4x_le Load VSX Vector Word*4 Indexed C2 1 LD VSR 2 5 5 1 - - - - -

2 PM VSR 2 3 3 1 V - 1 S D1P -

lxvwsx_be Load VSX Vector Word and Splat
Indexed

C2 1 LD VSR 2 5 5 1 - - - - -

2 NOP 6 0 0 1 - - - - -

lxvwsx_le Load VSX Vector Word and Splat
Indexed

C2 1 LD VSR 2 5 5 1 - - - - -

2 NOP 6 0 0 1 - - - - -

lxvx Load VSX Vector Indexed - - LD VSR 2 5 5 1 - - - - -

maddhd Multiply-Add High Dword - - DP-
MUL

GPR 4 5 5 1 R - - - -

maddhdu Multiply-Add High Dword
Unsigned

- - DP-
MUL

GPR 4 5 5 1 R - - - -

maddld Multiply-Add Low Dword - - DP-
MUL

GPR 4 5 5 1 R - - - -

mcrf Move CR Field - - ALU CR 4 2 2 1 - - 3 - - -

mcrfs Move to CR from FPSCR C2 1 ALU2 CR 4 3 3 1 - - F - - F

2 ALU2 ctrl,excp_clr 4 3 3 1 - - 3 - - N

mcrfs Move to CR from FPSCR - - ALU2 CR 4 3 3 1 - - 3 - - -

mcrxrx Move XER to CR Extended - - ALU CR 4 2 2 1 - - 3 - - -

mfcr Move From CR C3 1 ALU GPR 4 2 2 1 R - 3 - - -

2 ALU GPR 4 2 2 1 R - 3 - D1P -

3 ALU GPR 4 2 2 1 R - 3 - D1P -

Table A-1. Instruction Properties (Sheet 33 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n
N

um
be

r

P
ip

e
C

la
ss

M
ai

n
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns

pe
r

C
yc

le

La
te

nc
y

(M
in

im
um

)

La
te

nc
y

(M
ax

im
um

)

P
ip

e
B

us
y

C
yc

le
s

(M
in

im
um

)

D
is

pa
tc

h
R

ul
e

D
is

pa
tc

h
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h

to
 Is

su
e

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e
S

yn
ch

ro
ni

ze
d

Is
su

e
D

ep
en

d
on

 P
re

vi
ou

s
Io

p

Is
su

e
N

ex
t-

to
-C

om
pl

et
e

U
ser’s M

anual
O

penP
O

W
E

R
P

O
W

E
R

9 P
ro

cesso
r

Instruction P
roperties

P
age 408 of 508

V
ersion 2.1

10 O
ctober 2019

mffs Move From FPSCR C2 1 ALU2 FPR 4 3 3 1 R - 3 - - -

2 ALU2 FPR 4 3 3 1 R - F - D1P F

mffs. Move From FPSCR and Record C2 1 ALU2 FPR 4 3 3 1 R - 3 - - -

2 ALU2 FPR CR 4 3 3 1 R - F - D1P F

mffscdrn Move From FPSCR Control and
set DRN

- - ALU2 FPR ctrl 4 3 3 1 R - 3 - - -

mffscdrni Move From FPSCR Control and
set DRN Immediate

- - ALU2 FPR ctrl 4 3 3 1 R - 3 - - -

mffsce Move From FPSCR and Clear
Enables

C2 1 ALU2 FPR ctrl 4 3 3 1 R - 3 - - -

2 ALU2 FPR 4 3 3 1 R - F - D1P F

mffscrn Move From FPSCR Control and
set RN

- - ALU2 FPR ctrl 4 3 3 1 R - 3 - - -

mffscrni Move From FPSCR Control and
set RN Immediate

- - ALU2 FPR ctrl 4 3 3 1 R - 3 - - -

mffsl Move From FPSCR Lightweight C2 1 ALU2 FPR 4 3 3 1 R - 3 - - -

2 ALU2 FPR 4 3 3 1 R - 3 - D1P -

mfmsr Move From MSR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfocrf Move From One CR Field - - ALU GPR 4 2 2 1 R - 3 - - -

mfspr Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - N

mfspr_acop Move From SPR - - LD GPR 4 4 4 1 E WB,WS - - -

mfspr_amor Move From SPR - - LD GPR 4 4 4 1 E WB,WS - - -

mfspr_amr Move From SPR - - LD GPR 4 4 4 1 E WB,WS - - -

mfspr_apscr Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_apscru Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_asdr Move From SPR - - LD GPR 4 4 4 1 E WB,WS - - -

Table A-1. Instruction Properties (Sheet 34 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n
N

um
be

r

P
ip

e
C

la
ss

M
ai

n
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns

pe
r

C
yc

le

La
te

nc
y

(M
in

im
um

)

La
te

nc
y

(M
ax

im
um

)

P
ip

e
B

us
y

C
yc

le
s

(M
in

im
um

)

D
is

pa
tc

h
R

ul
e

D
is

pa
tc

h
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h

to
 Is

su
e

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e
S

yn
ch

ro
ni

ze
d

Is
su

e
D

ep
en

d
on

 P
re

vi
ou

s
Io

p

Is
su

e
N

ex
t-

to
-C

om
pl

et
e

U
ser’s M

anual
O

penP
O

W
E

R

P
O

W
E

R
9 P

ro
cesso

r

V
ersion 2.1

10 O
ctober 2019

Instruction P
roperties

P
age 409 of 508

mfspr_bescr Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_bescrr Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_bescrru Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_bescrs Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_bescrsu Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_cfar Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - N

mfspr_ciabr Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_cir Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - N

mfspr_ctr Move From SPR - - BR GPR 1 6 6 1 E - 2 - - -

mfspr_ctrl Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - N

mfspr_dar Move From SPR - - LD GPR 4 4 4 1 E WB,WS - - -

mfspr_dawr0 Move From SPR - - LD GPR 4 4 4 1 E WB,WS - - -

mfspr_dawrx0 Move From SPR - - LD GPR 4 4 4 1 E WB,WS - - N

mfspr_dec Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - N

mfspr_dhdes Move From SPR - - LD GPR 4 4 4 1 E WB,WS - - -

mfspr_dpdes Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - N

mfspr_dscr Move From SPR - - LD GPR 4 4 4 1 E WB,WS - - -

mfspr_dsisr Move From SPR - - LD GPR 4 4 4 1 E WB,WS - - -

mfspr_ebbhr Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_ebbrr Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_fscr Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_gsr Move From SPR - - NOP 6 0 0 1 - - - - -

mfspr_hdar Move From SPR - - LD GPR 4 4 4 1 E WB,WS - - -

Table A-1. Instruction Properties (Sheet 35 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n
N

um
be

r

P
ip

e
C

la
ss

M
ai

n
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns

pe
r

C
yc

le

La
te

nc
y

(M
in

im
um

)

La
te

nc
y

(M
ax

im
um

)

P
ip

e
B

us
y

C
yc

le
s

(M
in

im
um

)

D
is

pa
tc

h
R

ul
e

D
is

pa
tc

h
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h

to
 Is

su
e

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e
S

yn
ch

ro
ni

ze
d

Is
su

e
D

ep
en

d
on

 P
re

vi
ou

s
Io

p

Is
su

e
N

ex
t-

to
-C

om
pl

et
e

U
ser’s M

anual
O

penP
O

W
E

R
P

O
W

E
R

9 P
ro

cesso
r

Instruction P
roperties

P
age 410 of 508

V
ersion 2.1

10 O
ctober 2019

mfspr_hdec Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - N

mfspr_hdsisr Move From SPR - - LD GPR 4 4 4 1 E WB,WS - - -

mfspr_heir Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_hfscr Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_hid Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - N

mfspr_hmeer Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - N

mfspr_hmer Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - N

mfspr_hpmc1 Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_hpmc2 Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_hpmc3 Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_hpmc4 Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_hrmor Move From SPR - - LD GPR 4 4 4 1 E WB,WS - - -

mfspr_hsprg0 Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_hsprg1 Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_hsrr0 Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_hsrr1 Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_iamr Move From SPR - - LD GPR 4 4 4 1 E WB,WS - - -

mfspr_ic Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - N

mfspr_imc Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - N

mfspr_l2hadsr Move From SPR - - LD GPR 4 4 4 1 E WB,WS - - -

mfspr_l2mvsr0 Move From SPR - - LD GPR 4 4 4 1 E WB,WS - - -

mfspr_l2mvsr1 Move From SPR - - LD GPR 4 4 4 1 E WB,WS - - -

mfspr_l2qosr Move From SPR - - NOP 6 0 0 1 - - - - -

Table A-1. Instruction Properties (Sheet 36 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n
N

um
be

r

P
ip

e
C

la
ss

M
ai

n
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns

pe
r

C
yc

le

La
te

nc
y

(M
in

im
um

)

La
te

nc
y

(M
ax

im
um

)

P
ip

e
B

us
y

C
yc

le
s

(M
in

im
um

)

D
is

pa
tc

h
R

ul
e

D
is

pa
tc

h
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h

to
 Is

su
e

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e
S

yn
ch

ro
ni

ze
d

Is
su

e
D

ep
en

d
on

 P
re

vi
ou

s
Io

p

Is
su

e
N

ex
t-

to
-C

om
pl

et
e

U
ser’s M

anual
O

penP
O

W
E

R

P
O

W
E

R
9 P

ro
cesso

r

V
ersion 2.1

10 O
ctober 2019

Instruction P
roperties

P
age 411 of 508

mfspr_l3harpr Move From SPR - - LD GPR 4 4 4 1 E WB,WS - - -

mfspr_l3hawpr Move From SPR - - LD GPR 4 4 4 1 E WB,WS - - -

mfspr_ldbar Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - N

mfspr_lmrr Move From SPR - - LD GPR 4 4 4 1 E WB,WS - - -

mfspr_lmrr Move From SPR - - NOP 6 0 0 1 - - - - -

mfspr_lmser Move From SPR - - LD GPR 4 4 4 1 E WB,WS - - -

mfspr_lmser Move From SPR - - NOP 6 0 0 1 - - - - -

mfspr_lpcr Move From SPR - - LD GPR 4 4 4 1 E WB,WS - - -

mfspr_lpidr Move From SPR - - LD GPR 4 4 4 1 E WB,WS - - -

mfspr_lr Move From SPR - - BR GPR 1 6 6 1 E - 2 - - -

mfspr_mmcr0 Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_mmcr1 Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_mmcr2 Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_mmcra Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_mmcrc Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_mmcrh Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_mmcrs Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_mppr Move From SPR - - LD GPR 4 4 4 1 E WB,WS - - -

mfspr_pcr Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - N

mfspr_pidr Move From SPR - - LD GPR 4 4 4 1 E WB,WS - - -

mfspr_pir Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - N

mfspr_pmc1 Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_pmc2 Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

Table A-1. Instruction Properties (Sheet 37 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n
N

um
be

r

P
ip

e
C

la
ss

M
ai

n
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns

pe
r

C
yc

le

La
te

nc
y

(M
in

im
um

)

La
te

nc
y

(M
ax

im
um

)

P
ip

e
B

us
y

C
yc

le
s

(M
in

im
um

)

D
is

pa
tc

h
R

ul
e

D
is

pa
tc

h
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h

to
 Is

su
e

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e
S

yn
ch

ro
ni

ze
d

Is
su

e
D

ep
en

d
on

 P
re

vi
ou

s
Io

p

Is
su

e
N

ex
t-

to
-C

om
pl

et
e

U
ser’s M

anual
O

penP
O

W
E

R
P

O
W

E
R

9 P
ro

cesso
r

Instruction P
roperties

P
age 412 of 508

V
ersion 2.1

10 O
ctober 2019

mfspr_pmc3 Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_pmc4 Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_pmc5 Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_pmc6 Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_pmcr Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - N

mfspr_pmicr Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_pmmar Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - N

mfspr_pmsr Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - N

mfspr_ppr Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - N

mfspr_ppr32 Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - N

mfspr_pspb Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - N

mfspr_psscr Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_ptcr Move From SPR - - LD GPR 4 4 4 1 E WB,WS - - -

mfspr_purr Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - N

mfspr_pvr Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - N

mfspr_reserve
d808

Move From SPR - - NOP 6 0 0 1 - - - - -

mfspr_reserve
d809

Move From SPR - - NOP 6 0 0 1 - - - - -

mfspr_reserve
d810

Move From SPR - - NOP 6 0 0 1 - - - - -

mfspr_reserve
d811

Move From SPR - - NOP 6 0 0 1 - - - - -

mfspr_rpr Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_rwmr Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - N

Table A-1. Instruction Properties (Sheet 38 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n
N

um
be

r

P
ip

e
C

la
ss

M
ai

n
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns

pe
r

C
yc

le

La
te

nc
y

(M
in

im
um

)

La
te

nc
y

(M
ax

im
um

)

P
ip

e
B

us
y

C
yc

le
s

(M
in

im
um

)

D
is

pa
tc

h
R

ul
e

D
is

pa
tc

h
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h

to
 Is

su
e

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e
S

yn
ch

ro
ni

ze
d

Is
su

e
D

ep
en

d
on

 P
re

vi
ou

s
Io

p

Is
su

e
N

ex
t-

to
-C

om
pl

et
e

U
ser’s M

anual
O

penP
O

W
E

R

P
O

W
E

R
9 P

ro
cesso

r

V
ersion 2.1

10 O
ctober 2019

Instruction P
roperties

P
age 413 of 508

mfspr_sdar Move From SPR - - LD GPR 4 4 4 1 E WB,WS - - N

mfspr_siar Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_sier Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_smfctrl Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_spmc1 Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_spmc2 Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_sprc Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - N

mfspr_sprd Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - N

mfspr_sprg0 Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_sprg1 Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_sprg2 Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_sprg3 Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_spurr Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - N

mfspr_srr0 Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_srr1 Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_tar Move From SPR - - BR GPR 1 6 6 1 E - 2 - - -

mfspr_tb Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - N

mfspr_tbl Move From SPR - - NOP 6 0 0 1 - - - - -

mfspr_tbu Move From SPR - - NOP 6 0 0 1 - - - - -

mfspr_tbu40 Move From SPR - - NOP 6 0 0 1 - - - - -

mfspr_texasr Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - N

mfspr_texasru Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - N

mfspr_tfhar Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - N

Table A-1. Instruction Properties (Sheet 39 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n
N

um
be

r

P
ip

e
C

la
ss

M
ai

n
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns

pe
r

C
yc

le

La
te

nc
y

(M
in

im
um

)

La
te

nc
y

(M
ax

im
um

)

P
ip

e
B

us
y

C
yc

le
s

(M
in

im
um

)

D
is

pa
tc

h
R

ul
e

D
is

pa
tc

h
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h

to
 Is

su
e

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e
S

yn
ch

ro
ni

ze
d

Is
su

e
D

ep
en

d
on

 P
re

vi
ou

s
Io

p

Is
su

e
N

ex
t-

to
-C

om
pl

et
e

U
ser’s M

anual
O

penP
O

W
E

R
P

O
W

E
R

9 P
ro

cesso
r

Instruction P
roperties

P
age 414 of 508

V
ersion 2.1

10 O
ctober 2019

mfspr_tfiar Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - N

mfspr_tfmr Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - N

mfspr_tidr Move From SPR - - LD GPR 4 4 4 1 E WB,WS - - -

mfspr_tir Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_trace Move From SPR - - DIV 2 12 12 1 - - - - -

mfspr_trig0 Move From SPR - - NOP 6 0 0 1 - - - - -

mfspr_trig1 Move From SPR - - NOP 6 0 0 1 - - - - -

mfspr_trig2 Move From SPR - - NOP 6 0 0 1 - - - - -

mfspr_tscr Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_tsr Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_ttr Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_uamor Move From SPR - - LD GPR 4 4 4 1 E WB,WS - - -

mfspr_uamr Move From SPR - - LD GPR 4 4 4 1 E WB,WS - - -

mfspr_urmor Move From SPR - - LD GPR 4 4 4 1 E WB,WS - - -

mfspr_usprg0 Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_usprg1 Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_usrr0 Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_usrr1 Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_vr Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_worc Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_wort Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_xer Move From SPR C2 1 ALU2 GPR 4 3 3 1 R - 3 - - -

2 ALU2 GPR 4 3 3 1 R - 3 - D1P -

Table A-1. Instruction Properties (Sheet 40 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n
N

um
be

r

P
ip

e
C

la
ss

M
ai

n
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns

pe
r

C
yc

le

La
te

nc
y

(M
in

im
um

)

La
te

nc
y

(M
ax

im
um

)

P
ip

e
B

us
y

C
yc

le
s

(M
in

im
um

)

D
is

pa
tc

h
R

ul
e

D
is

pa
tc

h
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h

to
 Is

su
e

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e
S

yn
ch

ro
ni

ze
d

Is
su

e
D

ep
en

d
on

 P
re

vi
ou

s
Io

p

Is
su

e
N

ex
t-

to
-C

om
pl

et
e

U
ser’s M

anual
O

penP
O

W
E

R

P
O

W
E

R
9 P

ro
cesso

r

V
ersion 2.1

10 O
ctober 2019

Instruction P
roperties

P
age 415 of 508

mftb_old Move From Time Base - - DIV GPR 2 12 12 1 E WB,WS - - -

mfvscr Move From VSCR - - ALU2 VR 2 3 3 1 V - 1 3 S - N

mfvsrd Move From VSR Dword - - ALU GPR 4 2 2 1 - - - - -

mfvsrld Move From VSR Lower Dword - - PM GPR 4 3 3 1 V - 1 S - -

mfvsrwz Move From VSR Word and Zero - - ALU GPR 4 2 2 1 - - - - -

modsd Modulo Signed Dword - - DIV GPR 2/9 12 24 8 E - - - -

modsw Modulo Signed Word - - DIV GPR 2/9 12 16 8 E - - - -

modud Modulo Unsigned Dword - - DIV GPR 2/9 12 24 8 E - - - -

moduw Modulo Unsigned Word - - DIV GPR 2/9 12 24 8 E - - - -

msgclr Message Clear - - DIV 2 12 12 1 E SS - - N

msgclrp Message Clear Privileged - - DIV 2 12 12 1 E SS - - N

msgsnd Message Send - - LD 4 4 4 1 - - - - N

msgsndp Message Send Privileged - - DIV 2 12 12 1 E SS - - N

msgsync Message Synchronize - - LD 4 4 4 1 - - - - N

mtcrf Move to CR Fields C2 1 ALU CR CR* 4 2 2 1 R - - - -

2 ALU CR CR* 4 2 2 1 R - - - -

mtfsb0_ctrl Move to FPSCR Bit 0 - - ALU2 ctrl 4 3 3 1 R - 3 - - -

mtfsb0_ctrl. Move to FPSCR Bit 0 C2 1 ALU2 ctrl 4 3 3 1 R - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - - F

mtfsb0_excp Move to FPSCR Bit 0 - - ALU2 ctrl,excp_clr 4 3 3 1 R - 3 - - N

mtfsb0_excp. Move to FPSCR Bit 0 C2 1 ALU2 ctrl,excp_clr 4 3 3 1 R - 3 - - N

2 ALU2 CR 4 3 3 1 - - F - D1P F

Table A-1. Instruction Properties (Sheet 41 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n
N

um
be

r

P
ip

e
C

la
ss

M
ai

n
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns

pe
r

C
yc

le

La
te

nc
y

(M
in

im
um

)

La
te

nc
y

(M
ax

im
um

)

P
ip

e
B

us
y

C
yc

le
s

(M
in

im
um

)

D
is

pa
tc

h
R

ul
e

D
is

pa
tc

h
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h

to
 Is

su
e

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e
S

yn
ch

ro
ni

ze
d

Is
su

e
D

ep
en

d
on

 P
re

vi
ou

s
Io

p

Is
su

e
N

ex
t-

to
-C

om
pl

et
e

U
ser’s M

anual
O

penP
O

W
E

R
P

O
W

E
R

9 P
ro

cesso
r

Instruction P
roperties

P
age 416 of 508

V
ersion 2.1

10 O
ctober 2019

mtfsb0_excp. Move to FPSCR Bit 0 C2 1 ALU2 ctrl,excp_clr 4 3 3 1 R - 3 - - N

2 ALU2 CR 4 3 3 1 - - F - D1P F

mtfsb0_fpcc Move to FPSCR Bit 0 - - ALU2 fpcc 4 3 3 1 R - 3 - - -

mtfsb0_fpcc. Move to FPSCR Bit 0 C2 1 ALU2 fpcc 4 3 3 1 R - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - - F

mtfsb0_fric Move to FPSCR Bit 0 - - ALU2 fric 4 3 3 1 R - 3 - - -

mtfsb0_fric. Move to FPSCR Bit 0 C2 1 ALU2 fric 4 3 3 1 R - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - - F

mtfsb1_ctrl Move to FPSCR Bit 1 C2 1 ALU2 4 3 3 1 R - F - - F

2 ALU2 ctrl 4 3 3 1 R - 3 - - -

mtfsb1_ctrl. Move to FPSCR Bit 1 C2 1 ALU2 CR 4 3 3 1 R - F - - F

2 ALU2 ctrl 4 3 3 1 R - 3 - - -

mtfsb1_excp Move to FPSCR Bit 1 - - ALU2 excp 4 3 3 1 R - 3 - - -

mtfsb1_excp. Move to FPSCR Bit 1 - - ALU2 CR excp 4 3 3 1 R - F - - F

mtfsb1_fpcc Move to FPSCR Bit 1 - - ALU2 fpcc 4 3 3 1 R - 3 - - -

mtfsb1_fpcc. Move to FPSCR Bit 1 C2 1 ALU2 fpcc 4 3 3 1 R - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - - F

mtfsb1_fric Move to FPSCR Bit 1 - - ALU2 fric 4 3 3 1 R - 3 - - -

mtfsb1_fric. Move to FPSCR Bit 1 C2 1 ALU2 fric 4 3 3 1 R - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - - F

mtfsfi_ctrl Move to FPSCR Field Immediate C2 1 ALU2 4 3 3 1 R - F - - F

2 ALU2 ctrl 4 3 3 1 R - 3 - - -

Table A-1. Instruction Properties (Sheet 42 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n
N

um
be

r

P
ip

e
C

la
ss

M
ai

n
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns

pe
r

C
yc

le

La
te

nc
y

(M
in

im
um

)

La
te

nc
y

(M
ax

im
um

)

P
ip

e
B

us
y

C
yc

le
s

(M
in

im
um

)

D
is

pa
tc

h
R

ul
e

D
is

pa
tc

h
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h

to
 Is

su
e

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e
S

yn
ch

ro
ni

ze
d

Is
su

e
D

ep
en

d
on

 P
re

vi
ou

s
Io

p

Is
su

e
N

ex
t-

to
-C

om
pl

et
e

U
ser’s M

anual
O

penP
O

W
E

R

P
O

W
E

R
9 P

ro
cesso

r

V
ersion 2.1

10 O
ctober 2019

Instruction P
roperties

P
age 417 of 508

mtfsfi_ctrl. Move to FPSCR Field Immediate C2 1 ALU2 CR 4 3 3 1 R - F - - F

2 ALU2 ctrl 4 3 3 1 R - 3 - - -

mtfsfi_drn Move to FPSCR Field Immediate - - ALU2 ctrl 4 3 3 1 R - 3 - - -

mtfsfi_drn. Move to FPSCR Field Immediate C2 1 ALU2 CR 4 3 3 1 R - F - - F

2 ALU2 ctrl 4 3 3 1 R - 3 - - -

mtfsfi_excp0 Move to FPSCR Field Immediate C2 1 ALU2 excp 4 3 3 1 R - F - - F

2 ALU2 ctrl,excp_clr 4 3 3 1 R - 3 - - N

mtfsfi_excp0. Move to FPSCR Field Immediate C2 1 ALU2 CR excp 4 3 3 1 R - F - - F

2 ALU2 ctrl,excp_clr 4 3 3 1 R - 3 - - N

mtfsfi_excp2 Move to FPSCR Field Immediate C2 1 ALU2 excp 4 3 3 1 R - F - - F

2 ALU2 ctrl,excp_clr 4 3 3 1 R - 3 - - N

mtfsfi_excp2. Move to FPSCR Field Immediate C2 1 ALU2 CR excp 4 3 3 1 R - F - - F

2 ALU2 ctrl,excp_clr 4 3 3 1 R - 3 - - N

mtfsfi_excp5 Move to FPSCR Field Immediate C2 1 ALU2 excp 4 3 3 1 R - F - - F

2 ALU2 ctrl,excp_clr 4 3 3 1 R - 3 - - N

mtfsfi_excp5. Move to FPSCR Field Immediate C2 1 ALU2 CR excp 4 3 3 1 R - F - - F

2 ALU2 ctrl,excp_clr 4 3 3 1 R - 3 - - N

mtfsfi_fpcc Move to FPSCR Field Immediate - - ALU2 fpcc 4 3 3 1 R - - - -

mtfsfi_fpcc. Move to FPSCR Field Immediate - - ALU2 CR fpcc 4 3 3 1 R - F - - F

mtfsfi_fric Move to FPSCR Field Immediate C2 1 ALU2 fric,excp 4 3 3 1 R - F - - F

2 ALU2 ctrl,excp_clr 4 3 3 1 R - 3 - - N

mtfsfi_fric. Move to FPSCR Field Immediate C2 1 ALU2 CR fric,excp 4 3 3 1 R - F - - F

2 ALU2 ctrl,excp_clr 4 3 3 1 R - 3 - - N

Table A-1. Instruction Properties (Sheet 43 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n
N

um
be

r

P
ip

e
C

la
ss

M
ai

n
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns

pe
r

C
yc

le

La
te

nc
y

(M
in

im
um

)

La
te

nc
y

(M
ax

im
um

)

P
ip

e
B

us
y

C
yc

le
s

(M
in

im
um

)

D
is

pa
tc

h
R

ul
e

D
is

pa
tc

h
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h

to
 Is

su
e

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e
S

yn
ch

ro
ni

ze
d

Is
su

e
D

ep
en

d
on

 P
re

vi
ou

s
Io

p

Is
su

e
N

ex
t-

to
-C

om
pl

et
e

U
ser’s M

anual
O

penP
O

W
E

R
P

O
W

E
R

9 P
ro

cesso
r

Instruction P
roperties

P
age 418 of 508

V
ersion 2.1

10 O
ctober 2019

mtfsf_l0_fpcc Move to FPSCR Fields C2 1 ALU2 fpcc,excp 4 3 3 1 R - F - - F

2 ALU2 ctrl,excp_clr 4 3 3 1 R - 3 - - N

mtfsf_l0_fpcc. Move to FPSCR Fields C2 1 ALU2 CR fpcc,excp 4 3 3 1 R - F - - F

2 ALU2 ctrl,excp_clr 4 3 3 1 R - 3 - - N

mtfsf_l0_fpcc_
fric

Move to FPSCR Fields C2 1 ALU2 fric,fpcc,excp 4 3 3 1 R - F - - F

2 ALU2 ctrl,excp_clr 4 3 3 1 R - 3 - - N

mtfsf_l0_fpcc_
fric.

Move to FPSCR Fields C2 1 ALU2 CR fric,fpcc,excp 4 3 3 1 R - F - - F

2 ALU2 ctrl,excp_clr 4 3 3 1 R - 3 - - N

mtfsf_l0_fric Move to FPSCR Fields C2 1 ALU2 fric,excp 4 3 3 1 R - F - - F

2 ALU2 ctrl,excp_clr 4 3 3 1 R - 3 - - N

mtfsf_l0_fric. Move to FPSCR Fields C2 1 ALU2 CR fric,excp 4 3 3 1 R - F - - F

2 ALU2 ctrl,excp_clr 4 3 3 1 R - 3 - - N

mtfsf_l0_w0 Move to FPSCR Fields C2 1 ALU2 excp 4 3 3 1 R - F - - F

2 ALU2 ctrl,excp_clr 4 3 3 1 R - 3 - - N

mtfsf_l0_w0. Move to FPSCR Fields C2 1 ALU2 CR excp 4 3 3 1 R - F - - F

2 ALU2 ctrl,excp_clr 4 3 3 1 R - 3 - - N

mtfsf_l0_w1. Move to FPSCR Fields C2 1 ALU2 CR 4 3 3 1 R - F - - F

2 ALU2 ctrl 4 3 3 1 R - 3 - - -

mtfsf_l1 Move to FPSCR Fields C2 1 ALU2 fric,fpcc,excp 4 3 3 1 R - 3 - - -

2 ALU2 ctrl,excp_clr 4 3 3 1 R - 3 - - N

mtfsf_l1. Move to FPSCR Fields C2 1 ALU2 CR fric,fpcc,excp 4 3 3 1 R - 3 - - -

2 ALU2 ctrl,excp_clr 4 3 3 1 R - 3 - - N

mtmsr Move to MSR - - DIV 2 12 12 1 E - - - N

Table A-1. Instruction Properties (Sheet 44 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n
N

um
be

r

P
ip

e
C

la
ss

M
ai

n
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns

pe
r

C
yc

le

La
te

nc
y

(M
in

im
um

)

La
te

nc
y

(M
ax

im
um

)

P
ip

e
B

us
y

C
yc

le
s

(M
in

im
um

)

D
is

pa
tc

h
R

ul
e

D
is

pa
tc

h
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h

to
 Is

su
e

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e
S

yn
ch

ro
ni

ze
d

Is
su

e
D

ep
en

d
on

 P
re

vi
ou

s
Io

p

Is
su

e
N

ex
t-

to
-C

om
pl

et
e

U
ser’s M

anual
O

penP
O

W
E

R

P
O

W
E

R
9 P

ro
cesso

r

V
ersion 2.1

10 O
ctober 2019

Instruction P
roperties

P
age 419 of 508

mtmsrd Move to MSR Dword - - DIV 2 12 12 1 E - - - N

mtocrf Move to One CR Field - - ALU CR 4 2 2 1 R - - - -

mtspr Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_acop Move to SPR - - LD 4 4 4 1 E SS - - N

mtspr_amor Move to SPR - - LD 4 4 4 1 E SS - - N

mtspr_amr Move to SPR - - LD 4 4 4 1 E SS - - N

mtspr_apscr Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_apscru Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_asdr Move to SPR - - LD 4 4 4 1 E SS - - N

mtspr_bescr Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_bescrr Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_bescrru Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_bescrs Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_bescrsu Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_cfar Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_ciabr Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_cir Move to SPR - - NOP 6 0 0 1 - - - - -

mtspr_ctr Move to SPR - - DIV 2 5 5 1 E - - - -

mtspr_ctrl Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_dar Move to SPR - - LD 4 4 4 1 E SS - - N

mtspr_dawr0 Move to SPR - - LD 4 4 4 1 E SS - - N

mtspr_dawrx0 Move to SPR - - LD 4 4 4 1 E SS - - N

mtspr_dec Move to SPR - - DIV 2 12 12 1 E SS - - N

Table A-1. Instruction Properties (Sheet 45 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n
N

um
be

r

P
ip

e
C

la
ss

M
ai

n
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns

pe
r

C
yc

le

La
te

nc
y

(M
in

im
um

)

La
te

nc
y

(M
ax

im
um

)

P
ip

e
B

us
y

C
yc

le
s

(M
in

im
um

)

D
is

pa
tc

h
R

ul
e

D
is

pa
tc

h
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h

to
 Is

su
e

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e
S

yn
ch

ro
ni

ze
d

Is
su

e
D

ep
en

d
on

 P
re

vi
ou

s
Io

p

Is
su

e
N

ex
t-

to
-C

om
pl

et
e

U
ser’s M

anual
O

penP
O

W
E

R
P

O
W

E
R

9 P
ro

cesso
r

Instruction P
roperties

P
age 420 of 508

V
ersion 2.1

10 O
ctober 2019

mtspr_dhdes Move to SPR - - LD 4 4 4 1 E SS - - N

mtspr_dpdes Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_dscr Move to SPR - - LD 4 4 4 1 E SS - - N

mtspr_dsisr Move to SPR - - LD 4 4 4 1 E SS - - N

mtspr_ebbhr Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_ebbrr Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_fscr Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_gsr Move to SPR - - DIV 2 12 12 1 - - - - -

mtspr_hdar Move to SPR - - LD 4 4 4 1 E SS - - N

mtspr_hdec Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_hdsisr Move to SPR - - LD 4 4 4 1 E SS - - N

mtspr_heir Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_hfscr Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_hid Move to SPR C2 1 DIV 2 12 12 1 E SS - - N

