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About this Document

This user’s manual describes the IBM® POWER9 processor and provides information about the registers, 
facilities, initialization, and use of the POWER9 processor.

This document provides information about the POWER9 processor that is visible from a programming model 
point of view, and is intended to be a companion to the baseline architecture documentation (see Related 
Documents on page 28). While there are some programming model considerations associated with chips and 
subsystems outside of the Central Electronics Complex (CEC), this document focuses primarily on the micro-
processor core and the storage subsystem. For information about other chips that might appear in POWER9 
systems, see the functional specifications for these individual chips.

Who Should Read this Document

This manual is intended for system software and hardware developers and application programmers who 
want to develop products for the POWER9 processor. It is assumed that the reader understands operating 
systems, microprocessor system design, basic principles of reduced instruction set computer (RISC) 
processing, and details of the Power ISA.

Conventions Used in This Document

This section explains numbers, bit fields, instructions, and signals that are in this document.

Representation of Numbers

Numbers are generally shown in decimal format, unless designated as follows:

• Hexadecimal values are preceded by an “x” and enclosed in single quotation marks. 
For example: x‘0A00’.

• Binary values in sentences are shown in single quotation marks.
For example: ‘1010’.

Note:  A bit value that is immaterial, which is called a “don't care” bit, is represented by an “X.”

Bit Significance

In the POWER9 documentation, the smallest bit number represents the most significant bit of a field, and the 
largest bit number represents the least significant bit of a field.

Other Conventions

Instruction mnemonics are shown in lower-case, bold text. For example: tlbie. I/O signal names are shown in 
upper case.
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The following documents can be helpful when reading this specification. Contact your IBM representative to 
obtain any documents that are not available through the IBM Portal for OpenPOWER or the OpenPOWER 
foundation. 

Power ISA User Instruction Set Architecture - Book I (Version 3.0B)

Power ISA Virtual Environment Architecture - Book II (Version 3.0B)
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POWER9 Processor Programming Model Bulletin 

Linux on Power Architecture Platform Reference

PCI Express Base Specification, Revision 4.0

IBM EnergyScale for POWER8 Processor-Based Systems

Manual for Using WBEM CLI to Fetch Flexible Service Processor CIM Data

POWER9 Processor Programming Guide for the 25G Link with NVLink 2.0 Compliant Devices 

Coherent Accelerator Interface Architecture (CAIA)
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1. POWER9 Processor Overview

The POWER9 processor is a superscalar symmetric multiprocessor designed for use in servers and large-
cluster systems. It uses CMOS 14 nm technology with 17 metal layers. 

The POWER9 processor supports direct-attach memory. It supports a maximum symmetric multiprocessing 
(SMP) size of two sockets and is targeted for scale-out workloads. The POWER9 processor offers superior 
cost and performance. The target market segments are:

• Technical Computing: The POWER9 processor provides superior floating-point performance and 
high-memory bandwidth to address this market segment. It also supports off-chip floating-point accelera-
tion. 

• Cloud Operating Environments: The POWER9 processor enables efficient cloud management software, 
enforces service-level agreements, and provide facilities for charge-back accounting based on resources 
consumed. 

• Big Data Analytics: The POWER9 processor with CAPI attach, large caches, and on chip accelerators 
provides a robust platform for analytics and big-data applications.

• Enterprise: Robust cache/memory for in-memory database applications.

From a logical perspective, the POWER9 processor consists of six main components:

• POWER9 processing core including the L1 cache

• L2/L3 caches and noncacheable unit (NCU)

• Processor bus fabric interconnect

• Memory subsystem

• PCIe I/O subsystem

• Accelerator subsystem

1.1 General Features

The POWER9 processor can have up to 24 cores enabled on a single chip and is offered with a direct-
attached memory for scale-out computers. Each core has four threads that use simultaneous multithreading 
(SMT). 

The POWER9 processor supports the following architectural features:

• Power ISA Architecture (Books I, II, and III), version 3.0B
• Linux on Power Architecture Platform Requirements 
• I/O Design Architecture v2 (IODA2) Specification, Version 2.4+
• IEEE P754-2008 floating-point compliant
• Big-endian, little-endian, strong-ordering support extension
• 56-bit real address, 68-bit virtual address 

Level 2

Level 3

Peripheral component interconnect express

Coherent accelerator processor interface
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Figure 1-1 provides a block diagram of the POWER9 processor.

The following features describe the main components of the 24-core POWER9 processor chip: 

• POWER9 core and cache 

– Up to 24 processor cores 

– Four-slice design plus
— Branch unit
— Decimal floating-point unit
— Crypto unit

– Each slice can perform one FX or VSX operation per cycle and one LS operation

– Four SMT, O-o-O

– 32 GPR, 32 FPR, and 64 VSR registers per thread

– 20-deep primary and 96-deep secondary history buffer per slice

–

• Core pairs share

– 32 KB per core (not shared) instruction cache (I-cache)

– 32 KB per core (not shared) data cache (D-cache) 

– 512 KB private L2 cache

– 10 MB eDRAM L3 cache 

Figure 1-1. POWER9 Processor Block Diagram  
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• DDR4 memory controllers

– Eight DDR4 ports, 1.2 V, two DIMMs per port

– Supports ×4, ×8, 4 - 16 Gb, R/LR, 3D devices 

– DDR4 support: maximum 2667 MHz, one DIMM per channel

– DDR4 support: maximum 2400 MHz, two DIMMs per channel

– High-throughput atomic memory operations

– 133+ GBps streaming bandwidth at 2667 MHz

– 128-byte line with 64-byte sectoring

• POWER9 SMP on-chip interconnect 

– 1600 - 2400 MHz frequency 

– Eight 32-byte data buses

– Four address snoop buses

– 12 or 24 core ramps

– Fifteen nest ramps 

• POWER9 SMP off-chip interconnect 

– Two 30-bit + 2 spare electrical X buses at 16 GHz

– Maximum two socket SMP 

• PCIe GEN4 support

– 16 GHz differential PCIe Generation 4 buses: 48 lanes grouped in three sets of 16 lanes
— 1 × 16 + 1× 16 that bifurcates to 2 × 8
— 1 × 8 + 1 × 8 that bifurcates to 2 × 4

– Six separate PCI host bridges (PHB)

– P3Virtualization controller

• NVIDIA NVLink protocol over the 25G Link interface: 

– Six bricks

– Eight lanes per brick

– 25 Gbps transfer rate per lane

– Coherent memory operations

– GPU direct

– GPU-to-GPU connections

– Address translation services (ATS)

• Power management support

– Core/L2/L3 instant on/off

– Halt state support

– Controlled by 17 on-chip programmable PPE engines

– Hypervisor-directed power change requests using a Pstate mechanism

– Dynamic lane width reduction (SMP interconnect, PCI) 

Dual in-line memory module

Symmetric multiprocessing

Programmable PowerPC-lite engine
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– Sensors
— Digital thermal sensor (DTS2) ±5°C
— On-chip analog thermal diode ±1 - 2°C 
— Voltage drop monitor 
— Dedicated performance, microarchitecture, and event counters 

– On-chip controller (OCC)
— On-chip PowerPC 405 for thermal management control 
— On-chiplet hardware assist (automated core chiplet management)
— On-chip power management controls automated communications to the voltage regulation mod-

ules (VRMs) and voltage and frequency sequencers for automated Pstate and idle state support

– Actuators
— Per-chiplet frequency control through the DPLL
— Architected idle states: nap, sleep, and winkle; each with increasing power savings capability 

(and latency)
— SPR power management control registers (PMCR, PMICR, PMSR) for hypervisor support

– Memory/DIMM throttling for memory subsystem power and thermal management

• Clocking

– Reference clocks 
— 133 MHz core/nest 
— 100 MHz PCI 
— 156 MHz optics
— 16 MHz TOD

– 26 PLLs and DDR DLLs
— Six core quads, six X bus, six PCI, three reference clock filters, two optics, two DDR, one nest

• Accelerators

– CAPI attachment options 
— Legacy POWER8 CAPI adapter support
— 2 × 16 PCIe Gen4

– Single GZIP engine

– Two 842 compression engines

– Three AES/SHA engines

– Atomic memory operations (AMO) 

– Nest MMU to enable user access to all accelerators

• Pervasive interface

– Two FSI slaves

– 2 × 8 FSI master 

– 2 × I2C SEEPROM

– Quad SPI

– Low-pin count (LPC) connection to baseboard management control (BMC)

– Processor serial interface (PSI) for connection to flexible service processor (FSP)

• Cloud management quality of service (QoS) support 

Phase-locked loop

Delay-locked loop

Digital phase-locked loop

Special purpose register

Time-of-day

Advanced Encryption Standard

Secure hash algorithm

Memory nanagement unit 

Inter-integrated circuit

Serial electrically erasable programmable read-only memory

Serial peripheral interconnect



User’s Manual 
OpenPOWER

 POWER9 Processor

Version 2.1 
10 October 2019 
 

POWER9 Processor Overview

Page 33 of 508

• Features

– On-chip accelerators 

— CAPI allows an FPGA or ASIC to connect coherently to the POWER9 processor SMP intercon-
nect via the PCIe. 

— On-chip: compression, encryption, data move initiated by hypervisor, GZIP engine, nest MMU to 
enable user access to all accelerators

— In-core: user invocation encryption (AES, SHA)

— OpenCAPI: industry-standard, high-speed, low-latency acceleration

– Cloud computing enhancements: page replacement/affinity assist, IPL time reduction, four concur-
rent LPARs per core

– Transactional memory

– Random number generator

– RAID6 support in VMX

– Support for industry standard BMC

– Multi-level TCE support

– Turbo mode support

– Details of CAPI can be found in the Coherent Accelerator Interface Architecture (CAIA) document 
and the associated CAPI User Handbook document.

Field-programmable gate array

Application-specific integrated circuit

Initial program load

Baseboard management control

Translation control entry
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2. POWER9 Processor Core 

This section provides an overview of the POWER9 microprocessor core, including key design fundamentals, 
an overview of the master pipeline operation, and a detailed summary of key design features.

2.1 Key Design Fundamentals

This section describes the key design fundamentals of the POWER9 processor core.

2.1.1 64-bit Implementation of the Power ISA (Version 3.0)

• Compatibility for all Power ISA application-level code (problem state).

– Architecturally supports POWER8 mode. 

– Supports partition mobility.

• Supports IEEE standard P754.

• Linux support.

• AIX support with backward operating-system capability. Backward compatible up to AIX 5.3, with PCR-
based compatibility mode.

Figure 2-1. POWER9 Processor Core   

512KB, 8-way

L2 Cache

1024-entry
Translation
Lookaside
Buffer / 

Page 
Walk Cache

(TLB)

Instruction 
Cache

32KB, 8-way

Instruction 
Translation

32-entry
Segment

Lookaside
Buffer
(SLB)

3rd Level Translation

Predecode

8 instructions

Instruction Fetch
Buffer

Instruction 
Processing

Instruction 
Pre Dispatch

Effective Address 
Table

Instruction 
Completion 

Table

Branch
Issue

Queue

Register Files /History Buffers
FP / VMX / FX / LSU
4 Issue Queue Slices

Branch
Execution

Unit

Load Miss
Queue

Translation
Data

64B reload

16B store data

8 instructions

Branch History 
Table

Return 
Stack
Count
Cache

Branch Prediction

Data Prefetch
Engine

6 instructions

Crypto
Unit

DFU 
Unit

BTAC
TAGE

6 instructions

4 FXU / VSU
Execution Units

4 Load / Store Slices
32KB Data Cache

Double-Word Sliced
LRQ and SRQ

8 instructions

WB Bus

S2Q

1 instruction

Pattern
Cache

10MB, 20-way  L3 Cache

Institute of Electrical and Elctronics Engineers



User’s Manual 
OpenPOWER
POWER9 Processor  

POWER9 Processor Core

Page 36 of 508
Version 2.1 

10 October 2019 
 

2.1.2 Layered Implementation Strategy for High-Frequency Operation

• Reduced pipelined design.

– 11 stages from I-cache access to writeback for most fixed-point register-to-register operations.

– 13 stages for most load/store operations (assuming an L1 D-cache hit) from I-cache to writeback.

– 17 stages for most floating-point operations from I-cache access to writeback.

• Dynamic instruction cracking1 for some instructions allows for simpler inner-core dataflow.

– Dedicated dataflow for cracking one instruction into two or more internal operations.

– Microcoded templates for longer emulation sequences.

2.1.3 Speculative Superscalar Inner Core Organization

• Multi-threaded core design.

– Single thread (ST), 2-way multi-thread (SMT2), and 4-way multi-thread (SMT4). 

– Four logical partitions (LPARs) supported at a time.

• Aggressive branch prediction.

– Prediction for up to eight branches per cycle.

– Support for up to 40 predicted taken branches in-flight ST mode. Twenty predicted taken branches 
per thread in SMT2 mode and 10 predicted taken branches per thread in SMT4 mode.

– Prediction support for branch direction and branch target addresses.

• In-order dispatch of up to six internal operations (iops) into five distributed issue queues per cycle.

– Up to two branches dispatched per cycle.

– Up to six non-branch instructions dispatched per cycle.

• Out-of-order issue of up to nine operations.

– Four load or store agen operations.

– Four 64-bit execution/computational operations, 128-bit operations are issued as a pair of 64-bit 
issues.

– One branch operation.

• Register renaming on GPRs, FPRs, CR fields, XER (parts), FPSCR, VSCR, Link, TAR, and Count.

• Eleven execution units.

– Four symmetric load/store units (LSU).

– Four symmetric 64-bit VMX execution units capable of executing fixed point ALU, simple FX, complex 
FX, permute, 128-bit fixed-point, single, double-precision, floating-point operations. Two execution 
units are tied together to perform 128-bit execution. 

– Four floating-point units (FPU). Each FPU supports a double-precision operation or up to two sin-
gle-precision operations each for SIMD and also supports fixed-point multiply and complex FX 
operations.

– For each symmetric unit, only one operation per cycle can be issued.

– One decimal floating-point and quad-precision floating-point unit (DFU).

1. Process by which some complex instructions are broken into multiple simpler, more RISC-like instructions.

Instruction cache

Data cache

Simultaneous multithreading
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– One crypto unit.

– One branch execution unit (BR).

• Large number of instructions in flight.

– 96 instructions deep, instruction-fetch buffer, split equally across the threads in SMT2 and SMT4 
mode.

– Up to 24 instructions in four dispatch pipe stages.

– Up to 256 instructions from dispatch through instruction completion.

– Up to 64 stores queued in the SRQ (available for forwarding), shared by the available threads and 
buffered en-route to the L2 cache through a 16-entry S2Q.

• Fast, selective flush of incorrect speculative instructions and results.

2.1.4 Specific Focus on Storage Latency Management

• Out-of-order and speculative issue of load operations.

• Support for up to eight outstanding L1 cache-line misses with critical data forwarding; critical sector first.

• Hardware-initiated instruction prefetching.

• Hardware-initiated or software-initiated data-stream prefetching. Support for up to eight active streams.

2.2 Pipeline Structure

The pipeline structure for the microprocessor can be subdivided into a master pipeline and several different 
execution unit pipelines. The master pipeline presents speculative in-order instructions to the mapping, 
sequencing, and dispatch functions, and ensures an orderly completion of the real execution path (throwing 
away any other potential speculative results associated with mispredicted paths). The execution unit pipe-
lines allow out-of-order issuing of both speculative and non-speculative operations. The execution unit pipe-
lines progress independently from the master pipeline and from one another. 

Store reorder queue

Store drain queue
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Figure 2-2 illustrates these pipelines, where each box represents a pipeline stage. Definitions for Figure 2-2 
are as follows:

Figure 2-2. Pipeline Structure 
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The processor core is divided into following six units: 

2.3 Detailed Features of the Microprocessor Core 

2.3.1 Instruction Fetching and Branch Prediction

• 32 KB, 8-way set associative I-cache

– 128-byte lines (broken into four 32-byte sectors).

– Dedicated 64-byte interface from the L2 cache that can supply 64-bytes in every processor clock. The 
I-cache takes in only 32 bytes and buffers the other half.

– Critical-sector-first reload policy.

– Effective-address index, real-address tags.

– Banked I-cache, supports one read and one write per cycle when there is no bank conflict.

– Predecode bits to aid in fast decoding and group formation.

– Parity protected; force invalidate and reload on parity error.

• 64-entry effective-to-real address (ERAT) translation cache, fully associative

– Each entry can translate 4 KB, 64 KB, 2 MB, and 16 MB pages. For MSR[IR] = ‘1’ and nonhypervisor 
real mode accesses, 1 GB and 16 GB pages take multiple 16 MB entries.

– In hypervisor real mode, entries are installed as 2 MB pages. 

– In SMT mode, each entry is tagged to indicate invalid or valid for thread 0 - 3.

• Fetch one quadword aligned block of eight instructions per cycle

– In ST mode, instructions are fetched from the thread in every cycle.

In addition, for VMX operations

VF1 - VF6 Represent the pipeline stages for the 4-way SIMD single-precision pipeline stages

XS1 Represents the simple FX operation stage

XC1 - XC6 Represent the complex FX operation stages

CY1 - CY6 Represent the six Crypto execution cycles

PM1 - PM2 Represent the permute stages along with the 128-bit fixed-point operations

IFU Instruction fetch and decode unit

ISU Instruction dispatch and issue unit

LSU Load/store unit

VSU Vector and scalar unit (consists of fixed-point, VMX, binary floating-point, crypto, and VSX)

DFU Decimal floating-point and quad precision floating-point unit

PC Pervasive unit 
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– In SMT mode, instructions are fetched from a given thread based on thread priority. If the threads are 
of equal priority, each thread gets approximately an equal number of fetch cycles, while optimizing 
the core throughput.

• Branch prediction

– Scan all eight fetched instructions for branches in each cycle.

– Predict up to eight branches per cycle.

– Four table first-level prediction structure: global/local/global selector/local selector  
global (8K entries × 2-bit) local (8K entries × 2-bit), global selector (8K entries × 2-bit), and  
local selector (8K entries × 2-bit). Backed up by a TAGE predictor.

— In SMT modes, thread priority is factored in to determine which thread to fetch from to improve 
overall fetch throughput.

2.3.2 Instruction Decode and Preprocessing

• One cycle pipeline to preprocess instructions

– Up to six instructions are decoded concurrently.

– Dedicated dataflow for cracking one instruction into two or three operations. The rest of the cracked 
instructions use the ucode expansion templates.

– The expansion templates are used for longer emulation sequences of internal operations.

– All expanded instructions delay the pipe by two cycles.

• Logically, there is one instruction fetch buffer (IFB) per thread (sizes differ based on the ST, SMT2, SMT4 
modes). Each IFB entry has one instruction. There are 96 entries in an IFB per thread in ST mode, 48 in 
SMT2 mode, and 24 in SMT4 mode.

• Up to eight instructions can be placed in the IFB in a cycle.

• Up to six instructions can be taken out from the IFB in a cycle (ST or SMT mode).

• Instructions taken out for group formation and decode are from up to two threads; one thread in ST mode 
and two threads in SMT2 and SMT4 modes.

• The microcode patch facility allows most instructions to trap to software for fix-up or emulation. There are 
six full Instruction Mask Registers (IMRs) per core.



User’s Manual 
OpenPOWER

 POWER9 Processor

Version 2.1 
10 October 2019 
 

POWER9 Processor Core

Page 41 of 508

2.3.3 Instruction Dispatch, Sequencing, and Completion Control

• Three dispatch pipeline cycles hold up to 24 instructions when the ICT is full.

• Inter-instruction dependence generation for RAW and WAW dependences.

• 256-entry instruction completion table (ICT).

– Each entry is assigned to a particular thread at instruction dispatch.

– Tracks internal operations from dispatch-to-instruction completion for up to 256 operations.

– Capable of restoring the machine state for any of the instructions in flight.

• Supports precise exceptions (including machine-check exceptions).

• Register renaming resources. The POWER9 core uses a history buffer to allow out-of-order execution. All 
renamed registers except the Link, TAR, and Count registers employ this mechanism.

– GPR/FPR/VR history buffer:

— Each of the four execution slices contain a 20-entry primary and 96-entry secondary history buf-
fer. For each instruction that updates a GPR/FPR or VR, a copy of each architected target regis-
ter is held to restore on a flush.

— In SMT2 mode, the four slices and history buffers are shared by the two threads.

—  In SMT4 mode, two threads run on two slices of each cluster (the other two threads run on the 
remaining two slices). Therefore, two threads each share the 40 primary and 192 secondary 
available history buffer entries.

— In transactional memory mode, the history buffer is also used to contain the checkpoint of the 
transaction.

– XER, CR, FPSCR history buffer: 12-entry primary and 12-entry secondary per slice shared amongst 
all resources and on the same thread basis as the GPRs.

— XER is mapped to six fields: ov, ca/oc, fxcc, tgcc, sc, dc/ds

— FPSCR is mapped to four fields: fr/fi/c, fpcc, exceptions, control

— CR is mapped to eight subfields

— VSCR is mapped to two fields: sat, nj

– Any instruction that sets more than four renamed fields must be cracked.

– 20-entry mapper for LR/CTR/TAR (1 LR, 1 TAR, and 1 CTR per thread)

• Issue queues

– There are 13 issue queue slots per slice and they are shared by the threads in the same manner as 
the history buffers. The issue queues hold all instructions except branches.

— VMX permute operations and 128-bit store operations take two slices (an even/odd slice pair) to 
handle a 128-bit operation.

— The load/store is comprised of four slices. Each slice handles a doubleword dataflow. Double-
words 0, 4, 8, 12 of a line are handled by one slice. This pattern is repeated across the remaining 
slices in the core. Therefore slice 1 contains doublewords 1, 5, 9, and 13.

— The load-reorder queue and load-store agen queue are merged on a quadword basis. They han-
dle the requests for two of the load-store unit slices.

– One 15-entry issue queue for branch instructions.

Read after write

Write after write
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2.3.4 Fixed-Point Execution Pipelines

• Four fixed-point execution pipelines:

– All four are capable of basic arithmetic, logical, cr logical, and shifting operations.

– All four are capable of multiplies, divides, and SPR operations.

• Out-of-order issue with a bias toward oldest operations first.

• Symmetric forwarding between fixed-point and load/store execution pipelines.

2.3.5 Load and Store Execution Pipelines

• Four symmetric load/store execution pipelines, with a 4-cycle, load-to-use latency (3-cycle bubble). There 
are four addresses generated per core per cycle that are picked up by 1 - 3 (misaligned operations) of the 
the four LSU slices.

• Out-of-order issue with a bias toward oldest operations first. All stores are issued twice: an address gen-
eration operation (LD/ST) and a data steering operation (FX/FP/VSX/VMX).

• 32 KB, 8-way set associative, banked D-cache.

– Supports four reads and one write every cycle, when there is no bank conflict between a write and a 
read. A given bank can support either one read or one write in a given cycle.

– Four cycle load-use penalty for loads (3-cycle bubble between a load and a dependent operation).

– Store-through (to L2 cache) policy; no allocate on store misses.

– 128-byte cache line with support for 64-byte sectors.

– Pseudo-LRU replacement policy.

– EA-based set predict is used to determine the initial hit information. RA-based directory and ERAT is 
used to define real hit information. A flush can occur on a set-predict hit, directory miss.

– A dedicated 64-byte reload interface from the L2 cache can supply 64 bytes in every processor clock.

– Effective address index, real address tags (hardware fix-up on alias cases). That is, two different EAs 
that map to the same RA are not allowed to co-exist in the D-cache.

– Parity-protected via recovery

• 64-entry, fully-associative data effective-to-real address (D-ERAT) translation cache.

– Each entry translates either 4 KB, 64 KB, 2 MB, or 16 MB pages.

— 16 GB pages take multiple 16 MB pages. 

— 1 GB pages take multiple 16 MB pages.

— MSR[DR] = ‘0’ entries are also created in the D-ERAT and shared by all threads.

– Binary LRU replacement policy.

– In SMT mode, each entry is tagged by thread ID.

– Entries are dynamically shared between all threads.

• 32-entry, fully-associative segment lookaside buffer (SLB) per thread for HPT translation. The SLB is not 
used for radix translation.

– Each entry can support 256 MB or 1 TB segment sizes.

– Multiple pages per segment (MPSS) feature is supported: 4 KB, 64 KB, and 16 MB pages.

Effective address

Real address



User’s Manual 
OpenPOWER

 POWER9 Processor

Version 2.1 
10 October 2019 
 

POWER9 Processor Core

Page 43 of 508

• 16-entry, store re-order queue per slice (real address based; CAM structure). 

– Therefore, there are 64 total SRQ entries in the slices that can be forwarded out of. 

—  SRQ is dynamically shared among the available threads.
—  SRQ entry is allocated at the time of a store agen getting access to the cache and deallocated 

when the store is written in the cache or sent to the L2 cache (after the completion point).

– Store addresses and store data is supplied on different cycles.

– Stores wait in this queue until they are completed; then they write the cache and drain to the L2 
cache.

– Supports store forwarding to include subsequent loads (even if both are speculative). Store forward-
ing takes two additional cycles compared to a D-cache hit for a load.

– For each SRQ entry, there is a store data queue (SDQ) entry of 8 bytes.

• There is a 16-entry second queue that buffers completed store data that is sent to the L2 cache. Each of 
these queues is 16 bytes wide but do not forward data to loads in the pipe.

• 16 bytes of store data can be sent to the L2 cache (and also to the D-cache, on a hit) in every processor 
cycle.

• Two 10-entry load re-order queues and 28-entry load reorder finish queue (real address based; CAM 
structure).

– A total of 76 outstanding loads can be issued. 

– LRQ is dynamically shared among the available threads.

– Keeps track of out-of-order loads and watches for hazards.

• 8-entry load-miss queue per cluster (real address based).

– Keeps track of loads that have missed in the L1 D-cache.

– Allows multiple loads from the same cache line to merge onto a single entry (the two loads can be 
from different threads).

– Dynamically shared among the threads in SMT modes.

– Prefetches to L1 are also tracked using the LMQ.

– LMQ can merge two load operations from the same sector.

• Two 16-byte load and two 16-byte store operations are supported for VMX and VSX operations per cycle. 
There is no penalty when the load/store operation is 8-byte or 16-byte aligned.

• True little-endian (LE) mode is supported.

2.3.6 Branch Execution Pipelines

• One branch execution pipeline.

– Computes actual branch address and branch direction for comparison with prediction.

– Redirects instruction fetching if either direction or target prediction was incorrect.

– Assists in training and maintaining the branch history table predictors, the link stack, and the count 
cache.

• Out-of-order issue with a bias toward oldest operations first.

Content-addressable memory

Load reorder queue

Load-miss queue
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2.3.7 Unified Second-Level Memory Management (Address Translation)

• 1024-entry, 4-way set-associative TLB per cluster.

– 4 KB, 64 KB, 2 MB, 16 MB, 1 GB, and 16 GB pages are supported in the TLB. 

– TLB also supports “Virtualized Page Class Key Protection” with 32 keys.

– Indexed with partially hashed address to improve performance. 

– Hardware-based reload (from the L2 cache interface; no L1 D-cache corruption).

– Hardware-based atomic and non-atomic update of the R-bit, C-bit, and TS-bit.

– Parity protected via recovery.

– In SMT mode, the TLB entries are shared by the four threads as long as the entry belongs to the log-
ical partition running on the core.

– 12-bit LPAR ID per entry. 

• Hit-under-miss is allowed in the TLB.

• Support for four concurrent table walks (without any restriction on thread of D-side or I-side requests).

• 32-entry fully-associative SLB, one per thread.

– SLB miss results in an interrupt (a software reload of the SLB).

– SLB can also be loaded by using the software-initiated SLB instructions.

– SLB supports 256 MB and 1 TB segment sizes.

• A segment with 4 KB base page size is allowed to have mixed pages of sizes 4 KB, 64 KB, and 16 MB 
pages.

• A segment with 64 KB base page size is allowed to have mixed pages of sizes 64 KB and 16 MB pages.

• Read of invalid SLB entry returns zeros for enhanced security.

• Supports 68-bit virtual address for HPT and 56-bit real address.

• Two outstanding table-walks per cluster and TLB hits-under-miss is allowed.

• There are no restrictions on the thread or D-side or I-side for the concurrency of the two table walks.

• Both software and hardware TLB management is allowed.

• True LRU replacement policy.

• Supports 52-bit guest effective address and 52-bit guest real address (host effective address) for radix. 
Guest real address bits 0:11 are ignored by the hardware and treated as zeros.

2.3.8 Data Prefetch

• Eight independent data streams capable of striding up or down.

• Prefetches and allocates ahead of demand into the L1 D-cache from the L3 cache.

• Prefetches and allocates ahead of demand into the L3 cache from memory.

• Support for software-initiated stream startup (special variant of the dcbt instruction).

• Hardware and software-initiated streams can use eight data streams with sharing in SMT modes.

Translation lookaside buffer



User’s Manual 
OpenPOWER

 POWER9 Processor

Version 2.1 
10 October 2019 
 

POWER9 Processor Core

Page 45 of 508

2.3.9 VSU Execution Pipeline

The vector scalar unit has a merged fixed-point, floating-point, permute and vector dataflows. Up to four 
instructions can be issued to the execution pipeline in a given cycle. It contains:

• Four fixed-point execution pipelines with 5 stage execution:

– All fully capable for the full set of floating-point instructions.

– All data formats are supported.

– Non-IEEE mode supported, which provides less precise results at lower divide/square root latencies.

• Out-of-order issue with bias toward oldest operations first.

• Symmetric forwarding between fixed-point and load/store execution pipelines.

• VSU unit contains binary floating-point execution unit, SIMD double-precision floating-point (VSX) execu-
tion unit, and the VMX execution unit.

• Up to four instructions can be issued to the VSU in a given cycle to the four pipelines.

– The instruction in the first pipeline can be a simple fixed-point, a complex fixed-point, a 4-way SIMD 
single-precision FPU operation, a 2-way SIMD double-precision FPU operation (VSX), or a scalar 
floating-point operation.

– The four pipes are symmetric.

– Two pipes (slices) are used to handle 128-bit operations.

– Out-of-order issue with bias toward oldest operations first. 

– Four load result bus to the VRF, each supports up to 8-byte loads in a cycle.

– Store data bus from VRF to the SDQ supports four 8-byte stores or two 16-byte stores in a cycle.

• Floating-point execution:

– Four symmetric floating-point execution pipelines with 6-stage execution:

— All are capable of the full set of floating-point instructions.

— All data formats supported in hardware (no floating-point assist interrupts).

— A new test instruction facilitates execution of multiple concurrent divide or square-root operations.

— Back-to-back six cycles issue to local and eight cycles to the remote FPU.

— Non-IEEE mode supported, which provides less precise results at a lower latency for divide and 
square-root operations.

• VSX execution:

– Four symmetric SIMD floating-point execution pipelines, with stage execution:

— Both capable of the full set of VSX instructions (single-precision and double-precision).

— All data formats supported in hardware (no assist interrupts).

— A new test instruction facilitates execution of multiple concurrent divide or square-root operations.

— Back-to-back 5-cycle issue to local and 7-cycle issue to the remote VSX pipe.

• VMX execution:

– Four execution pipelines within VMX: simple fixed-point, complex fixed-point, permute, and 4-way 
SIMD single-precision floating-point unit.
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— Simple fixed-point operations take two execution cycles.

— Complex fixed-point operations take five execution cycles.

— Permute operations take two execution cycles.

— Vector floating-point operations take five execution cycles.

2.3.10 Decimal Floating-Point Execution Pipeline

• DFP unit can execute 64-bit or 128-bit DFP operations.

• Allows out-of-order issue with bias toward oldest instruction.

• Pipelined execution.

• DFP unit shares VSU pipe 1 issue port with the VSU unit.

• 128-bit DFP instructions can be cracked into 2-way or microcoded internal operations.

• One quad-precision floating-point execution pipeline with 12-stage execution. Two issue pipes are used to 
handle quad-precision execution.

Decimal floating-point
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3. Packages

This chapter outlines the module packages for the POWER9 processor. An X bus is the socket-to-socket 
SMP interconnect between two POWER9 processors.

3.1 POWER9 Single-Chip Module for Cloud and Data Center

Features:

• Body size: 50 mm × 50 mm

• Interconnect technology: Hybrid LGA socket

• 1.016 mm hexagonal LGA pitch and 2601 pins

• 4-4-4 organic package construction

Buses:

• Four DDR4 ports 

• One 30-bit + 2 spare (4-byte) electrical X buses at 16 Gbps

• 48 lanes PCIe Gen4 at 16 Gbps

Figure 3-1. POWER9 Single-Chip Module for Cloud and Data Center 

POWER9
Processor

50 mm × 50 mm

X Bus (4 bytes)4 DDR4
Memory Ports
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Land grid array

Double data rate 4

Peripheral Component Interconnect Express
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3.2 POWER9 Single-Chip Module for High-Performance Computing and Cloud

Features:

• Body size: 68.5 mm × 68.5 mm

• Interconnect technology: Hybrid LGA socket

• 1.5 mm interstitial LGA pitch with a minimum pitch of 1.06 mm and 3899 pins

• 7-2-7 organic package construction

Buses:

• Eight DDR4 ports 

• 25G Link: six bricks at 25 Gbps or  
OpenCAPI: four bricks at 25 Gbps

Note:  The basic building block for a 25G Link is a high-speed, 8-lane, differential, dual simplex bidirec-
tional link. In this document, the term “brick” is equivalent to the term “link.”

• One 30-bit + two spare (4-byte) electrical X buses at 16 Gbps

• 34 lanes PCIe Gen4 at 16 Gbps

Figure 3-2. POWER9 Single-Chip Module for HPC/Cloud 
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3.3 POWER9 Single Chip Module for Commercial Entry

Features:

• Body size: 68.5 mm × 68.5 mm

• Interconnect technology: Hybrid LGA socket

• 1.5 mm interstitial LGA pitch with a minimum pitch of 1.06 mm and 3899 pins

• 7-2-7 organic package construction

Buses:

• Eight DDR4 ports 

• 25G Link: two bricks at 25 Gbps or  
OpenCAPI: two bricks at 25 Gbps

• Two 30-bit + two spare (4-byte) electrical X buses at 16 Gbps

• 42 lanes PCIe Gen4 at 16 Gbps

Figure 3-3. POWER9 Single-Chip Module for Commercial Entry 
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4. Power Architecture Compliance

The following sections are intended to be read with their respective companion documents. Throughout these 
sections, it is assumed that the reader is familiar with the following architecture documents:

• Power ISA User Instruction Set Architecture - Book I (version 3.0B)

• Power ISA Virtual Instruction Set Architecture - Book II (version 3.0B)

• Power ISA Operating Environment Architecture - Book III (version 3.0B) 

• POWER9 Processor Programming Model Bulletin 

Except for Table 4-8 on page 83, all references to the optional Secure Memory Facility (SMF) are found in 
Section 24.3 Secure Memory Facility on page 326. The rest of this chapter applies regardless of whether or 
not SMF is enabled by the POWER9 hardware.

4.1 Book I - User Instruction Set Architecture

This section of the document identifies version 3.0B architectural implications of the POWER9 design point 
as they relate to the User Instruction Set Architecture (UISA). This is accomplished by walking through each 
of the relevant sections of Book I and highlighting the POWER9 solution to the architectural flexibility provided 
by the Power ISA. 

4.1.1 Instruction Classifications

The POWER9 processor core implements all Book I instructions specified in the Power ISA (Version 3.0B).

4.1.1.1 Illegal Instructions

An attempt to execute an illegal instruction as defined in the Appendix A. Illegal Instructions of the Power ISA 
(Version 3.0B) results in a hypervisor emulation assistance interrupt.

4.1.1.2 Instructions Supported 

The POWER9 core supports all of the instructions described in the Power ISA User Instruction Set Architec-
ture - Book I (version 3.0B). Furthermore, it supports the Service Processor “Attention” described in Appendix 
B. Reserved Instructions of the Power ISA (Version 3.0B). This instruction is conditionally enabled by 
HID[3] = ‘1’. When enabled, this instruction is a user-level instruction.

4.1.1.3 Invalid Forms

In general, the POWER9 core handles invalid forms of instructions in the manner that is most convenient for 
the particular case (within the scope of meeting the boundedly-undefined definition described in the Power 
ISA). This document specifies the behavior for these cases. However, it is not recommended that software or 
other system facilities make use of the POWER9 behavior in these cases because such behavior might be 
different in another processor that implements the Power ISA.

The POWER9 core ignores the state of reserved bits in the instructions (denoted by “///” in the instruction defi-
nition) and executes the instruction normally. Software should set these bits to ‘0’ per the Power ISA.

https://ibm.box.com/s/8qsbki409iq704wx5gvikz8h6fj8ixre
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4.1.2 Branch Processor

4.1.2.1 Instruction Fetching

In an effort to increase performance, the POWER9 processor does instruction prefetching before it deter-
mines whether or not particular instructions will actually execute. This prefetching follows all of the architec-
tural constraints relative to caching-inhibited and guarded regions of storage. More information on instruction 
fetching is available in Section 25.1.3 Instruction Fetch on page 336.

4.1.2.2 Branch Prediction

The POWER9 processor core uses several dynamic branch prediction mechanisms to improve performance. 
See Section 25.1.3.4 Branch Prediction on page 339. When enabled, software can override the hardware 
mechanisms for branch prediction by using the architected BO field “a” and “t” hint bits in the instruction itself 
as described in the Power ISA (Version 3.0B).

In addition, for bclr instructions, a link stack (or call-return stack) is used to predict the target address of the 
branch. Similarly, for bcctr instructions, local and global count caches are used to predict the target address 
for this type of branch. To improve the efficiency of these address predictors, the POWER9 core uses the 
architected BH-field hints associated with several of the branch instructions. These hints are used by the 
hardware to improve the accuracy of the link stack and the count cache.

Although the overall performance of the machine is strongly dependent on these branch prediction mecha-
nisms, a set of firmware-accessible mode bits is available to disable these features via scan initialization.

4.1.2.3 Instruction Cache Block Touch Hint

The POWER9 core supports the instruction cache block touch (icbt) instruction. However, instead of bringing 
the instructions into the level 1 (L1) cache as described in the Power ISA, it prefetches the instructions into 
the level 2 (L2) cache. Thus, icbt is implemented internally as a data cache block touch for store (dcbtst) hint 
instruction.

4.1.2.4 Out-of-Order Execution and Instruction Flushes

The POWER9 processor uses out-of-order instruction execution. Instructions can be speculative on a 
predicted branch direction, or simply speculative beyond an instruction that might cause an interrupt condi-
tion. In the event of a misprediction or an interrupt, instructions from the mispredicted path and the results 
produced by those instructions are discarded, presenting the effect of sequentially executed instructions 
down the appropriate branch paths and precise exceptions as required by the Power ISA (Version 3.0B). For 
details and exceptions about the rules for obeying the sequential execution model, see the following sections: 
Instruction Execution Order in Book I, Definitions in Book II, and Definitions and Notation in Book III.
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4.1.2.5 Branch Processor Instructions with Undefined Results

The results of executing an invalid form of a branch instruction or an instance of a branch instruction for which 
the architecture specifies that some results are undefined are described as follows. Only results that differ 
from those specified by the architecture are described in the following list.

• Instructions with reserved fields:
Bits in reserved fields including the z-bits in the BO field are ignored. The results of executing an instruc-
tion in which one or more of these bits are ‘1’ is the same as if the bits were ‘0’.

• bcctr and bcctrl instructions:
If BO[2] = ‘0’, the contents of CTR (before any update) are used as the target address and for the test of 
the contents of CTR to resolve the branch. The contents of the CTR are then decremented and written 
back to the CTR.

4.1.3 Fixed-Point Processor

4.1.3.1 Fixed-Point Exception Register 

The Power ISA defines the Fixed-Point Exception Register (XER) bits: XER[0:15], XER[35:43] and 
XER[46:56] as reserved. An mfxer returns the value as shown in Table 4-1. 

In the POWER9 core, the XER is implemented in several parts:

• XER renamed fields F0:F6 (see Table 4-1) are stored in an architected register file (ARF). The ARF con-
tains latches that store the F0:F6 fields for each of four threads. The ARF contains four (one per thread) 
transactional memory (TM) copies of the F0:F6 fields.

• The SO bit is not renamed and is only updated at completion time. One copy for each of the four threads 
and four TM copies are shared by FX0, FX1, FX2, and FX3.

Table 4-1. XER Bits and Fields  (Sheet 1 of 2)

XER Bits Name Field Read/Write Behavior

0:15 Reserved Unimplemented Returns zeros on mfxer.

16:31 Reserved Returns zeros on mfxer.

32 SO SO
Set to ‘1’ whenever OV = ‘1’, except when mtxer sets SO = ‘0’ and OV = ‘1’. 
This bit can be set to ‘0’ or ‘1’ by mtxer. An mfxer reads the bit contents. This 
bit is implemented inside the mapper, but it is only updated at completion time.

33 OV F1 Set to ‘0’ or ‘1’ by various fixed-point instructions with OE = ‘1’ or by mtxer. An 
mfxer reads the bit contents.

34 CA F2 Set to ‘0’ or ‘1’ by add-carrying, subtract-from carrying, shift-right algebraic-type 
instructions, and by mtxer. An mfxer reads the bit contents.

35:43 Reserved F2 Returns zeros on mfxer.
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4.1.4 Storage Access Alignment Support Overview

Most storage accesses are performed without software intervention (such as, an alignment interrupt). For 
more information on misaligned cases that do not result in an interrupt, see Section 25 Performance Profile 
on page 333. The storage accesses that result in an interrupt condition are described in the following 
sections.

4.1.4.1 Alignment Interrupts

The LSU reports an alignment interrupt for the following conditions:

• Storage operand is not on a natural alignment boundary.

– Halfword boundary:
— lharx
— sthcx.

– Word boundary:
— lwarx, lwat
— stwcx, stwat

– Doubleword boundary:
— ldarx, ldat
— stdcx, stdat

– Quadword boundary:
— lfdp, lfdpx, lq, stfdp, stfdpx, stq, stqcx, lqarx

– Cache-line (128-byte) boundary:
— copy, paste.

44 OV32/Reserved F2

There are two bits representing bit 44, an OV32 bit and a reserved bit. 
• The mfxer reads the OV32 bit if PCR[v2.07] = ‘0’ and reads the reserved 

bit if PCR[v2.07] = ‘1’; this applies independent of privilege state and is 
the only PCR effect on bit 44. 

• The mtxer instruction writes both bits. 
• The mcrxrx instruction reads only the OV32 bit because it is an invalid 

instruction independent of the PR bit when PCR[v2.07] = ‘1’. 
• The instructions that implicitly set the OV bit also set the OV32 bit as 

described in the Power ISA (Version 3.0B), and do not modify the 
reserved bit.

45 CA32/Reserved F1

There are two bits representing bit 45, a CA32 bit and a reserved bit. 
• The mfxer reads the CA32 bit if PCR[v2.07] = ‘0’ and reads the reserved 

bit if PCR[v2.07] = ‘1’; this applies independent of privilege state and is 
the only PCR effect on bit 45. 

• The mtxer writes both bits. 
• The mcrxrx reads only the CA32 bit because it is an invalid instruction 

independent of the PR bit when PCR[vv2.07] = ‘1’. 
• The instructions that implicitly set CA also set the CA32 bit as described 

in the Power ISA (Version 3.0B) and do not modify the reserved bit.

46:56 Reserved F5 Written by mtxer. An mfxer reads the bit contents.

57:63 String length F6 String length field used lswx and stswx. Written by mtxer. An mfxer reads the 
bit contents.

Table 4-1. XER Bits and Fields  (Sheet 2 of 2)

XER Bits Name Field Read/Write Behavior
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• Atomic memory operations take an alignment interrupt for cases identified by ALI in Table 4-2. Some 
cases only take an alignment interrupt for specific Function Code (FC) values as indicated. If no FC is 
indicated but ALI is indicated, the alignment interrupt occurs for any FC value. 

• Little-endian mode
– lmw, lswi, lswx
– stmw, stswi, stswx

• Caching-inhibited storage

– lfdp, lfdpx, lmw, lswi, lswx, lxvl, lxvll
– dcbz, stfdp, stfdpx, stmw, stswi, stswx, stxvl, stxvll

– Any load or store not on a natural alignment boundary:

— Halfword boundary:
– lha, lhau, lhaux, lhax, lhbrx, lhz, lhzcix, lhzu, lhzux, lhzx, lxsihzx
– sthbrx, sth, sthcix, sthu, sthux, sthx, stxsihx

— Word boundary:
– lfiwax, lfiwzx, lfs, lfsu, lfsux, lfsx, lwa, lwaux, lwax, lwbrx, lwz, lwzcix, lwzu, lwzux, lwzx, 

lxssp, lxvwsx, lxsiwax, lxsiwzx, lxsspx
– stfiwx, stfs, stfsu, stfsux, stfsx, stwbrx, stw, stwcix, stwu, stwux, stwx, stxssp,  

stxsiwx, stxsspx

— Doubleword boundary:
– ld, ldbrx, ldcix, ldu, ldux, ldx, lfd, lfdu, lfdux, lfdx, lxsd, lxsdx, lxvdsx
– std, stdbrx, stdcix, stdu, stdux, stdx,stfd, stfdu, stfdux, stfdx, stxsd, stxsdx

— Quadword boundary:
– lxvd2x, lxvw4x, stxvd2x, stxvw4x, lxv, stxv, lxvx, stxvx, lxvh8x, stxvh8x, lxvb16s, stx-

vb16x

Table 4-2. Alignment Interrupt for AMO Cases  

AMO Instruction x‘00’ x‘04’ x‘08’ x‘0C’ x‘10’ x‘14’ x‘18’ x‘1C’

lwat FC ‘11100’ 
ALI

FC ‘11000’ 
ALI

FC ‘11001’ 
ALI

ldat FC ‘11100’ 
ALI ALI ALI ALI FC ‘11000’ 

ALI

FC ‘11001’ 
ALI ALI

stwat FC ‘11000’ 
ALI

stdat ALI ALI ALI FC ‘11000’ 
ALI ALI

Note:  ALI = alignment interrupt; FC = function code

Alignment interrupt
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4.1.4.2 Storage Control Attribute Caused Data Storage Interrupt or Hypervisor Data Storage Interrupts

The LSU reports either a data storage interrupt (DSI) or hypervisor data storage interrupt (HDSI) for the 
following conditions as permitted by the Power ISA (Version 3.0B):

• The effective address specified by a lq, stq, lwat, ldat, lbarx, lharx, lwarx, ldarx, lqarx, stwat, stdat, 
stbcx., sthcx., stwcx., stdcx., stqcx., copy or paste instruction refers to storage that is caching inhib-
ited; or the effective address specified by a lwat, ldat, stwat, or stdat instruction refers to storage that is 
guarded.

• An attempt is made to execute one of the hypervisor accessible (Book IIIS) lbzcix, lhzcix, lwzcix, ldcix, 
stbcix, sthcix, stwcix, or stdcix instructions with MSR[DR] = ‘1’ or specifying a storage location (page) 
that was previously accessed as non-guarded using the Hypervisor Real Mode Storage Control facility.

4.1.5 Fixed-Point Load and Store Instructions

The POWER9 core implements the fixed-point load and store instructions per Power ISA (Version 3.0B). The 
Power ISA specifies that fixed-point loads and stores to storage, which are neither caching inhibited nor write-
through and are aligned on their operand size boundary, are performed atomically. The POWER9 processor 
exceeds this requirement such that all fixed-point loads and stores that do not cross a doubleword boundary 
are performed atomically. As implied by Section 4.1.4.1 Alignment Interrupts on page 54, most forms of 
unaligned load operations are executed entirely in hardware. 

There are some cases where the Power ISA states that some portion of the results of the instructions are 
undefined or some forms of the instructions are invalid. See Section 4.2 Fixed-Point Invalid Forms and Unde-
fined Conditions on page 58 for details.

4.1.5.1 Fixed-Point Load and Store Multiple Instructions

Note:  These instructions are provided for compatibility with legacy software. Software should use a 
sequence of load or store instructions for optimal performance.

The lmw and stmw instructions, regardless of operand alignment, are executed in hardware, even when they 
cross page and segment boundaries. These instructions are not considered atomic. However, the individual 
storage accesses associated within the instructions are atomic. If a stmw crosses a page boundary, and the 
second page translation signals an exception condition, then after the interrupt is taken, it appears as though 
none, some, or all of the accesses to the first page have occurred, and none of the accesses to the second 
page have occurred. On the other hand, for the lmw instruction that cross a page boundary where the second 
page translation signals an exception condition, some of the target registers might not be updated.

An attempt to execute a non-word-aligned lmw or stmw does not cause an alignment interrupt.

An attempt to execute an lmw or stmw to storage-marked cache inhibited causes an alignment interrupt. 

See Section 4.1.4 Storage Access Alignment Support Overview on page 54 for details.

The architecture allows these instructions to be interrupted by certain types of asynchronous interrupts 
(external interrupts, decrementer interrupts, machine check interrupts, and system reset interrupts). 
However, the POWER9 core does not process an asynchronous interrupt in the middle of one of these 
instructions.
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4.1.5.2 Fixed-Point Move Assist Instructions

Note:  These instructions are provided for compatibility with legacy software. Software should use a 
sequence of load or store instructions for optimal performance.

The lswi, lswx, and stswi stswx instructions, when aligned on a word boundary, are executed in hardware, 
even when they cross page and segment boundaries. These instructions are not considered atomic. Further-
more, the individual storage accesses associated within the instructions are not atomic. If a store string 
operand crosses a page boundary, and the second page translation signals an exception condition, then after 
the interrupt is taken, it appears as though none, some, or all of the accesses to the first page have occurred, 
and none of the accesses to the second page have occurred. On the other hand, for a load string operand 
that crosses a page boundary where the second page translation signals an exception condition, some of the 
target registers might not be updated.

An attempt to execute a non-word-aligned lswi, lswx, stswi, or stswx causes an alignment interrupt.

An attempt to execute an lswi, lswx, stswi, and stswx to storage marked cache inhibited causes an align-
ment interrupt.

See Section 4.1.4 Storage Access Alignment Support Overview on page 54 for details.

The architecture allows these instructions to be interrupted by certain types of asynchronous interrupts 
(external interrupts, decrementer interrupts, machine check interrupts, and system reset interrupts). 
However, the POWER9 core does not process an asynchronous interrupt in the middle of one of these 
instructions.

4.1.5.3 Integer Select Instruction 

The POWER9 core implements the integer select (isel) instruction as defined in the Power ISA.

4.1.5.4 Fixed-Point Logical Instructions

The architecture defines the preferred NOP to be ‘ori 0,0,0’. In the POWER9 processor, this NOP form is 
recognized by the hardware and allowed to complete without taking any execution resources. This makes the 
instruction valuable for padding other instructions to achieve better alignment or better separation

4.1.5.5 Access to Performance Monitor Special Purpose Registers 

The POWER9 core supports the following performance monitor unit (PMU) special purpose registers (SPRs) 
as specified in the Power ISA (Version 3.0B):

• PMC1 - Performance Monitor Counter 1
• PMC2 - Performance Monitor Counter 2
• PMC3 - Performance Monitor Counter 3
• PMC4 - Performance Monitor Counter 4
• PMC5 - Performance Monitor Counter 5
• PMC6 - Performance Monitor Counter 6
• MMCR0 - Monitor Mode Control Register 0
• MMCR1 - Monitor Mode Control Register 1
• SIAR - Sampled Instruction Address Register
• SDAR - Sampled Data Address Register

Content-addressable memory
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4.1.5.6 Move to/from Condition Register Fields Instructions

The architecture warns that updating a subset of the CR fields on an mtcrf instruction might have poorer 
performance than updating all of the fields. For best performance in the POWER9 processor, software should 
use the single-field variants (mtocrf and mfocrf) of these instructions as described in the Power ISA. See 
Appendix A Instruction Properties on page 375 for more details.

4.2 Fixed-Point Invalid Forms and Undefined Conditions

The results of executing an invalid form of a fixed-point instruction or an instance of a fixed-point instruction 
when the architecture specifies that some results are undefined are described in the following list (for the 
cases when executing an instruction does not cause an exception). 

• Instruction with Reserved Fields
Bits in reserved fields are ignored; the results of executing an instruction in which one or more reserved 
bits are ‘1’ is the same as if the bits were ‘0’.

• Load with Update Instructions (RA = 0) 
EA is placed into R0.

• Load with Update Instructions (RA = RT) 
The storage operand addressed by EA is accessed. The displacement field is added to the data returned 
by the load and placed into RT.

• Load Quadword Instruction (RTp is odd or RTp = RA) 
The POWER9 processor always takes a hypervisor emulation assistance interrupt anytime RTp is an odd 
register, RTp = RA (including when RA = 0) or RTp = RB for lq.

• Load Quadword and Reserve Indexed Instruction (RTp is odd, RTp = RA, RTp = RB) 
The POWER9 processor always takes a hypervisor emulation assistance interrupt anytime RTp is an odd 
register, RTp = RA (including when RA = 0) or RTp = RB for lqarx.

• Load Multiple Instructions (RA in the range of registers to be loaded) 
If an exception (for example, data storage or external) causes the execution of the instruction to be inter-
rupted, the instruction is restarted, RA has been altered by the previous partial execution of the instruc-
tion, and RA is less than or greater than ‘0’, the new contents of RA are used to compute EA.

• Load Multiple Instructions (causing a misaligned access)
For a Load Multiple Word instruction, if the storage operand specified by EA is not a multiple of 4, the 
access is performed anyway (that is, naturally). No alignment interrupt is taken.

• Load String Instructions (zero length string)
RT is not altered.

• Load String Instructions (RA and/or RB in the range of registers to be loaded)
If RA and/or RB is in the range of registers to be loaded, the results are as follows.
Indexed Form: If RA = 0, let Rx be RB; otherwise let Rx be the register specified by the smaller of the two 
values in instruction fields RA and RB. If RT = Rx, no registers are loaded; otherwise, registers RT 
through RX - 1 are loaded as specified in the architecture (that is, only part of the storage operand is 
loaded).
Immediate Form: If RA = 0, the instruction is executed as if it were a valid form. If RA = RT, no registers 
are loaded; otherwise registers RT through RA - 1 are loaded as if the instruction were a valid form but 
specifying a shorter operand length.
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• Store with Update Instructions (RA = 0)
EA is placed into R0.

• Store Quadword and Store Quadword Conditional Instruction (RSp is odd) 
For the stq and stqcx. instructions, the contents of RSp are stored into the words of storage addressed 
by EA and EA + 4 respectively. If RSp is odd, the low-order bit of the register number is considered to be 
‘0’ such that RSp - 1 and RSp are stored into the words in storage addressed by EA and EA + 4 respec-
tively.

• subfic, subfc, and subfco Instructions and their Rc = 1 Forms 
If RA[0:15] = x‘0000’, XER[CA] reflects the carry-out of bit 16; otherwise, it reflects the carry-out of bit 40.

• divw, divwo, divwu, and divwuo Instructions 
RT[0:31] is set to x‘00000000’.

• mulhw and mulhwu Instructions 
RT[0:31] contains the same result as RT[32:63].

• Divide Instructions (divide by zero) 
If the divisor is 0, RT is set to zero. If Rc = ‘1’ also, CR0 is set to ‘0010’.

• Trap Word Immediate and Trap Word Instructions [TO = (‘11110’ | ‘11100’)]

• Move To/From Special Purpose Register Instructions
Table 4-8 on page 83 describes the read/write mtspr behavior for an spr value that is not defined for the 
implementation. 

• Move From Time Base Instruction 
The mftb instruction is treated as an alias for the “mfspr Rx, 268” instruction. The results are the same as 
when executing an “mfspr Rx, 268” instruction. 

• Move From Condition Register Instruction 
The entire CR is copied into RT[32:63]. RT[0:31] is set to zero.

• Move From One Condition Register Field Instruction (only 1 bit of FXM set to ‘1’) 
Let n be the bit set to ‘1’ in the FXM field. The CR field n is copied to RT[(4 × n + 32):(4 × n + 35)]. The 
remaining bits are set to zero.

• Move From One Condition Register Field Instruction (multiple bits of FXM set to ‘1’) 
Let n be the first bit (from left to right) set to ‘1’ in the FXM field. The CR field n is copied to  
RT[(4 × n + 32):(4 × n + 35)]. The remaining bits are set to zero.
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4.3 Floating-Point Processor (FP, VMX, and VSX)

The POWER9 VSU contains four double-precision floating-point units. Each of these units is optimized for 
fully pipelined double-precision multiply-add functionality. In addition, each unit is capable of performing the 
floating-point divide and square root instructions. The complex integer instructions from the VMX architecture 
are also executed on the floating-point unit datapath.

The POWER9 VSU implements the VSX architecture, specifying 2-way double-precision or 4-way single-
precision operations. Dependent floating-point instructions have a minimum issue-to-issue interval of six 
cycles. The vector single precision throughput has improved because it is possible to execute two 4-way 
single-instruction, multiple-data (SIMD), single-precision instructions per cycle. 

Legacy binary floating-point and VMX architectures are also fully supported in the POWER9 VSU.

4.3.1 Vector Single-Precision Bandwidth

In the POWER9 core, the double-precision FPU supports simultaneous execution of two vector single-preci-
sion operations. This increases the single-precision bandwidth of the POWER9 core to 16 floating-point oper-
ations per second (FLOPs) per cycle.

In the POWER9 core, the convert and estimate instructions are executed in a fully pipelined manner, as well 
as the increased bandwidth of the multiply-add and move instructions. From the floating-point instructions, 
only the divide and square-root instructions cannot be started every cycle.

The compares, minimum/maximum, and test-for-software divide/square-root instructions are now executed 
on the vector integer (XS) pipeline to take advantage of the shorter latency. Also, the move-from-FPSCR and 
move-to-FPSCR instructions are separated from the floating-point datapath.

4.3.2 IEEE Compliance

The POWER9 implementation of binary floating-point (BFP), decimal floating-point (DFP), and vector-scalar 
floating-point (VSX) architecture complies with the IEEE P754-2008 standard.

4.3.2.1 Non-IEEE Modes

If FPSCR[NI] is set, the architecture allows a change in the behavior of the binary floating-point unit (BFU) 
instructions and the VSX floating-point instructions. See the sections Floating-Point Facility and Vector-Scalar 
Floating-Point Instructions in the Power ISA (Version 3.0B). The intent is to be faster in some cases. This 
feature is not implemented in the POWER9 core. Setting FPSCR[NI] does not have any effect. 

The architecture requires implementation of VSCR[NJ]. This alters the behavior of the VMX floating-point 
instructions [see the section Vector Facility in the Power ISA (Version 3.0B)] by replacing denormal operands 
and results with the value ‘0’. There is no performance difference. Thus, there is no requirement to use 
VSCR[NJ] = ‘1’ in the POWER9 implementation.

Denormal operands are always handled at full-speed. Denormal results are also handled at full-speed. The 
only exception is for the double-precision divide instructions fdiv, xsdivdp, and xvdivdp. Their latency is five 
cycles longer if the exact result is smaller than 2-1022.

Vector and scalar unit
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4.3.3 Floating-Point Exceptions

Precise floating-point exceptions are provided whenever either of the floating-point enabled exception mode 
bits (MSR[FE0], MSR[FE1]) are set. In all cases, the floating-point instructions are executed out-of-order, and 
any resulting exceptions are sorted out at completion time. In some cases, the hardware flushes the pipeline 
and re-dispatches the instructions individually to provide the precise exception. Because this only happens if 
an interrupt is to be taken, it does not represent a measurable slowdown in performance.

4.3.4 Floating-Point Load and Store Instructions

Most forms of unaligned floating-point storage accesses are executed entirely in hardware. 

4.3.4.1 Scalar Load and Store Atomicity 

The Power ISA (Version 3.0B) requires binary floating-point and VSX scalar load and store accesses be 
treated as atomic provided they are aligned on an operand boundary and access storage that is not caching 
inhibited. The POWER9 core complies with the Power ISA in this regard. Furthermore, binary floating-point 
and VSX scalar load and store accesses, which do not cross a doubleword boundary and access storage that 
is not caching inhibited, are also atomic.

4.3.4.2 Vector Load and Store Atomicity 

The Power ISA (Version 3.0B) requires each doubleword of vector (both VMX and VSX) load and store 
accesses be treated as atomic provided they are doubleword aligned and access storage that is not caching 
inhibited. The POWER9 core complies with the Power ISA in this regard.

4.3.5 Heterogeneous Precision Arithmetic

The following instructions are referred to as scalar single-precision arithmetic instructions:

• fadds[.], xsaddsp, fsubs[.], xssubsp, fmuls[.], xsmulsp

• fmadds[.], xsmadd[am]sp, fmsubs[.], xsmsub[am]sp

• fnmadds[.], xsnmadd[am]sp, fnmsubs[.], xsnmsub[am]sp

• fsqrts[.], xssqrtsp, fdivs[.], xsdivsp

• fres[.], xsresp, frsqrtes[.], xsrsqrtesp

4.3.5.1 NaN Propagation

If a single-precision arithmetic instruction propagates a not-a-number (NaN) where any of the fraction bits 
[24:52] is nonzero, the resulting quiet not-a-number (QNaN) has all of the fraction bits [24:52] cleared to zero.

4.3.5.2 Square Root Overflow and Underflow

Due to the compacting nature of the square-root operation, the instructions fsqrts, xssqrtsp, frsqrtes, and 
xsrsqrtesp cannot underflow or overflow if their operands are representable in single-precision format. 
However, if the operand is not representable in single-precision format, an underflow or overflow can occur. 
This result is recorded in the FPSCR.
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4.3.5.3 Hardware Behavior on Enabled Underflow and Enabled Overflow Exception

If FPSCR[UE] is enabled and an underflow occurs, the contents of the result register and FPSCR status are 
not defined for scalar single-precision (SP) instructions. The hardware takes the following actions:

1. Underflow exception is set, FPSCR[UX] = ‘1’.

2. The exponent of the normalized intermediate result is adjusted by adding 192.

3. The double-precision bias of 1023 is added to the exponent.

4. The biased exponent is reduced to 11 bits by ANDing with x‘7FF’.

5. The adjusted rounded result is placed into the target FPR.

6. FPSCR[FPRF] is set to indicate a normalized number.

If FPSCR[OE] is enabled and an overflow occurs, the contents of the result register and the FPSCR status 
are not defined for scalar SP instructions. The hardware takes the following actions:

1. Overflow exception is set, FPSCR[OX] = ‘1’.

2. The exponent of the normalized intermediate result is adjusted by subtracting 192.

3. The double-precision bias of 1023 is added to the exponent.

4. The biased exponent is reduced to 11 bits by ANDing with x‘7FF’.

5. The adjusted rounded result is placed into the target FPR.

6. FPSCR[FPRF] is set to indicate normalized number.

4.3.6 Handling of Denormal Single-Precision Values in Double-Precision Format

Unlike previous generation processors, such as the POWER8 processor, the POWER9 processor is capable 
of handling denormal single-precision values as inputs for all subsequent instructions. Whereas, in some 
cases, the POWER8 processor takes a soft-patch interrupt to allow the interrupt handler to reformat the input 
operands to a double-precision format and then re-execute the instruction, the POWER9 processor simply 
executes normally regardless of how that number was produced. 

4.3.7 Floating-Point Invalid Forms and Undefined Conditions 

The results of executing an invalid form of a floating-point instruction or an instance of a floating-point instruc-
tion when the architecture specifies that some results are undefined are described in the following list (for the 
cases when executing an instruction does not cause an exception). 

• Scalar single-precision instructions with operands not representable in single-precision format. 
See Section 4.3.5 Heterogeneous Precision Arithmetic on page 61.

• Instructions with reserved fields. 
Bits in reserved fields are ignored. The results of executing an instruction when one or more reserved bits 
are ‘1’ is the same as if the bits were ‘0’.

• Load or store floating-point with update instructions (RA = 0). 
EA is placed into R0.

• Floating-point store single instructions (exponent < 874 and FRS[9:31] less than or greater than ‘0’). 
The value placed in storage is a ‘0’ with the same sign as the value in the register.

• Scalar floating-point instructions. 
VSR[64:127] is set to x‘0000_0000_0000_0000’.
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• Scalar convert to integer word instructions (xscvdpuxws, xscvdpsxws, fctiwuz, fctiwz, ctiwu, fctiw). 
VSR[0:31] is set to VSR[32:63].

• VSX scalar convert from double-precision to single-precision (xscvdpsp, xscvdpspn). 
VSR[32:63] is set to VSR[0:31].

• Scalar convert to integer instructions. 
FPSCR[FPRF] is set to ‘00000’.

• VSX vector convert from double-precision to single-precision (xvcvdpsp). 
VSX vector convert double-precision to integer word (xvcvdpsxws, xvcvdpuxws). 
VSX vector convert from integer doubleword to single-precision (xvcvsxdsp, xvcvuxdsp).

VSR[32:63] is set to VSR[0:31]. 
VSR[96:127] is set to VSR[64:95].

• Move from FPSCR instruction. 
FRT[0:63] is set to FPSCR[0:63] with the first 29 bits set to zero.

• Scalar reciprocal estimate instructions: fre, fres, xsredp, xsresp, frsqrte, frsqrtes, xsrsqrtep,  
xsrsqrtesp. 
FPSCR[FR] and FPSCR[FI] are set to ‘0’ and FPSCR[XX] is unchanged, even if an overflow exception 
occurs.

• VSX vector floating-point reciprocal estimate instructions: xvredp, xvresp, xvrsqrtedp, xvrsqrtesp. 
FPSCR[XX] is unchanged, even if an overflow exception occurs.

• Disabled overflow exception (OX = ‘1’, OE = ‘0’).  
For divide and square root instructions, FPSCR[FR] is set to ‘1’ if the result is rounded to ±∞, and set to ‘0’ 
if the result is rounded to the largest representable number. For scalar reciprocal estimate instructions, 
FPSCR[FR] is set to ‘0’. For all other instructions, FPSCR[FR] is set to ‘1’ if a disabled overflow exception 
occurs.

• Decimal floating-point quad instructions, where an odd target or source register is specified, are consid-
ered invalid forms. The POWER9 core always ignores the low-order VSR bit number and addresses the 
even-odd resulting register pair. This applies to both the source and target register pairs.

• For cacheable (I = 0) memory accesses, the POWER9 core implements the load vector element instruc-
tions the same as lvx (same as the POWER8 core). Thus, those bytes in the target VSR that are unde-
fined in the Power ISA for the load vector element instructions contain the value that would be written 
there if an lvx instruction was executed instead. For non-cacheable memory accesses, the load vector 
element instructions are implemented as described in the Power ISA (Version 3.0B). Note that in terms of 
Data Address Watchpoint Register (DAWR) match criteria, a match will only occur for the bytes specified, 
as written to the target VSR by the Power ISA, regardless of whether the access is to cacheable or non-
cacheable storage.

• For the VSX scalar loads, the Power ISA defines the right-most elements of the target vector-scalar regis-
ter as undefined. For the POWER9 core, these bits are written with zero.

• VSX load and store vector with length (lxvl, stxvl, lxvll, stxvll) specify the number of bytes to load in 
RB[0:7]. The architecture requires RB[8:63] to be equal to zero. For these instructions, for effective 
address calculation purposes, the hardware will discard the upper 8 bits of RB in computing the effective 
address EA; cycle time does not permit for zeroing out RB[8:63]. Therefore, the result of the address gen-
eration is: EA = RA[0:63] + RB[8:63].

• Because the binary floating-point registers (FPRs) are mapped to the vector-scalar registers 0 - 31 in the 
Power ISA, the rightmost doubleword is updated with zero whenever a binary or decimal floating-point 
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instruction writes the target FPR. This behavior applies to any binary or decimal floating-point instruction 
that writes an FPR, not just loads.

4.4 Optional Facilities and Instructions

There are no POWER Architecture optional facilities or instructions implemented. 

4.5 Little-Endian Mode

The POWER9 core supports true little-endian mode. Byte swapping is performed before data is written to the 
I-cache and before data is fetched into the execution units; that is, between the D-cache and the execution 
units (for example, GPR, FPR/VR/VSR).

The load and store multiple instructions and the move-assist instructions are not supported in little-endian 
mode. Attempting to execute any of these instructions in little-endian mode causes the system alignment 
error handler to be invoked.

4.6 Book II - Virtual Environment Architecture

4.6.1 Cache

The POWER9 core supports a coherence block size of 128-bytes that is commonly referred to as a cache 
line.

The POWER9 chip contains three levels of cache hierarchy. All the caches (L1 I-cache, L1 D-cache, and the 
L2 and L3 caches) are dynamically shared among all the threads on a core. A cache block might be installed 
by one thread and used by the other threads (as long as the architecture rules pertaining to transactional 
accesses permit the sharing). The basic coherence block size for the POWER9 core is 128 bytes.

The POWER9 chip automatically maintains the coherency of all data cached in these caches. The L1 cache 
employs Harvard cache organization, with separate L1 I-cache and L1 D-cache. L2 and L3 caches are 
unified. Because some levels of the cache hierarchy contain both instructions and data, when an instruction 
cache reload request is serviced by the L2 and/or the L3 caches, it is done so in a coherent manner.

The processor keeps the instruction storage consistent with the data storage. All cache lines in the L1 I-cache 
and L1 D-cache are also present in the L2 cache (inclusive property maintained). Instruction fetches to lines 
previously written by transactional stores executing from any thread will cause the hardware to fail the trans-
action.

The L1 I-cache is 8-way set associative and is indexed with five effective address bits (EA[51:55]). A partic-
ular physical block of memory with a given real address can be found in one of two positions in the L1 
I-cache. The tag comparison associated with lookups in this cache (as well as all other caches in the system) 
are done using physical addresses, so that there are no synonym or alias hazards that must be explicitly 
handled by the system software.
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The L1 D-cache is 8-way set associative and is indexed with five effective address bits (EA[52:56]). A partic-
ular physical block of memory with a given real address can only be found at a particular location in the L1 
D-cache. On each access, the tag comparison is done with the physical address. On a cache miss, the cache 
reload mechanism searches the other seven related sets to determine if the required real address block is 
located elsewhere in the cache, and if so, it appropriately eliminates these copies.

In addition to maintaining caches, the POWER9 chip also includes several types of queues that act as logical 
predecessors and extensions to the caches. In particular, the machine contains store queues for holding 
store data above the caches, cast-out queues for holding modified data that has been pushed out of the 
caches (by the replacement algorithm, cache control instructions, or snoop requests), and others. All of these 
queues are maintained coherent by the hardware. In general, their presence should not be observable by 
either software or system hardware.

4.6.2 Classes of Instructions

The POWER9 core implements all of the Book II instructions as described in the following subsections.

4.6.2.1 Instruction Cache Block Touch Instruction 

The POWER9 core also supports the instruction cache block touch (icbt) instruction by mapping it to dcbtst 
to prefetch a 128-byte line into the L2 cache.

4.6.2.2 Instruction Cache Block Invalidate (icbi) 

The POWER9 core implements a split instruction/data (I/D) L1 cache where both caches are kept coherent 
with the L2 cache. Whenever any modification is made to the cache lines contained in the L2 cache, the L2 
invalidates the copies in the L1 I-caches. Because of this, after an icbi instruction is translated, the processor 
core converts it to a NOP and does not broadcast the cache line targeted by the icbi instruction as the archi-
tecture stipulates. As a result of this and other implementation-specific design optimizations, instead of 
requiring the instruction sequence specified by the Power ISA to be executed on a per cache-line basis, soft-
ware must only execute a single sequence of three instructions to make any previous code modifications 
become visible: sync, icbi (to any address), isync.

4.6.2.3 Instruction Cache Synchronize (isync) 

As a performance optimization, the POWER9 core internally tracks and scoreboards icbi instructions that are 
required to be synchronized by the isync instruction. When the isync instruction is executed, this scoreboard 
bit is checked to see whether or not the machine must flush and refetch the instructions following the isync.

4.6.2.4 Vector Category Prefetch Instructions (dss, dst, and dstst)

The vector category data stream instructions dss, dst, and dstst are implemented as NOPs. 

Instruction cache block invalidate

Instruction cache synchronize

Data stream stop 

Data stream touch

Data stream touch for store
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4.6.2.5 Data Cache Block Touch Instructions (dcbt and dcbtst)

The data cache block size for dcbt and dcbtst on the POWER9 core is 128 bytes.

With the exception of trace interrupts, these instructions do not take interrupts. That means, if they miss either 
the SLB (for HPT translation) or the page table, or they encounter some other type of translation related 
exception condition, no interrupt will be reported. This property applies regardless of which TH value is spec-
ified. Other details that are unique to specific TH values are documented in the following sections.

In general, the dcbt and dcbtst instructions check the state of the L1 D-cache; and if the address block is not 
present, it initiates a reload. Note that this might also reload the L2 cache and/or the L3 cache with the 
addressed block if it is not already present in these caches. If the address block is already present in the L1 
D-cache, the cache content is not altered. If the dcbt or dcbtst instruction does reload the address blocks, it 
affects the state of the cache replacement algorithm bits.

The dcbt and dcbtst instructions largely perform their intended operation independent of MSR state bits 
such as HV, PR or DR. In other words, they perform their intended function as described in the Power ISA 
(Version 3.0B) whether translation is enabled or disabled. Reference bit updates vary by TH value as 
described in the various sections that follow. Change bits are never set in PTEs by either dcbt or dcbtst 
instructions regardless of the TH value.

The POWER9 core implements the optional extension to the dcbt instruction that enables software to directly 
engage a data stream prefetch from a particular address (see Section 4.6.2.11 Data Cache Block Touch - 
Transient (TH = ‘10000’) on page 67).

4.6.2.6 Data Cache Block Touch Instructions (dcbt and dcbtst) - Single Cache Line (TH = ‘00000’)

The dcbt and dcbtst instructions operate on a single 128-byte cache (address) block specified by the effec-
tive address of the storage operand. The dcbtst instruction operates exactly the same way as the dcbt 
instruction.

These instructions act as a touch for the D-cache hierarchy, ERAT and the TLB independent of MSR state 
bits such as HV, PR, and DR. If data translation is enabled (MSR[DR] = ‘1’) and an SLB miss results, the 
instruction is treated as a NOP. For HPT translation, if a TLB miss results, the instruction reloads the TLB 
(and sets the reference bit if it is not already set). For Radix translation, if a TLB miss results, the instruction 
reloads the D-cache hierarchy, ERAT and TLB if the reference bit is already set. However, if the reference bit 
is not already set, the instruction will be treated as a no-op and the D-cache hierarchy, ERAT and TLB will not 
be reloaded. 

Once past translation, if the page protection attributes prohibit access, the page is marked cache inhibited or 
the page is marked guarded, the instruction is finished as a no-op and does not reload the cache. Otherwise, 
the instruction checks the state of the L1 D-cache, and if it is not present, it initiates a reload as described in 
Section 4.6.2.5 Data Cache Block Touch Instructions (dcbt and dcbtst).

4.6.2.7 Data Cache Block Touch - Invalid TH Forms (TH = ‘00001’ through TH = ‘00111’)

The POWER9 core treats dcbt and dcbtst for the invalid TH values of ‘00001’ through ‘00111’ the same as 
TH = ‘00000’. They do go through translation and they do set reference bits.

Data cache block touch

Translation Lookaside Buffer
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4.6.2.8 Data Cache Block Touch Data Stream (TH = ‘01000’)

The POWER9 core treats dcbt and dcbtst with a TH value of ‘01000’ as described in the Power ISA (Version 
3.0B). For HPT translation, reference bits will not be set. For Radix translation, atomic PTE update interrupts 
will not occur.

4.6.2.9 Data Cache Block Touch Data Stream Descriptor (TH = ‘01010’)

The POWER9 core treats dcbt and dcbtst with a TH value of ‘01010’ as described in the Power ISA (Version 
3.0B). For HPT translation, reference bits will be set and instruction execution proceeds as described in the 
Power ISA (Version 3.0B). For Radix translation, atomic PTE update interrupts will not occur. If the reference 
bit is already set in the PTE, the instruction reloads the TLB. However, if the reference bit is not already set, 
the instruction will be treated as a nop and the D-cache hierarchy, ERAT and TLB will not be reloaded. 

4.6.2.10 Data Cache Block Touch Data Stream Stride Descriptor (TH = ‘01011’)

The POWER9 core treats dcbt and dcbtst with a TH value of ‘01011’ as described in the Power ISA (Version 
3.0B). For HPT translation, reference bits will be set and instruction execution proceeds as described in the 
Power ISA (Version 3.0B). For Radix translation, atomic PTE update interrupts will not occur. If the reference 
bit is already set in the PTE, the instruction reloads the TLB. However, if the reference bit is not already set, 
the instruction will be treated as a nop and the D-cache hierarchy, ERAT and TLB will not be reloaded.

4.6.2.11 Data Cache Block Touch - Transient (TH = ‘10000’)

The POWER9 core implements the load and store version of the following transient touch instructions: 
dcbtct, dcbtds, dcbtt, dcbtstct, and dcbtstt. The transient property of a cache line is retained in the L3 
cache for both the load and store version of the transient touch instructions. The transient property of a cache 
line is retained in the L2 cache for the load version of the transient touch instruction for the case that the line 
is loaded but not stored into it. In this transient state, the transient line becomes the most likely cache line in 
its congruence class to be replaced next, thus preserving the other cache lines in that congruence class. This 
behavior is useful if it is known that a set of lines will be loaded or stored with a low probability for temporal 
cache reuse and it is desirable that they be as minimally intrusive to the cache as possible (for example, 
displacing as few lines in the cache as possible). Reading or writing a large array with the help of transient 
touch instructions only impacts one of the eight sets in the L3 cache. Reading a large array with the help of 
transient touch instructions only impacts one of the eight sets of the L2 cache.

For HPT translation, reference bits will be set and instruction execution proceeds as described in the Power 
ISA (Version 3.0B). For Radix translation, atomic PTE update interrupts will not occur. If the reference bit is 
already set in the PTE, the instruction reloads the TLB. However, if the reference bit is not already set, the 
instruction will be treated as a no-op and the D-cache hierarchy, ERAT and TLB will not be reloaded.
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4.6.2.12 Data Cache Block Touch - No Access Needed Anymore (TH = ‘10001’)

The POWER9 core supports this instruction as specified in the Power ISA. For HPT translation, reference bits 
will be set and instruction execution proceeds as described in the Power ISA (Version 3.0B). For Radix trans-
lation, atomic PTE update interrupts will not occur. If the reference bit is already set in the PTE, the instruction 
reloads the TLB. However, if the reference bit is not already set, the instruction will be treated as a nop and 
the D-cache hierarchy, ERAT and TLB will not be reloaded.

4.6.2.13 Data Cache Block Zero (dcbz)

The data cache block size for dcbz on the POWER9 core is 128 bytes.

The function of dcbz is performed in the L2 cache. As a result, if the block addressed by the dcbz is present 
in the L1 D-cache, the block is invalidated before the operation is sent to the L2 cache logic for execution. The 
L2 cache gains exclusive access to the block (without actually reading the old data) and performs the zeroing 
function in a broadside manner.

If the cache block specified by the dcbz instruction contains an error (even one that is not correctable with 
ECC), the contents of all locations within the block are set to zeros in the L2 cache. If the specified block in 
the L2 cache does not contain a hard fault, a subsequent load from any location within the cache block 
returns zeros and does not cause a machine-check interrupt. 

If the block addressed by the dcbz instruction is in a memory region marked cache inhibited, or if the L1 
D-cache or L2 cache is disabled, the instruction causes an alignment interrupt to occur.

4.6.2.14 Data Cache Block Store (dcbst)

The data cache block size for dcbst on the POWER9 core is 128 bytes.

The dcbst instruction has no direct effect on the L1 D-cache (because it is store-through and it never 
contains modified data). The dcbst instruction also has no direct effect on the L2 cache or L3 cache (both of 
these are kept coherent with memory and I/O, so that nothing special must be done). As a result, the instruc-
tion simply goes through address translation, reports any errors, and is completed. The instruction is not sent 
to the storage subsystem, and consequently it does not broadcast any transactions onto the inter-processor 
SMP interconnect.

4.6.2.15 Data Cache Block Flush (dcbf, dcbfl, and dcbflp)

The data cache block size for dcbf, dcbfl, and dcbflp on the POWER9 core is 128 bytes.

The POWER9 core supports dcbf (L = 0), dcbfl (dcbf with L = 1), and dcbflp (dcbf with L = 3) as specified 
in the Power ISA.

Error correcting code
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4.6.2.16 Key Aspects of Storage Control Instructions

In the POWER9 core, all cache control instructions operate on aligned 128-byte sections of storage. Table 4-3 
summarizes many of the key aspects of the storage control instructions.

4.6.2.17 Copy/Paste Instructions

As stated in the Power ISA (Version 3.0B), the copy instruction is only permitted to read from local address 
space. The paste instruction is only permitted to write to foreign address space. See Section 4.9.2 Foreign 
Address Space Definition and Accessibility on page 96 for the definition of local versus foreign address 
space. 

4.6.2.18 Near Memory Instruction Support

The POWER9 processor supports the Atomic Memory Operation (AMO) instructions as described in the 
Power ISA (Version 3.0B). For details regarding when AMOs take alignment interrupts, see Section 4.1.4 
Storage Access Alignment Support Overview on page 54.

Table 4-3. Storage Control Instructions   

Aspect
Book II Cache Instructions

icbi dcbt icbt/dcbtst dcbz dcbst dcbf/dcbfl

Granularity 128 bytes 128 bytes 128 bytes 128 bytes 128 bytes 128 bytes

Semantic checking
load

(DSI on storage 
exception)

load
(NOP on storage 

exception)

load
(NOP on storage 

exception)

store
(DSI on storage 

exception)

load
(DSI on storage 

exception)

load
(DSI on storage 

exception)

“r” bit update yes yes yes yes yes yes

“c” bit update no no no yes no no

L1 I-cache effect
see 

Section 4.6.2.3 
on page 65

none none none none none

L1 D-cache effect none
see 

Section 4.6.4.8 
on page 74

see 
Section 4.6.4.8 

on page 74

as define in 
architecture NOP as define in 

architecture

L2 cache effect none
see 

Section 4.6.4.8 
on page 74

see 
Section 4.6.4.8 

on page 74

see 
Section 4.6.2.13 

on page 68

see 
Section 4.6.2.14 

on page 68

see 
Section 4.6.2.15 

on page 68

L3 cache effect none
see 

Section 4.6.4.8 
on page 74

see 
Section 4.6.4.8 

on page 74

see 
Section 4.6.2.13 

on page 68

see 
Section 4.6.2.14 

on page 68

see 
Section 4.6.2.15 

on page 68

TLB effect reload as required reload as required reload as required reload as required reload as required reload as required

SLB effect reload as required
None 

(NOP if miss)
None 

(NOP if miss)
reload as required reload as required reload as required

Segment lookaside buffer
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4.6.2.19 Wait Instruction

The wait instruction is implemented as described in the Power ISA (Version 3.0B). However, in addition to 
waking a thread up from the wait state via an interrupt or event-based branch, the thread can also be 
removed from the wait state via a VAS_notify command sent on the SMP interconnect fabric generated by 
the Virtual Accelerator Switchboard when there is work for the thread to perform. See Section 12.3 Core-Core 
Wakeup Via ASB_Notify on page 202 for additional information.

See Section 4.9.2 Foreign Address Space Definition and Accessibility on page 96 for the definition of local 
versus foreign address space. 

4.6.3 Storage Model

4.6.3.1 Storage Access Ordering

The architecture defines a weakly ordered storage model for most types of storage access scenarios. For 
these cases, the POWER9 processor takes advantage of this relaxed requirement to achieve better perfor-
mance through out-of-order instruction execution and out-of-order bus transactions. As a result, if strongly-
ordered storage accesses are required, software must use the appropriate synchronizing instruction (sync, 
ptesync, eieio, or lwsync) to enforce order explicitly, or perform these accesses to pages marked with 
address translation attributes that require the hardware to enforce strong ordering as defined in Power ISA 
Operating Environment Architecture - Book III (version 3.0B).

In hypervisor real mode, the POWER9 core employs the page-based Real Mode Storage Control (RMSC) 
facility described in Power ISA Operating Environment Architecture - Book III (version 3.0B). 

In any addressing mode, stores to storage marked as non-guarded, can be performed out-of-order. Stores to 
storage marked as guarded, cannot be performed out-of-order.

4.6.3.2 Atomicity

The POWER9 core is fully compliant with the architectural requirement for single-copy atomicity on naturally 
aligned cacheable storage accesses. This includes the quadword data atomicity associated with the lq, lqarx, 
stq, and stqcx. instructions. Additional information regarding which instruction accesses are performed 
atomically are described in Section 4.1.5.1 Fixed-Point Load and Store Multiple Instructions on page 56 and 
Section 4.3.4 Floating-Point Load and Store Instructions on page 61.

Furthermore, transactional mode accesses executed by a given thread appear to execute atomically to all 
other threads in the system. For more information on transactional mode accesses, see Section 4.6.4 Trans-
actional Memory on page 71.

4.6.3.3 Atomic Updates and Reservations

Atomic accesses can be performed using the load and reserved and store conditional family of instructions. In 
the Power ISA Virtual Instruction Set Architecture - Book II (version 3.0B), the load and reserve instructions 
are: lbarx, lharx, lwarx, ldarx and lqarx. The store conditional instructions are: stbcx., sthcx., stwcx., 
stdcx., and stqcx. While these instructions differ in the size of the operand read or written, in regards to the 
establishment or clearing of a reservation, all of the instructions operate on the same size reservation 
granule. The reservation granule size in the POWER9 core is 128 bytes. There is at most one reservation per 
thread at any point in time.



User’s Manual 
OpenPOWER

 POWER9 Processor

Version 2.1 
10 October 2019 
 

Power Architecture Compliance

Page 71 of 508

Note:  The load and reserve instructions and store conditional instructions are generically referred to as larx 
and stcx in the remainder of this document.

4.6.4 Transactional Memory

Similar to the POWER8 chip, the POWER9 chip supports the transaction memory (TM) facility as described 
in the Power ISA Virtual Instruction Set Architecture - Book II (version 3.0B). The transaction memory facility 
can increase the scalability of multi-threaded applications, reduce the latency of synchronization operations, 
improve programmability for the developers of multi-threaded applications, and enable speculative optimiza-
tions by programmers and compilers through support for fast checkpoint and rollback of the architectural 
state. Applications that have not been heavily tuned to implement fine-grain locking can better use the large 
number of available cores, while improved latency of synchronization operations require less fine-tuning of 
multi-threaded code.

The transactional memory facility is controlled by using a set of instructions in the POWER instruction set. 
Programmers and compilers can selectively mark a sequence of instructions that appear to execute atomi-
cally with respect to other processors and devices. These atomic sequences are called transactions, and can 
be used to write shared memory applications with fewer sources of lock contention, while avoiding the perfor-
mance cost and software development cost burdens of the memory barriers required by the existing weak 
POWER memory model. A transactional sequence is initiated using a tbegin instruction, and committed 
using a tend instruction. A transaction can be intentionally aborted through the execution of an unconditional 
or conditional tabort instruction within a transaction. A transaction can also fail for a variety of other reasons; 
for example, due to conflicting access with another thread. Upon failure, all transactional updates to memory 
are nullified, Book I registers are reverted to their pre-transaction values, and control flow is redirected to a 
software-defined failure handler associated with each transaction.

The POWER9 transactional memory facility also includes support for the handling of exception conditions 
and debugging through the use of suspend mode. Upon the taking of any interrupt during transactional mode, 
transactional execution is suspended. Memory accesses performed while the thread is operating in suspend 
mode occur according to the conventional POWER storage model. They are not part of the transaction’s 
atomic access, nor are they discarded should the transaction abort. Transactions can also be directly 
suspended and resumed using a tsr instruction. Through this suspension mechanism, it is possible to 
support a mixture of transactional and nontransactional code, allowing for a variety of uses, from simple 
printf debugging within a transaction, to transactional operating system services, to an inter-thread signaling 
mechanism for distributed commit of a set of transactions.

4.6.4.1 TDOOMED

The Power ISA (Version 3.0B) defines the TDOOMED bit to be an indication as to whether or not a given 
transaction has failed. The value of the TDOOMED bit is determined by executing the tcheck instruction. In 
transactional and suspended states, the tcheck instruction returns the value of TDOOMED as described in 
the Power ISA (Version 3.0B). However, the Power ISA (Version 3.0B) states that the value of TDOOMED is 
undefined in the non-transactional state. 
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4.6.4.2 Transactional Lock Elision and Increased Scalability

Eliminating lock contention is one of the primary uses of the transactional memory facility. Through transac-
tion lock elision (TLE), conventional locking algorithms for mutual exclusion are augmented with code that 
first attempts to speculatively execute the critical section as a transaction. Such speculation has a number of 
advantages compared to a conventional lock. If the data protected by the lock is rarely contended, it is prob-
able that multiple threads will be able to concurrently execute the critical section. The false contention on the 
lock variable is then avoided. In the event that the data is contended, the transaction fails and a failure 
handler can acquire the lock as would happen in the absence of TLE. After collecting a history of transaction 
failure rates, software can adaptively disable transactions for a critical section known to be a source of exces-
sive transactional conflicts. It is important to realize that when transactions are used as described previously, 
the transactional code sequence must still check for the presence of a lock in the event that another thread is 
performing the atomic accesses using conventional lock-based methods.

4.6.4.3 Reduced Latency of Synchronization Operations

For some applications, gains from the transactional memory facility come from increased concurrency. 
Others that have frequent synchronization can benefit from the reduced latency of synchronization imple-
mented using transactional memory. Because a conventional lock acquire and release sequence requires 
larx, stcx, isync, and lwsync instructions, while a TLE-enabled lock requires only a tbegin and tend instruc-
tion, some applications might observe better performance due to the lower total latency required to execute 
these sequences.

4.6.4.4 Improved Programmability

In addition to these performance benefits, the transactional primitives also improve the programmability of 
POWER systems in the following ways: 

• Emerging transactional programming model. While still in its infancy, this programming model is emerg-
ing, with support in compilers already widespread. Hardware acceleration of the programming model is 
expected to provide a competitive advantage for POWER systems to applications written to this interface.

• Shared memory programming without memory barriers. A burden to novice programmers, as well as 
independent software vendors (ISVs) porting existing code to the POWER platform, the POWER memory 
model requires significant thought in determining the correct sequence of memory barriers to be used in 
different situations. With the use of the transactional memory primitives, updates to shared memory can 
be encapsulated in a transaction, and the intricacies of the weak memory model can be largely ignored.

• Lock-free algorithms. Existing lock-free algorithms are limited by the width of memory atomically read and 
updated by larx and stcx. The transactional memory facility provides new flexibility with the ability to 
atomically modify a set of non-contiguous memory locations.

4.6.4.5 Rollback-Only Transaction Enablement of Speculative Optimizations

As described in Power ISA Virtual Instruction Set Architecture - Book II (version 3.0B), the tbegin instruction 
can be used to specify that a rollback-only transaction (ROT) can be used for purposes that do not require 
accesses to shared storage. While all of the previously described uses of the transactional memory facility 
leverage its ability to atomically perform a set of shared memory operations with respect to other threads, its 
support of architectural state checkpoint and rollback is also useful in its own right, as an enabler of specula-
tive optimization.
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Figure 4-1 illustrates two examples of speculative optimizations where a piece of code is speculatively trans-
formed, with support from hardware-based checkpoint and rollback. In Figure 4-1(A), a set of hot basic blocks 
(a, b, c, f) are co-located and subsequently optimized, scheduling instructions across basic block boundaries 
(labeled “aggressive”), while the original version of the code is retained (labeled “backoff”). In Figure 4-1(B), a 
matrix is copied in column-major form, which leads to significant cache misses given the non-trivial size of “n” 
because each iteration of the inner loop will be touching a different cache line. Because transforming the 
code to use row-major form can cause exceptions, a simple transformation is not allowed by many 
languages. Instead, a compiler must rely on a speculative transformation; in the absence of exceptions, the 
transformation is correct; otherwise, the original version of the code must be executed.

Although both of these transformations can be implemented without hardware support, the bookkeeping that 
is necessary to enable the successful rollback of architectural state in the case of an exceptional event would 
likely cause overhead that exceeds any gains from the optimization. With the support of the transactional 
memory facility, each speculative sequence can be wrapped in a ROT. Should an exceptional event occur, 
transaction abort can be initiated by a tabort instruction and the nonspeculative version of the code immedi-
ately called.

4.6.4.6 Transactional Memory Footprint Capacity

Details regarding the transactional memory footprint capacity can be found in Section 6.6 Transactional 
Memory Support on page 163.

4.6.4.7 Implementation-Specific Failure Causes

The Transaction Exception and Status Register (TEXASR) is used to record various failure conditions that 
are described in the Power ISA. In addition, TEXASR[15] is used to specify various implementation-specific 
transaction-failure causes that are not architected. The POWER9 processor sets TEXASR[15] = ‘1’ for the 
following reasons (implementation-specific transactional failure causes):

Figure 4-1. Speculative Optimizations 
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• Instruction fetch to caching-inhibited page in transactional mode

• Recovery in transactional or suspend mode

• Quiesce request in transaction or suspend mode

The persistent bit is set to ‘0’ for all of these cases.

4.6.4.8 Effects of Cache and Translation Management Instructions on Transactional Accesses

Table 4-4 lists how certain cache, SLB, and TLB management instructions affect transactions.

Table 4-4. Cache, SLB, and TLB Management Instruction Effects on Transactional Accesses  (Sheet 1 of 2)

Mode 

Instruction TM State Fails Transaction TEXASR Bit Set

slbmte T Always 8 - disallowed

slbmte S Never N/A

slbia T Always 8 - disallowed

slbia S Never N/A

slbie T Always 8 - disallowed

slbie S Never N/A

slbieg T Always 8 - disallowed

slbieg S When the virtual address it is attempting to invalidate 
hits in the SLB bloom filter for the current transaction 14 - translation invalidation conflict

tlbie T Always 8 - disallowed

tlbie S When the virtual address it is attempting to invalidate 
hits in the TLB bloom filter for the current transaction 14 - translation invalidation conflict

tlbiel T Always 8 - disallowed

tlbiel S Never N/A

dcbt (any TH) T Never (unless it causes a castout of the TM footprint) 10 - footprint overflow

dcbt (any TH) S Never (unless it causes a castout of the TM footprint) 10 - footprint overflow

dcbst T Always 8 - disallowed

dcbst S Never (dcbst is treated as a NOP in this case) 11 - self-induced conflict

dcbf (L = 0, 1) T Always 8 - disallowed

dcbf (L = 0, 1) S When the block (line) being pushed out of the cache is 
part of the TM footprint 11 - self-induced conflict

dcbf (L = 3) T Always 8 - disallowed

dcbf (L = 3) S Never N/A

dcbz T Never (unless dcbz causes a castout of the TM foot-
print) N/A 

dcbz S

Case 1: When the block (line) being zero’ed is part of 
the TM footprint
Case 2: When the dcbz causes a castout of the TM 
load or store footprint

Case 1: 11 - self-induced conflict
Case 2: 11 - footprint overflow
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4.6.5 Storage Ordering/Barrier Instructions

4.6.5.1 sync Instruction

The POWER9 design achieves high performance by exploiting speculative out-of-order instruction execution. 
The heavyweight sync (hwsync) instruction, as defined in the architecture, acts as a serious barrier to this 
type of aggressive execution and therefore, can have a dramatic effect on performance. Although the 
POWER9 core has optimized the performance of hwsync to some degree, care should be exercised in the 
indiscriminate use of this instruction. As a performance consideration, software should attempt to use the 
lightweight version of sync (often referred to as lwsync in this document) whenever possible. Unless other-
wise stated, sync refers to hwsync.

The POWER9 core implements the ptesync for use in synchronizing both segment and page table updates 
as described in the Power ISA Operating Environment Architecture - Book III (version 3.0B).

See the Power ISA Virtual Instruction Set Architecture - Book II (version 3.0B) and Power ISA Operating 
Environment Architecture - Book III (version 3.0B) for a complete description of the different forms of the 
sync instruction.

4.6.5.2 eieio Instruction

The POWER9 core implements the eieio instruction as described in the Power ISA.

In the POWER9 nest logic, the store queues above the L2 cache attempt to gather sequential cacheable and 
cache-inhibited store operations to improve bandwidth. If this behavior is not required, software must insert 
either an eieio (preferable for performance) or a sync to prevent it.

4.6.5.3 miso Instruction

The POWER9 core implements the miso instruction as a NOP. It has no effect on the execution of stores.

dcbtst T Never (unless dcbtst causes a castout of the TM  
footprint) 10 - footprint overflow

dcbtst S Never (unless dcbtst causes a castout of the TM  
footprint) 10 - footprint overflow

icbi T Always 8 - disallowed

icbi S Never (icbi is treated as NOP with regards to transac-
tion failure in suspend mode) N/A

icbt T Never (unless icbt causes a castout of the TM  
footprint) 10 - footprint overflow

icbt S Never (unless icbt causes a castout of the TM  
footprint) 10 - footprint overflow

Table 4-4. Cache, SLB, and TLB Management Instruction Effects on Transactional Accesses  (Sheet 2 of 2)

Mode 

Instruction TM State Fails Transaction TEXASR Bit Set
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4.6.5.4 Transactional Memory Instructions

In general, the POWER9 core implements the transactional memory instructions as described in the Power 
ISA Virtual Instruction Set Architecture - Book II (version 3.0B). The POWER9 core does not however imple-
ment the tbegin instruction as having an implicit memory barrier as described in the Power ISA. Instead, the 
hardware applies the barrier effects described in the Power ISA as belonging to the tbegin instruction to the 
tsr (tsuspend and tresume) instructions. In addition, the POWER9 core uses hypervisor software to fully 
implement suspending and resuming transactions. This assistance is transparent to non-hypervisor software. 
The tend instruction and all the conditional and unconditional tabort instructions have the associated barrier 
functions as described in the Power ISA Virtual Instruction Set Architecture - Book II (version 3.0B).

4.6.6 Data Prefetch 

The POWER9 core provides an aggressive hardware-based data-prefetching engine that is designed to work 
well for stride-one technical workloads with up to eight streams. The eight streams can be dynamically shared 
among all of the threads. The POWER9 core implements enhanced data prefetching (edcbt instruction), 
where each thread can employ up to eight software-initiated streams in ST mode, four in SMT2 mode, and 
two in SMT4 mode. 

The POWER9 core uses an adaptive prefetch mechanism, which employs L3 nest feedback and long-term 
averaging to automatically reduce prefetch aggressiveness and increase performance in areas where 
prefetch consumption or memory bandwidth is low. 

The POWER9 core supports instruction cache block touch (icbt) by mapping it to dcbtst to prefetch into the 
L2 cache.

The POWER9 core also allows problem state access to DSCR[58], which turns off hardware load-stream 
prefetching.

4.6.7 Timer Facilities

Time Base

Time base is designed to tick at the rate of time-of-day (TOD). In other words, bit 59 of the Time-Base 
Register increments at the 32 MHz clock. There is one time base per processor core that is shared by all the 
threads, running on a core. There is one decrementer per thread.

The POWER9 core implements two time-base modes: POWER9 time-base mode and non-POWER9 time-
base mode. They are selectable by setting a mode bit in the Time Facility Management Register (TFMR).

Time Facility Management Register

The Time Facility Management Register (TFMR) is an SPR that is accessible only in the hypervisor state. 
Executing a move to or move from TFMR in a nonhypervisor state causes a privileged interrupt. There is one 
TFMR per processor core that is shared among the threads. The TFMR is used as both a status and control 
register.
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POWER9 Time-Base Mode

The time-base function uses an external time-of-day (TOD) clock, which is independent of the processor 
frequency. This is required to support dynamic frequency variation for power management. The external TOD 
oscillator can be 16 MHz or 32 MHz. The external TOD oscillator is sampled to provide a 32 MHz step signal, 
which is distributed to all processors in the system.

Bits 0:59 of the TB are incremented at the 32 MHz frequency as provided by the distributed step signal. Bits 
60:63 of the TB are incremented at a fixed frequency of 500 MHz. If the value of bits 60:63 is ‘1111’ (satu-
rated), it is held until the 32 MHz step signal causes bit 59 to change. At that time, bits 60:63 are allowed to 
change to ‘0000’. 

To support multi-node configurations across multiple oscillator domains, error detection and recovery, and 
concurrent maintenance, the POWER9 core uses the following means of synchronizing the time bases 
across all processors.Each multicore processor chip contains a Time-of-Day (TOD) Register. The chip TOD 
registers are first synchronized across all the processor chips. Then, the time-base registers in each 
processor core are synchronized to the chip TOD. Also encoded on the step signal is a synchronization pulse 
that is used for synchronization and error checking. The synchronization mechanism requires system opera-
tions to complete within a synchronization interval. The synchronization interval can be set via the TFMR bits 
to be, for example, 1μs, 2 μs (default, corresponds to TB bit 53), 4 μs, or 8 μs.

Error checking includes parity checks on all registers, and functional checking such as missing step signal 
detection and synchronization errors. The step signal rate is defined in the POWER9 mode to be 32 MHz, 
and the logic checks for the correct number of steps for each synchronization signal (which is selected by 
TFMR). After the TB is operational, the hardware also detects a missing step signal, which requires speci-
fying in the TFMR the maximum number of processor cycles allowed without seeing a 32 MHz step signal, for 
the fastest allowable operating frequency. The TFMR maximum cycle step time-out should be specified as 
(2 × 31.25 ns) / (minimum processor cycle time in ns × 4).

The initial synchronization requires some software sequencing, which is performed by writing values to the 
TFMR (via mtspr). The TFMR also indicates the status of the various time facilities. The status bits in the 
TFMR are read-only, not modified by mtspr to the TFMR. The time facility logic implements error detection 
for hardware and also for invalid software sequencing. Because synchronized time is critical to a system, 
writes to the time base or the TFMR that would break synchronization cause the logic to enter an error state 
and trigger a hypervisor maintenance interrupt.

To initially set the time and synchronize the time-base values, software must synchronize all processors in 
the system and choose one processor to perform updates to the TFMR via a read-modify-write operation to 
preserve the other bits. This sequence assumes the external TOD oscillator distribution is already running.

After the chip TOD is running on all chips and the TB is running on the processor that drove this sequence, 
software must then release the remaining processors to synchronize their TB registers to their corresponding 
chip TOD.

4.6.8 Hypervisor Decrementer (HDEC)

There is one hypervisor decrementer register per thread. HDEC decrements every time TB bit 63 is incre-
mented. The Power ISA (Version 3.0B) defines the HDEC as a 64-bit register architecturally but states that a 
given implementation can implement fewer than 64 bits. The POWER9 implements 56 bits (that is, bits 8:63) 
of the HDEC register. The number of bits is not changeable by the LPCR[LD] value.
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4.6.9 Decrementer (DEC)

There is one decrementer register per thread. DEC decrements every time TB bit 63 is incremented. The 
Power ISA (Version 3.0B) defines the DEC as a 64-bit register architecturally but states that a given imple-
mentation can implement fewer than 64 bits. The POWER9 implements 56 bits (that is, bits 8:63) of the DEC 
register. The number of bits used in determining when a decrementer interrupt occurs is 56 bits when the 
LPCR[LD] = ‘1’ but only 32 bits when LPCR[LD] = ‘0’.

4.6.10 Book II Invalid Forms

The results of executing an invalid form of an instruction in Book II or an instance of such an instruction for 
which the architecture specifies that some results are undefined, are described here for the cases when 
executing an instruction does not cause an exception. Only results that differ from those specified by the 
architecture are described in the following list. 

• Instruction with reserved fields 
Bits in reserved fields are ignored; the results of executing an instruction in which one or more reserved 
bits are ‘1’ is the same as if the bits were ‘0’.

• Transactional memory instructions and store conditional instructions (bit 31 is ignored) 
Bit 31 of tbegin., tend., tabort., tabortwc., tabortdc., tabortwci., tabortdci., treclaim., stbcx., sthcx., 
stwcx., stdcx. and stqcx. is ignored. Bit 31 = ‘1’ or bit 31 = ‘0’ is treated the same given that other x-form 
instructions implicitly set CR and have no “non-record” form variant. Ignoring bit 31 is an acceptable way 
to handle this invalid form.

• mftb instructions 
This instruction produces the same result as the mfspr instruction. 
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4.7 Book III - Operating Environment Architecture

4.7.1 Classes of Instructions

4.7.1.1 Storage Control Instructions

The POWER9 core provides support for the following instructions:

• tlbie - TLB invalidate entry

• tlbiel - Processor local form of TLB invalidate entry

• tlbsync - TLB synchronize

• slbmte- Segment lookaside buffer move to entry

• slbmfev- Segment lookaside buffer move from entry VSID

• slbmfee- Segment lookaside buffer move from entry ESID

• slbfee.- Segment lookaside buffer find entry ESID

• slbie - SLB invalidate entry

• slbieg - SLB invalidate global

• slbsync - SLB synchronize

• slbia - SLB invalidate all

• mtmsr - Move to Machine State Register (32-bit)

• mtmsrd - Move to Machine State Register (64-bit)

• sc - System call

• scv - System call vectored

• rfscv - Return from system call vectored

• rfid - Return from interrupt doubleword

• hrfid - Hypervisor return from interrupt doubleword

The POWER9 core does not provide support for the following optional or obsolete instructions (attempted use 
of these results in a hypervisor emulation assistance interrupt):

• tlbia - TLB invalidate all

• tlbiex - TLB invalidate entry by index (obsolete)

• slbiex - SLB invalidate entry by index (obsolete)

• dcba - Data cache block allocate (Book II; obsolete)

• dcbi - Data cache block invalidate (obsolete)

• rfi - Return from interrupt (32-bit; obsolete)

The following instruction variants are implemented:

• ptesync - Page table synchronize

• hwsync - Heavyweight synchronize

• lwsync- Lightweight synchronize
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4.7.1.2 Reserved Instructions

The architecture breaks the reserved instruction class down into several categories as described in the 
Reserved Instructions appendix of the Power ISA. The POWER9 processor core behaves in the following 
manner with respect to these categories:

• The primary opcode of zero is treated as an illegal instruction.

• For the Power Architecture instructions not in the Power ISA, the POWER9 core takes a hypervisor 
emulation assistance interrupt. See a complete list in the Power ISA (Version 3.0B) appendices.

• The service processor “Attention” instruction is treated as an illegal instruction unless HID[en_attn] = ‘1’.

In addition, there are several implementation-specific registers available for access through the mtspr and 
mfspr instructions. These are described in Section 4.7.3.4 Move To/From Special Purpose Register Instruc-
tions on page 82.

4.7.2 Branch Processor

4.7.2.1 SRR1 Register

In the POWER9 processor core, the SRR1 is implemented per the Power ISA.

4.7.2.2 HSRR1 Register

In the POWER9 processor core, the HSRR1 is implemented per the Power ISA.

4.7.2.3 MSR Register

In the POWER9 processor core, the MSR is implemented per the Power ISA. All reserved bits should be set 
to ‘0’ by software.

4.7.2.4 System Call and System Call Vectored Instructions

In the POWER9 core, the system call (sc) and system call vectored (scv) instructions are implemented as 
described in Table 4-5 using primary opcode 17.

Table 4-5. System Call and System Call Vectored Invocation 

Bits [30:31] Description

‘00’ sc instruction

‘01’ scv instruction

‘10’ sc instruction

‘11’ sc instruction
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4.7.2.5 Support Processor Attention Instruction

The POWER9 processor core supports a special, implementation-dependent instruction for signaling an 
attention to the support processor.

The immediate field (I) has no effect on the operation of this instruction in the POWER9 processor core.

If HID[3] = ‘1’ (support-processor attention enable bit is set), this instruction causes all preceding instructions 
to run to completion, the machine to quiesce, and the assertion of the support processor attention signal. 
Instruction execution does not resume until the support processor signals it to do so. When setting 
HID[3] = ‘1', the I-cache must be flushed by setting HID[2] so that all Attention instructions in the I-cache see 
the effect of enabling the Attention Enable bit.

If HID[3] = ‘0’ (support-processor attention enable not set), this instruction causes a hypervisor emulation 
assistance interrupt. Note that due to some design features unique to the POWER9 core, when the hyper-
visor emulation assistance interrupt occurs, the instruction opcode saved in the Hypervisor Emulation Assis-
tance Interrupt Register (HEIR) is slightly modified and appears as x‘001E0200’ when read.

4.7.2.6 Current Instruction Address Breakpoint Register (CIABR)

The POWER9 processor core supports the CIAB Register as implemented per the Power ISA. 

4.7.3 Fixed-Point Processor

4.7.3.1 Processor Version Register (PVR)

The Process Version Register (PVR) is a 32-bit register that contains the version and revision level informa-
tion for the POWER9 core. Table 4-6 summarizes how to interpret the PVR.

Example: The PVR value for the 12-core POWER9 chip for design revision level 2.0 is: x‘004E0200’. 

00 Immediate 256 /

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Table 4-6. PVR  

Bits Field Name Description

32:47 Version Processor version number. The processor version number for the POWER9 core in both Nimbus 
and Cumulus is x‘004E’.

48:51 Chip Type

POWER9 chip scaling factor.
x‘0’ Scale out 12 cores
x‘1’ Scale out 24 cores 
x’2’ Scale up 12 cores
x’3’ Scale up 24 cores

52:55 Revision (major) Major revision level. The major processor revision level starts at x‘1’, indicating major revision ‘1’. 
Subsequent major revisions will be x‘2’, x‘3’, and so on. 

56:59 Revision (reserved) Read as zero.

60:63 Revision (minor) Minor revision level. Minor revisions are indicated in PVR[60:63]. Each major revision will reset 
the minor revision field to x‘00’ and each minor revision will increment PVR[60:63] by x‘01’. 
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4.7.3.2 Processor ID Register (PIR)

The Processor Identification Register (PIR) is a 64-bit register that holds a processor identification tag in the 
least-significant bits. This tag is used for tagging bus transactions and for processor differentiation in multipro-
cessor systems

Table 4-7 shows how to interpret the PIR values.

The PIR is a read-only register. During power-on reset, PIR is set to a unique value for each processor in a 
multiprocessor system. 

4.7.3.3 Chip Information Register (CIR)

The POWER9 processor implements the CIR per the Power ISA. 

4.7.3.4 Move To/From Special Purpose Register Instructions 

The POWER9 core supports the SPRs listed in Table 4-8 on page 83. Many of these SPRs are only acces-
sible in hypervisor or privileged modes. Additionally, some SPRs are only accessible in ultravisor privileged 
mode when the optional Secure Memory Facility (SMF) is enabled. See Section 24.3 Secure Memory Facility 
on page 326. A handful of these registers (for example, DSCR) are also user-mode accessible through a 
second SPR number.

To support multithreading, some of the SPRs are replicated in the POWER9 core, while others are shared, as 
shown in the SMT column in Table 4-8. In the table column headers, Prob indicates problem state (S = x, 
HV = x, PR = 1), Priv indicates privileged state (S = x, HV = 0, PR = 0), Hyp indicates hypervisor state  
(S = 0, HV = 1, PR = 0) and UV indicates ultravisor state (S =1, HV = 1, PR = 0). In the SPR-specific rows, 
Priv indicates that a privileged instruction type program interrupt will occur in that state for the attempted read 
or write of the SPR. Illegal indicates a hypervisor emulation assistance interrupt will occur. NOP indicates the 
instruction will be treated as a NOP. A blank under each column indicates the access will be performed 
normally. 

Table 4-7. PIR  

Bits Field Name Description

0:48 Reserved Read as zeros

49:52 Node ID Node ID. 

53:55 ChID Chip ID

56 Reserved Read as zero

57:61 CoID Core number

62:63 TID Thread ID
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Table 4-8. SPR Table  (Sheet 1 of 10)

SPR Name
Binary 
SPR 
Code

Decimal 
SPR 
Code

Thread / 
LPAR 

Replica

Length 
(bits)

Read (MFSPR) Write (MTSPR)

Prob
S = x

HV = x 
PR = 1

Priv
S = x

HV = 0
PR = 0

Hyp
S = 0

HV = 1
PR = 0

UV
S = 1

HV = 1
PR = 0

Prob
S = x

HV = x 
PR = 1

Priv
S = X

HV = 0
PR = 0

Hyp
S = 0

HV = 1
PR = 0

UV
S = 1

HV = 1
PR = 0

FPSCR

VSCR

MSR

Special SPR 0 00000 
00000

0 Illegal illegal illegal illegal illegal illegal illegal illegal

XER  00000 
00001

1 Replicated 
per PT

64

Reserved 
(MTMSR)

 00000 
00010

2

DSCR_RU
 (FSCR[61]=0)

 00000 
00011

3 Replicated 
per PT

25 FAC 
Unavail 

Intr

FAC 
Unavail 

Intr

DSCR_RU
(FSCR[61]=1)

 00000 
00011

3 Replicated 
per PT

25

Special SPR 4 00000 
00100 

4 Illegal illegal illegal illegal illegal illegal illegal illegal

Special SPR 5 00000 
00101 

5 Illegal illegal illegal illegal illegal illegal illegal illegal

Special SPR 6 00000 
00110 

6 Illegal illegal illegal illegal illegal illegal illegal illegal

LR  00000 
01000

8 Replicated 
per PT

64

CTR  00000 
01001

9 Replicated 
per PT

64

UAMR  00000 
01101

13 Replicated 
per PT

64

DSCR 
(HFSCR[61] = 0)

 00000 
10001

17 Replicated 
per PT

25 Priv FAC 
Unavail 

Intr

Priv FAC 
Unavail 

Intr

DSCR 
(HFSCR[61] = 1)

 00000 
10001

17 Replicated 
per PT

25 Priv Priv

DSISR  00000 
10010

18 Replicated 
per PT

32 Priv Priv
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DAR  00000 
10011

19 Replicated 
per PT

64 Priv Priv

DEC  00000 
10110

22 Replicated 
per VT

32 Priv Priv

SRR0  00000 
11010

26 Replicated 
per PT

64 Priv Priv

SRR1  00000 
11011

27 Replicated 
per PT

64 Priv Priv

CFAR  00000 
11100

28 Replicated 
per PT

64 Priv Priv

AMR  00000 
11101

29 Replicated 
per PT

64 Priv Priv

PIDR  00001 
10000

48 Replicated 
per PT

32 Priv Priv

IAMR 00001 
11101

61 Replicated 
per PT

32 Priv Priv

Reserved (BHRB) 00010 
00000
00010 
11111

64 - 95

TFHAR 00100 
00000

128 Replicated 
per PT

64

TFIAR 00100 
00001

129 Replicated 
per PT

64

TEXASR 00100 
00010

130 Replicated 
per PT

64

TEXASRU 00100 
00011

131 Replicated 
per PT

32

CTRL_RU  00100 
01000

136 Shared/LP
AR bit 

manipula-
tion

32 Return
Bit 63
Only

 Illegal Nop_ev Nop_ev Nop_ev

CTRL  00100 
11000

152 Shared 32 Priv Nop_ev Nop_ev Nop_ev Priv   

FSCR 00100 
11001

153 Replicated 
per PT

64 Priv Priv

UAMOR  00100 
11101

157 Replicated 
per PT

64 Priv Priv

Table 4-8. SPR Table  (Sheet 2 of 10)

SPR Name
Binary 
SPR 
Code

Decimal 
SPR 
Code

Thread / 
LPAR 

Replica

Length 
(bits)

Read (MFSPR) Write (MTSPR)

Prob
S = x

HV = x 
PR = 1

Priv
S = x

HV = 0
PR = 0

Hyp
S = 0

HV = 1
PR = 0

UV
S = 1

HV = 1
PR = 0

Prob
S = x

HV = x 
PR = 1

Priv
S = X

HV = 0
PR = 0

Hyp
S = 0

HV = 1
PR = 0

UV
S = 1

HV = 1
PR = 0
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GSR 00100 
11110

158 Priv Nop_ev Nop_ev Nop_ev Priv

PSPB 00100 
11111

159 Replicated 
per PT

32 Priv Priv

DPDES 00101 
10000

176 Per Core 8 Priv  Priv Priv_ev

DAWR0 00101 
10100

180 Replicated 
per PT

64 Priv Priv_ev HEAI 
with 

HSSR
(45)
SMF
CTRL
(D) = 1

Priv Priv_ev HEAI 
with 

HSSR 
(45)
SMF
CTRL 
(D) = 1

RPR 00101 
11010

186 Per Core 64 Priv Priv_ev Priv Priv_ev

CIABR 00101 
11011

187 Replicated 
per PT

64 Priv Priv_ev HEAI 
with 

HSSR 
(45)
SMF
CTRL 
(D) = 1

Priv Priv_ev HEAI 
with 

HSSR
(45)
SMF
CTRL 
(D) = 1

DAWRX0 00101 
11100

188 Replicated 
per PT

32? Priv Priv_ev HEAI 
with 

HSSR 
(45)
SMF
CTRL 
(D) = 1

Priv Priv_ev HEAI 
with 

HSSR
(45)
SMF
CTRL 
(D) = 1

HFSCR 00101 
11110

190 Replicated 
per PT

64 Priv Priv_ev Priv Priv_ev

VRSAVE  01000 
00000

256 Replicated 
per PT

32

SPRG3_RU  01000 
00011

259 Replicated 
per PT

64 Illegal Nop_
ev

Nop_
ev

Nop_
ev

TB  01000 
01100

268 Per LPAR 
VT

64 Illegal Nop_
ev

Nop_
ev

Nop_
ev

TBU_RU  01000 
01101

269 Per LPAR 
VT

32 Illegal Nop_
ev

Nop_
ev

Nop_
ev

SPRG0  01000 
10000

272 Replicated 
per PT

64 Priv Priv

Table 4-8. SPR Table  (Sheet 3 of 10)

SPR Name
Binary 
SPR 
Code

Decimal 
SPR 
Code

Thread / 
LPAR 

Replica

Length 
(bits)

Read (MFSPR) Write (MTSPR)

Prob
S = x

HV = x 
PR = 1

Priv
S = x

HV = 0
PR = 0

Hyp
S = 0

HV = 1
PR = 0

UV
S = 1

HV = 1
PR = 0

Prob
S = x

HV = x 
PR = 1

Priv
S = X

HV = 0
PR = 0

Hyp
S = 0

HV = 1
PR = 0

UV
S = 1

HV = 1
PR = 0
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SPRG1  01000 
10001

273 Replicated 
per PT

64 Priv Priv

SPRG2  01000 
10010

274 Replicated 
per PT

64 Priv Priv

SPRG3  01000 
10011

275 Replicated 
per PT

64 Priv Priv

SPRC  01000 
10100

276 Replicated 
per VT

64 Priv Priv_
ev

Priv Priv_
ev

SPRD  01000 
10101

277 n/a (physi-
cal target 
controlled 
by SPRC)

64 Priv Priv_
ev

Priv Priv_
ev

CIR 01000
11011

283 Shared 32 Priv Priv NOP NOP NOP

TBL  01000 
11100

284 Per LPAR 
VT

32 Priv Nop_
ev

Nop_
ev

Nop_
ev

Priv Priv_
ev

TBU  01000 
11101

285 Per LPAR 
VT

32 Priv Nop_
ev

Nop_
ev

Nop_
ev

Priv Priv_
ev

TBU40  01000 
11110

286 Per LPAR 
VT

64 Priv Nop_ev Nop_ev Nop_ev Priv Priv_ev

PVR  01000 
11111

287 Shared 32 Priv Priv Nop_ev Nop_ev Nop_ev

HSPRG0  01001 
10000

304 Replicated 
per PT

64 Priv Priv_ev Priv Priv_ev

HSPRG1  01001 
10001

305 Replicated 
per PT

64 Priv Priv_ev Priv Priv_ev

HDSISR  01001 
10010

306 Replicated 
per PT

32 Priv Priv_ev Priv Priv_ev

HDAR  01001 
10011

307 Replicated 
per PT

64 Priv Priv_ev Priv Priv_ev

SPURR  01001 
10100

308 Replicated 
per VT

64 Priv Priv Priv_ev

PURR  01001 
10101

309 Replicated 
per VT

64 Priv Priv Priv_ev

HDEC  01001 
10110

310 Per LPAR 
VT

32 Priv Priv_ev Priv Priv_ev

HRMOR  01001 
11001

313 Shared 64 Priv Priv_ev Priv Priv_ev

Table 4-8. SPR Table  (Sheet 4 of 10)

SPR Name
Binary 
SPR 
Code

Decimal 
SPR 
Code

Thread / 
LPAR 

Replica

Length 
(bits)

Read (MFSPR) Write (MTSPR)

Prob
S = x

HV = x 
PR = 1

Priv
S = x

HV = 0
PR = 0

Hyp
S = 0

HV = 1
PR = 0

UV
S = 1

HV = 1
PR = 0

Prob
S = x

HV = x 
PR = 1

Priv
S = X

HV = 0
PR = 0

Hyp
S = 0

HV = 1
PR = 0

UV
S = 1

HV = 1
PR = 0
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HSRR0  01001 
11010

314 Replicated 
per PT

64 Priv Priv_ev Priv Priv_ev

HSRR1  01001 
11011

315 Replicated 
per PT

64 Priv Priv_ev Priv Priv_ev

TFMR  01001 
11101

317 Shared 
(partial)/ 

LPAR  bits 
26 and 45 
replicated

64 Priv Priv_ev Priv Priv_ev

LPCR  01001 
11110

318 Replicated 
per PT

64 Priv Priv_ev Priv Priv_ev

LPIDR  01001 
11111

319 Replicated 
per PT

64 Priv Priv_ev Priv Priv_ev

HMER  01010 
10000

336 Replicated 
per VT

64 Priv Priv_ev Priv Priv_ev

HMEER  01010 
10001

337 Shared 64 Priv Priv_ev Priv Priv_ev

PCR  01010 
10010

338 Per LPAR 
PT

64 Priv Priv_ev Priv Priv_ev

HEIR  01010 
10011

339 Replicated 
per PT

32 Priv Priv_ev Priv Priv_ev

AMOR  01010 
11101

349 Per LPAR 
PT

64 Priv Priv_ev Priv Priv_ev

TIR 01101 
11110

446 Replicated 
per PT

8 Priv Priv Nop_ev Nop_ev Nop_ev

Reserved
(PC internal)

447-463

PTCR 01110 
10000

464 Per Core 64 Priv Priv_ev Priv Priv_ev HEAI w 
HSSR1

(45)
SMFC-
TRL(E)

=1

Reserved
(PC internal)

465-475

Reserved (msgclr) 01110 
11100

476

Reserved 
(msgclrp)

01110 
11101

477

Table 4-8. SPR Table  (Sheet 5 of 10)

SPR Name
Binary 
SPR 
Code

Decimal 
SPR 
Code

Thread / 
LPAR 

Replica

Length 
(bits)

Read (MFSPR) Write (MTSPR)

Prob
S = x

HV = x 
PR = 1

Priv
S = x

HV = 0
PR = 0

Hyp
S = 0

HV = 1
PR = 0

UV
S = 1

HV = 1
PR = 0

Prob
S = x

HV = x 
PR = 1

Priv
S = X

HV = 0
PR = 0

Hyp
S = 0

HV = 1
PR = 0

UV
S = 1

HV = 1
PR = 0
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Reserved 
(msgsndp)

01110 
11110

478

Reserved 
(msgclru)

01110 
11111

479

USPRG0 01111 
10000

496 Replicated 
per PT

64 Priv Priv Priv Priv Priv Priv

USPRG1 01111 
10001

497 Replicated 
per PT

64 Priv Priv Priv Priv Priv Priv

URMOR 01111 
11001

505 Replicated 
per PT

64 Priv Priv Priv Priv Priv Priv

USRR0 01111 
11010

506 Replicated 
per PT

64 Priv Priv Priv Priv Priv Priv

USRR1 01111 
11011

507 Replicated 
per PT

64 Priv Priv Priv Priv Priv Priv

SMFCTRL 01111 
11111

511 Replicated 
per PT

64 Priv Priv Priv Priv Priv Priv

SIER_RU 11000 
00000

768 Replicated 
per PT

64 Illegal Nop Nop Nop

MMCR2_RU 11000 
00001

769 Replicated 
per PT

64 Illegal Nop Nop Nop

MMCRA_RU  11000 
00010

770 Replicated 
per PT

64 Illegal Nop Nop Nop

PMC1_RU  11000 
00011

771 Replicated 
per PT

32 Illegal Nop Nop Nop

PMC2_RU  11000 
00100

772 Replicated 
per PT

32 Illegal Nop Nop Nop

PMC3_RU  11000 
00101

773 Replicated 
per PT

32 Illegal Nop Nop Nop

PMC4_RU  11000 
00110

774 Replicated 
per PT

32 Illegal Nop Nop Nop

PMC5_RU  11000 
00111

775 Replicated 
per PT

32 Illegal Nop Nop Nop

PMC6_RU  11000 
01000

776 Replicated 
per PT

32 Illegal Nop Nop Nop

MMCR0_RU  11000 
01011

779 Replicated 
per PT

32 Illegal Nop Nop Nop

SIAR_RU  11000 
01100

780 Replicated 
per PT

64 Illegal Nop Nop Nop

Table 4-8. SPR Table  (Sheet 6 of 10)

SPR Name
Binary 
SPR 
Code

Decimal 
SPR 
Code

Thread / 
LPAR 

Replica

Length 
(bits)

Read (MFSPR) Write (MTSPR)

Prob
S = x

HV = x 
PR = 1

Priv
S = x

HV = 0
PR = 0

Hyp
S = 0

HV = 1
PR = 0

UV
S = 1

HV = 1
PR = 0

Prob
S = x

HV = x 
PR = 1

Priv
S = X

HV = 0
PR = 0

Hyp
S = 0

HV = 1
PR = 0

UV
S = 1

HV = 1
PR = 0
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SDAR_RU  11000 
01101

781 Replicated 
per PT

64 Illegal Nop Nop Nop

MMCR1_RU  11000 
01110

782 Replicated 
per PT

32 Illegal Nop Nop Nop

SIER 11000 
10000

784 Replicated 
per PT

64 Priv Priv

MMCR2 11000 
10001

785 Replicated 
per PT

64 Priv Priv

MMCRA  11000 
10010

786 Replicated 
per PT

64 Priv Priv

PMC1  11000 
10011

787 Replicated 
per PT

32 Priv Priv

PMC2  11000 
10100

788 Replicated 
per PT

32 Priv Priv

PMC3  11000 
10101

789 Replicated 
per PT

32 Priv Priv

PMC4  11000 
10110

790 Replicated 
per PT

32 Priv Priv

PMC5  11000 
10111

791 Replicated 
per PT

32 Priv Priv

PMC6  11000 
11000

792 Replicated 
per PT

32 Priv Priv

MMCR0  11000 
11011

795 Replicated 
per PT

32 Priv Priv

SIAR  11000 
11100

796 Replicated 
per PT

64 Priv Priv

SDAR  11000 
11101

797 Replicated 
per PT

64 Priv Priv

MMCR1  11000 
11110

798 Replicated 
per PT

32 Priv Priv

IMC  11000 
11111

799 Shared 64 Priv Priv_ev Priv Priv_ev HEAI 
with 

HSSR1
(45)
SMF
CTRL 
(E) = 1

Table 4-8. SPR Table  (Sheet 7 of 10)

SPR Name
Binary 
SPR 
Code

Decimal 
SPR 
Code

Thread / 
LPAR 

Replica

Length 
(bits)

Read (MFSPR) Write (MTSPR)

Prob
S = x

HV = x 
PR = 1

Priv
S = x

HV = 0
PR = 0

Hyp
S = 0

HV = 1
PR = 0

UV
S = 1

HV = 1
PR = 0

Prob
S = x

HV = x 
PR = 1

Priv
S = X

HV = 0
PR = 0

Hyp
S = 0

HV = 1
PR = 0

UV
S = 1

HV = 1
PR = 0
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BESCRS 11001 
00000

800 Replicated 
per PT

64

BESCRSU 11001 
00001

801 Replicated 
per PT

32

BESCRR 11001 
00010

802 Replicated 
per PT

64

BESCRRU 11001 
00011

803 Replicated 
per PT

32

EBBHR 11001 
00100

804 Replicated 
per PT

64

EBBRR 11001 
00101

805 Replicated 
per PT

64

BESCR 11001 
00110

806 Replicated 
per PT

64

Reserved 11001 
01000

808 NA Nop Nop Nop Nop Nop Nop Nop Nop

Reserved 11001 
01001

809 NA Nop Nop Nop Nop Nop Nop Nop Nop

Reserved 11001 
01010

810 NA Nop Nop Nop Nop Nop Nop Nop Nop

Reserved 11001 
01011

811 NA Nop Nop Nop Nop Nop Nop Nop Nop

TAR 11001 
01111

815 Replicated 
per PT

64

ASDR 11001  
10000

816 Replicated 
per PT

64 Priv Priv_ev Priv Priv_ev

PSSCR_SU 11001 
10111

823 Replicated 
per PT

64 Priv Priv

Reserved 
(MTXER)

11001 
11001

825

Reserved (MFNIA) 11001 
11010

826

IC 11010 
10000

848 Replicated 
per PT

64 Priv Priv Priv_ev

VTB 11010 
10001

849 Per LPAR 
VT

64 Priv Priv Priv_ev

Table 4-8. SPR Table  (Sheet 8 of 10)

SPR Name
Binary 
SPR 
Code

Decimal 
SPR 
Code

Thread / 
LPAR 

Replica

Length 
(bits)

Read (MFSPR) Write (MTSPR)

Prob
S = x

HV = x 
PR = 1

Priv
S = x

HV = 0
PR = 0

Hyp
S = 0

HV = 1
PR = 0

UV
S = 1

HV = 1
PR = 0

Prob
S = x

HV = x 
PR = 1

Priv
S = X

HV = 0
PR = 0

Hyp
S = 0

HV = 1
PR = 0

UV
S = 1

HV = 1
PR = 0
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LDBAR 11010 
10010

850 Per LPAR 
VT

64 Priv Priv_ev Priv Priv_ev HEAI 
with 

HSSR1
(45)
SMF
CTRL 
(E) = 1

MMCRC 11010 
10011

851 Shared 32 Priv Priv_ev Priv Priv_ev

PMSR 11010 
10101

853 Shared 32 Priv Priv_ev Priv Nop_ev Nop_ev Nop_ev

PSSCR 11010 
10111

855 Replicated 
per VT

64 Priv Priv_ev Priv Priv_ev

L2QOSR 11010 
11101

861 Per Core  Priv Nop_ev Nop_ev Nop_ev Priv Priv_ev

TRIG0 11011
10000

880 Replicated 
per PT

64 Priv Nop_ev Nop_ev Nop_ev Priv

TRIG1 11011 
10001

881 Replicated 
per PT

64 Priv Nop_ev Nop_ev Nop_ev Priv   

TRIG2 11011 
10010

882 Replicated 
per PT

64 Priv Nop_ev Nop_ev Nop_ev Priv   

PMCR 11011 
10100

884 Per Core 64 Priv Priv_ev Priv Priv_ev

RWMR 11011 
10101

885 Shared 64 Priv Priv_ev Priv Priv_ev

WORT 11011 
11111

895 Replicated 
per PT

18 Priv Priv

PPR  11100 
00000

896 Replicated 
per PT

64

PPR32  11100 
00010

898 Replicated 
per PT

32

TSCR  11100 
11001

921 Shared 32 Priv Priv_ev Priv Priv_ev

TTR  11100 
11010

922 Shared 64 Priv Priv_ev Priv Priv_ev

TRACE  11111 
01110

1006 Shared 64 Illegal Nop_ev Nop_ev Nop_ev   

HID  11111 
10000

1008 Shared 64 Priv Priv_ev Priv Priv_ev

Table 4-8. SPR Table  (Sheet 9 of 10)

SPR Name
Binary 
SPR 
Code

Decimal 
SPR 
Code

Thread / 
LPAR 

Replica

Length 
(bits)

Read (MFSPR) Write (MTSPR)

Prob
S = x

HV = x 
PR = 1

Priv
S = x

HV = 0
PR = 0

Hyp
S = 0

HV = 1
PR = 0

UV
S = 1

HV = 1
PR = 0

Prob
S = x

HV = x 
PR = 1

Priv
S = X

HV = 0
PR = 0

Hyp
S = 0

HV = 1
PR = 0

UV
S = 1

HV = 1
PR = 0
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4.7.3.5 SPRC/SPRD Usage

In the pervasive design, SPRC and SPRD are used as a pair to provide a programmable interface into 
microarchitected SPRs using indirect addressing. The address of the SPR to access is written into SPRC and 
then a following read or write to SPRD reads or writes the SPR addressed by SPRC. The SPRC and SPRD 
can both be accessed using an mtspr/mfspr instruction or SCOM. An SPRC/SPRD pair is dedicated per 
thread for SPR access and per core for SCOM access. Only 8 bits of the SPRC register [53:60] are imple-
mented, bits [61:63] are reserved for future use and must be set to ‘000’. SPRD is a full 64-bit register whose 
meaning changes based on the contents of SPRC. This register is, in reality, an alias to microarchitected 
hypervisor resources.