2 LD 4 4 4 1 - SS - - N

mtspr_hmeer Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_hmer Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_hpmc1 Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_hpmc2 Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_hpmc3 Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_hpmc4 Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_hrmor Move to SPR - - LD 4 4 4 1 E SS - - N

mtspr_hsprg0 Move to SPR - - DIV 2 12 12 1 E SS - - N

Table A-1. Instruction Properties (Sheet 46 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n
N

um
be

r

P
ip

e
C

la
ss

M
ai

n
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns

pe
r

C
yc

le

La
te

nc
y

(M
in

im
um

)

La
te

nc
y

(M
ax

im
um

)

P
ip

e
B

us
y

C
yc

le
s

(M
in

im
um

)

D
is

pa
tc

h
R

ul
e

D
is

pa
tc

h
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h

to
 Is

su
e

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e
S

yn
ch

ro
ni

ze
d

Is
su

e
D

ep
en

d
on

 P
re

vi
ou

s
Io

p

Is
su

e
N

ex
t-

to
-C

om
pl

et
e

U
ser’s M

anual
O

penP
O

W
E

R

P
O

W
E

R
9 P

ro
cesso

r

V
ersion 2.1

10 O
ctober 2019

Instruction P
roperties

P
age 421 of 508

mtspr_hsprg1 Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_hsrr0 Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_hsrr1 Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_iamr Move to SPR C2 1 LD 4 4 4 1 P SS - - N

2 LD 4 4 4 1 P SS - - N

mtspr_ic Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_imc Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_l2hadsr Move to SPR - - LD 4 4 4 1 E SS - - N

mtspr_l2mvsr0 Move to SPR - - LD 4 4 4 1 E SS - - N

mtspr_l2mvsr1 Move to SPR - - LD 4 4 4 1 E SS - - N

mtspr_l2qosr Move to SPR - - LD 4 4 4 1 E SS - - N

mtspr_l3harpr Move to SPR - - LD 4 4 4 1 E SS - - N

mtspr_l3hawpr Move to SPR - - LD 4 4 4 1 E SS - - N

mtspr_ldbar Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_lmrr Move to SPR - - LD 4 4 4 1 E SS - - N

mtspr_lmser Move to SPR - - LD 4 4 4 1 E SS - - N

mtspr_lpcr Move to SPR C2 1 DIV 2 12 12 1 E SS - - N

2 LD 4 4 4 1 - SS - - N

mtspr_lpidr Move to SPR C2 1 LD 4 4 4 1 P SS - - N

2 LD 4 4 4 1 P SS - - N

mtspr_lr Move to SPR - - DIV 2 5 5 1 E - - - -

mtspr_mmcr0 Move to SPR - - DIV 2 12 12 1 E SS - - N

Table A-1. Instruction Properties (Sheet 47 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n
N

um
be

r

P
ip

e
C

la
ss

M
ai

n
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns

pe
r

C
yc

le

La
te

nc
y

(M
in

im
um

)

La
te

nc
y

(M
ax

im
um

)

P
ip

e
B

us
y

C
yc

le
s

(M
in

im
um

)

D
is

pa
tc

h
R

ul
e

D
is

pa
tc

h
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h

to
 Is

su
e

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e
S

yn
ch

ro
ni

ze
d

Is
su

e
D

ep
en

d
on

 P
re

vi
ou

s
Io

p

Is
su

e
N

ex
t-

to
-C

om
pl

et
e

U
ser’s M

anual
O

penP
O

W
E

R
P

O
W

E
R

9 P
ro

cesso
r

Instruction P
roperties

P
age 422 of 508

V
ersion 2.1

10 O
ctober 2019

mtspr_mmcr1 Move to SPR C2 1 DIV 2 12 12 1 E SS - - N

2 LD 4 4 4 1 - SS - - N

mtspr_mmcr2 Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_mmcra Move to SPR C2 1 DIV 2 12 12 1 E SS - - N

2 LD 4 4 4 1 - SS - - N

mtspr_mmcrc Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_mmcrh Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_mmcrs Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_mppr Move to SPR - - LD 4 4 4 1 E SS - - N

mtspr_pcr Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_pidr Move to SPR C2 1 LD 4 4 4 1 P SS - - N

2 LD 4 4 4 1 P SS - - N

mtspr_pir Move to SPR - - NOP 6 0 0 1 - - - - -

mtspr_pmc1 Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_pmc2 Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_pmc3 Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_pmc4 Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_pmc5 Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_pmc6 Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_pmcr Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_pmicr Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_pmmar Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_pmsr Move to SPR - - NOP 6 0 0 1 - - - - -

Table A-1. Instruction Properties (Sheet 48 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n
N

um
be

r

P
ip

e
C

la
ss

M
ai

n
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns

pe
r

C
yc

le

La
te

nc
y

(M
in

im
um

)

La
te

nc
y

(M
ax

im
um

)

P
ip

e
B

us
y

C
yc

le
s

(M
in

im
um

)

D
is

pa
tc

h
R

ul
e

D
is

pa
tc

h
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h

to
 Is

su
e

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e
S

yn
ch

ro
ni

ze
d

Is
su

e
D

ep
en

d
on

 P
re

vi
ou

s
Io

p

Is
su

e
N

ex
t-

to
-C

om
pl

et
e

U
ser’s M

anual
O

penP
O

W
E

R

P
O

W
E

R
9 P

ro
cesso

r

V
ersion 2.1

10 O
ctober 2019

Instruction P
roperties

P
age 423 of 508

mtspr_ppr Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_ppr32 Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_pspb Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_psscr Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_ptcr Move to SPR - - LD 4 4 4 1 E SS - - N

mtspr_purr Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_pvr Move to SPR - - NOP 6 0 0 1 - - - - -

mtspr_reserve
d808

Move to SPR - - NOP 6 0 0 1 - - - - -

mtspr_reserve
d809

Move to SPR - - NOP 6 0 0 1 - - - - -

mtspr_reserve
d810

Move to SPR - - NOP 6 0 0 1 - - - - -

mtspr_reserve
d811

Move to SPR - - NOP 6 0 0 1 - - - - -

mtspr_rpr Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_rwmr Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_sdar Move to SPR - - LD 4 4 4 1 E SS - - N

mtspr_siar Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_sier Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_smfctrl Move to SPR C2 1 DIV 2 12 12 1 E SS - - N

2 LD 4 4 4 1 - SS - - N

mtspr_spmc1 Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_spmc2 Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_sprc Move to SPR - - DIV 2 12 12 1 E SS - - N

Table A-1. Instruction Properties (Sheet 49 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n
N

um
be

r

P
ip

e
C

la
ss

M
ai

n
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns

pe
r

C
yc

le

La
te

nc
y

(M
in

im
um

)

La
te

nc
y

(M
ax

im
um

)

P
ip

e
B

us
y

C
yc

le
s

(M
in

im
um

)

D
is

pa
tc

h
R

ul
e

D
is

pa
tc

h
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h

to
 Is

su
e

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e
S

yn
ch

ro
ni

ze
d

Is
su

e
D

ep
en

d
on

 P
re

vi
ou

s
Io

p

Is
su

e
N

ex
t-

to
-C

om
pl

et
e

U
ser’s M

anual
O

penP
O

W
E

R
P

O
W

E
R

9 P
ro

cesso
r

Instruction P
roperties

P
age 424 of 508

V
ersion 2.1

10 O
ctober 2019

mtspr_sprd Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_sprg0 Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_sprg1 Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_sprg2 Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_sprg3 Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_spurr Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_srr0 Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_srr1 Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_tar Move to SPR - - DIV 2 5 5 1 E - - - -

mtspr_tb Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_tbl Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_tbu Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_tbu40 Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_texasr Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_texasru Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_tfhar Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_tfiar Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_tfmr Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_tidr Move to SPR - - LD 4 4 4 1 E SS - - N

mtspr_tir Move to SPR - - NOP 6 0 0 1 - - - - -

mtspr_trace Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_trig0 Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_trig1 Move to SPR - - DIV 2 12 12 1 E SS - - N

Table A-1. Instruction Properties (Sheet 50 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n
N

um
be

r

P
ip

e
C

la
ss

M
ai

n
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns

pe
r

C
yc

le

La
te

nc
y

(M
in

im
um

)

La
te

nc
y

(M
ax

im
um

)

P
ip

e
B

us
y

C
yc

le
s

(M
in

im
um

)

D
is

pa
tc

h
R

ul
e

D
is

pa
tc

h
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h

to
 Is

su
e

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e
S

yn
ch

ro
ni

ze
d

Is
su

e
D

ep
en

d
on

 P
re

vi
ou

s
Io

p

Is
su

e
N

ex
t-

to
-C

om
pl

et
e

U
ser’s M

anual
O

penP
O

W
E

R

P
O

W
E

R
9 P

ro
cesso

r

V
ersion 2.1

10 O
ctober 2019

Instruction P
roperties

P
age 425 of 508

mtspr_trig2 Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_tscr Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_tsr Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_ttr Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_uamor Move to SPR - - LD 4 4 4 1 E SS - - N

mtspr_uamr Move to SPR - - LD 4 4 4 1 E SS - - N

mtspr_urmor Move to SPR - - LD 4 4 4 1 E SS - - N

mtspr_usprg0 Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_usprg1 Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_usrr0 Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_usrr1 Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_vr Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_worc Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_wort Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_xer Move to SPR C2 1 ALU2 caoc,fxcc,ov,d
cds

4 3 3 1 R - - - -

2 ALU2 tgcc,string,res
erved

4 3 3 1 R - - - -

mtvscr Move to VSCR - - ALU2 nj,sat 4 3 3 1 V - 1 S - N

mtvsrd Move to VSR Dword - - ALU VSR 2 2 2 1 - - - - -

mtvsrdd Move to VSR Double Dword - - ALU VSR 2 2 2 1 V - 1 S - -

mtvsrwa Move to VSR Word Algebraic - - ALU VSR 2 2 2 1 - - - - -

mtvsrws Move to VSR Word and Splat - - PM VSR 2 3 3 1 V - 1 S - -

mtvsrwz Move to VSR Word and Zero - - ALU VSR 2 2 2 1 - - - - -

Table A-1. Instruction Properties (Sheet 51 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n
N

um
be

r

P
ip

e
C

la
ss

M
ai

n
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns

pe
r

C
yc

le

La
te

nc
y

(M
in

im
um

)

La
te

nc
y

(M
ax

im
um

)

P
ip

e
B

us
y

C
yc

le
s

(M
in

im
um

)

D
is

pa
tc

h
R

ul
e

D
is

pa
tc

h
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h

to
 Is

su
e

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e
S

yn
ch

ro
ni

ze
d

Is
su

e
D

ep
en

d
on

 P
re

vi
ou

s
Io

p

Is
su

e
N

ex
t-

to
-C

om
pl

et
e

U
ser’s M

anual
O

penP
O

W
E

R
P

O
W

E
R

9 P
ro

cesso
r

Instruction P
roperties

P
age 426 of 508

V
ersion 2.1

10 O
ctober 2019

mulhd Multiply High Dword - - DP-
MUL

GPR 4 5 5 1 R - - - -

mulhd. Multiply High Dword and Record C2 1 DP-
MUL

GPR 4 5 5 1 R - - - -

2 ALU CR fxcc 4 2 2 1 - - - D1P -

mulhdu Multiply High Dword Unsigned - - DP-
MUL

GPR 4 5 5 1 R - - - -

mulhdu. Multiply High Dword Unsigned
and Record

C2 1 DP-
MUL

GPR 4 5 5 1 R - - - -

2 ALU CR fxcc 4 2 2 1 - - - D1P -

mulhw Multiply High Word - - DP-
MUL

GPR 4 5 5 1 R - - - -

mulhw. Multiply High Word and Record C2 1 DP-
MUL

GPR 4 5 5 1 R - - - -

2 ALU CR fxcc 4 2 2 1 - - - D1P -

mulhwu Multiply High Word Unsigned - - DP-
MUL

GPR 4 5 5 1 R - - - -

mulhwu. Multiply High Word Unsigned and
Record

C2 1 DP-
MUL

GPR 4 5 5 1 R - - - -

2 ALU CR fxcc 4 2 2 1 - - - D1P -

mulld Multiply Low Dword - - DP-
MUL

GPR 4 5 5 1 R - - - -

mulld. Multiply Low Dword and Record C2 1 DP-
MUL

GPR 4 5 5 1 R - - - -

2 ALU CR fxcc 4 2 2 1 - - - D1P -

mulldo Multiply Low Dword and Record
OV

- - DP-
MUL

GPR ov 4 5 5 1 R - - - -

Table A-1. Instruction Properties (Sheet 52 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n
N

um
be

r

P
ip

e
C

la
ss

M
ai

n
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns

pe
r

C
yc

le

La
te

nc
y

(M
in

im
um

)

La
te

nc
y

(M
ax

im
um

)

P
ip

e
B

us
y

C
yc

le
s

(M
in

im
um

)

D
is

pa
tc

h
R

ul
e

D
is

pa
tc

h
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h

to
 Is

su
e

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e
S

yn
ch

ro
ni

ze
d

Is
su

e
D

ep
en

d
on

 P
re

vi
ou

s
Io

p

Is
su

e
N

ex
t-

to
-C

om
pl

et
e

U
ser’s M

anual
O

penP
O

W
E

R

P
O

W
E

R
9 P

ro
cesso

r

V
ersion 2.1

10 O
ctober 2019

Instruction P
roperties

P
age 427 of 508

mulldo. Multiply Low Dword and Record
OV and Record

C2 1 DP-
MUL

GPR ov 4 5 5 1 R - - - -

2 ALU CR fxcc 4 2 2 1 - - 3 - D1P -

mulli Multiply Low Immediate - - DP-
MUL

GPR 4 5 5 1 R - - - -

mullw Multiply Low Word - - DP-
MUL

GPR 4 5 5 1 R - - - -

mullw. Multiply Low Word and Record C2 1 DP-
MUL

GPR 4 5 5 1 R - - - -

2 ALU CR fxcc 4 2 2 1 - - - D1P -

mullwo Multiply Low Word and Record
OV

- - DP-
MUL

GPR ov 4 5 5 1 R - - - -

mullwo. Multiply Low Word and Record
OV and Record

C2 1 DP-
MUL

GPR ov 4 5 5 1 R - - - -

2 ALU CR fxcc 4 2 2 1 - - 3 - D1P -

nand NAND - - ALU GPR 4 2 2 1 - - - - -

nand. NAND and Record - - ALU GPR CR fxcc 4 2 2 1 - - - - -

neg Negate - - ALU GPR 4 2 2 1 - - - - -

neg. Negate and Record - - ALU GPR CR fxcc 4 2 2 1 - - - - -

nego Negate and Record OV - - ALU GPR ov 4 2 2 1 - - - - -

nego. Negate and Record OV and
Record

- - ALU GPR CR fxcc,ov 4 2 2 1 - - - - -

nor NOR - - ALU GPR 4 2 2 1 - - - - -

nor. NOR and Record - - ALU GPR CR fxcc 4 2 2 1 - - - - -

or OR - - ALU GPR 4 2 2 1 - - - - -

or. OR and Record - - ALU GPR CR fxcc 4 2 2 1 - - - - -

Table A-1. Instruction Properties (Sheet 53 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n
N

um
be

r

P
ip

e
C

la
ss

M
ai

n
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns

pe
r

C
yc

le

La
te

nc
y

(M
in

im
um

)

La
te

nc
y

(M
ax

im
um

)

P
ip

e
B

us
y

C
yc

le
s

(M
in

im
um

)

D
is

pa
tc

h
R

ul
e

D
is

pa
tc

h
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h

to
 Is

su
e

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e
S

yn
ch

ro
ni

ze
d

Is
su

e
D

ep
en

d
on

 P
re

vi
ou

s
Io

p

Is
su

e
N

ex
t-

to
-C

om
pl

et
e

U
ser’s M

anual
O

penP
O

W
E

R
P

O
W

E
R

9 P
ro

cesso
r

Instruction P
roperties

P
age 428 of 508

V
ersion 2.1

10 O
ctober 2019

orc OR with Complement - - ALU GPR 4 2 2 1 - - - - -

orc. OR with Complement and Record - - ALU GPR CR fxcc 4 2 2 1 - - - - -

ori OR Immediate - - ALU GPR 4 2 2 1 - - - - -

oris OR Immediate Shifted - - ALU GPR 4 2 2 1 - - - - -

paste Paste - - LD 4 4 4 1 - - - - -

paste. Paste and Record C2 1 LD fxcc 4 4 4 1 - - - - -

2 ALU CR 4 2 2 1 - - 3 - D1P -

popcntb Population Count Byte - - ALU GPR 4 2 2 1 - - - - -

popcntd Population Count Dword - - ALU2 GPR 4 3 3 1 - - - - -

popcntw Population Count Words - - ALU2 GPR 4 3 3 1 - - - - -

prtyd Parity Dword - - ALU2 GPR 4 3 3 1 - - - - -

prtyw Parity Word - - ALU2 GPR 4 3 3 1 - - - - -

rfebb Return from Event Based Branch - - ALU 4 2 2 1 - - - - -

rldcl Rotate Left Dword then Clear Left - - ALU GPR 4 2 2 1 R - - - -

rldcl. Rotate Left Dword then Clear Left
and Record

C2 1 ALU GPR 4 2 2 1 R - - - -

2 ALU CR fxcc 4 2 2 1 - - - D1P -

rldcr Rotate Left Dword then Clear
Right

- - ALU GPR 4 2 2 1 R - - - -

rldcr. Rotate Left Dword then Clear
Right and Record

C2 1 ALU GPR 4 2 2 1 R - - - -

2 ALU CR fxcc 4 2 2 1 - - - D1P -

rldic Rotate Left Dword Immediate then
Clear

- - ALU GPR 4 2 2 1 - - - - -

rldic. Rotate Left Dword Immediate then
Clear and Record

C2 1 ALU GPR 4 2 2 1 - - - - -

2 ALU CR fxcc 4 2 2 1 - - - D1P -

Table A-1. Instruction Properties (Sheet 54 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n
N

um
be

r

P
ip

e
C

la
ss

M
ai

n
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns

pe
r

C
yc

le

La
te

nc
y

(M
in

im
um

)

La
te

nc
y

(M
ax

im
um

)

P
ip

e
B

us
y

C
yc

le
s

(M
in

im
um

)

D
is

pa
tc

h
R

ul
e

D
is

pa
tc

h
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h

to
 Is

su
e

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e
S

yn
ch

ro
ni

ze
d

Is
su

e
D

ep
en

d
on

 P
re

vi
ou

s
Io

p

Is
su

e
N

ex
t-

to
-C

om
pl

et
e

U
ser’s M

anual
O

penP
O

W
E

R

P
O

W
E

R
9 P

ro
cesso

r

V
ersion 2.1

10 O
ctober 2019

Instruction P
roperties

P
age 429 of 508

rldicl Rotate Left Dword Immediate then
Clear Left

- - ALU GPR 4 2 2 1 R - - - -

rldicl. Rotate Left Dword Immediate then
Clear Left and Record

C2 1 ALU GPR 4 2 2 1 R - - - -

2 ALU CR fxcc 4 2 2 1 - - - D1P -

rldicr Rotate Left Dword Immediate then
Clear Right

- - ALU GPR 4 2 2 1 R - - - -

rldicr. Rotate Left Dword Immediate then
Clear Right and Record

C2 1 ALU GPR 4 2 2 1 R - - - -

2 ALU CR fxcc 4 2 2 1 - - - D1P -

rldimi Rotate Left Dword Immediate then
Mask Insert

- - ALU GPR 4 2 2 1 R - - - -

rldimi. Rotate Left Dword Immediate then
Mask Insert and Record

C2 1 ALU GPR 4 2 2 1 R - - - -

2 ALU CR fxcc 4 2 2 1 - - - D1P -

rlwimi Rotate Left Word Immediate then
Mask Insert

- - ALU GPR 4 2 2 1 R - - - -

rlwimi. Rotate Left Word Immediate then
Mask Insert and Record

C2 1 ALU GPR 4 2 2 1 R - - - -

2 ALU CR fxcc 4 2 2 1 - - - D1P -

rlwinm Rotate Left Word Immediate then
AND with Mask

- - ALU GPR 4 2 2 1 R - - - -

rlwinm. Rotate Left Word Immediate then
AND with Mask and Record

C2 1 ALU GPR 4 2 2 1 R - - - -

2 ALU CR fxcc 4 2 2 1 - - - D1P -

rlwnm Rotate Left Word then AND with
Mask

- - ALU GPR 4 2 2 1 R - - - -

rlwnm. Rotate Left Word then AND with
Mask and Record

C2 1 ALU GPR 4 2 2 1 R - - - -

2 ALU CR fxcc 4 2 2 1 - - - D1P -

setb Set Boolean - - ALU2 GPR 4 3 3 1 - - 3 - - -

Table A-1. Instruction Properties (Sheet 55 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n
N

um
be

r

P
ip

e
C

la
ss

M
ai

n
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns

pe
r

C
yc

le

La
te

nc
y

(M
in

im
um

)

La
te

nc
y

(M
ax

im
um

)

P
ip

e
B

us
y

C
yc

le
s

(M
in

im
um

)

D
is

pa
tc

h
R

ul
e

D
is

pa
tc

h
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h

to
 Is

su
e

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e
S

yn
ch

ro
ni

ze
d

Is
su

e
D

ep
en

d
on

 P
re

vi
ou

s
Io

p

Is
su

e
N

ex
t-

to
-C

om
pl

et
e

U
ser’s M

anual
O

penP
O

W
E

R
P

O
W

E
R

9 P
ro

cesso
r

Instruction P
roperties

P
age 430 of 508

V
ersion 2.1

10 O
ctober 2019

slbfee. SLB Find Entry ESID and Record C3 1 LD 4 4 4 1 P - - - N

2 LD GPR fxcc 4 4 4 1 P - - - N

3 ALU CR 4 2 2 1 P - 3 - D1P N

slbia.IH000 SLB Invalidate All C2 1 LD 4 4 4 1 P WB,WS - - N

2 LD 4 4 4 1 P WB,WS - - N

slbia.IH001 SLB Invalidate All C2 1 LD 4 4 4 1 P WB,WS - - N

2 LD 4 4 4 1 P WB,WS - - N

slbia.IH010 SLB Invalidate All C2 1 LD 4 4 4 1 P WB,WS - - N

2 LD 4 4 4 1 P WB,WS - - N

slbia.IH011 SLB Invalidate All C2 1 LD 4 4 4 1 P WB,WS - - N

2 LD 4 4 4 1 P WB,WS - - N

slbia.IH100 SLB Invalidate All C2 1 LD 4 4 4 1 P WB,WS - - N

2 LD 4 4 4 1 P WB,WS - - N

slbia.IH101 SLB Invalidate All C2 1 LD 4 4 4 1 P WB,WS - - N

2 LD 4 4 4 1 P WB,WS - - N

slbia.IH110 SLB Invalidate All C2 1 LD 4 4 4 1 P WB,WS - - N

2 LD 4 4 4 1 P WB,WS - - N

slbia.IH111 SLB Invalidate All C2 1 LD 4 4 4 1 P WB,WS - - N

2 LD 4 4 4 1 P WB,WS - - N

slbie SLB Invalidate Entry C2 1 LD 4 4 4 1 P - - - N

2 LD 4 4 4 1 P - - - N

slbieg SLB Invalidate Entry Global - - ST 4 - - 1 R - - - -

Table A-1. Instruction Properties (Sheet 56 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n
N

um
be

r

P
ip

e
C

la
ss

M
ai

n
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns

pe
r

C
yc

le

La
te

nc
y

(M
in

im
um

)

La
te

nc
y

(M
ax

im
um

)

P
ip

e
B

us
y

C
yc

le
s

(M
in

im
um

)

D
is

pa
tc

h
R

ul
e

D
is

pa
tc

h
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h

to
 Is

su
e

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e
S

yn
ch

ro
ni

ze
d

Is
su

e
D

ep
en

d
on

 P
re

vi
ou

s
Io

p

Is
su

e
N

ex
t-

to
-C

om
pl

et
e

U
ser’s M

anual
O

penP
O

W
E

R

P
O

W
E

R
9 P

ro
cesso

r

V
ersion 2.1

10 O
ctober 2019

Instruction P
roperties

P
age 431 of 508

slbmfee SLB Move From Entry ESID C2 1 LD 4 4 4 1 P - - - N

2 LD GPR 4 4 4 1 P - - - N

slbmfev SLB Move From Entry VSID C2 1 LD 4 4 4 1 P - - - N

2 LD GPR 4 4 4 1 P - - - N

slbmte SLB Move to Entry C2 1 LD 4 4 4 1 P - - - N

2 LD 4 4 4 1 P - - - N

sld Shift Left Dword - - ALU GPR 4 2 2 1 - - - - -

sld. Shift Left Dword and Record C2 1 ALU GPR 4 2 2 1 - - - - -

2 ALU CR fxcc 4 2 2 1 - - - D1P -

slw Shift Left Word - - ALU GPR 4 2 2 1 R - - - -

slw. Shift Left Word and Record C2 1 ALU GPR 4 2 2 1 R - - - -

2 ALU CR fxcc 4 2 2 1 - - - D1P -

srad Shift Right Algebraic Dword - - ALU GPR caoc 4 2 2 1 - - - - -

srad. Shift Right Algebraic Dword and
Record

C2 1 ALU GPR caoc 4 2 2 1 - - - - -

2 ALU CR fxcc 4 2 2 1 - - - D1P -

sradi Shift Right Algebraic Dword
Immediate

- - ALU GPR caoc 4 2 2 1 - - - - -

sradi. Shift Right Algebraic Dword
Immediate and Record

C2 1 ALU GPR caoc 4 2 2 1 - - - - -

2 ALU CR fxcc 4 2 2 1 - - - D1P -

sraw Shift Right Algebraic Word - - ALU GPR caoc 4 2 2 1 R - - - -

sraw. Shift Right Algebraic Word and
Record

C2 1 ALU GPR caoc 4 2 2 1 R - - - -

2 ALU CR fxcc 4 2 2 1 - - - D1P -

srawi Shift Right Algebraic Word
Immediate

- - ALU GPR caoc 4 2 2 1 R - - - -

Table A-1. Instruction Properties (Sheet 57 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n
N

um
be

r

P
ip

e
C

la
ss

M
ai

n
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns

pe
r

C
yc

le

La
te

nc
y

(M
in

im
um

)

La
te

nc
y

(M
ax

im
um

)

P
ip

e
B

us
y

C
yc

le
s

(M
in

im
um

)

D
is

pa
tc

h
R

ul
e

D
is

pa
tc

h
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h

to
 Is

su
e

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e
S

yn
ch

ro
ni

ze
d

Is
su

e
D

ep
en

d
on

 P
re

vi
ou

s
Io

p

Is
su

e
N

ex
t-

to
-C

om
pl

et
e

U
ser’s M

anual
O

penP
O

W
E

R
P

O
W

E
R

9 P
ro

cesso
r

Instruction P
roperties

P
age 432 of 508

V
ersion 2.1

10 O
ctober 2019

srawi. Shift Right Algebraic Word
Immediate and Record

C2 1 ALU GPR caoc 4 2 2 1 R - - - -

2 ALU CR fxcc 4 2 2 1 - - - D1P -

srd Shift Right Dword - - ALU GPR 4 2 2 1 - - - - -

srd. Shift Right Dword and Record C2 1 ALU GPR 4 2 2 1 - - - - -

2 ALU CR fxcc 4 2 2 1 - - - D1P -

srw Shift Right Word - - ALU GPR 4 2 2 1 R - - - -

srw. Shift Right Word and Record C2 1 ALU GPR 4 2 2 1 R - - - -

2 ALU CR fxcc 4 2 2 1 - - - D1P -

stb Store Byte - - ST 4 - - 1 R-st - - - -

stbcix Store Byte Caching Inhibited
Indexed

- - ST 4 - - 1 R - - - -

stbcx. Store Byte Conditional Indexed
and Record

C2 1 ST fxcc 4 - - 1 R - - - -

2 ALU CR 4 2 2 1 - - 3 - D1P -

stbu Store Byte with Update C2 1 ST 4 - - 1 R-st - - - -

2 ALU GPR 4 2 2 1 - - - - -

stbux Store Byte with Update Indexed C2 1 ST 4 - - 1 R - - - -

2 ALU GPR 4 2 2 1 - - - - -

stbx Store Byte Indexed - - ST 4 - - 1 R - - - -

std Store Dword - - ST 4 - - 1 R-st - - - -

stdat Store Dword Atomic X 1 LD 4 4 4 1 - - - - -

2 ST 4 - - 1 R - - - N

3 LD 4 4 4 1 - - - - -

stdbrx Store Dword Byte-Reverse
Indexed

- - ST 4 - - 1 R - - - -

Table A-1. Instruction Properties (Sheet 58 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n
N

um
be

r

P
ip

e
C

la
ss

M
ai

n
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns

pe
r

C
yc

le

La
te

nc
y

(M
in

im
um

)

La
te

nc
y

(M
ax

im
um

)

P
ip

e
B

us
y

C
yc

le
s

(M
in

im
um

)

D
is

pa
tc

h
R

ul
e

D
is

pa
tc

h
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h

to
 Is

su
e

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e
S

yn
ch

ro
ni

ze
d

Is
su

e
D

ep
en

d
on

 P
re

vi
ou

s
Io

p

Is
su

e
N

ex
t-

to
-C

om
pl

et
e

U
ser’s M

anual
O

penP
O

W
E

R

P
O

W
E

R
9 P

ro
cesso

r

V
ersion 2.1

10 O
ctober 2019

Instruction P
roperties

P
age 433 of 508

stdcix Store Dword Caching Inhibited
Indexed

- - ST 4 - - 1 R - - - -

stdcx. Store Dword Conditional Indexed
and Record

C2 1 ST fxcc 4 - - 1 R - - - -

2 ALU CR 4 2 2 1 - - 3 - D1P -

stdu Store Dword with Update C2 1 ST 4 - - 1 R-st - - - -

2 ALU GPR 4 2 2 1 - - - - -

stdux Store Dword with Update Indexed C2 1 ST 4 - - 1 R - - - -

2 ALU GPR 4 2 2 1 - - - - -

stdx Store Dword Indexed - - ST 4 - - 1 R - - - -

stfd Store Floating Double - - ST 4 - - 1 R - - - -

stfdp Store Floating Double Pair C2 1 ST 4 - - 1 R - - - -

2 ST 4 - - 1 R - - - -

stfdpx Store Floating Double Pair
Indexed

C2 1 ST 4 - - 1 R - - - -

2 ST 4 - - 1 R - - - -

stfdu Store Floating Double with Update C2 1 ST 4 - - 1 R - - - -

2 ALU GPR 4 2 2 1 - - - - -

stfdux Store Floating Double with Update
Indexed

C2 1 ST 4 - - 1 R - - - -

2 ALU GPR 4 2 2 1 - - - - -

stfdx Store Floating Double Indexed - - ST 4 - - 1 R - - - -

stfiwx Store Floating as Integer Word
Indexed

- - ST 4 - - 1 R - - - -

stfs Store Floating Single - - ST 4 - - 1 R - - - -

stfsu Store Floating Single with Update C2 1 ST 4 - - 1 R - - - -

2 ALU GPR 4 2 2 1 - - - - -

Table A-1. Instruction Properties (Sheet 59 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n
N

um
be

r

P
ip

e
C

la
ss

M
ai

n
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns

pe
r

C
yc

le

La
te

nc
y

(M
in

im
um

)

La
te

nc
y

(M
ax

im
um

)

P
ip

e
B

us
y

C
yc

le
s

(M
in

im
um

)