For mtsprc access, the thread determines which thread-specific SPRC to set. For SPRD access, each 
thread-specific SPRC can be used to access the SPRs in normal-core mode. In normal core mode, 
SPRC/SPRD can only access the logical thread of the requesting thread as shown in Table 4-9 SPRC Defini-
tion Normal Core Mode (1 LPAR per Thread) on page 92. The thread-specific SPRC can also be set via 
SCOM using the SPR_MODE_REG. 

For OCC SCOM access, a dedicated SPRC/SPRD only accesses the activity counters and auto-increments 
as shown in Table 4-11 on page 93. SCOM (x‘0A83’) is used to read the data addressed by this SPRC 
(x‘0A82’).

In Table 4-9, only core TFMR bits [0:56] can be accessed using an SCOM access. 

PIR  11111 
11111

1023 Replicated 
per VT

32 Priv Priv Nop_ev Nop_ev Nop_ev

Unsupported 
SPRs w/ SPR(0)=0

 xxxxx 
0xxxx

Illegal Nop_ev Nop_ev Nop_ev Illegal Nop_ev Nop_ev Nop_ev

Unsupported 
SPRs w/ SPR(0)=1

xxxxx 
1xxxx

Priv Nop_ev Nop_ev Nop_ev Priv Nop_ev Nop_ev Nop_ev

Table 4-9. SPRC Definition Normal Core Mode (1 LPAR per Thread)  (Sheet 1 of 2)

SPRC[54:60] SPRD Selection Notes

0 0 0 0 0 S S SCRATCH0 - 3; unique per core chiplet 1, 3

0 0 0 0 1 S S SCRATCH4 - 7 1, 3

0 0 0 1 0 0 0 TFMR (logical thread) 1

1. Registers can be accessed by both an mtspr/mfspr instruction and an SCOM. Only core TFMR bits [0:56] can be accessed using 
an SCOM access.

2. Registers can only be accessed using mtspr/mfspr.
3. S = scratch register number; T = Thread; e = Empath counter number.

Table 4-8. SPR Table  (Sheet 10 of 10)

SPR Name
Binary 
SPR 
Code

Decimal 
SPR 
Code

Thread / 
LPAR 

Replica

Length 
(bits)

Read (MFSPR) Write (MTSPR)

Prob
S = x

HV = x 
PR = 1

Priv
S = x

HV = 0
PR = 0

Hyp
S = 0

HV = 1
PR = 0

UV
S = 1

HV = 1
PR = 0

Prob
S = x

HV = x 
PR = 1

Priv
S = X

HV = 0
PR = 0

Hyp
S = 0

HV = 1
PR = 0

UV
S = 1

HV = 1
PR = 0
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In Table 4-10, only core TFMR bits [0:56] can be accessed via an SCOM access. 

0 0 1 0 0 0 0 PURR (logical thread) 2

0 0 1 1 0 0 0 SPURR (logical thread) 2

0 1 0 0 0 0 0 DEC (logical thread) 2

0 1 1 1 0 0 0 SPR_MODEREG SPR 2

0 1 1 1 0 0 1 AVP output pin 2

0 1 1 1 0 1 0 Core checkstop 2

0 1 1 1 0 1 1 SPATTN 2

0 1 1 1 1 0 0 Core Thread State 1

1 0 e e e e e Empath counters; always do autoincremen 2, 3

Table 4-10. SPRC Definition Normal Core Mode (1 LPAR per Core) 

SPRC[54:60] SPRD Selection Notes

0 0 0 0 0 S S SCRATCH0 - 3; unique per core chiplet 1, 3

0 0 0 0 1 S S SCRATCH4 - 7 1, 3

0 0 0 1 0 T T TFMR (logical thread) 1, 3

0 0 1 0 0 T T PURR (logical thread) 2, 3

0 0 1 1 0 T T SPURR (logical thread) 2, 3

0 1 0 0 0 T T DEC (logical thread) 2, 3

0 1 1 1 0 0 0 SPR_MODEREG SPR 2

0 1 1 1 0 0 1 AVP output pin 2

0 1 1 1 0 1 0 Core checkstop 2

0 1 1 1 0 1 1 SPATTN 2

0 1 1 1 1 0 0 Core Thread state 1

1 0 e e e e e Empath counters; always do auto-increment 2, 3

1. Registers can be accessed by both an mtspr/mfspr instruction and an SCOM. Only core TFMR bits [0:56] can be accessed using 
an SCOM access.

2. Registers can only be accessed using mtspr/mfspr.
3. S = scratch register number; T = Thread; e = Empath counter number.

Table 4-11. OCC SPRC Definition 

SPRC[54:60] SPRD Selection 

1 c e e e e e Empath counters (e); always do auto-increment

Note:  c = select core chiplets; e = empath counter.

Table 4-9. SPRC Definition Normal Core Mode (1 LPAR per Thread)  (Sheet 2 of 2)

SPRC[54:60] SPRD Selection Notes

1. Registers can be accessed by both an mtspr/mfspr instruction and an SCOM. Only core TFMR bits [0:56] can be accessed using 
an SCOM access.

2. Registers can only be accessed using mtspr/mfspr.
3. S = scratch register number; T = Thread; e = Empath counter number.
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4.8 HID Register

The POWER9 processor core includes several implementation-dependent mode bits that allow various 
features of the chip to be enabled and disabled. These bits are included in the Hardware Implementation 
Dependent Register (HID). In general, the HID Register controls high-level functions of the POWER9 core 
and is only accessible in hypervisor mode. Reserved bits in the HID Register should not be set by software 
and can return either a zero or one value depending on the bit if set. Attempts to set some of these bits might 
enable functions that are no longer supported and thus could cause unpredictable behavior. Two values of 
the contents of the register are shown in the descriptions.

Initial state:
This is the state of the register after a normal scan-based power-on-reset (POR). The actual and full POR 
sequence can set bits beyond the scan-based POR.

Preferred state:
This is the preferred state of the register for optimal performance and function.

1. The following sequence must be used when modifying the HID Register:
sync
mtspr HID,Rx
isync

4.8.1 HID Register Description

Initial state: x‘0400_0000_0000_0000’
Preferred state: x‘0000_0000_0000_0000’

Table 4-12 describes the HID Register.

Table 4-12. HID Register  (Sheet 1 of 2)

Bits Field Name Description

0 one_ppc
One (Power ISA) instruction is sent out of the ibuffers and decoded at a time. The IFU waits for ict 
empty to let the next instruction go. Multi-thread mode uses a round-robin method through the 
enabled threads. 

1 en_instruc_trace Enable the enhanced trace facility, which requires special hardware initializations.

2 flush_ic Flush the instruction cache and the instruction EADIR on a transition from ‘0’ to ‘1’.

3 en_attn
Enable the support-processor attention instruction. This bit is used to enable the attn instruction to 
quiesce the thread. 
Note:  The instruction cache must be flushed after changing the value of this bit.

4 hile The contents of this bit are copied into the MSR.

5 dis_recovery Disable the processor recovery mechanism.

6 megamouth Order stores for the Megamouth adapter when IG = ‘10’.

7 prefetch_reset Clear all streams from the prefetch unit and restart from an idle state.

8 tlb_config_radix
TLB configuration mode.
0 Supports HPT translation only. PWC is disabled.
1 Supports either HPT or Radix translation. PWC is enabled. 

9 dcache_partitioned The D-cache is partitioned by the thread in a balanced method, such that each active thread can use 
an equal portion of the cache.

Hashed page table
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4.8.2 Core-to-Core Trace SPR

The Trace SPR is used to access enhanced instruction trace information from the processor core trace logic. 
This 64-bit register is read only and has a privileged read access. There is a protocol associated with the use 
of this register to coordinate gathering instruction trace images from the other processor core. 

4.8.3 Trigger Registers

Writes to the trigger registers (TRIG0, TRIG1, and TRIG2), can be inserted in the instruction stream to cause 
triggers to the on-chip trace array debug logic. These registers are used for lab debug and bringup only and 
architecturally behave as a NOP. 

4.8.4 IMC Array Access Register

The Instruction Match CAM (IMC) array facility is used for performance monitoring instrumentation and for the 
soft patch of instructions. (This latter use is restricted for the support processor and is not available through 
the SPR access to this register array.) The array has privileged write access and user-level read access via 
this SPR. Writes to the register array are used to configure the IMC, and reads return information about the 
availability of registers within the facility.  

4.8.5 Performance Monitor Registers

The performance monitor counter registers (PMC1 - PMC6), the performance monitor control registers 
(MMCR0, MMCR1, MMCRA), and the sampled address registers (SIAR, SDAR) are supported in the 
POWER9 processor core. The performance monitor counter registers PMC7 and PMC8 are not implemented 
in the POWER9 processor core (an operation for these two performance counter registers is treated as a 
NOP).  

4.8.6 Other Fixed-Point Instructions

The POWER9 processor core supports both the 32-bit mtmsr instruction and the 64-bit mtmsrd instruction. 

The POWER9 processor core optimizes the mtmsr and mtmsrd instructions by helping to speed up the 
cases where little or no synchronization is required (such as, updates to the EE and RI bits). To exploit this 
capability, software should set the L-bit of the desired instruction to ‘1’ as described in the Power ISA Oper-
ating Environment Architecture - Book III (version 3.0B).

Software must avoid placing mtmsr and mtmsrd instructions that change the SF bit at address 
x‘00000000FFFFFFFC’ or x‘FFFFFFFFFFFFFFFC’.

10 icache_partitioned The I-cache is partitioned by the thread in a balanced method, such that each active thread can use 
an equal portion of the cache.

11 en_spec_execution Enable speculative execution mode.

12 spare Spare.

13:63 reserved Reserved.

Table 4-12. HID Register  (Sheet 2 of 2)

Bits Field Name Description
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4.9 Storage Control

4.9.1 Effective, Virtual, and Physical Address Ranges Supported

The POWER9 processor core supports a 64-bit effective address (EA), 68-bit virtual address (VA), and a 
56-bit host real (physical) address (RA). See Section 4.10.31 Processor Compatibility Mode on page 138 for 
details specific to various translation modes. Host real addresses in this 56-bit range are hereafter referred to 
as local address space accesses and are considered to be system-wide coherent.

4.9.2 Foreign Address Space Definition and Accessibility 

The POWER9 processor core considers host real addresses with a nonzero value in RA(8:12) as foreign 
address space, accessible only by the paste instruction. By specifying a host real address in this range for 
the paste instruction, a copy and paste instruction pair can be used to invoke the Nest accelerator via the 
Virtual Accelerator Switchboard (VAS). For more details on invoking the Nest accelerators, see Section 11.1 
Features on page 196. A host real address containing a zero value in RA(8:12) is referred to as local address 
space. 

Attempts to access host real pages in this addressing range by an instruction fetch or any other data access 
(that is, other than a paste instruction) results in a machine check interrupt per the Power ISA. 

As described in the Power ISA (Version 3.0B), the copy instruction can copy a 128-byte cache line (block) 
from a local address to a per thread noncoherent buffer. Similarly, a paste instruction reads the noncoherent 
buffer and writes the contents of the buffer to a foreign address.

For more details on the copy and paste instructions, see the Power ISA (Version 3.0B).

4.9.3 Hypervisor Real Mode Addressing Using HRMOR

The POWER9 processor supports the Hypervisor Real Mode Offset Register (HRMOR) as described in the 
Power ISA (Version 3.0B) for the purpose of accessing real memory when the processor thread is operating 
in Hypervisor Real Mode. As described in the Power ISA Operating Environment Architecture - Book III 
(version 3.0B), when EA(0) = ‘1’, the HRMOR is bypassed. When EA(0) = ‘0’, the HRMOR value is logically 
OR’ed with the EA to produce the real address (RA). The ISA defines the number of implemented bits in the 
HRMOR as implementation dependent. The POWER9 processor implements HRMOR[13:42]. All other 
HRMOR bits are reserved and return zero when read.

4.9.4 Partition Table Control Register 

The POWER9 processor supports the Partition Table Control Register (PTCR) mostly as described in the 
Power ISA (Version 3.0B) for the purpose of accessing virtual memory either in virtual real mode (HPT) and 
guest real mode (nested Radix) or when translation is enabled for either HPT or Radix. The PTCR imple-
ments bits 13:51 for the Partition Table Base (PATB) field and bits 59:63 for the Partition Table Size (PATS) 
field. All other PTCR bits are reserved and return zero when read. The POWER9 processor core, however, 
ignores the value in the PATS field and only supports a 64 KB partition table size.

4.9.5 Access Segment Descriptor Register

The POWER9 processor supports the Access Segment Descriptor Register (ASDR) as described in the 
Power ISA (Version 3.0B).
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4.9.6 Real Mode Addressing for Operating Systems

The POWER9 processor does not implement the real mode offset (RMOR/RMLS) mechanism described in 
the Power ISA (version 2.07). Instead, it implements the virtual real mode addressing mechanism for HPT 
translation and guest real mode for Radix translation as described in the Power ISA (Version 3.0B).

4.9.7 HRMOR Update Sequence

Table 4-13 describes a sequence that the hypervisor privileged software might use to update the HRMOR.

4.10 Translation Architecture

The POWER9 processor supports the two translation mechanisms described in the Power ISA (Version 
3.0B), specifically:

• The POWER9 processor uses the Partition Table Control Register (PTCR) to find the partition table entry.

• The LSU allows writes to LPCR[12:16], LPCR[41], and LPCR[53]. Bits 12:16 are considered reserved in 
the new architecture and always return ‘00000’ when read using the mflpcr instruction. The page size 
information for virtual real mode is taken from the partition table entry as described in the Power ISA (Ver-
sion 3.0B). The hardware ignores the value of bits 12:16. Bit 41 is the UPRT value and bit 53 is the GTSE 
value. The mflpcr instruction returns the values in bits 41 and 53.

• When LPCR[GTSE] = ‘0’, slbiag, slbieg, slbsync, and tlbsync are hypervisor privileged only and take a 
privileged instruction interrupt when HV = ‘0’ (independent of PR); or when HV = ‘1’ and PR = ‘1’. 

• When LPCR[GTSE] = ‘1’, slbiag, slbieg, slbsync, and tlbsync are legal instructions when PR = ‘0’ and 
take a privileged instruction interrupt when PR = ‘1’. 

• The tlbie instruction is privileged except when LPCR[GTSE] = ‘0’ or when PRS = ‘0’ and R = ‘1’, making 
it hypervisor privileged. Note that the POWER9 processor uses the “R” bit in the instruction instead of the 
“HR” bit in the partition-table entry, as described in the Power ISA (Version 3.0B) for determining the 
instruction’s privilege level.

• The tlbiel instruction is privileged except when PRS = ‘0’ and R = ‘1’, making it hypervisor privileged. 
Note that the POWER9 processor uses the “R” bit in the instruction instead of the “HR” bit in the partition-
table entry as described in the Power ISA (Version 3.0B) for determining the instruction’s privilege level.

Table 4-13. HRMOR Update Sequence   

Master Slave

Thread sync up point 1 Thread sync up point 1

EA[0] = 1 EA[0] = 1

Thread sync up point 2 Thread sync up point 2

Change HRMOR

Thread sync up point 3 Thread sync up point 3

isync isync

slbia IH = x‘7’ slbia IH = x‘7’

isync isync

Thread sync up point 4 Thread sync up point 4
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4.10.1 Logical Partitioning Control Register (LPCR)

The POWER9 LPCR Register is illustrated as follows:
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Bits Field Name Description

0 Reserved Reserved.

1:3 VC Virtualization control.

4:8 Reserved Reserved.

9:11 DPFD Default prefetch depth.

12:16 Reserved Reserved. 

17:19 PECEU Power-saving mode exit causes enable upper section.

20:37 Reserved Reserved.

38 ILE Interrupt little-endian mode.

39:40 AIL Alternate interrupt location.

41 UPRT Use process table Set this bit to ‘0’ when the thread is performing HPT translation and set to ‘1’ 
when the thread is performing Radix translation. 

42 EVIRT Enhanced virtualization enable.

43 HR Host Radix.

44 Reserved Reserved.

45 ONL Online (PURR/SPURR incrementing control).

46 LD Large decrementer.

47:51 PECEL Power-saving mode exit causes enable lower section.

52 MER Mediated external exception request.

53 GTSE Guest translation shoot-down enable. 

54 TC Translation control secondary PTEG is not searched if TC = ‘1’.

55:58 Reserved Reserved.

59 HEIC Hypervisor external interrupt control.

60 LPES Logical partitioning environment selector.

61 Reserved Reserved.

62 HVICE Hypervisor virtualization interrupt conditionally enable.
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Note:  All fields except the AIL, EVIRT, ONL, HDICE, MER, PECE, HEIC, and HVICE fields must be set to 
the same value by all sub-processors with the same LPIDR value.

4.10.2 Translation Modes

Within the translation architecture described in the Power ISA (Version 3.0B), there are two types of address 
translation:

• Radix: A Radix guest (operating system) running on top of a Radix host (hypervisor) is also commonly 
referred to as nested Radix. When there is no guest operating system, this is referred to as single-level 
Radix.

• Hashed Page Table (HPT): Also, known as paravirtualized translation. For HPT translation, the processor 
core supports only the behavior specified when the Logical Partition Control Register (LPCR) Use Pro-
cess Table (UPRT) bit is set to ‘0’.

In these modes, the Partition Table Control Register (PTCR) contains the host real address of the partition-
table base and the size of the table itself. In general, the partition table is indexed by the logical partition ID 
(LPID) value specified in the Logical Partition ID Register (LPIDR). 

When the partition-table entry is read, the host Radix (HR) bit determines which translation type is used by 
the hardware to convert an effective address to a host real address. When either single-level or nested Radix 
is used for translation, HR = ‘1’. When HPT translation is used, HR =‘0’. For either of the these translation 
types, there exists a partition-scoped page table that translates a host virtual address (hVA) (referred to as a 
guest real address or gRA for Radix) to a host real address (hRA). 

For either of the translation types, the in-memory translation related tables managed by the operating system 
(guest) are translated as though they reside in “normal” memory (such as, ATT = ‘00’ or WIMG = ‘0010’), 
regardless of the storage attributes specified in the partition scoped page-table entries used to translate those 
guest tables. These guest-managed translation tables include the process table for either Radix or HPT, the 
guest Radix tree for Radix, and the segment table for HPT (for the in-memory segment table supported by the 
Nest).

4.10.3 tlbie and tlbiel Instruction Format and Operands

When software changes a translation path that involves either a Radix or HPT page table, either the tlbie or 
tlbiel instruction must be used in a manner as specified in the Power ISA (Version 3.0B). The ISA provides 
the format for both the tlbie and tlbiel instructions, but the AP and L/LP encodings are implementation 
specific. The format and operands are shown in Figure 4-2 on page 100 for the tlbie instruction and 
Figure 4-4 on page 101 for the tlbiel instruction.

63 HDICE Hypervisor decrementer interrupt conditionally enable.

Bits Field Name Description

Logical Partition ID Register
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Figure 4-2. tlbie Instruction Format for the POWER9 Core 

Table 4-14. Description of tlbie Instruction Format for the POWER9 Core 

Bits Description

RIC

Radix invalidation control.
0 Only invalidate the TLB and ERATs.
1 Invalidate only the page-walk cache (PWC).
2 Invalidate TLB/ERATs, PWC, and any caching of partition and process table entries.
3 Invalidate a series of consecutive translations (only in TLB/ERATs, cluster bomb).

PRS
Process scoped.
0 Invalidate partition-scoped translations.
1 Invalidate process-scoped translations.

R
Radix.
0 Invalidate HPT translations.
1 Invalidate Radix tree translations.

IS

Invalidation selector (specified in the RB Register).
0 Invalidate only the target VA for matching PID and LPID.
1 Invalidate matching PID (and matching LPID).
2 Invalidate matching LPID.
3 If MSR[HV] = ‘1’, invalidate all entries; otherwise, invalidate matching LPID.

31 RS / RIC P
R

S

R RB 306 /

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

tlbie RB,RS,RIC,PRS,R

Process ID
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The format and operands for the tlbie instructions are indicated in Figure 4-3. The R and RIC values deter-
mine the format of the RB operand.

Figure 4-3. tlbie Operands for the POWER9 Core 

Figure 4-4. tlbiel Instruction Format for the POWER9 Core 
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RB: IS = ‘01’, ‘10’, or ‘11’ (tlbie only)
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The format and operands for the tlbiel instructions are indicated in Figure 4-5. The R and RIC values deter-
mine the format of the RB operand.

Table 4-15. Description of tlbiel Instruction Format for the POWER9 Core 

Bits Description

RIC

Radix invalidation control.
0 Only invalidate TLB and ERATs.
1 Invalidate only page-walk cache (PWC).
2 Invalidate TLB/ERATs, PWC, and any caching of partition and process table entries.
3 Not supported.

PRS
Process scoped.
0 Invalidate partition-scoped translations.
1 Invalidate process-scoped translations.

R
Radix.
0 Invalidate HPT translations.
1 Invalidate Radix tree translations.

IS

Invalidation selector (specified in the RB Register).
0 Invalidate only the target VA for matching PID and LPID.
1 Invalidate all entries in specified TLB congruence class (SET) with a matching PID (and matching LPID).
2 Invalidate all entries in specified TLB congruence class (SET) with a matching LPID.
3 If MSR[HV] = ‘1’, invalidate all entries all entries in specified TLB congruence class (SET); otherwise, invalidate 

all entries in specified TLB congruence class with a matching LPID.

Figure 4-5. tlbiel Operands for the POWER9 Core 
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4.10.4 Radix Translation

When the partition-table entry has HR = ‘1’, the translation mechanism is referred to as Radix translation. 
Radix translation can be either single-level or nested. 

For nested Radix, there exists two sets of Radix trees: 

• One set of Radix trees that is managed by the guest operating system, is determined by indexing a pro-
cess table using the process table ID (PID) value. 

• A second set of Radix trees is managed by the host (hypervisor) software. 

For a Radix host, the LPIDR value can be overridden using EA(0:1) to indicate which EA quadrant the thread 
is accessing as described in the ISA. The term effective LPID (effLPID) is more commonly used to discuss 
how the partition table is indexed. Analogous to how the effLPID is used to index the partition table for host 
translation, an effective PID (effPID) is the commonly used term for indexing the process table. See the 
Power ISA (Version 3.0B) for more details on EA quadrants, effLPID, and effPID. When the effLPID = ‘0’, 
there exists only a single level of Radix translation. This translation is considered to be process-scoped (that 
is, indexed by the effPID) and used to translate the EA directly to an hRA.

For Radix translation, the EA range is 64-bits, but as stated previously, EA(0:1) indicate which EA quadrant 
the thread is in. When EA(2:11) are nonzero, a segment interrupt results. Thus, the usable EA space (when 
the thread is not in hypervisor real mode) is limited to 52 bits. In addition, the gRA is limited to 52 bits, other-
wise a segment interrupt occurs. Table 4-16 shows the details of the address bit range checking by hardware. 

Table 4-16. Address Bit Range Checking by Hardware  (Sheet 1 of 2)

Mode
Instruction 

or Data 
EA(0:1)

EA(2:11) 
(Nonzero)

Instruction 
or Data 

gRA(0:11) 
(Nonzero)

Guest PDE 
RPN(4:11) 
(Nonzero)

Guest PTE 
RPN(7:11) 

Host PDE 
RPN(4:7) 
(Nonzero)

RPN(8:12) 
Nonzero in 
Host PDE 

or Host 
PTE1

Host PTE 
RPN(7) 

(Nonzero)

Host PTE for 
Instruction/

Data 
Access2 

Guest Real 
Mode  
(IR/DR off)

Ignore 
EA(0:1); 

always treat 
as ‘00’.

Segment 
interrupt 

(gEA = gRA)

Segment 
interrupt N/A N/A Ignore Machine 

check Ignore

Paste: 
ignore;  
otherwise, 
machine 
check 

1. RPN(8:12) nonzero in any host PDE (that maps a guest table or instruction/data access) or in any host PTE that maps a guest 
table.

2. Host PTE for instruction/data acess where RPN(8:12) is nonzero.
3. Hardware can generate a segment interrupt due to quadrants and HV/PR values. This assumes that IR = 1 for instruction access 

and DR = 1 for data access.
4. Future processors might generate an instruction or data segment interrupt.

Page directory entry

Guest real address
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4.10.4.1 Supported Radix Tree Configurations and Resulting Page Sizes

The Power ISA provides the general architecture to support implementations that might implement a variety 
of page sizes. The POWER9 processor supports only the page sizes specified in Table 4-17 on page 104 
when performing Radix translation. The values in the Level columns indicate the supported size of each level 
of the Radix tree for each resulting page size. All other Radix tree configurations are unsupported and result 
in the hardware generating an unsupported Radix tree type of DSI, HDSI, ISI, or HISI.

Nested Radix 
with IR/DR 
on

Quadrant 
bits

Segment 
interrupt Ignore3 Ignore4 Ignore Ignore Machine 

check Ignore

Paste: 
ignore;  
otherwise, 
machine 
check

Process 
scoped  
single-level 
Radix 
(effLPID = 0)

Quadrant 
bits

Segment 
interrupt N/A3 N/A N/A Ignore Machine 

check Ignore

Paste: 
ignore;  
otherwise, 
machine 
check

HPT Only part of 
EA

Only part of 
EA N/A N/A N/A Ignore Machine 

check Ignore

Paste: 
ignore;  
otherwise, 
machine 
check

Table 4-17. Supported Radix Tree Configurations and Resulting Page Sizes 

Page Size Level 1 Size Level 2 Size Level 3 Size Level 4 Size

4 KB 64 KB 4 KB 4 KB 4 KB

64 KB 64 KB 4 KB 4 KB 256 B

2 MB 64 KB 4 KB 4 KB

1 GB 64 KB 4 KB

Table 4-16. Address Bit Range Checking by Hardware  (Sheet 2 of 2)

Mode
Instruction 

or Data 
EA(0:1)

EA(2:11) 
(Nonzero)

Instruction 
or Data 

gRA(0:11) 
(Nonzero)

Guest PDE 
RPN(4:11) 
(Nonzero)

Guest PTE 
RPN(7:11) 

Host PDE 
RPN(4:7) 
(Nonzero)

RPN(8:12) 
Nonzero in 
Host PDE 

or Host 
PTE1

Host PTE 
RPN(7) 

(Nonzero)

Host PTE for 
Instruction/

Data 
Access2 

1. RPN(8:12) nonzero in any host PDE (that maps a guest table or instruction/data access) or in any host PTE that maps a guest 
table.

2. Host PTE for instruction/data acess where RPN(8:12) is nonzero.
3. Hardware can generate a segment interrupt due to quadrants and HV/PR values. This assumes that IR = 1 for instruction access 

and DR = 1 for data access.
4. Future processors might generate an instruction or data segment interrupt.
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4.10.4.2 TLB and PWC Hash Functions for Radix

The TLB is used to cache page table entries (PTEs). When the POWER9 core is running in Radix mode, the 
TLB is reduced to 512 entries (128 entries × 4-way set-associative). The hash algorithm for the TLB operating 
in this mode is specified in Table 4-18. 

The other 512 entries (128 entries × 4-way set-associative) of the TLB array are used as a page-walk cache. 
The PWC is used to cache page directory entries (PDEs). Each level of the Radix tree has a unique cache to 
store entries (level 1 entries are not mixed with level 2 or level 3 entries in the cache). Entries are tagged with 
the LPID and PIDR values used when performing the translation. The full EA must get to a particular level in 
the tree and is also stored as part of the tag in an entry: level 1 EA(12:24), level 2 EA(12:33), level 3 
EA(12:42). An entry must match the LPID, PID, and EA to hit within the PWC. The PWC is accessed after the 
TLB lookup, and its results are only used in the event of a TLB miss. In a TLB miss/PWC hit translation, the 
Radix walk begins using the PDE data retrieved from the PWC entry. The hash algorithm for the PWC is 
specified in Table 4-19. 

Table 4-18. TLB Hash for Radix Mode 

Page Size TLB Hash Function

4 KB [LPIDR(29:31) XOR EA(45:47)] || [PIDR(28:31) XOR EA(48:51)]

64 KB [LPIDR(29:31) XOR EA(41:43)] || [PIDR(28:31) XOR EA(44:47)]

2 MB [LPIDR(29:31) XOR EA(36:38)] || [PIDR(28:31) XOR EA(39:42)]

1 GB [LPIDR(29:31) XOR EA(27:29] || [PIDR(28:31) XOR EA(30:33)]

1. The effPID and effLPID values are used to determine the hash.
2. Partition scoped translations force PID = 0 for the hash.
3. EA in the TLB hash function description means “guest EA” for process scoped translations when HV = 0; “host EA” when HV = 1 

and LPID = 0; and “host EA” (which equals the “guest RA”) for partition scoped translations.

Table 4-19. PWC Hash for Radix Mode 

PDE Level PWC Hash Function

1 [LPIDR(29:31) XOR EA(18:20)] || [PIDR(28:31) XOR EA(21:24)]

2 [LPIDR(29:31) XOR EA(27:29)] || [PIDR(28:31) XOR EA(30:33)]

3 [LPIDR(29:31) XOR EA(36:38)] || [PIDR(28:31) XOR EA(39:42)]

1. Partition scoped translations force PID = 0 for the hash.
2. EA in the PWC hash function description means “guest EA” for process scoped translations when HV = 0, “host EA” when HV = 1 

and LPID = 0, and “host EA” (which equals the “guest RA”) for partition scoped translations.
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4.10.4.3 tlbie and tlbiel Encodings for Radix Translations

When software must invalidate the translation caches for one of these page sizes, it should execute the 
appropriate tlbie or tlbiel instruction sequence as specified in the Power ISA (Version 3.0B) with R = ‘1’ and 
AP set to the corresponding value as indicated in Table 4-20, and a RIC value of either ‘0’ or ‘2’ for the 
required outcome. 

Alternatively, software can use the tlbiel instruction with IS ≠ 0 per the Power ISA (Version 3.0B) to perform a 
congruence class invalidation of the TLB on the processor that executes the tlbiel instruction. When this 
option is chosen, RB(45:51), select the congruence class of the TLB and/or PWC to be invalidated. 

See Appendix B tlbie and tlbiel Encodings for Radix Translations on page 469 for details.

4.10.5 Changing the Process ID Register

The POWER9 processor implements 20-bits of process ID in the Process ID Register (PIDR).

When using Radix translation and software wants to change the PIDR value, it should do so in either guest 
real mode (or hypervisor mode) or it should use the following sequence if translation is enabled: 

1. branch to quadrant 3

2. mtpidr 

3. isync 

4. branch back to quadrant 0

4.10.6 Switching between Radix and HPT Partitions

To switch between running a Radix partition and an HPT partition, the following sequence must be observed:

1. Start in an HPT partition with translation on. 

Note:  HID[8] is likely set to ‘0’ at this point for full TLB mode.

2. Switch all active threads on the core to hypervisor real mode. 

3. Invalidate all of the TLB, ERATs, and translation caching by executing one tlbie with RIC = ‘2’, IS = ‘3’, 
R = ‘0’, PRS = ‘0’ and one tlbie with RIC = ‘2’, IS = ‘3’, R = ‘0’, and PRS = ‘1’. 

Note:  The PRS = ‘1’ form is only required for the nest MMU because the core does not support 
UPRT = ‘1’ for HPT partitions.

4. Change LPIDR to point to a Radix partition.

Table 4-20. tlbie(l) Page Encodings for POWER9 Radix (R = ‘1’) Only RIC≠ 3 is supported

RB(32:51) RIC RB(56:58)
AP

Actual Page Size to be 
Invalidated

vvvv vvvvvvvv vvvvvvvv 0, 2 000 4 KB

vvvv vvvvvvvv vvvvxxxx 0, 2 101 64 KB

vvvv vvvvvvvv xxxxxxxx 0, 2 001 2 MB

vxxx xxxxxxxx xxxxxxxx 0, 2 010 1 GB

1. All other values of AP should not be used when R = 1 and results in a machine check interrupt.
2. 2 MB and 1 GB page sizes are only supported for Radix.
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5. Execute a mthid instruction to set bit 8 to configure the TLB for half-TLB mode (required for Radix trans-
lation). 

6. Change LPCR so that the following conditions are true: UPRT = ‘1’, HR = ‘1’, VC = ‘000’.

7. Execute an rfid to turn translation back on in Radix partition.

To switch from a Radix partition to an HPT partition, the following sequence must be observed:

1. Start out in a Radix partition with translation on. 

Note:  HID[8] is set to ‘1’ at this point for “half-TLB mode” (required for radix translation).

2. Switch all active threads on the core to hypervisor real mode.

3. Invalidate all of the TLB, ERATs, and translation caching by executing one tlbie with RIC = ‘2’, IS=’3’, 
R = ‘1’, PRS = ‘0’ and one tlbie with RIC = ‘2’, IS = ‘3’, R = ‘1’ and PRS = ‘1’.

4. Change LPIDR to point to an HPT partition.

5. Optional: Execute a mthid instruction to clear bit 8 to configure the TLB for “full-TLB mode”. This allows 
the TLB to be fully utilized for HPT partitions, which should improve performance.

6. Change LPCR so that the following conditions are true: UPRT = ‘0’, HR = ‘0’, and set VC accordingly for 
the target partition.

7. Execute an rfid to turn translation back on in an HPT partition.

4.10.7 Hashed Page Table Translation

When the partition table entry has HR = ‘0’, the translation mechanism is referred to as either paravirtualized 
or HPT. In HPT mode, there is no concept of an effPID or an effLPID, only PIDs and LPIDs. In other words, 
only the values found in the PIDR and LPIDR, respectively, are used to index the appropriate translation 
table. This translation mode is most similar to the legacy translation architecture supported on past proces-
sors such as the POWER8 processor. As state earlier, the POWER9 core only supports the 
LPCR[UPRT] = ‘0’ submode of the HPT translation architecture. In this mode, the POWER9 core supports 32 
software-managed SLB entries (the same as POWER8). The PIDR is not used in this submode in the 
processor core, but is used by the NMMU.

In HPT mode, the effective address space is 64 bits (0:63), the virtual address space is implemented as 
68 bits (10:77) of the 78-bit architected maximum virtual address space, and the real address space is 51 bits 
(13:63).

4.10.7.1 In-Memory Segment Table and Bolted SLB Entries

The segment table is managed by the operating system running in a logical partition (LPAR) and resides in 
virtual memory. At a high level, when operating in this mode, the hardware searches the in-memory segment 
table for a matching effective segment ID (ESID) and caches matching segment table entries (STE) in the 
SLB. Upon subsequent accesses to that same ESID, the hardware will hit on that entry in the SLB and only 
walk the segment table if no matching entry is found. In addition to the segment table entries that are cached 
in the SLB, the hardware provides the ability for software to manage four bolted entries in the SLB. Unlike the 
cached segment table entries, these bolted entries are not eligible to be cast out of the SLB using the hard-
ware’s LRU policy. It is the responsibility of the operating system to manage these four bolted entries explic-
itly as described in the Power ISA (Version 3.0B). If a matching ESID is found in the SLB, that entry is used 
regardless of whether another segment table entry resides in the in-memory segment table with a different 
ESID to Virtual Segment ID (VSID) mapping. Software must prevent more than one matching ESID in the in-
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memory segment table. Furthermore, an ESID that exists in the segment table must not overlap with one of 
the bolted SLB entries. Violating any of these rules can result in an SLB multi-hit caused machine check inter-
rupt.

4.10.7.2 SLB Management Instructions

The POWER9 core implements the SLB management instructions as defined in the Power ISA (Version 
3.0B). Specifically, the following instruction details are noteworthy:

• The slbmfee and slbmfev instructions can read any SLB entry when UPRT = ‘1’, if the L-bit in the 
instruction image is set to a ‘1’. This is an implementation-specific feature that will only be used in the 
future if and when the POWER9 processor core supports UPRT = ‘1’ for HPT translation.

• The slbfee. instruction writes ‘0’ to CR field 0 whenever UPRT = ‘1’. 

Note:  UPRT should always be set to ‘1’ (per the ISA) whenever Radix translation is being performed 
(that is, LPCR[HR] = ‘1’).

• The slbia instruction with IH = ‘101’ (that is, a reserved value) is treated the same as IH = ‘111’.

4.10.7.3 Supported Segment and Page Sizes for HPT Translations

The POWER9 core supports two segment sizes for HPT translation: 256 MB and 1 TB. The POWER9 core 
also provides support for 4 KB, 64 KB, 16 MB, and 16 GB page sizes for HPT translation. Translation infor-
mation for all these page sizes is kept in the TLB. Irrespective of the page size, a given page takes up only 
one entry in the TLB.

If a virtual address is mapped into a small (large) page and then later mapped into a large (small) page 
without invalidating TLB entries between changing page size, a machine check interrupt can result with an 
indication that a parity error occurred when the TLB was accessed to translate an effective address. The error 
condition can be corrected by invalidating the entire TLB and SLB.

The POWER9 core also supports multiple page sizes per segment (MPSS) as described in the Power ISA. 
Specifically, the POWER9 core supports mixing page size in a single segment with the following combina-
tions only:

• 4 KB base / 64 KB actual
• 4 KB base / 16 MB actual
• 64 KB base / 16 MB actual

Table 4-21 on page 109 shows the correspondence between PTE[L, LP] values and STE[L, LP]/SLBE[L, LP] 
values. The supported segment table and SLB entry sizes and page sizes are also shown in Table 4-21. 
These same page sizes and their associated encodings are also used in the Partition Table Entry “PS” field. 
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4.10.7.4 TLB Hash Function for HPT

In HPT mode, the entire 1024 entries in the TLB are used to cache HPT page table entries (PTEs). The TLB 
is organized as 256 entries × 4-way set associative. The TLB hash function for 256 MB segments is shown in 
Table 4-22 and for 1 TB segments is shown in Table 4-23. The corresponding hash function is used for TLB 
reads, writes, and snooped tlbie operations.

Table 4-21. PTE and STE/SLBE Correspondence for HPT Translation  

Entry 
Number

PTE STE/SLBE Base Page 
Size

Actual Virtual 
Page Size Notes

L LP L LP

1 0 rrrr rrrr 0 00 4 KB 4 KB 1

2 1 0000 0000 1 00 16 MB 16 MB

3 1 rrrr 0001 1 01 64 KB 64 KB 2

4 1 0000 0011 1 10 16 GB 16 GB

5 1 rrrr 0111 0 00 4 KB 64 KB 1

6 1 0000 1000 1 01 64 KB 16 MB 2

7 1 0011 1000 0 00 4 KB 16 MB 1

1. Entries 1, 5, and 7 all use STE/SLBE[L, LP] = ‘000’ encoding for base page size 4 KB but have unique PTE[L, LP] encodings for 
actual page size.

2. Entries 3 and 6 both use STE/SLBE[L, LP] = ‘101’ encoding for base page size of 64 KB but have unique PTE[L, LP] encodings for 
actual page size.

3. Unimplemented STE/SLBE page size encodings are treated the same as the ‘000’ case. 
4. If the STE/SLBE page size is ‘110’ (16 GB) and the segment size is small (256 MB), hardware treats the STE/SLBE page size the 

same as the ‘000’ case. 
5. The ‘r’ bits are part of the real page number. They can be any value. 

Table 4-22. 256 MB Segments 

Page Size Index

4 KB [VSID(46:49) XOR EA(44:47)] || EA(48:51)

64 KB [VSID(46:49) XOR EA(40:43)] || EA(44:47)

16 MB VSID(46:49) || EA(36:39)

16 GB Does not exist

Table 4-23. 1 TB Segments 

Page Size Index

4 KB [VSID(34:37) XOR EA(44:47)] || EA(48:51)

64 KB [VSID(34:37) XOR EA(40:43)] || EA(44:47)

16 MB [VSID(34:37) XOR EA(32:35)] || EA(36:39)

16 GB [VSID(34:37) XOR EA(25:28)] || EA(26:29)
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4.10.7.5 tlbie and tlbiel Usage for HPT Translations

For HPT translation, the following tables show the tlbie and tlbiel specifications for various page sizes 
supported by the POWER9 core.

Table 4-24 shows the legal segment size and page size specifications for tlbie and tlbiel for the POWER9 
HPT PTEs (R = ‘0’) when L = ‘0’, and RIC ≠ ‘3’. 

Table 4-25 shows the legal segment size and page size specifications for tlbie and tlbiel for the POWER9 
HPT PTEs (R = ‘0’) when L = ‘1’ and RIC ≠ ‘3’.

Table 4-24. Segment Size and Page Size Specifications for HPT tlbie and tlbiel  (R = ‘0’, L = ‘0’, and RIC ≠ ‘3’)

RB[54:55]
Segment Size

RB[63] 
L RIC

RB[56:58]
AP 

(Same as 
STE/SLBE[L||LP] 

Encoding)

Actual Page Size to be Invalidated

00 0 0,2 000 4 KB

00 0 0,2 101 64 KB

00 0 0,2 100 16 MB

01 0 0,2 000 4 KB

01 0 0,2 101 64 KB

01 0 0,2 100 16 MB

1. All other AP values must not be used when L = ‘0’ (and R = ’0’) and results in a machine check interrupt.
2. RB[54:55] = ‘00’ corresponds to a 256 MB segment size and RB[54:55] = ‘01’ corresponds to 1 TB segment size.
3. 16 GB page with a small segment (RB(54:55] = ‘00’) is not a permitted combination.
4. PRS = ‘1’ and R = ‘0’ is an unsupported combination (invalid form)

Table 4-25. Segment Size and Page Size Specifications for HPT tlbie and tlbiel  (R = ‘0’, L = ‘1’, and RIC ≠ ‘3’ )

RB[54:55] 
Segment Size

RB[63] 
L RIC

RB[44:51]
LP 

(same as STE/SLBE[L||LP] 
encoding)

Base Page Size Actual Page Size to be Invalidated

00 1 0,2 0000 0000 16 MB 16 MB

00 1 0,2 VVVV 0001 64 KB 64 KB

00 1 0,2 0000 1000 64 KB 16 MB

01 1 0,2 0000 0000 16 MB 16 MB

01 1 0,2 VVVV 0001 64 KB 64 KB

01 1 0,2 0000 0011 16 GB 16 GB

01 1 0,2 0000 1000 64 KB 16 MB

1. All other LP values used when R = ‘0’, L = ‘1’, and RIC≠ ‘3’ result in a machine check interrupt.
2. ‘v’ corresponds to AVA (AVPN) bits.
3. RB[54:55] = ‘00’ corresponds to 256 MB segment size and RB[54:55] = ‘01’ corresponds to 1 TB segment size.
4. 16 GB page with a small segment (RB[54:55] = ‘00’) is not a permitted combination.
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See Appendix C tlbie and tlbiel Encodings for HPT Translations on page 485 for details.

4.10.8 Instruction Effective-to-Real Address Translation Cache 

The POWER9 processor core includes a 64-entry, fully-associative instruction effective-to-real address trans-
lation (I-ERAT) for fast translation of instruction effective addresses into physical (real) addresses on a per 
LSU slice basis. The ERAT is dynamically shared between all four threads. 

For hypervisor real mode accesses, the I-ERAT entries are shared by all threads on a given core.  The ERAT 
is implemented as a CAM that supports page sizes of 4 KB, 64 KB, 2 MB (Radix translation only), and 16 MB. 
Instruction accesses to 1 GB or 16 GB pages (HPT translations only) are installed in the I-ERAT as multiple 
16 MB page entries as required.

Because addresses associated with nonhypervisor real mode accesses are translated differently than those 
associated with virtual-mode accesses, the I-ERAT must keep the MSR[IR] and MSR[HV] bits (along with 
various bits of translation information) in each entry. This allows the I-ERAT to distinguish between transla-
tions that are valid for the various modes of operation. 

For HPT translation, the contents of each I-ERAT entry is the result of a page table search based on the 
contents of an SLB or segment-table entry. To maintain consistency with the SLB, the following instructions 
cause entries in the I-ERAT that belong to the thread executing the instruction to be invalidated:

• slbia - Use the appropriate IH field value as described in the Power ISA Operating Environment Architec-
ture - Book III (version 3.0B), some or all entries are invalidated for that thread.

• mtiamr - All entries are invalidated for that thread.

The slbie instruction causes invalidation of an I-ERAT entry belonging to the thread (no impact to the other 
thread) only if there is a perfect address match (that is, for invalidation effective address bits, EA[0:35] are 
matched for an slbie small 256 MB segment, EA[0:23] are matched for an slbie 1 TB segment) and the 
Class bit specified by the slbie instruction matches the Class bit of the SLB/ERAT entry being invalidated. 

Table 4-26. Segment Size and Page Size Specifications for HPT tlbie Cluster Bombs (R = ‘0’, L = ‘0’, and 
RIC = ‘3’)  Note: tlbiel with RIC = 3 is an invalid instruction form and is treated as a NOP.

RB[54:55] 
Segment Size

RB[63] 
L RIC

RB[56:58]
AP 

(same as STE/SLBE[L||LP] 
encoding)

Actual Page Size to be Invalidated

00 0 3 110 Eight consecutive 4 KB pages aligned on 
32 KB boundary

00 0 3 111 Eight consecutive 64 KB pages aligned 
on 512 KB boundary

01 0 3 110 Eight consecutive 4 KB pages aligned on 
32 KB boundary

01 0 3 111 Eight consecutive 64 KB pages aligned 
on 512 KB boundary

1. All other L and AP values and combinations used when R = ‘0’, L = ‘0’ and RIC = ‘3’ result in a machine check interrupt.
2. RB[54:55] = ‘00’ corresponds to 256 MB segment size and RB[54:55] = ‘01’ corresponds to 1 TB segment size.
3. PRS = ‘1’ and R = ‘0’ is an unsupported combination (invalid form)
4. The POWER9 core has dropped support of range bombs.



User’s Manual 
OpenPOWER
POWER9 Processor  

Power Architecture Compliance

Page 112 of 508
Version 2.1 

10 October 2019 
 

Because the POWER9 processor core does not support UPRT = ‘1’ mode for HPT translations, the core does 
not invalidate any SLB or ERAT entries as the result of an slbieg instruction. The slbieg instruction is used 
soley for invalidating the segment table entries cached by the nest MMU hardware.

The tlbie instruction (or the detection of snooped-tlbie operations) invalidates all I-ERAT entries (irrespective 
of the thread) in the I-ERAT that have a perfect match. In other words, the entry is invalidated only if the 
LPIDR value matches the LPID value from the snooped-tlbie and:

• EA[36:51] are matched for HPT tlbie 4 KB page
• EA[14:51] are matched for Radix tlbie 4 KB page
• EA[36:48] are matched for HPT tlbie 8 × 4 KB cluster bomb
• EA[36:47] are matched for HPT tlbie 64 KB page
• EA[14:47] are matched for Radix tlbie 64 KB page
• EA[36:44] are matched for HPT tlbie 8 × 64 KB cluster bomb
• EA[14:42] are matched for Radix tlbie 2 MB page
• EA[36:39] are matched for HPT tlbie 16 MB page 
• EA[14:33] are matched for Radix tlbie 1 GB page
• EA[24:29] are matched for HPT tlbie 16 GB page

Note:  EA refers to the effective address for process-scoped Radix translations, the guest real address for 
partition-scoped Radix translations, and the virtual address for HPT translations.

For Radix translation, the I-ERAT caches the flattened guest effective address to host real address transla-
tion that results from searching both the guest and host page tables. The Class bit in the I-ERAT is set to ‘1’ 
for quadrants 0, 1,and 2 and is set to ‘0’ for quadrant 3 accesses (regardless of HV or PR). The preferred 
method for invalidating the entire I-ERAT when using Radix translation is to execute an slbia with IH = x‘7’ or 
an mtiamr instruction. For more precise ERAT invalidation where software must retain quadrant 0 accesses 
(regardless of HV or PR), slbia with IH = x‘1’ or IH = x‘3’ can be used. Additionally, mtpidr and mtlpidr 
instructions perform an implicit slbia with IH = x‘3’.

Upon power-on, each I-ERAT entry is set to the invalid state.

Table 4-27 on page 113 describes how the entries in the I-ERAT are created. For HPT translation (HR = ‘0’), 
the resulting I and G values in the table are solely determined by the I and G values from the PTE in memory. 
For Radix translation (HR = ‘1’), the resulting I and G values in the table reflect the net or effective I and G 
values as derived from Figure 4-6. 

Figure 4-6. Net or Effective I and G Values (I-ERAT) 

Host ATT ‘00’ ‘01’ ‘10’ ‘11’

Guest ATT (SAO, I, G) ‘000’ ‘100’ ‘011’ ‘010’

‘00’ ‘000’ Normal Normal WIMG Miscompare WIMG Miscompare

‘01’ ‘100’ Normal Normal WIMG Miscompare WIMG Miscompare

‘10’ ‘011’ No Execute No Execute No Execute No Execute

‘11’ ‘010’ Normal Normal Cache-Inhibited 
Fetch

Cache-Inhibited 
Fetch

Notes:  

• Dark green = no exception reported. 
• Light green = instruction fetch from a caching inhibited page occurs. 
• Light red = no execute (for example, SRR1[35] = ‘1’). ISI occurs per the Power ISA. 
• Dark red = mismatched ATT. ISI occurs per bit SRR1[34] = ‘1’ in the Power ISA.
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The SAO bit is not applicable to instruction accesses and thus is not shown in Table 4-27. The exception 
cases listed previously are either a mismatched ATT or “no-execute” type of exception as dictated by the 
Power ISA (Version 3.0B).

4.10.9 Data Effective-to-Real-Address Translation 

The POWER9 processor core includes a 64-entry, fully-associative data effective-to-real-address translation 
(D-ERAT) for fast translation of data effective addresses into physical (real) addresses on a per LSU slice 
basis. The ERAT is dynamically shared between all four threads. 

For hypervisor real- mode accesses, the D-ERAT entries are shared by all threads on a given core.  All other 
accesses are not shared across threads, even when the LPIDR value is set to the same value on two or more 
threads. The ERAT is implemented as a CAM that supports page sizes of 4 KB, 64 KB, 2 MB (Radix transla-
tion only), and 16 MB. Data accesses to 1 GB or 16 GB pages (HPT translations only) are installed in the 
D-ERAT as multiple 16 MB page entries as required.

Because addresses associated with nonhypervisor real-mode accesses are translated differently than those 
associated with virtual-mode accesses, the D-ERAT must keep the MSR[DR] and MSR[HV] bits (along with 
various bits of translation information) in each entry. This allows the D-ERAT to distinguish between transla-
tions that are valid for the various modes of operation. 

For HPT translation, because the contents of each D-ERAT entry is the result of a page-table search based 
on the contents of an SLB or segment table entry, to maintain consistency with the SLB, the following instruc-
tion causes entries in the D-ERAT that belong to the thread executing the instruction to be invalidated:

• slbia using the appropriate IH field value as described in the Power ISA Operating Environment Architec-
ture - Book III (version 3.0B), some or all entries are invalidated for that thread

The slbie instruction causes invalidation of a D-ERAT entry belonging to the thread (no impact to the other 
thread) only if there is a perfect address match (that is, for invalidation effective address bits, EA[0:35] are 
matched for an slbie small 256 MB segment, EA[0:23] are matched for an slbie 1 TB segment). Unlike the 

Table 4-27. I-ERAT I and G Bit Setting  

Condition

I and G 
Determined By: Resulting Action

MSR[IR] HR MSR[HV]

First 
Access 

I = 1 
Fetch

1 X X PTE PTE
If G = ‘0’, the page is written into the I-ERAT using the I-bit value and 
page size determined from the PTE as described previously.
If G = ‘1’, an ISI is taken.

0 0 0 PTE PTE

Virtual real mode.
If G = ‘0’, the page is written into the I-ERAT using the I-bit value and 
page size is determined from the PTE as described previously.
If G = ‘1’, an ISI is taken.

0 1 0 PTE PTE
Guest real mode. An entry is created with the I and G values set from 
the host PTE.
If G = ‘1’, an ISI is taken.

0 X 1 Yes 1 N/A
Page-based RMSC mode. 
A 2 MB page is installed in the I-ERAT with I = ‘1’ and G = ‘0’.

0 X 1 No 0 N/A
Page-based RMSC mode. 
A 2 MB page is installed in the I-ERAT with I = ’0’ and G = ‘0’.
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I-ERAT, no Class bit match is required for slbie invalidation of the D-ERAT (nor the SLB). Note that the 
preceding sentence is a design-implementation feature, not an architecture requirement. Similarly, because 
the POWER9 processor core does not support UPRT = ‘1’ mode for HPT translations, the core does not 
invalidate any SLB or ERAT entries as the result of an slbieg instruction. The slbieg instruction is used solely 
for invalidating the segment table entries cached by the nest MMU hardware. 

The tlbie instruction (or the detection of snooped-tlbie operations) invalidates all D-ERAT entries (irrespective 
of the thread) in the D-ERAT that have a perfect match. In other words, the entry is invalidated only if the 
LPIDR value matches the LPID value from the snooped-tlbie and:

• EA[36:51] are matched for HPT   tlbie 4 KB page
• EA[14:51] are matched for Radix tlbie 4 KB page
• EA[36:48] are matched for HPT tlbie 8 × 4 KB cluster bomb
• EA[36:47] are matched for HPT tlbie 64 KB page
• EA[14:47] are matched for Radix tlbie 64 KB page
• EA[36:44] are matched for HPT tlbie 8 × 64 KB cluster bomb
• EA[14:42] are matched for Radix tlbie 2 MB page
• EA[36:39] are matched for HPT tlbie 16 MB page
• EA[14:33] are matched for Radix tlbie 1 GB page
• EA[24:29] are matched for HPT tlbie 16 GB page

Note:  EA refers to the effective address for process-scoped Radix translations, the guest real address for 
partition-scoped Radix translations, and the virtual address for HPT translations.

For Radix translation, the D-ERAT caches the flattened guest effective address to host real address transla-
tion resulting from searching both the guest and host page tables. The Class bit in the D-ERAT is set to ‘1’ for 
quadrants 0, 1, and 2, and set to ‘0’ for quadrant 3 accesses (regardless of HV or PR). The preferred method 
for invalidating the entire D-ERAT when using Radix translation is to execute an slbia with IH = x‘7’. For more 
precise ERAT invalidation where software must retain quadrant 0 accesses (regardless of HV or PR), slbia 
with IH = x‘1’ or IH = x‘3’ can be used. Additionally, mtpidr and mtlpidr instructions perform an implicit slbia 
with IH = x‘3’.

Upon power-on, each D-ERAT entry is set to the invalid state.

According to the Power ISA, aliasing the I-bit storage attribute is prohibited. In the POWER9 core, due to the 
caching of pages in the ERATs, software should avoid accessing the same real page with different values for 
the I-bit storage attribute. Failure to follow this restriction can result in a cache paradox or other boundedly 
undefined behavior.



User’s Manual 
OpenPOWER

 POWER9 Processor

Version 2.1 
10 October 2019 
 

Power Architecture Compliance

Page 115 of 508

4.10.9.1 D-ERAT I and G Bit Setting

Entries in the D-ERAT are created as described in Table 4-28. For HPT translation (HR = ‘0’), the resulting I 
and G values in Table 4-28 are solely determined by the I and G values from the PTE in memory. For Radix 
translation (HR = ‘1’), the resulting I and G values in Table 4-28 reflect the “net” or “effective” I and G values 
as derived from Figure 4-7. 

The exception cases listed above are a mismatched ATT type of exception as dictated by the Power ISA 
(Version 3.0B).

Figure 4-7. Net or Effective I and G Values (D-ERAT) 

Host ATT ‘00’ ‘01’ ‘10’ ‘11’

Guest ATT (SAO, I, G) ‘000’ ‘100’ ‘011’ ‘010’

‘00’ ‘000’ ‘000’ ‘100’ Exception Exception

‘01’ ‘100’ ‘100’ ‘100’ Exception Exception

‘10’ ‘011’ ‘001’ ‘001’ ‘011’ ‘011’

‘11’ ‘010’ ‘000’ ‘000’ ‘010’ ‘010’

Note:  

• Light Green means no exception reported. 
• Red means "mismatched ATT" type of DSI occurs (for example,DSISR(34) = ‘1’ on DSI as per ISA).

Table 4-28. D-ERAT I and G Bit Setting  

Condition

SAO I and G 
Determined By: Resulting ActionMSR

[DR] HR MSR
[HV]

First 
Access 
HV CI 

Instruction

1 X X 0 PTE PTE
When the WIMG (HPT) or net ATT (Radix) indicate the page is 
not SAO, an entry is created with SAO = ‘0’ and the I and G val-
ues are set from the PTE.

1 X X 1 0 0 When the WIMG (HPT) or net ATT (Radix) indicate the page is 
SAO, an entry is created with SAO = ‘1’ , I = ‘0’, and G = ‘0’

0 0 0 PTE PTE PTE
Virtual real mode. 
An entry is created with the I and G values set from the host 
PTE. The SAO bit is set if the PTE (WIMG) bits specify SAO.

0 1 0 PTE PTE PTE
Guest real mode. 
An entry is created with the I and G values set from the host 
PTE. The SAO bit is set if the PTE (ATT) bits specify SAO.

0 X 1 Yes 1 1

Page-based RMSC mode. 
If the first access is caused by a hypervisor CI load or store (for 
example, ldcix, stdcix, and so on), an entry is established as 
I = ‘1’ and G = ‘1’.

0 X 1 No 0 0

Page-based RMSC mode. 
If the first access is caused by any instruction other than a hyper-
visor CI load or store, storage is G = ‘0’ and an entry is estab-
lished as I = ‘0’ and G = ‘0’.
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Caching-Inhibited Paradox Cases 

If a caching-inhibited load instruction hits in the L1 data cache, the load data is serviced from the L1 data 
cache and no request is sent to the NCU.

If a caching-inhibited store instruction hits in the L1 data cache, the store data is written to the L1 data cache 
and sent to the NCU. Note that the L1 data cache and L2 cache are no longer coherent.

These scenarios are true both for storage accesess marked as caching-inhibited by the PTE I-bit and for the 
hypervisor caching-inhibited load and store instructions.

The POWER9 core supports the page-based real-mode storage control (RMSC) mechanism that allows 
speculative access to DR = ‘0’ space, if there is real memory there.

4.10.10 Translation Lookaside Buffer and PWC 

The POWER9 core contains a unified (combined for both instruction and data), 1024-entry, 4-way set- 
associative TLB (LRU-based replacement algorithm) for HPT mode. When the core is operating in Radix 
mode, the TLB is logically cut in half with the other half being dedicated as a page walk cache (PWC). 
Regardless of what translation mode the core is operating in, the TLB is 4-way set associative. The TLB is 
used to cache PTEs. The PWC is used to cache page directory entries (PDEs) for Radix page tables. In addi-
tion, the POWER9 core contains one 64-entry, fully-associative I-ERAT and one 64-entry, fully-associative  
D-ERAT. The TLB is a cache of recently-used page table entries. The PWC is a cache of recently used page 
directory entries (for Radix). The ERATs are caches that contain flattened translations derived from informa-
tion in the various page tables, segment table entries, or bolted SLB entries. The TLB, PWC, and ERATs are 
loaded and managed by hardware.

In the POWER9 core, the TLB entry stores the LPID in each TLB entry to indicate which partition loaded that 
TLB entry. Because the virtual and real address space are the same for all software threads within a logical 
partition, the TLB, which keeps the mapping from virtual-to-real address space, are completely shared by the 
threads within a partition and there is no thread-ID bit required in the TLB to identify which entry belongs to 
which thread. Different partitions have different mappings from virtual-to-real address space; therefore, TLB 
entries cannot be shared between partitions. A given entry in the TLB can be used by all the threads within a 
partition at the same time. Threads in different partitions are not able to access TLB entries from another 
partition.

For more details on the organization and size of the TLB for each type of translation mode, see Table 4-18 
TLB Hash for Radix Mode on page 105, Table 4-19 PWC Hash for Radix Mode on page 105, Table 4-22 
256 MB Segments on page 109, and Table 4-23 1 TB Segments on page 109.

The POWER9 core supports a hardware update of the storage access recording bits (reference and change) 
into the memory-based page table.

The POWER9 core supports a TLB hit under miss and two table concurrent tablewalks. The POWER9 core 
also supports two outstanding I-ERAT misses (from the four threads) and four outstanding D-ERAT misses at 
the same time.

The POWER9 core supports lockless TLBIE operations. The architectural requirement that only one thread at 
a time can execute tlbie/tlbsync instructions during a page table modification need not be followed (see the 
Page Table Updates section of the Power ISA Operating Environment Architecture - Book III (version 3.0B)). 
This was traditionally implemented with a single global lock for the entire page table modification sequences. 
The term lock-less TLBIEs refers to the POWER9 core’s ability to manage concurrent tlbie/tlbsync 
sequences from multiple threads without this global lock. 

Noncacheable unit
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However, software must still ensure that concurrent, conflicting, racing PTE updates from more than one 
thread do not occur (the hardware performs the updates in some fashion, but the end result is undefined due 
to the racing of the updates to the same PTE entry) and therefore, software locks or some other synchroniza-
tion discipline are still required to prevent these collisions as necessary. 

The execution of tlbie instructions or the detection of snooped-tlbie operations off the bus cause an index-
based invalidate to occur in the TLB, if there is a match. In other words, an entry is invalidated only if there is 
a perfect match of the effective address supplied by the tlbie operation and the content of the TLB entry.

The POWER9 core does not support the tlbia instruction.

Upon power-on, the POWER9 core initializes each TLB entry to the invalid state.

4.10.11 Segment Lookaside Buffer 

For HPT translation, the POWER9 core contains a unified (combined for both instruction and data), 32-entry, 
fully-associative SLB per thread. Although the Power ISA (Version 3.0B) supports both a hardware managed 
SLB which caches the in-memory segment table (that is, UPRT = ‘1’) and a strictly software-managed SLB 
(UPRT = ‘0’), the POWER9 core only supports UPRT = ‘0’ when performing HPT translation. Therefore, soft-
ware must set the LPCR[UPRT] = ‘0’ when using HPT translation or the results are undefined.

While the slbieg instruction does not invalidate SLB entries in the processor core when UPRT = ‘0’, it is used 
to managed STEs cached by the NMMU. Outstanding slbieg instructions are ordered by the slbsync instruc-
tion per the Power ISA (Version 3.0B). When the LPCR[UPRT] = ‘0’, the segment table is not searched and 
all 32 entries for each thread can only be updated by software by using the slbmte instruction. 

Information derived from the SLB can also be cached in the I-ERAT or the D-ERAT along with information 
from the TLB. As a result, many of the SLB management instructions have effects on the ERATs, as well as 
on the SLB itself. 

The POWER9 core supports both 256 MB and1 TB segment sizes. Bit 0 of the SLB[B] field is ignored by the 
POWER9 core and should always be set to ‘0’ per the Power ISA for unimplemented segment size encod-
ings.

Because the SLB is managed by software (the operating system) either via the segment table or bolted 
entries, it is possible that multiple entries can be incorrectly set up to provide translations for the same effec-
tive address. If an effective address is translated by more than one SLB entry (that is, the ESID fields of the 
entries are identical or overlap), a machine check interrupt results with an indication that a parity error 
occurred when the SLB was accessed. When this happens the hardware logically ORs the data in the 
conflicting entries. The machine check handler can look at the SLB contents to try to determine if conflicting 
entries have been provided. When a parity error occurs not due to multiple entries, the entire SLB must be 
reloaded because the DAR does not contain an address indicating which entry caused the parity error. If the 
source of the error was due to multiple entries, the conflicting entries must be corrected for the translation to 
proceed, which might also be accomplished by reloading the entire SLB with good entries.

Effective segment identifier
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4.10.12 Discontinued Translation Support Items

4.10.12.1 Address Space Register 

Not to be confused with the Access Segment Descriptor Register (ASDR), the Address Space Register 
(ASR) has been removed from the Power ISA and thus is not supported by the POWER9 processor. The 
ASDR is supported as described in the Power ISA (Version 3.0B).

4.10.13 Block Address Translation

Although this facility existed in earlier versions of the architecture, it is no longer part of the Power ISA. As a 
result, the POWER9 core does not support block address translation.

4.10.13.1 Support for 32-Bit Operating Systems

The POWER9 processor does not support the optional bridge facility and instructions for 64-bit implementa-
tions described in the Bridge-to-SLB Architecture section of the Power ISA Operating Environment Architec-
ture - Book III (version 3.0B). 

As a result, the following instructions are not supported in the POWER9 processor:

• mtsr - Move to segment register
• mtsrin - Move to segment register indirect
• mfsr - Move from segment register
• mfsrin - Move from segment register indirect

4.10.13.2 Real Mode

The POWER9 core does not support real mode accesses that used the Real Mode Offset Register (RMOR) 
and Real Mode Limit Selector (RMLS) on previous generation processors. As such, per the Power ISA 
(Version 3.0B), LPCR[0] is considered reserved and, when using HPT translation, the POWER9 core 
behaves like previous generation processors (such as the POWER8 core) did when LPCR[0] = ‘1’. In other 
words, nonhypervisor real mode accesses for HPT translation are always treated as virtual real-mode 
accesses as per the Power ISA (Version 3.0B). When Radix translation in guest real mode (that is, IR = ‘0’ or 
DR = ‘0’) is being used, the guest EA (gEA) equals the guest RA (gRA), which is then translated by the parti-
tion-scoped Radix trees.

4.10.14 Reference and Change Bits

When performing Radix translation, the POWER9 hardware triggers the appropriate interrupt (DSI, HDSI, ISI, 
or HISI) as defined in the Power ISA (Version 3.0B) for the mode and type of access whenever Reference (R) 
and Change (C) bits require setting in either the guest or host page-table entry (PTE). When performing HPT 
translation, the hardware performs the  R and C bit updates nonatomically (same behavior as the POWER8 
processor).

For HPT PTEs, the W and M bits in the PTE are assumed to be ‘01’ respectively. If the change bit is updated, 
the W and M bit in the PTE are set to ‘01’ respectively by the hardware.

The POWER9 core can speculatively set R bits in the PTE.  In some rare circumstances, the POWER9 core 
can speculatively set the page table entry C bit.
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4.10.15 Storage Protection

For HPT translation, the Power ISA (Version 3.0B) states that whether an instruction fetch is permitted from a 
page marked “no access” is implementation dependent. In the POWER9 core, these instruction fetches are 
permitted to continue without signaling an exception. The POWER9 core supports storage protection modes 
in the Power ISA, with 32 virtual-page class keys for HPT translation. IAMR, AMOR, and UAMOR are imple-
mented as 32-bit SPRs.

4.10.16 Hypervisor Real Mode Storage Control

The POWER9 core supports the ability to control cacheability of data and instruction accesses while in hyper-
visor real mode based on the history block (also known as, page-based) mechanism described in the Power 
ISA section on the Hypervisor Real Mode Storage Control (RMSC). Accesses performed in hypervisor real 
mode are cached in the I-ERAT and D-ERAT for instruction and data accesses respectively as 2 MB pages.

The POWER9 core supports RMSC for data storage and instruction storage. The real memory in a system is 
often noncontiguous and the hypervisor data and instruction storage accesses can be scattered across the 
address space. The page-based RMSC architecture and implementation allows speculative access safely in 
system memory. The first time the HV = ‘1’ access is made in DR = ‘0’ and IR = ‘0’ mode, it is done 
nonspeculatively. After the first access to a given real page, a D-ERAT entry or I-ERAT entry is established. If 
the first access to the page was cacheable, the page is installed in the D-ERAT with IG = ‘00’ and thus, all 
subsequent accesses to said page can be performed speculatively while still ensuring that the access is 
made to system memory. However, if the first access to the page was a noncacheable access, the page is 
installed in the D-ERAT with IG = ‘11’ and thus, all subsequent accesses to that page are considered nonca-
cheable and are performed nonspeculatively as well.

If a page is already installed in the D-ERAT as IG = ‘00’ and a subsequent caching inhibited load or store 
instruction (for example, lbzcix, stbcix) accesses that same page, a DSI is taken with DSISR[62] set to ‘1’.

4.10.17 Storage Access Modes - WIMG and ATT Bits

Because the POWER9 processor supports both HPT and Radix translation, two methods of specifying 
storage attributes on a per page basis exist in the Power ISA (Version 3.0B). For HPT, the WIMG bits deter-
mine this. For Radix, the ATT bits determine this and the Power ISA (Version 3.0B) shows how ATT values 
correspond to their HPT WIMG equivalent values. The remainder of this section discusses storage attributes 
in HPT terms, but the Radix ATT equivalent values also apply.

The POWER9 core always assumes W = ‘0’ and M = ‘1’ independent of the value of these bits in the page 
table entry. For HPT PTEs, when the hardware is performing a change bit update, it writes the W and M bits 
as W = ‘0’ and M = ‘1’. Per the Power ISA, accessing a page as both I = ‘0’ and I = ‘1’ is boundedly undefined. 
Software should avoid aliasing the I-bit on a page basis. Failing to do so can result in cache paradox situa-
tions which can lead to memory corruption.
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Table 4-29 summarizes the treatment of the WIMG bits in the POWER9 core.

For the noncacheable unit (NCU), the IG combination has the following meaning in the POWER9 core to 
control the store ordering and store gathering (see Table 4-30).

In IG = ‘11’ mode, cache-inhibited loads cannot be reordered relative to loads, and cache-inhibited stores 
cannot be reordered relative to cache-inhibited stores. Cache-inhibited loads can be reordered relative to 
cache-inhibited stores and vice-versa (if it is necessary to maintain ordering between loads and stores, 
barrier instructions must be used). There is no defined ordering between cache-inhibited load or store opera-
tions from different threads.

In IG = ‘11’ mode, gathering is not permitted for either load or store operations within or between threads.

In IG = ‘10’ mode, cache-inhibited loads or stores from a given thread can be gathered and can be reordered. 
This mode allows for higher performance with a certain loss of control of the order in which the operations are 
completed or whether operations are gathered (barriers can be used where necessary to re-establish order). 
There is no defined ordering between cache-inhibited load or store operations from different threads. 

4.10.18 Speculative Storage Accesses

The POWER9 core can execute load instructions to nonguarded storage speculatively. This can occur when 
a load instruction is encountered on a predicted branch path or when a logically preceding instruction causes 
an interrupt. As a result, it is possible for a speculative load that misses in the on-chip cache hierarchy to 
initiate an external storage request even if that load instruction is not actually executed as part of the true 
instruction stream.

Table 4-29. WIMG Bits   

ATT WIMG Description

00 x0x0 Treated as WIMG = ‘0010’

01 1110 Treated as WIMG = ‘0010’ but accesses are strongly ordered

10 x1x1 Treated as WIMG = ‘0111’

11 01x0 Treated as WIMG = ‘0110’

Table 4-30. IG Bits 

ATT IG Description

0x 10 Gather, reorder in NCU is allowed

1x 11 No gather, no reorder in NCU is allowed
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4.10.19 TLB Invalidate Entry (tlbie and tlbiel) Instruction

See Section 4.10 Translation Architecture on page 97 for details regarding whether tlbie and tlbiel are 
considered privileged or hypervisor privileged instructions.

See Section 4.10.3 tlbie and tlbiel Instruction Format and Operands on page 99, Section 4.10.4 Radix 
Translation on page 103, and Section 4.10.7 Hashed Page Table Translation on page 107 for details on tlbie 
and tlbiel instruction usage.

The Power ISA (Version 3.0B) describes a number of cases for tlbie and tlbiel as invalid forms. 

The POWER9 core truncates RS[0:31] and RS[32:63] to the supported size of PID and LPID respectively. No 
interrupt is generated for values that exceed the implement PID and LPID sizes.

The POWER9 core ignores RB[54] when R = 0. 

The POWER9 core reports a machine check interrupt for unsupported AP and LP values specified in the RB 
register.

See Section 4.10.26.7 Machine Check Interrupt on page 130 for a list of invalid instructions forms for 
tlbie/tlbiel that result in a machine check interrupt.

4.10.20 TLB Invalidate All (tlbia) Instruction

The tlbia instruction is not implemented in the POWER9 core and if detected causes a hypervisor emulation 
assistance interrupt. The effects of the instruction can easily be emulated by executing a series of tlbiel 
instructions to each congruence class in the TLB by incrementing the effective address bits [44:51] through 
their full range, and by setting the IS field of the tlbiel instruction to the appropriate values as described in the 
Power ISA. To invalidate all entries irrespective of the LPAR ID, MSR[HV] must equal ‘1’.

4.10.21 TLB Synchronize (tlbsync) Instruction

On a given thread, the tlbsync instruction is used to synchronize the completion of the tlbie instruction. Only 
one tlbsync instruction is required to synchronize the completion of a group of tlbie instructions. See 
Section 4.10 Translation Architecture on page 97 for details regarding when tlbsync is considered a privi-
leged or hypervisor privileged instruction. The instruction is otherwise implemented as described in the Power 
ISA.

4.10.22 SLB Synchronize (slbsync) Instruction

On a given thread, the slbsync instruction is used to synchronize the completion of both the slbieg or the 
slbiag instruction. Only one slbsync instruction is required to synchronize the completion of a group of 
slbieg instructions. See Section 4.10 Translation Architecture on page 97 for details regarding when slbsync 
is considered a privileged or hypervisor privileged instruction. The instruction is otherwise implemented as 
described in the Power ISA.
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4.10.23 Support for Store Gathering

The POWER9 core performs gathering of cacheable stores to reduce the store traffic into the L2 cache. For 
cacheable stores, the gathering occurs in L2 store queues that sit above the L2 cache. The store queue is 
shared by the threads. The store queue is comprised of two banks of sixteen 64-byte wide, fully-associative 
entries or gather stations. Stores can be gathered while architecturally permitted (that is, there is no inter-
vening barrier operation) and the matching address is valid in the store queue. The conditions for pushing the 
store queue data into the L2 cache are not visible to the programmer.

Gathering of cache-inhibited stores is also supported and can be disabled with a mode bit in the noncache-
able unit (NCU) configuration register. There are sixteen 64-byte gather stations in the NCU.

4.10.24 Cache Coherency Paradoxes

Accesses to a given cache line as both cacheable and caching inhibited are not supported in either the Power 
ISA or the POWER9 chip. Because the value of the I-bit is cached by the ERATs inside the processor core, 
cacheable accesses can be performed speculatively and thus, software should avoid aliasing the I-bit (that is, 
caching-inhibited bit) on a per page basis. Failure for software to adhere to this restriction can lead to cache 
corruption.

4.10.25 Handling Parity Error, Multi-Hit, and Uncorrectable Errors

4.10.25.1 Parity Error

If there is a parity error in the D-cache, I-cache, D-ERAT, I-ERAT, TLB or several other register files, SRAM 
dataflow or control structures (but not the SLB), the POWER9 core sets the relevant FIR bit and initiates the 
instruction retry and recovery (IRR) process to “clean up” all the architected states and flush the caches, 
ERATs, and TLB, but keep the SLB as is. Software restores the SLB. After the recovery process, a hypervisor 
maintenance interrupt (HMI) is generated. On a successful recovery, the HMER indicates a successful 
recovery.

If the same parity error occurs several times and reaches a threshold, the hypervisor can decide that the core 
is nonfunctional. The threshold counter is maintained by the hypervisor in software.

HID[5] must be set to ‘0’, otherwise processor recovery does not work.

Note:  The IRR process is engaged for detection of any recoverable parity error in the core or due to the firing 
of a control checker.

There is a separate FIR bit and FIR extension bits for a parity error in the I-cache, D-cache, SLB, D-ERAT, 
I-ERAT, TLB, and a few other structures. For all the other register files, there is one shared FIR bit to indicate 
parity error. 

Static random-access memory

Hypervisor Maintenance Exception Register
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4.10.25.2 Multi-Hit

If there is a multi-hit in the D-ERAT, TLB, or SLB, the core finishes the operation with a machine check inter-
rupt and sets the proper DSISR bit to indicate where the multi-hit was detected.

A multi-hit in the D-ERAT and SLB can occur due to a hardware failure. Multi-hit means more than one entry 
matched the EA in the D-ERAT (ESID in the case of an SLB). Due to their CAM structure, the result is a 
“bitters logical or” of the RA of the multiple entries (VSID in case of SLB). Because of this “bit-wise logical or”, 
multi-hit is very likely to generate a parity error as well.

Because the SLB is managed by software with the Power ISA, a software bug can result in a multi-hit in SLB 
structures. There is no known case of multi-hit in I-ERAT that can produce a wrong result. 

There are separate FIR bits for a multi-hit in the D-ERAT, TLB, and SLB.

4.10.25.3 Both Multi-Hit and Parity Error

If both multi-hit and parity errors happen in the D-ERAT or TLB, the processor core initiates an IRR process. 
No machine check is presented. However, after the recovery operation, the processor core provides an HMI 
interrupt.

For an SLB, any error causes the processor to take a machine check interrupt. The FIR bit setting indicates 
both multi-hit and parity error.

4.10.25.4 Uncorrectable Error Handling

If there is an uncorrectable error (UE) for a translate or a load operation, the instruction finishes with a 
machine check indication to the ISU. The instruction is flushed and re-executed without generating any 
machine check, and a counter is maintained to see how many UEs occurred. If the UE occurs more than a 
threshold, a machine-check interrupt is taken. For caching-inhibited load operation, a machine-check inter-
rupt is taken on the first occurrence of the UE.

For the instruction side (I-side), if an instruction is executed and in the nonspeculative path, only then is it 
treated as a UE. Otherwise, the I-side UE handling mechanism is similar to the D-side.

The core provides the EA of the LSU operation that caused the UE in the DAR register. For a UE detected by 
the IFU for instruction fetches, SRR0 is set to the EA. 

Table 4-31 summarizes how the POWER9 processor handles parity, multi-hit, and unrecoverable errors. 

Table 4-31. Summary of POWER9 Behavior on Parity Error, Multi-Hit, and Uncorrectable Error  (Sheet 1 of 2)

Structure Parity Error Multi-Hit Both Parity Error and 
Multi-Hit

Uncorrectable Error 
(UE)

SLB: I-side translation MC, SRR1, SRR0 MC, SRR1, SRR0 MC, SRR1, SRR0 N/A

SLB: D-side translation, SLBFEE, MFSLB MC, DSISR, DAR MC, DSISR, DAR MC, DSISR, DAR N/A

TLB: I-side translation IRR, HMI MC, SRR1, SRR0 IRR, HMI N/A

TLB: D-side translation, MFTLB IRR, HMI MC, DSISR, DAR IRR, HMI N/A

Notes:  

• SRR0, SRR1, DSISR, DAR are various SPRs set on a machine-check interrupt. 
• In the TLB, a multi-hit cannot generate a parity error, but a parity error can generate a multi-hit. In the SLB and D-ERAT, a multi-hit 

probably generates a parity error.

Machine check

Instruction retry and recovery

Hypervisor maintenance interrupt
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4.10.25.5 TLB Parity Error and Multi-Hit Action

D-ERAT IRR, HMI MC, DSISR, DAR IRR, HMI N/A

Tablewalk: I-side initiated IRR, HMI N/A N/A MC, SRR1, SRR0

Tablewalk: D-side initiated IRR, HMI N/A N/A MC, DSISR, DAR

Load IRR, HMI N/A N/A MC, DSISR

CI Load MC, DSISR N/A N/A MC, DSISR

Store IRR, HMI N/A N/A MC, DSISR

Instruction fetch IRR, HMI N/A N/A MC, SRR1, SRR0

Any other structure (I-ERAT, other Register 
file, I-cache, D-cache and other SRAMs, 
data-flow hardware control checker)

IRR, HMI N/A N/A N/A

Parity = 0 and Multi-hit = 0: No action.

Parity = 1 and Multi-hit = 0: Parity error detected, IRR followed by HMI (no machine check).

Parity = 0 and Multi-hit = 1: This case is probably caused by software setting up two TLB entries pointing to 
the same VSID.

Parity = 1 and Multi-hit = 1: Probably multiple bits flipped due to a soft-error that caused the parity error but 
also made two VSIDs look the same. The POWER9 core does IRR and then 
HMI.

Table 4-31. Summary of POWER9 Behavior on Parity Error, Multi-Hit, and Uncorrectable Error  (Sheet 2 of 2)

Structure Parity Error Multi-Hit Both Parity Error and 
Multi-Hit

Uncorrectable Error 
(UE)

Notes:  

• SRR0, SRR1, DSISR, DAR are various SPRs set on a machine-check interrupt. 
• In the TLB, a multi-hit cannot generate a parity error, but a parity error can generate a multi-hit. In the SLB and D-ERAT, a multi-hit 

probably generates a parity error.
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4.10.26 Interrupts

4.10.26.1 Interrupt Vectors 

Exceptions implemented in the POWER9 core are listed in Table 4-32.

Table 4-32. Interrupt Vectors  

Exception Type Exception Value

System Reset x‘00100’

Machine Check x‘00200’

Data Storage Interrupt (DSI) x‘00300’

Data Segment Interrupt x‘00380’

Instruction Storage Interrupt (ISI) x‘00400’

Instruction Segment Interrupt x‘00480’

External Interrupt x‘00500’

Alignment Interrupt x‘00600’

Program Interrupt x‘00700’

Floating-Point Unavailable x‘00800’

Decrementer Interrupt x‘00900’

Hypervisor Decrementer Interrupt x‘00980’

Directed Privileged Doorbell Interrupt x‘00A00’

Reserved x‘00B00’

System Call x‘00C00’

Trace Interrupt x‘00D00’

Hypervisor Data Storage Interrupt (HDSI) x‘00E00’

Hypervisor Instruction Storage Interrupt (HISI) x‘00E20’

Hypervisor Emulation Assistance Interrupt x‘00E40’

Hypervisor Maintenance Interrupt x‘00E60’

Directed Hypervisor Doorbell Interrupt x‘00E80’

Hypervisor Virtualization Interrupt x‘00EA0’

Performance Interrupt x‘00F00’

VMX Unavailable Interrupt x‘00F20’

VSX Unavailable Interrupt x‘00F40’

Facility Unavailable Interrupt x‘00F60’

Hypervisor Facility Unavailable Interrupt x‘00F80’

Soft Patch Interrupt x‘01500’

Debug Interrupt x‘01600’
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4.10.26.2 Alternate Interrupt Location 

Table 4-33 summarizes the alternate interrupt location (AIL) effects on interrupt processing when IR and DR 
have the same value before the interrupt occurs. If IR and DR have different values before the interrupt 
occurs, the interrupts are taken as if AIL = ’00’ per the Power ISA (Version 3.0B). 

Table 4-33. AIL Effects on Interrupt Processing (IR = DR)   

Interrupt Name Initial 
HV

Sets 
HV = 1?

IR = DR 
before 

Interrupt
AIL Value HPT Behavior Radix Behavior

Machine Check, SRI, HMI X Yes X 0, 2, 3 IR/DR = 0 
No offset added

IR/DR = 0  
No offset added

System call vectored 

X No 0 0, 2, 3
IR/DR = 0 
Normal effective address 
(00 - 0001_7xxx)

IR/DR = 0 
Normal effective address

X No 1 0
IR/DR = 0 
Normal effective address 
(00 - 0001_7xxx)

IR/DR = 0 
Normal effective address

X No 1 2
IR/DR = 1 
Normal effective address 
(00 - 0001 7xxx)

IR/DR = 1 
Normal effective address

X No 1 3 IR/DR = 1 
Alternate effective address

IR/DR = 1 
Alternate effective 
address

Interrupts that (can) set HV = 1: 
sc(LEV = 1), ext(LPES = 0),  
program (priv, evirt=1), hypervisor 
emulation assistance interrupt 
(HEAI), hypervisor doorbell, 
hypervisor decrementer, hypervisor 
data storgage interrupt (HDSI), 
hypervisor instruction storage inter-
rupt (HISI), hypervisor virtualization, 
hypervisor facility unavailable 

X Yes X 0 IR/DR = 0 
No offset added

IR/DR = 0 
No offset added

X Yes 0 2, 3 IR/DR = 0 
No offset added

IR/DR = 0 
No offset added

0 Yes 1 2, 3 IR/DR = 0 
No offset added

IR/DR = 1 
Offset

1 Yes 1 2, 3 IR/DR = 1 
Offset

IR/DR = 1 
Offset

Interrupts that preserve HV:
DSI, ISI, data/instruction segment, 
alignment, FP/vector/VSX/facility 
unavailable, sc (LEV = 0), trace,  
performance monitor, ext (LPES = 1), 
program (other), decrementer,  
privilege doorbell

X No X 0 IR/DR = 0 
No offset added

IR/DR = 0 
No offset added

X No 0 2, 3 IR/DR = 0 
No offset added

IR/DR = 0 
No offset added

X No 1 2, 3 IR/DR = 1 
Offset

IR/DR = 1 
Offset



User’s Manual 
OpenPOWER

 POWER9 Processor

Version 2.1 
10 October 2019 
 

Power Architecture Compliance

Page 127 of 508

4.10.26.3 Interrupt Definitions

Table 4-34 lists the implemented MSR and SRR1/HSRR1 bits. 

Table 4-34. Implementation MSR and SRR1/HSRR1 Bits (Sheet 1 of 2)

Bits MSR SRR1/HSRR1

0 SF SF

1 Reserved Reserved

2 Not Implemented Not Implemented

3 HV HV

4 Not Implemented Not Implemented

5 Reserved Reserved

6:28 Not Implemented Not Implemented

29:30 TS (Transactional State) TS (Transactional State)

31 TM (Transactional Memory Available) TM (Transactional Memory)

32 Not Implemented Not Implemented

33 Not Implemented Specific Interrupt Information

34 Not Implemented Not Implemented

35:36 Not Implemented Specific Interrupt Information

37 Not Implemented Not Implemented

38 VMX VMX

39 Not Implemented Not Implemented

40 VSX VSX

41 Not Implemented Not Implemented

42:47 Not Implemented Specific Interrupt Information

48 EE EE

49 PR PR

50 FP FP

51 ME ME

52 FE0 FE0

53:54 TE TE

55 FE1 FE1

56 US US

57 Not Implemented Not Implemented

58 IR IR

59 DR DR

60 Not Implemented Not Implemented

61 PMM PMM

62 RI RI



User’s Manual 
OpenPOWER
POWER9 Processor  

Power Architecture Compliance

Page 128 of 508
Version 2.1 

10 October 2019 
 

4.10.26.4 Synchronous Interrupts

In addition to the synchronous interrupts described in the Power ISA (Version 3.0B), the POWER9 core 
implements a soft-patch interrupt that can be used by hypervisor-level software to “trap” on particular instruc-
tions. When the conditions for trapping on the instruction are met (typically based on the instruction opcode), 
the soft-patch facility in the hardware generates a soft-patch interrupt and the hardware fetches the interrupt 
vector located at offset x‘01500’. In addition, the hardware updates the Hypervisor Emulation Assist Interrupt 
Register (HEIR) with the 32-bit Power ISA instruction. In some cases, the hardware modifies bits of the 
instruction image. A partial list of notable instructions that exhibit this behavior are listed in Table 4-35. 

Note:  For the instructions listed in Table 4-35, HEIR[11:14] is set to all ‘1’s. The remaining bits are set as 
described in the Power ISA (Version 3.0B).

4.10.26.5 Asynchronous Interrupt Priorities

The POWER9 core processes asynchronous interrupts and event-based branches (EBBs) in the following 
order:

1. System Reset Interrupt

2. Machine Check

3. Imprecise Floating Point Exceptions

4. Hypervisor Maintenance Interrupt

5. Hypervisor Virtualization External Interrupt

6. Mediated External Interrupt

7. Direct External Interrupt

8. Performance Monitor Interrupt

63 LE LE

Table 4-35. HEIR Instruction Formatting for Branch-Like Instructions 

Instruction Primary Opcode Secondary Opcode Additional Fields

sc or scv 17

sp_attn 00 256

rfscv 19 82

rfid 19 82

hrfid 19 274

stop 19 370

rfebb 19 146

mtmsr 31 146 L = 0

mtmsrd 31 178 L = 0

ISTAT errors N/A N/A

Table 4-34. Implementation MSR and SRR1/HSRR1 Bits (Sheet 2 of 2)

Bits MSR SRR1/HSRR1
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9. Hypervisor Decrementer Interrupt

10. Decrementer Interrupt

11. Hypervisor Doorbell Interrupt

12. Privileged Doorbell Interrupt

13. Event Based Branch

4.10.26.6 System Reset Interrupt

The system reset interrupt is a nonmaskable, asynchronous interrupt that is caused by an SCOM command 
for a soft reset.

Note:  There is no explicit SRESET pin; SRESET must be invoked from the service processor. 

The POWER9 core implements a 1-deep queue to remember the reason of a subsequent system reset inter-
rupt while a system reset interrupt is pending. The reason of the most important subsequent system reset 
interrupt is remembered per the following priority:

Table 4-36. System Reset Interrupt   

Register Bits Description

SRR0 0:63 Set to the effective address of the instruction that the processor would have.

SRR1

0:31 Implemented bits loaded from the MSR.

32 Set to ‘0’.

33 LPAR mode switch occurred while the thread was in power savings mode.

35:36 Set to ‘0’.

42:45

Interrupt caused by IFU detection of a hardware uncorrectable error (UE) 
0000 Reserved by pervasive function.
0010 Interrupt caused by SCOM when not in power-saving mode or caused by back-to-back  

SRESET.
0011 Interrupt caused by hypervisor door bell.
0101 Interrupt caused by privileged door bell.
0100 Interrupt caused by SCOM when in power-saving mode.
0110 Interrupt caused by decrementer wake-up when in power-saving mode.
1000 Interrupt caused by external interrupt wake-up when in power-saving mode.
1001 Interrupt caused by hypervisor virtualization wake-up when in power-saving mode.
1010 Interrupt caused by HMI wake-up when in power saving mode.
1100 Interrupt caused by implementation-specific wake-up when in power-saving mode.

46:47

Indicates if the interrupt occurs when the processor is in power-saving mode.
00 Interrupt did not occur while the processor was in power-saving mode.
01 Interrupt occurred while the processor was in power-saving mode. The state of all 

resources was maintained as if the processor was not in power-saving mode
10 Interrupt occurred while the processor was in power-saving mode. The state of some 

resources was not maintained but the state of all hypervisor resources, including TB, 
PURR, and SPURR, was maintained as if the processor was not in power-saving mode 
and the state of all other resources is such that the hypervisor can resume execution.

11 Interrupt occurred while the processor was in power-saving mode. The state of some 
resources was not maintained, and the state of some hypervisor resources was not main-
tained or the state of some resources is such that the hypervisor cannot resume execution.

62 Loaded from MSR[62] if recoverable. Otherwise set to zero

Others Implemented bits loaded from MSR.
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1. Hypervisor doorbell-initiated system reset

2. Privileged doorbell-initiated system reset

3. SCOM-initiated system reset

4. HMI-initiated system reset

5. External-initiated system reset

6. Decrementer-initiated system reset

7. Implementation-specific initiated system reset

4.10.26.7 Machine Check Interrupt

The are several possible causes of machine check interrupts in the POWER9 chip, some of which are gener-
ally recoverable and some of which are non-recoverable.

The following causes of machine check interrupts are precise and synchronous with the instruction that 
caused the operation which encountered the error (that is, SRR0 contains the address of the instruction that 
caused the operation).

1. The detection of either a parity error, or a multi-hit error, or both in the SLB during the execution of a load, 
store slbfee, or mfslb instruction. If the interrupt is caused by a soft error, executing the appropriate 
sequence of instructions in the machine-check handler program clears the error condition without causing 
any loss of state, permitting the interrupted program to be resumed if MSR[RI] was a ‘1’ when the instruc-
tion that encountered the error was executed.

2. If there is a multi-hit in the D-ERAT or TLB, the core finishes the operation with a machine-check interrupt 
and sets the proper DSISR bit to indicate where the multi-hit occurred.

3. If there is an uncorrectable ECC error when a load instruction is executed or when the page table is being 
searched in the process of translating an address, the instruction finishes with a machine-check indica-
tion to the instruction-sequencing unit. The instruction is flushed and re-executed without generating any 
machine check. A counter is maintained to see how many UEs occurred. If the UE occurs more than a 
pre-established threshold, a machine-check interrupt is taken.

4. For a caching-inhibited load operation, the machine-check interrupt is taken on the first occurrence of the 
UE.

5. For the I-side, if an instruction is executed and the instruction is in the nonspeculative path, only then will 
it be treated as a UE. Otherwise, the I-side UE handling mechanism is similar to the D-side.

6. For the I side, when an instruction fetch causes an out-of-range real address (L2 address error) or a for-
eign link times out, a machine check interrupt is taken.

7. For the D side, when a load causes an out-of-range real address (L2 address error) or a foreign link times 
out, a machine check interrupt is taken.

8. For the I and D side, if a tablewalk fetch causes an out-of-range address (L2 address error) or foreign link 
times out, a machine check interrupt is taken.

9. Anytime that a tlbie or tlbiel instruction has either an instruction encoding or an unsupported page-size 
encoding that is not supported by the hardware. The tlbie(l) instruction encoding cases are outlined 
Appendix B on page 469 and Appendix C on page 485. The unsupported page-size cases correspond to 
any page-size encodings not specified in Table 4-20 on page 106,Table 4-24 on page 110, Table 4-25 on 
page 110, or Table 4-26 on page 111.

10. During translation, if a host real address is in the foreign address range (bits 8:12 are not zeros).
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11. If an instruction fetch is in the foreign address range (bits 8:12 are not zeros).

In the cases described in items (2), (3), (4), and (5), no state is lost in the processor, but recovery of the 
correct data might not be possible.

For more traumatic errors or hard errors, these characteristics cannot be reliably provided on a machine 
check because it is likely that the failure will prevent reliable execution. Additionally, a machine-check inter-
rupt that occurs when MSR[ME] = ‘0’ results in a checkstop. 

The following are invalid forms for tlbie that result in a machine-check interrupt: 

• PRS = 1 and R = 0 and RIC ≠ 2
• RIC = 1 and R = 0
• RIC = 3 and R = 1
• RIC = 1 and IS = 0
• RIC = 2 and IS = 0
• RIC = 3 and IS ≠ 0
• PRS = 0 and IS = 1
• R = 0 and IS = 1 and RIC ≠ 2 
• L = 1 and IS ≠ 0 
• L = 1 and R = 1

The following are invalid forms for tlbiel that result in a machine check interrupt: 

• PRS = 1 and R = 0 and RIC ≠ 2
• RIC = 1 and R = 0
• RIC = 3
• RIC = 1 and IS = 0
• RIC = 2 and IS = 0
• PRS = 0 and IS = 1
• R = 0 and IS = 1 and RIC ≠ 2 
• L = 1 and IS ≠ 0
• L = 1 and R = 1

In the POWER9 core, there are two asynchronous machine-check interrupts. One is taken when a store 
instruction has an out-of-range real address associated with it. This is in general a programming error. The 
core takes a machine check to help in debugging bad code. The second asynchronous case is when a store 
is being performed and a foreign link times out. Again this presents an asynchronous machine check, both 
machine checks set bits in the SRR1 to identify the cause. A machine-check interrupt is taken when the 
machine-check input pin is asserted. The FIR, debug logic, and hang recovery logic can also be programmed 
to induce machine check interrupts for various error conditions. In general, the POWER9 core works hard to 
make these interrupts recoverable, but there are some scenarios where it cannot achieve this. Software can 
use the MSR[RI] bit to help identify the cases where the machine-check interrupt is recoverable.

Information about the suspected source of the error condition is logged into either the SRR1 Register, the 
DSISR Register, or both as defined in Table 4-37 on page 132 for synchronous and asynchronous machine 
checks.
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Table 4-37. Synchronous Machine Checks (Sheet 1 of 2)

Register Bits Description

SRR0 0:63

Effective address of the next instruction that would have executed if the machine-check inter-
rupt was not taken. For cases where this is a recoverable machine check due to a load that 
has surfaced an error, this will be the address of the load instruction itself. (The POWER9 core 
allows the instruction to execute to surface the error, but inhibits the commitment of the 
results.) For cases where this is a recoverable machine check due to an instruction fetch sur-
facing an error, this will be the address of an instruction that initiated the memory/cache 
access. for asynchronous machine checks this address is meaningless

SRR1

42 Interrupt caused by load/store detection of error (see DSISR).

36, 43:45

Interrupt caused by an instruction fetch, indicated by the following encoding:
0000 Reserved.
0001 Interrupt caused by a hardware uncorrectable error detected while doing an instruc-

tion fetch (but not translation related).
0010 Interrupt caused by an SLB parity error while translating an instruction fetch address.
0011 Interrupt caused by an SLB multiple hit, while translating an instruction fetch address. 

Note: This condition occurs if the ESID fields of two or more SLB entries contain the 
same value.

0100 Interrupt caused by an I-ERAT multi-hit error.
0101 Interrupt caused by a TLB multi-hit error detected while translating an instruction fetch 

address. Note: This condition occurs if an address is mapped to both a small and 
large page in the SLB. This condition can also occur due to a software bug, when a 
software-managed TLB mechanism is used.

0110 Interrupt caused by a hardware UE detected while doing a TLB reload for the I-side.
0111 Instruction fetch to foreign address space
1000 Interrupt caused by an L2 abort on an instruction fetch due to foreign link time out.
1001 Interrupt caused by an L2 abort on an instruction tablewalk due to foreign link time 

out.
1010 Reserved.  
1011 Real address (CResp) error for an instruction fetch
1100 Real address (CResp) error for an instruction fetch tablewalk
1101 Asynchronous machine check due to a real address (CResp) error from a store
1110 Asynchronous machine check due to a foreign link time out ( nest abort) due to a store 

instruction.
1111 I-side tablewalk used a host real address in the foreign address range

62 Loaded from MSR[62] if recoverable. Otherwise, set to zero.

others Implemented bits loaded from MSR.
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DSISR Implementation Note: All the bits have been implemented in hardware.

DSISR

32:47 All zeros.

48 Interrupt caused by a UE deferred error, but not for a tablewalk (D-side only).

49 Interrupt caused by a UE deferred error during a tablewalk (D-side).

50 Foreign Link Time out (Nest abort) for a load.

51 Foreign Link Timeout (Nest abort) for tablewalk.

52 Interrupt caused by a D-ERAT multi-hit.

53 Interrupt caused by a TLB multi-hit due to translation (D-side only) or MFTLB operation.

54 Tlbie or tlbiel programming error.

55 Interrupt caused by an SLB parity error (translate lookup or mfslbfee) due to a translation 
(D-side only), slbfee, or mfslb instruction.

56 Interrupt caused by an SLB multi-hit (might not be recoverable) for translation (D-side only), 
slbfee, or mfslb instruction.

57 Bad real address (CResp) for a load.

58 Bad address (CResp) for a load or store tablewalk address.

59 Host real address to foreign space during translation

60 Host real address to foreign space on a load or store access

61:63 Set to zeros.

DAR 0:63

Effective address computed by a load or store instruction that caused the operation that 
encountered a parity error, or multi-hit, or both in the SLB, or which encountered a multi-hit in 
the TLB, or encountered a multi-hit in the D-ERAT, or encountered a UE while attempting to 
reload a TLB entry. For all other types of machine check interrupts, the DAR is undefined 
(including the case where the operand of the load instruction contains a UE).

1. SLB parity error, multi-hit, or both: DAR is loaded with the EA of the target of the load or 
store instruction that caused the error.

2. TLB multi-hit: DAR is loaded with the EA of the target of the load or store instruction that 
caused the error.

3. D-ERAT multi-hit: DAR is loaded with the EA of the target of the load or store instruction 
that caused the error.

4. UE on D-side tablewalk: DAR is loaded with the EA of the target of the load or store 
instruction.

5. UE on instruction fetch: DAR is undefined.
6. UE on I-side tablewalk: DAR is undefined.
7. UE on load or store instruction: DAR is undefined (EA is not available in LMQ for loads; 

therefore, DAR cannot be loaded).
8. CResp for load: DAR is set to the EA of the load that caused the error
9. CResp for a dside table-walk: DAR is undefined

10. Host real address to foreign space: DAR is undefined
11. Tlbie or tlbiell programming error: DAR is Undefined
12. Asynch Machine cheks: DAR is not modified

Table 4-37. Synchronous Machine Checks (Sheet 2 of 2)

Register Bits Description
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Machine-Check Interrupt Handler Notes:

As mentioned previously, the machine check interrupt handler is expected to help hardware recover from 
certain types of D-ERAT, TLB, and SLB errors detected by the hardware. In general terms, the interrupt 
handler must check whether or not the machine check interrupt is recoverable (by looking at the state of the 
RI bit in SRR1). It must determine the type of error that caused the machine check (by looking at the state of 
the SRR1 and DSISR Registers). It must flush the contents of the array that reported the detected error (this 
process is slightly different for each of the possible arrays). Finally, it must return to the interrupted process.

4.10.26.8 Hypervisor Maintenance Interrupt 

The POWER9 hypervisor maintenance interrupt is implemented to replace the malfunction alert and thermal 
interrupt; and to provide support for recovery function. The HMER Register contains the sources of the inter-
rupt, which can be masked by setting the HMEER enable bits to zero. For successful recovery, HMER setting 
indicates successful recovery. 

4.10.26.9 External Interrupt 

An external interrupt is classified as being either a direct external interrupt or a mediated external interrupt. 
Both cause an interrupt to x‘500’. 

Direct External Interrupt

The direct external interrupt is signaled by the assertion of the external interrupt input signal. The external 
interrupt signal must remain asserted until the processor has actually taken the interrupt. Failure to meet this 
requirement can lead the processor to not recognize the interrupt request.

When LPES = ‘0’, the following registers are set.

When LPES = ‘1’, the following registers are set.

Table 4-38. Direct External Interrupt (LPES = ‘0’) 

Register Bits Description

HSRR0 0:63 Set to the effective address of the instruction that the thread would have attempted to execute 
next if no interrupt conditions were present.

HSRR1

33:36 Set to ‘0’.

42:47 Set to ‘0’.

Others Loaded from the MSR.

MSR – See the Power ISA.

Table 4-39. Direct External Interrupt (LPES = ‘1’)  (Sheet 1 of 2)

Register Bits Description

SRR0 0:63 Set to the effective address of the instruction that the thread would have attempted to execute 
next if no interrupt conditions were present.
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Mediated Exernal Interrupt

Mediated external interrupts are caused by the LPCR[MER] = ‘1’, when the thread is in privileged (supervisor) 
or problem state mode. 

When LPES = ‘0’, the following registers are set.

When LPES = ‘1’, the following registers are set. 

4.10.26.10 Alignment Interrupt 

See Section 4.1.4.1 Alignment Interrupts on page 54 for details on when the POWER9 core takes alignment 
interrupts. The DAR is updated on an alignment interrupt as described in the Power ISA (Version 3.0B). The 
DSISR register is not updated on an alignment interrupts per the Power ISA (Version 3.0B).

SRR1

33:36 Set to ‘0’.

42:47 Set to ‘0’.

Others Loaded from the MSR.

MSR – See the Power ISA.

Table 4-40. Mediated External Interrupt (LPES = ‘0’) 

Register Bits Description

HSRR0 0:63 Set to the effective address of the instruction that the thread would have attempted to execute 
next if no interrupt conditions were present.

HSRR1

33:36 Set to ‘0’.

42 Set to ‘1’.

43:47 Set to ‘0’.

Others Loaded from the MSR.

MSR – See the Power ISA.

Table 4-41. Mediated External Interrupt (LPES = ‘1’) 

Register Bits Description

SRR0 0:63 Set to the effective address of the instruction that the thread would have attempted to execute 
next if no interrupt conditions were present.

SRR1

33:36 Set to ‘0’.

42:47 Set to ‘0’.

Others Loaded from the MSR.

MSR – See the Power ISA. 

Table 4-39. Direct External Interrupt (LPES = ‘1’)  (Sheet 2 of 2)

Register Bits Description
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4.10.26.11 Trace Interrupt 

In general, a trace interrupt is taken after every instruction when the MSR[TE] = ‘10’ and after every branch 
instruction when MSR[TE] = ‘01’. In particular, for the case where MSR[TE] = ‘10’ before a mtmsr[d] instruc-
tion is executed that alters the MSR[TE] bits, a trace interrupt also occurs. There are several instructions and 
conditions for which the preceding statements are not followed. See the Power ISA (Version 3.0B) for details. 
Additionally, a trace interrupt is taken when a CIABR match occurs. After a trace interrupt is taken, SRR0, 
SRR1, SIAR, and SDAR are set as shown in Table 4-42.

The contents of SIAR and SDAR are undefined until a trace interrupt occurs.

4.10.26.12 Performance Monitor Interrupt

The performance monitor interrupt is signaled when the MSR[EE] bit is set, the MMCR0[PMAE] bit is set, and 
any of the performance monitor counters overflow (this includes the eight performance counters defined in 
the SPR space, as well as the counters defined in MMIO space for the nest).

After such an event is detected, the POWER9 core waits for previously dispatched instructions to complete, 
and then takes the interrupt. 

4.10.26.13 Facility Unavailable Interrupt

The POWER9 core implements the facility unavailable interrupt as defined in the Power ISA.

Table 4-42. Trace Interrupt  

Register Bits Description

SRR0 0:63 Set as specified in the architecture.

SRR1

0:32 Implemented bits loaded from the MSR.

33:34 ‘10’

35 Set for a load instruction; otherwise, cleared.

36 Set for a store instruction; otherwise, cleared.

37:41 Loaded from the MSR.

42 Loaded from the MSR, which is an unimplemented bit (therefore, always set to ‘0’).

43 Set to a ‘1’ if a CIABR trace.

44:47 Set to ‘0’.

48:63 Implemented bits loaded from the MSR.

Note: Bit 35 and 36 are not set if an X-form load string or store string instruction specifies an operand length of 0.

SIAR 0:63 Set to the effective address of the traced instruction; undefined if a CIABR trace.

SDAR 0:63
If the instruction that took the trace interrupt was a storage access instruction, the SDAR is set 
to the effective address of the storage access. SDAR is not set if an X-form load string or store 
string instruction specifies an operand length of 0; undefined if a CIABR trace.
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4.10.26.14 Hypervisor Emulation Assistance Interrupt

The POWER9 core implements the hypervisor emulation assistance interrupt as defined in the Power ISA. 
However, the contents of the HEIR for the following instructions differ from the 32-bit Power ISA instruction 
described as follows:

mfbhrbe - Power ISA instruction bits 11:20 are recoded to indicate the internal SPR number assigned to 
each BHRB entry. SPR d‘80’ is assigned if the specified entry is outside of the available range. This instruc-
tion is sensitive to PCR and therefore can be made illegal.

clrbhrb - Power ISA instruction bits 11:20 are recoded to indicate the internal SPR address d‘80’. This 
instruction is sensitive to PCR and therefore can be made illegal.

bctar, bctarl - This is what a recoded bctar looks like in the HEIR after an illegal instr interrupt, where '-' can 
be either 0 or 1.

0         1         2         3

01234567890123456789012345678901

0-100------11-0----01--10110000-

This should only match the following ops, none of which go into HEIR. Therefore, assume bctar if the above 
compare matches:

ori_nop
ori.0
ori.1
oris.0
oris.1
subfic.0
subfic.1

The following instruction fields can be found in the indicated HEIR bits. Note that bo(4) is lost.

lk      = HEIR(1)
bo(0:3) = HEIR(5:8) 
bo(4)   = '0' 
bi(0)   = HEIR(10)
bi(1:4) = HEIR(15:18)
bh(0:1) = HEIR(21:22)

Stop fetch instructions - The following instructions have Power ISA instruction bits 11:14 recoded to all ‘1’s 
to indicate the “stop fetch’ function:

scv
rfscv
sp_atten
rfebb
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4.10.27 Logical Partitioning (LPAR) Support

Each thread on the POWER9 core is assigned to its own logical partition (LPAR). The associated architected 
SPRs are replicated on a per thread basis. See Table 4-8 on page 83 for details on which SPRs are repli-
cated per thread per LPAR.

4.10.28 Strong Access Ordering Mode (SAO)

The POWER9 core supports the SAO mode defined in Power ISA.

4.10.29 Graphics Data Stream Support

For cache-inhibited stores, the POWER9 core provides store gathering with an intentional stall to maximize 
the amount of gathering that can occur. 

4.10.30 Performance Monitoring, Sampling, and Trace

Performance monitoring facilities have been incorporated into the POWER9 processor to enable the collec-
tion of performance related data and instruction traces. In general, the POWER9 core supports the recom-
mended architecture for performance monitoring as described in the Power ISA. 

4.10.31 Processor Compatibility Mode

The POWER9 core implements the Processor Compatibility Register (PCR) as described in the Power ISA to 
facilitate partition migration. Setting PCR[60] = ‘1’ disables all problem state instructions and facilities that 
were added in Power ISA (Version 3.0B). Thus, setting this bit effectively makes a POWER9 core architectur-
ally appear to problem state software as a Power ISA version 2.07 core (that is, a POWER8 core). Setting 
PCR[61] = ‘1’ disables all problem state instructions and facilities that were added in Version 2.07 of the 
Power ISA. Thus, setting both bits 60 and 61 effectively makes a POWER9 core architecturally appear to 
problem state software as a Power ISA version 2.06 core (that is, a POWER7 core). Likewise, setting 
PCR[62] = ‘1’ disables all problem state instructions and facilities that were added in Version 2.06 of the 
Power ISA. Therefore, to migrate a partition from a version 2.05 system to a POWER9 (Version 3.0) system, 
PCR[60:62] must be set to ‘111’. 

Unlike the POWER8 processor, there is no requirement to flush the I-cache using HID[2] after changing the 
state of the PCR with an mtspr_PCR. 

Reserved
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5. Simultaneous Multithreading

5.1 Overview

The POWER9 processor core supports ST, SMT2, and SMT4 modes. Any thread number can be run in any 
SMT mode, on any thread set. Table 5-1 shows the SMT mode definitions. 

5.2 Partitioning of Resources in Different SMT Modes

Table 5-2 lists the resources that are partitioned in certain SMT modes. 

Table 5-1. SMT Modes 

Description Number of Threads Enabled Switch to this SMT mode when ...

ST 0 - 1 POR state

SMT2 1 - 2 2 threads

SMT4 1 - 4 3 - 4 threads

Table 5-2. Front-End Execution Core Resource   

Resource ST SMT2 SMT4

EAT Entries 40 20 per thread 10 per thread

Instruction Buffer Entries 96 48 per thread 24 per thread

Link Stack 32 32 per thread 16 per thread

D-ERAT Entries 64 64 shared 64 shared

Dispatch Groups 6 6 with cycle toggle between 
threads

3 - 3 wide dispatch that each 
thread set has a cycle toggle 

History Buffers
VR/GPR/FPR renames

4 × (20 + 96) Both threads share the total 2 × 2(20 + 96) threads within the 
thread set share

Unified Issue Queue Entries 52 52 shared 26 per thread set

FXU, VSU, agens
Four combined FXU/FSU

Four additional agens
Threads share all units Thread sets share and each get 

two combined and two agen units

Completion Rates Up to 64 instructions per cycle Up to 64 instructions per cycle for 
one thread

Up to 64 instructions per cycle for 
one thread

Power-on reset

Effective address translation

Single thread

Simultaneous multithreading
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5.3 Control Register

The Control Register (CTRL) is an architected 32-bit register. The bit assignment for the thread control bits in 
the CTRL supports up to four threads. The POWER9 core supports threads 0 - 3. A bit in the CTRL Register 
represents the architected state for a particular thread. 

The CTRL Register can be read with the mfspr instruction using SPR 136 in user, supervisor, or hypervisor 
state. 

The CTRL Register can be selectively written with the mtspr instruction using SPR 152 in the supervisor or 
hypervisor state.

The CTRL Register is initialized to x‘0000_0000_0000_0000’ at power-on.

Even though a single CTRL Register is shared by the four threads, there is no need to obtain a lock before 
updating the CTRL Register. There is only one bus that goes to the core pervasive unit, and the instruction 
issue logic serializes all mtctrl instructions. Updating the Run Latch bit must be done in hypervisor mode. 
When updating the Run Latch bit (in hypervisor mode), the software is recommended to set the Thread State 
bits to ‘0000’. Setting the Thread State bits to ‘0000’ is not allowed. Therefore, this updates the run latch, but 
there is no effect to the Thread State bits and no thread will be killed or woken up.

CTRL[52:55] contain the Run Latches for threads 0 - 3. A mtspr CTRL instruction does not modify 
CTRL[52:55] based on GPR bits [52:55]. Instead, these bits are indirectly loaded by writing a value to 
CTRL[63]. The value written to CTRL[63] is loaded into CTRL[52] if thread 0 issued the move to CTRL and 
CTRL[53] if thread 1 issued the move to CTRL, and so on. A thread cannot update the thread Run Latch bit of 
another thread.

The run latch bit is only used by software for status and is sent to the performance monitor for performance 
analysis. For this purpose, the POWER9 processor core supports one run latch per thread. To use this func-
tion, if a thread is executing a dispatchable task, software must set the CTRL Run Latch bit for that thread to 
‘1’ by writing a ‘1’ to CTRL[63]. If a thread is in a wait state, waiting for a dispatchable task, software must set 
the CTRL Run Latch for that thread to ‘0’.

Reserved Thread State Reserved R
un

 L
at

ch

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

32:51 Reserved Reserved.

52:55 Thread State Thread State bits corresponding to threads 0 - 3 (indirectly written by supervisor and hypervisor 
software) as described in the Power ISA (Version 3.0B).

56:62 Reserved Reserved.

63 Run Latch Run Latch for thread doing CTRL read/write (read only/rerouted supervisor or hypervisor write).
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Software can load the CTRL Register with a Run Latch value for its thread by writing the Run Latch value to 
CTRL[63]. Hardware routes data directed to CTRL[63] into the corresponding CTRL[52] to CTRL[55] bit, 
depending on which thread is doing the write (see previous definition of CTRL[52:55]). When the CTRL 
Register is read, data driven on CTRL[63] comes from CTRL[52] to CTRL[55], depending on which thread is 
doing the read. CTRL[63] does not physically exist in hardware.

The data read on a mfspr(CTRL) is formatted differently based on the MSR[PR] and MSR[HV] bits. Bit 63 is 
always the Run Latch of the thread executing the mfspr. Bits [52:55] are formatted as shown in Table 5-3, 
where R0 equals run latch for thread 0 and RT equals run latch of thread executing mfspr.

5.4 Thread Priority, Status, and Control Requirements

Thread priority, control, and status registers enable software to do the following:

• Give a large percentage of execution resources to critical tasks.

• Reduce the amount of resources and power used by low-priority work.

• Read foreground and background thread priority and status. 

• Save and restore priority during interrupts.

• Provide a controlled way to allow supervisor/user code to change priority.

• Provide a means to kill or revive a thread.

• Avoid fine-grain livelock or deadlock situations between threads.

5.5 Thread Balance Control Requirements

The following mechanisms can be used to balance work between threads:

• Reduce ifetch priority of a thread that uses too many resources.

• Reduce decode priority of a thread that uses too many resources.

• Hold decode of a thread with long latency events.

• Dispatch flush decode pipe to clean congested operations.

• Balance flush from next-to-complete plus one group and hold at IBUF until a miss resolves. 

Table 5-3. mfspr CTRL Data Formatting 

MSR[HV], MSR[PR] Bits [52:55]

‘00’ Privileged R0, R1, R2, R3

‘*1’ Problem RT, 0, 0, 0

‘10’ Hypervisor R0, R1, R2, R3
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5.6 Thread Switch Control Register (Hypervisor Access Only)

Thread priority controls are programmable. All bits are read/write. There is one Thread Switch Control 
Register (TSCR) per core. TSCR is initialized to x‘0000_0000’ at power-on.
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Reserved

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description

0:1 ICT Decode 
Thread Priority 

ICT Decode Thread Priority.
If all threads are at the same software-thread priority, decrease the priority when a thread uses 
more than the following number of ICT entries:
00 Function disabled.
01 SMT2: 80; SMT4: 40.
10 SMT2: 96; SMT4: 48.
11 SMT2: 112; SMT4: 56.

2 Balance Flush 
Disable

Balance Flush Disable.
0 Enable NTCP1 balance flushes.
1 Disable NTCP1 balance flushes.

3
Thread Balance 
Dispatch Flush 

Disable

Thread Balance Dispatch Flush Disable.
0 Enable dispatch flush for the thread that was chosen for a balance flush if that thread is  

stalled at dispatch. A dispatch flush is a lower-latency flush than a balance flush.
1 Disable.
Note:  Conditions for dispatch flush are the same as a balance flush.

4:7 Reserved Reserved.

8:9
 Balance Flush 

Miss 
Counter Threshold

Balance Flush Miss Counter Threshold.
If a balanced flush occurs, apply a CLB hold until the counter threshold is released or the miss is 
resolved.
00 Function is disabled, CLB hold is applied until the miss is resolved.
01 Scan-only latch, value is programmable, 10-bit LFSR. POR default is: 256 cycles  

(x‘3C1’ LFSR). 
10 Scan-only latch, value is programmable, 10-bit LFSR. POR default is: 384 cycles  

(x‘0E4’ LFSR).
11 Scan-only latch value programmable, 10-bit LFSR. POR default is: 512 cycles  

(x‘20F’ LFSR).

Linear Feedback Shift Register
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The TSCR can be accessed with the mtspr and mfspr instructions using SPR 921. 

An SCOM latch is added to make this register as read-only for debug purposes.

TSCR is initialized to x‘0000_0000’ at power-on.

The preferred setting is: x‘802C_7880’. 

10:11
LMQ Decode 

Thread Priority 
Control

LMQ Decode Priority Control.
When the threads  have the same software-set decode priority, decrease the thread’s priority if a 
thread has more misses outstanding than described as follows: 
00 Function disabled.
01 SMT2: 4; SMT4: 2.
10 SMT2: 5; SMT4: 3.
11 SMT2: 6; SMT4: 4.

12 External Boost 
Priority

External Boost Priority.
If ‘1’ and an external interrupt request is active and the corresponding threads’ priority is less than 
normal priority, set the threads’ priority to normal. 
Note:  This does not change the value in PPR[11:13] for the affected thread.

13 
Enable Forward 
Progress Count 

Flush

Enable Forward Progress Count Flush.
Note:  This bit only enables/disables the flush from occurring.

The forward progress timer does not stop decrementing when set to ‘0’.
SMT2 and higher: If one thread is not making progress, enable flushing the other active threads.

14 Decode Stop

Decode Stop. 
When set to ‘0’, the forward progress timer (in PPR) is decremented even when the current thread is 
in decode stop state. When set to ‘1’, the forward progress timer is not decremented when the cur-
rent thread is in decode stop state.

15:16 Reserved Reserved. 

17 L2 Miss Decode 
Priority Control

L2 Miss Decode Priority Control.
If all threads are at the same software set priority, then:
0 L2 miss is disabled for use in adjusting decode priority.
1 L2 miss is enabled for use in adjusting decode priority.

18 TLB Miss Decode 
Priority Control

TLB Miss Decode Priority Control.
If all threads are at the same software set priority, then:
0 TLB miss is disabled for use in adjusting decode priority.
1 TLB miss is enabled for use in adjusting decode priority.

19
Multicycle 

Operation Decode 
Priority Control

If all threads are at the same software-set priority, then: 
0 Multicycle operations are disabled for use in adjusting decode priority.
1 Multicycle operations are enabled  for use in adjusting decode priority.

20
Dispatch Flush 
Sync Control 

Enable

Dispatch Flush Sync Control Enable.
Stop decode if the mode for the thread with sync instruction is outstanding, (always on in shipping 
mode). Applies only to SMT2 and higher.

21:23 Reserved Reserved.

24 PTEsync Dispatch 
Stall

Ptesync dispatch stall.
Set to ‘1’ to enable the following function for ptesync instruction. Hold the ptesync instruction at 
dispatch until LMQ is empty, SRQ is empty, no I-side table walk pending, and wait for a minimum of 
15 cycles. After these conditions are satisfied, dispatch the ptesync. Afterwards, wait for LMQ 
empty and SRQ empty to continue with the dispatch of further instructions. 

25:31 Reserved Reserved.

Bits Field Name Description

Store reorder queue
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5.7 Thread Time-Out Register (Hypervisor only)

The Thread Time-Out Register (TTR) is used to ensure forward progress. There is one TTR per core. For 
more information see Section 5.9 Forward Progress Timer on page 146. 

The TTR can be accessed with the mtspr and mfspr instructions using SPR 922.

The TTR is initialized to x‘0000_0000_0000_0000’ at power-on.

Reserved

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Reserved Thread Time-out Flush

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:43 Reserved Reserved.

44:63 Thread Time-out 
Flush Value.

Thread Time-out Flush Value.
A x’00000’ value generates a maximum count.
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5.8 Program Priority Register (PPR)

Each thread has a 64-bit status register associated with it. Some bits are read-only, while other bits are 
read/write. There is one PPR per thread. 

The local PPR can be accessed with the mtspr or mfspr instructions using SPR 896. 

The PPR for each thread is initialized to x‘0010_0000_0000_0000’ at power-on.

Reserved T
hr

ea
d 

P
rio

rit
y

Reserved

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Reserved

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Fields Name Description

0:10 Reserved Reserved (not implemented).

11:13 Thread 
Priority

Thread Priority. 
000 Not allowed 
001 Very low 
010 Low 
011 Medium low
100 Normal 
101 Medium high
110 High
111 Extra high
Set to ‘100’ on system reset interrupt.

14:63 Reserved Reserved (not implemented).
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5.9 Forward Progress Timer

For the POWER9 core, the forward progress timer bits were moved out of the PPR Register. A nonarchi-
tected latch bank holds these bits. For the POWER9 core, PPR[44:63] are reserved, non-implemented bits.

The forward progress latch bits are loaded from TTR[44:63] every time a group of instructions are retired on 
the current thread.

If the current thread is not in a decode stop state, the counter is decremented by ‘1’ every time a completion 
occurs on another thread (see TSCR[14] in Section 5.6 Thread Switch Control Register (Hypervisor Access 
Only) on page 142).

For ST mode:
• Initialized by a scan flush to x‘00000’ (maximum count)
• Decrementer stops at x‘00001’ (minimum value)

For SMT2 and higher, a flush of the other active threads occurs when:
• The timer count reaches x‘00001’.
• The forward progress count flush is enabled TSCR[13] = ‘1’.
• The group completes on another thread.

After the threads are flushed, no dispatch slots are given to the flushed thread until one group has completed 
for the current thread. 

5.10 Thread Priority NOPs

The thread switch priority can be read or written by software using the mfspr and mtspr instruction to the 
Thread Status Register. Thread priority can also be altered by executing special forms of the or x,x,x NOP. 
The priority is changed upon completion of the operation, provided the function is enabled for the current priv-
ilege level. Thread priority can be set as follows: 

• On the POWER9 core, problem-state programs can set their priority from very-low to medium priority. 

• Supervisor programs can set their thread priority from very-low to high priority. 

• Hypervisor code can set all levels. 

Table 5-4 describes how to set the thread priority NOPs.

Table 5-4. Thread Priority Nops   

Priority NOP/mtSPR PPR[11:13] Thread Priority Required Privilege Level to 
Set Given Thread Priority Value

or 31,31,31 / mtPPR[11:13] ‘001’ Very Low Hypervisor, Supervisor, Problem 

or 1,1,1 / mtPPR[11:13] ‘010’ Low Hypervisor, Supervisor, Problem

or 6,6,6 / mtPPR[11:13] ‘011’ Medium Low Hypervisor, Supervisor, Problem

or 2,2,2 / mtPPR[11:13] ‘100’ Medium (Normal) Hypervisor, Supervisor, Problem

or 5,5,5 / mtPPR[11:13] ‘101’ Medium High Hypervisor, Supervisor, Problem1

or 3,3,3 / mtPPR[11:13] ‘110’ High Hypervisor, Supervisor

or 7,7,7 / mtPPR[11:13] ‘111’ Extra High Hypervisor

1. See Section 5.12 on page 147.
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5.11 Thread Priority Boosting 

Hardware typically does not change the thread priority value in the PPR, unless an mtPPR or one of the 
priority changing NOP instructions is committed. However, on the POWER9 core, problem-state programs 
can change the thread priority value to medium-high (‘5’) depending on the contents of the Problem-State 
Priority Boost Register (PSPBR). The problem-state boosting changes the contents of PPR[11:13]. 

The thread priority can be boosted internally by the hardware (in a software invisible manner) in certain cases 
(as described in Section 5.13 Thread Priority Boosting on Asynchronous Interrupt on page 148) to medium 
priority (‘4’). The boosting of thread priority for pending asynchronous interrupts does not affect the actual 
architected thread priority value in the PPR. Therefore, if the software does an mfPPR at any time during the 
asynchronous boosting, it always gets the last priority value that is explicitly set by the software for that 
thread. 

5.12 Priority Boosting to Medium-High in User Mode

The POWER9 core allows a problem-state program that executes on a thread to temporarily change the PPR 
thread priority value to medium high (‘5’) by executing an mtPPR or priority NOP. The temporary thread 
priority boost is controlled by a 32-bit privileged Problem-State Priority Boost (PSPB) Register. There is one 
PSBPR per thread, which is set by a move-to PSPB. 

A problem state program can set the program priority to medium-high only when the PSPB of the thread 
contains a nonzero value. The maximum value to which the PSPB can be set must be a power of 2 minus 1. 
Bits that are not required to represent this maximum value must return ‘0’s when read, regardless of what was 
written to them. 

When the PSPB of the thread is set to a value less than its maximum value but greater than ‘0’, its contents 
decrease monotonically at the same rate as the SPURR until its contents minus the amount it is to be 
decreased are ‘0’ or less. The PSPB contents can decrease to less than zero when a problem state program 
is executing on the thread at a priority of medium high.

When the contents of the PSPB minus the amount it is to be decreased are ‘0’ or less, its contents are 
replaced by ‘0’. When the PSPB is set to its maximum value or ‘0’, its contents do not change until it is set to 
a different value. 

Whenever the priority of a thread is medium high and either of the following conditions exist, hardware 
changes the priority to medium:

• PSPB counts down to ‘0’

• PSPB = ‘0’ and the privilege state of the thread is changed to problem state (MSR[PR] = ‘1’)

While in problem state at medium-high priority, there can be the potential of the PSPBR reaching ‘0’ at the 
same time a priority NOP or mtPPR is trying to lower the thread priority to a value less than medium. If the 
attempted write to the PPR occurs in the same cycle, the priority NOP or mtPPR must update the PPR with 
its thread priority instead of allowing the PSPB reset to set the PPR to medium priority.

Scaled Processor Utilization Resource Register
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5.13 Thread Priority Boosting on Asynchronous Interrupt

If a thread has a priority less than medium (‘4’), the priority of the thread is boosted on a pending asynchro-
nous interrupt. This allows the interrupt to be serviced faster for a thread (that is waiting for the interrupt at a 
low-priority state). TSCR[12] is used to enable or disable priority boosting for any pending asynchronous 
interrupt. The boosting of thread priority does not affect the actual architected thread priority value in the 
PPR. Therefore, if the software does a move from PPR (mfPPR) at any time during asynchronous boosting, it 
always gets the last priority value explicitly set by the software for that thread.