D
is

pa
tc

h
R

ul
e

D
is

pa
tc

h
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h

to
 Is

su
e

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e
S

yn
ch

ro
ni

ze
d

Is
su

e
D

ep
en

d
on

 P
re

vi
ou

s
Io

p

Is
su

e
N

ex
t-

to
-C

om
pl

et
e

U
ser’s M

anual
O

penP
O

W
E

R
P

O
W

E
R

9 P
ro

cesso
r

Instruction P
roperties

P
age 434 of 508

V
ersion 2.1

10 O
ctober 2019

stfsux Store Floating Single with Update
Indexed

C2 1 ST 4 - - 1 R - - - -

2 ALU GPR 4 2 2 1 - - - - -

stfsx Store Floating Single Indexed - - ST 4 - - 1 R - - - -

sth Store Hword - - ST 4 - - 1 R-st - - - -

sthbrx Store Hword Byte-Reverse
Indexed

- - ST 4 - - 1 R - - - -

sthcix Store Hword Caching Inhibited
Indexed

- - ST 4 - - 1 R - - - -

sthcx. Store Hword Conditional Indexed
and Record

C2 1 ST fxcc 4 - - 1 R - - - -

2 ALU CR 4 2 2 1 - - 3 - D1P -

sthu Store Hword with Update C2 1 ST 4 - - 1 R-st - - - -

2 ALU GPR 4 2 2 1 - - - - -

sthux Store Hword with Update Indexed C2 1 ST 4 - - 1 R - - - -

2 ALU GPR 4 2 2 1 - - - - -

sthx Store Hword Indexed - - ST 4 - - 1 R - - - -

stmw Store Multiple Word X 1u ST 4 - - 1 R - - - -

stop Stop - - 0 - - - 1 - - - - -

stq Store Qword C2 1 ST 4 - - 1 R-st - - - -

2 ST 4 - - 1 R-st - - - -

stqcx. Store Qword Conditional Indexed
and Record

C3 1 ST 4 - - 1 R - 3 - - -

2 ST fxcc 4 - - 1 R - 3 - - -

3 ALU CR 4 2 2 1 - - 3 - D1P -

stswi Store String Word Immediate X 1u ST 4 - - 1 R-st - - - -

Table A-1. Instruction Properties (Sheet 60 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n
N

um
be

r

P
ip

e
C

la
ss

M
ai

n
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns

pe
r

C
yc

le

La
te

nc
y

(M
in

im
um

)

La
te

nc
y

(M
ax

im
um

)

P
ip

e
B

us
y

C
yc

le
s

(M
in

im
um

)

D
is

pa
tc

h
R

ul
e

D
is

pa
tc

h
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h

to
 Is

su
e

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e
S

yn
ch

ro
ni

ze
d

Is
su

e
D

ep
en

d
on

 P
re

vi
ou

s
Io

p

Is
su

e
N

ex
t-

to
-C

om
pl

et
e

U
ser’s M

anual
O

penP
O

W
E

R

P
O

W
E

R
9 P

ro
cesso

r

V
ersion 2.1

10 O
ctober 2019

Instruction P
roperties

P
age 435 of 508

stswx Store String Word Indexed X 1 DIV 2 12 12 1 E - 3 - - -

2u ST2 4 - - 1 R - - - -

stvebx Store Vector Element Byte
Indexed

- - ST 4 - - 1 V - 1 S - -

stvehx Store Vector Element Hword
Indexed

- - ST 4 - - 1 V - 1 S - -

stvewx Store Vector Element Word
Indexed

- - ST 4 - - 1 V - 1 S - -

stvx Store Vector Indexed - - ST 4 - - 1 V - 1 S - -

stvxl Store Vector Indexed Last - - ST 4 - - 1 V - 1 S - -

stw Store Word - - ST 4 - - 1 R-st - - - -

stwat Store Word ATomic X 1 LD 4 4 4 1 - - - - -

2 ST 4 - - 1 R - - - N

3 LD 4 4 4 1 - - - - -

stwbrx Store Word Byte-Reverse Indexed - - ST 4 - - 1 R - - - -

stwcix Store Word Caching Inhibited
Indexed

- - ST 4 - - 1 R - - - -

stwcx. Store Word Conditional Indexed
and Record

C2 1 ST fxcc 4 - - 1 R - - - -

2 ALU CR 4 2 2 1 - - 3 - D1P -

stwu Store Word with Update C2 1 ST 4 - - 1 R-st - - - -

2 ALU GPR 4 2 2 1 - - - - -

stwux Store Word with Update Indexed C2 1 ST 4 - - 1 R - - - -

2 ALU GPR 4 2 2 1 - - - - -

stwx Store Word Indexed - - ST 4 - - 1 R - - - -

stxsd Store VSX Scalar Dword - - ST 4 - - 1 R-st - - - -

Table A-1. Instruction Properties (Sheet 61 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n
N

um
be

r

P
ip

e
C

la
ss

M
ai

n
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns

pe
r

C
yc

le

La
te

nc
y

(M
in

im
um

)

La
te

nc
y

(M
ax

im
um

)

P
ip

e
B

us
y

C
yc

le
s

(M
in

im
um

)

D
is

pa
tc

h
R

ul
e

D
is

pa
tc

h
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h

to
 Is

su
e

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e
S

yn
ch

ro
ni

ze
d

Is
su

e
D

ep
en

d
on

 P
re

vi
ou

s
Io

p

Is
su

e
N

ex
t-

to
-C

om
pl

et
e

U
ser’s M

anual
O

penP
O

W
E

R
P

O
W

E
R

9 P
ro

cesso
r

Instruction P
roperties

P
age 436 of 508

V
ersion 2.1

10 O
ctober 2019

stxsdx Store VSX Scalar Dword Indexed - - ST 4 - - 1 R - - - -

stxsibx Store VSX Scalar as Integer Byte
Indexed

- - ST 4 - - 1 R - - - -

stxsihx Store VSX Scalar as Integer
Hword Indexed

- - ST 4 - - 1 R - - - -

stxsiwx Store VSX Scalar as Integer Word
Indexed

- - ST 4 - - 1 R - - - -

stxssp Store VSX Scalar SP - - ST 4 - - 1 R-st - - - -

stxsspx Store VSX Scalar SP Indexed - - ST 4 - - 1 R - - - -

stxv Store VSX Vector - - ST 4 - - 1 V - 1 S - -

stxvb16x Store VSX Vector Byte*16
Indexed

- - ST 4 - - 1 V - 1 S - -

stxvd2x Store VSX Vector Dword*2
Indexed

- - ST 4 - - 1 V - 1 S - -

stxvh8x Store VSX Vector Hword*8
Indexed

- - ST 4 - - 1 V - 1 S - -

stxvl Store VSX Vector with Length - - ST2 4 - - 1 V - 1 S - -

stxvll Store VSX Vector Left-justified
with Length

- - ST2 4 - - 1 V - 1 S - -

stxvw4x Store VSX Vector Word*4 Indexed - - ST 4 - - 1 V - 1 S - -

stxvx Store VSX Vector Indexed - - ST 4 - - 1 V - 1 S - -

subf Subtract From - - ALU GPR 4 2 2 1 - - - - -

subf. Subtract From and Record - - ALU GPR CR fxcc 4 2 2 1 - - - - -

subfc Subtract From Carrying - - ALU GPR caoc 4 2 2 1 - - - - -

subfc. Subtract From Carrying and
Record

- - ALU GPR CR caoc,fxcc 4 2 2 1 - - - - -

Table A-1. Instruction Properties (Sheet 62 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n
N

um
be

r

P
ip

e
C

la
ss

M
ai

n
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns

pe
r

C
yc

le

La
te

nc
y

(M
in

im
um

)

La
te

nc
y

(M
ax

im
um

)

P
ip

e
B

us
y

C
yc

le
s

(M
in

im
um

)

D
is

pa
tc

h
R

ul
e

D
is

pa
tc

h
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h

to
 Is

su
e

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e
S

yn
ch

ro
ni

ze
d

Is
su

e
D

ep
en

d
on

 P
re

vi
ou

s
Io

p

Is
su

e
N

ex
t-

to
-C

om
pl

et
e

U
ser’s M

anual
O

penP
O

W
E

R

P
O

W
E

R
9 P

ro
cesso

r

V
ersion 2.1

10 O
ctober 2019

Instruction P
roperties

P
age 437 of 508

subfco Subtract From Carrying and
Record OV

- - ALU GPR caoc,ov 4 2 2 1 - - - - -

subfco. Subtract From Carrying and
Record OV and Record

- - ALU GPR CR caoc,fxcc,ov 4 2 2 1 - - - - -

subfe Subtract From Extended - - ALU GPR caoc 4 2 2 1 - - 3 - - -

subfe. Subtract From Extended and
Record

- - ALU GPR CR caoc,fxcc 4 2 2 1 - - 3 - - -

subfeo Subtract From Extended and
Record OV

- - ALU GPR caoc,ov 4 2 2 1 - - 3 - - -

subfeo. Subtract From Extended and
Record OV and Record

- - ALU GPR CR caoc,fxcc,ov 4 2 2 1 - - 3 - - -

subfic Subtract From Immediate
Carrying

- - ALU GPR caoc 4 2 2 1 - - - - -

subfme Subtract From Minus One
Extended

- - ALU GPR caoc 4 2 2 1 - - 3 - - -

subfme. Subtract From Minus One
Extended and Record

- - ALU GPR CR caoc,fxcc 4 2 2 1 - - 3 - - -

subfmeo Subtract From Minus One
Extended and Record OV

- - ALU GPR caoc,ov 4 2 2 1 - - 3 - - -

subfmeo. Subtract From Minus One
Extended and Record OV and
Record

- - ALU GPR CR caoc,fxcc,ov 4 2 2 1 - - 3 - - -

subfo Subtract From and Record OV - - ALU GPR ov 4 2 2 1 - - - - -

subfo. Subtract From and Record OV
and Record

- - ALU GPR CR fxcc,ov 4 2 2 1 - - - - -

subfze Subtract From Zero Extended - - ALU GPR caoc 4 2 2 1 - - 3 - - -

subfze. Subtract From Zero Extended and
Record

- - ALU GPR CR caoc,fxcc 4 2 2 1 - - 3 - - -

subfzeo Subtract From Zero Extended and
Record OV

- - ALU GPR caoc,ov 4 2 2 1 - - 3 - - -

Table A-1. Instruction Properties (Sheet 63 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n
N

um
be

r

P
ip

e
C

la
ss

M
ai

n
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns

pe
r

C
yc

le

La
te

nc
y

(M
in

im
um

)

La
te

nc
y

(M
ax

im
um

)

P
ip

e
B

us
y

C
yc

le
s

(M
in

im
um

)

D
is

pa
tc

h
R

ul
e

D
is

pa
tc

h
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h

to
 Is

su
e

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e
S

yn
ch

ro
ni

ze
d

Is
su

e
D

ep
en

d
on

 P
re

vi
ou

s
Io

p

Is
su

e
N

ex
t-

to
-C

om
pl

et
e

U
ser’s M

anual
O

penP
O

W
E

R
P

O
W

E
R

9 P
ro

cesso
r

Instruction P
roperties

P
age 438 of 508

V
ersion 2.1

10 O
ctober 2019

subfzeo. Subtract From Zero Extended and
Record OV and Record

- - ALU GPR CR caoc,fxcc,ov 4 2 2 1 - - 3 - - -

sync Synchronize - - LD 4 4 4 1 - - - - -

tabort. Transaction Abort and Record - - ALU CR fxcc 4 2 2 1 R - - - -

tabortdc. Transaction Abort Dword
Conditional and Record

- - ALU2 CR fxcc 4 3 3 1 R - - - -

tabortdci. Transaction Abort Dword
Conditional Immediate and
Record

- - ALU2 CR fxcc 4 3 3 1 R - - - -

tabortwc. Transaction Abort Word
Conditional and Record

- - ALU2 CR fxcc 4 3 3 1 R - - - -

tabortwci. Transaction Abort Word
Conditional Immediate and
Record

- - ALU2 CR fxcc 4 3 3 1 R - - - -

tbegin. Transaction Begin and Record C2 1 NOP 6 0 0 1 - - - - -

2 ALU CR fxcc 4 2 2 1 - - - - -

tcheck Transaction Check and Record C2 1 LD fxcc 4 4 4 1 - - - - -

2 ALU CR fxcc 4 2 2 1 - - 3 - D1P -

td_ti Trap Dword - - ALU2 4 3 3 1 R - - - -

tdi_ti Trap Dword Immediate - - ALU2 4 3 3 1 R - - - -

tend. Transaction End and Record C2 1 LD 4 4 4 1 - - - - -

2 ALU CR fxcc 4 2 2 1 - - - - -

tlbie TLB Invalidate Entry - - ST 4 - - 1 R - - - -

tlbie_h TLB Invalidate Entry - - ST 4 - - 1 R - - - -

tlbiel TLB Invalidate Entry Local C2 1 LD 4 4 4 1 P - - - N

2 LD 4 4 4 1 P - - - N

Table A-1. Instruction Properties (Sheet 64 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n
N

um
be

r

P
ip

e
C

la
ss

M
ai

n
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns

pe
r

C
yc

le

La
te

nc
y

(M
in

im
um

)

La
te

nc
y

(M
ax

im
um

)

P
ip

e
B

us
y

C
yc

le
s

(M
in

im
um

)

D
is

pa
tc

h
R

ul
e

D
is

pa
tc

h
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h

to
 Is

su
e

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e
S

yn
ch

ro
ni

ze
d

Is
su

e
D

ep
en

d
on

 P
re

vi
ou

s
Io

p

Is
su

e
N

ex
t-

to
-C

om
pl

et
e

U
ser’s M

anual
O

penP
O

W
E

R

P
O

W
E

R
9 P

ro
cesso

r

V
ersion 2.1

10 O
ctober 2019

Instruction P
roperties

P
age 439 of 508

tlbiel_h TLB Invalidate Entry Local C2 1 LD 4 4 4 1 P - - - N

2 LD 4 4 4 1 P - - - N

tlbsync TLB Synchronize - - LD 4 4 4 1 - - - - -

trechkpt. Transaction Recheckpoint and
Record

- - ALU CR fxcc 4 2 2 1 - - - - N

treclaim. Transaction Reclaim and Record - - ALU CR fxcc 4 2 2 1 R - - - -

tsr. Transaction Suspend or Resume
and Record

- - ALU CR fxcc 4 2 2 1 R - - - -

tw Trap Word - - ALU2 4 3 3 1 R - - - -

twi Trap Word Immediate - - ALU2 4 3 3 1 R - - - -

vabsdub Vector Absolute Difference
Unsigned Byte

- - ALU2 VR 2 3 3 1 V - 1 S - -

vabsduh Vector Absolute Difference
Unsigned Hword

- - ALU2 VR 2 3 3 1 V - 1 S - -

vabsduw Vector Absolute Difference
Unsigned Word

- - ALU2 VR 2 3 3 1 V - 1 S - -

vaddcuq Vector Add and write Carry
Unsigned Qword

- - DX VR 2 3 3 1 V - 1 S - -

vaddcuw Vector Add and Write Carry-Out
Unsigned Word

- - ALU2 VR 2 3 3 1 V - 1 S - -

vaddecuq Vector Add Extended and write
Carry Unsigned Qword

- - DX VR 2 3 3 1 V - 1 S - -

vaddeuqm Vector Add Extended Unsigned
Qword Modulo

- - DX VR 2 3 3 1 V - 1 S - -

vaddfp Vector Add Floating-Point - - DP VR 2 5 7 1 V - 1 3 S - -

vaddsbs Vector Add Signed Byte Saturate - - ALU2 VR sat 2 3 3 1 V - 1 3 S - -

vaddshs Vector Add Signed Hword
Saturate

- - ALU2 VR sat 2 3 3 1 V - 1 3 S - -

Table A-1. Instruction Properties (Sheet 65 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n
N

um
be

r

P
ip

e
C

la
ss

M
ai

n
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns

pe
r

C
yc

le

La
te

nc
y

(M
in

im
um

)

La
te

nc
y

(M
ax

im
um

)

P
ip

e
B

us
y

C
yc

le
s

(M
in

im
um

)

D
is

pa
tc

h
R

ul
e

D
is

pa
tc

h
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h

to
 Is

su
e

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e
S

yn
ch

ro
ni

ze
d

Is
su

e
D

ep
en

d
on

 P
re

vi
ou

s
Io

p

Is
su

e
N

ex
t-

to
-C

om
pl

et
e

U
ser’s M

anual
O

penP
O

W
E

R
P

O
W

E
R

9 P
ro

cesso
r

Instruction P
roperties

P
age 440 of 508

V
ersion 2.1

10 O
ctober 2019

vaddsws Vector Add Signed Word Saturate - - ALU2 VR sat 2 3 3 1 V - 1 3 S - -

vaddubm Vector Add Unsigned Byte Modulo - - ALU VR 2 2 2 1 V - 1 S - -

vaddubs Vector Add Unsigned Byte
Saturate

- - ALU2 VR sat 2 3 3 1 V - 1 3 S - -

vaddudm Vector Add Unsigned Dword
Modulo

- - ALU VR 2 2 2 1 V - 1 S - -

vadduhm Vector Add Unsigned Hword
Modulo

- - ALU VR 2 2 2 1 V - 1 S - -

vadduhs Vector Add Unsigned Hword
Saturate

- - ALU2 VR sat 2 3 3 1 V - 1 3 S - -

vadduqm Vector Add Unsigned Qword
Modulo

- - DX VR 2 3 3 1 V - 1 S - -

vadduwm Vector Add Unsigned Word
Modulo

- - ALU VR 2 2 2 1 V - 1 S - -

vadduws Vector Add Unsigned Word
Saturate

- - ALU2 VR sat 2 3 3 1 V - 1 3 S - -

vand Vector Logical AND - - ALU VR 2 2 2 1 V - 1 S - -

vandc Vector Logical AND with
Complement

- - ALU VR 2 2 2 1 V - 1 S - -

vavgsb Vector Average Signed Byte - - ALU2 VR 2 3 3 1 V - 1 S - -

vavgsh Vector Average Signed Hword - - ALU2 VR 2 3 3 1 V - 1 S - -

vavgsw Vector Average Signed Word - - ALU2 VR 2 3 3 1 V - 1 S - -

vavgub Vector Average Unsigned Byte - - ALU2 VR 2 3 3 1 V - 1 S - -

vavguh Vector Average Unsigned Hword - - ALU2 VR 2 3 3 1 V - 1 S - -

vavguw Vector Average Unsigned Word - - ALU2 VR 2 3 3 1 V - 1 S - -

vbpermd Vector Bit Permute Dword - - ALU2 VR 2 3 3 1 V - 1 S - -

vbpermq Vector Bit Permute Qword - - PM VR 2 3 3 1 V - 1 S - -

Table A-1. Instruction Properties (Sheet 66 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n
N

um
be

r

P
ip

e
C

la
ss

M
ai

n
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns

pe
r

C
yc

le

La
te

nc
y

(M
in

im
um

)

La
te

nc
y

(M
ax

im
um

)

P
ip

e
B

us
y

C
yc

le
s

(M
in

im
um

)

D
is

pa
tc

h
R

ul
e

D
is

pa
tc

h
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h

to
 Is

su
e

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e
S

yn
ch

ro
ni

ze
d

Is
su

e
D

ep
en

d
on

 P
re

vi
ou

s
Io

p

Is
su

e
N

ex
t-

to
-C

om
pl

et
e

U
ser’s M

anual
O

penP
O

W
E

R

P
O

W
E

R
9 P

ro
cesso

r

V
ersion 2.1

10 O
ctober 2019

Instruction P
roperties

P
age 441 of 508

vcfsx Vector Convert From Signed
Word

- - DP VR 2 5 7 1 V - 1 S - -

vcfux Vector Convert From Unsigned
Word

- - DP VR 2 5 7 1 V - 1 S - -

vcipher Vector AES Cipher - - CY VR 1 6 6 1 V - 1 S - -

vcipherlast Vector AES Cipher Last - - CY VR 1 6 6 1 V - 1 S - -

vclzb Vector Count Leading Zeros Byte - - ALU2 VR 2 3 3 1 V - 1 S - -

vclzd Vector Count Leading Zeros
Dword

- - ALU2 VR 2 3 3 1 V - 1 S - -

vclzh Vector Count Leading Zeros
Hword

- - ALU2 VR 2 3 3 1 V - 1 S - -

vclzlsbb Vector Count Leading Zero Least-
Significant Bits Byte

- - PM GPR 4 3 3 1 V - 1 S - -

vclzw Vector Count Leading Zeros Word - - ALU2 VR 2 3 3 1 V - 1 S - -

vcmpbfp Vector Compare Bounds Floating-
Point

- - ALU2 VR 2 3 3 1 V - 1 3 S - -

vcmpbfp. Vector Compare Bounds Floating-
Point and Record

- - ALU2 VR CR 2 3 3 1 V - 1 3 S - -

vcmpeqfp Vector Compare Equal to
Floating-Point

- - ALU2 VR 2 3 3 1 V - 1 3 S - -

vcmpeqfp. Vector Compare Equal to
Floating-Point and Record

- - ALU2 VR CR 2 3 3 1 V - 1 3 S - -

vcmpequb Vector Compare Equal Unsigned
Byte

- - ALU2 VR 2 3 3 1 V - 1 S - -

vcmpequb. Vector Compare Equal Unsigned
Byte and Record

- - ALU2 VR CR 2 3 3 1 V - 1 S - -

vcmpequd Vector Compare Equal Unsigned
Dword

- - ALU2 VR 2 3 3 1 V - 1 S - -

vcmpequd. Vector Compare Equal Unsigned
Dword and Record

- - ALU2 VR CR 2 3 3 1 V - 1 S - -

Table A-1. Instruction Properties (Sheet 67 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n
N

um
be

r

P
ip

e
C

la
ss

M
ai

n
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns

pe
r

C
yc

le

La
te

nc
y

(M
in

im
um

)

La
te

nc
y

(M
ax

im
um

)

P
ip

e
B

us
y

C
yc

le
s

(M
in

im
um

)

D
is

pa
tc

h
R

ul
e

D
is

pa
tc

h
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h

to
 Is

su
e

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e
S

yn
ch

ro
ni

ze
d

Is
su

e
D

ep
en

d
on

 P
re

vi
ou

s
Io

p

Is
su

e
N

ex
t-

to
-C

om
pl

et
e

U
ser’s M

anual
O

penP
O

W
E

R
P

O
W

E
R

9 P
ro

cesso
r

Instruction P
roperties

P
age 442 of 508

V
ersion 2.1

10 O
ctober 2019

vcmpequh Vector Compare Equal Unsigned
Hword

- - ALU2 VR 2 3 3 1 V - 1 S - -

vcmpequh. Vector Compare Equal Unsigned
Hword and Record

- - ALU2 VR CR 2 3 3 1 V - 1 S - -

vcmpequw Vector Compare Equal Unsigned
Word

- - ALU2 VR 2 3 3 1 V - 1 S - -

vcmpequw. Vector Compare Equal Unsigned
Word and Record

- - ALU2 VR CR 2 3 3 1 V - 1 S - -

vcmpgefp Vector Compare Greater Than or
Equal to Floating-Point

- - ALU2 VR 2 3 3 1 V - 1 3 S - -

vcmpgefp. Vector Compare Greater Than or
Equal to Floating-Point and
Record

- - ALU2 VR CR 2 3 3 1 V - 1 3 S - -

vcmpgtfp Vector Compare Greater Than
Floating-Point

- - ALU2 VR 2 3 3 1 V - 1 3 S - -

vcmpgtfp. Vector Compare Greater Than
Floating-Point and Record

- - ALU2 VR CR 2 3 3 1 V - 1 3 S - -

vcmpgtsb Vector Compare Greater Than
Signed Byte

- - ALU2 VR 2 3 3 1 V - 1 S - -

vcmpgtsb. Vector Compare Greater Than
Signed Byte and Record

- - ALU2 VR CR 2 3 3 1 V - 1 S - -

vcmpgtsd Vector Compare Greater Than
Signed Dword

- - ALU2 VR 2 3 3 1 V - 1 S - -

vcmpgtsd. Vector Compare Greater Than
Signed Dword and Record

- - ALU2 VR CR 2 3 3 1 V - 1 S - -

vcmpgtsh Vector Compare Greater Than
Signed Hword

- - ALU2 VR 2 3 3 1 V - 1 S - -

vcmpgtsh. Vector Compare Greater Than
Signed Hword and Record

- - ALU2 VR CR 2 3 3 1 V - 1 S - -

vcmpgtsw Vector Compare Greater Than
Signed Word

- - ALU2 VR 2 3 3 1 V - 1 S - -

Table A-1. Instruction Properties (Sheet 68 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n
N

um
be

r

P
ip

e
C

la
ss

M
ai

n
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns

pe
r

C
yc

le

La
te

nc
y

(M
in

im
um

)

La
te

nc
y

(M
ax

im
um

)

P
ip

e
B

us
y

C
yc

le
s

(M
in

im
um

)

D
is

pa
tc

h
R

ul
e

D
is

pa
tc

h
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h

to
 Is

su
e

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e
S

yn
ch

ro
ni

ze
d

Is
su

e
D

ep
en

d
on

 P
re

vi
ou

s
Io

p

Is
su

e
N

ex
t-

to
-C

om
pl

et
e

U
ser’s M

anual
O

penP
O

W
E

R

P
O

W
E

R
9 P

ro
cesso

r

V
ersion 2.1

10 O
ctober 2019

Instruction P
roperties

P
age 443 of 508

vcmpgtsw. Vector Compare Greater Than
Signed Word and Record

- - ALU2 VR CR 2 3 3 1 V - 1 S - -

vcmpgtub Vector Compare Greater Than
Unsigned Byte

- - ALU2 VR 2 3 3 1 V - 1 S - -

vcmpgtub. Vector Compare Greater Than
Unsigned Byte and Record

- - ALU2 VR CR 2 3 3 1 V - 1 S - -

vcmpgtud Vector Compare Greater Than
Unsigned Dword

- - ALU2 VR 2 3 3 1 V - 1 S - -

vcmpgtud. Vector Compare Greater Than
Unsigned Dword and Record

- - ALU2 VR CR 2 3 3 1 V - 1 S - -

vcmpgtuh Vector Compare Greater Than
Unsigned Hword

- - ALU2 VR 2 3 3 1 V - 1 S - -

vcmpgtuh. Vector Compare Greater Than
Unsigned Hword and Record

- - ALU2 VR CR 2 3 3 1 V - 1 S - -

vcmpgtuw Vector Compare Greater Than
Unsigned Word

- - ALU2 VR 2 3 3 1 V - 1 S - -

vcmpgtuw. Vector Compare Greater Than
Unsigned Word and Record

- - ALU2 VR CR 2 3 3 1 V - 1 S - -

vcmpneb Vector Compare Not Equal Byte - - ALU2 VR 2 3 3 1 V - 1 S - -

vcmpneb. Vector Compare Not Equal Byte
and Record

- - ALU2 VR CR 2 3 3 1 V - 1 S - -

vcmpneh Vector Compare Not Equal Hword - - ALU2 VR 2 3 3 1 V - 1 S - -

vcmpneh. Vector Compare Not Equal Hword
and Record

- - ALU2 VR CR 2 3 3 1 V - 1 S - -

vcmpnew Vector Compare Not Equal Word - - ALU2 VR 2 3 3 1 V - 1 S - -

vcmpnew. Vector Compare Not Equal Word
and Record

- - ALU2 VR CR 2 3 3 1 V - 1 S - -

vcmpnezb Vector Compare Not Equal or
Zero Byte

- - ALU2 VR 2 3 3 1 V - 1 S - -

Table A-1. Instruction Properties (Sheet 69 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n
N

um
be

r

P
ip

e
C

la
ss

M
ai

n
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns

pe
r

C
yc

le

La
te

nc
y

(M
in

im
um

)

La
te

nc
y

(M
ax

im
um

)

P
ip

e
B

us
y

C
yc

le
s

(M
in

im
um

)

D
is

pa
tc

h
R

ul
e

D
is

pa
tc

h
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h

to
 Is

su
e

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e
S

yn
ch

ro
ni

ze
d

Is
su

e
D

ep
en

d
on

 P
re

vi
ou

s
Io

p

Is
su

e
N

ex
t-

to
-C

om
pl

et
e

U
ser’s M

anual
O

penP
O

W
E

R
P

O
W

E
R

9 P
ro

cesso
r

Instruction P
roperties

P
age 444 of 508

V
ersion 2.1

10 O
ctober 2019

vcmpnezb. Vector Compare Not Equal or
Zero Byte and Record

- - ALU2 VR CR 2 3 3 1 V - 1 S - -

vcmpnezh Vector Compare Not Equal or
Zero Hword

- - ALU2 VR 2 3 3 1 V - 1 S - -

vcmpnezh. Vector Compare Not Equal or
Zero Hword and Record

- - ALU2 VR CR 2 3 3 1 V - 1 S - -

vcmpnezw Vector Compare Not Equal or
Zero Word

- - ALU2 VR 2 3 3 1 V - 1 S - -

vcmpnezw. Vector Compare Not Equal or
Zero Word and Record

- - ALU2 VR CR 2 3 3 1 V - 1 S - -

vctsxs Vector Convert to Signed Word
Saturate

- - DP VR sat 2 5 7 1 V - 1 3 S - -

vctuxs Vector Convert to Unsigned Word
Saturate

- - DP VR sat 2 5 7 1 V - 1 3 S - -

vctzb Vector Count Trailing Zeros Byte - - ALU2 VR 2 3 3 1 V - 1 S - -

vctzd Vector Count Trailing Zeros
Dword

- - ALU2 VR 2 3 3 1 V - 1 S - -

vctzh Vector Count Trailing Zeros
Hword

- - ALU2 VR 2 3 3 1 V - 1 S - -

vctzlsbb Vector Count Trailing Zero Least-
Significant Bits Byte

- - PM GPR 4 3 3 1 V - 1 S - -

vctzw Vector Count Trailing Zeros Word - - ALU2 VR 2 3 3 1 V - 1 S - -

veqv Vector Logical Equivalence - - ALU VR 2 2 2 1 V - 1 S - -

vexptefp Vector 2 Raised to the Exponent
Estimate Floating-Point

- - DP VR 2 5 7 1 V - 1 3 S - -

vextractd Vector Extract Dword - - PM VR 2 3 3 1 V - 1 S - -

vextractub Vector Extract Unsigned Byte - - PM VR 2 3 3 1 V - 1 S - -

vextractuh Vector Extract Unsigned Hword - - PM VR 2 3 3 1 V - 1 S - -

vextractuw Vector Extract Unsigned Word - - PM VR 2 3 3 1 V - 1 S - -

Table A-1. Instruction Properties (Sheet 70 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n
N

um
be

r

P
ip

e
C

la
ss

M
ai

n
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns

pe
r

C
yc

le

La
te

nc
y

(M
in

im
um

)

La
te

nc
y

(M
ax

im
um

)

P
ip

e
B

us
y

C
yc

le
s

(M
in

im
um

)