5.13.1 When to Boost Thread Priority 

Thread priority is boosted internally by the hardware on an asynchronous interrupt based on Table 5-5 on 
page 148. After the priority is boosted, the hardware continues to treat the thread at medium (‘4’) priority, until 
there is an mtPPR or priority NOP instruction that changes the thread priority.

Thread priority is boosted to medium for enabled asynchronous interrupts. The reasons for not boosting the 
priority in the previous cases include:

• Operating system and hypervisor: Spinning on a lock, the priority is low and MSR[EE] = ‘0’. Priority must 
not be boosted because nothing useful is going to happen until the lock is acquired. Before the stdcx can 
get the lock, high priority is asserted. Therefore, if a thread is holding a lock, its priority does not need to 
be boosted when an external interrupt becomes pending.

• Operating system interrupt handler running with MSR[EE] = ‘0’. Priority is already at the desired level as 
a result of the implicit or explicit boost. No additional boost is required by the hardware.

Table 5-5. Asynchronous Interrupt  

Interrupt MSR Bits

Hmaintenance EE = 1 or HV = 0 or PR = 1

Directed External (EE = 1 and not (HV = 1 and PR = 0 and HEIC = 1)) or (lpes0 = 0 
and (HV = 0 or PR = 1)) 

Mediated External EE = 1 and (HV = 0 or PR = 1)

Directed Privileged Doorbell EE = 1

Directed Hypervisor Doorbell EE = 1 or HV = 0 or PR = 1

Hypervisor Virtualization (EE = 1 or HV=0 or PR = 1) and HVICE = 1

Perfmon EE = 1

HDEC (EE = 1 or HV = 0 or PR = 1) and HDICE = 1

DEC EE = 1

System Reset Always (ignores TSCR[12])
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5.14 Thread Prioritization Implementation

5.14.1 Thread Switch Fetch Priority

The thread priority is used to apportion fetch cycles. For example, if two threads have a priority weighting that 
is different, the ratio of those two weights determines the relative number of cycles those two threads will be 
given access to the I-cache. If all threads have equal priority, the threads are accessed in a round-robin 
manner.

The instruction fetcher makes no priority provisions for an asymmetric SMT environment. For example, if one 
side of the core has one thread, the other side has more then one thread, and all threads are of equal priority, 
then each thread gets an equal number of fetch cycles, even though there are more decode resources avail-
able for the thread that is on its own side.

If all of the threads have the same priority, the fetcher fetches the threads in an order that tries to swap from 
one core side to the other as much as it can. This is desirable because fetching multiple cycles on the same 
core side increases the chance that no instructions are available to decode/dispatch on the other core side.

Normally, a thread uses its fetch cycle if there is a chance that the fetch can result in a transfer. There are 
several cases where a thread relinquishes its fetch cycle and allows it to be skipped over. The cases where 
this happens are as follows:

• The thread is an I-cache miss pending or I-ERAT miss pending.

• The IBuffer is full for eight cycles, such that it is unlikely that there is room in the IBuffer when the instruc-
tions are fetched from the I-cache.

• There is a hold fetch from either the ISU or the pervasive core unit that indicates a fetch cannot occur on 
that thread.

When all the highest priority threads give up their cycle, there are times when the base hardware algorithm 
cannot assign another thread based on the priority. On the cycles when this occurs, the other threads that 
can be fetched take turns fetching, ignoring the thread priority.

If there is a flush on a thread and that thread is not already being selected, that thread is selected on the next 
IFM1 cycle, which is done to reduce the average latency on a flush.

In SMT mode, the target of a predicted taken branch can be fetched three cycles after the branch instruction 
is fetched. If threads are alternated in SMT2 mode, the earliest time that an instruction could be fetched would 
be allocated to the other thread, and thus the taken branch penalty goes from three to four cycles.

To reduce this effect, use a pattern in SMT2 mode that in most cases allows the same thread to be allocated 
every third cycle. The pattern implemented in SMT2 mode is ‘00100100 11011011’. This pattern causes the 
same thread to be assigned three cycles later 87.5% of the time.

Instruction sequencing unit
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5.14.2 Thread Switch Decode Priority

The decode and dispatch pipes in SMT2 mode cycle share their resources. In SMT4 mode, they are divided 
into two parallel groups. Each group has two threads that cycle share that half of their resource. This drives 
the need for a pair of decode priority engines. In SMT2 mode, one engine controls the two threads. In SMT4 
mode, both engines run in parallel: one for the threads assigned to thread set 0 and one for the threads 
assigned to thread set 1. In SMT modes, each thread set operates in its own half of the dispatch group, inde-
pendent of the other thread set. 

To support two independent thread sets dispatching in parallel, two SMT2 thread priority engines are used. 
One controls the decode cycles of the threads assigned to thread set 0. The other controls thread set 1. Each 
engine can manage 1 - 2 threads, depending on how many are assigned to the thread set. 

In SMT mode, decode cycles (opportunities to form instruction groups out of the IBuffer) are given to a thread 
based on the following ordered criteria:

1. Thread enabled, no slots given to a stopped thread, CTRL[12:15]. 

2. Per thread decode stops for decode hold. See Section 5.16 Controlling the Flow of Instructions in SMT on 
page 152.

3. Instruction availability in the threads IBuffer. Used only if the priority in PPR[11:13] is equal for all enabled 
threads. 

4. Software-set thread priority, controlled in Thread Status Register (PPR[11:13]). See Section 5.14.3 Soft-
ware-Set Thread Priority on page 150. 

5. Dynamically changing thread decode priority. See Section 5.14.5 Dynamic Thread Priority on page 151.

The first three criteria are only used to eliminate threads from consideration for the next decode cycle. If all 
available threads are eliminated based on those three criteria, no thread forms an instruction group next 
cycle. Otherwise, the remaining eligible threads are considered for the next decode cycle according to either 
their software-set thread priority or a dynamic thread priority algorithm using the current state of each eligible 
thread.

5.14.3 Software-Set Thread Priority

Software-set priority is used to determine the thread to receive the next decode cycle if at least one of the 
enabled threads has a different Thread Priority value in PPR[11:13] than the other enabled threads. The 
intention for the software-set priority algorithm is to divide decode cycles according to the relative values of 
the thread priority values. 

POWER9 core control is given by allowing the user to define the weightings between the seven priorities. A 
64-bit SPR, relative priority register (RPR), is provided for the user to set any 6-bit value (0 - 63) for each of 
the seven priority levels (very low, low, medium low, normal, medium high, high, extra high). Then, 
PPR[11:13] for each active thread determines which value to read from the RPR. 

Each active thread receives a number of decode cycles, relative to the other threads, equal to their priority 
values. For example, within thread set 0, T0 has a relative priority of 17 (as defined by PPR[11:13] and the 
RPR), T3 has a relative priority of 6. Within a window of 17 + 6 = 23 decode cycles, T0 gets 17 cycles and T3 
gets 6 cycles. The pattern repeats every 23 decode cycles. Additionally, the cycles given to each thread are 
distributed as evenly as is reasonably possible within the pattern. 
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5.14.4 Low-Power Modes for Application

The POWER9 core slows the rate of decode to reduce power whenever any enabled threads have a priority 
of ‘001’, as set in each thread’s PPR[11:13]. 

Any time an enabled thread is set to the lowest priority, it is limited to one decode cycle every 128 cycles.

5.14.5 Dynamic Thread Priority

If all enabled threads have the same thread priority value, a dynamic thread priority algorithm based on the 
state of the eligible threads determines which will get the next decode cycle. This algorithm uses a scoring 
system built on the resources occupied by each thread, whether the thread has any outstanding L2 or TLB 
misses, or if there is an active multicycle operation active for a thread. A final round-robin adder is used only 
to break any ties between threads. This algorithm is implemented twice, once per thread set, where each 
algorithm manages 1 - 2 threads. Section 5.14.2 Thread Switch Decode Priority on page 150.

The eligible thread with the highest overall score is given the next decode cycle. Note that the round-robin 
pointer only affects results in the event of a tie from the other three adders. To ensure fairness between 
threads when one or more threads are disabled, the round-robin pointer rotates between all threads that are 
available in the current SMT mode regardless of whether the thread is enabled.

5.15 Support for Multiple LPARs 

The POWER9 core runs in 4LPAR mode. Each thread has its own partition resources. Fetch and decode 
cycles are handed out as described in the following sections. 

5.15.1 Microcode Fairness 

In multi-LPAR mode, the goal is to give each LPAR the same number of dispatch cycles. However, multi-
cycle microcode instructions can cause an LPAR to consume multiple consecutive cycles. To compensate, 
the POWER9 core gives the other LPAR sharing the dispatch bandwidth extra decode cycles to compensate 
for the loss of decode cycles. When microcode operations are in flight, each operation generates 32 groups 
(such as, load multiples). 

The counter handles 32 × 12 = 384 catch-up cycles for either LPAR. A 10-bit counter handles up to 512 
cycles for each LPAR.

5.15.2 I-ERATs

In SMT2 and SMT4 mode, the instruction-side ERAT is split in two with even threads getting 32 entries and 
odd threads getting the other 32 entries.

Effective-to-real address table
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5.16 Controlling the Flow of Instructions in SMT

The ability to control the relative flow of instructions in an SMT processor is important for optimal perfor-
mance. When one thread is not making good progress due to reasons such as an L2 miss, TLB miss, sync, 
or other long-latency operations, the other thread can be given additional machine resources. The following 
features are built into the POWER9 core for controlling SMT instruction flow. 

5.16.1 Dispatch Flush

A dispatch flush is a low-latency flush that flushes the decode pipe. Ptesync, tlbie, and instructions with the 
scoreboard bit set can cause a dispatch flush on the POWER9 core. Also, if enabled, a thread that was 
balanced flushed is dispatch flushed if the chosen thread is stalled at dispatch. 

5.16.1.1 Dispatch Flush Rules

1. Dispatch flushes are disabled if the core is in single-thread mode, or if the core is in SMT2 or SMT4 mode 
and there is one or fewer than one threads active.

2. Dispatch flush occurs only if a thread shares a group with another thread. 

3. If both threads are on group0, (not balanced), dispatch flush can still occur.

4. Never dispatch flush a thread if it is in the middle of a microcode. Dispatch flushes related to SMT perfor-
mance are never done in the middle of a microcode dispatch. Other dispatch flushes can happen to 
microcode, such as quiesce, RAS, or a forward-progress time-out.

5. A ptesync instruction from thread A causes a dispatch flush of thread A (similarly, for other threads).

6. If the ICT thread is not empty, the tlbie instruction is dispatch flushed. The instruction following the tlbie is 
dispatch flushed if the tlbie instruction has not received tlbie acknowledge from the Nest through the 
LSU.

7. If thread A has its scoreboard bit set (such as, a non-renamed mtspr followed by mfspr), thread A is dis-
patch flushed (similarly, for other threads).

8. If TSCR[3] is enabled, dispatch flush the thread that was chosen for a balance flush if that thread is 
stalled at dispatch. 

9. Dispatch flush any instructions that are marked dispatch serialize by the cores debug and decode mech-
anisms.

Load reorder queue

Instruction completion table
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5.16.1.2 Stall at Dispatch

A thread can be stalled at dispatch due to unavailability of a shared resource that it needs for the next 
dispatch. When stalled, dispatch_hold is asserted to hold the decode pipe. The complete list of stall condi-
tions follows: 

• Required reservation queue entries are not available
• Not enough history buffers are available 
• ICT is full

Note:  

1. A 5-cycle delay is expected between counting the ICT entries and taking any action based on that count.

2. A 4-cycle delay is expected between the detection of a stall condition and causing a dispatch flush.

5.16.2 Decode Hold

1. After a dispatch flush, a ptesync, instruction is held at IBUF until its dispatch conditions are met. This is 
done irrespective of thread priority. 

2. After a dispatch flush, a tlbie instruction is held at IBUF until the ICT thread is empty. After the tlbie 
instruction is dispatched, the next instruction is dispatch flushed and then held at IBUF until ICT and the 
SRQ are empty. This is done irrespective of thread priority. 

3. After a balance flush due to an L3 or TLB miss, instructions on the balance flush thread are held at IBUF 
until the miss is resolved or until the balance flush miss counter reaches the threshold value as deter-
mined by TSCR[8:9]. 

5.16.2.1 Balance Flush

A balance flush is an NTC+1 flush that flushes all instructions that are younger than the next-to-complete 
instruction group on a selected thread. It flushes the execution units, ICT, and EAT for the selected thread. 
Threads are considered for a balance flush only if any thread is stalled at dispatch or the dispatch buffer is 
empty and the thread being considered has at least one instruction in the ICT. Balance flushes can be 
disabled using TSCR[2]. 

Criteria for Selecting a Thread to be Balanced Flushed

If the core is in SMT mode and more than one thread is active, perform the following steps on a dispatch stall: 

1. Select the threads with any number L3 or TLB misses, regardless of the balance flush miss counter 
value. If enabled by a debug switch, select only the threads with any number of L3 or TLB misses, if the 
balance flush miss counter for the thread is less than the counter threshold as described by TSCR[8:9]. If 
the miss counter for the thread is greater than the threshold value, ignore the miss on that thread and do 
not consider the thread for a balance flush.

2. If only one thread has an L3 or TLB miss, select that thread to be balanced flushed. Raise the CLB hold 
on the thread that was chosen to be balanced flushed until either the miss has been resolved or the bal-
ance flush miss counter threshold has been reached as described by TSCR[8:9].

3. If in SMT4 mode and more than one thread is eligible to be balanced flushed based on having an L3 or 
TLB miss, select all eligible threads to be balanced flushed. Raise the CLB hold on the threads that were 
chosen to be balanced flushed until either the miss has been resolved or the balance flush miss counter 
threshold for that thread has been reached as described by TSCR[8:9].

Effective address table
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4. If in SMT2 mode and both threads are eligible to be balanced flushed based on having an L3 or TLB 
miss, do not balance flush either thread. Do not raise the CLB hold.

5. If the thread that is stalled at dispatch is also the thread that was chosen to be balanced flushed, then 
also do a dispatch flush on that thread if TSCR[3] is enabled. Otherwise, do only a balance flush on the 
chosen thread.
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6. L2 Cache 

6.1 Overview

The L2 cache unit is contained within the processor pair cache slice, which consists of: two POWER9 cores, 
one 512 KB L2 cache, one 10 MB L3 cache, one NCU, and a portion of the internal Fabric interconnect logic 
that is referred to as PBex. The L2 cache is a unified cache that is accessed privately by a given pair of 
POWER9 cores. The L2 cache maintains full-hardware coherence within the system and can supply cache 
on-chip intervention data to other cores on this POWER9 chip or off-chip intervention data to other POWER9 
chips. The L2 unit is a store-in cache that is fully inclusive for a pair of POWER9 cores, each of which have an 
L1 D-cache and I-cache (note that the POWER9 core is based on a store-through L1 D-cache design). The 
L2 unit also supports private bus access to a 10 MB L3 cache that is also private to this pair of POWER9 
cores for fast L3 hit data access and for storage of L2 victimization data.

Figure 6-1 shows a high-level POWER9 chip diagram with multiple POWER9 processor-pair cache slices 
interconnected via the internal Fabric.

Figure 6-1. POWER9 Block Diagram of a Multiple Processor-Pair Cache Slice Interconnected via the Internal 
Fabric 
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L2 cache feature summary:

• 512 KB private cache per core-pair: 

– 128-byte line, 8-way set associative

– Both I-side and D-side inclusive for the pair of POWER9 4-threaded cores 

– Double-banked cache design interleaved on even/odd cache-line boundary

– L2 cache can perform a read from one cache bank while writing to the other cache bank

• 8-way directory, dual-banked multi-ported:

– One processor read port, two snoop read ports, and one write port per physical bank

– The processor port operates at ½ the processor clock rate into a given bank (initiated on 2:1 clock 
boundary)

– The snoop port into a given bank operates at ½ the processor clock rate (initiated on 2:1 clock bound-
ary) allowing for up to four snoops per 2:1 clock across the four banks.

– The dual banked directory can initiate: 

— Up to five directory reads in a given 2:1 cycle (four on the snoop ports and one on the processor 
port)

— One write in a given p-clocks cycle (where directory writes are scheduled on the second half of a 
2:1 cycle, such that they never conflict with directory reads)

• 512 × 13-bit LRU arrays (logical configuration)

– 2 × 4 LRU vector tracking tree with cache invalidate state biasing

– Supports LRU, direct map, single-member, and pseudo-random modes

• Point of global coherency

• Reservation stations: one per processor thread (eight total across the pair of four threaded POWER9 
cores)  

• Support for transactional memory operations

• Four snoop-bus ports selected by the cache-line “real-address” bits [55:56]

• Support strong-access ordering (SAO) support

• Hardware directory line delete capabilities to support faulty L2 cache elements

L2 Feature RAS Summary
• Directory-array data protected by SECDED ECC

• Directory-array single-bit stuck-bit detection and correction

• Directory line-delete support

• Cache-array data protected by 8-byte SECDED ECC 

• 8-byte ECC throughout the internal L2 data-flow and migration flow to the internal Fabric interconnect or 
L3 cache

• FIR/SCOM support

• L2-cache purge support

• Various L2 hardware end-to-end type control checkers (for example, end-to-end type protocol checking 
that checks for unexpected internal Fabric interconnect cresp or data)

Least-recently used

Single-error correction, double-error detection

Error correcting code

Fault Isolation Register

Scan communications
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6.2 L2 Unit Internal Resources

The L2 unit contains a set of internal machine and enqueuing resources scheduled to handle the processing 
of load and store type requests from the POWER9 cores and requests from the internal Fabric interconnect. 
Table 6-1 lists the type of resource and the size and function of these resources within the L2 unit.

Table 6-1. L2 Resources (Share between a Pair of POWER9 Cores) 

Resource Description Size Hash Bits

CIU_Load Request 
Queues

Handle the staging for load requests from the POWER9 cores 
that are pending access to the Read Claim (RC) machines dis-
patch pipe dispatch pipe to be assigned to an RC machine or 
sent to an L3 prefetch machine.

16 demand
8 data prefetch

8 instruction fetch/prefetch
4 translate

none

L2 CIU_Store 
Queue

Intermediate buffer for stores from a given POWER9 core. The 
CIU_Store Queue contains six 16-byte entries per POWER9 
core. This buffer unloads its stores into the L2 store gather sta-
tion as room becomes available. 

2 banks of 6 × 16 bytes core ID

L2 Store Queue 
(Gather Station)

Store requests from the POWER9 cores and gathers stores 
that are from the same core thread and are to the same 128-
byte cache line. The L2 store-queues gathering mechanism 
gathers stores into a single 64-byte block with up to two sectors 
of clustering to be processed by the L2’s RC machine. 

2 banks of 28 × 64 bytes addr(56)

Read Claim (RC)
Machines

Read claim machines manage all cacheable operations initi-
ated by the local core pair. The RC handles: 

• Gaining ownership of the line (either via an L2 hit, L3 hit, 
or internal Fabric interconnect access).

• Updating the core with data for its request.
• Updating the L2 cache with the data.
• Updating the L2 directory with the current coherent state 

and inclusivity information for this line.
• Issuing any required I-side or D-side kills to the L1 caches 

in the core.

2 banks of 8 addr(56)

Cast Out (CO)
Machines

Castout machines manage moving victimized lines from the L2 
cache to the L3 cache and sending kills to the POWER9 core 
when the L2 cache is no longer tracking this line. Under certain 
conditions, the L2 castout machines can select to move the line 
to the memory controller.

2 banks of 8 addr(56)

Snoop (SNP)
Machines

Snoop machines manage all cacheable operations initiated by 
the incoming internal Fabric interconnect operations. The 
snoop is responsible for:

• Representing the current L2 directory state to the internal 
Fabric interconnect. 

• Intervening data to the internal Fabric interconnect when 
necessary.

• Updating the L2 directory with the current coherent state 
for this line.

• Issuing any required I-side or D-side kills to the L1 caches 
in the core based on internal Fabric interconnect activity.

• Pushing modified data to memory when required to by the 
snooped operation.

4 banks of 4 addr(55:56)

Reservation The reservation logic provides for execution of larx/stcx 
instructions. A reservation is provided each thread within the 
core pair

2 (cores) × 4 (threads) thread

Transactional
Memory

Transactional memory tracking CAM for tracking the TM load 
and store footprint structures across all threads along with an 
LVDIR structure for tracking a larger load footprint for two 
threads.

TMDIR: 4 banks of 16 entries
(shared by 8 threads))

LVDIR: 512 × 8-way entries
(shared by 2 threads)

addr(55:56)

Content-addressable memory

Transactional memory
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6.2.1 Description of L2 Control Flow

The L2 control flow handles the coordination of dispatching load and store requests from the pair of POWER9 
cores and dispatching snoop operations from the internal Fabric interconnect that were initiated by other 
cores or I/O type devices. This L2 control logic manages these accesses such that when contention or 
ordering is required among commands, the proper dispatch collision and ordering detection occurs such that 
the RC/CO machines and SNP machines perform their data references and storage updates in a coherent 
and consistent manner.

The L2 CIU_store queue consists of a “2 core banks × 6-entry × 16 bytes” buffer that has a bank dedicated 
per core. Each bank serves as an intermediate buffering station for stores that are then forwarded onto the L2 
store queue where they can be gathered with prior stores. The L2 CIU_store queue has six entries per core. 
This buffer structure can unload up to two entries (one per core bank) per 1:1 clock cycle provided these 
requests are going to different cache-line banks in the L2 store queue. The L2 CIU_store queue maximizes 
its unload efficiency by selecting first entries from the two different core banks that are scheduled to go to 
different L2 store queue cache-line banks.

The L2 store queue is a “2 bank × 28-entry × 64-byte” buffer that allows storage updates to the same cache 
line from a given thread to be gathered before being issued into the RC machine dispatch pipe. The L2 store 
queue issues stores into the RC dispatch pipe honoring the barriers that have been inserted by software. The 
L2 store queue takes full advantage of the weakly-ordered nature of the PowerPC Architecture by allowing as 
many RC machines to be running in parallel where ordering is not required.

The CIU load queues manage the enqueuing of load-type requests from the two POWER9 cores for I-side, 
D-side, translate, and prefetch type requests that cannot be immediately serviced by the RC machines. When 
a backlog of load-type requests occur, due to resource contention, the CIU manages the detection of when 
the resource is free and the priority for which requests should be re-issued next into the RC dispatch pipe to 
achieve best performance and for fairness.

The set of sixteen RC machines are dispatched on behalf of load/stores from its private core pair. This set is 
responsible for acquiring the proper coherent authority to complete the command and is a unified cache that 
is accessed privately by a given pair of POWER9 cores. Along with these RC machines, the CO machines 
also are conditionally dispatched to move any victimized lines out of the L2 cache to make room for the new 
line the RC is bringing in.

When a given command is sent down the RC dispatch pipe, one RC machine is assigned the command. The 
RC machine then determines where it must go to acquire the proper coherency authority to perform the 
command and, if required, acquire a copy of the data. The RC machine can find the line that is already in the 
L2 cache (for example, an L2 hit), or in the L3 cache (for example, an L3 hit), or the RC machine might have 
to proceed to the internal Fabric interconnect to gain ownership of the line. In addition, when an RC machine 
is dispatched, a CO machine might also be assigned at RC dispatch time if the L2 cache must create a victim 
line to make room for the line the RC is now installing. The L2 CO machine has the resources to work inde-
pendent of the RC machine and thus allow the CO machine to work in parallel to migrate the line down to its 
private L3 cache. The L2 CO machines are also responsible for sending any required invalidates to the 
POWER9 core pairs when lines are invalidated from the L2 cache.

The L2 unit has four SNP dispatch pipes that control the assignment of the SNP machines to work on 
commands from the internal Fabric interconnect. These commands, initiated by internal Fabric interconnect 
masters, might include other L2/L3 unit masters (on behalf of their cores commands) or by other masters 
such as I/O type devices. The L2 SNP machines are used to service these requests (that is, L2 hits) by 
granting coherent authority from the L2 directory during SNP dispatch and (if required) providing a copy of the 
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data via data intervention back to the requesting internal Fabric interconnect master. The L2 SNP machines 
are also responsible for sending any required invalidates to the POWER9 core pairs when lines are invali-
dated from the L2 cache.

Both the RC dispatch pipe and the SNP dispatch pipe have the ability to detect when a given line has already 
been assigned to either an RC, CO, or SNP machine. Contention by the subsequent command for the same 
line is detected and thus delayed until after the previous machine has completed its work on the command it 
is working on.

6.3 Interfaces

On the POWER9 chip, the L2 caches have interfaces to communicate with their respective POWER9 core 
pair, its private L3 cache, and the internal Fabric interconnect (that provides access to the neighboring on-
chip and off-chip L2/L3 caches). These interfaces are described as follows:

• Core load request interface: Interface for loads, IFetch, and various prefetch operations that allow for 
requests from the respective units to be sent every core clock cycle.

• Core reload bus: The reload bus is used to return data and L1 cache invalidate commands to the core. 
The reload bus contains a data bus that is 64 bytes wide and runs at a 1:1 core-clock rate. Both data and 
invalidates are returned to the core over this bus in a non-blocking fashion into the core (that is, no flow 
control required).

• Core store interface: Each core has its own dedicated store request interface that provides one 16-byte 
wide store data bus (per core) clocked at a 1:1 clock rate. Each of these interfaces is also used to send 
barrier operations and various PowerPC architecture-specific commands from a POWER9 core. Flow 
control is achieved through a core push/pop protocol, where the core holds an “L2 queue capacity 
counter” to track the L2 store queue capacity.

• L2-to-L3 read interface: One private L2-to-L3 request interface that is used by the L2 cache to look up the 
L3 cache on behalf of a request from this private core pair. This private interface serves as a dedicated 
fastpath 64-byte data interface for L3 hit data transfer back to the L2 cache and core pair at a 2:1 clock 
rate. 

• L2-to-L3 castout interface: One private L2-to-L3 request interface that is used by the L2 cache for casting 
data out of the L2 cache and into the L3 cache. This private interface consists of a dedicated 64-byte data 
interface from the L2 to the L3 cache at a 2:1 clock rate.

• L2-to-internal Fabric interconnect: Request ports are provided for both address and data requests to be 
sent to other nest units in the system (both on and off chip). The data interface consists of: one outbound 
32-byte data port that runs at a 2:1 ratio to the core and one inbound 32-byte data port that also runs at a 
2:1 clock ratio to the core. The internal Fabric interconnect also provides four instances of the snoop 
interface for processing system coherence and control commands. An interface instance consists of three 
ports: an address/cmd snoop port, a unit response port, and a system combined response port.
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6.4 Operational Flows and Bandwidths

Figure 6-2 shows the general control and data flow within the POWER9 processor-pair cache slice. The 
figure shows the internal buffer structures within the L2 and L3 cache and how these buffer structures are 
connected within the private L2 and L3 units for processing L2 and L3 hits and any resulting castouts from the 
L2 to the L3 or interaction with the internal Fabric interconnect. 

Figure 6-3 on page 161 and Figure 6-4 on page 162 show additional details about the L2 unit. Figure 6-3 
shows the details of the internal L2 dataflow. Figure 6-4 shows the L2 units major input/output buses and the 
data bus bandwidth that represents the overall bandwidth capabilities in/out of the L2 cache. 

Figure 6-2. High-Level Dataflow within the L2, L3, and NCU for a Processor Pair Cache Slice  
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Figure 6-3 shows the data flow within the L2 cache unit.

Figure 6-3. L2 Data Flow Overview 
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Figure 6-4 shows the various control machines and address flow internal to the L2 cache unit.

Figure 6-4. L2 Bus Bandwidths 
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6.5 LRU

6.5.1 LRU modes

• Normal LRU mode (13 bit 2 × 4-way pointer mechanism)

• Direct Map: uses addr [45:47] (just above L2 cgc)

• Single-Member Mode: configuration register specifies one of eight members

• Pseudo-Random Static Mode: LFSR based. 

6.5.2 Policies

• invalid_line_lru_bias: Moves members in I state toward LRU.

• id_state_mru_bias: Moves members in invalid line deleted (Id) state toward MRU. 

6.5.3 Line Disable

• Directory support for line delete (ld) on a per directory location granularity.

• Hardware or software-initiated line delete policies.

6.6 Transactional Memory Support

6.6.1 Basic Policy

Transactional memory (TM) support is provided in a transaction tracking structure that exists in the L1 and L2 
cache. With this tracking structure, the L2 cache is considered the final point of commitment for the TM 
image, but the image is also allowed to initially bind in the L1 cache. The L1 and L2 caches each have a TM 
tracking structure that tracks the overall footprint a given thread has accessed and if that set of lines that 
makes up the footprint has been accessed as part of a TM load or TM store access. This TM mechanism 
provide a means for tracking the TM load and store footprint, which is limited to the size of the L2 TM tracking 
structure. In addition to the tracking structure, the L2 cache uses the L3 cache to hold any dirty lines that are 
associated with the L2 cache’s pending speculative TM store footprint, such that if the L2 TM sequence fails, 
the L3 image has preserved the original dirty cache lines.

6.6.2 L1 TM Filter Structure and L2 TM Tracking Structure
• L1 Set-P directory bits: 32 × 8-way × 4 bits. This Set-P structure (which is used for normal L1hit use) also 

includes a TM bit, a Private bit, and a 2-bit thread ID. 

• L2 TMCAM: 4 × 16-entry pointer structure, which is shared by the two POWER9 cores that manage the 
tracking of the TM load and store footprint tracking and is shared by all eight threads across the two 
POWER9 cores.

• L2 LVDIR: 512 KB tracking structure, which is shared by the two POWER9 cores that manage the track-
ing of a larger load footprint for up to two threads at any given time.

The L1 and L2 CAM structures hold an address and a set of status bits that indicate if this cache line is 
currently associated with a TM load or TM store footprint for a given thread. 
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L1 Load/Store Footprint Filter Tracking

L2 Load Footprint TMDIR Tracking

L2 Store Footprint TMDIR Tracking

L2 Load Footprint LVDIR Tracking

L3 Cleaned Footprint Tracking

Structure • Marker bits in existing Set-P directory (for example, Set-P directory is the size of the L1 
directory)

Entry tracking • A load/store footprint entry only tracks an entry for one thread at any given time.

• A given cache-line address is tracked as part of the load/store footprint after a transac-
tional memory load or store is performed to that line.

• The L1 TM tracking does not track TM for pass/fail correctness; TM correctness tracking 
is done by the L2 tracking. 

Structure • CAM of 16 entries × 4 banks (address[55:56] defines the four banks) that tracks both the 
load and store footprints.

Entry tracking • Each entry is a “shared pool” type for a load footprint where a given entry can track when 
it is associated with one or more threads each sharing this line as part of their TM load 
footprint.

Structure • CAM of 16 entries × 4 banks (address[55:56] defines the four banks) that tracks both the 
load and store footprints.

Entry tracking • A given cache-line address is tracked as part of the store footprint after a transaction 
memory store is performed to that line.

Structure • This array structure is 512 entries × 8 ways × 2 threads, which is the same size as the L2 
director and is used for tracking large TM load footprints.

Entry tracking • Threads are assigned to this structure when the L2 detects TM activity from any given 
thread. 

• The LVDIR array can track the TM load footprint image that is the size of the L2 cache for 
up to two threads at any given time. 

Structure • CAM of 16 entries × 4 banks (address[56:57] defines the four banks) with a thread  
identifier field.

Entry tracking • This structure tracks lines cleaned by the L2 cache when the L2 cache formed the store 
footprint on a line that was in either this core’s L2 or L3 cache at the time of the TM store. 
These lines represent the “true image of memory”, which is re-exposed if the store foot-
print for these lines is discarded due to a TM transaction failing for a given thread. 
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7. L3 Cache 

7.1 Overview

The L3 cache unit is contained within the processor-pair cache slice, which consists of: two POWER9 cores, 
one 512 KB L2 cache, one 10 MB L3 cache, one NCU, and a portion of the internal Fabric interconnect logic, 
which is referred to as PBex. The L3 cache is a unified cache that is accessed privately by the L2 cache in the 
same processor-pair cache slice and nonprivately by other unit masters in the system via the internal Fabric 
interconnect. The L3 cache maintains full hardware coherency within the system and can supply intervention 
data to other unit masters in the system. The L3 cache is a victim cache and thus typically holds cache lines 
that are different from those held by the L2 cache or the core L1 cache.

Figure 7-1 shows a high-level POWER9 chip diagram, that includes multiple processor-pair cache slices 
interconnected via the internal Fabric.

Figure 7-1. Block Diagram of Multiple Processor-Pair Cache Slice Interconnected via the Internal Fabric 
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7.2 Interfaces

The interface to the L2 cache is used to service read (which include both load and store requests) and 
castout requests from the L2 cache. The interface to the internal Fabric interconnect is used to snoop 
requests from the internal Fabric, to prefetch cache lines into the L3 cache based on requests from the core, 
and to castout evicted cache lines. Snooping can lead to providing intervention data to the internal Fabric 
interconnect or generating cache-line pushes to the internal Fabric interconnect. The L3 cache also accepts 
lateral-castouts from other on-chip L3 caches.

The L3 cache supports a fast broadcast request interface to other on-chip caches and the on-chip memory 
controllers for high priority (demand) read requests, that are L2 and L3 misses. Upon the occurrence of such 
a miss, the L3 cache broadcasts to these devices, ahead of the request to the slower coherent internal Fabric 
interconnect. If any of the caches are in a state to deliver early data directly, it does so on the internal Fabric 
interconnect data buses. That cache then waits for the coherent request on the internal Fabric interconnect 
and responds in a manner that is consistent with its response to the fast request. In parallel to the cache 
activity, the memory controller begins to fetch the data. It then examines the combined response to determine 
if it should provide data.

7.3 List of Features and Resources
• Features:

– Private 10 MB L3 cache/shared L3.1 (lateral-castout target cache from other on-chip L3 caches).

– 20-way set associative.

– 128-byte cache lines with 64-byte sector support.

– 10 EDRAM banks (interleaved for access overlapping).

– 64-byte wide data bus to L2 for reads.

– 64-byte wide data bus from L2 for L2 castouts.

– Eighty, 1 Mb EDRAM macros configured in ten banks, with each bank having a 64-byte wide data 
bus.

– All cache accesses have the same latency.

– 20-way directory organized as four banks, with up to 4 reads or 2 reads and 2 writes every 2 pclks to 
differing banks. The directory is physically implemented as twenty 1024 × 4w × 51 bits SRAMs.

– LRU algorithm for castin selection using 4-bit per member recency/frequency utilization tracking.

• Functionality:

– Victim cache for local L2 cache (L3.0).

– Victim cache for other on-chip L3 caches (L3.1).

– Services read requests from the local L2 cache due to core loads or stores that miss in the L2 cache.

– Services prefetch requests that originate from a local core and are pass through by the local L2 
cache.

– Four snoop ports, address banked by address bits 55 and 56.

– Internal Fabric interconnect support.

– Cache inject support, including partial line inject on any byte boundary.

Enhanced dynamic random access memory

Static random access memory

Least-recently used
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– Dual-class L3.0/L3.1 LRU support and L3.1 activity throttling

– Support for speculative memory transactions by acting as backing store of previous version of cache 
lines until outcome of transaction is known. 64-entry CAM to track Sc lines. 

– Fast broadcast on-chip load request to other caches and memory controllers for L2 demand load that 
miss in the L3 cache.

– 3-hop internal Fabric interconnect topology with multi-level command scope support.

– Entire L3 clocked at one half core frequency.

• Peak bandwidths:

– 64 bytes, 2:1 clock L2 reload bus capacity

– 64 bytes, 2:1 clock L2 castout capacity

– 32 bytes, 2:1 clock prefetch capacity

– 32 bytes, 2:1 clock L3 castout capacity

– 32 bytes, 2:1 clock full-line cache-inject capacity

– 32 bytes, 2:1 clock intervention capacity

• RAS features:

– Data cache contents protected by 8 bits per 8 bytes SECDED ECC

– Directory contents protected by SECDED ECC

– ECC propagation throughout interface dataflow and buffers

– Support for directory single stuck bit

– Physical data line delete support

7.4 Queues

The L3 cache has multiple sets of state machines that act as queues for various types of requests.

7.4.1 Read Machines 

The L3 has 16 instances of read (RD) state machines that handle L2 read requests. L2 read requests are a 
consequence of core loads and stores that miss in the L2 cache. The L3 first attempts to service an L2 read 
request from the L3 cache. If the request misses the L3 cache, the request is either sent to the internal Fabric 
interconnect (though handled by the L2 controller thereafter) or returned (with a miss indicator) to the L2 
cache, which subsequently sends a request to the internal Fabric interconnect. Details about the RD state 
machines follow:

• 16 RD machines.

• Address protection provided.

• Carries out an L3 directory invalidate on an L3 hit.

• CI/CO machines are not coupled to an RD machine.

• No speculative cache reads. Directory is read first.

• Request to the fast bus when an L2 read request misses the L3 cache and the L2 read request enables 
fast handling. Request to the fast bus is in parallel with an L3 miss indication to the L2 cache.

Content-addressable memory

Store clean

Single-error correction, double-error detection

Error correcting code

Castin

Castout
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• L3 cache data is initially sent to the L2 cache on a cache hit without ECC correction. In the case of a cor-
rectable data error, the RD machine re-reads the cache line from the L3 cache and re-sends the data to 
the L2 cache after running it through an inline ECC correction.

7.4.2 Castin/Castout Machines 

The L3 cache has 16 CI state machines that handle L2 castouts, prefetched data that arrives from the internal 
Fabric interconnect, lateral castouts (LCOs) that arrive from the internal Fabric interconnect, and full or partial 
cache-line injections that arrive from the internal Fabric interconnect. The castin state machines read the L3 
directory, then write the directory and the data cache. 

The L3 cache has 16 CO state machines that handle writing displaced dirty cache lines (displaced by a 
castin) to the internal Fabric interconnect. Details about the CI and CO state machines follow:

• CI machines: 

– 16 CI machines.

– Address protection provided.

– Handles 128/64-byte CI that results from an L2 CO, prefetches, incoming LCOs, and incoming partial 
or full cache-line injects.

– Private control/data interface for moving data from the L2 CO buffers to the L3 cache (no extra stor-
age in the L3 cache).

– TM footprint (Sc) established in the L3 cache at the CI allocation time to provide protection and colli-
sion detection. The cache line is held in the Sc state until the completion point of the transaction is 
detected. The Sc cache line can be evicted to memory if necessary.

– Flow control mechanisms to provide fairness and to prevent L2 COs, PF, and WI from overflowing CI 
machines. 

– Handles purge/flush function initiated via the SCOM register interface.

• CO machines:

– 16 CO machines. Each CO machine is paired with a CI machine.

– Address protection provided.

– Handles L3 COs due to L3 CIs.

– Handles L3 cast-through operations of cache lines not to be installed in the L3 cache.

– Detects overflow of the TM footprint.

– 1 × 128-byte buffer per CO machine (physically in the CPI buffer).

– Cache interlock: CI cache write held off until a CO cache read is done.

– Directory interlock: CO active for protection until a CI completes a directory write to destroy an old 
entry.

Prefetch

Write inject
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7.4.3 Prefetch Machines 

The L3 cache has 32 prefetch (PF) state machines that make read requests to the internal Fabric intercon-
nect. Each PF machine starts with a request that originates from a local core and is passed through the L2 
cache. When a PF state machine receives a request to make a prefetch, it first reads the L3 directory. If the 
L3 cache already has the cache line, the PF machine does nothing further and goes idle. If the cache line is 
not in the L3 cache, the PF machine makes a read request to the internal Fabric interconnect. The internal 
Fabric interconnect request might indicate that the memory controller is allowed to discard the request if the 
memory controller is currently busy with higher priority requests. If prefetch data arrives from the internal 
Fabric interconnect, the PF machine determines if a demand request has arrived for that cache line while the 
prefetch request to the internal Fabric interconnect was pending. If no such request is pending, the PF 
machine forwards the request to a CI machine to have it put in the L3 cache. However, if a demand request 
has arrived, the data is forwarded directly to the L2 cache and is not installed in the L3 cache. Details about 
the PF state machines follow:

• 32 L3 PF machines.

• Address protection provided.

• Handles prefetch requests from a local core.

• For entries that are L3.0 misses, the PF machine sends a request to the internal Fabric interconnect.

• PF data bypasses to the L2 cache without installing the cache line in the L3 cache when the RD machine 
is waiting for data.

• When no RD machine is waiting for the data, the L3 PF machine uses the CI/CO machine to move data 
from the PFWI buffer to the L3 data cache.

7.4.4 Snoop Machines 

The L3 cache has four snoop dispatch pipes that handle incoming reflected-command (snoop) requests from 
the internal Fabric interconnect. The snoop dispatch pipes perform an L3 directory read to determine how to 
handle the request. If the request requires either sending intervention data, execution of a snoop push, or 
invalidation of the associated cache line, then the snoop dispatch pipes forward the request to one of 16 
snoop state machines (SN). If the request is an incoming lateral castout (LCO) or cache-injection that is 
accepted, the request is forwarded to the write inject (WI) state machine. A request to an SN machine to 
invalidate the cache line can occur in parallel to a request to a WI machine. Details about the SN state 
machines follow:

• 16 SN machines.

• Address protection provided. 

• Handles intervention for snoops.

• Handles LCOs without data movement (state merge).

• Handles detection of bus operation collisions with local speculative TM footprint.

Prefetch write inject
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7.4.5 Write Machines 

There are 16 write inject (WI) state machines that are started by the snoop dispatch pipes on incoming LCO 
requests or incoming write injection requests. For these types of requests, the WI machine waits for data to 
arrive from the internal Fabric interconnect, then passes the request to a CI machine to have the cache line 
inserted into the L3 cache. Details about the WI state machines follow:

• 16 WI machines, eight that can be used for partial-line cache injects.

• Address protection provided.

• Handles LCOs with data movement from on-chip L3 caches and cache injects.

• L3 WI machine uses CI/CO machine to move data from PFWI buffer to the L3 data cache.

7.4.6 Transaction Memory Machines 

There are four transactional memory (TM) state machines for handling transactional memory requests from 
the L2 cache. Details about the TM state machines follow:

• Four transactional memory machines.

• 64 CAM entries (16 entries per each of the four directory banks). Flash validate and pseudo-flash invali-
date via the Store Invalid (SInv) bit.

• Tend_pass handling for clearing the L3 cache of speculative Sc cache lines.

• Tend_fail handling for flash clearing of the Sc lines to restore them to the normal state.
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8. SMP Interconnect 

The POWER9 SMP interconnect is the underlying hardware used to create a scaleable cache-coherent multi-
processor system. The POWER9 SMP interconnect controller provides coherent and non-coherent memory 
access, I/O operations, interrupt communication, and system controller communication. The SMP intercon-
nect provides all of the interfaces, buffering, and sequencing of command and data operations within the 
storage subsystem. The SMP interconnect is integrated on the POWER9 chip with 24 processor cores and 
an on-chip memory subsystem. The POWER9 chip has up to two SMP external links that can be used to 
connect to other POWER9 chips.  

The external SMP interconnect link is a split-transaction, multiplexed command and data bus that can support 
up to two POWER9 chips in a system. Aggregation of data links between the same source and destination 
chips is supported to increase data bandwidth.

Cache coherence is maintained by using a snooping protocol. Address broadcasts are sent to the snoopers, 
snoop responses are sent back in order to the initiating chip, and a combined snoop-response broadcast is 
sent back to all of the snoopers. Multiple levels of snoop filtering are supported to take advantage of the 
locality of data and processing threads. This approach reduces the amount of interlink bandwidth required, 
reduces the bandwidth required for system-wide command broadcasts, and maintains hardware enforced 
coherency using a single-snooping protocol. When the transaction cannot be completed coherently using 
chip scope, the coherency protocol forces the command to be re-issued to an increased scope of the system.

8.1 SMP Interconnect Features

8.1.1 General Features

• Master command/data request arbitration.

• Command requests are tagged and broadcast using a snooping protocol that enables high-speed cache-
to-cache transfers.

• Multiple command scopes are used to reduce the bus-utilizations system wide. The SMP interconnect 
architecture uses cache states indicating the last known location of a line (sent off chip), information 
maintained in the system memory (memory domain indicator [MDI] bits), a coarse grained directory that 
indicates when a line has gone off the chip, and combined response equations that indicate if the scope 
of the command is sufficient to complete the command or if a larger scope is necessary.

• The command snoop responses specified by the SMP interconnect implementation are used to create a 
combined response that is broadcast to maintain system cache state coherency. Combined responses 
are not tagged. Instead, the order of commands from a chip source, using a specific command-broadcast 
scope, is the same order that combined responses are issued from that source. The order is also affected 
by the snoop bus usage as well. 

• Data is tagged and routed along a dynamically selected path using staging/buffering along the way to 
overcome data routing collisions.

• Command throttling and retry command back-off mechanisms for livelock prevention.

• Multiple data links between chips are supported (link aggregation).
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8.1.2 POWER9-Specific Features

Some features for the POWER9 SMP interconnect are as follows:

• Command broadcast scopes (such as, snoop filtering)

– Local Node Scope (LNS): Broadcast within a local chip with nodal scope. Node is defined as one 
chip. 

– Remote Node Scope (RNS): Broadcast to a local chip and targeted chip on a remote group.
– Group Scope (GS): Broadcast to a local chip with access to the memory coherency directory (MCD).

– Vectored Group Scope (VGS): Broadcast to a local chip and targeted remote chip.

• 1 - 2 socket system configuration support

• 4× snoop bus support

• MC FastPath support

• 256 Local master (LM) system-pump queue size (64 per snoop bus)

• 256 Group master (NM) group-pump queue size (64 per snoop bus) 

• Service processor accessible SCOM registers for configuration setup

8.1.3 On-Chip Features

• Six EQ core chiplets. Each chiplet contains four cores with a shared PBIEQ chiplet interface. 
– Asynchronous chiplet with a128-byte incoming data port and 64-byte outgoing data port.
– Four cache-line PBI data buffers (incoming and outgoing data ramps to and from the EQ chiplet)

• Four memory controller (MC) chiplets (2× data port)

• Synchronous chiplet I/F (3× NPU, 3× PE, 2× CXA, nMMU, INT, MCD, VAS, NX, TP, Fabric master)  
(1× data port) 

• Centralized command-request arbitration

• Dynamic command rate throttling

• TLBI tokenizer 

• Decentralized data-request arbitration

• Eight horizontal, 32-byte data buses

• 32-byte data arbitration size; unit specifies total transfer size 

Scan communications

translation look-aside buffer invalidate
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8.1.4 Off-Chip External SMP Features 

• 2× (X bus) 2 × 15-bit or 1 × 15-bit EDI + inter-group links at 16 Gbps (asynchronous clocking)
– 1.0 M length (module + board) 

• Aggregate data-link support

8.1.5 Power Management Features

• 1× - 4× core chiplet frequency support

• EQ chiplet power-management support

• Dynamic PHY power-savings support  

8.1.6 RAS Features

• CRC link-level retry on external SMP links

• 100% ECC protection on internal data flow

• Hang recovery mechanism 

• Trace array

• Performance monitor

• FIR error reporting 
– Protocol errors
– Underflow/overflow checkers
– Asynchronous drop/repeat checkers
– Parity checkers on coherency register files

• Error injection
– Single- and double-bit errors on external SMP links
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8.2 SMP Interconnect Architecture Coherency Protocol 

Figure 8-1 illustrates the SMP interconnect command and data sequence. To simplify the following discus-
sion, the topology of the system assumes that all SMP interconnect attached units are serviced by a single 
instance of the SMP interconnect controller, and all responses from the SMP interconnect controller are seen 
by all SMP interconnect attached units in the same cycle.

The block on the left of the figure represents all the masters and slave attached units in the system. The 
blocks on the right of the diagram indicate functions provided by an SMP interconnect implementation. A brief 
overview of the protocol follows: 

Figure 8-1. SMP Interconnect Coherency Protocol 

1 A unit attached to the SMP interconnect (master) places a command request on the command 
interface to the SMP interconnect. The command request specifies the transaction type (tType), 
as well as an identification of the requester that is provided in the transfer tag (tTag).

2 The SMP interconnect control logic selects one of the commands presented by all of the masters 
of this chip and reflected commands received from other chips as the next command to be issued. 

3 The selected command becomes a reflected command and is visible to all SMP interconnect 
attached units (snoopers). If the selected command is from one of the masters of this chip, the 
reflected command is queued for transmission to all of the other chips in the system.
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Steps 3a, 7r, and 7w are data transfer steps and occur only for read or write type operations. The order of 
data movement is not required to follow the order that reflected commands are issued. This is accomplished 
by tagging the data with an identifier and allows for more efficient use of the data transport facilities provided 
by the SMP interconnect.

3a For read operations, there are cases where a holder of the data can determine without waiting for 
the combined response that it is the source of the data. In those cases, the holder of the data 
transfers the data before the SMP interconnect controller issues a combined response. This is 
referred to as “early data”.

The SMP interconnect specifies that data routing is based on destination addressing. The address 
contained in the route tag specifies the destination SMP interconnect attached unit. The route tag 
is derived from the transfer tag described in step 1.

The order in which read data is returned to the master might not be in command order. Because 
the route tag is the same as the original command tag, the unit is responsible for associating the 
data with the command.

4 A fixed amount of time (tsnoop) after the reflected command has been issued, all SMP interconnect 
attached units (snoopers) on this chip provide a partial response and an acknowledge tag. The 
acknowledge tag is provided only for write operations.

5 The SMP interconnect control logic combines the partial responses from all the chips within the 
commands original broadcast scope and generates a combined response.

6 The combined response, with the original command tag and the acknowledge tag, is sent to all 
snoopers on this chip and queued for transmission to all the other chips in the system.

The combined response indicates to the master the success or failure of the operation and, if any, 
the state transition for any line requested as well as any subsequent action the master takes.

Units that hold data that is specified by the operation, but were not able to determine if they were 
to provide the data based solely on the command and the state of the line held, examine the 
combined response to determine if they are to provide the data.

7r At some later time, read data is moved for the read command. The route tag used is derived from 
the original command tag. The order in which read data is returned to the master might not be in 
command order. The route tag contains the original command tag, which allows for this out-of-
order property.

7w At some later time, the write data is moved for the write command. The route tag is derived from 
the acknowledge tag that was provided by the slave performing the write operation. The master 
provides the data. Note that the order in which write data is provided to the slave might not be in 
command order. The route tag contains the acknowledge tag, which allows for this out-of-order 
property.
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8.3 External POWER9 Fabric

The off-chip POWER9 Fabric supports up to two SMP X-bus links (X1:X2). The X-bus links connect up to two 
POWER9 processor chips in a system. One X link carries both coherency traffic and data and is interchange-
able as inter-group processor links. The second X link can be configured as an aggregate data-only links. 

Figure 8-1 shows the protocol layers.

8.4 Terminology

Table 8-1 defines some common terms used in this section.

Figure 8-2. Protocol Layers 

Table 8-1. Terminology 

Term Description

Lane Single Tx/Rx bit.

Link Consists of multiple bit lanes organized by protocol layer in packets (DLL).

Single Link Single link interconnect between two processors. 

Paired Link Pair of link interconnects between two processors. 

Packet Data payload generated by the data link layer.

Frame Data payload generated by the transaction layer.

Physical Layer

Data Link Layer

Transaction Layer

Fabric Cmd/Rsp/Data

Processor 1

Physical Layer

Data Link Layer
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Fabric Cmd/Rsp/Data

Processor 2
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8.5 Protocol Layer Payload

Figure 8-3 illustrates the protocol layer payload.

8.5.1 Physical Layer

The PHY layers supported for fabric external SMP links on the die are listed as follows:

• 2 × EDI+ at 16 Gbps (also known as, Electrical X1:X2) {Asynchronous to Nest Clock}  
(2 × 2 × 15 bit for the X-bus)

The PHY layer includes the transmitter and receiver, serializer/deserializer, and receiver clock recovery 
circuitry. The PHY initialization includes continuity checking, calibration, equalization, and deskew.

8.5.2 Data Link Layer

8.5.2.1 Electrical Data Link Layer 

The electrical data link layer (ELL) interfaces to the EDI+ PHY. The latter is a “thick” PHY class that includes 
all spare/shadow maintenance. The ELL is responsible only for the CRC insertion/checking, replay buffers, 
and link layer retry protocols. 

8.5.3 Data Link Layer Packet Format

The data link layer packet is 30 bytes (240 bits).

The service packet identifies the special packets required for training and other uses. The payload of a TOD 
packet contains a byte plus an ECC to correct errors and make the TOD packet more reliable. The link fail 
packet has data to indicate the reason the link should be brought down. The T-start and T-complete packets 
have a payload data byte used to match a received T-complete with the transmitted T-start. The other service 
packets have no other data payload (set to ‘0’s).

Figure 8-3. Protocol Layer Payload 
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For the electrical links, the ACK for a transmitted packet appears a fixed number of cycles after the packet is 
transmitted (determined during initialization), because the two sides are in synchronization. When a packet is 
received, the ACK/NAK indication for it is placed in the next packet transmitted. 

The logical link number keeps the links and their sequence numbers separate, even when both halves of a 
link pair are physically sent on one link. When a packet has good CRC, it is checked for the sequence number 
based on the link number received, and then passed to that extractor for processing.

A 9-bit sequence number supports 256 outstanding packets. By not using half the sequence numbers, a 
received packet can be determined to be a duplicate or missing packet. Using a sequence number encode for 
service packets means 255 packets can be outstanding.

8.5.4 Transaction Layer 

The transaction layer (TL) has a common 128-bit interface to the electrical data link layer. The transaction 
layer includes the framing function (transmit) and parsing function (receive). The TL interfaces with the 
internal SMP interconnect command/response/data buses.

8.5.5 POWER9 Fabric SMP Topology

Figure 8-4 illustrates the external SMP topology.

8.5.6 Protocol and Data Routing in Multi-Chip Configurations

The SMP ports configured for coherency are used for both data and control information transport. The use of 
the buses is as follows: 

1. The chip containing the master that is the source of the command issues the reflected command and the 
combined response to all other chips in the SMP system. Partial responses are collected and returned to 
the chip containing the master.

2. Data is moved point-to-point. For read operations, the chip containing the source of the data directs the 
data to the chip containing the master. For write operations, the chip containing the master, directs the 
data to the slave that performs the write operation. The routing tag contains the chip and unit identifier 
information for this purpose.

Figure 8-4. External SMP Topology 

POWER9
X1

X2S
POWER9

T

2 Socket

Note: Dotted line indicates aggregate data-only link. 



User’s Manual 
OpenPOWER

 POWER9 Processor

Version 2.1 
10 October 2019 
 

SMP Interconnect

Page 179 of 42

8.6 POWER9 Coherency Flow

8.6.1 Broadcast Scope Definition

Table 8-2 describes the physical broadcast scope and the equivalent coherency scope.

8.6.2 Address Definition 

Figure 8-5 illustrates the POWER9 system real-address map. 

Table 8-2. Broadcast Scope Definition  

Command Scope Physical Broadcast

LNS Local node scope Local chip

 GS Group scope Local chip

 RNS Remote node scope Local chip and targeted remote chip1

 VGS Vectored group scope Local chip and remote chip

1. Requires X-bus BAR lookup.

Figure 8-5. POWER9 System Real-Address Map 
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9. NCU 

The POWER9 Non-Cacheable Unit (NCU) is responsible for processing noncacheable load and store opera-
tions (load and store operations with a WIMG “I” bit setting of ‘1’ as described in the Power ISA), word and 
doubleword load and store atomic instructions (lwat, ldat, stwat, stdat), and certain other uncacheable oper-
ations such as tlbie, portions of the various sync and ptesync instructions, and so on. All of these instruc-
tions support the behavioral definitions given in the Power ISA. One NCU unit is instantiated per pair of 
simple four thread cores. This NCU handles appropriate operations for all eight threads in the two associated 
simple cores.

The POWER9 NCU provides one dedicated cache-inhibited load station (LDS) per thread to process cache-
inhibited loads and load word or doubleword atomics (lwat, ldat). Cache inhibited loads (whether guarded 
[meaning the G bit of WIMG is set to ‘1’] or not) and load atomics are neither gathered nor are they reordered 
in the POWER9 implementation. Although, with the exception of guarded cache-inhibited loads, they might 
be in future implementations. If ordering and/or non-gathering is required on unguarded caching-inhibited 
loads or on load atomics, appropriate barriers should be inserted to ensure future compatibility.

For cache-inhibited stores and store word and doubleword atomics (stwat, stdat), a store queue (STQ) 
consisting of sixteen 64-byte store gather stations is provided. The store gather stations are shared across 
the eight core threads and hardware prevents any thread from blocking other threads in the store queue. A 
pair of 64-byte stations can “chain” together to gather up to 128 bytes. 

The POWER9 NCU supports gathering and reordering for cache-inhibited stores in the unguarded caching-
inhibited (IG = ‘10’) space. In caching-inhibited, but guarded space (IG = ‘11’), cache-inhibited stores are 
neither reordered nor gathered as required by the architecture. Similarly, atomic word and doubleword stores 
(stwat, stdat) are never gathered, but might be re-ordered.

Figure 9-1. NCU Block Diagram 
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The POWER9 NCU only gathers naturally aligned 4-, 8-, or 16-byte unguarded cache-inhibited stores. Gath-
ering starts at the first such 4-, 8-, or 16-byte store in a 128-byte region and continues if the next such store 
(which might be of a different size than the previously gathered store) is contiguous with the previously gath-
ered store and does not cross over a 128-byte boundary.

The POWER9 NCU provides eight store address machines (SAM) that manage the address tenure of the 
store allowing for up to eight outstanding cache-inhibited or store atomic word or doubleword instructions 
(stwat, stdat). A set of two store data machines (SDM) are used to manage the data tenures for the store 
address machines after the address tenures are complete.1

The POWER9 NCU also masters hypervisor broadcast MSGSEND instruction through the store queue and 
store address and data machines. MSGSEND instructions are treated as a special type of store instruction.

Finally, the NCU provides eight snoop queues (TLBS) to process snooped TLBIE operations and four snoop 
queues (SLBS) to process SLBIE operations and forward these to the core. The instruction sequences 
provided in the Power ISA documentation for page table modification should be followed in using the TLBIE 
and SLBIEG instructions that cause these bus operations.

9.1 NCU Characteristics

9.1.1 Store Queue (STQ)

• 16 × 64 byte store gather stations (chainable to 8 × 128 byte gathered stores). 

• The gather stations are shared across threads.

9.1.2 Store Modes (IG = ‘1X’)

• IG = ‘11’ mode, stores are done in-order and no gathering is allowed.

• IG = ‘10’ mode, stores can be gathered and reordered.

• Atomic stores (stwat, stdat) are not gathered but can be reordered. 

9.1.3 LOADS

• One outstanding cache-inhibited (guarded or unguarded) load or atomic word or doubleword load (lwat, 
ldat) per thread.

1. Address tenures take longer than data tenures and data tenures can be fully satisfied by two store data machines.
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10. Memory Controller 

The POWER9 memory controller unit (MCU) provides the system memory interface between the on-chip 
SMP interconnect fabric and the DDR PHY unit, which in turn directly connects to industry standard memory 
DDR4 DIMM interfaces. The MCU acts as a slave only. It does not source any commands to the SMP fabric. 
There are logically eight essentially independent MCUs on the chip interfacing to eight 9-byte wide DDR4 
JEDEC standard memory buses. Each memory channel (or ‘port’) supports up to two DDR4 DIMM slots. 
Physically, the MCUs are grouped into two instances of an EMC chiplet. Each EMC chiplet contains four 
MCUs. The EMC is simply a physical level of hierarchy on the chip that contains the MCU plus pervasive 
logic. The MCUs process 64-byte and 128-byte read and write requests from processor cores and I/O host 
bridges, 1 - 128-byte partial-line writes, atomic memory operations (AMOs), and also handle address-only 
operations for the purpose of address protection, acting as the lowest-point of coherency (LPC).

While executing these operations, the MCU is also managing DRAM memory refresh, DRAM power states, 
and also communicates with the DDR PHY to initiate periodic memory bus calibration sequences.

The eight MCUs on the chip can be configured into one or more address interleave groups. Within each 
group, the address space is divided into portions, such that each sequential portion is handled by a different 
MCU in a round-robin fashion. The maximum memory addressing capability per interleave group is 4 TB. The 
maximum memory addressing per POWER9 chip is 8 TB. 

Figure 10-1. POWER9 Memory Controller  

 

EMC 

D 
I
M
M

D
I
M
M D

I
M
M 

D
I
M
M 

D
D
R 
P
H
Y 

SMP Fabric EMC 
D
I
M
M 

D
I
M
M D

I
M
M 

D
I
M
M 

D
D
R 
P
H
Y 

D
D
R 
P
H
Y 

D
D
R 
P
H
Y 

D
D
R 
P
H
Y 

D
D
R 
P
H
Y 

D
I
M
M

D
I
M
M

D
I
M
M

D
I
M
M 

D
D
R 
P
H
Y 

D
I
M
M 

D
I
M
M

D
I
M
M

D
I
M
M

D
D
R 
P
H
Y 

POWER9 

Double data rate

Dual in-line memory module

Joint Electron Device Engineering Council

Dynamic random access memory



User’s Manual 
OpenPOWER
POWER9 Processor  

Memory Controller

Page 184 of 508
Version 2.1 

10 October 2019 
 

10.1 EMC Major Features
• Physical Organization:

– Each POWER9 chip contains two EMC chiplets

– Each EMC chiplet contains:

— Four memory controller units (MCUs)

— One MCBIST/maintenance/CCS unit shared across the four MCUs

— Pervasive chiplet infrastructure (scan, trace, and so on)

• SMP Fabric Interface:

– Four each reflected command, partial response, early combined response, and combined response 
interfaces. All four buses are snooped in parallel.

– Four 32-byte read data ramps (one per memory port).

– Four 32-byte write data ramps (shared across four memory ports).

– Speculative fastpath read command bypass.

– Speculative fetch filtering: Five types:

— SMP Fabric ttype based

— SMP Fabric hint bit based

— SMP Fabric command source and scope based

— Command list queue fullness based (threshold exceeded)

— Hashed address range based (2048 ranges) 

– Fastpath interface (from local chip L3 caches).

– Support for 64-byte and 128-byte data transfers.

– Cache-line interleaving on a 32-byte basis when returning read data to the SMP fabric.

– Hardware management of domain bits for multi-node systems.

– LPC coherency support for address-only commands.

– Delivery of the critical 32 bytes of read data not gated by reading the entire cache line.

– Secure memory facility (SMF) support. This support accomplishes enabling a programmable configu-
ration of ranges of memory as secure or not secure; and preventing access of secure memory by 
entities that are not secure.

– Prefetch drop protocol support.

– Prefetch promote protocol support.

– I-side speculation avoidance supported via partial response.

– Memory ECC bypass protocol for improved latency.

• Pervasive Interfaces:

– Performance monitor interface

– Nest (sync) and memory (async) clock domain SCOM interfaces

– Nest domain debug bus interfaces (to shared trace arrays in SMP fabric logic)

– Memory domain debug bus interfaces (to EMC contained trace arrays)

Memory card built in self-test

Configured command sequencer

Scan communications
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• Resources (per MCU port):

– 76 snoop command list entries

— 64 read/write memory entries

— 12 address protection-only entries

– Sixteen 128-byte read data buffers (managed as thirty-two 64-byte buffers)

— Read commands to memory stalled on full condition

– Thirty-two 128-byte write data buffers (managed as sixty-four 64-byte buffers)

— SMP fabric write operations retried on full condition

– Thirty-two 128-byte read-modify-write (RMW) data buffers:

— One of 32 buffers reserved for maintenance operations

— Managed as a cache to provide for high-throughput AMOs. 

— Up to 62 concurrent 64-byte AMO operations.

• DRAM interface (per MCU port)

• DRAM widths supported: ×4, ×8

– DRAM densities supported: 4 Gb, 8 Gb, 16 Gb 

– ISDIMM types supported: DDR4 RDIMM, DDR4 LRDIMM (with and without 3D stacking)

– Maximum DIMM size: 256 GB (2 master ranks × 4-high stacked 16 Gb DRAMs) 

– DRAM command scheduling

– Support for page-mode reads and writes

– 1 TB maximum memory capacity per port

– Speculative read cancel protocol

— Provides for cancellation of speculative reads if a bad combined response is received before the 
issuance of the read command to memory.

– 17 read reorder queue entries (one of 17 reserved for maintenance operations)

– 17 write reorder queue entries (one of 17 reserved for maintenance operations)

– DRAM power state controller

— Power control state status register

— Programmable dynamic command throttling: credit based.

— Self-Timed-Refresh (STR) based power reduction.

— C/A outputs tri-stated in PD or STR modes

— Programmable minimum/maximum ranks allowed to be powered up

— Programmable number of idle cycles between commands

— Emergency power throttle mode

– DRAM refresh controller

— Thermal-based dynamic tREFI setting.

— Hardware support only. Also requires OCC code support. 
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– DRAM interface calibration timers.

– Synchronous and asynchronous operation relative to the nest clock.

– Support DDR4 bin speeds: 1866, 2133, 2400, 2667.

• RAS features 

– 64-byte memory ECC

— Dual packet analysis for 128-byte reads

— Address parity encoded into ECC code

— Correction of up to one symbol in a known location plus up to two unknown symbol errors

— Correction of up to one symbol in a known location plus a new ×4 chip kill

— Correction of one ×4 chip in a known location plus either a known symbol or one unknown symbol 
error

– Flexible chip and symbol marking storage

— Per bank, bank group, slave rank, master rank, DIMM, and port granularities

— CE retry before new mark placed for confirmation

– Read operation retry upon detection of uncorrectable errors (UEs)

— 64-byte reads retried as 128-byte reads under some conditions for improved RAS

– DDR4 CRC support on writes

– Maintenance engine supports runtime diagnostics and error logging

— Includes background memory scrubbing

— Eight MCE symbol counters per port.

– Time-out counters for various events.

– DIMM RCD parity error handling

• Manufacturing, test, and bringup

– Firmware driven system memory built-in-self-test (MCBIST) engine

– Maintenance engine for IPL memory initialization and diagnostics

– Configured command sequencer (CCS) 

— Provides user-defined sequences for memory interface debug

— Can be used concurrently with mainline operations (for MRS commands, and so on)

– Extensive error-injection capabilities to provide means to test all FIR bits

– Debug buses and trace arrays

Machine check exception

Registered clock driver

Mode register set
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Table 10-1. Frequencies 

Synchronous/Asynchronous Mode Nest Frequency (GHz) Bin Speed (MTps)

Asynchronous 1.600 1866, 2133, 2400 

Asynchronous 1.866 1866, 2133, 2400, 2667

Asynchronous 2.000 1866, 2133, 2400, 2667

Asynchronous 2.133 1866, 2133, 2400, 2667

Asynchronous 2.400 1866, 2133, 2400, 2667

Synchronous 1.866 1866

Synchronous 2.133 2133

Synchronous 2.400 2400

Table 10-2. Allowable DIMM Mixing 

Type of Mixing On any Single Port Across Different Ports Comments

DRAM width (×4, ×8) No Yes

DIMM size (# ranks) No (1) Yes 1. Single-port mixing barred due to loading 
issues.

DIMM size (DRAM density) Yes (2) Yes 2. Only power of 2 densities can be mixed.

DIMM type:  RDIMM and LRDIMM No Yes

Stacking: 3DS and non-3DS No Yes

DIMM speeds No (3) No (3) 3. However, ports controlled by one EMC can 
run at a different speed than ports controlled 
by the other EMC.
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10.2 Basic Configuration/Grouping

The MCU architecture allows for 1, 2, 3, 4, 6, or 8 MCUs to be grouped together for address interleaving. As 
a group, the MCU ports then hash a contiguous address space amongst themselves to more efficiently 
distribute the memory workload. 

For 2, 3, 4, 6, or 8 MCUs to be grouped, the total amount of memory defined by each MCU’s primary memory 
configuration facilities must be the same. The DIMM configurations and sizes that make up the total amount 
of memory can be different, but the total memory size plugged behind each MCU in the group must be the 
same. 

The total amount of physical memory behind an MCU can be less than the memory size specified by that 
MCU’s primary memory configuration register. However, if the MCU decodes an address that falls within its 
programmed address range, but does not decode to a valid physical DRAM address, a Fault Isolation 
Register (FIR) bit is set.

Each MCU receives a 56-bit address for each snoop operation from the SMP fabric, and forwards a 40-bit 
(1 TB) logical address to the DRAM address translation logic. This logic converts the real address to a DRAM 
rank/bank/row/column address.

Figure 10-2. EMC Logical Partitioning 
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The address interleaving granularity, meaning the amount of contiguous addresses handled by each group 
member, is programmable from 128 bytes to 32 KB. For example, if set to 512 bytes, memory accesses to a 
contiguous 512-byte block of memory are all handled by one group member MCU. Then, the next 512-byte 
block is handled by the next MCU in the group, and so on.

10.3 Command Dispatch and Snoop Pipeline Collision Detection

For a snooped operation to be dispatched into a MCU command list queue entry, the operation must: 

1. First successfully pass through the snoop pipeline collision detection logic.

2. Then pass through the command list fullness logic and L3 prefetch limit logic.

3. Then successfully pass through the MCU address collision rules table.

The memory controller logic compares incoming reflected command and fastpath command addresses to 
queued addresses in the CAR1 cycle. However, newly dispatched operations do not begin address protection 
in the ACAM until the CAR4 cycle. The MCU compares addresses in the CAR2 and CAR3 pipeline stages to 
incoming CAR1 addresses. If the operation in CAR2 or CAR3 matches the CAR1 address, and the CAR2 or 
CAR3 operation is dispatched, then a retry response is driven for the CAR1 address operation.

The MCU logic compares incoming RCMD ttags to queued tags in the CAR1 cycle to associate a RCMD with 
a previously dispatched fastpath read. However, ttags for newly dispatched operations do not begin ttag 
comparison until the CAR4 cycle. The MCU logic compares ttags in the CAR2 and CAR3 pipeline stages to 
incoming CAR1 ttags. If the operation in CAR2 or CAR3 matches the CAR1 ttag, the CAR2 or CAR3 fastpath 
read operations is dispatched, and then the command in CAR1 is associated with the CAR2 or CAR3 fast-
path operation.

10.4 Epsilon Protection

The MCU provides epsilon protection for command list operations. Epsilon protection guarantees that the 
command list stays active; protecting a cache-line address from the time a good combined response is 
received to the time the epsilon counter expires. The epsilon counters are loaded when a combined response 
is received and decremented once every four nest cycles. The starting point of epsilon counting occurs in the 
cac3 cycle of a good combined response, which might not align with the epsilon count decrement pulse. 
Thus, the actual epsilon protection window could be up to four nest cycles greater than the programmed 
value.

The epsilon protection window ends when the epsilon count reaches zero. The epsilon protection window can 
end before the command list queue entry goes idle. An example is a non-speculative read operation. Read 
data is returned after the epsilon window expires for cases where the epsilon value is less than the read 
latency of the operation.

10.5 Read Speculation Filtering

The MCU employs read speculation under certain conditions to improve average memory latency. A specula-
tive read is a memory read operation where the read to memory is initiated before the coherency response is 
received from the SMP fabric. Speculation filtering is used to determine when to speculate on a read opera-
tion or not. There are five types of filtering:

Remote command
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• Filtering by Ttype: The enabling of read speculation for various fabric ttypes is programmable. Because 
only speculative read types are received on the fastpath interface, the entire fastpath interface can also 
be disabled.

• Filtering by command source and scope: The enabling of speculative reads for non-DMA groups or sys-
tem pump operations from a local chip master is programmable. A group or system pump read is likely 
generated because the cache line was not found on-node. Group and system pump reads issued by off-
node masters are issued speculatively if the read operation passes the other speculation filters.

• Filtering using the SMP fabric hint bit: Read speculation is disabled if the fabric hint bit is set, indicating a 
local cache found the line in the In/Ig state. This indicates that the line has been intervened on-node (In), 
or off-node (Ig). In either case, a cache is likely to contain the cache line. The enabling of this type of filter-
ing is programmable. The hint bit is defined for certain ttypes as specified in the SMP fabric architecture 
document.

• Filtering if the number of read command-list entries exceeds a threshold: The number of active read oper-
ations queued in the command list beyond which additional reads will not be performed speculatively is 
programmable.

• Filtering by hashed-address range: The MCU contains 2048 latches that are used to aid in the specula-
tion decision. Each of the 2K latches represents a specific address hash. If the MCU returns read data 
whose address hashes to a particular bit, that bit is set. If a read that was initiated speculatively receives 
a coherency response indicating that the MCU will not return data, the bit selected by that read’s address 
hash is reset. This setting/resetting of a bit in the filter can be modified by an LFSR increment/decrement 
filter.

Latches can be reset immediately if a snoop operation with the hint bit set is dispatched to the counter’s 
hashed address range. If the latch is set, speculative reads to that hashed address range are allowed. If not 
set, speculative reads to the hashed address range are inhibited.

10.6 SMP Fabric Fastpath Interface

The fastpath interface is an early version of the reflected command (rcmd) interface, and is sourced from the 
L3 cache units. Only read commands are sent via the fastpath interface. If no reflected commands targeting 
an MCU are received in the same cycle as a fastpath read, the fastpath read is allowed into the snoop pipe-
line. Otherwise, it is discarded. If the fastpath command passes the address protection and speculation filters, 
it is dispatched to the command list queue and forwarded to the DRAM interface command scheduler. At the 
time a fastpath read command is dispatched, address protection for the fastpath operation starts, and the ttag 
is loaded into the tag CAM register associated with the dispatched command list index. A partial response is 
not generated.

A reflected command and combined response always follows a fastpath command. If the fastpath command 
has been dispatched to a command list entry, the subsequent reflected command is detected with a ttag 
compare. At the time of the reflected command, the operation ticket is loaded into the ticket register associ-
ated with the command, and a SMP fabric partial response is generated. The reflected command can be 
retried subject to the address-collision rules.

A fastpath command can be dropped depending in the command list fullness, or if a spare rcmd slot is not 
available at the time the fastpath command is received.

A fastpath command is always issued with nodal scope. The rcmd associated with the fastpath command is 
also always issued with nodal scope. If a fastpath command is issued with non-nodal scope, the MCU sets a 
FIR bit.
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10.7 Read Data ECC Bypass

To improve read latency from memory, data returned from a read operation can be forwarded directly to the 
SMP fabric, bypassing the memory ECC check logic and the read data buffers, if all of the following are true:

• The ‘speculative’ (ECC bypass capable) bit is set in the fabric secondary command tsize encode.

• The targeted DRAM rank is in an ECC state that supports ECC bypass (that is, no chip mark placed).

• Good combined response is received before the arrival of the read data from memory or the read data is 
of the type exclusive.

• The scope of the read operation is nodal.

• ECC bypass is enabled for the read ttype.

10.8 Atomic Memory Operations 

Each MCU supports the processing of a set of atomic memory operations (AMOs). AMOs are read-modify-
write type operations, and as such have store data associated with them. The MCU implements an arithmetic 
logic unit (ALU) that operates on the store and memory fetch data. The intent is to provide high throughput of 
multiple AMOs targeting the same address. There are two major features that enable this high level of 
throughput:

• Multiple AMOs targeting the same address are allowed to be queued in the command list queue such that 
they are not serialized via retries on the SMP fabric interface. Each AMO command must be performed 
atomically, but there is no requirement that they be executed in the order in which there are snooped on 
the SMP fabric.

• The 31 entry × 128-byte RMW buffer is managed as a cache. When one AMO completes, its data is 
maintained in the RMW buffer so that a subsequent AMO to the same address receives its data directly 
from the buffer instead of having to re-fetch the data from memory. This caching capability is also used for 
partial writes, providing for the ‘gathering’ of multiple partial writes before writing back to memory, and for 
MDI bit updates. The command list logic controls the deallocation of the RMW buffer entries in response 
to snoop traffic and requests from the memory interface sequencer (SRQ) to free up room in the RMW 
buffer.

AMOs are only supported in 4 and 8 byte sizes. Both big-endian and little-endian modes are supported. 
There are 23 different AMO types supported:

• Store Add
• Store XOR
• Store OR
• Store AND
• Fetch and ADD
• Fetch and XOR
• Fetch and OR
• Fetch and AND
• Compare and swap equal
• Compare and swap not equal
• Swap unconditional
• Fetch and increment bounded
• Fetch and increment equal
• Fetch and decrement bounded
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• Store twin
• Store maximum unsigned
• Store maximum signed
• Store minimum unsigned
• Store minimum signed
• Fetch and maximum unsigned
• Fetch and maximum signed
• Fetch and minimum unsigned
• Fetch and minimum signed

All of the “fetch and …” operations return the unmodified memory data to the SMP fabric, except the fetch and 
increment bounded, fetch and increment equal, and fetch and decrement bounded. Those three operations 
return either the unmodified memory data, or the minimum unsigned-integer value based on the result of a 
compare of two adjacent granules of memory data.

From an MCU data flow/sequencing perspective, AMO operations are always 64 bytes in length, and partial 
writes and MDI updates are always 128 bytes in length. 

10.9 Write Operations

The MCU command list machines wait for both a good combined response and write data arrival before 
issuing a write command to the memory interface command sequencer/scheduler (SRQ). Up to four CRESPs 
and four write data available indications can occur in a single cycle.

The SRQ treats 128-byte writes as two 64-byte writes, and signals write done on a per 64-byte basis. The 
write buffer allocation logic deallocates a 64-byte write buffer with each write done, and the command list 
counts two write done indications for each 128-byte write operation.

Each MCU port command list dispatch block maintains a count of available 64-byte write buffers. The 
dispatch block is responsible for not overrunning the write data buffer. The dispatch block always waits for at 
least two 64-byte buffer slots to be free before dispatching a new write operation to avoid a stream of 64-byte 
writes blocking a 128-byte write.

The write done indicator from the SRQ is used to decrement the count of 64-byte write buffer slots available. 
Write done is issued after the SRQ has waited a programmable guard time to ensure that the write to memory 
does not have to be retried due to a DIMM RCD error.

10.10 Prefetch Promote/Drop Protocol

To increase the efficiency of pre-fetch commands to memory, the MCU supports a prefetch drop/promote 
protocol. If a prefetch operation is experiencing a long latency and a demand load to the same cache line is 
issued before the return of the prefetch data, the prefetch can be promoted to demand read status by 
increasing the priority of the queued command in the MCU. Conversely, the longer an outstanding prefetch 
sits in a queue without completing, the less likely it is that the prefetch data will ever be needed by the core. In 
this case, the MCU has the ability to drop a prefetch based on a decrementing timer. 
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10.10.1 Prefetch Promote

The L3 cache can send a prefetch promote command after combined response for the original prefetch 
command if it chooses to update a low or high priority prefetch to a low or high priority demand read. This 
increases the priority of the prefetch command and prevents it from potentially being dropped. The prefetch 
promote occurs in the MCU non-speculative queues and the SRQ read reorder queues.

The SMP fabric prefetch promote command contains the master tag associated with the prefetch. If the rtag 
is active in the MCU tag storage at the time of the promote command, and the prefetch operation is found in 
the MCU command-list queue, the operation is updated from low or high priority prefetch, to a low priority 
demand read. If the rtag is not active in the TCAM at the time of the promote command or the operation 
cannot be found in the command list queue, no action is taken.

The promote operation is not always precise in the MCU. The promote can be missed if the prefetch 
command is crossing the asynchronous boundary (Nest → Mem) between the command list queue and the 
SRQ or can be applied to the next prefetch operation using the same command list entry. If this happens, 
data integrity is maintained, but the promote might be missed. However, for the vast majority of the timing 
cases, the promote is precise. The enabling/disabling of the MCU prefetch promotion function is program-
mable.

10.10.2 Prefetch Drop

The SMP fabric prefetch commands contain a 2-bit ‘confidence level’ that is encoded into the secondary 
encode field of the ttype. The MCU converts this value into a 3-bit ‘prefetch-drop’ field that is carried through 
the command list and SRQ queues. 

The MCU command queue prefetch drop value is decremented every “N” nest cycles (where N is program-
mable). When the drop value reaches ‘000’, the prefetch operation is in the drop state and is not forwarded to 
the next command queue or to memory. If the prefetch is dropped in the command list queue or the SRQ’s 
read-reorder queue, a command is sent to the read data flow logic instructing it to send a 32-byte dummy 
read-data packet back to the requesting prefetch master. The SRQ prefetch drop value is decremented at 
half the rate of the command-list queue’s drop value.

The drop operation is not always precise in the MCU. The prefetch drop value decrement could be missed if 
the prefetch command is crossing the asynchronous boundary (Nest → Mem) between the command list 
queue and the SRQ at the time the decrement pulse is active. If this happens, data integrity is maintained, but 
it could take longer for the prefetch to be dropped. However, for the vast majority of the timing cases, the drop 
value decrement is precise. The enabling/disabling of the MCU prefetch drop function is programmable.
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11. Nest Accelerator

The Nest Accelerator unit (NX) consists of cryptographic and memory compression/decompression engines 
(coprocessors) with support hardware. Figure 11-1 shows a block diagram of the NX. 

Figure 11-1. NX Block Diagram 
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11.1 Features

The NX coprocessors and their features are as follows: 

Cryptographic Engines

Advanced encryption standard (AES) engine:

• Modes: Electronic Codebook (ECB), Cipher Block Chaining (CBC), Count (CTR), Counter with CBC-
MAC (CCM), Galois Counter Mode (GCM), XCBC-MAC-96 (XMAC)

• Key lengths: 128 bits, 192 bits, 256 bits

• Two engines

Secure Hash Algorithm (SHA) engine:

• Modes: SHA-1, SHA-256, SHA-512, Message Digest 5 (MD5).

• Keyed-hash message authentication code (HMAC) supported for SHA.

• Two engines.

• Combined AES and SHA operations are supported on a single movement of data through an AES/SHA 
engine pair.

Random Number Generator (RNG):

• All digital design with dual noise sources

• NIST 800-90B draft standard compliant

• Hardware random number (RN) conditioning

• Continuously running health tests with noise source failover on test failure

• Produces 64-bit conditioned random numbers (CRN) and raw random numbers (RRN) readable by the 
darn instruction

Compression and Decompression:

• 842 compression/decompression

• IBM-proprietary algorithm with 8-byte, 4-byte, and 2-byte phrase parsings

• High throughput and low latency with good compression and silicon efficiency

• Two engines

Gzip Compression and Decompression:

• Industry standard DEFLATE RFC 1951 compliant

• Supports RFC 1950 (zlib) and RFC 1952 (gzip) file formats

• Fixed and dynamic Huffman table support

• Assist for dynamic Huffman table creation

• Ability to suspend an operation when a byte count limit is hit
– Software can resume operation from a suspend point after adjusting the job parameters

• Bypass mode for data move

• High throughput with better compression efficiency (relative to 842)

Deliver a random number



User’s Manual 
OpenPOWER
POWER9 Processor  

Nest Accelerator

Page 197 of 508
Version 2.1 

10 October 2019 
 

Each one of the AES/SHA, 842, and Gzip units consist of a coprocessor type (CT). As such, NX has three 
coprocessor types. 

To support coprocessor invocation by user code, use of effective addresses, high-bandwidth storage 
accesses, and interrupt notification of job completion, NX includes the following support hardware: 

SMP interconnect unit (SIU):

• Interfaces to SMP interconnect and direct memory access (DMA) controller
– Provides 16-bytes per cycle data bandwidth per direction to both

• Employs SMP interconnect common queue (SICQ) multiple parallel read and write machine architecture 
to maximize bandwidth

– 16 DMA read machines, each with one cache-line data buffer storage
– 16 DMA write machines, each with one cache-line data buffer storage
– Three UMAC read machines, each with one cache-line data buffer storage
– Three UMAC write machines, each with one doubleword data buffer storage
– Eight RN read machines with buffer storage for eight doubleword CRN plus eight doubleword RRN

• User-mode access control (UMAC) coprocessor invocation block
– After the Virtual Accelerator Switchboard (VAS) accepts a CRB that was initiated by a copy/paste 

instruction, the UMAC snoops the VAS’s notification for an available coprocessor request block (CRB 
or job).

– Supports one high- and one low-priority queue per coprocessor type
– Retrieves CRBs from queues and dispatches CRBs to the DMA controller

• Effective-to-real address translation (ERAT) table stores 32 recently used translations
– Interfaces to nest memory management unit (NMMU) for address translation services
– Translates all effective addresses (EA) from DMA controller to real addresses (RA)
– Returns translation faults to DMA controller

• Snoops darn instruction command for RN delivery

DMA Controller:

• Decodes CRB to initiate coprocessor and move data on behalf of coprocessors

• Uses effective addresses for all CRB storage accesses
– Issues paste command to VAS to dispense CRB with translation fault to per-partition fault queue

• 5-channel data mover, one per each instance of AES/SHA, 842, Gzip engine, with buffers for data to and 
from engines

• Two CRB queue positions per channel: one for current CRB (currently executing on a coprocessor) and 
one for pending CRB (awaiting execution)

– Can prefetch coprocessor parameter block (CPB) and source data for pending CRB

• Provides prefetch hints to memory controller to reduce read latency

• Supports byte-aligned source and target data

• Supports scatter/gather through data descriptor list (DDL)

• Supports interrupt notification on CRB completion

• 16 bytes per cycle data bandwidth per direction to/from SIU

• 16 bytes per cycle data bandwidth toward 842 engines, 8 bytes per cycle toward AES/SHA, Gzip

• 16 bytes per cycle data bandwidth from 842 engines, 8 bytes per cycle from AES/SHA, Gzip

User-mode access control
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Most of the NX unit operates on the nest clock domain, but the DMA controller operates on a clock period 
twice that of the nest clock (see “2:1 clock domain” in Figure 11-1 on page 195). To match the SIU data band-
width, the DMA controller buses are twice as wide as the SIU buses, as shown in the figure.

11.2 Using NX Coprocessors

NX coprocessors can be invoked through library or operating system kernel calls that use the Power ISA 
copy/paste facility. See GITHUB for links to both Linux and AIX operating systems, as well as low-level gzip 
engine invocation details for library or kernel coders.

11.3 Reliability, Availability, and Serviceability

NX integrates many features to improve Reliability, Availability, and Serviceability (RAS), including the 
following:

• Error correction code (ECC) or parity on all data arrays

• ECC or parity on ERAT and other address-carrying structures

• Parity on key configuration registers

• Control checkers on many state machines and other control structures

• High degree of error tolerance

– Many errors simply write error CC to CSB and hardware operation continues
– Ability to unit checkstop on severe error and become benign on the SMP interconnect interface
– Failover on single RNG noise source fail, fail-safe on dual fail, or other severe error

• Per-channel watchdog timers to detect and terminate hung coprocessor

• DMA hang timer to detect DMA controller hang

• Hang timers on SMP interconnect operations

• Unit checkstop upon VAS or NMMU unit checkstop

https://github.com/abalib/power-gzip
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12. Virtual Accelerator Switchboard 

12.1 Overview

The main function of the Virtual Accelerator Switchboard (VAS) unit is to allow user-level software code 
running on a processor core direct access to the Nest Accelerator (NX) unit accelerator engines without the 
requirement for an expensive hypervisor call to initiate accelerator usage. This allows user-level code direct 
access to the cryptographic and compression accelerator engines on the POWER9 chip.

12.2 Flow for NX Invocation Through the VAS

When an operating system wants to initially allow a user process access to an NX accelerator, it must 
communicate with the hypervisor. The hypervisor sets up a Send Window Table Entry (STE). A send window 
can be unique per process, or can be shared by an operating system among its many user processes. When 
the hypervisor establishes the send window, it assigns it a quantity of credits indicating how many operations 
are allowed at one time, and returns an address handle to the operating system. Then the operating system 
returns an effective address to the user. This effective address allows the user process to directly post entries 
to the FIFOs associated with the NX accelerators. A separate send window is necessary for each accelerator 
a process uses.

First-in, first-out



User’s Manual 
OpenPOWER
POWER9 Processor  

Virtual Accelerator Switchboard

Page 200 of 508
Version 2.1 

10 October 2019 
 

1. After a send window has been established, the user process can begin using the NX accelerator. To do 
so, it must create a coprocessor request block (CRB). The NX specification defines the format of the 
CRB. This CRB is sent to the VAS unit by using the POWER9 copy/paste instructions. The copy instruc-
tion places the CRB into the copy buffer. The user process then issues a paste instruction using the effec-
tive address given by the operating system during send window creation to store the copy data to the 
VAS. The copy data contains the 128-byte CRB. The effective address is translated to a real address by 
translation hardware in the core. The store to the real address is issued to the SMP interconnect as a 
remote memory access write (RMA_write) command and has the send window identifier embedded 
within the real address. The 128-byte RMA_write payload (the CRB) is stored into one of 64 VAS data 
buffers. 

The VAS has the ability to hold 128 unique window contexts. Upon snooping the RMA_write, the VAS 
uses the send window identifier to fetch the Send Window Table Entry from memory if not already resi-
dent with the VAS window cache logic. 

2. The VAS reads the Receive Window Identifier field in the send window context to determine which 
receive window the send window from the RMA_write points to. Each NX coprocessor type (CT) has a 
unique receive window corresponding to a unique FIFO for each of the accelerators. 

If the receive window is not cached, it will be fetched from memory.

Figure 12-1. Flow for NX Invocation through the VAS 
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As shown on the left side of Figure 12-1 on page 200, many different send windows, each associated 
with a user process, can point to the same receive window. In fact, all send windows that are using the 
same NX CT can point to the same receive window, because there is one receive FIFO per CT.

3. Using the FIFO address from the receive window context, VAS stores the RMA_write payload to memory, 
thereby placing the CRB onto the NX accelerator FIFO. VAS stamps, or overlays, a portion of the CRB 
with the send and receive window identifiers. NX uses this information when processing the CRB. In par-
ticular, the send window identifier in the CRB is used by NX to fetch the send window and obtain transla-
tion information for the addresses contained within the CRB.

The receive FIFOs are implemented as circular queues. After reaching the end of the FIFO, VAS wraps 
back to the beginning of the FIFO and writes the next entry.

4. After writing the CRB to the FIFO, VAS sends an ASB_notify command on the SMP interconnect. The 
ASB_notify contains a logical partition identifier (LPID), process identifier (PID), and thread identifier 
(TID).

5. Each NX FIFO has a particular LPID:PID:TID combination associated with it. When NX snoops an 
ASB_notify that matches its programmed LPID:PID:TID, it increments the corresponding counter for the 
associated FIFO, indicating a new work item has been placed on the accelerator FIFO.

6. When an NX CT queue is empty and its counter is nonzero, NX reads the next CRB from the receive 
FIFO. As soon as the CRB is read from the FIFO, NX does a memory mapped (MMIO) store to the VAS 
unit to return a credit. VAS ensures that the receive FIFO does not overflow by managing credits. The 
hypervisor initializes the receive window with credits equal to the number of CRBs that can be stored to 
the receive FIFO based on the size of the FIFO. VAS decrements the receive credit count when it stores 
a CRB to the receive FIFO and increments the count when NX returns a credit via MMIO store after NX 
pulls the CRB off of the FIFO.

NX uses the stamped information from the CRB to read the send window context from memory and dec-
rements its internal counter.

7. NX dispatches the job to the associated CT, which can have multiple acceleration engines, and executes 
the CRB.

8. Upon completion of the job, NX returns a send window credit to VAS via an MMIO store. Each send win-
dow, when created by the hypervisor, is assigned a number of send credits. This allows the hypervisor to 
implement quality of service by managing numerous users sharing the same accelerator resource, and 
preventing one process from using more than its share. When an RMA_write command is received by 
VAS, VAS decrements the send credit for the associated send window. VAS increments the count when 
NX completes the CRB and returns a send credit with an MMIO store.

9. NX writes a coprocessor status block (CSB) and can optionally send an interrupt, which notifies the user 
that the job has completed. NX also updates the accelerator processed byte count (XPBC) in the send 
window indicating the number of bytes that were processed on behalf of the user.

As shown in Figure 12-1 on page 200, many different send windows can point to the same receive window. 
This occurs when many different processes are using and sharing the same NX CT. Each process writes a 
FIFO entry onto the NX queue, independently, with no ordering implied nor maintained between different 
processes/different send windows.

Memory-mapped input/output
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12.3 Core-Core Wakeup Via ASB_Notify

A copy-paste pair can be used to initiate core-core wake up with an ASB_Notify command. This can be used 
to wake up a core from the wait instruction. This feature is only supported on DD2.0 hardware. 

An example implementation follows:

• Define a receive window for each core that it is desired to wake up and initialize its Local Notify Process 
ID Register, Local Notify Logical Partition ID Register, and Local Notify Thread ID Register to point to the 
core/thread that should be notified to wake up.

• Define a send window that points to this receive window.

• Initialize the send and receive windows to not use credits by setting bits [3:4] of the Window Control Reg-
ister to zero. This step is not required. However, if this step is not done, credits must be returned by some 
mechanism or future paste operations will be retried indefinitely after credits are exhausted.

• Set the “Disable FIFO Writes” bit in the local DMA cache and FIFO Control Register of the receive win-
dow. This step is not required but reduces the SMP interconnect traffic and speeds up notification.

• Initialize the receive window to do the ASB_Notify (instead of an interrupt) notification.

• Initiate a copy-paste pair to the send window to cause an ASB_Notify command to be sent to the core.

12.4 Features

The following features are implemented in support of NX:

• 64 KiB window support per VAS. For a large SMP with 16 VAS in the system, this gives 1 MiB window 
accessibility.

• Data stamping of send and receive window information into the CRB.

• Send window credits. 

• Receive window credits.

• N → 1 support. Multiple sending windows are allowed to point to one receive window.

• NX utilization reporting (XPBC support).

• ASB_Notify notification.

• Ability to pin send or receive window contexts in the cache to avoid casting out frequently-used windows.

• Caching of 128 unique windows contexts.

• Core-core wakeup via ASB_Notify
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Figure 12-2 shows a high-level block diagram of the VAS unit. 

12.4.1 Ingress

Ingress snoops the SMP reflected command bus for RMA_write commands. RMA_write commands are only 
accepted if they arrive on reflected command bus 0 (address bits 55:56 = ‘00’). When Ingress detects that a 
command is for this VAS, it is sent to the Ingress pipe logic. The pipe logic verifies that both the send and 
receive windows are cached, performs credit checking/updating, and confirms buffer availability before 
sending the command to the Egress logic.

The Ingress contains logic for combining the partial responses from the MMIO and RMA_write snooping 
logic, and driving this partial response onto the SMP interconnect. Ingress also monitors the combined 
responses on the SMP interconnect to see the resolved response for RMA_write commands it has snooped 
and aborts RMA_write commands it had accepted if the combined response is not acceptable.

Ingress implements a logical CAM to manage the 128 window contexts that can be cached. Ingress checks 
the CAM to ensure both the send and receive windows are cached before accepting an incoming RMA_write 
command. If either window is not cached, Ingress initiates a cache fill and, if necessary, a castout operation 
to bring the required window contexts into window cache. Ingress implements a pseudo-least recently used 
(LRU) algorithm to determine which entry to replace on a castout.

Figure 12-2. VAS Block Diagram 
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VAS has the ability to pin entries in the CAM/Window Cache. Pinning an entry prevents it from being castout. 
It is expected that the NX receive windows will be pinned to avoid a cache miss penalty when using the NX 
accelerators.

12.4.2 Egress

Egress receives RMA_write commands from Ingress. Egress has 64 data buffers for holding RMA_write 
payload (CRB) data. Once a command is received from Ingress and it has received a good combined 
response as well as its payload data, the RMA_write command arbitrates for one of 16 Egress unload state 
machines.

The unload state machines request window context information from the window cache unit. Egress uses 
information in the window context to process the RMA_write command. In particular, Egress determines the 
receive FIFO write address from the base address register in the context, plus an offset indicating the current 
offset into the FIFO. Egress reads many other control fields (receive FIFO size, notification controls, and so 
on) which manage the operations that are performed as part of the RMA processing. 

After reading the window context and determining the receive FIFO address, Egress issues a store to the 
SMP interconnect common queue logic to store the CRB payload to the receive FIFO. VAS then issues an 
ASB_Notify, using the LPID:PID:TID from the receive window context. This ASB_Notify informs NX that a 
new operation has been written to the receive FIFO.

After the SMP interconnect common queue completes the FIFO write and ASB_Notify, the Egress unload 
state machine frees up the data buffer and returns to idle, allowing it to begin processing another RMA_write 
command.

12.4.3 Window Cache

VAS implements a window context cache for holding window contexts that are frequently accessed. When 
VAS gets a hit in its window cache, it can avoid fetching a window context from memory every time an 
RMA_write command is accepted by VAS. VAS is able to hold a total of 128 window contexts, each of which 
is 96 bytes in length. 

When a VAS subunit (Egress or MMIO) needs the window context, the window context cache provides the 
information. If the window context is not resident in the cache, it is fetched from main memory, casting out an 
entry to make room in the cache if necessary.

12.4.4 MMIO Registers 

The MMIO unit handles MMIO loads and stores to context registers. To set up a send or receive window 
context, software does a series of a few dozen MMIO stores to the window context. 

To reduce the amount of memory that is consumed when a window context must be stored back to memory 
for a castout, VAS does not store reserved or unused bits and packs the register data into a condensed 
format. For example, while the FIFO base address register is initialized as an 8-byte MMIO store, only 48 of 
the 64 bits are stored in the window context cache. The MMIO unit is responsible for understanding the 
packed format and updating the appropriate portion of the window context when an MMIO store is received.
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The MMIO unit has a 16-deep queue for holding MMIO commands. A command reads one row of the window 
cache array to obtain the respective register’s data. For an MMIO load, the appropriate bits of the packed 
data are selected and returned to the SMP interconnect as MMIO load payload data. For an MMIO store, the 
received store data is merged into the packed data, leaving adjacent register fields unaltered.

12.4.5 SMP Interconnect Common Queue

The VAS SMP interconnect common queue (CQ) logic contains 16 read machines and 16 write/ASB_Notify 
machines. These machines track outbound commands through their entire life cycle on the SMP intercon-
nect. The 16 multipurpose write machines are shared by Egress and window cache, but only Egress issues 
ASB_Notify commands. The read machines are only used by the window cache for performing cache fill 
operations.

The CQ logic also handles inbound data and outbound data. An inbound data controller determines whether 
data belongs to a cache fill operation, an RMA_write operation, or to an MMIO store operation and routes the 
data accordingly. The outbound data controller takes requests from the write machines, as well as data 
returns for MMIO load commands.

12.5 Reliability and Serviceability (RAS) Features

VAS implements ECC on all arrays. The ECC algorithm is a single-bit error correct detect, double-bit error 
detect algorithm. 

Error correcting code
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13. NVLink Processing Unit

This section describes the NVLink processing unit (NPU) and the corresponding 25G Link interface.

13.1 Overview

The POWER9 chip includes the high-speed 25G Link, which creates an interface between chips that provides 
both cache coherence and very high data bandwidth. For example, this structure can be used to connect a 
CPU chip to a cluster of GPU chips. The CPU and GPU cluster can coherently read and write to each other’s 
memory. The GPU can use non-caching (DMA) reads and writes for high-bandwidth data moves between 
GPU memory and CPU memory. The 25G Link interconnect is included on the POWER9 chip and requires 
PHYs, datalink-layer logic, and transaction-layer logic. The PHYs are the physical connection to the 25G 
Link. The datalink layer provides link training, CRC generation and checking, and the replay of failed packets. 
The transaction layer executes the cache coherent and data movement commands on the POWER9 chip.

The 25G Link on the POWER9 chip supports the NVLink protocol. The NPU provides the transaction layer 
functionality for this protocol. The NPU accepts commands from the NVLink datalink logic and converts them 
into sequences of on-chip SMP interconnect commands. It then generates responses based on the results of 
the on-chip SMP interconnect commands. The responses are sent back to the 25G Link through the datalink 
logic. The supported commands include reads, writes, probes, and flushes. The NPU can send reads and 
writes. It also sends upgrade and downgrade commands to the GPU cluster over the 25G Link as a result of 
operations seen on the processor bus reflected command buses. In addition, transaction-layer command, 
response, and data credits are passed in both directions over the link.

The 25G Link can be made up of one or more units, which are referred to as bricks. Each brick provides a 
separate stream of commands. All ordering requirements are enforced independently for each brick. The 
POWER9 NPU supports up to six bricks. The six bricks can be connected to one or more external chips. If 
more than one external chip is attached to a POWER9 chip over multiple 25G Links, the external chips can 
be connected to each other using separate NVLink interconnects. To the POWER9 chip, they can appear to 
represent a single external memory region.

The NPU has three on-chip SMP interconnect unit interfaces. Each of the on-chip SMP interconnect inter-
faces supports two 25G Link bricks. The NPU implements a static connection of bricks to the on-chip SMP 
interconnect interfaces. For example, bricks 0 - 1 are connected to on-chip SMP interconnect interface 0, 
bricks 2 - 3 are connected to on-chip SMP interconnect interface 1, and bricks 4 - 5 are connected to on-chip 
SMP interconnect interface 2. If bricks 2 - 3 are not connected to an external chip or network of chips, on-chip 
SMP interconnect interface 1 goes (mostly) unused.

Central processing unit

Graphics processing unit

Physical layer

Cyclic redundancy check

Symmetric multiprocessing
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13.2 Features

An NPU feature summary follows: 

• 25G Link brick bandwidths are as follows: 

– Peak read bandwidth per brick: 25 GBps 
– Peak write bandwidth per brick: 25 GBps 

• The NPU supports up to six 25G Link bricks.

• On-chip SMP interconnect interface bandwidths are as follows:

– Peak read bandwidth per interface: 64 GBps 
– Peak write bandwidth per interface: 64 GBps

• The NPU connects to three on-chip SMP interconnect interfaces.

• Effective bandwidths including command and response overhead are as follows:

– Read bandwidth per brick: 23.5 GBps
– Write bandwidth per brick: 21.1 GBps
– Total read bandwidth for the NPU: 141 GBps
– Total write bandwidth for the NPU: 127 GBps

• Transfer sizes supported are as follows: 

– Minimum transfer size: 1 byte
– Maximum transfer size: 256 bytes

• The NPU performs coherent operations on 128-byte cache-line boundaries.

• Address translation services sizes are as follows: 

– Bus device functions supported: 15
– Process address space IDs supported: 256
– Logical partition ID/process ID pairs supported: 256
– Translation contexts supported: 256

• Translation control element table sizes are as follows:

– Translation validation table: 16 entries
– Translation control element table: 4K - 1T entries
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13.3 Interfaces

The interfaces to and from the NPU include the on-chip SMP interconnect command and data ports, NVLink 
transaction layer (NTL) receive and transmit ports, and the NVLink datalink layer (NDL)/PHY Private Register 
interface. 

13.3.1 On-Chip SMP Interconnect Ports

The NPU attaches to three on-chip SMP interconnect ports. The three ports are independent from each other. 
Each port includes a command request interface, four snoop interfaces, and data in and out interfaces.

13.3.1.1 Command Request 

On each of the three command request interfaces, the NPU must be able to request a command every two 
cycles. This gives an aggregate command rate for the NPU of 1.5 on-chip SMP interconnect commands 
every cycle.

13.3.1.2 Command Snoop

The NPU snoops the on-chip SMP interconnect for the following functions:

• Accesses to GPU memory

• MMIO loads and stores to NPU, NDL, and PHY registers

13.3.1.3 Data to On-Chip SMP Interconnect

The three data bus ports from the NPU to the on-chip SMP interconnect are each 32 bytes wide. To sustain 
the DMA write bandwidth from the 25G Link bricks, the NPU must be able to send cache lines to the on-chip 
SMP interconnect in back-to-back cycles for relatively long periods of time.

13.3.1.4 Data from On-Chip SMP Interconnect

The three data bus ports to the NPU are each 32 bytes wide. The NPU must be able to receive data for any 
octword of any outstanding read in any cycle.

13.3.2 NTL Interfaces

13.3.2.1 NTL Receive Interface 

The unit of transfer across the NTL receive interface is a 16-byte flow control digit (FLIT). There are four 
parity bits associated with the FLIT. Each parity bit covers 32 bits of the FLIT.

13.3.2.2 NTL Transmit Interface 

The unit of transfer across the NTL transmit interface is a 16-byte FLIT. There are four parity bits associated 
with the FLIT. Each parity bit covers 32 bits of the FLIT.

Memory-mapped input/output
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13.3.2.3 NDL/PHY Private Register Interface 

The NPU provides MMIO register access to NDL and PHY registers using the private register interface (PRI). 
There are separate PRI interfaces for the NDLs located on the left and right sides of the POWER9 chip.

13.3.3 Interface Diagram

Figure 13-1 on page 210 shows the interfaces attached to the NPU unit.

13.4 Block Diagram

Figure 13-2 shows the major blocks within the NPU. Section 13.4.1 on page 211 through Section 13.4.5 on 
page 212 give a brief description of each of the blocks in the diagram.

Figure 13-1. NPU Interface Diagram  

On-Chip SMP Interconnect Port 1

On-Chip SMP Interconnect Port 2On-Chip SMP Interconnect Port 0

Left PRI Right PRI

 25G Link Brick 0

 25G Link Brick 1
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 25G Link Brick 4

 25G Link Brick 5
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13.4.1 NPU Common Queue

The NPU common queue (NPCQ) performs the following functions:

• Provides a command and data interface to the on-chip SMP interconnect (SMPI).

• Provides state machines for executing on-chip SMP interconnect and NVLink commands coherently 
between the POWER9 and GPU cluster.

• Performs buffering for data going to or coming from the SMPI.

There are three copies of this block in the NPU.

13.4.2 NVLink Transaction Layer 

The NVLink transaction layer (NTL) block contains the receive and transmit interfaces between the NPU and 
the NDL blocks. The NTL performs the following functions:

• Validates commands and data from the 25G Link. 

• Buffers commands and data from the 25G Link. 

• Formats commands and responses going to the 25G Link. 

• Manages transaction layer credits.

• Controls the Private Register Interface (PRI) to the 25G Link NDL and PHY functions

There are six copies of this block in the NPU.

Figure 13-2. NPU Block Diagram 
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13.4.3 Extended Translation Services

The extended translation services (XTS) block is used to support the 25G Link address translation services 
operations. This block accepts address translation requests from the GPU, looks up the necessary translation 
context, and creates translation requests for the POWER9 nest memory management unit (NMMU). Transla-
tion contexts are kept in a table in the XTS unit. When the NMMU responds to a translation request, the XTS 
block creates an address translation response that is sent to the GPU over the 25G Link. The XTS block also 
generates address shoot-down requests based on the snooping of translation lookaside-buffer invalidate 
(TLBI) operations on the on-chip SMP interconnect.

There is one copy of this block in the NPU.

13.4.4 Address Translation Services

The address translation services (ATS) block provides address relocation and validation when untranslated 
addresses are used in commands from the GPU. Relocation and validation are done using the translation 
control element (TCE) mechanism. The ATS block contains a cache of TCEs and performs a table search 
operation when a cache miss occurs. The ATS block can generate interrupts when certain error conditions 
occur.

There is one copy of this block in the NPU.

13.4.5 Miscellaneous 

The miscellaneous (MISC) block includes the common functions for the NPU. These include the register 
access, array built-in self-test controller, and error gathering and reporting. There is one copy of this block in 
the NPU.
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13.5 Logical Command/Data Flow

Figure 13-3 shows the logical command and data flow for the NPU. The diagram shows two NDL interfaces 
and one on-chip SMP interconnect port. This represents one third of the complete NPU flow.

In Figure 13-3, the blocks are represented as follows:

• The NTL is represented by: 25GL Pkt Validate, 25GL Cmd Buf, 25GL Data Buf, Out Cmd/Rsp

• The NPCQ is represented by: SM Ctl, SM, In Data Buf, Out Data Buf, SMPI Cmd Req, SMPI Cmd Snoop, 
SMPI Data Port

Also note that the Pocket Cache is shown as dashed lines because it is a logical entity that is actually made 
up of all of the state machines (SM) and their inbound data buffers (In Data Buf). If a cache line is valid in the 
pocket cache, a state machine and data buffer are being used to hold and check for snoop hits on the cache 
line.

Figure 13-3. NPU Command/Data Flow  
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13.5.1 Inbound Command/Data Flow

Figure 13-4 shows the flow for commands and data coming from the NVLink protocol over the 25G Link to the 
POWER9 chip.

The flow in Figure 13-4 is as follows:

1. A packet that arrives on the NDL interface must be validated. This includes checking for the correct parity 
and the CRC status, as well as checking for proper syntax.

2. Commands that pass the validation check are stored in the 25GL command buffer. For write commands, 
the data is stored in the 25GL data buffer. NTL credits are maintained based on available space in these 
buffers.

3. Commands in the 25GL command buffer are arbitrated against commands in the 25GL command buffer 
servicing the other NTL in this pair, as well as against commands coming from the on-chip SMP intercon-
nect.

4. When a command in the 25GL command buffer wins arbitration, it is assigned to a state machine. For 
writes, the data is moved from the 25GL data buffer to the In data buffer.

5. The state machine controls the execution of the command. Any required on-chip SMP interconnect com-
mands are sent to the SMPI command request port.

6. On-chip SMP interconnect data transfers related to requested SMPI commands are handled through the 
SMPI data ports.

7. Data for read commands is stored in the Out data buffer.

8. When the state machine indicates that it is time to send a response for the command, the Out command/ 
response block generates the response and includes any required data from the Out data buffer.

Figure 13-4. NPU Inbound Command/Data Flow  
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13.5.2 Outbound Command/Data Flow

Figure 13-5 shows the command and data flow for commands coming from the on-chip SMP interconnect 
and going to the GPU.

The flow in Figure 13-5 is as follows:

1. A command that accesses GPU memory space is seen by the SMPI command snoop logic. For write or 
push operations, data is received on the SMPI data port.

2. A state machine is assigned to process the command. Any data that is received is stored in the Out data 
buffer.

3. The state machine signals that a command must be sent to the GPU. The Out command/response func-
tion creates the command and includes any required data from the Out data buffer.

4. When the response for the command is received on the NDL interface, it must be validated, which 
includes checking parity and the CRC status as well as the response syntax.

5. If the response is validated, it is passed to the state machine that is processing the command. Any data 
associated with the response is placed in the In data buffer. When there is data returned as part of the 
response, it is held in the pocket cache until it is requested by another unit on the on-chip SMP intercon-
nect.

6. Later, a command is seen by the SMPI command snoop logic that requires the data in the pocket cache. 
The command is acknowledged on the on-chip SMP interconnect, and the data is provided from the Out 
data buffer.

Figure 13-5. NPU Outbound Command/Data Flow  
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13.6 POWER9/GPU Transaction Examples

The following sections contain examples of transactions between the POWER9 and GPU chips using the 
25G Link and the on-chip SMP interconnect.

13.6.1 GPU Read from POWER9 Memory

Table 13-1 shows an example of a 128-byte read command sent over a 25G Link brick. 

The steps for Table 13-1 are explained as follows:

Table 13-1. Example of 128-Byte Read Command 

Step
GPU

Drives
25GL

25G Link 
NPU 

Drives
25GL

NPU
Drives
SMPI

SMPI From
SMPI Comment

1 → NON_CACHING_ 
READ 

→ NON_CACHING_ 
READ

 

2  Memory_Ack ← Read acknowledged by memory.

3  Data ← Memory sends data for the read.

4 READ_RESP DATA ← NPU sends read response to GPU.

Note:  25GL = 25G Link; Ack = Acknowledge; Resp = Response 

Step Description

1 GPU sends a NON_CACHING_READ command to the POWER9 chip over the 25G Link. The NPU 
sends a NON_CACHING_READ on the SMPI.

2 The POWER9 memory controller acknowledges the command.

3 The POWER9 memory controller sends data for the read to the NPU over the SMPI data bus.

4 The NPU sends a response to the GPU for the read command.
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13.6.2 GPU Posted Writes to the POWER9 Memory

Table 13-2 shows an example of a series of posted 128-byte write commands sent over the same 25G Link 
brick. Posted writes do not receive responses; therefore, they do not require transaction done commands to 
complete them. 

The steps for Table 13-2 are explained as follows:

Table 13-2. Example of Series of Posted 128-Byte Write Commands 

Step
GPU

Drives
25GL

 25G Link 
NPU

Drives
25GL

NPU
Drives
SMPI

SMPI From
SMPI Comment

1 → WRITE_0 DATA → DMA_INJECT_0  Stream of noncaching writes.

2 → WRITE_1 DATA → DMA_INJECT_1  

3 → WRITE_2 DATA → DMA_INJECT_2  

4 → FLUSH GPU checks for write stream globally visi-
ble.

5 Cache_Ack_1 ← Writes can finish out of order. An inject hits 
the cache.

6 Memory_Ack_0 ← Inject handled by POWER9 memory.

7 Memory_Ack_2 ←

8 FLUSH.RESP ← → data_1 Data sent to memory in order of responses.

9 → data_0

10 → data_2

11 → WRITE_3 DATA → DMA_INJECT_3 Write_3 becomes globally visible after 
writes 0 - 2.

12 Memory_Ack_3 ←

13 → data_3

Note:  25GL = 25G Link; Ack = Acknowledge; Resp = Response 

1 - 3 The GPU sends a stream of three posted, noncaching writes on the same 25G Link brick. The writes 
are sent to the SMPI as DMA_INJECTs by the NPU.

4 The GPU sends a FLUSH command to determine when the previous writes are complete.

5 - 7 The SMPI responses arrive out-of-order. All responses indicate that the writes are globally visible.

8 The NPU can now respond to the FLUSH command. Also shown in this cycle, the NPU sends the 
data for the second write onto the SMPI. 

9 - 10 The NPU sends the data onto the SMPI for the remaining two writes.

11 The GPU sends a fourth write that had an ordering dependency on the first three writes. The NPU 
converts the posted, noncaching write to a DMA_INJECT command on the SMPI.

12 The SMPI response for the fourth write indicates that the inject command is complete.

13 The NPU sends the data onto the SMPI for the fourth write.
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13.6.3 POWER9 Caching Read from GPU Memory

Table 13-3 shows an example of a 128-byte read command that was sent onto the SMPI by a POWER9 
cache and that references GPU memory. 

The steps for Table 13-3 are explained as follows:

Table 13-3. Example of a POWER9 Caching Read from GPU 

Step
GPU

Drives
25GL

 25G Link 
NPU

Drives
25GL

NPU 
Drives 
SMPI

SMPI From 
SMPI Comment

1 CACHING_READ ← Cache controller sends a caching read 
command.

2 → NPU_Reject NPU must reject the command and get 
ownership and data from the GPU.

3 CACHING_READ ← NPU sends a caching read command to 
the GPU. 

4 → READ_RESP
OWNERSHIP
DATA

GPU sends a read response command to 
the NPU. The NPU stores the read data in 
its pocket cache.

5 READ_TDONE ← The NPU completes the read with a trans-
action done command.

6 CACHING_READ ← The cache controller resends its caching 
read command.

7 → NPU_Ack A read hits the NPU pocket cache.

8 → Data The NPU sends the data to the requesting 
cache over the SMPI.

Note:  25GL = 25G Link; Ack = Acknowledge; Resp = Response; Tdone = Transaction done 

1 A cache controller on the POWER9 chip, while handling a cache miss, sends a CACHING_READ 
command over the SMPI. The read command references GPU memory; therefore, the NPU snoops 
the command.

2 The NPU cannot acknowledge the read command until it first receives ownership and data from the 
GPU. Therefore, the NPU must reject the read command from the SMPI. This causes the cache 
controller to resend the command later.

3 The NPU sends a CACHING_READ command over the 25G Link to the GPU.

4 The GPU sends a read response, which provides data and ownership for the cache line. The NPU 
stores the cache-line data into its pocket cache.

5 The NPU completes the 25G Link read command with a transaction done.

6 The cache controller resends the CACHING_READ command.

7 The CACHING_READ command hits the NPU pocket cache. Therefore, the NPU can acknowledge 
the command.

8 The NPU sends the data to the cache controller over the SMPI. 
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13.6.4 POWER9 Cache Releasing a Cache Line from GPU Memory

Table 13-4 shows an example of a cache controller on the POWER9  releasing ownership of a cache line that 
came from GPU memory. In this example, the data has been modified; therefore, it must be given back to the 
GPU. If the data has not been modified, the POWER9 cache controller can drop the cache line without 
informing the GPU. 

The steps for Table 13-4 are explained as follows:

Table 13-4. Example of Cache Controller on POWER9 Chip Releasing Cache Line from GPU 

Step
GPU

Drives
25GL

 25G Link 
NPU

Drives
25GL

NPU
Drives
SMPI

SMPI From
SMPI Comment

1 PUSH ← Cache controller sends a push command 
to release a modified cache line. 

2 → NPU_Ack  The push command references GPU 
memory; therefore, the NPU acknowl-
edges it.

3 Data ← Cache controller sends data for the push 
command.

4 DOWNGRADE ← NPU sends a downgrade command to the 
GPU. 

5 → DOWNGRADE_ 
RESP

GPU sends a response for the downgrade 
command.

6 DOWNGRADE_ 
TDONE DATA

← NPU completes the downgrade command 
with a transaction done indication.

Note:  25GL = 25G Link; Ack = Acknowledge; Resp = Response; Tdone = Transaction done

1 A cache controller on the POWER9 chip releases ownership of a cache line by sending a PUSH 
command over the SMPI. The PUSH command references GPU memory; therefore, the NPU snoops 
the command.

2 The NPU acknowledges the PUSH command.

3 When the cache controller sees the NPU acknowledgment, it sends the data for the PUSH command 
to the NPU using the SMPI.

4 The NPU sends the PUSH command to the GPU using a DOWNGRADE command on the 25G Link.

5 The GPU responds to the DOWNGRADE command.

6 The NPU completes the DOWNGRADE command with a transaction done. On the 25G Link, the 
data for a DOWNGRADE command is sent with the transaction done indication.
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13.6.5 GPU Reclaiming a Cache Line from GPU Memory

Table 13-5 shows an example of the GPU requesting the return of a cache line from GPU memory that is held 
in a cache on the POWER9 chip. In this example, the data has been modified; therefore, it must be given 
back to the GPU. The cache controller releases the data by sending a PUSH command on the SMPI, which 
the NPU forwards to the GPU as a DOWNGRADE. If the data had not been modified, no PUSH occurs and 
the NPU responds to the PROBE command without sending any data. 

The flow for Table 13-5 is explained as follows:

Table 13-5. Example of GPU Reclaiming a Cache Line from GPU Memory 

Step
GPU

Drives
25GL

 25G Link 
NPU

Drives
25GL

NPU
Drives
SMPI

SMPI From
SMPI Comment

1 → PROBE → CACHE_FLUSH GPU reclaims a cache line using a probe 
command. The NPU forwards the probe 
command to the SMPI as a cache_flush 
command.

2 CACHE_REJECT The cache controller rejects the cache_-
flush until it can push the cache line out.

3 PUSH ← Cache controller pushes the cache line.

4 → NPU_Ack NPU acknowledges the push command.

5 Data ← Cache controller sends data for the push 
command.

6 DOWNGRADE ← NPU sends a downgrade command to the 
GPU. 

7 → DOWNGRADE_ 
RESP

GPU sends a response for the downgrade 
command.

8 DOWNGRADE_ 
TDONE DATA

← NPU completes the downgrade command 
with a transaction done.

9 → CACHE_FLUSH NPU re-sends the cache flush command.

10 No_Hits ← There are no hits in any cache. 

11 PROBE_RESP ← NPU responds to the probe command with 
no data.

Note:  25GL = 25G Link; Ack = Acknowledge; Resp = Response; Tdone = Transaction done 

1 The GPU sends a PROBE command on the 25G Link to regain ownership of a cache-line that is held 
in a POWER9 cache. The NPU sends the command onto the SMPI as a CACHE_FLUSH command.

2 A cache controller for a cache that has the cache-line modified rejects the CACHE_FLUSH command 
until it can push the cache line out. 

3 The cache controller releases ownership of the cache line by sending a PUSH command over the 
SMPI. The PUSH command references GPU memory; therefore, the NPU snoops the command.

4 The NPU acknowledges the PUSH command.

5 When the cache controller sees the NPU acknowledgment, it sends the data for the PUSH command 
to the NPU using the SMPI.

6 The NPU sends the PUSH command to the GPU using a DOWNGRADE command on the 25G Link.
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7 The GPU responds to the DOWNGRADE command.

8 The NPU completes the DOWNGRADE command with a transaction done. On the 25G Link, the data 
for a DOWNGRADE command is sent with the transaction done indication.

9 The NPU resends the CACHE_FLUSH command onto the SMPI.

10 The NPU receives a response from the SMPI indicating that there are no cache hits on the resent 
CACHE_FLUSH command.

11 The NPU responds to the GPU’s PROBE command and does not send any data. No data is required 
because the cache line has already been returned with the DOWNGRADE command. 
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14. OpenCAPI Processing in the POWERAccel Unit

This section describes the OpenCAPI interfaces and the parts of the POWERAccel unit (PAU) that provide 
the transaction layer functionality for those interfaces.

14.1 Overview

The Open Coherent Accelerator Processor Interface (OpenCAPI) enables an attached functional unit (AFU) 
to connect to the POWER9 on-chip SMP interconnect bus in a high-speed, cache-coherent manner. For 
example, this structure can be used to connect a POWER9 chip to an FPGA containing a DMA controller or a 
data storage function. The DMA controller and data storage function represent the AFUs on the FPGA. The 
POWER9 chip and the AFU have the ability to coherently read and write memory attached to either chip. The 
AFU can use noncaching (DMA) reads and writes for high-bandwidth data moves between AFU memory and 
POWER9 memory. Supporting OpenCAPI on the POWER9 chip requires OpenCAPI-capable PHYs, data-
link-layer logic, and transaction-layer logic. The PHYs are the physical connection to the OpenCAPI intercon-
nect. The datalink layer provides link training, CRC generation and checking, and the replay of failed packets. 
The transaction layer executes the cache-coherent and data-movement commands on the POWER9 chip.

The PAU provides provides the transaction layer functionality for the OpenCAPI links on the POWER9 chip. 
This functionality includes accepting commands from the OpenCAPI datalink logic, converting them into 
sequences of on-chip SMP interconnect commands, and then generating responses based on the results of 
the on-chip SMP interconnect commands. The responses are sent back to the OpenCAPI link through the 
datalink logic. The supported commands include reads, writes, and interrupts. The PAU sends reads and 
writes to the AFU over the OpenCAPI link as a result of operations seen on the on-chip SMP interconnect 
buses. In addition, transaction-layer command response and data credits are passed in both directions over 
the link.

An OpenCAPI connection to the POWER9 chip is composed of one or more individual links. Each link 
provides a separate stream of commands. All ordering requirements are enforced independently for each 
link. The POWER9 PAU supports up to four OpenCAPI links. The four links can be connected to one or more 
external chips.

The PAU has three on-chip SMP interconnect interfaces. Two of the on-chip SMP interconnect interfaces 
each support two OpenCAPI links. The third on-chip SMP interface is used for accessing PAU registers and 
for other maintenance functions. The PAU implements a static connection of links to on-chip SMP intercon-
nect interfaces. For example, links 0 - 1 are connected to on-chip SMP interconnect interface 1, and 
links 2 - 3 are connected to on-chip SMP interconnect interface 2. If links 2 and 3 are not connected to an 
external chip or chips, on-chip SMP interconnect interface 2 is (mostly) unused. 

Symmetric multiprocessing

Field-programmable gate array

Direct memory attach

Cyclic redundancy check
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14.2 Features 

A summary of the features are as follows:

• OpenCAPI link bandwidths are as follows:

– Peak read bandwidth per link: 25.78 GBps

– Peak write bandwidth per link: 25.78 GBps

• The PAU supports four OpenCAPI links

• Effective bandwidths including command and response overhead are as follows:

– Read bandwidth per link: 22.5 GBps

– Write bandwidth per link: 22.5 GBps

– Total read bandwidth for the PAU: 90 GBps

– Total write bandwidth for the PAU: 90 GBps

• Address translation sizes and rates are as follows:

– Effective-to-real address table (ERAT): 64 entry (16 × 4)

– Context cache: 64 entry (16 × 4)

14.3 Interfaces

The interfaces to and from the PAU include on-chip SMP interconnect command and data ports, as well as 
the OpenCAPI transaction layer receive and transmit ports.

14.3.1 On-Chip SMP Interconnect Ports

The PAU attaches to three on-chip SMP interconnect ports. The three ramps are independent from each 
other. Each ramp includes a command request interface, four snoop interfaces, and data in and data out 
interfaces.

14.3.1.1 Command Request 

For each of the three command request interfaces, the PAU must be able to request a command every two 
cycles. This gives an aggregate command rate for the PAU of 1.5 on-chip SMP interconnect commands 
every cycle.

14.3.1.2 Command Snoop

The PAU snoops the on-chip SMP interconnect buses for the following functions:

• Access to the AFU memory

• MMIO loads and stores to the AFU configuration space

• MMIO loads and stores to PAU registers



User’s Manual 
OpenPOWER

 POWER9 Processor

Version 2.1 
10 October 2019 
 

OpenCAPI Processing in the POWERAccel Unit

Page 225 of 508

14.3.1.3 Data to On-Chip SMP Interconnect

The three data bus ports from the PAU to the on-chip SMP interconnect are each 32 bytes wide. To sustain 
DMA write bandwidth from the OpenCAPI links, the PAU must be able to send cache lines to the on-chip 
SMP interconnect in back-to-back cycles for relatively long periods of time.

14.3.1.4 Data from On-Chip SMP Interconnect

The three data bus ports to the PAU are each 32 bytes wide. The PAU must be able to receive data for any 
octword of any outstanding read in any cycle.

14.3.2 OpenCAPI Transaction Layer Interfaces

14.3.2.1 OTL Receive Interface 

The unit of transfer across the OpenCAPI transaction layer (OTL) receive interface is a 64-byte flow control 
digit (FLIT).

14.3.2.2 OTL Transmit Interface 

The unit of transfer across the OpenCAPI transaction layer transmit interface is a 64-byte FLIT.

14.3.3 Interface Diagram

Figure 14-1 shows the interfaces attached to the PAU unit.

Figure 14-1. PAU Interface Diagram 
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14.4 Block Diagram

Figure 14-2 shows the major blocks within the PAU. The following sections give a brief description of each of 
the blocks in the diagram.

14.4.1 PAU Common Queue 

The PAU common queue (CQ) performs the following functions:

• Provides a command and data interface to the on-chip SMP interconnect (SMPI). 

• Provides state machines for executing on-chip SMP interconnect and OpenCAPI commands coherently 
between the POWER9 and AFU.

• Performs buffering for data going to or coming from the SMPI.

There are three copies of this block in the PAU.

14.4.2 OpenCAPI Transaction Layer 

The OpenCAPI transaction layer (OTL) block contains the receive and transmit interfaces between the PAU 
and the OpenCAPI datalink layer (ODL) blocks. The OTL performs the following functions:

• Validates commands and data from the OpenCAPI link.

• Buffers commands and data from the OpenCAPI link.

• Formats commands and responses going to the OpenCAPI link.

• Manages transaction layer credits.

There are four copies of this block in the PAU.

Figure 14-2. PAU Block Diagram 
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14.4.3 Extended Translation Services 

The extended translation services (XTS) block is used to support the OpenCAPI address translation opera-
tions. This block accepts address translation checkout requests from the address translation (XSL) blocks 
and creates translation requests for the POWER9 nest memory management unit (NMMU). When the NMMU 
responds to a translation request, the XTS block forwards it to the requesting XSL. The XTS block also 
snoops translation lookaside-buffer invalidate (TLBI) operations on the on-chip SMP interconnect and 
forwards them to the XSL blocks.

There is one copy of this block in the PAU.

14.4.4 Address Translation 

The address translation (XSL) block provides address translation for the effective address that is sent with 
read, write, interrupt, and wake commands from the AFU. The XSL block includes a cache of the address 
translation contexts as well as an effective-to-real address table (ERAT). A miss on the context cache results 
in a read request being sent to the CQ block. A miss on the ERAT results in a checkout request being sent to 
the XTS block.

There are two copies of this block in the PAU.

14.4.5 Miscellaneous 

The miscellaneous (MISC) block includes the common functions for the PAU. These include the register 
access, array built-in-self-test, and error gathering and reporting.

There is one copy of this block in the PAU.

14.5 Logical Command/Data Flow

Figure 14-3 on page 228 shows the logical command and data flow for the PAU. The diagram shows two 
ODL interfaces and one on-chip SMP interconnect port. This represents half of the complete PAU flow.
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The OTL is represented by: OTL Pkt Validate, OTL Cmd Buf, OTL Data Buf, Cmd Order Xlate, Out Cmd/Rsp.

The XSL is represented by: Context Cache and the ERAT.

The XTS is represented by: Checkout Request and TLBI Snoop.

The CQ is represented by: SM Ctl, SM, In Data Buf, Out Data Buf, SMPI Cmd Req, SMPI Cmd Snoop, and 
SMPI Data Ramp.

Figure 14-3. PAU Command Data Flow 
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14.5.1 Inbound Command/Data Flow

Figure 14-4 shows the flow for commands and data coming from the OpenCAPI link to the POWER9 chip.

The flow in Figure 14-4 is described as follows: 

Figure 14-4. PAU Inbound Command/Data Flow 

1 A packet that arrives on the ODL interface must be validated. This includes checking the CRC status 
as well as checking for proper syntax. Additionally, the packet must be parsed into individual 
commands.

2 Commands that pass the validation check are stored in the OTL command buffer. For write 
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maintained based on available space in these buffers.

3 OpenCAPI read and write commands contain effective addresses. These addresses must be trans-
lated to real addresses before the command can be sent to the on-chip SMP interconnect. 
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in a context cache. If the required context is found in the cache, the information is used in step 11. If 
the required context is not found in the cache, a context cache miss process is executed as shown in 
steps 5 - 10.