D
is

pa
tc

h
R

ul
e

D
is

pa
tc

h
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h

to
 Is

su
e

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e
S

yn
ch

ro
ni

ze
d

Is
su

e
D

ep
en

d
on

 P
re

vi
ou

s
Io

p

Is
su

e
N

ex
t-

to
-C

om
pl

et
e

U
ser’s M

anual
O

penP
O

W
E

R

P
O

W
E

R
9 P

ro
cesso

r

V
ersion 2.1

10 O
ctober 2019

Instruction P
roperties

P
age 445 of 508

vextsb2d Vector Extend Sign Byte to Dword - - ALU VR 2 2 2 1 V - 1 S - -

vextsb2w Vector Extend Sign Byte to Word - - ALU VR 2 2 2 1 V - 1 S - -

vextsh2d Vector Extend Sign Hword to
Dword

- - ALU VR 2 2 2 1 V - 1 S - -

vextsh2w Vector Extend Sign Hword to
Word

- - ALU VR 2 2 2 1 V - 1 S - -

vextsw2d Vector Extend Sign Word to
Dword

- - ALU VR 2 2 2 1 V - 1 S - -

vextublx Vector Extract Unsigned Byte
Left-Indexed

- - PM GPR 4 3 3 1 V - 1 S - -

vextubrx Vector Extract Unsigned Byte
Right-Indexed

- - PM GPR 4 3 3 1 V - 1 S - -

vextuhlx Vector Extract Unsigned Hword
Left-Indexed

- - PM GPR 4 3 3 1 V - 1 S - -

vextuhrx Vector Extract Unsigned Hword
Right-Indexed

- - PM GPR 4 3 3 1 V - 1 S - -

vextuwlx Vector Extract Unsigned Word
Left-Indexed

- - PM GPR 4 3 3 1 V - 1 S - -

vextuwrx Vector Extract Unsigned Word
Right-Indexed

- - PM GPR 4 3 3 1 V - 1 S - -

vgbbd Vector Gather Bits by Byte by
Dword

- - PM VR 2 3 3 1 V - 1 S - -

vinsertb Vector Insert Byte - - PM VR 2 3 3 1 V - 1 S - -

vinsertd Vector Insert Dword - - PM VR 2 3 3 1 V - 1 S - -

vinserth Vector Insert Hword - - PM VR 2 3 3 1 V - 1 S - -

vinsertw Vector Insert Word - - PM VR 2 3 3 1 V - 1 S - -

vlogefp Vector Log Base 2 Estimate
Floating-Point

- - DP VR 2 5 7 1 V - 1 3 S - -

vmaddfp Vector Multiply-Add Floating-Point - - DP VR 2 5 7 1 V - 1 3 S - -

Table A-1. Instruction Properties (Sheet 71 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n
N

um
be

r

P
ip

e
C

la
ss

M
ai

n
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns

pe
r

C
yc

le

La
te

nc
y

(M
in

im
um

)

La
te

nc
y

(M
ax

im
um

)

P
ip

e
B

us
y

C
yc

le
s

(M
in

im
um

)

D
is

pa
tc

h
R

ul
e

D
is

pa
tc

h
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h

to
 Is

su
e

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e
S

yn
ch

ro
ni

ze
d

Is
su

e
D

ep
en

d
on

 P
re

vi
ou

s
Io

p

Is
su

e
N

ex
t-

to
-C

om
pl

et
e

U
ser’s M

anual
O

penP
O

W
E

R
P

O
W

E
R

9 P
ro

cesso
r

Instruction P
roperties

P
age 446 of 508

V
ersion 2.1

10 O
ctober 2019

vmaxfp Vector Maximum Floating-Point - - ALU2 VR 2 3 3 1 V - 1 3 S - -

vmaxsb Vector Maximum Signed Byte - - ALU2 VR 2 3 3 1 V - 1 S - -

vmaxsd Vector Maximum Signed Dword - - ALU2 VR 2 3 3 1 V - 1 S - -

vmaxsh Vector Maximum Signed Hword - - ALU2 VR 2 3 3 1 V - 1 S - -

vmaxsw Vector Maximum Signed Word - - ALU2 VR 2 3 3 1 V - 1 S - -

vmaxub Vector Maximum Unsigned Byte - - ALU2 VR 2 3 3 1 V - 1 S - -

vmaxud Vector Maximum Unsigned Dword - - ALU2 VR 2 3 3 1 V - 1 S - -

vmaxuh Vector Maximum Unsigned Hword - - ALU2 VR 2 3 3 1 V - 1 S - -

vmaxuw Vector Maximum Unsigned Word - - ALU2 VR 2 3 3 1 V - 1 S - -

vmhaddshs Vector Multiply-High-Add Signed
Hword Saturate

- - DP VR sat 2 5 7 1 V - 1 3 S - -

vmhraddshs Vector Multiply-High-Round-Add
Signed Hword Saturate

- - DP-XC VR sat 2 7 7 1 V - 1 3 S - -

vminfp Vector Minimum Floating-Point - - ALU2 VR 2 3 3 1 V - 1 3 S - -

vminsb Vector Minimum Signed Byte - - ALU2 VR 2 3 3 1 V - 1 S - -

vminsd Vector Minimum Signed Dword - - ALU2 VR 2 3 3 1 V - 1 S - -

vminsh Vector Minimum Signed Hword - - ALU2 VR 2 3 3 1 V - 1 S - -

vminsw Vector Minimum Signed Word - - ALU2 VR 2 3 3 1 V - 1 S - -

vminub Vector Minimum Unsigned Byte - - ALU2 VR 2 3 3 1 V - 1 S - -

vminud Vector Minimum Unsigned Dword - - ALU2 VR 2 3 3 1 V - 1 S - -

vminuh Vector Minimum Unsigned Hword - - ALU2 VR 2 3 3 1 V - 1 S - -

vminuw Vector Minimum Unsigned Word - - ALU2 VR 2 3 3 1 V - 1 S - -

vmladduhm Vector Multiply-Low-Add
Unsigned Hword Modulo

- - DP-XC VR 2 7 7 1 V - 1 S - -

Table A-1. Instruction Properties (Sheet 72 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n
N

um
be

r

P
ip

e
C

la
ss

M
ai

n
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns

pe
r

C
yc

le

La
te

nc
y

(M
in

im
um

)

La
te

nc
y

(M
ax

im
um

)

P
ip

e
B

us
y

C
yc

le
s

(M
in

im
um

)

D
is

pa
tc

h
R

ul
e

D
is

pa
tc

h
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h

to
 Is

su
e

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e
S

yn
ch

ro
ni

ze
d

Is
su

e
D

ep
en

d
on

 P
re

vi
ou

s
Io

p

Is
su

e
N

ex
t-

to
-C

om
pl

et
e

U
ser’s M

anual
O

penP
O

W
E

R

P
O

W
E

R
9 P

ro
cesso

r

V
ersion 2.1

10 O
ctober 2019

Instruction P
roperties

P
age 447 of 508

vmrgew Vector Merge Even Word - - ALU VR 2 2 2 1 V - 1 S - -

vmrghb Vector Merge High Byte - - PM VR 2 3 3 1 V - 1 S - -

vmrghh Vector Merge High Hword - - PM VR 2 3 3 1 V - 1 S - -

vmrghw Vector Merge High Word - - PM VR 2 3 3 1 V - 1 S - -

vmrglb Vector Merge Low Byte - - PM VR 2 3 3 1 V - 1 S - -

vmrglh Vector Merge Low Hword - - PM VR 2 3 3 1 V - 1 S - -

vmrglw Vector Merge Low Word - - PM VR 2 3 3 1 V - 1 S - -

vmrgow Vector Merge Odd Word - - ALU VR 2 2 2 1 V - 1 S - -

vmsummbm Vector Multiply-Sum Mixed Byte
Modulo

- - DP-XC VR 2 7 7 1 V - 1 S - -

vmsumshm Vector Multiply-Sum Signed
Hword Modulo

- - DP-XC VR 2 7 7 1 V - 1 S - -

vmsumshs Vector Multiply-Sum Signed
Hword Saturate

- - DP-XC VR sat 2 7 7 1 V - 1 3 S - -

vmsumubm Vector Multiply-Sum Unsigned
Byte Modulo

- - DP-XC VR 2 7 7 1 V - 1 S - -

vmsumudm Vector Multiply-Sum Unsigned
Doubleword Modulo

- - DP VR 2 5 7 1 V - 1 S - -

vmsumuhm Vector Multiply-Sum Unsigned
Hword Modulo

- - DP-XC VR 2 7 7 1 V - 1 S - -

vmsumuhs Vector Multiply-Sum Unsigned
Hword Saturate

- - DP-XC VR sat 2 7 7 1 V - 1 3 S - -

vmul10cuq Vector Multiply-by-10 and write
Carry Unsigned Qword

- - DX VR 2 3 3 1 V - 1 S - -

vmul10ecuq Vector Multiply-by-10 Extended
and write Carry Unsigned Qword

- - DX VR 2 3 3 1 V - 1 S - -

vmul10euq Vector Multiply-by-10 Extended
Unsigned Qword

- - DX VR 2 3 3 1 V - 1 S - -

Table A-1. Instruction Properties (Sheet 73 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n
N

um
be

r

P
ip

e
C

la
ss

M
ai

n
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns

pe
r

C
yc

le

La
te

nc
y

(M
in

im
um

)

La
te

nc
y

(M
ax

im
um

)

P
ip

e
B

us
y

C
yc

le
s

(M
in

im
um

)

D
is

pa
tc

h
R

ul
e

D
is

pa
tc

h
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h

to
 Is

su
e

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e
S

yn
ch

ro
ni

ze
d

Is
su

e
D

ep
en

d
on

 P
re

vi
ou

s
Io

p

Is
su

e
N

ex
t-

to
-C

om
pl

et
e

U
ser’s M

anual
O

penP
O

W
E

R
P

O
W

E
R

9 P
ro

cesso
r

Instruction P
roperties

P
age 448 of 508

V
ersion 2.1

10 O
ctober 2019

vmul10uq Vector Multiply-by-10 Unsigned
Qword

- - DX VR 2 3 3 1 V - 1 S - -

vmulesb Vector Multiply Even Signed Byte - - DP-XC VR 2 7 7 1 V - 1 S - -

vmulesh Vector Multiply Even Signed
Hword

- - DP-XC VR 2 7 7 1 V - 1 S - -

vmulesw Vector Multiply Even Signed Word - - DP-XC VR 2 7 7 1 V - 1 S - -

vmuleub Vector Multiply Even Unsigned
Byte

- - DP-XC VR 2 7 7 1 V - 1 S - -

vmuleuh Vector Multiply Even Unsigned
Hword

- - DP-XC VR 2 7 7 1 V - 1 S - -

vmuleuw Vector Multiply Even Unsigned
Word

- - DP-XC VR 2 7 7 1 V - 1 S - -

vmulosb Vector Multiply Odd Signed Byte - - DP-XC VR 2 7 7 1 V - 1 S - -

vmulosh Vector Multiply Odd Signed Hword - - DP-XC VR 2 7 7 1 V - 1 S - -

vmulosw Vector Multiply Odd Signed Word - - DP-XC VR 2 7 7 1 V - 1 S - -

vmuloub Vector Multiply Odd Unsigned
Byte

- - DP-XC VR 2 7 7 1 V - 1 S - -

vmulouh Vector Multiply Odd Unsigned
Hword

- - DP-XC VR 2 7 7 1 V - 1 S - -

vmulouw Vector Multiply Odd Unsigned
Word

- - DP-XC VR 2 7 7 1 V - 1 S - -

vmuluwm Vector Multiply Unsigned Word
Modulo

- - DP-XC VR 2 7 7 1 V - 1 S - -

vnand Vector Logical NAND - - ALU VR 2 2 2 1 V - 1 S - -

vncipher Vector AES Inverse Cipher - - CY VR 1 6 6 1 V - 1 S - -

vncipherlast Vector AES Inverse Cipher Last - - CY VR 1 6 6 1 V - 1 S - -

vnegd Vector Negate Dword - - ALU VR 2 2 2 1 V - 1 S - -

Table A-1. Instruction Properties (Sheet 74 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n
N

um
be

r

P
ip

e
C

la
ss

M
ai

n
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns

pe
r

C
yc

le

La
te

nc
y

(M
in

im
um

)

La
te

nc
y

(M
ax

im
um

)

P
ip

e
B

us
y

C
yc

le
s

(M
in

im
um

)

D
is

pa
tc

h
R

ul
e

D
is

pa
tc

h
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h

to
 Is

su
e

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e
S

yn
ch

ro
ni

ze
d

Is
su

e
D

ep
en

d
on

 P
re

vi
ou

s
Io

p

Is
su

e
N

ex
t-

to
-C

om
pl

et
e

U
ser’s M

anual
O

penP
O

W
E

R

P
O

W
E

R
9 P

ro
cesso

r

V
ersion 2.1

10 O
ctober 2019

Instruction P
roperties

P
age 449 of 508

vnegw Vector Negate Word - - ALU VR 2 2 2 1 V - 1 S - -

vnmsubfp Vector Negative Multiply-Subtract
Floating-Point

- - DP VR 2 5 7 1 V - 1 3 S - -

vnor Vector Logical NOR - - ALU VR 2 2 2 1 V - 1 S - -

vor Vector Logical OR - - ALU VR 2 2 2 1 V - 1 S - -

vorc Vector Logical OR with
Complement

- - ALU VR 2 2 2 1 V - 1 S - -

vperm Vector Permute - - PM VR 2 3 3 1 V - 1 S - -

vpermr Vector Permute Right-indexed - - PM VR 2 3 3 1 V - 1 S - -

vpermxor Vector Permute and Exclusive-OR - - PM VR 2 3 3 1 V - 1 S - -

vpkpx Vector Pack Pixel - - PM VR 2 3 3 1 V - 1 S - -

vpksdss Vector Pack Signed Dword
Signed Saturate

- - PM VR sat 2 3 3 1 V - 1 3 S - -

vpksdus Vector Pack Signed Dword
Unsigned Saturate

- - PM VR sat 2 3 3 1 V - 1 3 S - -

vpkshss Vector Pack Signed Hword
Signed Saturate

- - PM VR sat 2 3 3 1 V - 1 3 S - -

vpkshus Vector Pack Signed Hword
Unsigned Saturate

- - PM VR sat 2 3 3 1 V - 1 3 S - -

vpkswss Vector Pack Signed Word Signed
Saturate

- - PM VR sat 2 3 3 1 V - 1 3 S - -

vpkswus Vector Pack Signed Word
Unsigned Saturate

- - PM VR sat 2 3 3 1 V - 1 3 S - -

vpkudum Vector Pack Unsigned Dword
Unsigned Modulo

- - PM VR 2 3 3 1 V - 1 S - -

vpkudus Vector Pack Unsigned Dword
Unsigned Saturate

- - PM VR sat 2 3 3 1 V - 1 3 S - -

vpkuhum Vector Pack Unsigned Hword
Unsigned Modulo

- - PM VR 2 3 3 1 V - 1 S - -

Table A-1. Instruction Properties (Sheet 75 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n
N

um
be

r

P
ip

e
C

la
ss

M
ai

n
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns

pe
r

C
yc

le

La
te

nc
y

(M
in

im
um

)

La
te

nc
y

(M
ax

im
um

)

P
ip

e
B

us
y

C
yc

le
s

(M
in

im
um

)

D
is

pa
tc

h
R

ul
e

D
is

pa
tc

h
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h

to
 Is

su
e

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e
S

yn
ch

ro
ni

ze
d

Is
su

e
D

ep
en

d
on

 P
re

vi
ou

s
Io

p

Is
su

e
N

ex
t-

to
-C

om
pl

et
e

U
ser’s M

anual
O

penP
O

W
E

R
P

O
W

E
R

9 P
ro

cesso
r

Instruction P
roperties

P
age 450 of 508

V
ersion 2.1

10 O
ctober 2019

vpkuhus Vector Pack Unsigned Hword
Unsigned Saturate

- - PM VR sat 2 3 3 1 V - 1 3 S - -

vpkuwum Vector Pack Unsigned Word
Unsigned Modulo

- - PM VR 2 3 3 1 V - 1 S - -

vpkuwus Vector Pack Unsigned Word
Unsigned Saturate

- - PM VR sat 2 3 3 1 V - 1 3 S - -

vpmsumb Vector Polynomial Multiply-Sum
Byte

- - CY VR 1 6 6 1 V - 1 S - -

vpmsumd Vector Polynomial Multiply-Sum
Dword

- - CY VR 1 6 6 1 V - 1 S - -

vpmsumh Vector Polynomial Multiply-Sum
Hword

- - CY VR 1 6 6 1 V - 1 S - -

vpmsumw Vector Polynomial Multiply-Sum
Word

- - CY VR 1 6 6 1 V - 1 S - -

vpopcntb Vector Population Count Byte - - ALU VR 2 2 2 1 V - 1 S - -

vpopcntd Vector Population Count Dword - - ALU2 VR 2 3 3 1 V - 1 S - -

vpopcnth Vector Population Count Hword - - ALU VR 2 2 2 1 V - 1 S - -

vpopcntw Vector Population Count Word - - ALU2 VR 2 3 3 1 V - 1 S - -

vprtybd Vector Parity Byte Dword - - ALU2 VR 2 3 3 1 V - 1 S - -

vprtybq Vector Parity Byte Qword - - PM VR 2 3 3 1 V - 1 S - -

vprtybw Vector Parity Byte Word - - ALU2 VR 2 3 3 1 V - 1 S - -

vrefp Vector Reciprocal Estimate
Floating-Point

- - DP VR 2 5 7 1 V - 1 3 S - -

vrfim Vector Round to Floating-Point
Integral toward -Infinity

- - DP VR 2 5 7 1 V - 1 3 S - -

vrfin Vector Round to Floating-Point
Integral Nearest

- - DP VR 2 5 7 1 V - 1 3 S - -

vrfip Vector Round to Floating-Point
Integral toward +Infinity

- - DP VR 2 5 7 1 V - 1 3 S - -

Table A-1. Instruction Properties (Sheet 76 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n
N

um
be

r

P
ip

e
C

la
ss

M
ai

n
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns

pe
r

C
yc

le

La
te

nc
y

(M
in

im
um

)

La
te

nc
y

(M
ax

im
um

)

P
ip

e
B

us
y

C
yc

le
s

(M
in

im
um

)

D
is

pa
tc

h
R

ul
e

D
is

pa
tc

h
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h

to
 Is

su
e

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e
S

yn
ch

ro
ni

ze
d

Is
su

e
D

ep
en

d
on

 P
re

vi
ou

s
Io

p

Is
su

e
N

ex
t-

to
-C

om
pl

et
e

U
ser’s M

anual
O

penP
O

W
E

R

P
O

W
E

R
9 P

ro
cesso

r

V
ersion 2.1

10 O
ctober 2019

Instruction P
roperties

P
age 451 of 508

vrfiz Vector Round to Floating-Point
Integral toward Zero

- - DP VR 2 5 7 1 V - 1 3 S - -

vrlb Vector Rotate Left Byte - - ALU VR 2 2 2 1 V - 1 S - -

vrld Vector Rotate Left Dword - - ALU VR 2 2 2 1 V - 1 S - -

vrldmi Vector Rotate Left Dword then
Mask Insert

- - ALU VR 2 2 2 1 V - 1 S - -

vrldnm Vector Rotate Left Dword then
AND with Mask

- - ALU VR 2 2 2 1 V - 1 S - -

vrlh Vector Rotate Left Hword - - ALU VR 2 2 2 1 V - 1 S - -

vrlw Vector Rotate Left Word - - ALU VR 2 2 2 1 V - 1 S - -

vrlwmi Vector Rotate Left Word then
Mask Insert

- - ALU VR 2 2 2 1 V - 1 S - -

vrlwnm Vector Rotate Left Word then
AND with Mask

- - ALU VR 2 2 2 1 V - 1 S - -

vrsqrtefp Vector Reciprocal Square Root
Estimate Floating-Point

- - DP VR 2 5 7 1 V - 1 3 S - -

vsbox Vector AES SubBytes - - CY VR 1 6 6 1 V - 1 S - -

vsel Vector Select - - ALU VR 2 2 2 1 V - 1 S - -

vshasigmad Vector SHA-512 Sigma Dword - - ALU2 VR 2 3 3 1 V - 1 S - -

vshasigmaw Vector SHA-256 Sigma Word - - ALU2 VR 2 3 3 1 V - 1 S - -

vsl Vector Shift Left - - PM VR 2 3 3 1 V - 1 S - -

vslb Vector Shift Left Byte - - ALU VR 2 2 2 1 V - 1 S - -

vsld Vector Shift Left Dword - - ALU VR 2 2 2 1 V - 1 S - -

vsldoi Vector Shift Left Double by Octet
Immediate

- - PM VR 2 3 3 1 V - 1 S - -

vslh Vector Shift Left Hword - - ALU VR 2 2 2 1 V - 1 S - -

Table A-1. Instruction Properties (Sheet 77 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n
N

um
be

r

P
ip

e
C

la
ss

M
ai

n
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns

pe
r

C
yc

le

La
te

nc
y

(M
in

im
um

)

La
te

nc
y

(M
ax

im
um

)

P
ip

e
B

us
y

C
yc

le
s

(M
in

im
um

)

D
is

pa
tc

h
R

ul
e

D
is

pa
tc

h
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h

to
 Is

su
e

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e
S

yn
ch

ro
ni

ze
d

Is
su

e
D

ep
en

d
on

 P
re

vi
ou

s
Io

p

Is
su

e
N

ex
t-

to
-C

om
pl

et
e

U
ser’s M

anual
O

penP
O

W
E

R
P

O
W

E
R

9 P
ro

cesso
r

Instruction P
roperties

P
age 452 of 508

V
ersion 2.1

10 O
ctober 2019

vslo Vector Shift Left by Octet - - PM VR 2 3 3 1 V - 1 S - -

vslv Vector Shift Left Variable - - PM VR 2 3 3 1 V - 1 S - -

vslw Vector Shift Left Word - - ALU VR 2 2 2 1 V - 1 S - -

vspltb Vector Splat Byte - - PM VR 2 3 3 1 V - 1 S - -

vsplth Vector Splat Hword - - PM VR 2 3 3 1 V - 1 S - -

vspltisb Vector Splat Immediate Signed
Byte

- - PM VR 2 3 3 1 V - 1 S - -

vspltish Vector Splat Immediate Signed
Hword

- - PM VR 2 3 3 1 V - 1 S - -

vspltisw Vector Splat Immediate Signed
Word

- - PM VR 2 3 3 1 V - 1 S - -

vspltw Vector Splat Word - - PM VR 2 3 3 1 V - 1 S - -

vsr Vector Shift Right - - PM VR 2 3 3 1 V - 1 S - -

vsrab Vector Shift Right Algebraic Byte - - ALU VR 2 2 2 1 V - 1 S - -

vsrad Vector Shift Right Algebraic
Dword

- - ALU VR 2 2 2 1 V - 1 S - -

vsrah Vector Shift Right Algebraic
Hword

- - ALU VR 2 2 2 1 V - 1 S - -

vsraw Vector Shift Right Algebraic Word - - ALU VR 2 2 2 1 V - 1 S - -

vsrb Vector Shift Right Byte - - ALU VR 2 2 2 1 V - 1 S - -

vsrd Vector Shift Right Dword - - ALU VR 2 2 2 1 V - 1 S - -

vsrh Vector Shift Right Hword - - ALU VR 2 2 2 1 V - 1 S - -

vsro Vector Shift Right by Octet - - PM VR 2 3 3 1 V - 1 S - -

vsrv Vector Shift Right Variable - - PM VR 2 3 3 1 V - 1 S - -

vsrw Vector Shift Right Word - - ALU VR 2 2 2 1 V - 1 S - -

Table A-1. Instruction Properties (Sheet 78 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n
N

um
be

r

P
ip

e
C

la
ss

M
ai

n
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns

pe
r

C
yc

le

La
te

nc
y

(M
in

im
um

)

La
te

nc
y

(M
ax

im
um

)

P
ip

e
B

us
y

C
yc

le
s

(M
in

im
um

)

D
is

pa
tc

h
R

ul
e

D
is

pa
tc

h
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h

to
 Is

su
e

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e
S

yn
ch

ro
ni

ze
d

Is
su

e
D

ep
en

d
on

 P
re

vi
ou

s
Io

p

Is
su

e
N

ex
t-

to
-C

om
pl

et
e

U
ser’s M

anual
O

penP
O

W
E

R

P
O

W
E

R
9 P

ro
cesso

r

V
ersion 2.1

10 O
ctober 2019

Instruction P
roperties

P
age 453 of 508

vsubcuq Vector Subtract and write Carry
Unsigned Qword

- - DX VR 2 3 3 1 V - 1 S - -

vsubcuw Vector Subtract and Write Carry-
Out Unsigned Word

- - ALU2 VR 2 3 3 1 V - 1 S - -

vsubecuq Vector Subtract Extended and
write Carry Unsigned Qword

- - DX VR 2 3 3 1 V - 1 S - -

vsubeuqm Vector Subtract Extended
Unsigned Qword Modulo

- - DX VR 2 3 3 1 V - 1 S - -

vsubfp Vector Subtract Floating-Point - - DP VR 2 5 7 1 V - 1 3 S - -

vsubsbs Vector Subtract Signed Byte
Saturate

- - ALU2 VR sat 2 3 3 1 V - 1 3 S - -

vsubshs Vector Subtract Signed Hword
Saturate

- - ALU2 VR sat 2 3 3 1 V - 1 3 S - -

vsubsws Vector Subtract Signed Word
Saturate

- - ALU2 VR sat 2 3 3 1 V - 1 3 S - -

vsububm Vector Subtract Unsigned Byte
Modulo

- - ALU VR 2 2 2 1 V - 1 S - -

vsububs Vector Subtract Unsigned Byte
Saturate

- - ALU2 VR sat 2 3 3 1 V - 1 3 S - -

vsubudm Vector Subtract Unsigned Dword
Modulo

- - ALU VR 2 2 2 1 V - 1 S - -

vsubuhm Vector Subtract Unsigned Hword
Modulo

- - ALU VR 2 2 2 1 V - 1 S - -

vsubuhs Vector Subtract Unsigned Hword
Saturate

- - ALU2 VR sat 2 3 3 1 V - 1 3 S - -

vsubuqm Vector Subtract Unsigned Qword
Modulo

- - DX VR 2 3 3 1 V - 1 S - -

vsubuwm Vector Subtract Unsigned Word
Modulo

- - ALU VR 2 2 2 1 V - 1 S - -

vsubuws Vector Subtract Unsigned Word
Saturate

- - ALU2 VR sat 2 3 3 1 V - 1 3 S - -

Table A-1. Instruction Properties (Sheet 79 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n
N

um
be

r

P
ip

e
C

la
ss

M
ai

n
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns

pe
r

C
yc

le

La
te

nc
y

(M
in

im
um

)

La
te

nc
y

(M
ax

im
um

)

P
ip

e
B

us
y

C
yc

le
s

(M
in

im
um

)

D
is

pa
tc

h
R

ul
e

D
is

pa
tc

h
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h

to
 Is

su
e

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e
S

yn
ch

ro
ni

ze
d

Is
su

e
D

ep
en

d
on

 P
re

vi
ou

s
Io

p

Is
su

e
N

ex
t-

to
-C

om
pl

et
e

U
ser’s M

anual
O

penP
O

W
E

R
P

O
W

E
R

9 P
ro

cesso
r

Instruction P
roperties

P
age 454 of 508

V
ersion 2.1

10 O
ctober 2019

vsum2sws Vector Sum across Half Signed
Word Saturate

- - DP-XC VR sat 2 7 7 1 V - 1 3 S - -

vsum4sbs Vector Sum across Quarter
Signed Byte Saturate

- - DP-XC VR sat 2 7 7 1 V - 1 3 S - -

vsum4shs Vector Sum across Quarter
Signed Hword Saturate

- - DP-XC VR sat 2 7 7 1 V - 1 3 S - -

vsum4ubs Vector Sum across Quarter
Unsigned Byte Saturate

- - DP-XC VR sat 2 7 7 1 V - 1 3 S - -

vsumsws Vector Sum across Signed Word
Saturate

- - DP-XC VR sat 2 7 7 1 V - 1 3 S - -

vupkhpx Vector Unpack High Pixel - - PM VR 2 3 3 1 V - 1 S - -

vupkhsb Vector Unpack High Signed Byte - - PM VR 2 3 3 1 V - 1 S - -

vupkhsh Vector Unpack High Signed
Hword

- - PM VR 2 3 3 1 V - 1 S - -

vupkhsw Vector Unpack High Signed Word - - PM VR 2 3 3 1 V - 1 S - -

vupklpx Vector Unpack Low Pixel - - PM VR 2 3 3 1 V - 1 S - -

vupklsb Vector Unpack Low Signed Byte - - PM VR 2 3 3 1 V - 1 S - -

vupklsh Vector Unpack Low Signed Hword - - PM VR 2 3 3 1 V - 1 S - -

vupklsw Vector Unpack Low Signed Word - - PM VR 2 3 3 1 V - 1 S - -

vxor Vector Logical XOR - - ALU VR 2 2 2 1 V - 1 S - -

wait Wait for Interrupt - - ALU 4 2 2 1 - - - - -

xor XOR - - ALU GPR 4 2 2 1 - - - - -

xor. XOR and Record - - ALU GPR CR fxcc 4 2 2 1 - - - - -

xori XOR Immediate - - ALU GPR 4 2 2 1 - - - - -

xoris XOR Immediate Shifted - - ALU GPR 4 2 2 1 - - - - -

xsabsdp VSX Scalar Absolute DP - - ALU VSR 4 2 2 1 - - - - -

Table A-1. Instruction Properties (Sheet 80 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n
N

um
be

r

P
ip

e
C

la
ss

M
ai

n
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns

pe
r

C
yc

le

La
te

nc
y

(M
in

im
um

)

La
te

nc
y

(M
ax

im
um

)

P
ip

e
B

us
y

C
yc

le
s

(M
in

im
um

)

D
is

pa
tc

h
R

ul
e

D
is

pa
tc

h
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h

to
 Is

su
e

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e
S

yn
ch

ro
ni

ze
d

Is
su

e
D

ep
en

d
on

 P
re

vi
ou

s
Io

p

Is
su

e
N

ex
t-

to
-C

om
pl

et
e

U
ser’s M

anual
O

penP
O

W
E

R

P
O

W
E

R
9 P

ro
cesso

r

V
ersion 2.1

10 O
ctober 2019

Instruction P
roperties

P
age 455 of 508

xsabsqp VSX Scalar Absolute QP - - ALU VR 4 2 2 1 V - 1 S - -

xsadddp VSX Scalar Add DP - - DP VSR fpcc,fric,excp 4 5 7 1 - - 3 - - -

xsaddqp VSX Scalar Add QP - - DFU VR fpcc,fric,excp 1 12 12 1 V - 1 3 S - -

xsaddqpo VSX Scalar Add QP and Record
OV

- - DFU VR fpcc,fric,excp 1 12 12 1 V - 1 3 S - -

xsaddsp VSX Scalar Add SP - - DP VSR fpcc,fric,excp 4 5 7 1 - - 3 - - -

xscmpeqdp VSX Scalar Compare Equal
Double-Precision

- - ALU2 VSR excp 4 3 3 1 - - 3 - - -

xscmpexpdp VSX Scalar Compare Exponents
DP

- - ALU2 CR fpcc 4 3 3 1 - - - - -

xscmpexpqp VSX Scalar Compare Exponents
QP

- - DX CR excp,fpcc 2 3 3 1 V - 1 3 S - -

xscmpgedp VSX Scalar Compare Greater
Than or Equal Double-Precision

- - ALU2 VSR excp 4 3 3 1 - - 3 - - -

xscmpgtdp VSX Scalar Compare Greater
Than Double-Precision

- - ALU2 VSR excp 4 3 3 1 - - 3 - - -

xscmpodp VSX Scalar Compare Ordered DP - - ALU2 CR excp,fpcc 4 3 3 1 - - 3 - - -

xscmpoqp VSX Scalar Compare Ordered QP - - DX CR excp,fpcc 2 3 3 1 V - 1 3 S - -

xscmpudp VSX Scalar Compare Unordered
DP

- - ALU2 CR excp,fpcc 4 3 3 1 - - 3 - - -

xscmpuqp VSX Scalar Compare Unordered
QP

- - DX CR excp,fpcc 2 3 3 1 V - 1 3 S - -

xscpsgndp VSX Scalar Copy Sign DP - - ALU VSR 4 2 2 1 - - - - -

xscpsgnqp VSX Scalar Copy Sign QP - - ALU VR 4 2 2 1 V - 1 S - -

xscvdphp VSX Scalar Convert DP to HP - - DP VSR fpcc,fric,excp 4 5 7 1 - - 3 - - -

xscvdpqp VSX Scalar Convert DP to QP - - DFU VR fpcc,fric,excp 1 12 12 1 V - 1 3 S - -

xscvdpsp VSX Scalar Convert DP to SP - - DP VSR fpcc,fric,excp 4 5 7 1 - - 3 - - -