5 To load the required context into the context cache, a read from system memory must be done. The 
context cache control logic requests the read from the SM control logic.

6 The context read is assigned to a state machine (SM) for processing.

7 The state machine requests a read command on the on-chip SMP interconnect.
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8 Data for the read is returned on the outbound on-chip SMP interconnect data port.

9 The data is stored in the outbound data buffer associated with the state machine that is processing 
the context read command.

10 The context data is sent to the context cache where it is loaded into the cache and used for step 11.

11 The context along with the effective address from the original command is used to find the real 
address in the ERAT. If the real address is found, it is returned to the command queuing structure in 
step 20. If the real address is not found in the ERAT, a checkout request must be sent to the nest 
MMU to obtain it. This process is contained in steps 12 - 19.

12 The ERAT control logic sends a checkout request to the checkout request tracking logic. The 
checkout request tracking logic manages the channels that can be used by the PAU to request real 
address checkouts from the nest MMU.

13 When a checkout channel to the NMMU is available, the check request tracking logic sends a 
checkout request to the state machine control (SM Ctl). 

14 The checkout request is placed in a pre-reserved location in the inbound data buffer.

15 The checkout request is sent to the NMMU over the on-chip SMP interconnect inbound data ramp.

16 The response from the NMMU for the checkout request is returned over the on-chip SMP intercon-
nect and arrives on the outbound data ramp.

17 The checkout response is placed in a pre-reserved location in the outbound data buffer.

18 The checkout response is sent to the checkout request tracking logic.

19 The checkout response is sent to the ERAT logic where it is loaded into the ERAT.

20 The real address is sent to the command queuing and ordering structure.

21 Commands in the OTL command queuing and ordering structure that are ready to be sent to the on-
chip SMP interconnect are arbitrated against commands in the command queuing and ordering 
structure servicing the other OTL in this pair, as well as against commands coming from the on-chip 
SMP interconnect.

22 When a command in the OTL command queuing and ordering structure wins arbitration, it is 
assigned to a state machine. For writes, the data is moved from the OTL data buffer to the inbound 
data buffer.

23 The state machine controls the execution of the command. Any required on-chip SMP interconnect 
commands are sent to the on-chip SMP interconnect via the on-chip SMP interconnect command 
request port.

24 On-chip SMP interconnect data transfers related to requested on-chip SMP interconnect commands 
are handled through the on-chip SMP interconnect data ramps.

25 Data for read commands is stored in the outbound data buffer.

26 When all of the on-chip SMP interconnect command and data operations are complete for the 
command, the state machine indicates that it is time to send a response. 

27 The out command/response block generates the response and includes any required data from the 
out-data buffer.
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14.5.2 Outbound Command/Data Flow

Figure 14-5 shows the command and data flow for commands coming from the on-chip SMP interconnect 
and going to the AFU.
 

The flow in Figure 14-5 is described as follows: 

Figure 14-5. PAU Outbound Command/Data Flow 
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14.6 POWER9 AFU Transaction Examples

The following sections contain examples of transactions between POWER9 and OpenCAPI AFU chips using 
the OpenCAPI link and the on-chip SMP interconnect.

14.6.1 Read from AFU to POWER9 Memory

Table 14-1 shows an example of a 128-byte read command sent over an OpenCAPI link.

Table 14-1. Read from AFU to POWER9 Memory 

Step
AFU

Drives
OCL

OpenCAPI Link
PAU 

Drives
OCL

PAU
Drives
SMPI

On-Chip SMP Interconnect From
SMPI Comment

1 → RD_WNITC → NON_CACHING_READ  The AFU requests a read-with-no-
intent-to-cache (RD_WNITC). The 
PAU sends a non-caching read com-
mand to the on-chip SMP intercon-
nect.

2 Memory_Ack ← The POWER9 memory controller 
acknowledges the command.
The read command is acknowledged 
by memory.

3 Data ← The POWER9 memory controller 
sends data for the read command to 
the PAU over the SMPI data bus.
Memory sends data for the read com-
mand.

4 READ_RE-
SPONSE Data 

← The PAU sends a response contain-
ing the data over the OpenCAPI link 
to the AFU.

Note:  OCL = OpenCAPI Link; Ack = Acknowledge; Resp = Response
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14.6.2 AFU Writes to POWER9 Memory

Table 14-2 shows an example of a series of 128-byte write commands sent over the OpenCAPI link to the 
POWER9 chip. In this example, it is assumed that the final write must occur after the previous writes have 
completed. A case where this is required is when the final write is an indication to software that the previous 
writes were completed.

Table 14-2. AFU Writes to POWER9 Memory   

Step
AFU 

Drives 
OCL

OpenCAPI Link
PAU 

Drives 
OCL

PAU 
Drives 
SMPI

On-Chip SMP 
Interconnect

from
SMPI Comment

1 → DMA_W_0 → DMA_INJECT_0  The AFU sends a stream of three DMA write 
commands on the same link. The PAU sends 
the write commands onto the on-chip SMP 
interconnect as DMA_INJECT commands.

2 → DMA_W_1 → DMA_INJECT_1  

3 → DMA_W_2 → DMA_INJECT_2  

4 Cache_Ack_1 ← The responses for the inject commands can 
arrive out of order. All responses indicate that 
the writes are globally visible.
The inject hits the cache and is handled by the 
POWER9 memory.

5 Memory_Ack_0 ←

6 Memory_Ack_2 ←

7 Write-Response_1 ← → data_1 The PAU sends the data for the inject com-
mands and sends responses for each of the 
DMA write commands.
Write responses can be sent on the Open-
CAPI link out of order.

8 Write-Response_0 ← → data_0

9 Write-Response_2 ← → data_2

10 → DMA_W_3 → DMA_INJECT_3 Because the final write must occur after the 
previous writes are done, the AFU waits for all 
of the responses for the previous writes before 
sending the final one. The PAU sends this 
write command onto the on-chip SMP inter-
connect as a DMA_INJECT command.
The write_3 command is sent after writes 0 - 2 
have completed.

11 Memory_Ack_3 ← The combined response indicates that the 
inject command has completed on the on-chip 
SMP interconnect.

12 Write-Response_3 ← → data_3 The PAU sends the data for the inject com-
mand and sends a response for the final write.

Note:  OCL = OpenCAPI Link; Ack = Acknowledge; Resp = Response
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14.6.3 Read from POWER9 to AFU Memory

Table 14-3 shows an example of a POWER9 read of the AFU memory.

14.6.4 Write from POWER9 to AFU Memory

Table 14-4 shows an example of a POWER9 write to the AFU memory.

Table 14-3. POWER9 Read of AFU Memory 

Step
AFU

Drives
OCL

OpenCAPI Link
PAU 

Drives 
OCL

PAU 
Drives 
SMPI

On-Chip SMP 
Interconnect

From
SMPI Comment

1 READ ← Read command from POWER9 requester.
A read of AFU memory appears on the on-
chip SMP interconnect.

2 RD_MEM ← → PAU_Ack The PAU accepts the read command and 
sends the read to the AFU.
The PAU responds with an acknowledge and 
sends a RD_MEM command on the Open-
CAPI link.

3 → MEM_RD_ 
RESPONSE

→ Data When the AFU responds with the data for the 
read, the PAU places it on the on-chip SMP 
interconnect as the data transfer for the read 
command that was accepted in step 1 and 
sends the data to the requester.

Note:  OCL = OpenCAPI Link; Ack = Acknowledge; Resp = Response

Table 14-4. POWER9 Write to the AFU Memory 

Step
AFU 

Drives 
OCL

OpenCAPI Link
PAU 

Drives 
OCL

PAU 
Drives 
SMPI

On-Chip SMP 
Interconnect

from 
SMPI Comment

1 WRITE ← A write command from the POWER9 
requester to the AFU memory appears on the 
on-chip SMP interconnect.

2 → PAU_Ack The PAU accepts the write command and 
responds with an acknowledge.

WRITE_MEM ← Data ← The requester of the write command sends 
the write data to the PAU. The PAU then 
sends a write command to the AFU over the 
OpenCAPI link.

3 → MEM_WRITE_
RESPONSE

 When the AFU responds to the write, the com-
mand is complete.

Note:  OCL = OpenCAPI link; Ack = Acknowledge; Resp = Response
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15. CAPP

CAPP is the part of coherent accelerator processor interface (CAPI) that is on the POWER9 chip. CAPI is a 
means of attaching a remote accelerator to the POWER9 chip in a coherent manner. CAPP is the logic that 
connects to the local fabric that enables the remote accelerator to be able to be coherent. CAPP connects to 
the accelerators via PCIe.

CAPP supports a cache for the accelerators, as well as translation, and other miscellaneous functions.

Peripheral component interconnect express
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16. Nest MMU 

This chapter describes the overall microarchitecture for the nest memory management unit (NMMU) imple-
mented in the POWER9 processor. The primary goal of this unit is to provide effective address (EA) to real 
address (RA) translation for the various accelerator agents within the processor’s storage subsystem. In addi-
tion, the NMMU protects the pages that are being translated by ensuring that only tasks with the proper 
authorization are allowed to access them.

16.1 Overview

The NMMU resides within each POWER9 chip with coverage encompassing multiple classes of customers, 
including the on-chip NX, NPU, and CAPP0/1 units. The NMMU’s primary function is to translate effective 
(logical) addresses into real (physical) addresses for memory accesses on behalf of these accelerator 
agents. The unit focuses on data accesses to memory generated by loads and stores. In its primary PowerPC 
mode, the NMMU’s translation mechanism is defined by segment descriptors and page tables, as set up by 
the hypervisor. In addition to translation, the NMMU provides various levels of access protection on a per 
segment and page basis. 

As shown in Figure 16-1, the POWER9 nest MMU primarily communicates with external units through the 
system bus (Fabric). All translation protocols with the accelerator units are run over the Fabric via data-only 
operations. The NMMU also interacts with memory to perform tablewalks and to update the page tables, as 
needed. In addition, cache management instructions (SLB and TLB invalidates) are sourced by the core/NCU 
of an EX chiplet in the system and are snooped and managed by the NMMU on behalf of the attached inclu-
sive accelerator units.

Figure 16-1. POWER9 Nest MMU 

Segment lookaside buffer

Translation lookaside buffer

Noncacheable unit
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16.2 NMMU Features 

A summary of the NMMU features follows:

• Translation mechanisms supported:

– Single-level translation
— PowerPC hashed page table (HPT) approach (via POWERVM)

– Dual-level translation
— Radix-on-radix page table approach (via Linux over KVM) 

• Functions supported:

– EA-to-RA translations

– Memory protection at segment and page levels

– Page sizes supported:
— Radix: 4 KB, 64 KB, 2 MB, 1 GB
— HPT: 4 KB, 64 KB, 16 MB, 16 GB 

– Segment sizes supported: 256 MB, 1 TB for HPT translations

– 64-bit effective address (EA), 68-bit virtual address (VA), 56-bit real address (RA) 

– Supports 12 simultaneous tablewalks 

– Responsible for acquiring segment table entries (STEs) and page table entries (PTEs) from seg-
ment and page tables residing in main memory

– Optional TLB/SLB invalidation management on behalf of the inclusive accelerators (NMMU supports 
slbie and tlbie)

• Translation protocol:

– Checkout phase
— Agent requests that the tandem NMMU resolve a given translation 

– Check-in phase (applies to inclusive agents only)
— Upon completion of relevant processing (active eviction) or local cache castout (passive eviction), 

the agent signals that the translation is no longer in use by checking it back into the NMMU’s TLB. 

– Invalidation phase (applies to inclusive agents only)
— Due to SLB/TLB invalidations snooped by the NMMU (slbie, tlbie)
— Due to LRU castout of NMMU cache (TLB/SLB)

• Primary customers (nest accelerators that require translation):

– NX: eight concurrent checkout/check-in operations total, one invalidate/barrier operation

– NPU: eight checkout operations 

– CAPP0, CAPP1: eight checkout operations per unit

• Accelerator agent/NMMU interface communication mechanism 

– Via Fabric data bus (for common platform, floorplan flexibility, and future extendability)

• Cache resources available for translations

– Local cache (ERAT) resides within accelerator agent
— NX: 32-entry local cache (ERAT) arranged in a CAM/RAM structure 
— CAPP0/1: Assuming a 32-deep intermediate buffer for each CAPP ahead of the PSL ERAT
— NPU: Assuming a 64-deep intermediate buffer ahead of the ERAT held in NVIDIA’s GPU chip

Kernal-based virtual machine

Content-addressable memory

Random access memory
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– SLB
— 256-entry, 16-way set associative (number of entries targeted at matching number of cached win-

dows)
— Used to cache the most recent copies of STEs

– TLB
— 8192-entry, 16-way set associative
— Used to cache the most recent copies of PTEs
— Inclusive of NX agent’s ERAT
— Partially inclusive for NPU/CAPP agents due to the volume of cached translations required and 

agent self-management of invalidations

• Radix Page Walk Cache (PWC):

– L1: 256-entry, 16-way set associative (128 LPID/PID pairs per guest and host)

– L2: 512-entry, 16-way set associative (128 pairs × 2 branches per guest and host)

– L3: 1024-entry, 16-way set associative (128 pairs × 2 branches × 2 sequential entries/branch per 
guest/host)

– L4: 2048-entry, 16-way set associative (128 pairs × 2 branches × 4 sequential entries/branch per 
guest/host)

• Fabric snoop interface:

– Four sets of snoop and partial response interfaces 

– One 16-byte inbound data ramp

– One 16-byte outbound data ramp

– Primarily for agent communication, SLBI/TLBI-related commands (assuming no MMIOs required)

• Fabric master interface:

– One master interface (single command bus, four combined response ports)

– Used for in-memory table reads (for example, process table), STEG/PTEG lookups, and PTE 
updates

• Clocking/frequencies:

– Nest clock frequency (2 GHz), 1:1 with Fabric

16.3 Window/Process Element Context

For the accelerators in the nest, a window or process element (PE) is the communication mechanism where 
trusted software provides the context required by the hardware to process a given packet or message. The 
context for a window/process element is located in main memory, as illustrated in the following diagram, and 
is maintained by the hypervisor. A window/process element is the portal that links system software and hard-
ware together and provides the common structures that dictate how tasks through this window are 
processed. Ultimately, a window ID (or process element ID) is the index into the context stored in memory.

Memory-mapped input/output

Segment table entry group

Page table entry



User’s Manual 
OpenPOWER
POWER9 Processor  

Nest MMU

Page 240 of 508
Version 2.1 

10 October 2019 
 

Any agent that requires use of the NMMU to translate an effective address (or guest virtual address) must 
provide the address translation context (see Figure 16-2) with the corresponding checkout request.  For the 
format of the address translation context within a process element, see the Coherent Accelerator Interface 
Architecture.

Figure 16-2. Window/Process Element Context 
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16.4 Nest Translation Cache Pipeline

Figure 16-3 on page 242 gives a high-level view of the pipeline used to satisfy translation requests within the 
nest. 

While processing a packet, an agent determines that it needs a translation for a given effective address and 
pulls its corresponding window/PE context. The agent first performs a lookup of its local cache (ERAT) to see 
if the translation has already been checked out. An agent can hold onto a translation within the processing 
engine or at the window level. If the translation is available locally, the agent services the translation request 
from its own cached copy. If the translation is not available (for example, an ERAT miss), the agent forwards 
a translation request to the NMMU.

The translation request travels over the Fabric via a 32-byte data-only tenure on its way to the agent’s partner 
NMMU. After the translation request arrives in the NMMU, it collects in an agent input buffer. The depth of the 
queue equates to the total number of outstanding requests for a given source into the NMMU, which corre-
sponds to eight checkout requests, eight check-in requests (for inclusive agents only), and one barrier/invali-
date operation (for inclusive agents only). The requests are generally serviced in a round-robin fashion. 

An arbiter selects which operation to send into the NMMU’s SLB/TLB pipe. Highest priority are the invalidate 
(TLBIE/SLBIE) commands that arrive downstream from the Fabric. The other legs that feed into the arbiter 
are the requests from the agent input buffer and any internal operations that are needed (for example, direc-
tory updates into SLB/TLB). Because these internal operations release dependencies for previously 
requested operations, they are generally prioritized over new translation requests from the agent input buffer.

After a request is granted access to the NMMU’s pipe, it performs a lookup of the SLB (for HPT translations) 
to find the corresponding virtual address. The NMMU searches (based upon a congruence class hash) the 
SLB directory for a matching ESID from the EA to derive the VSID from the SLB cache, which allows the VA 
to be formed. For Radix translations, the SLB is bypassed and the guest translation is forwarded to the TLB 
for resolution leading to a guest RA (host VA).

When the VA is determined, it is used to access the TLB. A hash of the VA is executed to isolate the congru-
ence class (cgc) of the TLB to search the cache directory. Compares are executed to find the corresponding 
PTE for the translation request. The NMMU looks for a matching VPN, LPAR ID, PID, page size, hash type, 
and so on, among its criteria to find the appropriate PTE. The NMMU also performs protection checks in 
conjunction with key bits from the SLB and PP bits from the TLB.

If a matching PTE is found, the RA, page size, qualified C-bit, and status is returned to the agent immediately. 
For non-inclusive agents, some additional information is returned with the response to help with its subse-
quent slbie/tlbie management. If an error (for example, a segment fault or page fault) is discovered, fail status 
is returned to the agent and an error interrupt is sent by the agent to alert software of the problem.

If a matching PTE is not found, the miss is dispatched to a tablewalk state machine to resolve the translation 
request. The tablewalk machine drives read requests to memory to pull in the STE and/or PTE for the transla-
tion. After the STE/PTE data arrives, it is allocated into the SLB and/or TLB, respectively. After the cache and 
directory are updated, the tablewalk state machine recycles the translation request through the SLB/TLB pipe 
on behalf of the corresponding agent, which causes the entry to be re-run through the SLB/TLB pipe. This re-
run should cause an SLB/TLB hit to occur, which allows the RA and status for the translation to be returned to 
the agent.
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Figure 16-3. Nest Translation Pipeline 
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16.5 Nest Translation Protocol (for Fabric-Attached Agents)

The nest translation protocol is partitioned into three primary phases: the checkout of a translation, the check-
in of a translation, and the invalidation of a translation due to a snoop TLB invalidation hit or due to the evic-
tion of a NMMU cache entry. The following sections describe these various phases with a particular focus on 
agent communications being performed over the Fabric. 

16.5.1 Translation Checkout

For an agent to obtain a translation, it must request that the translation be checked out. To do this, the accel-
erator agent initially captures the corresponding window/PE context for the access to pull in the relevant infor-
mation pertaining to the address translation. If the translation has not already been checked out, the 
accelerator agent forwards a 32-byte, data-only operation on the Fabric, along with the agent’s ERAT index, 
which is logged in the NMMU agent request-in buffer. The data tenure routes the operation to the destination 
NMMU using the RTag, which includes the payload (EA, plus translation context data optimal for an NMMU 
hit [for example, an LPID or PID]). After resolving the translation request, the NMMU returns a translation 
response to the agent that initiated the request. This is done by another data-only tenure on the Fabric with 
the corresponding real address, the associated status for the translation request, and the page size for the 
translation. After the agent acquires the translation, it is valid until the NMMU indicates that it must be invali-
dated, until the agent checks in the translation after it is done with its processing, or until the page boundary is 
crossed. See Figure 16-4 on page 246 for more details.

Within the unit, the NMMU snoops the checkout request and performs a lookup of its SLB/TLB to see if the 
translation already exists. If there is a hit in the NMMU cache, the corresponding real address is provided to 
the accelerator agent immediately. If the request misses the SLB and/or TLB, the NMMU performs a table-
walk to obtain the targeted RA. This is done by acquiring the corresponding segment table entry (STE) and/or 
by claiming the required page table entry (PTE) from main memory. The NMMU sets a flag in its TLB and/or 
SLB to represent that the translation is in use by an inclusive accelerator only. The inUse flag remains set 
until an agent check-in occurs or until the entry is invalidated. 

16.5.2 Translation Check-in

When an inclusive agent is finished with a specific translation that it knows is no longer required,1 it drives a 
request to the NMMU with the corresponding ERAT index to check-in the translation. If handled correctly, this 
can lessen the impact of an invalidation for a given translation. This is in contrast to allowing it to turn into an 
asynchronous forced invalidation at some point in the future when the NMMU snoops a tlbie/slbie (or when a 
NMMU TLB/SLB cache eviction occurs due to capacity reasons) and the corresponding NMMU TLB/SLB 
entry has the inUse flag set. The primary intent of an active eviction policy within an accelerator is to aid the 
NMMU TLBIE/SLBIE management. By clearing the corresponding inUse bit within a given NMMU TLB/SLB 
entry due to a check-in, the entry can be invalidated for a subsequent TLBIE/SLBIE without invoking a back-
invalidation sequence with an agent. Figure 16-4 on page 246 shows a high-level view of the check-in flow 
between an accelerator agent and the NMMU.

1.Translations can be held in the agent on a per window basis or within a common pool across windows.
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16.5.3 Translate Invalidation Interface

At times, the NMMU initiates an invalidation sequence with an inclusive agent to indicate that a translation is 
no longer valid. An invalidate sequence can be triggered by either of the following two scenarios:  

• A snoop invalidate (slbie/tlbie) that hits an entry in the SLB or TLB.

• When the NMMU evicts a valid SLB or TLB entry.  

For both cases, the valid SLB or TLB entry must have its inUse flag set. which means that the translation is 
currently being used by an inclusive agent. In this scenario, the NMMU accepts the tlbie/slbie operation and 
protects the page/segment accordingly until the invalidation sequence with the agent is completed. The 
NMMU drives an invalidation request to any agent whose inUse bit is set for a matching SLB or TLB entry, 
along with the affected ERAT index, which is held within the NMMU inUse scoreboard. The sequence is 
completed when the agents drive a response back to the NMMU that indicates that the agent has quiesced by 
draining all pending operations for any outstanding translations for the targeted ERAT index (or transaction ID 
for non-inclusive agents) to the Fabric. After the barrier is detected, subsequent operations to the Fabric are 
halted within the agent until the drain is completed and new translations are obtained from the NMMU. Also, 
this invalidation sequence can additionally be initiated by the NMMU when its LRU algorithm leads to evicting 
a valid TLB/SLB entry with its inUse flag set.

To coordinate this event between an inclusive agent and the NMMU, the following sequence is executed:

1. When the NMMU detects an inUse flag that is set for a given cgc, it sends a raise-barrier request to the 
targeted agent to initiate a back-invalidate sequence.

The NMMU asserts an internal retry window for subsequent in-flight checkout/check-in requests from the 
given agent.

2. Upon receiving the raise-barrier operation, the agent stops sending any new checkout/check-in requests 
to the NMMU until it detects a lower-barrier operation.

Checkout/check-in operations that are already in the outbound request queue can be sent as the ERAT 
cannot pull these back.

3. The corresponding agent waits for a response from the NMMU for all outstanding checkout/check-in 
requests.

If tablewalk or check-in machines have been started already, the NMMU allows those to finish before pro-
viding a response.

Note that a tablewalk state machine is forced to abort if a castout of a cache member is detected with its 
inUse flag set. This is required to ensure that the NMMU can always provide an xlat response.

The NMMU drives a “retry due to invalidate” status for all in-flight operations into its SLB/TLB pipe 
sourced by the targeted agent. 

Upon receiving a retry status, the agent can recycle the request after the barrier clears.

4. When the agent receives responses for all pending checkout/check-in requests, it sends an acknowledge 
for the raise barrier to establish the barrier and indicate that it is ready to receive the invalidate.

5. After it detects the raise barrier acknowledgment from the agent, the NMMU drives an invalidate request 
to the corresponding accelerator.

6. Upon receiving the invalidate request, the agent does the following actions before invalidating its local 
ERAT entry (or transaction ID for non-inclusive agents):
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• Compares the ERAT index for the invalidate request with any pending check-in requests. If a match is 
found, the ERAT index is implicitly checked in (that is, removed from the queue as though the opera-
tion completed).

• If an ERAT index is in use by a DMA read/write machine, the agent waits for the corresponding 
index’s access count to drain to zero (that is, no pending accesses to the Fabric for the given index).

7. The targeted agent drives a response to the NMMU for the invalidate request.

8. After detecting the agent’s response, the NMMU invalidates its local SLB or TLB entry (dependent upon 
which cache entry is being invalidated) and updates its inUse flags accordingly.

9. For a given cgc, if the NMMU still has other members to invalidate with an inUse flag, it loops back to step 
5 in the sequence to process the next cgc member under the current raised barrier.

Note:  The NMMU might amortize the barrier for processing subsequent cgc’s if the invalidate is one in 
which the entire TLB is scrubbed (that is, for a tlbie for all entries or those matching an LPID/PID combo).

10. When the NMMU finishes cleaning the inUse flags for the cgc (or a larger working set), it sends the tar-
geted agent a lower barrier request.

11. Upon receiving the lower-barrier request, the agent sends an acknowledge to the NMMU. This allows the 
agent to resume sending checkout/check-in requests to the NMMU.

12. The NMMU detects the lower-barrier response and drops its retry window for in-flight xlat operations.

16.5.4 Flow Diagrams of Agent/NMMU Translation Operations

This section summarizes the primary flows between an agent and the NMMU on behalf of address transla-
tion.

16.5.4.1 Checkout/Check-In Sequence

This section illustrates the sequence of events that an agent performs to checkout and check-in a translation 
from the NMMU. When an agent detects an ERAT miss (and there is an available ERAT entry), it forwards a 
checkout request to the NMMU. The NMMU services the translation and returns a response to the given 
agent for its checkout response. Coincidentally, the NMMU logs the ERAT entry in its inUse scoreboard as a 
part of its filtering mechanism for snoop invalidates and local castouts on behalf of inclusive agents. 

When an inclusive agent is ready to evict a translation from its ERAT, it masters a check-in request to the 
NMMU. Upon receipt, the NMMU removes the entry from its inUse scoreboard and clears the corresponding 
inUse flags from the SLB and/or TLB.

After the inclusive agent receives a clean check-in response, it invalidates the targeted ERAT entry and is 
able to re-use the entry.



User’s Manual 
OpenPOWER
POWER9 Processor  

Nest MMU

Page 246 of 508
Version 2.1 

10 October 2019 
 

16.5.4.2 Back-Invalidate Sequence

This section highlights the back-invalidate process between the NMMU and its inclusive agents. The trigger 
for this sequence is a snoop invalidate or local castout that hits an inUse flag (that is, translation has not been 
checked in). When this occurs, the NMMU initiates a raise barrier phase to warn the agent that an ERAT 
invalidate is coming. The agent withholds a response for the raise barrier until it receives responses for all 
pending xlat operations (that is, the interface has quiesced). When this phase completes, the NMMU cycles 
through targeted ERAT invalidates one at a time. An invalidate response from the agent indicates that it has 
drained all references for the translation. The NMMU lowers the barrier when it permits the agent to resume 
its normal traffic flow for translation operations. 

Figure 16-4. Agent/NMMU Flow Diagram (Checkout/Check-in) 
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Figure 16-5. Agent/NMMU Flow Diagram (Back-Invalidate Sequence) 
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16.5.5 NMMU Cache Pipeline

Figure 16-6 on page 249 illustrates a high-level view of the NMMU’s cache pipeline after an accelerator agent 
issues a translation request to the NMMU. Note that this is primarily an HPT translation path, but a Radix 
translation has a similar flow.

The process begins as the NMMU arbitrates to select the next request to be serviced by the SLB pipe 
resource. Highest priority is given to SLBIE broadcast commands that are snooped via the Fabric bus. These 
commands require a unit partial response on the Fabric in a guaranteed time (TLAR), so that they are consid-
ered non-blocking operations. The next highest-priority level is aimed at completing updates for commands 
that have already been issued through the pipeline and are being processed by a tablewalk or invalidate state 
machine. These updates include directory writes and if needed, cache writes, internal tablewalk directory 
reads, and also recycled translations that should now hit in the SLB. By allowing these internal operations to 
complete, downstream resources are freed up to accept new translation requests. The third priority level is 
assigned to retry requests. These are requests that were sent through the pipe, but the NMMU could not 
resolve the translation at the time due to a dependency. Typical dependencies include congruence class colli-
sions against pending queues in the NMMU that are processing misses or invalidations. The lowest priority 
for the SLB pipe arbitration point is designated for new translation requests that have not been issued to the 
pipeline yet.

After a request is selected to enter the SLB pipe, a lookup of the SLB is performed to obtain the virtual 
address for the corresponding effective address. If the virtual address is not cached within the SLB, the miss 
is dispatched to a tablewalk state machine to find a matching entry in the corresponding segment table 
located in main memory. 

Once resolved in the SLB, the NMMU’s pipe continues with arbitration for the TLB lookup phase. Similar to 
the SLB resource, the highest priority is assigned to TLBIE broadcast commands that are snooped via the 
Fabric. Likewise, these are considered nonblocking operations because they require a unit partial response 
on the Fabric within a TLAR interval. The next highest priority targets TLB directory/cache updates, internal 
tablewalk directory reads, and  tablewalk recycles of newly installed translations for pending misses that the 
NMMU is processing. The third priority belongs to new translation requests, which would arrive downstream 
from the SLB pipe for HPT-based requests or from the SLB pipe’s bypass path for Radix-based translations. 

After the TLB pipe arbitration grants the next request, the pipeline continues with a lookup of the unit’s TLB. 
The TLB lookup allows the NMMU to check its local cache to determine if a valid copy of the real address is 
present. If a matching page table entry is not found in the NMMU’s TLB, a tablewalk machine is dispatched to 
search for one in the corresponding page table residing in main memory.

When the real address is successfully found at the end of the SLB/TLB pipe, the result is forwarded to the 
NMMU response out FIFO to be transferred through the Fabric to the accelerator agent that originally 
requested the translation. 

If the operation sent through the SLB/TLB pipe is a snoop invalidate command (SLBIE/TLBIE), the NMMU 
looks up the corresponding SLB or TLB to determine if one or more matching translations are currently 
checked out by an accelerator. If the operation misses the NMMU’s cache, a null partial response is returned 
to the Fabric indicating that the segment or page is not present within the given NMMU’s scope. If the TLBIE 
or SLBIE operation hits in the NMMU’s cache and a corresponding inUse flag is set, a retry partial response 
is returned to the Fabric until the NMMU can successfully drain all references for pending translations in the 
associated accelerators. If the SLBIE operation hits in the NMMU’s SLB cache, no drain is required within the 
accelerators, but it is performed for simplicity and uniformity with TLBIE behavior with respect to the agents.
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Figure 16-6. High-level NMMU Translation Pipeline 
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16.5.6 NMMU Control State Machines

There are several types of control state machines that manage the processing of the various translation 
requests that the NMMU receives. An engine ID is used to uniquely identify a given state machine. 

16.5.6.1 Tablewalk State Machine 

In the POWER9 NMMU, a tablewalk state machine is responsible for resolving a miss for a translation 
checkout request from an accelerator. It can service an SLB miss or a TLB miss. For the SLB miss case, the 
tablewalk engine searches for a valid matching segment table entry (STE) in memory that it can then install in 
the SLB cache. Likewise, for a TLB miss scenario, a tablewalk state machine searches memory for a valid 
matching page table entry (PTE) that it subsequently allocates in the TLB cache. After the respective cache 
miss is satisfied, the tablewalk state engine recycles the original checkout request through the SLB/TLB 
cache pipeline with the expectation of a subsequent hit within the NMMU. Upon a hit, the NMMU returns the 
RA and corresponding status to the targeted accelerator.

16.5.6.2 PTE Update State Machine

When a tablewalk state machine must update the PTE, it farms this task out to a PTE update state machine 
for this back-end processing. That is, R,C updates on behalf of a given PTE are all routed through the Fabric 
by these partner PTE update engines. Likewise, there is a 1:1 correspondence with the tablewalk engines, 
which means that there are 12 PTE update state machines for the POWER9 processor. The PTE update 
state machine’s responsibility is simply to manage these updates to memory by mastering partial writes 
(ARMWF operations) on the Fabric. The PTE update state machine is allowed to go idle when it receives a 
clean cresp and it has evaluated the corresponding PTE valid bit from memory. There is a dedicated address 
queue slot per PTE update state machine to process these requests.

In the POWER9 processor, PTE updates are atomic updates of the PTE. They are treated just like atomic 
RMW with fetch operations on the Fabric with a special ttype (pteUpdt2). All updates of the PTE are consid-
ered to be atomic, including the R, C, and timestamp bits. The RMW is conditional in the targeted memory 
controller based upon the PTE valid bit being set for the appropriate PTE format. If the PTE valid is set, the 
RMW is allowed to occur. If the PTE valid bit is not set, the RMW is aborted in the memory controller. The 
memory controller returns the original PTE state to the NMMU with the fetch portion of this operation. The 
NMMU tablewalk state machine determines the success or failure of the atomic PTE update based on 
sampling the fetch data matching the expected PTE data. If the PTE update fails, a fail response status is 
returned to the corresponding agent. All data tenures are cache-line transfers with an address offset to target 
a given PTE. The address for a PTE update is the PTEG RA for HPT or the targeted PTE for a Radix transla-
tion.

Because the fetch data for a PTE update is returned to the NMMU and stored in the tablewalk’s read buffer in 
the Fabric macro, the tablewalk state machine must ensure that it has no outstanding reads on the Fabric 
before executing an atomic PTE update.
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16.5.6.3 Castout State Machine Overview

At times, the NMMU must evict a member from its SLB or TLB cache according to its LRU algorithm. When 
the member is clean (the entry is valid and its inUse flag is not set), the existing LRU member is simply over-
written by the new member data. However, if the member is dirty (entry is valid and its inUse flag is set), a 
castout state machine must process the eviction in much the same way as the snoop slbie/tlbie invalidate 
scenarios described earlier. The primary difference, though, is that the invalidate due to a castout is guaran-
teed to be for a single member (LRU member) for a given congruence class, whereas a snoop invalidate can 
impact multiple members within a cgc.

When a dirty checkout miss is detected, the SLB or TLB pipe simultaneously dispatches a tablewalk state 
machine for the new request and a castout state machine to clear out the old entry. Likewise, there is a 1:1 
correspondence between a tablewalk state machine and its partner castout state machine, so that there are 
12 castout engines for the POWER9 processor. The tablewalk state machine is allowed to search for a 
matching STE/PTE for the new request during the castout phase, but it cannot allocate the new STE/PTE 
until the castout state machine completes its eviction of the old STE/PTE.

Similar to an invalidate state machine, the castout state machine takes the following steps to evict a given 
SLB or TLB index (cgc/member):

• At cache pipe dispatch, a castout engine is invoked because of a dirty checkout miss. The castout state 
machine captures the cgc and the LRU member for the SLB or TLB (the primary index).

• The castout state machine issues a request to the global inUse scoreboard to map the SLB or TLB index 
for the castout to the corresponding ERAT index, which correlates to the entry in the agent that must be 
torn down.

• After a response is provided by the inUse scoreboard, the castout state machine captures the ERAT 
index for the targeted SLB/TLB cache member and the SLB or TLB index (secondary index) that is not 
directly being invalidated.

• The castout engine drives invalidate requests to the corresponding inclusive agents for the given ERAT 
index.

• In the case of an SLB castout, there might be multiple invalidate requests in-flight under a barrier. Like-
wise, for Radix translations, there might be multiple invalidate requests to an agent for a TLB castout. 

• When the castout state machine detects an invalidate response from the agent, the engine issues a 
directory write to the primary index (SLB or TLB) to clear the valid bit and to reset the inUse flag for an 
SLB/TLB castout. The castout state machine also issues a directory write to the counterpart cache to 
simply update its inUse flag. 

• The castout state machine issues a clear command to the global inUse scoreboard to invalidate the cor-
responding ERAT index entry. 

• While the castout state machine is processing a primary index eviction, it issues a query to the inUse 
scoreboard to see if any translations to the targeted primary index are still active. If there are still pending 
translations for the primary cgc member, the castout state machine wraps back to the step where it 
attempts to find the next ERAT index that must be processed.

• When agent shootdowns complete for the cgc member, the castout state machine sends a done pulse to 
its partner tablewalk state machine to give it clearance to allocate the new member in the cache. The 
castout state machine subsequently goes idle at this juncture.
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16.5.6.4 Radix Page Walk Cache Overview

The Radix page-walk cache (PWC) is used by the tablewalk state machine to help it resolve a Radix transla-
tion. The tablewalk state machine stores guest and host page directory entries (PDEs) and PTEs for each 
level of the Radix tree (L1 - L4) in the cache. 

Figure 16-7 shows an overview of the Radix PWC. A guest TLB miss can cause a tablewalk state machine to 
look in its PWC for a matching entry based upon the LPID/PID and the guest VA (GVA). Likewise, a host TLB 
miss can cause a tablewalk state machine to look in its PWC for a matching entry based upon the LPID and 
the host VA (HVA). When a matching PTE is found, the tablewalk state machine allocates it into the TLB for 
subsequent processing. L3 and L4 contain two to four consecutive PDE/PTEs to further help with prefetching 
for a sequential stream. Note that 1 GB pages map to a PTE found in the L2 of the PWC, 2 MB pages map to 
a PTE found in L3 of the PWC, and 4 KB/64 KB pages map to a PTE found in L4 of the PWC.

Figure 16-7. Radix Page-Walk Cache 
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16.5.6.5 Check-in State Machine Overview

A check-in request is initiated by an inclusive accelerator when it is finished using a translation that was previ-
ously checked out. From an accelerator’s perspective, it essentially correlates to a castout of its local “cache” 
for a given translation. However, an accelerator can also implement more proactive measures to evict an 
entry out of its ERAT to check-in a translation. A check-in operation causes the NMMU to reset the corre-
sponding inUse flag in its TLB and SLB to indicate that a given PTE or STE (alternatively, two PTEs with TLB-
g, TLB-h for Radix translations) is no longer actively being used. This has the side effect of speeding up the 
resolution of tlbie/slbie commands on the Fabric. 

An outline of the steps involved with the NMMU servicing a check-in request are as follows:

1. Check-in request is sent by an accelerator with a tag that indicates the agent ERAT index. The ERAT 
index is the globally unique identifier for a given translation between an agent and the NMMU.

2. The NMMU receives the check-in request into its agent input buffer.

3. When a downstream resource frees up, the NMMU pulls the request out of its agent input buffer and 
routes it to an available check-in state machine. A total of eight check-in engines are available for the 
POWER9 processor.

4. The check-in state machine issues a request to the global inUse scoreboard to map the ERAT index for 
the translation to the corresponding NMMU cache resources, which correlate to the cgc/member pair for 
the SLB and TLB.

5. When a response is provided by the inUse scoreboard with the corresponding SLB and TLB indices, the 
check-in engine issues SLB and TLB directory writes (or both to the TLB for guest and host indices for a 
Radix translation) to obtain congruence class locks for both halves of the nested translation.

6. When locks are secured, the check-in state machine issues a request to the inUse scoreboard to clear 
the valid bit for the entry of the targeted ERAT index.

7. At this point, the check-in state machine must verify whether the primary and secondary indices are still in 
use (that is, STE maps to multiple PTEs for HPT translations or multiple guest pages map to a single host 
page in Radix translations). This is done by another query to the inUse scoreboard for the primary and 
secondary indices, respectively. 

8. If the corresponding primary or secondary index is no longer in use, the check-in state machine masters 
a directory write to the SLB or TLB to clear the inUse flag for the cache member and to reset the cgc lock 
for the respective index.

9. When the query operation completes within the inUse scoreboard, the check-in state machine drives a 
check-in response back to the agent to signal completion of the operation. This is arbitrated through the 
Fabric Dout path.

10. Upon receipt of the check-in response, the agent clears the valid bit of the corresponding ERAT index that 
was checked in.

16.5.6.6 NMMU Invalidate State Machine Overview

The high-level steps that the NMMU performs in executing an invalidation sequence are as follows:

1. The NMMU snoops an slbie/tlbie operation command and initiates an FBC invalidate state machine, 
which manages the command’s protection window.

2. The NMMU snoops a corresponding slbie/tlbie set command, which is forwarded out of the Fabric macro 
and into the corresponding CTL invalidate state machine.
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3. The CTL invalidate state machine forwards the set command to the respective SLB/TLB cache pipe to 
determine if it is a cache hit or miss.

4. At SLB or TLB dispatch time, the CTL invalidate engine receives hit/miss information for the snoop invali-
date. It is initiated due to a snoop invalidate scenario. If the snoop hits in the NMMU, the invalidate engine 
captures the LRU member valid vector and the inUse vector for the targeted cgc. Note that there are a 
total of 12 invalidation state machines in the POWER9 processor to support up to four SLBIEs and eight 
TLBIEs.

5. The invalidate state machine issues a request to the global inUse scoreboard to map the SLB or TLB 
index for the invalidation to the corresponding ERAT index, which correlates to the entry in the agent that 
must be torn down.

6. After a response is provided by the inUse scoreboard, the invalidate engine captures the ERAT index for 
the targeted SLB/TLB cache member (primary index) and the secondary index (the SLB or TLB index 
that is not directly being invalidated). 

7. The invalidate engine drives invalidate requests to the corresponding agent for the given ERAT index.

8. When the invalidate state machine detects a response from the inclusive agent, the engine progresses to 
the next member bit that is set in its inUse vector and repeats the previous process by identifying the cor-
responding ERAT index and by shooting down the required ERAT index in the agent. This process contin-
ues until all valid members have been drained for the respective congruence class. 

9. When the agent shootdowns complete, the invalidate engine (similar to a check-in engine) issues SLB 
and TLB directory writes to clear the valid bit for the corresponding primary cgc members in the respec-
tive caches and to update the inUse flags for the secondary indices. 

10. When clean dispatch results are detected for both the primary and secondary (SLB and/or TLB) directory 
writes, the invalidate engine issues a request to the inUse scoreboard to clear the valid bit for the targeted 
entries that map to an affected ERAT index.

11. When the clear operation completes within the inUse scoreboard, the CTL invalidate state machine 
drives an invalidate-complete pulse to the FBC invalidate state machine to terminate the command pro-
tection window and to end the sequence. 

16.6 Unit RAS Overview

16.6.1 RAS Features

• No custom circuits required for arrays in the NMMU. Numerous arrays are all C8Ts and SSAs.

• All arrays have error detection and are recoverable.

– Fabric data buses arrive and are sent with ECC. Associated buffers/arrays contain ECC. When data 
is manipulated, ECC errors are checked and reported with failing syndrome. Single-bit errors are cor-
rected.

– Other arrays (for example, SLB/TLB directory and cache) are primarily parity-protected.

– Exception for unprotected arrays are those that cannot cause data integrity issues (for example, the 
SLB and TLB LRU).

• All ECC/parity generation includes error injection points to allow for single-bit and double-bit errors.

• Fabric command, snoop, and response buses are parity-protected.

• Control checkers:
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– Interface protocol checks for the various agents to verify correctness.

– Timeout conditions detected, primarily through state machine non-idle scenarios.

– As Fabric master/snooper, NMMU supports a hang-recovery mechanism.

– Illegal state machine transitions are detected and verified through BugSpray checkers.

• Error Reporting: 

– Fault Isolation Register (FIR) is used to log various errors and failure conditions.

16.6.2 NMMU Error Handling Policies

The NMMU and its attached accelerator agents form a translation complex on POWER9 processor where all 
parties are notified if the other unit is down and unable to service requests normally. There are two broad 
categories of NMMU unit behavior in the presence of errors: 

• Faults that occur during the process of translating an EA mastered by an accelerator:

– In these scenarios, the NMMU returns the status to the corresponding accelerator with an encoding 
that provides the reason for the fault.

– The corresponding agent can report the status to software in a variety of ways (for example, an inter-
rupt or stamping the status into its packet header/control block).

– The agent reports the original EA (or gVA for Radix translations) and the failing status code to soft-
ware. Software is notified by using an interrupt that causes the code to touch the failing page. The 
touch causes the translation to be replayed out of the core MMU, which runs into the same error as 
detected by the NMMU. The core MMU provides its typical diagnostics to software for fault resolution 
(for example, DAR, HDAR, DSISR, HDSISR).

• Errors that cause the NMMU to drive a system checkstop, which is considered catastrophic.
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17. Interrupt Controller

The POWER9 interrupt controller (INT) consists of three major units: the virtualization controller (P3VC), the 
presentation controller (P3PC), and the POWER9 fabric bus interface common queue (P3CQ). These units 
work together to take triggers from interrupt sources and deliver exceptions to the appropriate processor 
thread. This section provides an overview of the interrupt architecture, describes the INT units and their inter-
faces, and also describes how they operate with the interrupt sources and software in the POWER9 infra-
structure.

Note:  The “P3” prefix in the unit acronym name refers to version 3 of the interrupt architecture. The previous 
version was referred to as version 2.

17.1 External Interrupt Virtualization Engine 

The POWER9 interrupt architecture significantly reduces the interrupt code overhead/path length and 
improves performance compared to the previous architecture. Other advantages of this architecture over 
previous versions are:

• Enables direct user-level I/O device drivers:
– Direct I/O adapter interrupts to user-level event-based branches
– Significantly simplifies CAPI models and path length

• Enables direct user-level virtual I/O signalling:
– Significantly simplifies scalable inter-processor/partition signalling
– Compliments scalable virtual super-sockets

• Combines all notification mechanisms into one architecture:

– External interrupts, including inter-processor interrupts (IPI), targeting:
— Operating dystem (OS)
— Hypervisor
— Event-based branch (EBB)

– Enables authorized signalling by:
— I/O device
— Platform service
— Program at any privilege level

– Adds routing to dispatched logical server in addition to physical thread:
— Desired combination of LPID, VP/VT, PID, TID

– Removes hypervisor from the path, except:
— When required to dispatch a logical server
— To handle extreme scalability
— To handle corner cases in page migration

Coherent accelerator processor interface

Logic partition ID

Process ID

Thread ID
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17.2 High-Level Block Diagram

The high-level diagram, Figure 17-1 on page 259, depicts the conceptual interaction among sources and the 
controller blocks in interrupt signalling and notification. The individual elements are interconnected and 
communicate via the POWER9 Fabric bus. 

The P3VC receives notification triggers from interrupt source controllers (P3SCs) via a POWER9 Fabric bus 
store operation (for example, cache-inhibited write: ci_wr). It processes the notification using information 
contained in the event assignment entry (EAE) that is located in main memory and associated with the 
specific trigger. This processing might include updating an event queue entry, and then forwarding the notifi-
cation to the P3PC, which signals an exception to one of the processor threads. The P3VC also handles noti-
fication redistribution if a state change to the assigned processor thread preclude it from handling the 
interrupt, or notification escalation if there is no processor thread that is currently capable of handling the 
interrupt.

The P3PC has exception notification wires connected to individual processor threads. Three wires exist for 
each thread. The processor thread uses one exception wire to generate hypervisor interrupts, another to 
generate operating-system interrupts, and a third wire to generate an event-based branch. Associated with 
each of the exception-notification wires in the P3PC is prioritization and exception-queueing logic that 
prevents less favored events from pre-empting more favored ones or from loss due to dropping an event. 
Associated with each of the exception notification wires is one or more logical server numbers stored in CAM-
like lines. This structure is also referred to as the thread context (TCTXT). These logical server numbers iden-
tify which software entities are currently dispatched on the specific physical processor thread. When the 
P3VC issues Fabric bus operations to route an event notification, these CAM-like lines are searched to iden-
tify candidate processor threads. In addition to the CAM-like lines, priority and exception-queuing logic 
mentioned previously, each interrupt-generating exception has logic to track how much interrupt work has 
been handled by the associated processor thread. This information is used to evenly distribute interrupt 
processing load among the candidates.

The P3CQ serves as the POWER9 fabric bus interface controller between the interrupt logic and the rest of 
the POWER9 chip. This unit is responsible for sequencing the appropriate fabric bus protocol when the inter-
rupt controller drives or receives commands. It performs compares to determine if the interrupt controller is 
the destination of a command (for example, a store operation used for an interrupt trigger). It is also respon-
sible for driving the fabric bus histogram, poll, and assign commands to find the correct presentation 
controller for an interrupt trigger. Another key P3CQ function is sending and receiving the AIB interface to the 
virtualization and presentation controllers.

ASIC interface bus 
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Figure 17-1. Interrupt Presentation Interaction 
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17.3 INT Unit Overview

Figure 17-2 shows the detailed structure and implementation of the three major units. Within each unit, the 
major sub-blocks and interfaces are outlined. This section provides more description and details on the three 
major units. 

Note:  The INT unit adheres to the POWER9 RAS requirements with parity on latches and ECC on SRAMs 
and major interfaces.

Figure 17-2. Interrupt Controller Microarchitecture 
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17.3.1 P3 Common Queue (P3CQ)

The interrupt controller common queue (CQ) is the bridge between the fabric bus and the presentation and 
virtualization controllers.

The CQ is connected to the PC and VC through two AIB ports. The AIB arbitration and muxing exists within 
the CQ logic. The AIB interface logic also allows PC-VC communication for local accesses.

The P3CQ features/functions are:

• CI load/store machines, each machine handles one processor bus operation at a time. 

• Read/write/interrupt machines, drive DMA read/write, CI read/write, and interrupt commands.

• Block routing and tracking for storing target addresses for block CI operations and scope tracking for 
interrupt commands.

• BARs for scope generation based on the fixed address mapping scheme used for POWER9. 

• Migration registers for memory migration secondary BAR information. 

• One interrupt controller PB BAR register.

• One thread management PB BAR register.

• Four configurable PB BAR Registers (1 spare/reconfiguration)

• DMA scope generation using BAR registers

• Block-based CI address generation.

• Snoop directory with 16 entries for cache-line protection during pull-push mode.

• 16 cache-line data buffer slots for push-pull operation.

17.3.2 P3 Virtualization Controller (P3VC)

The virtualization controller is the main interrupt processing unit. It takes triggers from the fabric bus and 
processes them using information found in the corresponding event queue entry.

The P3VC main features/functions are:

• Five interrupt trigger queues (IPI, hardware, first-level escalation, second-level escalation, redistribution) 
that can be extended in main memory

• 16-way set-associative cache for 1K event assignment entries (EAEs)

• 16-way set-associative cache for 32K states (1K groups of states)

• 32-way set-associative cache for 1K event notification descriptors (ENDs)

• Support for cache-scrubbing and cache-watch commands

• Support for sync commands on all interrupt queues in the event notification descriptor cache (ENDC) 

• Up to 16 blocks owned by P3VC

The P3VC main processing flow is:

• Interrupt triggers come in as CI store operations. Depending on the interrupt source, it is stored into one 
of the five interrupt queues.

• The queue is read and the interrupt request is either dropped if the mask bit is set, directly sent to the 
ENDC block if no event assignment structure cache (EASC) lookup and state bit check are required (a 

Presentation controller

Virtualization controller

cache inhibited

Direct memory attach

Base Address Register
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case where the trigger is an event-queue trigger and therefore holds EQ information), or an EASC lookup 
is performed. 

• The EASC does an EAE lookup to get EQ trigger information.

• State bit check is executed if the interrupt controller does the interrupt coalescing. If the current state is 
reset, the state is switched to pending. If the current state is Pending, the state is switched to queued.

• The EAE is returned to the IRQ subunit. The mask bit is asserted in the following case: EAE valid bit = ‘0’, 
or EAE mask bit = ‘1’, or SB check was required, and PQ state was not reset; which means the interrupt 
was already presented or the SB entry is disabled.

• If the EASC lookup response has the mask bit set, the interrupt process ends. Otherwise, EQ trigger is 
forwarded to the EQC block for processing. At this point, the interrupt trigger becomes an Event Queue 
trigger.

• The ENDC block checks that it owns the EQ block. If the current interrupt controller does not own the EQ 
block, the EQ trigger is forwarded to the owner using a CI store operation. The target queue is configu-
rable. Otherwise, the ENDC does an END cache lookup to get the corresponding EQ descriptor.

• Depending on the END content, the ENDC can:
– Do nothing
– Post an event in the event queue and increment the EQ pointer
– Execute an SB check and update
– Generate an interrupt request
– Increment per the priority backlog counter in the Notification Virtual Target (NVT)
– Set per the priority pending bit in NVT
– Issue an EOI command

• Depending on the interrupt response, the ENDC can:
– End the interrupt process
– Increment per the priority backlog counter in NVT
– Set per the priority pending bit in NVT
– Escalate
– Issue an EOI command

In addition to EQ triggers processing, P3VC processes end-of-interrupts. EOI comes as a CI load operation. 
When EOI is received by either the event state buffer cache (ESBC) or the ENDC, the corresponding state 
bits are updated according to the PQ state bit state machine definition.

17.3.3 P3 Presentation Controller (P3PC)

The presentation controller unit holds state information regarding which software entity is dispatched on each 
processor thread. The P3PC is responsible for responding to the fabric bus interrupt histogram, poll, and 
assign commands and participating in selecting the best thread for the interrupt. The P3PC drives exception 
wires connected to the individual processor threads. It also maintains the logic server structure cache which 
contains backlog counters and virtual processor control and pending bits.

The P3PC main features/functions are:

• CAM pipeline with 96 thread contexts (24 cores × 4 threads)

• Local load/store machines (eight load and six store per type)

• LSI logic for creating and handling LSI interrupts

End of interrupt

Level signaled interrupt 
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• Notification virtual descriptor cache (NVC) for caching notification virtual target entries (NVTs) and pro-
cessing NVT requests from the CAM pipeline

– Single snoop bus 3 used for interrupt commands

– EBB, operating system, and hypervisor-level interrupt line per thread

– Works on NVT data

– Can own up to 16 blocks and the associated NVTs

– Push-pull mode selectable on a per block basis for the NVC

The major subunits of P3PC are:

• Thread context (TCTXT) Pipe: Contains interrupt-related processor physical thread information (thread 
context) used for routing and processor bus responses. Has a ‘direct’ fabric bus interface through the 
P3CQ and drives exception wires to each processor thread.

• Notification virtual descriptor cache (NVC): Responsible for caching notification virtual descriptor entries 
used for escalation, backlog, and redistribution processing.

• AIB interface (Rx/Tx): Primary communication interface between P3PC and P3CQ/VC for register, CAM 
pipe, and NVC cache access.

• LSI: Responsible for handling level-sensitive interrupts from the pervasive. The LSI contains a direct inter-
face with TP.

P3PC has three exception signals that it sends or presents to each processor thread:

• Hypervisor exception

• Operating system exception

• Event based branch (EBB)

The P3PC also sends the Msgsend signal to each processor thread.  There are a total of 384 interrupt wires 
on a POWER9 chip (24 cores × 4 threads/core × 4 exception wires).

The msgsend exception line is only one pulse wide, the other exception lines are held HIGH until an interrupt 
acknowledge command is received from the core.

Figure 17-3. Exception Wire Activation Example  
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In addition to the processor bus interrupt commands: histogram, poll, and assign, the interrupts can also be 
triggered by a level sensitive interrupt (LSI) event trigger from the pervasive unit. The LSI trigger can be 
communicated to the presentation engine via the LSI hardwire or a CI store operation to the LSI notification 
register inside the presentation engine. 

17.4 Fabric Bus Interrupt Command 

A P3PC receives interrupt fabric bus commands (histogram, poll, and assign) and generates responses 
based on the contents of the CAM lines and other state information in the unit. Figure 17-5 through 
Figure 17-7 on page 265 show the fabric bus command and response sequences for the P3PC. 

Figure 17-4. LSI Activation Example 

Figure 17-5. Transaction Diagram for Histogram, Poll, and Assign (Part 1 of 3) 

The notification to the best server is done in three steps:

• A P3VC issues a Histogram command to all P3PC in the system 
or group.

• a1 Each P3PC sends a pResp (partial response) containing the 
largest age field of its matching servers.

• B The processor bus returns the cResp (combined response) 
indicating the largest age fields among all P3PCs.
Based on that, P3VC issues a Poll command supplying the 
received age field as a parameter.

• b1 Each P3PC sends a pResp indicating a match (including age).

• b2 The processor bus returns a cResp, which indicates if note 1 
or multiple P3PC reported a match in pResp and the cResp 
indicates one match. Then P3PC notifies its attached threads 
(see part 3).
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Figure 17-6. Transaction Diagram for Histogram, Poll, and Assign (Part 2 of 3) 

Figure 17-7. Transaction Diagram for Histogram, Poll, and Assign (Part 3 of 3) 

• C If the cResp indicates multiple matches, the P3VC issues an 
Assign command to a specific P3PC.
If the cResp indicates no match, the P3VC repeats the whole 
process (starting with the histogram).

• c1 The addressed P3PC indicates in the pResp if there is a 
match.

• c2 If a P3PC reported a match in pResp, it will on arrival of the 
cResp notify its attached threads (see part 3).

• c3 If the cResp indicates no match, P3VC executes its escalation 
process.

• b2/c2 Either if the poll is already indicating that only one P3PC has a 
match or after the dedicated poll with match, the thread 
attached to the CAM line is notified via assert of the dedicated 
interrupt signal. 

• D As an acknowledgement, the first-level interrupt handler 
performs an MMIO read of the interrupt management area (4 
CAM lines, that contribute to the interrupt signal).

• d2 Upon arrival of the cResp in the data phase is the the 
dedicated exception line de-asserted and the interrupt 
management area information (indicating the server to be 
interrupted) is transferred.

• E End of interrupt operation.
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17.5 Interrupt Processing Flow Examples

Figure 17-8 through Figure 17-11 on page 269 depict interrupt processing examples. Figure 17-8, 
Figure 17-9 on page 267, and Figure 17-10 on page 268 show trigger operations and reset for individual 
interrupt triggers. Figure 17-11 shows event queue enqueues and presentation to the cores common to all 
Figures 17-8 through 17-10.

17.5.1 Inter-Processor Interrupts Example

Figure 17-8 is an example of the inter-processor interrupt (IPI).

Figure 17-8. Inter-Processor Interrupts (IPI) Example 
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17.5.2 Hardware Interrupt with State Bit Check in P3VC

Figure 17-9 is an example of a hardware interrupt with the State bit check in P3VC.

Figure 17-9. Hardware P3SC Interrupt Trigger and Completion (State Bit Check in VC) 
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17.5.3 Hardware Interrupt with State Bit Check in P3SC

Figure 17-10 is an example of a hardware P3SC interrupt trigger and completion.

Figure 17-10. Hardware P3SC Interrupt Trigger and Completion (State Bit Check in SC) 

Optional - state bits cacheable

Optional - state bits cacheable
State bit set

cl_pr_w  (grp)

State bit update
- Q bit  set -> Q reset
- Q not set -> P reset

cl_pr_w  (grp)

Read state bits
Chip scopecl_rd_nc (chp)

Can be omitted if full state "cache" is implemented
(recommended implementation to avoid complexity of EOI ci_read operation)

ci_rd  (chp/sys)

EOI + Q bit check "EOI" w/ SW reissue

P3SCMemoryThread P3VC

Q bit check

Read state bits
cl_rd_nc (chp)

ci_wr_w  (chp)
Notify trigger
wr data is int #

Return Q state
before update

P3VC / P3PC / Thread Processing



User’s Manual 
OpenPOWER

 POWER9 Processor

Version 2.1 
10 October 2019 
 

Interrupt Controller

Page 269 of 508

17.5.4 P3VC and P3PC Basic Interrupt Handling

Figure 17-11 is an example of P3VC and P3PC basic interrupt handling.

17.5.5 Message Send (Msgsend) and Wakeup 

The interrupt controller logic supports the internal Fabric bus msgsend command. The P3CQ snoops the 
SMP Fabric for msgsend commands. If it determines an address match, it asserts lpc_ack and passes the 
command on to the thread context (TCTXT) portion of the P3PC. This logic then decodes the appropriate 
threads and activates a wire to the appropriate threads of the POWER9 chip.

The interrupt controller logic does not support the wakeup function. 

Figure 17-11. Basic Interrupt Handling 
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18. PCI Express Controller 

The PCIe Express controller (PEC) provides PCIe Gen4 root-complex ports to connect to an adapter slot or 
as a link to a PCIe switch. It acts as a PCIe host bridge (PHB) from the internal, coherent SMP interconnect 
(also known as the processor bus) to the PCIe I/O.

18.1 Overview

The PEC is composed of six major building blocks:

• Processor bus common queue (PBCQ) logic 

• Processor bus to AIB interface (PBAIB) 

• Express transaction unit (ETU)

• PCIe ASIC building blocks (PCIASIC)

• Physical coding sublayer (PCS)

• Physical media access (PMA)

Figure 18-1 shows an overview of the major blocks and defined interfaces.

Figure 18-1. High-Level Block Diagram 
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18.1.1 Processor Bus Common Queues 

The processor bus common queue (PBCQ) logic is responsible for managing the transactions on the 
coherent processor/cache fabric, the SMP interconnect.

Key features of the PBCQ are as follows:

• CAPI support

• Tunnelled operations

– Atomics

– AS_Notify support

• Inbound DMA capability

– Supports 64 DMA read transactions (128 on PEC0) on the SMP interconnect. DMA read transactions 
are sourced from non-posted read transactions from the PCIe.

– Supports 32 DMA write transactions on the SMP interconnect. DMA write transactions are sourced 
from write transactions posted from the PCIe. 

– Peer-to-peer write capability.

• Tunnelled operations

– Atomics: Atomic transactions are sourced from posted write transactions on the PCIe and, if neces-
sary, return data back to the PCIe using an MMIO store.

– AS_Notify: Quick method to communicate with the core. 

– CAPI support.

• Outbound MMIO capability

– Two Base Address Registers (BARs) for external MMIO address ranges 

– 16 MMIO stores

– 16 MMIO loads

• The ability to share resources with more than one PHB stack

18.1.2 Processor Bus AIB Interface 

The PBAIB logic provides an asynchronous boundary crossing between the PBCQ and the AIB 2.0 interface. 

Coherent accelerator processor interface

Direct memory attach

Memory-mapped input/output
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18.1.3 Express Transaction Unit

The ETU is responsible for address translation, interrupt management, and error isolation. 

Key features of the ETU (×8 or ×4 lane versions) are as follows:

• 512 KB (256 KB) partitionable endpoints 

• 1 KB (512 KB) 4-way set-associative translation cache 

• 4K (2K) MSI interrupts supported 

• Eight LSI interrupts supported

18.1.4 PCIe ASIC Intellectual Property 

The PCIe ASIC building block is composed of the packet buffer layer (PBL), the packet transaction layer 
(PTL), the transaction and data link layer (TLDLP), and the PCIe Configuration Register core (CFG). These 
blocks implement the PCIe transaction and data link layers.   

18.1.5 Physical Coding Sublayer

The PCS manages the low-level networking protocol and signaling between the physical media and the 
higher-level link protocol layer across the PIPE interface. The 16 lanes of the PCS can be bifurcated into two 
×8 lanes or trifurcated into one ×8 and two ×4 lanes.

18.1.6 Physical Media Access

The PMA provides the SERDES and analog protocols necessary to connect to the chip C4s. It also provides 
the PLLs used to drive the PCI clock grid.

18.2 POWER9 Configurations

The POWER9 chip has three PCIe controllers of 16 lanes each for a total of 48 lanes of PCIe Gen4 I/O. The 
three PECs can support 4 - 6 PCIe stacks and can be configured as follows:

• PEC0: One ×16 lanes

• PEC1: Two ×8 lanes (bifurcation)

• PEC2: One ×16 lanes, two ×8 lanes (bifurcation), or one ×8 and two ×4 lanes (trifurcation)

Each grouping of lanes is called a stack and each stack has dedicated ETU and PCIe blocks. Each set of 16 
lanes have only one PBAIB and PBCQ pair to interface to the SMP interconnect. The resources of the PBCQ 
are shared between the stacks that it services. 

The logic in the nest clock domain is designed to run at the frequency of 2 GHz. The PCI clock domain runs at 
a frequency asynchronous to the nest and also at 2 GHz, with some logic running slower based on the PCI 
link training(1 GHz Gen3, 500 MHz Gen 2, 250 MHz Gen 1).

Within a stack grouping, the lanes can be swapped to facilitate board wiring.

Serializer/Deserializer

Phase-locked loop
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18.3 Reliability, availability, and serviceability (RAS)

18.3.1 Bit-Level RAS 

• End-to-end data protection from the processor bus ECC to the PCI packet LCRC/ECRC

•  Arrays have SEC/DED ECC

•  Register files have parity (some have SEC/DED)

•  Support all processor bus parity/ECC

•  Major control registers have parity protection

18.3.2 Enhanced Error Handling (EEH)

If an error can be isolated to an endpoint, this endpoint is blocked from introducing new transactions until the 
error can be resolved.

Figure 18-2. POWER9 PCIe High-Level Diagram 
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18.3.3  Freeze Mode 

An error that requires a reset of a stack enters freeze mode. Freeze mode blocks all new transactions to and 
from the stack. Outstanding operations on the SMP interconnect run to completion, marking data as bad if 
required. Reset and initialization can be performed on the stack without a checkstop of the chip. A freeze on 
a stack does not affect the actions of another stack even if they share a PEC. 
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19. Elastic Differential Interface Plus

This section describes the Elastic Differential Interface Plus at 16 Gbps. Figure 19-1 shows a system context-
level diagram of a general bus system that connects two chips “A” and “B” using two uni-directional buses. 
Also shown is a separation between the core functions of the chip, the bus interface protocol layer, and the 
bus physical layer. This section gives an overview of the physical layer and on-chip initialization provided by 
the POWER9 processor.