Table A-1. Instruction Properties (Sheet 81 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n
N

um
be

r

P
ip

e
C

la
ss

M
ai

n
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns

pe
r

C
yc

le

La
te

nc
y

(M
in

im
um

)

La
te

nc
y

(M
ax

im
um

)

P
ip

e
B

us
y

C
yc

le
s

(M
in

im
um

)

D
is

pa
tc

h
R

ul
e

D
is

pa
tc

h
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h

to
 Is

su
e

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e
S

yn
ch

ro
ni

ze
d

Is
su

e
D

ep
en

d
on

 P
re

vi
ou

s
Io

p

Is
su

e
N

ex
t-

to
-C

om
pl

et
e

U
ser’s M

anual
O

penP
O

W
E

R
P

O
W

E
R

9 P
ro

cesso
r

Instruction P
roperties

P
age 456 of 508

V
ersion 2.1

10 O
ctober 2019

xscvdpspn VSX Scalar Convert DP to SP
Non-signalling

- - DP VSR 4 5 7 1 - - - - -

xscvdpsxds VSX Scalar Convert DP to Signed
Dword truncate

- - DP VSR fpcc,fric,excp 4 5 7 1 - - 3 - - -

xscvdpsxws VSX Scalar Convert DP to Signed
Word truncate

- - DP VSR fpcc,fric,excp 4 5 7 1 - - 3 - - -

xscvdpuxds VSX Scalar Convert DP to
Unsigned Dword truncate

- - DP VSR fpcc,fric,excp 4 5 7 1 - - 3 - - -

xscvdpuxws VSX Scalar Convert DP to
Unsigned Word truncate

- - DP VSR fpcc,fric,excp 4 5 7 1 - - 3 - - -

xscvhpdp VSX Scalar Convert HP to DP - - DP VSR fpcc,fric,excp 4 5 7 1 - - 3 - - -

xscvqpdp VSX Scalar Convert QP to DP - - DFU VR fpcc,fric,excp 1 12 12 1 V - 1 3 S - -

xscvqpdpo VSX Scalar Convert QP to DP and
Record OV

- - DFU VR fpcc,fric,excp 1 12 12 1 V - 1 3 S - -

xscvqpsdz VSX Scalar Convert QP to Signed
Dword truncate

- - DFU VR fpcc,fric,excp 1 12 12 1 V - 1 3 S - -

xscvqpswz VSX Scalar Convert QP to Signed
Word truncate

- - DFU VR fpcc,fric,excp 1 12 12 1 V - 1 3 S - -

xscvqpudz VSX Scalar Convert QP to
Unsigned Dword truncate

- - DFU VR fpcc,fric,excp 1 12 12 1 V - 1 3 S - -

xscvqpuwz VSX Scalar Convert QP to
Unsigned Word truncate

- - DFU VR fpcc,fric,excp 1 12 12 1 V - 1 3 S - -

xscvsdqp VSX Scalar Convert Signed
Dword to QP

- - DFU VR fpcc,fric 1 12 12 1 V - 1 3 S - -

xscvspdp VSX Scalar Convert SP to DP - - DP VSR fpcc,fric,excp 4 5 7 1 - - 3 - - -

xscvspdpn VSX Scalar Convert SP to DP
Non-signalling

- - ALU2 VSR 4 3 3 1 - - - - -

xscvsxddp VSX Scalar Convert Signed
Dword to DP

- - DP VSR fpcc,fric,excp 4 5 7 1 - - 3 - - -

Table A-1. Instruction Properties (Sheet 82 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n
N

um
be

r

P
ip

e
C

la
ss

M
ai

n
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns

pe
r

C
yc

le

La
te

nc
y

(M
in

im
um

)

La
te

nc
y

(M
ax

im
um

)

P
ip

e
B

us
y

C
yc

le
s

(M
in

im
um

)

D
is

pa
tc

h
R

ul
e

D
is

pa
tc

h
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h

to
 Is

su
e

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e
S

yn
ch

ro
ni

ze
d

Is
su

e
D

ep
en

d
on

 P
re

vi
ou

s
Io

p

Is
su

e
N

ex
t-

to
-C

om
pl

et
e

U
ser’s M

anual
O

penP
O

W
E

R

P
O

W
E

R
9 P

ro
cesso

r

V
ersion 2.1

10 O
ctober 2019

Instruction P
roperties

P
age 457 of 508

xscvsxdsp VSX Scalar Convert Signed
Dword to SP

- - DP VSR fpcc,fric,excp 4 5 7 1 - - 3 - - -

xscvudqp VSX Scalar Convert Unsigned
Dword to QP

- - DFU VR fpcc,fric 1 12 12 1 V - 1 3 S - -

xscvuxddp VSX Scalar Convert Unsigned
Dword to DP

- - DP VSR fpcc,fric,excp 4 5 7 1 - - 3 - - -

xscvuxdsp VSX Scalar Convert Unsigned
Dword to SP

- - DP VSR fpcc,fric,excp 4 5 7 1 - - 3 - - -

xsdivdp VSX Scalar Divide DP - - DP VSR fpcc,fric,excp 4/21 27 33 7-8 - - 3 - - -

xsdivqp VSX Scalar Divide QP - - DFU VR fpcc,fric,excp 1/45 56 58 44 V - 1 3 S - -

xsdivqpo VSX Scalar Divide QP and
Record OV

- - DFU VR fpcc,fric,excp 1/45 56 58 44 V - 1 3 S - -

xsdivsp VSX Scalar Divide SP - - DP VSR fpcc,fric,excp 4/16 22 22 5 - - 3 - - -

xsiexpdp VSX Scalar Insert Exponent DP - - ALU VSR 4 2 2 1 R - - - -

xsiexpqp VSX Scalar Insert Exponent QP - - ALU VR 4 2 2 1 V - 1 S - -

xsmaddadp VSX Scalar Multiply-Add Type-A
DP

- - DP VSR fpcc,fric,excp 4 5 7 1 R - 3 - - -

xsmaddasp VSX Scalar Multiply-Add Type-A
SP

- - DP VSR fpcc,fric,excp 4 5 7 1 R - 3 - - -

xsmaddmdp VSX Scalar Multiply-Add Type-M
DP

- - DP VSR fpcc,fric,excp 4 5 7 1 R - 3 - - -

xsmaddmsp VSX Scalar Multiply-Add Type-M
SP

- - DP VSR fpcc,fric,excp 4 5 7 1 R - 3 - - -

xsmaddqp VSX Scalar Multiply-Add QP - - DFU VR fpcc,fric,excp 1/13 24 24 12 V - 1 3 S - -

xsmaddqpo VSX Scalar Multiply-Add QP and
Record OV

- - DFU VR fpcc,fric,excp 1/13 24 24 12 V - 1 3 S - -

xsmaxcdp VSX Scalar Maximum Type-C
Double-Precision

- - ALU2 VSR excp 4 3 3 1 - - 3 - - -

xsmaxdp VSX Scalar Maximum DP - - ALU2 VSR excp 4 3 3 1 - - 3 - - -

Table A-1. Instruction Properties (Sheet 83 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n
N

um
be

r

P
ip

e
C

la
ss

M
ai

n
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns

pe
r

C
yc

le

La
te

nc
y

(M
in

im
um

)

La
te

nc
y

(M
ax

im
um

)

P
ip

e
B

us
y

C
yc

le
s

(M
in

im
um

)

D
is

pa
tc

h
R

ul
e

D
is

pa
tc

h
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h

to
 Is

su
e

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e
S

yn
ch

ro
ni

ze
d

Is
su

e
D

ep
en

d
on

 P
re

vi
ou

s
Io

p

Is
su

e
N

ex
t-

to
-C

om
pl

et
e

U
ser’s M

anual
O

penP
O

W
E

R
P

O
W

E
R

9 P
ro

cesso
r

Instruction P
roperties

P
age 458 of 508

V
ersion 2.1

10 O
ctober 2019

xsmaxjdp VSX Scalar Maximum Type-J
Double-Precision

- - ALU2 VSR excp 4 3 3 1 - - 3 - - -

xsmincdp VSX Scalar Minimum Type-C
Double-Precision

- - ALU2 VSR excp 4 3 3 1 - - 3 - - -

xsmindp VSX Scalar Minimum DP - - ALU2 VSR excp 4 3 3 1 - - 3 - - -

xsminjdp VSX Scalar Minimum Type-J
Double-Precision

- - ALU2 VSR excp 4 3 3 1 - - 3 - - -

xsmsubadp VSX Scalar Multiply-Subtract
Type-A DP

- - DP VSR fpcc,fric,excp 4 5 7 1 R - 3 - - -

xsmsubasp VSX Scalar Multiply-Subtract
Type-A SP

- - DP VSR fpcc,fric,excp 4 5 7 1 R - 3 - - -

xsmsubmdp VSX Scalar Multiply-Subtract
Type-M DP

- - DP VSR fpcc,fric,excp 4 5 7 1 R - 3 - - -

xsmsubmsp VSX Scalar Multiply-Subtract
Type-M SP

- - DP VSR fpcc,fric,excp 4 5 7 1 R - 3 - - -

xsmsubqp VSX Scalar Multiply-Subtract QP - - DFU VR fpcc,fric,excp 1/13 24 24 12 V - 1 3 S - -

xsmsubqpo VSX Scalar Multiply-Subtract QP
and Record OV

- - DFU VR fpcc,fric,excp 1/13 24 24 12 V - 1 3 S - -

xsmuldp VSX Scalar Multiply DP - - DP VSR fpcc,fric,excp 4 5 7 1 R - 3 - - -

xsmulqp VSX Scalar Multiply QP - - DFU VR fpcc,fric,excp 1/13 24 24 12 V - 1 3 S - -

xsmulqpo VSX Scalar Multiply QP and
Record OV

- - DFU VR fpcc,fric,excp 1/13 24 24 12 V - 1 3 S - -

xsmulsp VSX Scalar Multiply SP - - DP VSR fpcc,fric,excp 4 5 7 1 R - 3 - - -

xsnabsdp VSX Scalar Negative Absolute DP - - ALU VSR 4 2 2 1 - - - - -

xsnabsqp VSX Scalar Negative Absolute QP - - ALU VR 4 2 2 1 V - 1 S - -

xsnegdp VSX Scalar Negate DP - - ALU VSR 4 2 2 1 - - - - -

xsnegqp VSX Scalar Negate QP - - ALU VR 4 2 2 1 V - 1 S - -

Table A-1. Instruction Properties (Sheet 84 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n
N

um
be

r

P
ip

e
C

la
ss

M
ai

n
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns

pe
r

C
yc

le

La
te

nc
y

(M
in

im
um

)

La
te

nc
y

(M
ax

im
um

)

P
ip

e
B

us
y

C
yc

le
s

(M
in

im
um

)

D
is

pa
tc

h
R

ul
e

D
is

pa
tc

h
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h

to
 Is

su
e

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e
S

yn
ch

ro
ni

ze
d

Is
su

e
D

ep
en

d
on

 P
re

vi
ou

s
Io

p

Is
su

e
N

ex
t-

to
-C

om
pl

et
e

U
ser’s M

anual
O

penP
O

W
E

R

P
O

W
E

R
9 P

ro
cesso

r

V
ersion 2.1

10 O
ctober 2019

Instruction P
roperties

P
age 459 of 508

xsnmaddadp VSX Scalar Negative Multiply-Add
Type-A DP

- - DP VSR fpcc,fric,excp 4 5 7 1 R - 3 - - -

xsnmaddasp VSX Scalar Negative Multiply-Add
Type-A SP

- - DP VSR fpcc,fric,excp 4 5 7 1 R - 3 - - -

xsnmaddmdp VSX Scalar Negative Multiply-Add
Type-M DP

- - DP VSR fpcc,fric,excp 4 5 7 1 R - 3 - - -

xsnmaddmsp VSX Scalar Negative Multiply-Add
Type-M SP

- - DP VSR fpcc,fric,excp 4 5 7 1 R - 3 - - -

xsnmaddqp VSX Scalar Negative Multiply-Add
QP

- - DFU VR fpcc,fric,excp 1/13 24 24 12 V - 1 3 S - -

xsnmaddqpo VSX Scalar Negative Multiply-Add
QP and Record OV

- - DFU VR fpcc,fric,excp 1/13 24 24 12 V - 1 3 S - -

xsnmsubadp VSX Scalar Negative Multiply-
Subtract Type-A DP

- - DP VSR fpcc,fric,excp 4 5 7 1 R - 3 - - -

xsnmsubasp VSX Scalar Negative Multiply-
Subtract Type-A SP

- - DP VSR fpcc,fric,excp 4 5 7 1 R - 3 - - -

xsnmsubmdp VSX Scalar Negative Multiply-
Subtract Type-M DP

- - DP VSR fpcc,fric,excp 4 5 7 1 R - 3 - - -

xsnmsubmsp VSX Scalar Negative Multiply-
Subtract Type-M SP

- - DP VSR fpcc,fric,excp 4 5 7 1 R - 3 - - -

xsnmsubqp VSX Scalar Negative Multiply-
Subtract QP

- - DFU VR fpcc,fric,excp 1/13 24 24 12 V - 1 3 S - -

xsnmsubqpo VSX Scalar Negative Multiply-
Subtract QP and Record OV

- - DFU VR fpcc,fric,excp 1/13 24 24 12 V - 1 3 S - -

xsrdpi VSX Scalar Round DP to Integral
to Nearest Away

- - DP VSR fpcc,fric,excp 4 5 7 1 - - 3 - - -

xsrdpic VSX Scalar Round DP to Integral
using Current rounding mode

- - DP VSR fpcc,fric,excp 4 5 7 1 - - 3 - - -

xsrdpim VSX Scalar Round DP to Integral
toward -Infinity

- - DP VSR fpcc,fric,excp 4 5 7 1 - - 3 - - -

Table A-1. Instruction Properties (Sheet 85 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n
N

um
be

r

P
ip

e
C

la
ss

M
ai

n
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns

pe
r

C
yc

le

La
te

nc
y

(M
in

im
um

)

La
te

nc
y

(M
ax

im
um

)

P
ip

e
B

us
y

C
yc

le
s

(M
in

im
um

)

D
is

pa
tc

h
R

ul
e

D
is

pa
tc

h
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h

to
 Is

su
e

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e
S

yn
ch

ro
ni

ze
d

Is
su

e
D

ep
en

d
on

 P
re

vi
ou

s
Io

p

Is
su

e
N

ex
t-

to
-C

om
pl

et
e

U
ser’s M

anual
O

penP
O

W
E

R
P

O
W

E
R

9 P
ro

cesso
r

Instruction P
roperties

P
age 460 of 508

V
ersion 2.1

10 O
ctober 2019

xsrdpip VSX Scalar Round DP to Integral
toward +Infinity

- - DP VSR fpcc,fric,excp 4 5 7 1 - - 3 - - -

xsrdpiz VSX Scalar Round DP to Integral
toward Zero

- - DP VSR fpcc,fric,excp 4 5 7 1 - - 3 - - -

xsredp VSX Scalar Reciprocal Estimate
DP

- - DP VSR fpcc,fric,excp 4 5 7 1 - - 3 - - -

xsresp VSX Scalar Reciprocal Estimate
SP

- - DP VSR fpcc,fric,excp 4 5 7 1 - - 3 - - -

xsrqpi VSX Scalar Round QP to Integral - - DFU VR fpcc,fric,excp 1 12 12 1 V - 1 3 S - -

xsrqpxp VSX Scalar Round QP to XP - - DFU VR fpcc,fric,excp 1 12 12 1 V - 1 3 S - -

xsrsp VSX Scalar Round DP to SP - - DP VSR fpcc,fric,excp 4 5 7 1 - - 3 - - -

xsrsqrtedp VSX Scalar Reciprocal Square
Root Estimate DP

- - DP VSR fpcc,fric,excp 4 5 7 1 - - 3 - - -

xsrsqrtesp VSX Scalar Reciprocal Square
Root Estimate SP

- - DP VSR fpcc,fric,excp 4 5 7 1 - - 3 - - -

xssqrtdp VSX Scalar Square Root DP - - DP VSR fpcc,fric,excp 4/30 36 36 10 - - 3 - - -

xssqrtqp VSX Scalar Square Root QP - - DFU VR fpcc,fric,excp 1/63 74 76 62 V - 1 3 S - -

xssqrtqpo VSX Scalar Square Root QP and
Record OV

- - DFU VR fpcc,fric,excp 1/63 74 76 62 V - 1 3 S - -

xssqrtsp VSX Scalar Square Root SP - - DP VSR fpcc,fric,excp 4/20 26 26 5 - - 3 - - -

xssubdp VSX Scalar Subtract DP - - DP VSR fpcc,fric,excp 4 5 7 1 - - 3 - - -

xssubqp VSX Scalar Subtract QP - - DFU VR fpcc,fric,excp 1 12 12 1 V - 1 3 S - -

xssubqpo VSX Scalar Subtract QP and
Record OV

- - DFU VR fpcc,fric,excp 1 12 12 1 V - 1 3 S - -

xssubsp VSX Scalar Subtract SP - - DP VSR fpcc,fric,excp 4 5 7 1 - - 3 - - -

xstdivdp VSX Scalar Test for software
Divide DP

- - ALU2 CR 4 3 3 1 - - - - -

Table A-1. Instruction Properties (Sheet 86 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n
N

um
be

r

P
ip

e
C

la
ss

M
ai

n
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns

pe
r

C
yc

le

La
te

nc
y

(M
in

im
um

)

La
te

nc
y

(M
ax

im
um

)

P
ip

e
B

us
y

C
yc

le
s

(M
in

im
um

)

D
is

pa
tc

h
R

ul
e

D
is

pa
tc

h
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h

to
 Is

su
e

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e
S

yn
ch

ro
ni

ze
d

Is
su

e
D

ep
en

d
on

 P
re

vi
ou

s
Io

p

Is
su

e
N

ex
t-

to
-C

om
pl

et
e

U
ser’s M

anual
O

penP
O

W
E

R

P
O

W
E

R
9 P

ro
cesso

r

V
ersion 2.1

10 O
ctober 2019

Instruction P
roperties

P
age 461 of 508

xstsqrtdp VSX Scalar Test for software
Square Root DP

- - ALU2 CR 4 3 3 1 - - - - -

xststdcdp VSX Scalar Test Data Class DP - - ALU2 CR fpcc 4 3 3 1 R - - - -

xststdcqp VSX Scalar Test Data Class QP - - DX CR fpcc 2 3 3 1 V - 1 S - -

xststdcsp VSX Scalar Test Data Class SP - - ALU2 CR fpcc 4 3 3 1 R - - - -

xsxexpdp VSX Scalar Extract Exponent DP - - ALU GPR 4 2 2 1 - - - - -

xsxexpqp VSX Scalar Extract Exponent QP - - ALU VR 4 2 2 1 V - 1 S - -

xsxsigdp VSX Scalar Extract Significand
DP

- - ALU2 GPR 4 3 3 1 - - - - -

xsxsigqp VSX Scalar Extract Significand
QP

- - DX VR 2 3 3 1 V - 1 S - -

xvabsdp VSX Vector Absolute DP - - ALU VSR 2 2 2 1 V - 1 S - -

xvabssp VSX Vector Absolute SP - - ALU VSR 2 2 2 1 V - 1 S - -

xvadddp VSX Vector Add DP - - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvaddsp VSX Vector Add SP - - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvcmpeqdp VSX Vector Compare Equal DP - - ALU2 VSR excp 2 3 3 1 V - 1 3 S - -

xvcmpeqdp. VSX Vector Compare Equal DP
and Record

- - ALU2 VSR CR excp 2 3 3 1 V - 1 3 S - -

xvcmpeqsp VSX Vector Compare Equal SP - - ALU2 VSR excp 2 3 3 1 V - 1 3 S - -

xvcmpeqsp. VSX Vector Compare Equal SP
and Record

- - ALU2 VSR CR excp 2 3 3 1 V - 1 3 S - -

xvcmpgedp VSX Vector Compare Greater
Than or Equal DP

- - ALU2 VSR excp 2 3 3 1 V - 1 3 S - -

xvcmpgedp. VSX Vector Compare Greater
Than or Equal DP and Record

- - ALU2 VSR CR excp 2 3 3 1 V - 1 3 S - -

xvcmpgesp VSX Vector Compare Greater
Than or Equal SP

- - ALU2 VSR excp 2 3 3 1 V - 1 3 S - -

Table A-1. Instruction Properties (Sheet 87 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n
N

um
be

r

P
ip

e
C

la
ss

M
ai

n
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns

pe
r

C
yc

le

La
te

nc
y

(M
in

im
um

)

La
te

nc
y

(M
ax

im
um

)

P
ip

e
B

us
y

C
yc

le
s

(M
in

im
um

)

D
is

pa
tc

h
R

ul
e

D
is

pa
tc

h
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h

to
 Is

su
e

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e
S

yn
ch

ro
ni

ze
d

Is
su

e
D

ep
en

d
on

 P
re

vi
ou

s
Io

p

Is
su

e
N

ex
t-

to
-C

om
pl

et
e

U
ser’s M

anual
O

penP
O

W
E

R
P

O
W

E
R

9 P
ro

cesso
r

Instruction P
roperties

P
age 462 of 508

V
ersion 2.1

10 O
ctober 2019

xvcmpgesp. VSX Vector Compare Greater
Than or Equal SP and Record

- - ALU2 VSR CR excp 2 3 3 1 V - 1 3 S - -

xvcmpgtdp VSX Vector Compare Greater
Than DP

- - ALU2 VSR excp 2 3 3 1 V - 1 3 S - -

xvcmpgtdp. VSX Vector Compare Greater
Than DP and Record

- - ALU2 VSR CR excp 2 3 3 1 V - 1 3 S - -

xvcmpgtsp VSX Vector Compare Greater
Than SP

- - ALU2 VSR excp 2 3 3 1 V - 1 3 S - -

xvcmpgtsp. VSX Vector Compare Greater
Than SP and Record

- - ALU2 VSR CR excp 2 3 3 1 V - 1 3 S - -

xvcpsgndp VSX Vector Copy Sign DP - - ALU VSR 2 2 2 1 V - 1 S - -

xvcpsgnsp VSX Vector Copy Sign SP - - ALU VSR 2 2 2 1 V - 1 S - -

xvcvdpsp VSX Vector Convert DP to SP - - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvcvdpsxds VSX Vector Convert DP to Signed
Dword truncate

- - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvcvdpsxws VSX Vector Convert DP to Signed
Word truncate

- - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvcvdpuxds VSX Vector Convert DP to
Unsigned Dword truncate

- - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvcvdpuxws VSX Vector Convert DP to
Unsigned Word truncate

- - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvcvhpsp VSX Vector Convert HP to SP - - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvcvspdp VSX Vector Convert SP to DP - - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvcvsphp VSX Vector Convert SP to HP - - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvcvspsxds VSX Vector Convert SP to Signed
Dword truncate

- - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvcvspsxws VSX Vector Convert SP to Signed
Word truncate

- - DP VSR excp 2 5 7 1 V - 1 3 S - -

Table A-1. Instruction Properties (Sheet 88 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n
N

um
be

r

P
ip

e
C

la
ss

M
ai

n
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns

pe
r

C
yc

le

La
te

nc
y

(M
in

im
um

)

La
te

nc
y

(M
ax

im
um

)

P
ip

e
B

us
y

C
yc

le
s

(M
in

im
um

)

D
is

pa
tc

h
R

ul
e

D
is

pa
tc

h
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h

to
 Is

su
e

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e
S

yn
ch

ro
ni

ze
d

Is
su

e
D

ep
en

d
on

 P
re

vi
ou

s
Io

p

Is
su

e
N

ex
t-

to
-C

om
pl

et
e

U
ser’s M

anual
O

penP
O

W
E

R

P
O

W
E

R
9 P

ro
cesso

r

V
ersion 2.1

10 O
ctober 2019

Instruction P
roperties

P
age 463 of 508

xvcvspuxds VSX Vector Convert SP to
Unsigned Dword truncate

- - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvcvspuxws VSX Vector Convert SP to
Unsigned Word truncate

- - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvcvsxddp VSX Vector Convert Signed
Dword to DP

- - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvcvsxdsp VSX Vector Convert Signed
Dword to SP

- - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvcvsxwdp VSX Vector Convert Signed Word
to DP

- - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvcvsxwsp VSX Vector Convert Signed Word
to SP

- - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvcvuxddp VSX Vector Convert Unsigned
Dword to DP

- - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvcvuxdsp VSX Vector Convert Unsigned
Dword to SP

- - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvcvuxwdp VSX Vector Convert Unsigned
Word to DP

- - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvcvuxwsp VSX Vector Convert Unsigned
Word to SP

- - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvdivdp VSX Vector Divide DP - - DP VSR excp 2/21 27 33 7-8 V - 1 3 S - -

xvdivsp VSX Vector Divide SP - - DP VSR excp 2/18 24 24 8 V - 1 3 S - -

xviexpdp VSX Vector Insert Exponent DP - - ALU VSR 2 2 2 1 V - 1 S - -

xviexpsp VSX Vector Insert Exponent SP - - ALU VSR 2 2 2 1 V - 1 S - -

xvmaddadp VSX Vector Multiply-Add Type-A
DP

- - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvmaddasp VSX Vector Multiply-Add Type-A
SP

- - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvmaddmdp VSX Vector Multiply-Add Type-M
DP

- - DP VSR excp 2 5 7 1 V - 1 3 S - -

Table A-1. Instruction Properties (Sheet 89 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n
N

um
be

r

P
ip

e
C

la
ss

M
ai

n
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns

pe
r

C
yc

le

La
te

nc
y

(M
in

im
um

)

La
te

nc
y

(M
ax

im
um

)

P
ip

e
B

us
y

C
yc

le
s

(M
in

im
um

)

D
is

pa
tc

h
R

ul
e

D
is

pa
tc

h
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h

to
 Is

su
e

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e
S

yn
ch

ro
ni

ze
d

Is
su

e
D

ep
en

d
on

 P
re

vi
ou

s
Io

p

Is
su

e
N

ex
t-

to
-C

om
pl

et
e

U
ser’s M

anual
O

penP
O

W
E

R
P

O
W

E
R

9 P
ro

cesso
r

Instruction P
roperties

P
age 464 of 508

V
ersion 2.1

10 O
ctober 2019

xvmaddmsp VSX Vector Multiply-Add Type-M
SP

- - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvmaxdp VSX Vector Maximum DP - - ALU2 VSR excp 2 3 3 1 V - 1 3 S - -

xvmaxsp VSX Vector Maximum SP - - ALU2 VSR excp 2 3 3 1 V - 1 3 S - -

xvmindp VSX Vector Minimum DP - - ALU2 VSR excp 2 3 3 1 V - 1 3 S - -

xvminsp VSX Vector Minimum SP - - ALU2 VSR excp 2 3 3 1 V - 1 3 S - -

xvmsubadp VSX Vector Multiply-Subtract
Type-A DP

- - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvmsubasp VSX Vector Multiply-Subtract
Type-A SP

- - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvmsubmdp VSX Vector Multiply-Subtract
Type-M DP

- - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvmsubmsp VSX Vector Multiply-Subtract
Type-M SP

- - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvmuldp VSX Vector Multiply DP - - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvmulsp VSX Vector Multiply SP - - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvnabsdp VSX Vector Negative Absolute DP - - ALU VSR 2 2 2 1 V - 1 S - -

xvnabssp VSX Vector Negative Absolute SP - - ALU VSR 2 2 2 1 V - 1 S - -

xvnegdp VSX Vector Negate DP - - ALU VSR 2 2 2 1 V - 1 S - -

xvnegsp VSX Vector Negate SP - - ALU VSR 2 2 2 1 V - 1 S - -

xvnmaddadp VSX Vector Negative Multiply-Add
Type-A DP

- - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvnmaddasp VSX Vector Negative Multiply-Add
Type-A SP

- - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvnmaddmdp VSX Vector Negative Multiply-Add
Type-M DP

- - DP VSR excp 2 5 7 1 V - 1 3 S - -

Table A-1. Instruction Properties (Sheet 90 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n
N

um
be

r

P
ip

e
C

la
ss

M
ai

n
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns

pe
r

C
yc

le

La
te

nc
y

(M
in

im
um

)

La
te

nc
y

(M
ax

im
um

)

P
ip

e
B

us
y

C
yc

le
s

(M
in

im
um

)

D
is

pa
tc

h
R

ul
e

D
is

pa
tc

h
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h

to
 Is

su
e

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e
S

yn
ch

ro
ni

ze
d

Is
su

e
D

ep
en

d
on

 P
re

vi
ou

s
Io

p

Is
su

e
N

ex
t-

to
-C

om
pl

et
e

U
ser’s M

anual
O

penP
O

W
E

R

P
O

W
E

R
9 P

ro
cesso

r

V
ersion 2.1

10 O
ctober 2019

Instruction P
roperties

P
age 465 of 508

xvnmaddmsp VSX Vector Negative Multiply-Add
Type-M SP

- - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvnmsubadp VSX Vector Negative Multiply-
Subtract Type-A DP

- - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvnmsubasp VSX Vector Negative Multiply-
Subtract Type-A SP

- - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvnmsubmdp VSX Vector Negative Multiply-
Subtract Type-M DP

- - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvnmsubmsp VSX Vector Negative Multiply-
Subtract Type-M SP

- - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvrdpi VSX Vector Round DP to Integral
to Nearest Away

- - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvrdpic VSX Vector Round DP to Integral
using Current rounding mode

- - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvrdpim VSX Vector Round DP to Integral
toward -Infinity

- - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvrdpip VSX Vector Round DP to Integral
toward +Infinity

- - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvrdpiz VSX Vector Round DP to Integral
toward Zero

- - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvredp VSX Vector Reciprocal Estimate
DP

- - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvresp VSX Vector Reciprocal Estimate
SP

- - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvrspi VSX Vector Round SP to Integral
to Nearest Away

- - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvrspic VSX Vector Round SP to Integral
using Current rounding mode

- - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvrspim VSX Vector Round SP to Integral
toward -Infinity

- - DP VSR excp 2 5 7 1 V - 1 3 S - -

Table A-1. Instruction Properties (Sheet 91 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n
N

um
be

r

P
ip

e
C

la
ss

M
ai

n
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns

pe
r

C
yc

le

La
te

nc
y

(M
in

im
um

)

La
te

nc
y

(M
ax

im
um

)

P
ip

e
B

us
y

C
yc

le
s

(M
in

im
um

)

D
is

pa
tc

h
R

ul
e

D
is

pa
tc

h
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h

to
 Is

su
e

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e
S

yn
ch

ro
ni

ze
d

Is
su

e
D

ep
en

d
on

 P
re

vi
ou

s
Io

p

Is
su

e
N

ex
t-

to
-C

om
pl

et
e

U
ser’s M

anual
O

penP
O

W
E

R
P

O
W

E
R

9 P
ro

cesso
r

Instruction P
roperties

P
age 466 of 508

V
ersion 2.1

10 O
ctober 2019

xvrspip VSX Vector Round SP to Integral
toward +Infinity

- - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvrspiz VSX Vector Round SP to Integral
toward Zero

- - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvrsqrtedp VSX Vector Reciprocal Square
Root Estimate DP

- - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvrsqrtesp VSX Vector Reciprocal Square
Root Estimate SP

- - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvsqrtdp VSX Vector Square Root DP - - DP VSR excp 2/30 36 36 10 V - 1 3 S - -

xvsqrtsp VSX Vector Square Root SP - - DP VSR excp 2/21 27 27 10 V - 1 3 S - -

xvsubdp VSX Vector Subtract DP - - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvsubsp VSX Vector Subtract SP - - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvtdivdp VSX Vector Test for software
Divide DP

- - ALU2 CR 4 3 3 1 V - 1 S - -

xvtdivsp VSX Vector Test for software
Divide SP

- - ALU2 CR 4 3 3 1 V - 1 S - -

xvtsqrtdp VSX Vector Test for software
Square Root DP

- - ALU2 CR 4 3 3 1 V - 1 S - -

xvtsqrtsp VSX Vector Test for software
Square Root SP

- - ALU2 CR 4 3 3 1 V - 1 S - -

xvtstdcdp VSX Vector Test Data Class DP - - ALU2 VSR 2 3 3 1 V - 1 S - -

xvtstdcsp VSX Vector Test Data Class SP - - ALU2 VSR 2 3 3 1 V - 1 S - -

xvxexpdp VSX Vector Extract Exponent DP - - ALU VSR 2 2 2 1 V - 1 S - -

xvxexpsp VSX Vector Extract Exponent SP - - ALU VSR 2 2 2 1 V - 1 S - -

xvxsigdp VSX Vector Extract Significand
DP

- - ALU2 VSR 2 3 3 1 V - 1 S - -

xvxsigsp VSX Vector Extract Significand
SP

- - ALU2 VSR 2 3 3 1 V - 1 S - -

Table A-1. Instruction Properties (Sheet 92 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n
N

um
be

r

P
ip

e
C

la
ss

M
ai

n
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns

pe
r

C
yc

le

La
te

nc
y

(M
in

im
um

)

La
te

nc
y

(M
ax

im
um

)

P
ip

e
B

us
y

C
yc

le
s

(M
in

im
um

)

D
is

pa
tc

h
R

ul
e

D
is

pa
tc

h
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h

to
 Is

su
e

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e
S

yn
ch

ro
ni

ze
d

Is
su

e
D

ep
en

d
on

 P
re

vi
ou

s
Io

p

Is
su

e
N

ex
t-

to
-C

om
pl

et
e

U
ser’s M

anual
O

penP
O

W
E

R

P
O

W
E

R
9 P

ro
cesso

r

V
ersion 2.1

10 O
ctober 2019

Instruction P
roperties

P
age 467 of 508

xxbrd VSX Vector Byte-Reverse Dword - - PM VSR 2 3 3 1 V - 1 S - -

xxbrh VSX Vector Byte-Reverse Hword - - PM VSR 2 3 3 1 V - 1 S - -

xxbrq VSX Vector Byte-Reverse Qword - - PM VSR 2 3 3 1 V - 1 S - -

xxbrw VSX Vector Byte-Reverse Word - - PM VSR 2 3 3 1 V - 1 S - -

xxextractuw VSX Vector Extract Unsigned
Word

- - PM VSR 2 3 3 1 V - 1 S - -

xxinsertw VSX Vector Insert Word - - PM VSR 2 3 3 1 V - 1 S - -

xxland VSX Vector Logical AND - - ALU VSR 2 2 2 1 V - 1 S - -

xxlandc VSX Vector Logical AND with
Complement

- - ALU VSR 2 2 2 1 V - 1 S - -

xxleqv VSX Vector Logical Equivalence - - ALU VSR 2 2 2 1 V - 1 S - -

xxlnand VSX Vector Logical NAND - - ALU VSR 2 2 2 1 V - 1 S - -

xxlnor VSX Vector Logical NOR - - ALU VSR 2 2 2 1 V - 1 S - -

xxlor VSX Vector Logical OR - - ALU VSR 2 2 2 1 V - 1 S - -

xxlorc VSX Vector Logical OR with
Complement

- - ALU VSR 2 2 2 1 V - 1 S - -

xxlxor VSX Vector Logical XOR - - ALU VSR 2 2 2 1 V - 1 S - -

xxmrghw VSX Vector Merge Word High - - PM VSR 2 3 3 1 V - 1 S - -

xxmrglw VSX Vector Merge Word Low - - PM VSR 2 3 3 1 V - 1 S - -

xxperm VSX Vector Permute - - PM VSR 2 3 3 1 V - 1 S - -

xxpermr VSX Vector Permute Right-
indexed

- - PM VSR 2 3 3 1 V - 1 S - -

xxsel VSX Vector Select - - ALU VSR 2 2 2 1 V - 1 S - -

Table A-1. Instruction Properties (Sheet 93 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n
N

um
be

r

P
ip

e
C

la
ss

M
ai

n
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns

pe
r

C
yc

le

La
te

nc
y

(M
in

im
um

)

La
te

nc
y

(M
ax

im
um

)

P
ip

e
B

us
y

C
yc

le
s

(M
in

im
um

)

D
is

pa
tc

h
R

ul
e

D
is

pa
tc

h
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h

to
 Is

su
e

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e
S

yn
ch

ro
ni

ze
d

Is
su

e
D

ep
en

d
on

 P
re

vi
ou

s
Io

p

Is
su

e
N

ex
t-

to
-C

om
pl

et
e

User’s Manual
OpenPOWER
POWER9 Processor

Instruction Properties

Page 468 of 508
Version 2.1

10 October 2019

xxsldwi VSX Vector Shift Left Double by
Word Immediate

- - PM VSR 2 3 3 1 V - 1

xxspltib VSX Vector Splat Immediate Byte - - PM VSR 2 3 3 1 V - 1

xxspltw VSX Vector Splat Word - - PM VSR 2 3 3 1 V - 1

Table A-1. Instruction Properties (Sheet 94 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n
N

um
be

r

P
ip

e
C

la
ss

M
ai

n
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns

pe
r

C
yc

le

La
te

nc
y

(M
in

im
um

)

La
te

nc
y

(M
ax

im
um

)

P
ip

e
B

us
y

C
yc

le
s

(M
in

im
um

)

D
is

pa
tc

h
R

ul
e

D
is

pa
tc

h
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h

to
 Is

su
e

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

U
ser’s M

anual
O

penP
O

W
E

R

P
O

W
E

R
9 P

ro
cesso

r

V
ersion 2.1

10 O
ctober 2019

tlbie and tlbiel E
ncodings for R

adix T
ranslations

P
age 469 of 508

Appendix B. tlbie and tlbiel Encodings for Radix Translations

Table B-1. lists the tlbie encodings for Radix translations with R = ‘1’ and GTSE = ‘1’, and Table B-2. on page 476 lists the tlbiel encodings
for Radix translations with R = ‘1’.

Note: The yellow rows result in a Machine Check interrupt (invalid form of tlbie/tlbiel instruction) and the red rows result in a privileged
instruction interrupt.

Table B-1. tlbie Encodings for Radix Translations (with R = ‘1’ and GTSE = ‘1’) (Sheet 1 of 7)

IS HV PRS RIC EA Match
Required?

LPID Match
Required?

LPID Taken
from RS or

LPIDR

PID Match
Required?

TLB Entry/
Entries

Invalidated

PWC
Invalidated?

ERATs
Invalidated?

Process/
Partition Table

Caching
Invalidated?

Invalid
Form

Machine
Check
Case?
(yellow)

Privileged
Instruction
Interrupt?
HV = 0,
PRS = 0

(red)

0 0 0 0 NO YES

0 0 0 1 YES YES

0 0 0 2 YES YES

0 0 0 3 YES YES

0 0 1 0 YES YES LPIDR YES Guest entry
with gEA

match

NO YES - match-
ing address,

PID and LPID
(by thread ID)

NO NO NO

0 0 1 1 YES NO

0 0 1 2 YES NO

0 0 1 3 YES NO

0 1 0 0 YES YES RS NO Partition-
scoped host
entry with
gRA/hEA

match

NO YES - match-
ing address

and LPID (by
thread ID)

NO NO NO

0 1 0 1 YES NO

0 1 0 2 YES NO

0 1 0 3 YES NO

Effective address

Logical partition ID

Process ID

Translation lookaside buffer

Page-walk cache

Effective-to-real address translation

U
ser’s M

anual
O

penP
O

W
E

R
P

O
W

E
R

9 P
ro

cesso
r

tlbie and tlbiel E
ncodings for R

adix T
ranslations

P
age 470 of 508

V
ersion 2.1

10 O
ctober 2019

0 1 1 0 YES YES RS YES Guest entry
with gEA
match if
LPID ≠ 0
Process-

scoped host
entry with hEA

match if
LPID = 0

NO YES - match-
ing address,

PID and LPID
(by thread ID)

NO NO NO

0 1 1 1 YES NO

0 1 1 2 YES NO

0 1 1 3 YES NO

1 0 0 0 YES YES

1 0 0 1 YES YES

1 0 0 2 YES YES

1 0 0 3 YES YES

1 0 1 0 NO YES LPIDR YES Guest entries
with matching

PID

NO YES - all with
matching

LPID and PID
(by thread ID)

NO NO NO

1 0 1 1 NO YES LPIDR YES NONE Guest PWC
with matching

PID (for a
matching

LPID)

NO NO NO NO

1 0 1 2 NO YES LPIDR YES Guest entries
with matching

PID (for a
matching

LPID)

Guest PWC
with matching

PID (for a
matching

LPID)

YES - all with
matching

LPID and PID
(by thread ID)

YES - process
table regard-
less of LPID

NO NO

1 0 1 3 YES NO

1 1 0 0 YES NO

Table B-1. tlbie Encodings for Radix Translations (with R = ‘1’ and GTSE = ‘1’) (Sheet 2 of 7)

IS HV PRS RIC EA Match
Required?

LPID Match
Required?

LPID Taken
from RS or

LPIDR

PID Match
Required?

TLB Entry/
Entries

Invalidated

PWC
Invalidated?

ERATs
Invalidated?

Process/
Partition Table

Caching
Invalidated?

Invalid
Form

Machine
Check
Case?
(yellow)

Privileged
Instruction
Interrupt?
HV = 0,
PRS = 0

(red)

U
ser’s M

anual
O

penP
O

W
E

R

P
O

W
E

R
9 P

ro
cesso

r

V
ersion 2.1

10 O
ctober 2019

tlbie and tlbiel E
ncodings for R

adix T
ranslations

P
age 471 of 508

1 1 0 1 YES NO

1 1 0 2 YES NO

1 1 0 3 YES NO

1 1 1 0 NO YES RS YES Guest entries
with matching
PID if LPID ≠ 0

Process-
scoped host
entries with

matching PID
if LPID = 0

NO YES - all with
matching

LPID and PID
(by thread ID)

NO NO NO

1 1 1 1 NO YES RS YES NONE Guest PWC
with matching
PID if LPID ≠ 0

Process-
scoped host
PWC with

matching PID
if LPID = 0

NO NO NO NO

1 1 1 2 NO YES RS YES Guest entries
with matching
PID if LPID ≠ 0

Process-
scoped host
entries with

matching PID
if LPID = 0

Guest PWC
with matching
PID if LPID ≠ 0

Process-
scoped host
PWC with

matching PID
if LPID = 0

YES - all with
matching

LPID and PID
(by thread ID)

YES - process
table regard-
less of LPID

NO NO

1 1 1 3 YES NO

2 0 0 0 NO YES

2 0 0 1 NO YES

2 0 0 2 NO YES

2 0 0 3 YES YES

Table B-1. tlbie Encodings for Radix Translations (with R = ‘1’ and GTSE = ‘1’) (Sheet 3 of 7)

IS HV PRS RIC EA Match
Required?

LPID Match
Required?

LPID Taken
from RS or

LPIDR

PID Match
Required?

TLB Entry/
Entries

Invalidated

PWC
Invalidated?

ERATs
Invalidated?

Process/
Partition Table

Caching
Invalidated?

Invalid
Form

Machine
Check
Case?
(yellow)

Privileged
Instruction
Interrupt?
HV = 0,
PRS = 0

(red)

U
ser’s M

anual
O

penP
O

W
E

R
P

O
W

E
R

9 P
ro

cesso
r

tlbie and tlbiel E
ncodings for R

adix T
ranslations

P
age 472 of 508

V
ersion 2.1

10 O
ctober 2019

2 0 1 0 NO YES LPIDR NO Guest entries
with matching

LPID

NO YES - all with
matching LPID
(by thread ID)

NO NO NO

2 0 1 1 NO YES LPIDR NO NONE Guest PWC
with matching

LPID

NO NO NO NO

2 0 1 2 NO YES LPIDR NO Guest entries
with matching

LPID

Guest PWC
with matching

LPID

YES - all with
matching LPID
(by thread ID)

YES - process
table regard-
less of LPID

NO NO

2 0 1 3 YES NO

2 1 0 0 NO YES RS NO Partition-
scoped host
entries with

matching LPID

NO YES - all with
matching LPID
(by thread ID)

NO NO NO

2 1 0 1 NO YES RS NO NONE Partition-
scoped host
PWC with

matching LPID

NO NO NO NO

2 1 0 2 NO YES RS NO Partition-
scoped host
entries with

matching LPID

Partition-
scoped host
PWC with

matching LPID

YES - all with
matching LPID
(by thread ID)

YES - all pro-
cess and parti-

tion table
caching

regardless of
LPID

NO NO

2 1 0 3 YES NO

2 1 1 0 NO YES RS NO Guest entries
with matching

LPID if
LPID ≠ 0
Process-

scoped host
entries with

matching LPID
if LPID = 0

NO YES - all with
matching LPID
(by thread ID)

NO NO NO

Table B-1. tlbie Encodings for Radix Translations (with R = ‘1’ and GTSE = ‘1’) (Sheet 4 of 7)

IS HV PRS RIC EA Match
Required?

LPID Match
Required?

LPID Taken
from RS or

LPIDR

PID Match
Required?

TLB Entry/
Entries

Invalidated

PWC
Invalidated?

ERATs
Invalidated?

Process/
Partition Table

Caching
Invalidated?

Invalid
Form

Machine
Check
Case?
(yellow)

Privileged
Instruction
Interrupt?
HV = 0,
PRS = 0

(red)

U
ser’s M

anual
O

penP
O

W
E

R

P
O

W
E

R
9 P

ro
cesso

r

V
ersion 2.1

10 O
ctober 2019

tlbie and tlbiel E
ncodings for R

adix T
ranslations

P
age 473 of 508

2 1 1 1 NO YES RS NO NONE Guest PWC
with matching

LPID if
LPID ≠ 0
Process-

scoped host
PWC with

matching LPID
if LPID = 0

NO NO NO NO

2 1 1 2 NO YES RS NO Guest entries
with matching

LPID if
LPID ≠ 0
Process-

scoped host
entries with

matching LPID
if LPID = 0

Guest PWC
with matching

LPID if
LPID ≠ 0
Process-

scoped host
PWC with

matching LPID
if LPID = 0

YES - all with
matching LPID
(by thread ID)

YES -
process table
regardless of

LPID

NO NO

2 1 1 3 YES NO

3 0 0 0 NO YES

3 0 0 1 NO YES

3 0 0 2 NO YES

3 0 0 3 YES YES

3 0 1 0 NO YES LPIDR NO Guest entries
with matching

LPID

NO YES - all with
matching LPID
(by thread ID)

NO NO NO

3 0 1 1 NO YES LPIDR NO NONE Guest PWC
with matching

LPID

NO NO NO NO

3 0 1 2 NO YES LPIDR NO Guest entries
with matching

LPID

Guest PWC
with matching

LPID

YES - all with
matching LPID
(by thread ID)

YES - process
table regard-
less of LPID

NO NO

3 0 1 3 YES NO

Table B-1. tlbie Encodings for Radix Translations (with R = ‘1’ and GTSE = ‘1’) (Sheet 5 of 7)

IS HV PRS RIC EA Match
Required?

LPID Match
Required?

LPID Taken
from RS or

LPIDR

PID Match
Required?

TLB Entry/
Entries

Invalidated

PWC
Invalidated?

ERATs
Invalidated?

Process/
Partition Table

Caching
Invalidated?

Invalid
Form

Machine
Check
Case?
(yellow)

Privileged
Instruction
Interrupt?
HV = 0,
PRS = 0

(red)

U
ser’s M

anual
O

penP
O

W
E

R
P

O
W

E
R

9 P
ro

cesso
r

tlbie and tlbiel E
ncodings for R

adix T
ranslations

P
age 474 of 508

V
ersion 2.1

10 O
ctober 2019

3 1 0 0 NO NO NA NO All partition-
scoped host

entries regard-
less of LPID

NO YES - regard-
less of LPID

(thread)

NO NO NO

3 1 0 1 NO NO NA NO NONE All partition-
scoped host
PWC entries
regardless of

LPID

NO NO NO NO

3 1 0 2 NO NO NA NO All partition-
scoped host

entries regard-
less of LPID

All partition-
scoped host
PWC entries
regardless of

LPID

YES - regard-
less of LPID

(thread)

YES - all pro-
cess and parti-

tion table
regardless of

LPID

NO NO

3 1 0 3 YES NO

3 1 1 0 NO NO NA NO Guest entries
regardless of

LPID if
LPID ≠ 0
Process-

scoped host
entries with

matching LPID
if LPID = 0

NO YES - regard-
less of LPID

(thread)

NO NO NO

Table B-1. tlbie Encodings for Radix Translations (with R = ‘1’ and GTSE = ‘1’) (Sheet 6 of 7)

IS HV PRS RIC EA Match
Required?

LPID Match
Required?

LPID Taken
from RS or

LPIDR

PID Match
Required?

TLB Entry/
Entries

Invalidated

PWC
Invalidated?

ERATs
Invalidated?

Process/
Partition Table

Caching
Invalidated?

Invalid
Form

Machine
Check
Case?
(yellow)

Privileged
Instruction
Interrupt?
HV = 0,
PRS = 0

(red)

U
ser’s M

anual
O

penP
O

W
E

R

P
O

W
E

R
9 P

ro
cesso

r

V
ersion 2.1

10 O
ctober 2019

tlbie and tlbiel E
ncodings for R

adix T
ranslations

P
age 475 of 508

3 1 1 1 NO NO NA NO NONE All guest PWC
regardless of

LPID if
LPID ≠ 0
Process-

scoped host
PWC regard-
less of LPID if

LPID = 0

NO NO NO NO

3 1 1 2 NO NO NA NO Guest entries
regardless of

LPID if
LPID ≠ 0
Process-

scoped host
entries with

matching LPID
if LPID = 0

All guest PWC
regardless of

LPID if
LPID ≠ 0
Process-

scoped host
PWC regard-
less of LPID if

LPID = 0

YES - regard-
less of LPID

(thread)

YES -
process table
regardless of

LPID

NO NO

3 1 1 3 YES NO

Table B-1. tlbie Encodings for Radix Translations (with R = ‘1’ and GTSE = ‘1’) (Sheet 7 of 7)

IS HV PRS RIC EA Match
Required?

LPID Match
Required?

LPID Taken
from RS or

LPIDR

PID Match
Required?

TLB Entry/
Entries

Invalidated

PWC
Invalidated?

ERATs
Invalidated?

Process/
Partition Table

Caching
Invalidated?

Invalid
Form

Machine
Check
Case?
(yellow)

Privileged
Instruction
Interrupt?
HV = 0,
PRS = 0

(red)

U
ser’s M

anual
O

penP
O

W
E

R
P

O
W

E
R

9 P
ro

cesso
r

tlbie and tlbiel E
ncodings for R

adix T
ranslations

P
age 476 of 508

V
ersion 2.1

10 O
ctober 2019

Table B-2. tlbiel Encodings for Radix Translations (with R = ‘1’) (Sheet 1 of 9)

IS HV PRS RIC EA Match
Required?

LPID
Match

Required?

LPID
Taken

from RS
or LPIDR

PID Match
Required?

TLB Entry/
Entries

Invalidated

PWC
Invalidated?

ERATs
Invalidated?

Process/
Partition Table

Caching
Invalidated?

Invalid
Form

Machine
Check
case?

(yellow)

Privileged
Instruction
Interrupt?
HV = 0,
PRS = 0

(red)

0 0 0 0 NO YES

0 0 0 1 YES YES

0 0 0 2 YES YES

0 0 0 3 YES YES

0 0 1 0 YES YES LPIDR YES Guest entry with
gEA match

NO YES - matching
address for that

thread only

NO NO NO

0 0 1 1 YES NO

0 0 1 2 YES NO

0 0 1 3 YES NO

0 1 0 0 YES YES LPIDR NO Partition-scoped
host entry with

gRA/hEA match

NO YES - matching
address for that

thread only

NO NO NO

0 1 0 1 YES NO

0 1 0 2 YES NO

0 1 0 3 YES NO

0 1 1 0 YES YES LPIDR YES Guest entry with
gEA match if

LPID ≠ 0
Process-

Scoped Host
entry with hEA

match if
LPID = 0

NO YES - matching
address for that

thread only

NO NO NO

0 1 1 1 YES NO

0 1 1 2 YES NO

1 0 0 0 YES YES

U
ser’s M

anual
O

penP
O

W
E

R

P
O

W
E

R
9 P

ro
cesso

r

V
ersion 2.1

10 O
ctober 2019

tlbie and tlbiel E
ncodings for R

adix T
ranslations

P
age 477 of 508

1 0 0 1 YES YES

1 0 0 2 YES YES

1 0 0 3 YES YES

1 0 1 0 NO YES LPIDR YES Guest entries
with matching

PID in set
specified by
RB(40:51)

NO YES - all for that
thread only

NO NO NO

1 0 1 1 NO YES LPIDR YES NONE Guest PWC
with matching

PID (for a
matching LPID)

NO NO NO NO

1 0 1 2 NO YES LPIDR YES Guest entries
with matching

PID in set
specified by
RB(40:51)

Guest PWC
with matching

PID (for a
matching LPID)

YES - all for that
thread only

YES - all
process table cach-

ing:
1. effPID = PIDR
and effLPID = 0
2. effPID = PIDR
and
effLPID = LPIDR
3. effPID = 0 and
effLPID = LPIDR
4. effPID = 0 and
effLPID = 0

NO NO

1 0 1 3 YES NO

1 1 0 0 YES NO

1 1 0 1 YES NO

1 1 0 2 YES NO

1 1 0 3 YES NO

Table B-2. tlbiel Encodings for Radix Translations (with R = ‘1’) (Sheet 2 of 9)

IS HV PRS RIC EA Match
Required?

LPID
Match

Required?

LPID
Taken

from RS
or LPIDR

PID Match
Required?

TLB Entry/
Entries

Invalidated

PWC
Invalidated?

ERATs
Invalidated?

Process/
Partition Table

Caching
Invalidated?

Invalid
Form

Machine
Check
case?

(yellow)

Privileged
Instruction
Interrupt?
HV = 0,
PRS = 0

(red)

U
ser’s M

anual
O

penP
O

W
E

R
P

O
W

E
R

9 P
ro

cesso
r

tlbie and tlbiel E
ncodings for R

adix T
ranslations

P
age 478 of 508

V
ersion 2.1

10 O
ctober 2019

1 1 1 0 NO YES LPIDR YES Guest entries
with matching

PID in set speci-
fied by

RB(40:51) if
LPID ≠ 0

Process-scoped
host entries with
matching PID in
set specified by

RB(40:51) if
LPID = 0

NO YES - all for that
thread only

NO NO NO

1 1 1 1 NO YES LPIDR YES NONE Guest PWC
with matching
PID if LPID ≠ 0

Process-scoped
host PWC with
matching PID if

LPID = 0

NO NO NO NO

1 1 1 2 NO YES LPIDR YES Guest entries
with matching

PID in set speci-
fied by

RB(40:51) if
LPID ≠ 0

Process-scoped
host entries with
matching PID in
set specified by

RB(40:51) if
LPID = 0

Guest PWC
with matching
PID if LPID ≠ 0

Process-scoped
host PWC with
matching PID if

LPID = 0

YES - All for
that thread only

YES - all
process table cach-

ing:
1. effPID = PIDR
and effLPID = 0
2. effPID=PIDR
and
effLPID = LPIDR
3. effPID = 0 and
effLPID = LPIDR
4. effPID = 0 and
effLPID = 0

NO NO

1 1 1 3 YES NO

2 0 0 0 NO YES

2 0 0 1 NO YES

2 0 0 2 NO YES

2 0 0 3 YES YES

Table B-2. tlbiel Encodings for Radix Translations (with R = ‘1’) (Sheet 3 of 9)

IS HV PRS RIC EA Match
Required?

LPID
Match

Required?

LPID
Taken

from RS
or LPIDR

PID Match
Required?

TLB Entry/
Entries

Invalidated

PWC
Invalidated?

ERATs
Invalidated?

Process/
Partition Table

Caching
Invalidated?

Invalid
Form

Machine
Check
case?

(yellow)

Privileged
Instruction
Interrupt?
HV = 0,
PRS = 0

(red)

U
ser’s M

anual
O

penP
O

W
E

R

P
O

W
E

R
9 P

ro
cesso

r

V
ersion 2.1

10 O
ctober 2019

tlbie and tlbiel E
ncodings for R

adix T
ranslations

P
age 479 of 508

2 0 1 0 NO YES LPIDR NO Guest entries
with matching

LPID in set
specified by
RB(40:51)

NO YES - All for
that thread only

NO NO NO

2 0 1 1 NO YES LPIDR NO NONE Guest PWC
with matching

LPID

NO NO NO NO

2 0 1 2 NO YES LPIDR NO Guest entries
with matching

LPID in set
specified by
RB(40:51)

Guest PWC
with matching

LPID

YES - all for that
thread only

YES - all
process table cach-

ing:
1. effPID = PIDR
and effLPID = 0
2. effPID = PIDR
and
effLPID=LPIDR
3. effPID = 0 and
effLPID = LPIDR
4. effPID = 0 and
effLPID = 0

NO NO

2 0 1 3 YES NO

2 1 0 0 NO YES LPIDR NO All partition-
scoped host

entries regard-
less of LPID in
set specified by

RB(40:51)

NO YES - all for that
thread only

NO NO NO

2 1 0 1 NO YES LPIDR NO NONE Partition-scoped
host PWC with
matching LPID

NO NO NO NO

Table B-2. tlbiel Encodings for Radix Translations (with R = ‘1’) (Sheet 4 of 9)

IS HV PRS RIC EA Match
Required?

LPID
Match

Required?

LPID
Taken

from RS
or LPIDR

PID Match
Required?

TLB Entry/
Entries

Invalidated

PWC
Invalidated?

ERATs
Invalidated?

Process/
Partition Table

Caching
Invalidated?

Invalid
Form

Machine
Check
case?

(yellow)

Privileged
Instruction
Interrupt?
HV = 0,
PRS = 0

(red)

U
ser’s M

anual
O

penP
O

W
E

R
P

O
W

E
R

9 P
ro

cesso
r

tlbie and tlbiel E
ncodings for R

adix T
ranslations

P
age 480 of 508

V
ersion 2.1

10 O
ctober 2019

2 1 0 2 NO YES LPIDR NO All partition-
scoped host

entries regard-
less of LPID in
set specified by

RB(40:51)

Partition-scoped
host PWC with
matching LPID

YES - all for that
thread only

YES - all
process table

caching:
1. effPID = PIDR
and effLPID = 0
2. effPID = PIDR
and
effLPID = LPIDR
3. effPID = 0 and
effLPID = LPIDR
4. effPID = 0 and
effLPID = 0
AND
All partition table
caching:
1. effLPID = 0 and
2. effLPID = LPIDR

NO NO

2 1 0 3 YES NO

2 1 1 0 NO YES LPIDR NO Guest entries
with matching

LPID in set
specified by
RB(40:51) if

LPID ≠ 0
Process-scoped
host entries with
matching LPID
in set specified
by RB(40:51) if

LPID = 0

NO YES - all for that
thread only

NO NO NO

2 1 1 1 NO YES LPIDR NO NONE Guest PWC
with matching

LPID if LPID ≠ 0
Process-scoped
host PWC with
matching LPID

if LPID = 0

NO NO NO NO

Table B-2. tlbiel Encodings for Radix Translations (with R = ‘1’) (Sheet 5 of 9)

IS HV PRS RIC EA Match
Required?

LPID
Match

Required?

LPID
Taken

from RS
or LPIDR

PID Match
Required?

TLB Entry/
Entries

Invalidated

PWC
Invalidated?

ERATs
Invalidated?

Process/
Partition Table

Caching
Invalidated?

Invalid
Form

Machine
Check
case?

(yellow)

Privileged
Instruction
Interrupt?
HV = 0,
PRS = 0

(red)

U
ser’s M

anual
O

penP
O

W
E

R

P
O

W
E

R
9 P

ro
cesso

r

V
ersion 2.1

10 O
ctober 2019

tlbie and tlbiel E
ncodings for R

adix T
ranslations

P
age 481 of 508

2 1 1 2 NO YES LPIDR NO Guest entries
with matching

LPID in set
specified by
RB(40:51) if

LPID ≠ 0
Process-scoped
host entries with
matching LPID
in set specified
by RB(40:51) if

LPID = 0

Guest PWC
with matching

LPID if LPID ≠ 0
Process-scoped
host PWC with
matching LPID

if LPID = 0

YES - all with
matching thread

YES - all process
table caching:

1. effPID = PIDR
and effLPID = 0
2. effPID = PIDR
and
effLPID = LPIDR
3. effPID = 0 and
effLPID = LPIDR
4. effPID = 0 and
effLPID = 0

NO NO

2 1 1 3 YES NO

3 0 0 0 NO YES

3 0 0 1 NO YES

3 0 0 2 NO YES

3 0 0 3 YES YES

3 0 1 0 NO YES LPIDR NO Guest entries
with matching

LPID in set
specified by
RB(40:51)

NO YES - All for
that thread only

NO NO NO

3 0 1 1 NO YES LPIDR NO NONE Guest PWC
with matching

LPID

NO NO NO NO

Table B-2. tlbiel Encodings for Radix Translations (with R = ‘1’) (Sheet 6 of 9)

IS HV PRS RIC EA Match
Required?

LPID
Match

Required?

LPID
Taken

from RS
or LPIDR

PID Match
Required?

TLB Entry/
Entries

Invalidated

PWC
Invalidated?

ERATs
Invalidated?

Process/
Partition Table

Caching
Invalidated?

Invalid
Form

Machine
Check
case?

(yellow)

Privileged
Instruction
Interrupt?
HV = 0,
PRS = 0

(red)

U
ser’s M

anual
O

penP
O

W
E

R
P

O
W

E
R

9 P
ro

cesso
r

tlbie and tlbiel E
ncodings for R

adix T
ranslations

P
age 482 of 508

V
ersion 2.1

10 O
ctober 2019

3 0 1 2 NO YES LPIDR NO Guest entries
with matching

LPID in set
specified by
RB(40:51)

Guest PWC
with matching

LPID

YES - all for that
thread only

YES - all process
table caching:

1. effPID = PIDR
and effLPID = 0
2. effPID = PIDR
and
effLPID = LPIDR
3. effPID = 0 and
effLPID = LPIDR
4. effPID = 0 and
effLPID = 0

NO NO

3 0 1 3 YES NO

3 1 0 0 NO NO NA NO All partition-
scoped host

entries regard-
less of LPID in
set specified by

RB(40:51)

NO YES - all for that
thread only

NO NO NO

3 1 0 1 NO NO NA NO NONE All partition-
scoped host
PWC entries
regardless of

LPID

NO NO NO NO

Table B-2. tlbiel Encodings for Radix Translations (with R = ‘1’) (Sheet 7 of 9)

IS HV PRS RIC EA Match
Required?

LPID
Match

Required?

LPID
Taken

from RS
or LPIDR

PID Match
Required?

TLB Entry/
Entries

Invalidated

PWC
Invalidated?

ERATs
Invalidated?

Process/
Partition Table

Caching
Invalidated?

Invalid
Form

Machine
Check
case?

(yellow)

Privileged
Instruction
Interrupt?
HV = 0,
PRS = 0

(red)

U
ser’s M

anual
O

penP
O

W
E

R

P
O

W
E

R
9 P

ro
cesso

r

V
ersion 2.1

10 O
ctober 2019

tlbie and tlbiel E
ncodings for R

adix T
ranslations

P
age 483 of 508

3 1 0 2 NO NO NA NO All partition-
scoped host

entries regard-
less of LPID in
set specified by

RB(40:51)

All partition-
scoped host
PWC entries
regardless of

LPID

YES - all for that
thread only

YES - all process
table caching:

1. effPID=PIDR
and effLPID = 0
2. effPID=PIDR

and
effLPID=LPIDR

3. effPID = 0 and
effLPID=LPIDR

4. effPID = 0 and
effLPID = 0

AND All Partition
Table caching:

1. effLPID = 0 and
2. effLPID=LPIDR

NO NO

3 1 0 3 YES NO

3 1 1 0 NO NO NA NO Guest entries
regardless of

LPID if LPID ≠ 0
in set specified
by RB(40:51)

Process-scoped
host entries with
matching LPID
if LPID = 0 in

set specified by
RB(40:51)

NO YES - all for that
thread only

NO NO NO

Table B-2. tlbiel Encodings for Radix Translations (with R = ‘1’) (Sheet 8 of 9)

IS HV PRS RIC EA Match
Required?

LPID
Match

Required?

LPID
Taken

from RS
or LPIDR

PID Match
Required?

TLB Entry/
Entries

Invalidated

PWC
Invalidated?

ERATs
Invalidated?

Process/
Partition Table

Caching
Invalidated?

Invalid
Form

Machine
Check
case?

(yellow)

Privileged
Instruction
Interrupt?
HV = 0,
PRS = 0

(red)

U
ser’s M

anual
O

penP
O

W
E

R
P

O
W

E
R

9 P
ro

cesso
r

tlbie and tlbiel E
ncodings for R

adix T
ranslations

P
age 484 of 508

V
ersion 2.1

10 O
ctober 2019

3 1 1 1 NO NO NA NO NONE All guest PWC
regardless of

LPID if LPID ≠ 0
Process-scoped

host PWC
regardless of

LPID if LPID = 0

NO NO NO NO

3 1 1 2 NO NO NA NO Guest entries
regardless of

LPID if LPID ≠ 0
in set specified
by RB(40:51)

Process-scoped
host entries with
matching LPID
if LPID = 0 in

set specified by
RB(40:51)

All guest PWC
regardless of

LPID if LPID ≠ 0
Process-scoped

host PWC
regardless of

LPID if LPID = 0

YES - all for that
thread only

YES - all process
table caching:

1. effPID = PIDR
and effLPID = 0
2. effPID = PIDR
and
effLPID = LPIDR
3. effPID = 0 and
effLPID = LPIDR
4. effPID = 0 and
effLPID = 0

NO NO

3 1 1 3 YES NO

Table B-2. tlbiel Encodings for Radix Translations (with R = ‘1’) (Sheet 9 of 9)

IS HV PRS RIC EA Match
Required?

LPID
Match

Required?

LPID
Taken

from RS
or LPIDR

PID Match
Required?

TLB Entry/
Entries

Invalidated

PWC
Invalidated?

ERATs
Invalidated?

Process/
Partition Table

Caching
Invalidated?

Invalid
Form

Machine
Check
case?

(yellow)

Privileged
Instruction
Interrupt?
HV = 0,
PRS = 0

(red)

U
ser’s M

anual
O

penP
O

W
E

R

P
O

W
E

R
9 P

ro
cesso

r

V
ersion 2.1

10 O
ctober 2019

tlbie and tlbiel E
ncodings for H

P
T

 T
ranslations

P
age 485 of 508

Appendix C. tlbie and tlbiel Encodings for HPT Translations

Table C-1. lists the tlbie encodings for HPT translation (with R = ‘0’ and GTSE = ‘1’) and Table C-2. on page 490 lists the tlbiel encodings for
HPT translation (with R = ‘0’).

Note: The yellow rows result in a Machine Check interrupt (invalid form of tlbie/tlbiel instruction) and the red rows result in a privileged
instruction interrupt.

Table C-1. tlbie Encodings for HPT Translations (with R = ‘0’ and GTSE = ‘1’) (Sheet 1 of 5)

IS HV PRS RIC VA Match
Required?

LPID
Match

Required?

LPID Taken
From RS or

LPIDR

PID Match
Required?

TLB Entry/
Entries

Invalidated

PWC
Invalidated?

ERATs
Invalidated?

Process/
Partition

Table
Caching

Invalidated?

RIC = 3
TLB

Invalidations

Invalid
Form

Machine
Check
Case?
(yellow)

Privileged
Instruction
Interrupt?
HV = 0,
PRS = 0

(red)

0 0 0 0 YES YES LPIDR NO VA match NO YES - match-
ing address

and LPID (by
thread ID)

NO NA NO NO

0 0 0 1 YES NO

0 0 0 2 YES NO

0 0 0 3 YES YES LPIDR NO Series of
eight con-
secutive

pages (see
column
RIC = 3)

NO YES - match-
ing address

and LPID (by
thread ID)

NO AP = 110:8
consecutive
4 KB pages
aligned on

32 KB
boundary

AP = 111:8
consecutive
64 KB pages
aligned on

512 KB
boundary

NO NO

0 0 1 0 YES NO

0 0 1 1 YES NO

0 0 1 2 YES NO

0 0 1 3 YES NO

0 1 0 0 YES YES RS NO VA match NO YES - match-
ing address

and LPID (by
thread ID)

NO NA NO NO

Virtual address

Logical partition ID

Process ID

Translation lookaside buffer

Page-walk cache

Effective-to-real address translation

U
ser’s M

anual
O

penP
O

W
E

R
P

O
W

E
R

9 P
ro

cesso
r

tlbie and tlbiel E
ncodings for H

P
T

 T
ranslations

P
age 486 of 508

V
ersion 2.1

10 O
ctober 2019

0 1 0 1 YES NO

0 1 0 2 YES NO

0 1 0 3 YES YES RS NO Series of
eight con-
secutive

pages (see
column
RIC = 3)

NO YES - match-
ing address

and LPID (by
thread ID)

NO AP = 110:8
consecutive
4 KB pages
aligned on

32 KB
boundary

AP = 111:8
consecutive
64 KB pages
aligned on

512 KB
boundary

NO NO

0 1 1 0 YES NO

0 1 1 1 YES NO

0 1 1 2 YES NO

0 1 1 3 YES NO

1 0 0 0 YES NO

1 0 0 1 YES NO

1 0 0 2 YES NO

1 0 0 3 YES NO

1 0 1 0 YES NO

1 0 1 1 YES NO

1 0 1 2 NO YES LPIDR YES NONE NO YES - all with
matching
LPID and
PID (by

thread ID)

YES - pro-
cess table
regardless

of LPID

NA NO NO

1 0 1 3 YES NO

Table C-1. tlbie Encodings for HPT Translations (with R = ‘0’ and GTSE = ‘1’) (Sheet 2 of 5)

IS HV PRS RIC VA Match
Required?

LPID
Match

Required?

LPID Taken
From RS or

LPIDR

PID Match
Required?

TLB Entry/
Entries

Invalidated

PWC
Invalidated?

ERATs
Invalidated?

Process/
Partition

Table
Caching

Invalidated?

RIC = 3
TLB

Invalidations

Invalid
Form

Machine
Check
Case?
(yellow)

Privileged
Instruction
Interrupt?
HV = 0,
PRS = 0

(red)

U
ser’s M

anual
O

penP
O

W
E

R

P
O

W
E

R
9 P

ro
cesso

r

V
ersion 2.1

10 O
ctober 2019

tlbie and tlbiel E
ncodings for H

P
T

 T
ranslations

P
age 487 of 508

1 1 0 0 YES NO

1 1 0 1 YES NO

1 1 0 2 YES NO

1 1 0 3 YES NO

1 1 1 0 YES NO

1 1 1 1 YES NO

1 1 1 2 NO YES RS YES NONE NO YES - all with
matching
LPID and
PID (by

thread ID)

YES - pro-
cess table
regardless

of LPID

NA NO NO

1 1 1 3 YES NO

2 0 0 0 NO YES LPIDR NO Host
entries with
matching

LPID

NO YES - all with
matching
LPID (by
thread ID)

NO NA NO NO

2 0 0 1 YES NO

2 0 0 2 YES NO

2 0 0 3 YES NO

2 0 1 0 YES NO

2 0 1 1 YES NO

2 0 1 2 NO YES LPIDR NO NONE NO YES - all with
matching
LPID (by
thread ID)

YES - pro-
cess table
regardless

of LPID

NA NO NO

2 0 1 3 YES NO

Table C-1. tlbie Encodings for HPT Translations (with R = ‘0’ and GTSE = ‘1’) (Sheet 3 of 5)

IS HV PRS RIC VA Match
Required?

LPID
Match

Required?

LPID Taken
From RS or

LPIDR

PID Match
Required?

TLB Entry/
Entries

Invalidated

PWC
Invalidated?

ERATs
Invalidated?

Process/
Partition

Table
Caching

Invalidated?

RIC = 3
TLB

Invalidations

Invalid
Form

Machine
Check
Case?
(yellow)

Privileged
Instruction
Interrupt?
HV = 0,
PRS = 0

(red)

U
ser’s M

anual
O

penP
O

W
E

R
P

O
W

E
R

9 P
ro

cesso
r

tlbie and tlbiel E
ncodings for H

P
T

 T
ranslations

P
age 488 of 508

V
ersion 2.1

10 O
ctober 2019

2 1 0 0 NO YES RS NO Host
entries with
matching

LPID

NO YES - all with
matching
LPID (by
thread ID)

NO NA NO NO

2 1 0 1 NO YES NO

2 1 0 2 NO YES RS NO Host
entries with
matching

LPID

NO YES - all with
matching
LPID (by
thread ID)

YES - parti-
tion table

with match-
ing LPID

NA NO NO

2 1 0 3 YES NO

2 1 1 0 YES NO

2 1 1 1 YES NO

2 1 1 2 NO YES RS NO NONE NO YES - all with
matching
LPID (by
thread ID)

YES - pro-
cess table
regardless

of LPID

NA NO NO

2 1 1 3 YES NO

3 0 0 0 NO YES LPIDR NO Host
entries with
matching

LPID

NO YES - all with
matching
LPID (by
thread ID)

NO NA NO NO

3 0 0 1 YES NO

3 0 0 2 YES NO

3 0 0 3 YES NO

3 0 1 0 YES NO

3 0 1 1 YES NO

Table C-1. tlbie Encodings for HPT Translations (with R = ‘0’ and GTSE = ‘1’) (Sheet 4 of 5)

IS HV PRS RIC VA Match
Required?

LPID
Match

Required?

LPID Taken
From RS or

LPIDR

PID Match
Required?

TLB Entry/
Entries

Invalidated

PWC
Invalidated?

ERATs
Invalidated?

Process/
Partition

Table
Caching

Invalidated?

RIC = 3
TLB

Invalidations

Invalid
Form

Machine
Check
Case?
(yellow)

Privileged
Instruction
Interrupt?
HV = 0,
PRS = 0

(red)

U
ser’s M

anual
O

penP
O

W
E

R

P
O

W
E

R
9 P

ro
cesso

r

V
ersion 2.1

10 O
ctober 2019

tlbie and tlbiel E
ncodings for H

P
T

 T
ranslations

P
age 489 of 508

3 0 1 2 NO YES LPIDR NO NONE Guest PWC
with match-

ing LPID

YES - all with
matching
LPID (by
thread ID)

YES - pro-
cess table
regardless

of LPID

NA NO NO

3 0 1 3 YES NO

3 1 0 0 NO NO NA NO All host
entries

regardless
of LPID

NO YES -
regardless of

LPID
(thread)

NO NO NO NO

3 1 0 1 YES NO

3 1 0 2 NO NO NA NO All host
entries

regardless
of LPID

All partition-
scoped host

PWC
entries

regardless
of LPID

YES -
regardless of

LPID
(thread)

YES - parti-
tion table

regardless
of LPID

NA NO NO

3 1 0 3 NO

3 1 1 0 YES NO

3 1 1 1 YES NO

3 1 1 2 NO NO NA NO All host
entries

regardless
of LPID

All guest
PWC

regardless
of LPID if
LPID ≠ 0
Process-

scoped host
PWC

regardless
of LPID if
LPID = 0

YES -
regardless of

LPID
(thread)

YES - pro-
cess table
regardless

of LPID

NA NO

3 1 1 3 YES NO

Table C-1. tlbie Encodings for HPT Translations (with R = ‘0’ and GTSE = ‘1’) (Sheet 5 of 5)

IS HV PRS RIC VA Match
Required?

LPID
Match

Required?

LPID Taken
From RS or

LPIDR

PID Match
Required?

TLB Entry/
Entries

Invalidated

PWC
Invalidated?

ERATs
Invalidated?

Process/
Partition

Table
Caching

Invalidated?

RIC = 3
TLB

Invalidations

Invalid
Form

Machine
Check
Case?
(yellow)

Privileged
Instruction
Interrupt?
HV = 0,
PRS = 0

(red)

U
ser’s M

anual
O

penP
O

W
E

R
P

O
W

E
R

9 P
ro

cesso
r

tlbie and tlbiel E
ncodings for H

P
T

 T
ranslations

P
age 490 of 508

V
ersion 2.1

10 O
ctober 2019

Table C-2. tlbiel Encodings for HPT Translation (with R = ‘0’) (Sheet 1 of 5)

IS HV PRS RIC VA Match
Required?

LPID Match
Required?

LPID Taken
from RS or

LPIDR

PID Match
Required?

TLB Entry/
Entries

Invalidated

PWC
Invali-
dated?

ERATs
Invali-
dated?

Process/
Partition

Table
Caching

Invalidated?

RIC = 3 TLB
Invalidations

Invalid
Form

Machine
Check
Case?
(yellow)

Privileged
Instruction
Interrupt?
HV = 0,
PRS = 0

(red)

0 0 0 0 YES YES LPIDR NO VA match NO YES -
matching

address for
that thread

only

NO NA NO NO

0 0 0 1 YES NO

0 0 0 2 YES NO

0 0 0 3 NO NA YES NO

0 0 1 0 YES NO

0 0 1 1 YES NO

0 0 1 2 YES NO

0 0 1 3 YES NO

0 1 0 0 YES YES LPIDR NO VA match NO YES -
matching

address for
that thread

only

NO NA NO NO

0 1 0 1 YES NO

0 1 0 2 YES NO

0 1 0 3 YES NO

0 1 1 0 YES NO

0 1 1 1 YES NO

0 1 1 2 YES NO

0 1 1 3 YES NO

1 0 0 0 YES NO

1 0 0 1 YES NO

U
ser’s M

anual
O

penP
O

W
E

R

P
O

W
E

R
9 P

ro
cesso

r

V
ersion 2.1

10 O
ctober 2019

tlbie and tlbiel E
ncodings for H

P
T

 T
ranslations

P
age 491 of 508

1 0 0 2 YES NO

1 0 0 3 YES NO

1 0 1 0 YES NO

1 0 1 1 YES NO

1 0 1 2 NO YES LPIDR YES NONE NO YES - all
for that

thread only

YES - pro-
cess table
(regardless
of LPID) for

issuing
thread

NA NO NO

1 0 1 3 YES NO

1 1 0 0 YES NO

1 1 0 1 YES NO

1 1 0 2 YES NO

1 1 0 3 YES NO

1 1 1 0 YES NO

1 1 1 1 YES NO

1 1 1 2 NO YES LPIDR YES NONE NO YES - all
for that

thread only

YES - pro-
cess table
(regardless
of LPID) for

issuing
thread

NA NO NO

1 1 1 3 YES NO

2 0 0 0 NO YES LPIDR NO Host
entries with
matching

LPID in set
specified

by
RB(40:51)

NO YES - all
for that

thread only

NO NA NO NO

Table C-2. tlbiel Encodings for HPT Translation (with R = ‘0’) (Sheet 2 of 5)

IS HV PRS RIC VA Match
Required?

LPID Match
Required?

LPID Taken
from RS or

LPIDR

PID Match
Required?

TLB Entry/
Entries

Invalidated

PWC
Invali-
dated?

ERATs
Invali-
dated?

Process/
Partition

Table
Caching

Invalidated?

RIC = 3 TLB
Invalidations

Invalid
Form

Machine
Check
Case?
(yellow)

Privileged
Instruction
Interrupt?
HV = 0,
PRS = 0

(red)

U
ser’s M

anual
O

penP
O

W
E

R
P

O
W

E
R

9 P
ro

cesso
r

tlbie and tlbiel E
ncodings for H

P
T

 T
ranslations

P
age 492 of 508

V
ersion 2.1

10 O
ctober 2019

2 0 0 1 YES NO

2 0 0 2 YES NO

2 0 0 3 YES NO

2 0 1 0 YES NO

2 0 1 1 YES NO

2 0 1 2 NO YES LPIDR NO NONE NO YES - all
for that

thread only

YES - pro-
cess table
(regardless
of LPID) for

issuing
thread

NA NO NO

2 0 1 3 YES NO

2 1 0 0 NO YES LPIDR NO Host
entries with
matching

LPID in set
specified

by
RB(40:51)

NO YES - all
for that

thread only

NO NA NO NO

2 1 0 1 NO YES NO

2 1 0 2 NO YES LPIDR NO Host
entries with
matching

LPID in set
specified

by
RB(40:51)

NO YES - all
for that

thread only

YES - parti-
tion table
for issuing

thread

NA NO NO

2 1 0 3 YES NO

2 1 1 0 YES NO

2 1 1 1 YES NO

Table C-2. tlbiel Encodings for HPT Translation (with R = ‘0’) (Sheet 3 of 5)

IS HV PRS RIC VA Match
Required?

LPID Match
Required?

LPID Taken
from RS or

LPIDR

PID Match
Required?

TLB Entry/
Entries

Invalidated

PWC
Invali-
dated?

ERATs
Invali-
dated?

Process/
Partition

Table
Caching

Invalidated?

RIC = 3 TLB
Invalidations

Invalid
Form

Machine
Check
Case?
(yellow)

Privileged
Instruction
Interrupt?
HV = 0,
PRS = 0

(red)

U
ser’s M

anual
O

penP
O

W
E

R

P
O

W
E

R
9 P

ro
cesso

r

V
ersion 2.1

10 O
ctober 2019

tlbie and tlbiel E
ncodings for H

P
T

 T
ranslations

P
age 493 of 508

2 1 1 2 NO YES LPIDR NO NONE NO YES - all
for that

thread only

YES - pro-
cess table
regardless
of LPID for

issuing
thread

NA NO NO

2 1 1 3 YES NO

3 0 0 0 NO YES LPIDR NO Host
entries with
matching

LPID in set
specified

by
RB(40:51)

NO YES - all
for that

thread only

NO NA NO NO

3 0 0 1 YES NO

3 0 0 2 YES NO

3 0 0 3 YES NO

3 0 1 0 YES NO

3 0 1 1 YES NO

3 0 1 2 NO YES LPIDR NO NONE Guest
PWC with
matching

LPID

YES - all
for that

thread only

YES - pro-
cess table
(regardless
of LPID) for

issuing
thread

NA NO NO

3 0 1 3 YES NO

Table C-2. tlbiel Encodings for HPT Translation (with R = ‘0’) (Sheet 4 of 5)

IS HV PRS RIC VA Match
Required?

LPID Match
Required?

LPID Taken
from RS or

LPIDR

PID Match
Required?

TLB Entry/
Entries

Invalidated

PWC
Invali-
dated?

ERATs
Invali-
dated?

Process/
Partition

Table
Caching

Invalidated?

RIC = 3 TLB
Invalidations

Invalid
Form

Machine
Check
Case?
(yellow)

Privileged
Instruction
Interrupt?
HV = 0,
PRS = 0

(red)

U
ser’s M

anual
O

penP
O

W
E

R
P

O
W

E
R

9 P
ro

cesso
r

tlbie and tlbiel E
ncodings for H

P
T

 T
ranslations

P
age 494 of 508

V
ersion 2.1

10 O
ctober 2019

3 1 0 0 NO NO NA NO All host
entries

regardless
of LPID in
set speci-

fied by
RB(40:51)

NO YES - all
for that

thread only

NO NO NO NO

3 1 0 1 YES NO

3 1 0 2 NO NO NA NO All host
entries

regardless
of LPID in
set speci-

fied by
RB(40:51)

All parti-
tion-scoped
host PWC

entries
regardless

of LPID

YES - all
for that

thread only

YES - parti-
tion table

regardless
of LPID for
issueing
thread

NA NO NO

3 1 0 3 NO

3 1 1 0 YES NO

3 1 1 1 YES NO

3 1 1 2 NO NO NA NO All host
entries

regardless
of LPID in
set speci-

fied by
RB(40:51)

All guest
PWC

regardless
of LPID if
LPID ≠ 0
Process-
scoped

host PWC
regardless
of LPID if
LPID = 0

YES - all
for that

thread only

YES - pro-
cess table
(regardless
of LPID) for

issuing
thread

NA NO

3 1 1 3 YES NO

Table C-2. tlbiel Encodings for HPT Translation (with R = ‘0’) (Sheet 5 of 5)

IS HV PRS RIC VA Match
Required?

LPID Match
Required?

LPID Taken
from RS or

LPIDR

PID Match
Required?

TLB Entry/
Entries

Invalidated

PWC
Invali-
dated?

ERATs
Invali-
dated?

Process/
Partition

Table
Caching

Invalidated?

RIC = 3 TLB
Invalidations

Invalid
Form

Machine
Check
Case?
(yellow)

Privileged
Instruction
Interrupt?
HV = 0,
PRS = 0

(red)

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Glossary

Page 495 of 508

Glossary

ABIST Array built-in self test

AC Authenticated code

ACAM Adress content-addressable memory

AES Advanced Encryption Standard

AIB ASIC interface bus

ALI Alignment interrupt

ALU Arithmetic logic unit

AMC Architected mapper cache

AMO Atomic memory operation

ARF Architected register file

ASIC Application-specific integrated circuit

ASST At-speed structure-test

ATS Address translation services

AVA Abbreviated vrtual address

BAR Base Address Register

BCD Binary coded decimal

BER Bit error ratio

BFP Binary floating-point

BFU Binary floating-point unit

BHT Branch history table

BIST Built-in self-test

BMC Baseboard management control

BR Branch register unit

BTAC Branch target address cache

CAM Content-addressable memory

CAPI Coherent accelerator processor interface

CBC Cipher-block chaining

CC Completion code

User’s Manual
OpenPOWER
POWER9 Processor

Glossary

Page 496 of 508
Version 2.1

10 October 2019

CCM Counter with CBC-MAC

CCS Configured command sequencer

CEC Central electronics complex

cgc Congruence class

CI Cast-in

CIABR Current Instruction Address Breakpoint Register

CIR Chip information register

CIU Core interface unit

CLB Cache load buffer (IBuffer)

CME Core management engine

CMOS Complementary metal–oxide–semiconductor

CO Cast-out

CPB Coprocessor parameter block

CPU Central processing unit

CR Condition Register

CRB Coprocessor request block

CRC Cyclic redundancy check

CRN Conditioned random numbers

CT Coprocessor type

CTLE Continuous time linear equalizer

darn Deliver a random number instruction

DARQ Data and address recirculation queue

DAWR Data Address Watch Register

dcbt Data cache block touch

dcbtst Data cache block touch for store

dcbz Data cache block zero

dcbst Data cache block store

dcbst Data cache block store

dcbf Data cache block flush

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Glossary

Page 497 of 508

dcbfl Data cache block flush local

dcbflp Data cache block flush local primary

DDL Data descriptor list

DDR Double data rate

DDR4 Double data rate memory interface, 4th generation

DECFP Decimal floating-point unit

DFE Decision feedback equalizer

DFP Decimal floating-point

DFU Decimal floating-point unit

DIMM Dual in-line memory module

DLL Delay-locked loop

DMA Direct memory attach

DMI Differential memory interface

DPC DIMMs per channel or dynamic peaking control

DPLL Digital phase-locked loop

DRAM Dynamic random access memory

DRTM Dynamic root of trust for measurement

DSI Data storage interrupt

dss Data stream stop

dst Data stream touch

dstst Data stream touch for store

DTS Digital thermal sensor

EA Effective address

EADIR Effective address directory

EAE Event assignment entry

EAS Event assignment structure

EASC Event assignment structure cache

EAST Event assignment structure table

EAT Effective address translation

User’s Manual
OpenPOWER
POWER9 Processor

Glossary

Page 498 of 508
Version 2.1

10 October 2019

EAT Event assignment table

EBB Event-based branch

EBB Event-based branch

ECB Electronic codebook

ECC Error correcting code

ECID Electronic chip identification

ECO Extended cache option

ECRC End-to-end cyclic redundacy check

EDI Elastic differential I/O

EDRAM Enhanced dynamic random access memory

EEH Enhance error handling

EEPROM Electrically erasable programmable read-only memory

EMC Extended memory controller

EMQ ERAT miss queue

END Event notification descriptor

ENDC Event notification descriptor cache

ENDE Event notification descriptor entry

ENDT Event notification descriptor table

EOI End of interrupt

EQ Event queue

EQD Event queue descriptor

EQDT Event queue descriptor table

EQOC Event queue page offset counter

ERAT Effective-to-real address translation

ESB Event state buffer

ESBC Event state buffer cache

ESID Effective segment identifier

FBC SMP interconnect controller

FC Function code

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Glossary

Page 499 of 508

FFE Feed-forward equalizer

FIFO First-in, first-out

FIR Fault Isolation Register

FLIT Flow control digit

FLOPs Floating-point operations per second

FPGA Field-programmable gate array

FPR Floating-point register

FPSCR Floating-Point Status and Control Register

FPU Floating-point unit

FSP Flexible service processor

FXU Fixed-point units

GCM Galois counter mode

GCT Global completion table

GFW Global firmware

GHV Global history vector

GPE General purpose engine

GPR General purpose register

GPS Global Pstate

GPST Global Pstates table

GPU Graphics processor unit

GR Guest Radix

GTps Gigatransfers per second

HDEC Hypervisor decrementer

HDSI Hypervisor data storage interrupt

hEA Host effective address

HISI Hypervisor instruction storage interrupt

HMAC Hash message authentication code

HMER Hypervisor Maintenance Exception Register

HMI Hypervisor maintenance interrupt

User’s Manual
OpenPOWER
POWER9 Processor

Glossary

Page 500 of 508
Version 2.1

10 October 2019

HPT Hashed page table

HR Host Radix

hRA Host real address

HRMOR Hypervisor Real Mode Offset Register

HSS High-speed serial

HTM Hardware trace monitor

hVA Host virtual address

I2C Inter-integrated circuit

IBUF Instruction buffer

ICA Instruction cache access

icbi Instruction cache block invalidate

icbt Instruction cache block touch

isync Instruction cache synchronize

ICP Interrupt control presenter

ICS Interrupt controller source

ICT Instruction completion table

IEEE Institute of Electrical and Elctronics Engineers

IFAR Instruction fetch address register

IFB Instruction fetch buffer

IFU Instruction fetch and decode unit

IMA In memory accumulate

IOO OpenPOWER interface

IOP Internal operation

IPB Interrupt Pending Buffer

IPC Instruction per cycle

IPL Interrupt presenter layer; orinitial program load

IRL Interrupt routing layer

IRR Instruction retry and recovery

ISU Instruction sequencing unit

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Glossary

Page 501 of 508

ISV Independent software vendor

IVE Interrupt vector entry

IVE Interrupt Virtualization Entry

IVPE Interrupt Virtualization Presentation Engine

IVRE Interrupt Virtualization Routing Engine

iVRM Internal voltage regulation

IVSE Interrupt Virtualization Source Engine

IVT Interrupt Virtualization Table

JEDEC Joint Electron Device Engineering Council

JTAG Joint Test Action Group

KVM Kernal-based virtual machine

LBIST Logic built-in self test

LCO Later castout or lateral castout (cast out to another cache rather than memory)

LDS Load station

LE Little-endian

LFSR Linear Feedback Shift Register

LGA Land grid array

LHR Load-hit-reload

LMQ Load-miss queue

LPAR Logical partition

LPC Low-pin count

LPID Logical partition ID

LPIDR Logical Partition ID Register

LPST Local Pstate table

LRDIMM Load-reduced dual in-line memory module

LRQ Load reorder queue

LRU Least-recently used

LSAQ Load store address queue

LSI Level signaled interrupt

User’s Manual
OpenPOWER
POWER9 Processor

Glossary

Page 502 of 508
Version 2.1

10 October 2019

LSMFB Logical Server Most Favored Backlog

LSSD Level-sensitive scan design

LSU Load store units

LTE Long-tail equalizer

LU Load-only unit

MBA Memory buffer asynchronous

MCA Memory controller asynchronous

MCBIST Memory card built in self-test

MCD Memory cache-line domain

MCE Machine check exception

MCS Memory controller synchronous

MD5 Message Digest 5

MDI Memory domain indicator

MDS Memory domain status

MHCRO Model hardware correlation ring oscillator

MMIO Memory-mapped input/output

MMU Memory nanagement unit

MPG Multi-protocol gateway

MPSS Multiple page sizes per segment

MRS Mode register set

MSI Message signalled interrupt

NaN Not a number

NCU Noncacheable unit

NDL NVLink Datalink layer

NMMU Nest memory nanagement unit

NPCQ NPU common queue

NPS Nap Pstate

NPU NVLink processing unit

NTC Next-to-complete

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Glossary

Page 503 of 508

NVC Notification virtual descriptor cache

NVT Notification Virtual Target

NVTS Notfication Virtual Target Structure

NVTT Notification Virtual Target Table

OCC On-chip controller

OCTS On-chip thermal sensor

OEM Original equipment manufacturer

OHA On-chiplet hardware assist

OpenCAPI Open Coherent Accelerator Processor Interface

ODL OpenCAPI datalink layer

OTL OpenCAPI transaction layer

P3CQ POWER9 fabric bus interface common queue

P3PC Presentation Controller

P3SC Source Controller

P3VC Virtualization Controller

PAPR Power Architecture Platform Reference

PATB Partition Table Base field

PATS Partition Table Size field

PB Processor bus

PBL Packet buffer layer

PC Pervasive core unit

PCIe Peripheral component interconnect express

PCR Processor Compatibility Register or Platform Configuration Register

PCS Physical coding sublayer

PDE Page directory entry

PE Partitionable endpoints

PEC PCI Express controller

PEF Protected execution facility

PF Prefetch machine

User’s Manual
OpenPOWER
POWER9 Processor

Glossary

Page 504 of 508
Version 2.1

10 October 2019

PFD Phase-frequency detector

PFWI Prefetch write inject

PHB PCI host bridge

PHY Physical layer

PHYP Power hypervisor

PID Process ID

PIDR Process ID Register

PIPR Pending Interrupt Priority Register

PLL Phase-locked loop

PMA Physical media access

PMC Power management control

PMU Performance monitor unit

POR Power-on reset

PPE Programmable PowerPC-lite engine

PRI Private register interface

PRQ Prefetch request queue

PSI Processor serial interface

PSPB Problem-state priority boost

PSRO Performance sort-ring oscillator

Pstate Performance state

PTCR Partition Table Control Register

PTE Page table entry

PTEG Page table entry group

PTER Physical Thread Enable Register

PURR Processor Utilization Resource Register

PVR Processor Version Register

PWC Page-walk cache

QNaN Quiet Not a number

QoS Quality of service

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Glossary

Page 505 of 508

qpos Queue position

RA Read address

RAIM Redundant array of independent memory

RAM Random access memory

RAS Reliability, availability, and serviceability

RAW Read after write

RC Root complex or read claim

RCD Register clock driver

RCMD Remote command

RDIMM Registered dual in-line memory module

RMA Remote memory access

RMSC Real mode storage control

RNG Random number generator

ROB Re-order buffer

ROT Rollback-only transaction

RPT Radix page table

RRN Raw random numbers

S2Q Store drain queue

SAM Store address machine

SAO Strong access ordering

SAR Second-level Architected Register

SBE Self-boot engine

SBE State bit entry

Sc Store clean (transactional memory value before a speculative store)

SCM Single-chip module

SCOM Scan communications

SDM Store data machine

SDQ Store data queue

SEC/DED Single-error correction, double-error detection

User’s Manual
OpenPOWER
POWER9 Processor

Glossary

Page 506 of 508
Version 2.1

10 October 2019

SEEPROM Serial electrically erasable programmable read-only memory

SERDES Serializer/Deserializer

SETP Set prediction directory

SHA Secure hash algorithm

SHR Store-hit-reload

SICQ SMP interconnect common queue

SIMD Single-instruction, multiple-data

SIU SMP interconnect unit

SLB Segment lookaside buffer

SMF Secure memory facility

SMP Symmetric multiprocessing

SMPI SMP interconnect

SMT Simultaneous multithreading

SN Snoop machine

SOI Silicon-on-insulator

SP Single-precision

SPI Serial peripheral interconnect

SPIVID Serial Peripheral Interface - Voltage ID

SPR Special purpose register

SPS Sleep Pstate

SPURR Scaled Processor Utilization Resource Register

SRAM Static random access memory

SRQ Store reorder queue

ST Single thread

STAG Storage tag

STE Send Window Table Entry (STE) or segment table entry

STEG Segment table entry group

SVIC Slave VME interface controller

SVM Secure virtual machine

User’s Manual
OpenPOWER

 POWER9 Processor

Version 2.1
10 October 2019

Glossary

Page 507 of 508

TCE Translation control entry

TCTXT Thread context

TDP Thermal design point

TEXASRU Transaction Exception And Summary Register Upper

TID Thread ID

TLB Translation lookaside buffer

TLBI translation look-aside buffer invalidate

TLDLP Transaction and data link layer

TLE Transaction lock elision

TLP Translation layer packet

TM Transactional memory

TOD Time of day

TPM Trusted platform module

UE Uncorrectable error

UI Unit interval

UILE Ultravisor Interrupt Little Endian

UMAC User mode access control

UniQ Unified issue queues

VAS Virtual Accelerator Switchboard

VCO Voltage-controlled oscillator

VID Voltage identification

VLE Variable length encoding

VMX Virtual machine extensions

VPD Vital product data

VPD Virtual Processor Descriptor

VPDT Virtual Processor Descriptor Table

VPN Virtual page number

VRF Vector scalar register file

VRM Voltage regulator module

User’s Manual
OpenPOWER
POWER9 Processor

Glossary

Page 508 of 508
Version 2.1

10 October 2019

VRMA Virtualized real mode area

VS Vector scalar

VSCR Vector Status and Control Register

VSD Virtualization Structure Descriptor

VST Virtual Structure Table

VSU Vector and scalar unit

VSX Vector-scalar extension

WAW Write after write

WI Write inject

WOF Workload optimized frequency

WPS Winkle Pstate

X bus An X bus is the socket-to-socket SMP interconnect between 2 POWER9 proces-
sors.

Note: This is not really an acronym but a name (X bus).

XER Fixed-Point Exception Register

XIVE External Interrupt Virtualization Engine

XMAC XCBC-MAC-96

XSL Adress translation block

XTS Extended translation services (NVlink protocol over 25G Link address translation
services)

	Title Page
	Copyright and Disclaimer
	Contents
	List of Figures
	List of Tables
	Revision Log
	About this Document
	Who Should Read this Document
	Conventions Used in This Document
	Related Documents

	1. POWER9 Processor Overview
	1.1 General Features

	2. POWER9 Processor Core
	2.1 Key Design Fundamentals
	2.1.1 64-bit Implementation of the Power ISA (Version 3.0)
	2.1.2 Layered Implementation Strategy for High-Frequency Operation
	2.1.3 Speculative Superscalar Inner Core Organization
	2.1.4 Specific Focus on Storage Latency Management

	2.2 Pipeline Structure
	2.3 Detailed Features of the Microprocessor Core
	2.3.1 Instruction Fetching and Branch Prediction
	2.3.2 Instruction Decode and Preprocessing
	2.3.3 Instruction Dispatch, Sequencing, and Completion Control
	2.3.4 Fixed-Point Execution Pipelines
	2.3.5 Load and Store Execution Pipelines
	2.3.6 Branch Execution Pipelines
	2.3.7 Unified Second-Level Memory Management (Address Translation)
	2.3.8 Data Prefetch
	2.3.9 VSU Execution Pipeline
	2.3.10 Decimal Floating-Point Execution Pipeline

	3. Packages
	3.1 POWER9 Single-Chip Module for Cloud and Data Center
	3.2 POWER9 Single-Chip Module for High-Performance Computing and Cloud
	3.3 POWER9 Single Chip Module for Commercial Entry

	4. Power Architecture Compliance
	4.1 Book I - User Instruction Set Architecture
	4.1.1 Instruction Classifications
	4.1.1.1 Illegal Instructions
	4.1.1.2 Instructions Supported
	4.1.1.3 Invalid Forms

	4.1.2 Branch Processor
	4.1.2.1 Instruction Fetching
	4.1.2.2 Branch Prediction
	4.1.2.3 Instruction Cache Block Touch Hint
	4.1.2.4 Out-of-Order Execution and Instruction Flushes
	4.1.2.5 Branch Processor Instructions with Undefined Results

	4.1.3 Fixed-Point Processor
	4.1.3.1 Fixed-Point Exception Register

	4.1.4 Storage Access Alignment Support Overview
	4.1.4.1 Alignment Interrupts
	4.1.4.2 Storage Control Attribute Caused Data Storage Interrupt or Hypervisor Data Storage Interrupts

	4.1.5 Fixed-Point Load and Store Instructions
	4.1.5.1 Fixed-Point Load and Store Multiple Instructions
	4.1.5.2 Fixed-Point Move Assist Instructions
	4.1.5.3 Integer Select Instruction
	4.1.5.4 Fixed-Point Logical Instructions
	4.1.5.5 Access to Performance Monitor Special Purpose Registers
	4.1.5.6 Move to/from Condition Register Fields Instructions

	4.2 Fixed-Point Invalid Forms and Undefined Conditions
	4.3 Floating-Point Processor (FP, VMX, and VSX)
	4.3.1 Vector Single-Precision Bandwidth
	4.3.2 IEEE Compliance
	4.3.2.1 Non-IEEE Modes

	4.3.3 Floating-Point Exceptions
	4.3.4 Floating-Point Load and Store Instructions
	4.3.4.1 Scalar Load and Store Atomicity
	4.3.4.2 Vector Load and Store Atomicity

	4.3.5 Heterogeneous Precision Arithmetic
	4.3.5.1 NaN Propagation
	4.3.5.2 Square Root Overflow and Underflow
	4.3.5.3 Hardware Behavior on Enabled Underflow and Enabled Overflow Exception

	4.3.6 Handling of Denormal Single-Precision Values in Double-Precision Format
	4.3.7 Floating-Point Invalid Forms and Undefined Conditions

	4.4 Optional Facilities and Instructions
	4.5 Little-Endian Mode
	4.6 Book II - Virtual Environment Architecture
	4.6.1 Cache
	4.6.2 Classes of Instructions
	4.6.2.1 Instruction Cache Block Touch Instruction
	4.6.2.2 Instruction Cache Block Invalidate (icbi)
	4.6.2.3 Instruction Cache Synchronize (isync)
	4.6.2.4 Vector Category Prefetch Instructions (dss, dst, and dstst)
	4.6.2.5 Data Cache Block Touch Instructions (dcbt and dcbtst)
	4.6.2.6 Data Cache Block Touch Instructions (dcbt and dcbtst) - Single Cache Line (TH = ‘00000’)
	4.6.2.7 Data Cache Block Touch - Invalid TH Forms (TH = ‘00001’ through TH = ‘00111’)
	4.6.2.8 Data Cache Block Touch Data Stream (TH = ‘01000’)
	4.6.2.9 Data Cache Block Touch Data Stream Descriptor (TH = ‘01010’)
	4.6.2.10 Data Cache Block Touch Data Stream Stride Descriptor (TH = ‘01011’)
	4.6.2.11 Data Cache Block Touch - Transient (TH = ‘10000’)
	4.6.2.12 Data Cache Block Touch - No Access Needed Anymore (TH = ‘10001’)
	4.6.2.13 Data Cache Block Zero (dcbz)
	4.6.2.14 Data Cache Block Store (dcbst)
	4.6.2.15 Data Cache Block Flush (dcbf, dcbfl, and dcbflp)
	4.6.2.16 Key Aspects of Storage Control Instructions
	4.6.2.17 Copy/Paste Instructions
	4.6.2.18 Near Memory Instruction Support
	4.6.2.19 Wait Instruction

	4.6.3 Storage Model
	4.6.3.1 Storage Access Ordering
	4.6.3.2 Atomicity
	4.6.3.3 Atomic Updates and Reservations

	4.6.4 Transactional Memory
	4.6.4.1 TDOOMED
	4.6.4.2 Transactional Lock Elision and Increased Scalability
	4.6.4.3 Reduced Latency of Synchronization Operations
	4.6.4.4 Improved Programmability
	4.6.4.5 Rollback-Only Transaction Enablement of Speculative Optimizations
	4.6.4.6 Transactional Memory Footprint Capacity
	4.6.4.7 Implementation-Specific Failure Causes
	4.6.4.8 Effects of Cache and Translation Management Instructions on Transactional Accesses

	4.6.5 Storage Ordering/Barrier Instructions
	4.6.5.1 sync Instruction
	4.6.5.2 eieio Instruction
	4.6.5.3 miso Instruction
	4.6.5.4 Transactional Memory Instructions

	4.6.6 Data Prefetch
	4.6.7 Timer Facilities
	4.6.8 Hypervisor Decrementer (HDEC)
	4.6.9 Decrementer (DEC)
	4.6.10 Book II Invalid Forms

	4.7 Book III - Operating Environment Architecture
	4.7.1 Classes of Instructions
	4.7.1.1 Storage Control Instructions
	4.7.1.2 Reserved Instructions

	4.7.2 Branch Processor
	4.7.2.1 SRR1 Register
	4.7.2.2 HSRR1 Register
	4.7.2.3 MSR Register
	4.7.2.4 System Call and System Call Vectored Instructions
	4.7.2.5 Support Processor Attention Instruction
	4.7.2.6 Current Instruction Address Breakpoint Register (CIABR)

	4.7.3 Fixed-Point Processor
	4.7.3.1 Processor Version Register (PVR)
	4.7.3.2 Processor ID Register (PIR)
	4.7.3.3 Chip Information Register (CIR)
	4.7.3.4 Move To/From Special Purpose Register Instructions
	4.7.3.5 SPRC/SPRD Usage

	4.8 HID Register
	4.8.1 HID Register Description
	4.8.2 Core-to-Core Trace SPR
	4.8.3 Trigger Registers
	4.8.4 IMC Array Access Register
	4.8.5 Performance Monitor Registers
	4.8.6 Other Fixed-Point Instructions

	4.9 Storage Control
	4.9.1 Effective, Virtual, and Physical Address Ranges Supported
	4.9.2 Foreign Address Space Definition and Accessibility
	4.9.3 Hypervisor Real Mode Addressing Using HRMOR
	4.9.4 Partition Table Control Register
	4.9.5 Access Segment Descriptor Register
	4.9.6 Real Mode Addressing for Operating Systems
	4.9.7 HRMOR Update Sequence

	4.10 Translation Architecture
	4.10.1 Logical Partitioning Control Register (LPCR)
	4.10.2 Translation Modes
	4.10.3 tlbie and tlbiel Instruction Format and Operands
	4.10.4 Radix Translation
	4.10.4.1 Supported Radix Tree Configurations and Resulting Page Sizes
	4.10.4.2 TLB and PWC Hash Functions for Radix
	4.10.4.3 tlbie and tlbiel Encodings for Radix Translations

	4.10.5 Changing the Process ID Register
	4.10.6 Switching between Radix and HPT Partitions
	4.10.7 Hashed Page Table Translation
	4.10.7.1 In-Memory Segment Table and Bolted SLB Entries
	4.10.7.2 SLB Management Instructions
	4.10.7.3 Supported Segment and Page Sizes for HPT Translations
	4.10.7.4 TLB Hash Function for HPT
	4.10.7.5 tlbie and tlbiel Usage for HPT Translations

	4.10.8 Instruction Effective-to-Real Address Translation Cache
	4.10.9 Data Effective-to-Real-Address Translation
	4.10.9.1 D-ERAT I and G Bit Setting

	4.10.10 Translation Lookaside Buffer and PWC
	4.10.11 Segment Lookaside Buffer
	4.10.12 Discontinued Translation Support Items
	4.10.12.1 Address Space Register

	4.10.13 Block Address Translation
	4.10.13.1 Support for 32-Bit Operating Systems
	4.10.13.2 Real Mode

	4.10.14 Reference and Change Bits
	4.10.15 Storage Protection
	4.10.16 Hypervisor Real Mode Storage Control
	4.10.17 Storage Access Modes - WIMG and ATT Bits
	4.10.18 Speculative Storage Accesses
	4.10.19 TLB Invalidate Entry (tlbie and tlbiel) Instruction
	4.10.20 TLB Invalidate All (tlbia) Instruction
	4.10.21 TLB Synchronize (tlbsync) Instruction
	4.10.22 SLB Synchronize (slbsync) Instruction
	4.10.23 Support for Store Gathering
	4.10.24 Cache Coherency Paradoxes
	4.10.25 Handling Parity Error, Multi-Hit, and Uncorrectable Errors
	4.10.25.1 Parity Error
	4.10.25.2 Multi-Hit
	4.10.25.3 Both Multi-Hit and Parity Error
	4.10.25.4 Uncorrectable Error Handling
	4.10.25.5 TLB Parity Error and Multi-Hit Action

	4.10.26 Interrupts
	4.10.26.1 Interrupt Vectors
	4.10.26.2 Alternate Interrupt Location
	4.10.26.3 Interrupt Definitions
	4.10.26.4 Synchronous Interrupts
	4.10.26.5 Asynchronous Interrupt Priorities
	4.10.26.6 System Reset Interrupt
	4.10.26.7 Machine Check Interrupt
	4.10.26.8 Hypervisor Maintenance Interrupt
	4.10.26.9 External Interrupt
	4.10.26.10 Alignment Interrupt
	4.10.26.11 Trace Interrupt
	4.10.26.12 Performance Monitor Interrupt
	4.10.26.13 Facility Unavailable Interrupt
	4.10.26.14 Hypervisor Emulation Assistance Interrupt

	4.10.27 Logical Partitioning (LPAR) Support
	4.10.28 Strong Access Ordering Mode (SAO)
	4.10.29 Graphics Data Stream Support
	4.10.30 Performance Monitoring, Sampling, and Trace
	4.10.31 Processor Compatibility Mode

	5. Simultaneous Multithreading
	5.1 Overview
	5.2 Partitioning of Resources in Different SMT Modes
	5.3 Control Register
	5.4 Thread Priority, Status, and Control Requirements
	5.5 Thread Balance Control Requirements
	5.6 Thread Switch Control Register (Hypervisor Access Only)
	5.7 Thread Time-Out Register (Hypervisor only)
	5.8 Program Priority Register (PPR)
	5.9 Forward Progress Timer
	5.10 Thread Priority NOPs
	5.11 Thread Priority Boosting
	5.12 Priority Boosting to Medium-High in User Mode
	5.13 Thread Priority Boosting on Asynchronous Interrupt
	5.13.1 When to Boost Thread Priority

	5.14 Thread Prioritization Implementation
	5.14.1 Thread Switch Fetch Priority
	5.14.2 Thread Switch Decode Priority
	5.14.3 Software-Set Thread Priority
	5.14.4 Low-Power Modes for Application
	5.14.5 Dynamic Thread Priority

	5.15 Support for Multiple LPARs
	5.15.1 Microcode Fairness
	5.15.2 I-ERATs

	5.16 Controlling the Flow of Instructions in SMT
	5.16.1 Dispatch Flush
	5.16.1.1 Dispatch Flush Rules
	5.16.1.2 Stall at Dispatch

	5.16.2 Decode Hold
	5.16.2.1 Balance Flush

	6. L2 Cache
	6.1 Overview
	6.2 L2 Unit Internal Resources
	6.2.1 Description of L2 Control Flow

	6.3 Interfaces
	6.4 Operational Flows and Bandwidths
	6.5 LRU
	6.5.1 LRU modes
	6.5.2 Policies
	6.5.3 Line Disable

	6.6 Transactional Memory Support
	6.6.1 Basic Policy
	6.6.2 L1 TM Filter Structure and L2 TM Tracking Structure

	7. L3 Cache
	7.1 Overview
	7.2 Interfaces
	7.3 List of Features and Resources
	7.4 Queues
	7.4.1 Read Machines
	7.4.2 Castin/Castout Machines
	7.4.3 Prefetch Machines
	7.4.4 Snoop Machines
	7.4.5 Write Machines
	7.4.6 Transaction Memory Machines

	8. SMP Interconnect
	8.1 SMP Interconnect Features
	8.1.1 General Features
	8.1.2 POWER9-Specific Features
	8.1.3 On-Chip Features
	8.1.4 Off-Chip External SMP Features
	8.1.5 Power Management Features
	8.1.6 RAS Features

	8.2 SMP Interconnect Architecture Coherency Protocol
	8.3 External POWER9 Fabric
	8.4 Terminology
	8.5 Protocol Layer Payload
	8.5.1 Physical Layer
	8.5.2 Data Link Layer
	8.5.2.1 Electrical Data Link Layer

	8.5.3 Data Link Layer Packet Format
	8.5.4 Transaction Layer
	8.5.5 POWER9 Fabric SMP Topology
	8.5.6 Protocol and Data Routing in Multi-Chip Configurations

	8.6 POWER9 Coherency Flow
	8.6.1 Broadcast Scope Definition
	8.6.2 Address Definition

	9. NCU
	9.1 NCU Characteristics
	9.1.1 Store Queue (STQ)
	9.1.2 Store Modes (IG = ‘1X’)
	9.1.3 LOADS

	10. Memory Controller
	10.1 EMC Major Features
	10.2 Basic Configuration/Grouping
	10.3 Command Dispatch and Snoop Pipeline Collision Detection
	10.4 Epsilon Protection
	10.5 Read Speculation Filtering
	10.6 SMP Fabric Fastpath Interface
	10.7 Read Data ECC Bypass
	10.8 Atomic Memory Operations
	10.9 Write Operations
	10.10 Prefetch Promote/Drop Protocol
	10.10.1 Prefetch Promote
	10.10.2 Prefetch Drop

	11. Nest Accelerator
	11.1 Features
	11.2 Using NX Coprocessors
	11.3 Reliability, Availability, and Serviceability

	12. Virtual Accelerator Switchboard
	12.1 Overview
	12.2 Flow for NX Invocation Through the VAS
	12.3 Core-Core Wakeup Via ASB_Notify
	12.4 Features
	12.4.1 Ingress
	12.4.2 Egress
	12.4.3 Window Cache
	12.4.4 MMIO Registers
	12.4.5 SMP Interconnect Common Queue

	12.5 Reliability and Serviceability (RAS) Features

	13. NVLink Processing Unit
	13.1 Overview
	13.2 Features
	13.3 Interfaces
	13.3.1 On-Chip SMP Interconnect Ports
	13.3.1.1 Command Request
	13.3.1.2 Command Snoop
	13.3.1.3 Data to On-Chip SMP Interconnect
	13.3.1.4 Data from On-Chip SMP Interconnect

	13.3.2 NTL Interfaces
	13.3.2.1 NTL Receive Interface
	13.3.2.2 NTL Transmit Interface
	13.3.2.3 NDL/PHY Private Register Interface

	13.3.3 Interface Diagram

	13.4 Block Diagram
	13.4.1 NPU Common Queue
	13.4.2 NVLink Transaction Layer
	13.4.3 Extended Translation Services
	13.4.4 Address Translation Services
	13.4.5 Miscellaneous

	13.5 Logical Command/Data Flow
	13.5.1 Inbound Command/Data Flow
	13.5.2 Outbound Command/Data Flow

	13.6 POWER9/GPU Transaction Examples
	13.6.1 GPU Read from POWER9 Memory
	13.6.2 GPU Posted Writes to the POWER9 Memory
	13.6.3 POWER9 Caching Read from GPU Memory
	13.6.4 POWER9 Cache Releasing a Cache Line from GPU Memory
	13.6.5 GPU Reclaiming a Cache Line from GPU Memory

	14. OpenCAPI Processing in the POWERAccel Unit
	14.1 Overview
	14.2 Features
	14.3 Interfaces
	14.3.1 On-Chip SMP Interconnect Ports
	14.3.1.1 Command Request
	14.3.1.2 Command Snoop
	14.3.1.3 Data to On-Chip SMP Interconnect
	14.3.1.4 Data from On-Chip SMP Interconnect

	14.3.2 OpenCAPI Transaction Layer Interfaces
	14.3.2.1 OTL Receive Interface
	14.3.2.2 OTL Transmit Interface

	14.3.3 Interface Diagram

	14.4 Block Diagram
	14.4.1 PAU Common Queue
	14.4.2 OpenCAPI Transaction Layer
	14.4.3 Extended Translation Services
	14.4.4 Address Translation
	14.4.5 Miscellaneous

	14.5 Logical Command/Data Flow
	14.5.1 Inbound Command/Data Flow
	14.5.2 Outbound Command/Data Flow

	14.6 POWER9 AFU Transaction Examples
	14.6.1 Read from AFU to POWER9 Memory
	14.6.2 AFU Writes to POWER9 Memory
	14.6.3 Read from POWER9 to AFU Memory
	14.6.4 Write from POWER9 to AFU Memory

	15. CAPP
	16. Nest MMU
	16.1 Overview
	16.2 NMMU Features
	16.3 Window/Process Element Context
	16.4 Nest Translation Cache Pipeline
	16.5 Nest Translation Protocol (for Fabric-Attached Agents)
	16.5.1 Translation Checkout
	16.5.2 Translation Check-in
	16.5.3 Translate Invalidation Interface
	16.5.4 Flow Diagrams of Agent/NMMU Translation Operations
	16.5.4.1 Checkout/Check-In Sequence
	16.5.4.2 Back-Invalidate Sequence

	16.5.5 NMMU Cache Pipeline
	16.5.6 NMMU Control State Machines
	16.5.6.1 Tablewalk State Machine
	16.5.6.2 PTE Update State Machine
	16.5.6.3 Castout State Machine Overview
	16.5.6.4 Radix Page Walk Cache Overview
	16.5.6.5 Check-in State Machine Overview
	16.5.6.6 NMMU Invalidate State Machine Overview

	16.6 Unit RAS Overview
	16.6.1 RAS Features
	16.6.2 NMMU Error Handling Policies

	17. Interrupt Controller
	17.1 External Interrupt Virtualization Engine
	17.2 High-Level Block Diagram
	17.3 INT Unit Overview
	17.3.1 P3 Common Queue (P3CQ)
	17.3.2 P3 Virtualization Controller (P3VC)
	17.3.3 P3 Presentation Controller (P3PC)

	17.4 Fabric Bus Interrupt Command
	17.5 Interrupt Processing Flow Examples
	17.5.1 Inter-Processor Interrupts Example
	17.5.2 Hardware Interrupt with State Bit Check in P3VC
	17.5.3 Hardware Interrupt with State Bit Check in P3SC
	17.5.4 P3VC and P3PC Basic Interrupt Handling
	17.5.5 Message Send (Msgsend) and Wakeup

	18. PCI Express Controller
	18.1 Overview
	18.1.1 Processor Bus Common Queues
	18.1.2 Processor Bus AIB Interface
	18.1.3 Express Transaction Unit
	18.1.4 PCIe ASIC Intellectual Property
	18.1.5 Physical Coding Sublayer
	18.1.6 Physical Media Access

	18.2 POWER9 Configurations
	18.3 Reliability, availability, and serviceability (RAS)
	18.3.1 Bit-Level RAS
	18.3.2 Enhanced Error Handling (EEH)
	18.3.3 Freeze Mode

	19. Elastic Differential Interface Plus
	19.1 Elastic Interface Features
	19.2 Driver Features
	19.3 Receiver Features
	19.4 PLL Features

	20. OpenPOWER Interface at 25.78125 Gbps
	20.1 Interface Features
	20.2 Driver Features
	20.3 Receiver Features
	20.4 PLL Features

	21. DDR4 Interfaces
	21.1 Overview
	21.2 Mainline Operation

	22. PCIe Interface
	22.1 Overview
	22.2 Key Features
	22.3 Typical Application

	23. Power Management
	23.1 Policies and Modes of Operation
	23.1.1 Power Management in Linux-Based Systems (Power KVM)
	23.1.2 Power Management in PowerVM-Based Systems

	23.2 Base Enablement Summary
	23.2.1 On-Chip EnergyScale Microcontroller
	23.2.2 Measurement Capability
	23.2.3 Dynamic Voltage and Frequency Scaling (DVFS)
	23.2.3.1 Pstates
	23.2.3.2 Actuation
	23.2.3.3 Instrumentation

	23.2.4 Processor Idle (Stop States)

	23.3 Feature Summary
	23.4 Power Management Infrastructure
	23.4.1 Quad Voltage and Clock Domains
	23.4.2 On-Chip Microcontrollers

	23.5 Chip Hardware Features
	23.5.1 Communication Paths for Firmware
	23.5.2 Sensors
	23.5.2.1 Analog On-Chip Thermal Sensor (OCTS)
	23.5.2.2 Digital Thermal Sensor (DTS)
	23.5.2.3 Voltage Droop Monitor

	23.5.3 Dedicated Activity/Event Counters
	23.5.3.1 Processor Core EMPATH Counters
	23.5.3.2 Nest SMP Fabric Usage Counters

	23.5.4 On-Chip Microcontroller Complex
	23.5.4.1 On-Chip Microcontroller (OCC)
	23.5.4.2 General Purpose Engines (GPEs) for OCC Function Off-Load
	23.5.4.3 GPEs for Chip-Level Function Management

	23.5.5 Dedicated Core Management Engines (CME)
	23.5.6 On-Chip Accelerators
	23.5.6.1 Chiplet Pervasive-Power Management (PPM) Extension

	23.5.7 Actuator and Control Features
	23.5.7.1 On-Chip Frequency Control
	23.5.7.2 External (Off-Chip) VRM Voltage Control
	23.5.7.3 External Sampling
	23.5.7.4 On-Chip Voltage (iVRM) Control
	23.5.7.5 Core and Cache Chiplet Power-Down
	23.5.7.6 Resonant Clocking Mode Support
	23.5.7.7 Voltage Droop Protection
	23.5.7.8 OCC Hang Detection Hardware
	23.5.7.9 Active Power-Down of Unused I/O PHYs
	23.5.7.10 Partial Good and Runtime Deallocation

	23.5.8 Architected Control Registers
	23.5.8.1 Power Management Control Register (PMCR)
	23.5.8.2 Power Management Idle Control Register (PMICR)
	23.5.8.3 Power Management Status Register (PMSR)
	23.5.8.4 Power Management Memory Activity Register (PMMAR)

	23.5.9 Architected Idle Modes (Stop States)
	23.5.9.1 Wake-Up Events
	23.5.9.2 State Loss and Restoration
	23.5.9.3 Auto-Promote of Stop Levels
	23.5.9.4 Latency and Power Savings in each Stop Level
	23.5.9.5 Stop Level Examples

	24. Specific Security Features
	24.1 Secure Boot
	24.1.1 Secure Boot Sequence
	24.1.1.1 Code Authentication

	24.1.2 Trusted Boot
	24.1.3 Dynamic Root of Trust for Measurement
	24.1.3.1 DRTM Sequence

	24.2 Protection of Sensitive State
	24.2.1 Blacklist for SCOM Write Access
	24.2.2 Secure Dump

	24.3 Secure Memory Facility
	24.3.1 Protected Execution Facility in the POWER9 Processor
	24.3.2 Deviations from the SMF Architecture Specification in the POWER9 Implementation
	24.3.2.1 Unsupported Instructions: Processor Control Instructions Related to Ultravisor Doorbell Interrupts are not Available
	24.3.2.2 Implementation Restriction: Only URMOR[13:42] Bits are Implemented
	24.3.2.3 Implementation Deviation: Move to URMOR Instruction
	24.3.2.4 Implementation Restriction: UILE Bit is not Implemented and is a Constant Zero, Ultravisor Must Execute in Big-Endian Mode
	24.3.2.5 Implementation Restriction: SMFCTRL[62:63] Bits are Restricted to ‘10’ Value Only

	24.3.3 Secure Memory Bit in System Memory Map
	24.3.4 Mandatory Software Procedures Followed by Ultravisor for Launching and Maintaining a Secure Virtual Machine
	24.3.4.1 Essential Elements of Code Sequence to Convert a Non-Secure Virtual Machine into a Secure Virtual Machine
	24.3.4.2 Ensuring Isolation of Register State of a Secure VM from the Hypervisor
	24.3.4.3 Ensuring Secure VM Translations for Secure Pages are Immutable by Hypervisor
	24.3.4.4 Ensuring Secure Memory Region Separation between Different Secure VMs

	24.3.5 Code Sequence to Change Value of URMOR Register
	24.3.6 Machine Check Conditions Specific to SMF

	25. Performance Profile
	25.1 Core
	25.1.1 Microarchitecture and Pipeline Overview
	25.1.2 SMT Modes and Thread Count Sensitivity
	25.1.3 Instruction Fetch
	25.1.3.1 L1 Instruction Cache
	25.1.3.2 Instruction Prefetch
	25.1.3.3 Software-Initiated Instruction Prefetch
	25.1.3.4 Branch Prediction

	25.1.4 Instruction Decode and Dispatch Pipeline
	25.1.4.1 Instruction Buffer
	25.1.4.2 Effective Address Tracking
	25.1.4.3 Instruction Decode/Cracking
	25.1.4.4 Instruction/IOP Completion Table
	25.1.4.5 IOP Dispatch
	25.1.4.6 Register Renaming

	25.1.5 Iop Issue and Execution Slices
	25.1.5.1 Load/Store AGEN Issue
	25.1.5.2 EXEC Issue
	25.1.5.3 Branch Issue
	25.1.5.4 Execution Pipeline Issue to Issue Latencies

	25.1.6 Iop Execution
	25.1.6.1 Execution Pipeline Hazards
	25.1.6.2 FPR Result Forwarding Restrictions

	25.1.7 Load/Store Processing
	25.1.7.1 Tracking Load and Store Ordering
	25.1.7.2 LS Slice Execution
	25.1.7.3 L1 D-Cache
	25.1.7.4 D-ERAT
	25.1.7.5 Translation Look-Aside Buffer
	25.1.7.6 Store Forwarding
	25.1.7.7 Out-of-Order Load/Store Execution
	25.1.7.8 Load-to-Use Latency
	25.1.7.9 Load/Store Throughput
	25.1.7.10 Load/Store Pipeline Hazards
	25.1.7.11 64-Byte Cache-Line Data
	25.1.7.12 Data Prefetch
	25.1.7.13 Software-Initiated Data Prefetch

	25.1.8 Special Instruction Sequences
	25.1.8.1 larx/stcx Instruction
	25.1.8.2 icbi Instruction
	25.1.8.3 isync Instruction
	25.1.8.4 ptesync Instruction
	25.1.8.5 sync Instruction
	25.1.8.6 eieio Instruction

	25.2 Cache and Memory Hierarchy
	25.2.1 L2 Cache
	25.2.2 L3 Cache
	25.2.3 Cache Latencies and Bandwidth

	25.3 NX Accelerators
	25.4 Direct Attach Memory
	25.5 PCI Express
	25.6 CAPI
	25.7 Interrupt Controller
	25.8 Nest MMU
	25.9 NVLink
	25.10 WOF/Power Management
	25.11 Instruction Properties

	Appendix A. Instruction Properties
	Appendix B. tlbie and tlbiel Encodings for Radix Translations
	Appendix C. tlbie and tlbiel Encodings for HPT Translations
	Glossary