The POWER9 Elastic Differential Interface Plus supports the following types of driver and receivers:

• X-bus interface: high-speed differential at 16 Gbps for chip-to-chip interconnect
 

Figure 19-1. System-Level I/O Interface  

Physical 
Layer
Driver

Physical 
Layer
Driver

Physical 
Layer

Receiver

Physical 
Layer

Receiver

Chip/ModuleChip/Module

System-Level
Initialization/
Test/Clock

Control
Logic/Microcode

On-Chip
Clock Gen

(PLL)

On-Chip
Clock Gen

(PLL)

On-Chip
Initialization/ 
Test/Control

Logic/
Microcode

Protocol
Layer
Logic

Protocol
Layer
Logic

Chip-to-Chip Bus

Initialization/Control/Reconfiguration/Status Signals Initialization/Control/Reconfiguration/Status Signals

Reference Clock
(No Source-Synchronous Buses)

Chip-to-Chip
Module-to-Module

Board Wiring/Cabling

On-Chip WiringOn-Chip Wiring

A-to-B
Transmitted

Signals

A-to-B
Received
Signals

n Data Signals

(Differential Pairs)

n bits × m data
beats wide

n bits × m data
beats wideClock Signals

(Source-Synchronous Buses)

(Differential Pairs)

B-to-A
Received
Signals

n bits × m data
beats wide

n bits × m data
beats wide

B-to-A
Transmitted

Signals

n Data Signals

(Differential Pairs)

Clock Signals
(Source-Synchronous Buses)

(Differential Pairs)
On-Chip

Initialization/ 
Test/Control

Logic/
Microcode



User’s Manual 
OpenPOWER
POWER9 Processor  

Elastic Differential Interface Plus

Page 278 of 508
Version 2.1 

10 October 2019 
 

19.1 Elastic Interface Features 

The supported features are summarized in Table 19-1. Requirements are defined relative to the operational-
mode definitions.

Initialization mode specifications are as follows:

• Protocols: 5-stage custom training states

• Frame alignment: Within clock group lane alignment only via initialization deskew

• Frequency: 16 Gbps 

• Software: FSP1 service processor via GFW  

• Spare-lane detect: Data failover (two signals total per bus/port)

• Workaround methods: Mostly-to-all initialization steps are software controllable

• Supported analog calibration methods: See Section 19.2 Driver Features on page 281 and Section 19.3 
Receiver Features on page 281.

In addition to the initialization specifications, the functional mode specifications are as follows:

• Frequency: 16 Gbps

• Serialization ratio: 8:1

• Scrambling: Full scrambling is enabled during initialization

• Dynamic lane repair during run-time

Power-saving mode specifications are as follows:

• Power-saving mode is supported (light power down with fast wakeup).

• Frequencies: No special frequencies are required. 

• Software: FSP1 service processor or host code via GFW; software maintains system status of spares and 
modes.

• Diagnostic/unused and spare lane logic: Lane control via clock off at LCB, and/or software controlled.

• IDDQ following MPG design rules.

• Analog control: Supported driver amplitudes and receiver channel-level detection

Table 19-1. Interface Operational Mode Definitions 

Mode Name Definition

Initialization The act of aligning and locking the data eye and bit lanes plus additional deltas relative to re-alignment and 
re-locking.

Functional Passing workload data and maintaining signal integrity post-initialization.

Power Saving All related capabilities for minimizing unused and idle lane power consumption.

Test Capabilities related to hardware manufacturability.

Diagnostic Bringup lab characterization of interface performance capabilities.

Global firmware
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Test mode specifications are as follows:

• Frequency: 16 Gbps subject to PLL range limitations and a slow test frequency of 200 MHz.

• LBIST: AC and DC. 

• Hardware-BIST: Built-in and independent TX and RX PHYBIST modes (see diagnostics list).

• PHYBIST: Real-time pattern generation test based on reused logic at product frequencies + margin.

• Wiretest: PHYs require support of 1149.x features for ASICs commonality. Also quick power-on diagnos-
tics are supported through initialization.

• LSSD: Scan testing per MPG methodology.

• Software and test controls.

Diagnostics mode specifications are as follows:

• TX and RX internal PHYBIST

• Data sample observability

• SCOM control of all hardware functionality

• Per-bit receiver/sampler offset margining

• Phase rotator values read/write/bias

• Programmable IREF

• Programmable phase detector loop sensitivity

• Programmable DFE parameter loop sensitivity

• Analog net sniffer

• Per-bit power down

• Per-bit quiesce

• Scramble disable

• TX amplitude adjustment

Phase-locked loop

Logic built-in self test

Application-specific integrated circuit

Scan communications

Decision feedback equalizer
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Figure 19-2. Top-Level Interface Block Diagram  
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19.2 Driver Features

The driver features are summarized as follows:

• 16 Gbps with 8:1 serializer.

• Full-rate SST driver.

• Selectable 8:1 serializer with pre-cursor FFE. 

• Rpre up to 1.30.

• Selectable AC boost: analog post-cursor FFE.

• Set and forget impedance calibrator. 

• Drive amplitude reduction (margining) up to 50%. For characterization only, not mission mode.

• BIST error detector for at-speed loopback testing. 

• Shared test pin mode. Differential driver output only.

• Time domain reflectometer (TDR).

19.3 Receiver Features

The receiver features are summarized as follows:

• Rx clock macro with PLL 

– Same I/O specifications as the POWER8 processor: 2.0 - 2.4 GHz bus clock range 

– Programmable feedback divider for POWER8 Memory Buffer backward compatibility

• Rx data mac

– Each data bit with a single data path (single bank) using shadow lane protocol for calibration

– Long-tail equalizer (LTE) for improved eye margins on lossiest channels

– Continuous time linear equalizer (CTLE) with 12 dB of peaking range, 6 dB of gain range

– CTLE applies common mode (differential zero) for DAC calibrations

– 12-Tap DFE with current integrating summer. Modes: no-DFE, DFE1, DFE12)

– 16 Gbps with 1:8 deserialization mode

– Cross coupled PRBS streams for RX BIST testing

There are also some auxiliary test and characterization features, and individual tuning aspects of the DFE 
control loop. All of these features have dependencies on external logic blocks.

Feed-forward equalizer

built-in self-test
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19.4 PLL Features

The LC PLL takes a reference clock (60 MHz - 1 GHz; 200 MHz POR) and produces a half-rate clock 
(8.0 GHz or 4.8 GHz) for both the transmit and receive slices. The PLL architecture is based on standard 
Torrent /HSS topology with PFD and charge pump. In the PLL, two full-rate LC VCOs are used for tuning the 
16 GHz mode with a range of 14.4 - 17.6 GHz. Also included is a ring VCO that is used for testing and 
schmooing (4.3 GHz  - 8.6 GHZ). The output frequency range is ½ the VCO range (I-only) phase. The LC 
VCO implements a band-switched feature to achieve low gain across a wide range. The half-rate clock is 
generated by a divide-by-2 I/Q clock generation circuit. The VCO bands are selected using a logic algorithm 
run during initialization that uses the internal FMIN, FMAX, and CVHOLD bits to place the VCO into its 
minimum, maximum, and central frequencies for each band, respectively.

The mode bit selects the ring VCO and loop filter components so that the PLL can attempt to compensate for 
the noise of various applications. 

Figure 19-3. Block Diagram of PLL 

High-speed serial

Phase-frequency detector

Voltage-controlled oscillator
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20. OpenPOWER Interface at 25.78125 Gbps

Figure 19-2 on page 280 shows a system context-level diagram of a general bus system that connects two 
chips “A” and “B” with two uni-directional buses. Also shown is a separation between the core functions of the 
chip, the bus interface protocol layer, and the bus physical layer. This section gives an overview of the phys-
ical layer and on-chip initialization provided by the POWER9 processor.

The POWER9 OpenPOWER interface supports the following types of driver and receivers:

• SMP interconnect

• NVLink 1.0 and NVLink 2.0

• SMP A-bus link

• OpenCAPI is available over the 25G Link (SMP A-bus link). There are 32 lanes available, each supporting 
a 25 Gbps transfer rate.

20.1 Interface Features 

The supported features as summarized in Table 19-1 on page 278. Requirements are defined relative to the 
operational-mode definitions.

Initialization mode specifications are as follows:

• Protocols: 5-stage custom training states

• Frequencies: 25.78125 Gbps, 19.2 Gbps, half rates using 2:1 gear ratio

• Software: 
– FSP1 service processor via Global firmware (GFW) 
– MMIO

• Workaround methods: mostly-to-all initialization steps are software controllable

• Supported analog calibration methods: See Section 20.2 Driver Features on page 284 and Section 20.3 
Receiver Features on page 285.

In addition to the initialization specifications, the functional-mode specifications are as follows:

• Frequencies: 25.78125 Gbps, 19.2 Gbps, half rates using 2:1 gear ratio

• Serialization ratios: 16:1

• Scrambling: Full scrambling is enabled during initialization.

Power-saving mode specifications are as follows:

• Frequencies: No special frequencies are required. Also see prior bullet.

• Ability to power down unused bricks to consume 10% of active power.

• Software: 
– FSP1 service processor or host code via GFW; software maintains system status of spares and 

modes.
– MMIO
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Test mode specifications are as follows:

• Frequencies: 25.78125 Gbps, 19.2 Gbps, half rates

• LBIST: AC and DC

• Hardware-BIST: Built-in and independent TX and RX PHYBIST modes (See diagnostics mode list)

• PHYBIST: Real-time pattern generation test based on reused logic at product frequencies + margin

• Wiretest: PHYs require support of 1149.x features for ASICs commonality. Also quick power-on diagnos-
tics are supported through initialization.

• LSSD: Scan testing per MPG methodology

• Software and test controls

Diagnostics mode specifications are as follows:

• TX and RX internal PHYBIST

• Data sample observability

• RX FIFO pointer collision observability

• SCOM control of all hardware functionality

• MMIO

• Per-bit receiver/sampler offset margining

• Phase rotator values read/write/bias

• Programmable Iref

• Programmable phase detector loop sensitivity

• Programmable DFE parameter loop sensitivity

• Analog net sniffer

• Per-bit power down

• Per-bit quiesce

• Scramble disable. No scrambling in 25 Gbit PHY 

• TX amplitude adjustment

20.2 Driver Features

Driver features are as follows:

• 25.78125 Gbps with 16:1 serializer.

• 19.2 Gbps with 16:1 serializer.

• Half-rate series source terminated (SST) with precursor FFE, amplitude margin function, impedance cali-
bration, and postcursor FFE for IOO driver. 

• Selectable AC boost: precursor FFE.

• Set and forget impedance calibrator. 

• Drive amplitude reduction (margining) up to 50%. For characterization only, not mission mode.

• Full TX power-down mode when port is not required. 

• Individual TX lane power-down mode when lanes are not required.

Physical layer
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• BIST error detector for at speed loopback testing. 

• Shared test pin mode. Differential driver output only.

• Time domain reflectometer. 

20.3 Receiver Features

Receiver features are as follows:

• CTLE peaking

• Gain calibration

• 1-tap speculative DFE

• Local offset calibration compatible with floating body devices

• Common mode calibration

• Recovered clock
– NVLink: 1/16 baud rate CDR clock
– POWER9 optics: 1/16 baud rate CDR clock
– Loop bandwidth greater than 3 MHz for good low-frequency jitter correlation with good crosstalk 

jitter rejection 
– Tolerates at least 100 ppm drift, 100 ppm fixed-frequency offset, and 1000 ppm spread-spectrum 

support

• SCOM support

• JTAG wire test support

• Eye metrics available on spare lanes with full vertical and horizontal eye scan capability

• Full RX power-down mode when group is not needed 

• Individual RX lane power-down mode when lanes are not needed

• CDR must run continuously

• Other parameters are calibrated every 50 ms

There are also some auxiliary test and characterization features, and individual tuning aspects of the DFE 
control loop. All of these features have dependencies on external logic blocks that are described in the 
detailed design workbook.



User’s Manual 
OpenPOWER
POWER9 Processor  

OpenPOWER Interface at 25.78125 Gbps

Page 286 of 508
Version 2.1 

10 October 2019 
 

20.4 PLL Features

The dual LC PLL takes a reference clock between 60 MHz - 1 GHz ; with the plan-of-record being 133 MHz . 
The dual LC PLL produces a half-rate clock of 9.6 GHz or 12.890625 GHz for both the transmit and receive 
slices. The PLL architecture is based on standard topology with PFD, charge pump, and loop filter. In the 
PLL, dual full-rate LC VCOs are used for two tuning ranges, the 25.78125 GHz mode with a 28.36 - 
23.20 GHz range and a 19.6 GHz mode with a 21.12 - 17.28 GHz range. A ring VCO is also included for 
testing and schmooing. The output frequency range is ½ the VCO range (I only) phase at the ranges of 
14.18 - 11.60 or 10.56 - 8.64 GHz. The LC VCO implements a band-switched feature to achieve low gain 
across a wide range. The half-rate clock is generated by a divide-by-two clock generation circuit. The VCO 
bands are selected using a logic algorithm that is run during initialization. The algorithm uses the internal cali-
bration to obtain the optimum VCO band.

The mode bit selects the ring VCO and loop filter components so that the PLL can attempt to compensate for 
the noise of various applications. (See Figure 19-3 Block Diagram of PLL on page 282.) 
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21. DDR4 Interfaces 

21.1 Overview

The POWER9 processor incorporates DDR PHY memory interface physical units capable of supporting 
several memory topologies. It is optimized for DDR4 memories as defined by the JEDEC, and incorporates all 
of the required features and many optional ones.

At a high level the DDR unit is responsible for:

• Transporting and mapping command, control, address, and data signals presented from the embedded 
memory controller.

• Providing all necessary configuration registers, state machines, control logic, and status monitoring to 
execute all required DDR calibration functions (that is, read calibration, fine and coarse write leveling, ZQ 
calibration, and so on).

• Providing elastic interface style FIFOs (PHYs) for purposes of sampling, de-skewing, bit aligning incom-
ing data, buffering, and launching outgoing data. These FIFOs also assist in crossing clock domains.

Each DDR unit is self-contained and consists of four independent ports that connect to DIMM slots. This unit 
is replicated twice on the POWER9 processor to provide a maximum of eight ports.

The DDR PHY supports the following memory devices on each port.

• DDR4 RDIMMs and DDR4 LRDIMMs, including 3D stacks up to eight high

• DRAM data widths of ×4, ×8

• DRAM densities of 4 Gb, 8 Gb, 12 Gb, 16 Gb 

• One or two DIMMs per port

• DRAM speeds of 1866, 2133, 2400, and 2667 Mbps 

To accommodate DRAM timing variability, and POWER9 process, voltage, and temperature corners, the 
DDR PHY implements the following calibration sequences:

• Write leveling

• DQS alignment

• Read clock alignment

• Read centering

• Write centering

• Coarse write alignment

• Coarse read alignment

• Tx output impedance calibration

• Read voltage reference (VREF) calibration

• Write voltage reference (VREF) calibration

To accommodate voltage and temperature drifts, DQS alignment, read clock alignment, and read centering 
can be run periodically after the initial calibrations.

Double data rate 

Joint Electron Device Engineering Council

First-in, first-out

Dual in-line memory module

Registered dual in-line memory module

Load-reduced dual in-line memory module
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The DDR PHY on the POWER9 processor supports two ranks per DIMM and rank-switching in a minimum of 
three memory clock cycles. The DDR PHY maximum read latency is eight memory cycles.

To support DDR4 JEDEC specifications above speeds of 2400 Mbps, the following features are supported:

• Programmable preamble

• CRC support

• Rx Vref training

Other features include:

• Per buffer addressability mode (PBA)

• Per DRAM addressability mode (PDA)

• DDR4 maximum power-saving mode

• Per-bit tuning on all address, command, control, clock, data, and strobe signals

• Programmable output impedance and slew rates

• Rank grouping feature

• Extensive RAS support

• Power-down modes

• Custom calibration modes to support custom calibration patterns

21.2 Mainline Operation

The DDR unit must support all mainline functions initiated by the POWER9 memory controller. This includes:

• CKE controls for powering down and powering up ranks and entering and exiting self-refresh mode

• Bank activate commands

• Burst length 8 and burst chop 4 read and write operations

• Periodic refreshes

The memory controller (MC) ensures proper spacing and timing of all command, control, data signals, and 
adherence to the JEDEC specifications. The primary responsibility of the DDR unit is to propagate all 
command, address, data, and control signals from the MC unit to and from the DRAM devices. Communica-
tion between the MBA and DDR units is done by using an internal bus. The command, control, and address 
bits flow through a unidirectional ADR43 unit in each DDR PHY port that can drive up to 43 interface pins. 
Data is transceived through four bidirectional DP16 units and one DP8 unit in each DDR PHY port that can 
accommodate 72 bits (9 bytes) per port.

Memory buffer asynchronous
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22. PCIe Interface

22.1 Overview

The PCIe interface macro, IOP_X844_TOP, contains the physical coding sublayer (PCS) and physical media 
attach (PMA) hardware layers for implementing the PCI Express GEN4 standard. 

The PCS layer is responsible for interfacing the transaction and data link layers with the physical layer. This 
layer has two main sections. The first is a transmit section that prepares outgoing information passed from 
the data link layer for transmission by the physical media layer. The other main section is a receiver section 
that identifies and prepares information received by the physical media layer for consumption by the data link 
layer.

The PMA layer is responsible for serializing data provided by the PCS layer and transmitting on to the link per 
PCIe electrical specifications. It is also responsible for receiving serial data from the link and provided deseri-
alized data to the PCS.

The IOP_X844_TOP supports a number of PCI Express Gen4 link options. These link options include 1 - 16 
lane link, 2 - 8 lane links, 1 - 8 lane link, and 2 - 4 lane links. All link options support 2.5 GTps (GEN1), 
5.0 GTps (GEN2), 8.0 GTps (GEN3) and 16.0 GTps (GEN4) rates of data transfer.

Figure 22-1. PCI Express Functional Layers Diagram 
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Figure 22-2. IOP_X844_TOP Hierarchy Diagram 
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IOP_PMA_ZCAL_CUST_MAC

IOP_PMA_H16JTAGTDR_RLM_MAC

IOP_PMA_REFCLKSEL2_RLM_MAC

IOP_PMA_H16PLLCNTL_COMMON_RLM_MAC IOP_PMA_H16PLLCNTL_COMMON_LBIST_RLM_MAC

IOP_PMA_H16PLLCNTL_LOGIC_CAL_RLM_MAC IOP_PMA_H16PLLCNTL_LOGIC_CAL_LBIST_RLM_MAC

IOP_PMA_H16PLLCNTL_LOGIC_CAL_RLM_MAC IOP_PMA_H16PLLCNTL_LOGIC_CAL_LBIST_RLM_MAC

IOP_PMA_H16RXCDR_RLM_MAC

IOP_PMA_H16RXLINKLOGIC_RLM_MAC

IOP_PMA_RX_CUST_MAC

IOP_PMA_CLK_CUST_RX16_MAC IOP_PMA_CLK_CUST_TX16_MACIOP_PMA_PLL_CUST_MAC

= Top Level Soft Hierarchy = Top Level Hard Hierarchy = Soft Hierarchy

= Random Logic Macro (RLM) = Custom Macro = Staging Registers

IOP_PMA_H16TXSLICE (x16)
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IOP_TXBS8_RLM_MAC IOP_RXBS8_RLM_MAC
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The IOP_X844_TOP design hierarchy is depicted in Figure 22-2 on page 290 and briefly described as 
follows:

• IOP_X844_TOP: Top-level soft hierarchy

– PIE8 Interface Staging Registers: 2-deep pipeline staging registers on PIE8 interface signals 
between IOP and ES units

– IOP_X16_GBOX_WRAP: LBIST stump mux Logic

– IOP_X844: Top-level hard hierarchy

— IOP_X844_PCS: Physical coding sub-layer soft hierarchy wrapper

• IOP_PCS_RLM_MAC: PCS logic RLM

— PCS / PMA Interface Staging Registers: 1-deep pipeline staging register between PCS and PMA 
interface signals

— IOP_SCOM_CNTL_RLM_MAC: Serial communications port logic RLM

— IOP_TXBS8_RLM_MAC: 8-lane transmitter boundary scan logic RLM

— IOP_RXBS8_RLM_MAC: 8-lane receiver boundary scan logic RLM

— IOP_PMA_X16: 16-lane physical media attach layer soft hierarchy

• IOP_PMA_CLKDIFFSEGATE: Custom differential clock buffers for reference clock

• IOP_PMA_REFCLKSEL2_RLM_MAC: Power management token logic RLM

• IOP_PMA_CLK_CUST_RX16_MAC: Custom 16-lane receiver C1 clock distribution

• IOP_PLL_CUST_MAC: Custom dual LC tank VCO PLL with current reference generators

• IOP_PMA_CLK_CUT_TX16_MAC: Custom 16-lane transmitter C1 clock distribution

• IOP_PMA_H16PLLCNTL_COMMON_RLM_MAC: PLL IREF and VREG control logic RLM

• IOP_PMA_H16PLLCNTL_COMMON_LBIST_RLM_MAC: PLL common logic LBIST RLM

• IOP_PMA_H16PLLCNTL_LOGIC_CAL_RLM_MAC: PLL VCO calibration logic RLM

• IOP_PMA_H16PLLCNTL_LOGIC_CAL_LBIST_RLM_MAC: PLL VCO calibration logic LBIS 
RLM

• IOP_PMA_H16COMMONGLUE_X16_RLM_MAC: Unit level glue logic RLM

• IOP_PMA_H16JTAGTDR_RLM_MAC: JTAG and test data register logic RLM

• IOP_PMA_H16TXSLICE: Single lane transmitter soft hierarchy

– IOP_PMA_H16TXLINK_RLM_MAC: Transmitter control logic RLM

– IOP_PMA_TX_CUST_MAC: Transmitter custom analog macro

• IOP_PMA_H16ZCALSLICE: Transmitter impedance calibration soft hierarchy

– IOP_PMA_H16ZCAL_RLM_MAC: Transmitter impedance calibration logic RLM

– IOP_PMA_ZCAL_CUST_MAC: Transmitter impedance calibration custom analog Macro

• IOP_PMA_H16RXSLICE: Single lane receiver soft hierarchy

– IOP_PMA_H16RXLINKLOGIC_RLM_MAC: Receiver link control logic RLM

– IOP_PMA_H16RXCDR_RLM_MAC: Receiver clock and data recovery logic RLM

Multiplexer
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– IOP_PMA_RX_CUST_MAC: Receiver custom analog macro

The IOP_X844_TOP unit is constructed using the FX14HP technology and provides a total of 16 full duplex 
lanes of communication support. Each link is independently capable of operating at 2.5 GTps (Gen1), 
5.0 GTps (Gen2), 8.0 GTps (Gen3), or 16.0 GTps (Gen4) data rates. The IOP_X844_TOP contains a phase 
lock loop (PLL) macro that was two independent oscillators. One oscillator is used to produce a 10 GHz clock 
from a 100 MHz reference clock source. This clock is used to produce 2.5 GTps signaling by dividing the PLL 
oscillator clock by 4 (¼ rate mode) and to produce 5.0 GTps signalling by dividing the PLL oscillator clock by 
2 (½ rate mode). The second PLL oscillator produces a 16 GHz clock from a 100 MHz reference clock 
source. This clock is used to produce 8.0 GTps signaling by dividing the PLL oscillator by 2 (½ rate mode) 
and to produce 16 GTps signaling by dividing the PLL oscillator by ‘1’ (full-rate mode).

The IOP_X844_TOP unit provides point-to-point data transmission over media with a differential character-
istic impedance of 100 Ω. This transmission media can be a combination of printed circuit board, connectors, 
backplane wiring, fiber, or cable. The length of the transmission path is maximized in applications where 
impedance characteristics are well-matched and the frequency response of the media does not create exces-
sive distortion of the transmitted signal.

The IOP_X844_TOP unit employs numerous equalization schemes to address media losses and crosstalk 
challenges. The transmitter implements feed forward equalization (FFE) by using a programmable 3-tap, 
baud-spaced, finite impulse response (FIR) driver with the following equation:

The driver amplitude (K) is adjusted in the range 200 - 1200 mVppd in 47 power settings. The relative weights 
of C0 to C2 are user-configurable to create a wide variety of transmitter FIR pulse-shaping filters. Reducing 
the driver amplitude, in general, increases the power consumed by the driver.

The receiver provides a combination of an automatic gain control (AGC) amplifier with dynamic peaking 
control (DPC) plus a baud-spaced decision feedback equalizer (DFE) circuit that complements the transmitter 
equalization capability. Twelve taps of DFE equalization are available at data rates 5.0 GTps, 8.0 GTps, and 
16.0 GTps. The DFE adaptation circuit examines the incoming serial stream and dynamically adjusts coeffi-
cients to maximize the internal eye opening. Two distinct modes of operation for the receive clock and data 
recovery (CDR) are possible: traditional non return to zero with high frequency-peaking equalization and 
automatic gain control (non-DFE mode) and DFE mode, which also includes automatic gain control and some 
high-frequency peaking. The non-DFE mode, combined with transmitter side pre-emphasis filtering and the 
receiver AGC amplifier, provides a powerful set of equalization capabilities for channel applications where the 

Table 22-1. Data Rates and Receiver Modes Supported by the IOP_X844_TOP Unit 

Data Rate High-Speed PLL A High-Speed PLL B

2.5 GTps (Gen1) [Non-DFE] N/A

5.0 GTps (Gen2) [Non-DFE] N/A

8. 0 GTps (Gen3) N/A [DFE12], DFE5, DFE1, Non-DFE

16.0 GTps (Gen4) N/A [DFE12], DFE5, DFE1, Non-DFE

DFE12 = 12-tap DFE
DFE5 = 5-tap DFE
DFE1 = 1-tap DFE
Non-DFE = Standard receiver equalization (high-frequency peaking)

H(Z) = K (C0 z+1 + C1 z
 0+ C2 z

-1)

Decision-feedback equalizer
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losses are low to moderate. When the channel losses are substantial, the PCIe interface can be operated in a 
DFE mode. The main advantage of DFE mode is that the receiver CDR can correctly deserialize received 
eyes that are closed with improved bit error ratio (BER). Three selectable DFE modes are available: 1 tap 
(DFE1), 5 taps (DFE5), and 12 taps (DFE12) providing optimal user performance trade-off capability.

Using the equalization capability of the IOP_X844_TOP, losses up to -28 dB at the fundamental frequency 
(that is, 8.0 GHz at 16.0 Gbps operation) can be recovered at BER < 10-12. 

22.2 Key Features

The IOP_X844_TOP unit in FX14HP includes the following features:

• Supports 2.5 GTps (Gen1), 5.0 GTps (Gen2), 8.0 GTps (Gen3), and 16.0 GTps (Gen4) data rates.

• Contains two independent LC tank-based VCOs operating from a common differential 100 MHz reference 
clock source that produce 10.0 GHz and 16.0 GHz differential clocks to support internal unit operation. 
Additionally a 2 GHz single-ended clock is provided to support nest grid clocking.

• Four preprogrammable transmitter and receiver configurations selectable by port using hardware pins or 
registers. Facilitates fast speed switching during speed negotiation routines.

• Support for spread spectrum clocking of up to ±6000 ppm difference between TX and RX sections at up 
to 33 KHz modulation. Supports PCIe separate reference clock with independent spread spectrum 
(SRIS) support.

• Integration of greater than 80 channels per chip.

• Aggressive equalization capability to enable legacy system upgrades.

– 3-tap FFE driver equalization, baud-spaced
– Dual-mode CDR: non-DFE or DFE
– 12-tap Decision Feedback Equalizer (DFE) for use in 8.0 GTps and 16 GTps modes.

• Programmable DFE length: 1, 5, or 12 taps
– Variable AGC amplifier
– Dynamic peaking control
– Programmable driver launch levels
– On-chip 100 Ω termination

• Power supply: VDN (nominal): 0.8 V, HSSAVDD1/2 (nominal): 1.5 V, VIO (nominal): 1.1 V

• Multiple Link configurations

– 1:16 lane bidirectional link
– 2:8 lane bidirectional links
– 1:8 lane bidirectional link with additional 2:4 lane bidirectional links

• Asynchronous clock-data recovery.

• Parallel data path width support

– 2.5 GTps (Gen1) and 5.0 GTps (Gen2): 10-bit width
– 5.0 GTps (Gen3) and 16.0 GTps (Gen4): 8-bit width

• Driver impedance calibration by using an off-chip precision resistor for accuracy

• Integrated receiver AC-coupling capacitors

• Compatible with PCI Express Base Specification 4.0 supporting 2.5 Gbps, 5.0 Gbps, 8.0 Gbps, and 
16 Gbps data rates

Feed-forward equalizer

Decision-feedback equalizer
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• Support for manufacturing and system test

– Generalized scan design (GSD) compliant with manufacturing functional (macro) tests
– Full-rate PRBS built-in self-test (BIST)
– Compatible with the IBM at-speed structure-test (ASST) at the high-speed data interfaces
– Compatible with IEEE 1149.6-2003 AC JTAG
– TDR hardware support
– Insitu receiver eye monitoring hardware support

22.3 Typical Application

The IOP_X844_TOP unit is used to provide PCI Express Gen4 communication links to systems requiring this 
communications standard. Multiple IOP_X844_TOP unit instances can be employed to provide greater 
communications bandwidth. Figure 22-3 on page 295 shows an example configuration of the IOP_X-
844_TOP units in a system environment. The IOP_X844_TOP unit can support an integration count of more 
than 80 transmit/receive lanes, depending on chip periphery, I/O count, power dissipation, and other pack-
aging constraints.

The high-speed PLLs in the IOP_X844_TOP unit require a reference clock, HSSREFCLK. These clocks are 
distributed to all of the IOP_X844_TOP units by using a differential clock-tree topology. The reference clocks 
are provided by using a high-quality off-chip clock source operating at 100 MHz.

Joint Test Action Group
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Each IOP_X844_TOP unit PMA block consists of sub functional blocks known as slices. Slices are internal 
subdivisions in the core and are not visible to the core user. These slices are the PLL slice, the TX slice, the 
RX slice, and the ZCAL slice. The PLL slice implements the two HS PLLs and related logic. The TX slice 
implements one transmitter, and the RX slice implements one receiver. The IOP_X844_TOP unit PMA block 
contains one PLL slice, 16 TX slices, and 16 RX slices. 

Figure 22-3. Typical IOP_X844_TOP Unit Application 
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23. Power Management 

Like the last several POWER processor generations, the POWER9 processor uses a number of traditional 
dynamic power-savings techniques. For example, clock gating1 latches and arrays when they are not 
required to reduce peak power and, therefore, the thermal design point, also referred to as total design power 
(TDP). The POWER9 processor can also dynamically clock gate or power gate2 individual processor cores, 
or collections of cores and their associated caches when they are not being used.

Additionally, the POWER9 processor continues to support “adaptive power management” techniques to 
reduce average power and to proactively take advantage of variations in workload, environmental conditions, 
and overall system usage. The EnergyScale  firmware, coupled with the policy direction from both the 
customer and feedback from the hypervisor and operating system that is running on the machine, determine 
the modes of operation and the best power and performance trade-off to implement during runtime to meet 
customer goals and achieve the best possible performance. Like the POWER8 processor, the POWER9 
processor contains an on-chip controller (OCC) to run the EnergyScale firmware, which supports software-
requested performance states (Pstates), Idle (Stop) states, chip and system thermal management and 
protection, and power-supply current over-limit protection.

Managing the power and performance trade-off is a complex problem. There are many ways to control the 
behavior of the hardware, but these also have a number of side effects that vary based on the workload being 
processed. Because there is no single policy that can be implemented, the POWER9 processor, like its 
predecessors, supports an adaptive approach to the problem in the form of a joint hardware, firmware, and 
software solution, collectively known as EnergyScale. EnergyScale provides the mechanisms that enable the 
customer to observe the power, performance, and usage of the processors and other components of the 
system. 

23.1 Policies and Modes of Operation

EnergyScale removes the “ugly” details of a low-level hardware implementation to provide policies (opera-
tional modes) that allow the customer to achieve the required level of power and performance efficiency 
within specified bounds. Implementations differ depending on which hypervisor is running on the system: 
Power KVM or PowerVM.

The POWER9 chip supports multiple power management choices for system operation, which can be 
selected by the customer depending on the situation at any given time or for a particular datacenter’s 
constraints.

The POWER9 power management supports IBM’s second generation of Workload Optimized Frequency 
(WOF), a mechanism where the OCC can take advantage of the available socket power to increase 
processor core frequency. The OCC power-management firmware components consider, in “real time”, 
factors such as workload intensity, Pstates in use across the chip, and powered-off cores to boost the 
maximum allowed frequency within the socket power, electrical current, and thermal budgets. 

1. Clock gating involves deactivating clocks for portions of a circuit that are not in use. 
2. Power gating involves turning off the current to portions of a circuit that are not in use.
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23.1.1 Power Management in Linux-Based Systems (Power KVM)

OpenPOWER systems run a Linux-based hypervisor. The primary interface to EnergyScale in Linux-based 
systems is from the Linux Governor1. The following links describe the available capabilities:

• CPU frequency scaling

• The Ondemand Governor

23.1.2 Power Management in PowerVM-Based Systems

On IBM-branded PowerVM-based systems, the modes and policies provided to the customer are similar to 
previous Power systems and are described in greater detail in the following white-papers:

• IBM EnergyScale for POWER8 Processor-Based Systems

• Manual for Using WBEMCLI Tool to Fetch Flexible Service Processor CIM Data

23.2 Base Enablement Summary

Power Management consists of four major elements, each requiring a set of functions available in the hard-
ware to accomplish these elements. EnergyScale firmware requires a processor on which to run decision-
making code, a way to measure what the processor and other system elements are doing, a way to actuate 
(control) the runtime operation of the system, and a way to shut off components that are not currently being 
used.

23.2.1 On-Chip EnergyScale Microcontroller

Real-time monitoring and decisions must be made to optimize the power and performance of the system 
while maintaining safe operational parameters for the chips and the other system components. To accom-
plish this, a dedicated on-chip microcontroller (OCC) is included on the POWER9 chip. This is an embedded 
PPC-405 core that runs at ¼ of the nest frequency (typically between 400 - 600 MHz). The OCC complex 
also contains local SRAM, access to system DRAM memory, and access to on-chip SCOM (clocks-running 
scan communication) registers via the on-chip pervasive control bus (PCB) network. 

23.2.2 Measurement Capability

To make intelligent decisions, the OCC must be able to measure the state of the system during runtime. 
Sensors embedded in the system components (processor chips, memory chips, power supplies, and so on) 
enable access to various aspects of the system components:

• Temperature

• Power (voltage and current) 
– Analog sampling on the various voltage rails
– Note that the POWER9 processor does not include digital power proxy (per-core power estimation 

circuitry)

• Activity metrics
– Utilization, usage, and performance

1. The Governor is the component of Linux software responsible for managing the work allocation, power, and performance of 
the microprocessor cores.

https://wiki.archlinux.org/index.php/CPU_frequency_scaling
https://wiki.archlinux.org/index.php/CPU_frequency_scaling
https://www.kernel.org/doc/ols/2006/ols2006v2-pages-223-238.pdf
https://www.kernel.org/doc/ols/2006/ols2006v2-pages-223-238.pdf
http://www.ibm.com/common/ssi/cgi-bin/ssialias?subtype=WH&infotype=SA&appname=STGE_PO_PO_USEN&htmlfid=POW03125USEN&attachment=POW03125USEN.PDF#loaded
http://www.ibm.com/common/ssi/cgi-bin/ssialias?infotype=SA&subtype=WH&htmlfid=POW03127USEN#loaded
Static random access memory

Dynamic random access memory

Scan communications
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These are outlined in more detail in Section 23.5.2 Sensors on page 305.

23.2.3 Dynamic Voltage and Frequency Scaling (DVFS) 

On PowerVM-based systems, EnergyScale firmware chooses the optimal frequency and voltage during 
runtime in response to the workload running and the policy selected by the customer.

Linux-based systems use power/performance states (Pstates) as an abstract representation of frequency and 
voltage on a per-thread basis. EnergyScale firmware must then combine the “votes” in an “auction” process 
to choose the optimal operating point.

23.2.3.1 Pstates

Pstate requests are represented as an 8-bit unsigned value, where Pstate0 is FMAX at VMAX supported for the 
core on this particular system and chip sort point. Each increase in Pstate request value represents a drop in 
frequency of 16.67 MHz assuming a 133 MHz reference clock input, meaning 4.2 GHz of Pstate space can 
be regulated in theory. For each of the discrete Pstates, EnergyScale calculates values derived from manu-
facturing test characterization data.

23.2.3.2 Actuation

DVFS involves more than changing the frequency and voltage to a processor. To change Pstates, Energy-
Scale firmware must control analog iVRM tune settings for VDD (based on maximum current ratios) and 
manage resonant clocking mode and sector buffer strength settings for the clock grid and voltage droop 
monitor compare and threshold settings.

To accomplish DVFS, the following actuation is required:

• Processor core frequency control

• External voltage regulation module (VRM) control

• Internal voltage regulation module (iVRM) control

• Pstate clipping function to enforce a power cap and support deterministic workload optimization

23.2.3.3 Instrumentation

 To perform DVFS intelligently and safely requires the following:

• Thermal measurement to know if thermal constraints are being maintained

• Power measurement to know how power supplies (either current or power) are performing

• Power measurement distribution to allow all chips in a system to have access to measurements

• Activity counters to gain insight in the workload characteristics to make good frequency choices

Coordination of all the measurements within socket constraints of power delivery and thermal limits requires 
the use of a highly programmable OCC complex.
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23.2.4 Processor Idle (Stop States)

To enter the processor idle state, the following elements are required:

• Stop instruction
– Executed by the software running on each thread of the processor core
– Requests entry into a specified Stop level via the PSSCR
– Stop level specifies the allowed wakeup latency and dictates the amount of power saved

• Coherently disconnect cores and also their caches from the SMP Fabric

• Clock and power gating in response to executing the Stop instruction on all threads of the core

• Restoration of cores and caches to operational mode in response to wakeup events (interrupts)

These elements with their underlying functions are further broken down to elements that are core centric and 
chip centric.

23.3 Feature Summary

A few strategic design changes were made in the POWER9 chip to provide additional high-value power 
management capability. These features include:

• Workload optimized frequency support:

– Deterministically increase the frequency (and performance) of the processor based on the combined 
power consumption of the workloads running on the cores of each processor chip.

– Hardware includes higher-priority communication channels between on-chip microcontrollers.

• Stop states for idle cores (similar to the x86 notion of C-states):

– Replace the doze, nap, sleep, winkle instructions, and their fast and deep variants, which were pres-
ent in previous POWER processor chip architectures.

– Support a set of numbered stop levels, each with increasing power savings and exit latency.

– Enable a core instant-on mode, supporting a rapid exit from a core powered-off state (for example, 
about 250 ms).

– Enable lighter guest or OS-level stop states, without incurring the latency of state loss and restore.

• Dynamic I/O bus width modes:

– Adapt to periods of lower activity or phases of low-system usage, especially in a cloud environment.

– Adapt to periods of lower link activity or phases of low-system utilization:

— Fabric links dynamic 2-byte mode for systems with 4-byte links

— NVLink 1/8 mode

— PCIe ×1 mode capability (requires device driver and system software support)

• Fully programmable PowerPC-lite Engine (PPE) instances:

– This new design for the POWER9 chip is an embedded PowerPC core based on a subset of the  
PPC405.

– Distributed throughout the chip in proximity to localized power and performance management func-
tions:

Operating-system
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— Off-loads the lower-level power management functions, replacing previously fixed-state 
machines.

— Enables more flexibility to work around unforeseen problems without requiring a hardware 
change.

— Implements improved mechanisms and algorithms.

23.4 Power Management Infrastructure

The POWER9 processor does not support per-core frequency control because of physical chip layout and 
wiring constraints. Instead, SMT4 processor cores are arranged in groups of four, along with their respective 
L2 and L3 caches, into a structure known as a Quad. The frequency is managed at the Quad level. This 
means DVFS must be managed at a Quad level based on the fastest Pstate request of the four cores that 
occupy the same Quad. Independent per-core voltage control is therefore only possible when a core enters a 
Stop state and is clocked off. Otherwise, the voltage and frequency of all cores in the Quad must track in 
unison. When a core enters a Stop state and is powered off, its L3 cache remains active until all four cores in 
the Quad enter into a sufficiently deep Stop state at the same time.

Likewise, within a quad, pairs of SMT4 cores (or each SMT8 core) share an L2 and L3 cache. The L2 cache 
can only be clock gated if both cores using that L2 cache enter a Stop state that will allow it.

23.4.1 Quad Voltage and Clock Domains

The Quad voltage control can be visualized as shown in Figure 23-1.

A more detailed visualization of the Quad with power management related infrastructure, as well as clock and 
voltage domains is shown in Figure 23-2 on page 302. Each Quad is replicated six times on the POWER9 
chip and contains five synchronous chiplets (four core chiplets plus one cache chiplet). Each core chiplet 
contains four SMT threads. The cache chiplet contains three clock grids, one full-speed grid for each L2 
cache unit, and one half-speed clock grid shared by both L3 cache domains. Each of the two instances of L2 
and L3 cache domains are functionally dedicated to a core pair. Each pair of physical core chiplets can 
appear to software as either a single SMT8 core or a pair of SMT4 cores depending on which POWER9 chip 
part was manufactured. In all chip configurations, the physical SMT4 core chiplets are clocked and powered 
off independently. 

Figure 23-1. Quad Voltage Control 
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The POWER9 processor implements a hierarchical power-management solution. Power Management 
controls are applied at the lowest level possible to allow the greatest flexibility and to reduce overall 
complexity of the hardware design.The hypervisor runs Energy Management algorithms controlling power 
and performance of the cores at the partition and micropartition level by requesting Pstates and Stop states. 
The OCC manages controls at the processor chip and memory level. In general, power management hooks 
exist inside the processor core itself, inside the Quad, in the chip-level “nest” unit level, and at the chip level. 
This hierarchy affects how the features are implemented and therefore, laid out in the SCOM registers. For 
example, internal voltage and power gating can be controlled at both the core and Quad level (the external 
voltage level continues to be shared at the chip level), frequency at the Quad level, and software-directed 
modes and instruction throttling controls inside the core itself. 

Figure 23-2. Detailed Quad Voltage and Clock Domains 
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23.4.2 On-Chip Microcontrollers

Figure 23-3 is an abstract visualization of the power management-related hardware on the POWER9 chip. 
Shown are the twenty-one instances of the PPE plus the OCC microprocessor, that together enable the 
power management functions. The IO-PPE and SMP Fabric PPE are also tasked to do other non power-
management related functions; as well as the self-boot engine (SBE), which is responsible for IPL of the chip 
and for chip access security during runtime.

Figure 23-3. High-Level Diagram of POWER9 PPE Instances  
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23.5 Chip Hardware Features 

23.5.1 Communication Paths for Firmware

• Dedicated special wakeup bit per core and cache chiplet for four different firmware components

• EnergyScale firmware communication 

– Four independent messaging queues (up to 64 bytes each) in the OCC SRAM, intended to be used 
by the hypervisor and service processor firmware to communicate with the OCC via the respective 
SCOM operations.

– OCC is attached to the on-chip pervasive PCB network, enabling the OCC firmware to access the 
various functional units on the chip.

– OCC firmware accesses the controlled regions of system memory via the on-chip fabric.

– CME firmware communicates with the hypervisor by writing the Power Management Status Register 
(PMSR), which is available to the hypervisor as a special purpose register (SPR). See 
Section 23.5.8.3 Power Management Status Register (PMSR) on page 312 for more information.

– The hypervisor communicates to the EnergyScale firmware by writing the Power Management Con-
trol Register (PMCR) SPR (for example, Pstate requests). See Section 23.5.8.1 Power Management 
Control Register (PMCR) on page 312 for more information.

Figure 23-4. OCC Complex 
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23.5.2 Sensors

This section describes various power management sensors.

23.5.2.1 Analog On-Chip Thermal Sensor (OCTS)

• Reduced set of analog thermal diodes available as on-chip thermal sensors (OCTS), available only via 
C4s.

• Only used for calibration of the DTS during manufacturing test.

23.5.2.2 Digital Thermal Sensor (DTS)

• Diode bandgap design with built-in A/D converter to provide digital readout.

• Sensor collection macro converts to °C on read (using calibration settings from manufacturing test that is 
loaded during IPL).

• Two implemented per core chiplet; two implemented per cache chiplet; three in the nest region at the chip 
level.

• Available via SCOM during runtime, used by the OCC to safely implement DVFS and to protect the chip 
from over-temperature conditions. Thirty-two SCOMs are required to access all the chiplets (24 core + 
6 cache + 2 nest chiplets).

• Not available to CME; only available to OCC, SBE, or the service element 

• No automated hardware thermal over-temperature protection.

23.5.2.3 Voltage Droop Monitor 

• The voltage droop monitor (VDM) includes a detection circuit that monitors deviation of the local power 
grid from a target voltage. The VDM is configurable to indicate one level above and three levels below that 
voltage.

• The VDM is implemented on the core VDD and cache VDD power grids: one per core chiplet and one per 
cache chiplet; five instances per Quad region.

• The VDM allows for guardband reduction via DPLL frequency feedback and as a protection mechanism 
from sudden voltage droop excursions.

Digital phase-locked loop
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23.5.3 Dedicated Activity/Event Counters

23.5.3.1 Processor Core EMPATH Counters 

• Dedicated to power management firmware, not shared with the performance monitor unit (PMU).

• Used for processor and memory usage measurement to direct power and performance trade-off deci-
sions and the selection of appropriate power-management techniques.

• Addressable by the hypervisor as SPRs or to EnergyScale firmware as SCOM registers.

• Free-running (not cleared on a read) and wraps (roll over) upon reaching the maximum value, to support 
noncritical timed access and use by multiple firmware entities. 32-bits wide, with pre-counters where nec-
essary for high-frequency or multiple events, to ensure roll-over occurs in more than one second.

– Firmware reads these registers, and therefore must sample these registers twice and subtract the 
values to determine the elapsed count after detecting and accounting for the wrapping in the calcula-
tion. 

• The following counters are important inside the processor core:

– For per-core accounting: 
— Raw cycle count
— Stall counters (workrate busy and finish)
— Two programmable memory subsystem hierarchy counters
— System memory (DRAM) access counter

– For per-thread accounting: 
— Active run cycles (how often the operating system sets the CTRL run latch, indicating that active 

work is being processed off the run queue)
— Instruction dispatch
— Instruction completion
— System memory (DRAM) access counter

23.5.3.2 Nest SMP Fabric Usage Counters

• Implemented as SCOM registers that can be accessed by the OCC

• Over-commit rate/retry counters in the OCC SMP Fabric attach macro

• Other counters embedded in the SMP Fabric 

• Fabric PPE can summarize the SMP Interconnect activity for sampling by the OCC complex
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23.5.4 On-Chip Microcontroller Complex

The OCC complex provides on-chip microcontrollers along with a communication support infrastructure that 
enables them to communicate to other components on the chip and in the system. 

23.5.4.1 On-Chip Microcontroller (OCC)

The OCC includes:

• An embedded PowerPC 405 with 16 KB instruction and data caches.

• On-chip 768 KB SRAM tank.

• Runs at ¼ frequency of the Nest interconnect.

• Access to system DRAM memory via the Nest Fabric for instruction and data area overflow (firmware 
managed).

• Access to full chip pervasive infrastructure (PIB/PCB) via a bridge from the native 405 processor local 
bus (PLB). The PLB is termed the on-chip controller interconnect (OCI) on the POWER9 chip.

23.5.4.2 General Purpose Engines (GPEs) for OCC Function Off-Load

• Two dedicated instances of the PPE are used to off-load mundane tasks. They are necessary to free up 
the OCC to run its real-time operating system and to properly protect and optimize system functionality.

• One GPE is targeted to run operations as scheduled by OCC firmware as part of the real-time control 
loop (for example, sensor collection from each chiplet or selected actuation functions).

• One GPE is targeted to run operations as scheduled by OCC firmware as part of the real-time control 
loop or for background tasks for data collection and other OCC support functions (such as, performance 
monitor PMU-let collection and atomic memory counter updates, memory thermal-sensor collection, and 
so on).

• GPE programs are OCC SRAM resident. Data areas can be in either SRAM or system memory.

23.5.4.3 GPEs for Chip-Level Function Management 

Two GPEs that are also part of the OCC complex are dedicated to support particular chip-level power 
management functions.

S-GPE: This third PPE instance in the OCC complex primarily manages entry and exit from Quad-level Stop 
states. When the Stop state powers off an entire Quad chiplet, that state must be restored in the form of a 
mini-IPL of the cache chiplet, including restoration of the CME code image. 

P-GPE: This fourth PPE instance in the OCC complex manages Pstate transitions (Quad DVFS) in response 
to processor core Pstate requests, protection functions (system power capping, thermal over-temperature 
limit, power supply over-current limit), and to support OCC-directed WOF direction. This PPE also manages 
the sequencing of external VRMs and other devices by driving high-level SPI interface protocols. Other auxil-
iary functions can share this PPE as additional threads of execution (for example, performance monitoring 
support).
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23.5.5 Dedicated Core Management Engines (CME) 

The dedicated core management engine has the following features:

• One PPE instance per core chiplet pair (two per Quad) to manage local power management functions 
and algorithms.

• 32 KB local SRAM with block-copy engine access to memory via the NCU and L3 cache unit, which pro-
vides access to the SMP interconnect.

• Runs at ¼ frequency of the L3 cache (1/8 speed of the processor cores).

• Necessary for “core instant-on” to minimize Stop state transition latency for levels below Level 8.

• Responds to changes to PMCR and PSSCR SPRs and can update PMSR SPR back to the cores.

• Off-loads intensive chores from the centralized system power controller:
– Core chiplet Stop state sequencing
– Localized quad (core and cache chiplet) Pstate management

23.5.6 On-Chip Accelerators

23.5.6.1 Chiplet Pervasive-Power Management (PPM) Extension 

Macros are associated with each core and cache chiplet to enable the CME and OCC Complex to communi-
cate and control the Quads. In addition, it provides access to the chiplet pervasive network control registers in 
the neighboring PCB-slave macros associated with the Quad.

PFET Power Gate Control State Machine:

• Necessary for di/dt management of core and cache chiplet power-on and off transitions

• Used for entry and exit of iVRM regulation mode

• Programmable 8-step on and 8-step off sequences for full on/off 

• Subset used for entering and exiting iVRM enablement (for example, enter and exit internal regulation)

PCB-Network Interrupt Generation Mechanism:

• Provides communication mechanism to chip-level OCC-complex, either:

– Used by code running on CME, or

– Automatically generated by hardware for the unlikely case of CME errors or for Quad wakeup events 
that require Stop-GPE assistance 
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23.5.7 Actuator and Control Features 

23.5.7.1 On-Chip Frequency Control

• Frequency can be varied at the Quad level (four cores plus the cache chiplet) and not at the core level 
because of the POWER9 chip physical infrastructure.

• The DPLL has a requested dynamic frequency range from 0.5 GHz to greater than 5 GHz. Note that the 
full range is not supported or achievable by every chip or every system.

• Reference clock mode saves clock grid power when the core or cache chiplets are in a clocked-off but still 
powered-on idle state.

23.5.7.2 External (Off-Chip) VRM Voltage Control

Connectivity from the POWER9 chip to the external VRMs via off-module C4s is supported. 

• Access to an I2C master is provided.

• Two industry-standard PMBus (AVSBus) interfaces are available:  
http://pmbus.org/Specifications/CurrentSpecifications

– Low-level AVSBus communication protocol is handled by the P-GPE or OCC firmware. 

– VRMs can return a status frame for command confirmation of VID write validity.

These connections are used to send VID codes to VRMs associated with a given chip. Actual connectivity is 
dependent on system implementation.

– VDD (core and cache logic) voltage targets (required for DVFS)

– VDN (nest logic, optional control that is based on the service element structure)

– VCS (SRAM and array in the cache and nest domains) voltage targets (optional control that is based 
on the service element structure)

External VRMs that use load-line sensing, automatically ramp each voltage rail to the given target without 
stepping assistance from the POWER9 chip or firmware.

23.5.7.3 External Sampling

When connected, the AVSBus or I2C interfaces can also be used to read voltage, current, and VRM status.

An industry-standard SPI bus (via off-module C4s) can be connected to a system-level analog-to-digital 
converter that enables OCC firmware to read the current and voltage (such as, power) sampled on various 
voltage rails in the system. Low-level SPI communication protocol Is handled by hardware.

http://pmbus.org/Specifications/CurrentSpecifications
Voltage identification
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23.5.7.4 On-Chip Voltage (iVRM) Control

Per-Quad DVFS is enabled by on-chip voltage regulation of the VDD rail. Note that VCS is not power gated. 
Each of the five chiplets in the Quad has an internal VRM (iVRM) with controls to enable their proper opera-
tion. Because all chiplets in the Quad share the same frequency, during runtime operation the iVRMs must be 
set to the same value. The iVRMs can potentially be used for a Stop state to drop a clocked-off core chiplet to 
VMIN. The iVRMs enable Quads requesting a lower-performance Pstate to have a voltage reduction and the 
accompanying drop in power, despite the external rail being at a higher voltage because other Quads on the 
chip are requesting a higher-performance Pstate.

23.5.7.5 Core and Cache Chiplet Power-Down

P-FET devices are used as switches to independently power off core and cache chiplets during runtime in 
response to all threads on a core or in the Quad executing the Stop instruction. The power-down and power-
up sequences on both VDD and VCS follow an 8-step ramp process to avoid injecting droop or noise on the 
neighboring power grids.

23.5.7.6 Resonant Clocking Mode Support

For the high-speed core and L2-cache clock grids, a resonance mode is provided to save active clock grid 
power. In this mode, on-chip inductance on the grid is tuned to minimize the power consumed. Power-
management firmware must tune these controls across certain DVFS ranges. Pulsed clock mode and clock 
sector strengths are also controlled.

23.5.7.7 Voltage Droop Protection

A voltage droop monitor (VDM) is instantiated per core and in the cache region of the Quad. To protect circuit 
margin in the case of an unexpected instantaneous drop in voltage, the DPLL can be configured to reduce 
the operating frequency to preserve guardband. In response to detection of a small droop event, the DPLL 
can be configured to reduce a small percentage of the operating frequency, which also serves to mitigate via 
a more timely reaction should a future larger droop also occur. In response to a large droop event, the DPLL 
can be configured to reduce a larger percentage of frequency. Lastly, if a droop event begins to approach 
operational VMIN in an extreme case, the core can be configured to temporarily throttle back instruction fetch 
and issue in the processor cores as an emergency protection measure. 

With this detection and protection, the POWER9 processor can ship at higher operational frequencies while 
still preserving guardband for safe, reliable operation. The definition of small, large, and extreme droop are 
programmable in the power management logic. Droop events are expected to be rare and the protection 
mechanisms do not measurably affect performance because they impact performance by only a fraction of 
one percent.
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23.5.7.8 OCC Hang Detection Hardware

An OCC heartbeat register is implemented per quad, as a timer that must be reset periodically. If the OCC 
becomes nonresponsive and the hardware timer overflows:

• A malfunction alert can be generated to the processor cores to communicate lack of OCC health to the 
hypervisor firmware running on the POWER9 cores.

• A local external interrupt is generated to the P-GPE so that it will enter safe mode (reduced frequency 
with a potential reduction in voltage, and if necessary, some amount of instruction throttling) while the 
OCC is unavailable to manage the chip’s health.

23.5.7.9 Active Power-Down of Unused I/O PHYs

The POWER9 processor supports static disablement of active power for unused PHYs and I/O clocks in 
systems where an interface is not populated. 

Elastic-interface buses support hardware driven dynamic spare lane power down. If another lane on the inter-
face fails, these spare lanes are immediately powered up and ready for use.

23.5.7.10 Partial Good and Runtime Deallocation 

The POWER9 processor supports static partial-good capability. This means that during IPL, deconfigure bad 
cores or their associated caches that have manufacturing defects and prevent their enablement. The 
POWER9 processor supports dynamic deconfiguration of cores and quads should they not all be licensed for 
use during runtime. In PowerVM-based systems, the POWER9 processor supports runtime de-allocation of 
bad cores and quads, which permanently deconfigures them in response to a GARD operation that is caused 
by a detected hardware error. Bad or deconfigured cores are considered to be in the deepest Stop state (Stop 
level 15), such that the other SMT4 or SMT8 core in the pair or the entire Quad can enter deeper states if 
required. As many as possible of the deconfigured cores and quads are turned off to save power:

• Deconfigured single cores are completely power gated.

• Deconfigured core pairs drop to slightly lower power stopping the associated L2 clock grid and powering 
off both cores.

• Deconfigured quads (including four-core chiplets, their cache chiplet, and the SMP fabric interface) are 
completely power gated. 
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23.5.8 Architected Control Registers

23.5.8.1 Power Management Control Register (PMCR)

The PMCR is the mechanism used by the hypervisor firmware (for example, PowerKVM) to request Pstate 
changes. The 8-byte register is implemented as a generic special purpose register per core. The format and 
content of the register is defined by firmware and is intended to contain Pstate requests along with other 
performance and power optimization hints, such as workload priority and quality of service expectation, 
dependent on the version of firmware using it. 

Note:  The layout of this register differs from the POWER8 definition. Except for Pstate0, perform a two’s 
complement of the POWER8 Pstate value and multiply it by ‘2’ to convert it to the equivalent POWER9 Pstate 
value.

Table 23-1 describes the PMCR. 

23.5.8.2 Power Management Idle Control Register (PMICR)

The PMICR is not implemented on the POWER9 chip. The function is subsumed by the new per-thread 
PSSCR Register, which is defined in the Stop instruction architecture.

23.5.8.3 Power Management Status Register (PMSR)

The PMSR enables Energy Management firmware to communicate to the hypervisor running on the 
POWER9 core. The 8-byte register is implemented as a generic special purpose register with only one 
instance per core. The format and content of the register is defined by firmware to communicate metrics for 
energy efficiency and Quality of Service, such as the actual Local and Global Pstates that are achieved.

Note:  The format of the upper word of this register is unchanged from the POWER8 definition and the lower 
word is defined for the POWER9 core.

Table 23-1. PMCR Description (Version 0x1)  

Bits Field Description

0:7 UpperPS

Upper Pstate request (for future enhanced Pstate support).
This field is ignored in Version 0x1of this register format.
Note:  Unlike in the POWER8 core, separate Global Pstate requests are not supported in the POW-
ER9 core.

8:15 LowerPS

Lower Pstate request.
In this field, x‘00’ represents the fastest frequency supported and subsequent increasingly positive 
values (x‘00’, x‘01’, x‘02’, …) are decreasing frequency in 16.667 MHz steps from the fastest fre-
quency as the base.
In Version 0x1 of this register format, this field provides both the Local and Global Pstate request.
Note:  For comparison, the POWER8 processor used increasingly negative values (x‘00’, x‘FF’, 
x‘FE’, …), in 33.333 MHz steps in this field and in the previous field.

16:59 Reserved
Reserved for future enhancements. 
Note:  In version 0x1, these bits are ignored and must be all 0’s.

60:63 Version

Indicates the format of the fields in this register expected by firmware.
x‘0’ POWER8 format, not supported but treated the same as version x‘1’ by the POWER9 core.
x‘1’ POWER9 format, using only bits 8:15.
x‘2’ Future extensions for enhanced Pstate support.
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Table 23-2 describes the PMSR. 

Table 23-2. PMSR Description  (Sheet 1 of 2)

Bits Field Description

0:7 Global Actual Pstate Global Actual Pstate.
Represents the Pstate value that pertains across all cores on the chip and represents the maximum 
value currently possible.
The value x‘00’ represents the fastest frequency supported and subsequent positive values are 
decreasing frequency in 16.667 MHz steps from the fastest frequency as a base.

8:15 Local Actual Pstate Local Actual Pstate.
Represents the presently operating Pstate value for this core. This value is less than or equal to the 
Global Actual Pstate.
The value x‘00’ represents the fastest frequency supported and subsequent positive values are 
decreasing frequency in 16.667 MHz steps from the fastest frequency as a base.
Engineering Note:  For the POWER9 core, the Local Actual Pstate present in the core where the 
PMSR is accessed, also pertains to the three other cores associated with the Quad where the core 
exists.

16:23 Pmin Pstate Minimum.
Reads from this field return the presently established minimum Pstate for this core as set by the 
platform. This value can change autonomously based on the current policy in place and the physical 
constraints of the platform.
The value x‘00’ represents the fastest frequency supported and subsequent positive values are 
decreasing frequency in 16.667 MHz steps from the fastest frequency as a base.

24:31 Pmax Pstate Maximum.
Reads from this field return the presently established maximum Pstate for this core as set by the 
platform. This value can change autonomously based on the current policy in place and the physical 
constraints of the platform.
The value x‘00’ represents the fastest frequency supported and subsequent positive values are 
decreasing frequency in 16.667 MHz steps from the fastest frequency as a base.

32 PMCR Disabled SPR-Based Energy Management Disabled.
Reads from this field indicate whether the platform has disabled the PMCR SPR to control the core 
PState.
0 PMCR enabled.
1 PMCR disabled.

33 Safe Mode Safe Mode.
Reads from this field indicates whether the chiplet has been put into a fixed safe mode (frequency 
and voltage setting), where Pstate requests have been suspended due to errors or for externally 
forced reasons (such as, firmware updates).
0 Not in safe mode.
1 Safe mode engaged.

34 IVRM Allowed Internal Voltage Management Allowed.
Reads from this field indicate whether this system allows the chiplet internal voltage regulation to be 
enabled for localized voltage control.
0 iVRMs are never used for regulation on this system.
1 iVRMs are allowed to regulate the voltage on this system.
Engineering Note:  Generally, this bit reflects the enablement by platform firmware upon IPL. How-
ever, in PowerVM systems, this bit can change due to errors with the iVRM during run time (loss of 
reference voltage and internal errors). If these types of errors occur and checkstops are not pro-
duced, the platform disables the iVRMs and continues running. If checkstops are produced and 
error analysis indicates that the iVRMs were the cause, the platform can re-IPL with the iVRMs dis-
abled as the means of recovery action.
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23.5.8.4 Power Management Memory Activity Register (PMMAR)

The PMMAR is not implemented on the POWER9 processor. 

23.5.9 Architected Idle Modes (Stop States)

A new Stop instruction has been added to the POWER ISA for the POWER9 processor. The Stop instruction 
replaces the previously architected nap, sleep, and winkle (and unimplemented doze) instructions that are not 
supported by the POWER9 processor. This instruction works in conjunction with the per thread Power Save 
Status and Control Register (PSSCR). See the Power ISA (Version 3.0B) for details.

With this instruction, the operating system or hypervisor can stop a nonrequired thread from occupying the 
core pipeline. The hypervisor can disable the thread to free up core resources to the remaining threads or 
enable the core to switch SMT modes. The chiplet powered-off states can also be used in PowerVM-based 
systems to apply concurrent patches and to perform runtime array repair when required.

When all threads on a core enter the Stop state, the entire core enters into a Stop state; thereby, saving addi-
tional power. This enables varying levels of power savings, each with an increasing amount of power saved 
but higher latency to resume operation. Sixteen Stop levels can be requested, defined as four ranges of state 
loss each, with four levels of “deepness” encoded in the requested Stop level:

• Level 0 - 3: Lowest latency. There is no state loss when PSSCR[ESL] = ‘0’. This can be executed by the 
operating system. The SMT thread switch is selectable (via PSSCR[ESL]) when executed by the hypervi-
sor. These levels can be configured to wake up to the next instruction or to SRESET when executed by 
the hypervisor (like previous generation idle states). An operating-system request does not involve the 
hypervisor. Timing facilities are maintained. The hypervisor can convert an operating-system request into 
an interrupt back to the hypervisor. Level 1 is equivalent to the legacy nap mode if executed by the hyper-
visor and doze mode if executed by the operating system. Level 2 clocks off the entire core, thus it is 
equivalent to the legacy fast-sleep mode. 

The POWER9 processor does not support level 3. Level 3 is reserved as a placeholder to additionally 
drop the core to VMIN (minimum operational voltage) if iVRMs are enabled in future system designs. 

• Level 4 - 7: Some hypervisor state loss is possible; therefore, its execution is only supported by the hyper-
visor. Timing facilities are maintained. Because PSSCR[EC] must be set to ‘1’, these levels (like legacy 
stop states) always wake up to an SRESET vector and not the address of the exception that caused the 
wakeup. Level 4 is similar to the legacy deep-sleep state that powers off the POWER9 core for the chip, 
with the exception that timing facilities are preserved and the L2 cache also remains running. 

35 IVRM Enabled Internal Voltage Regulation Enabled.
Reads from this field indicate whether the chiplet internal voltage regulation is active for localized 
voltage control. Note this is a snapshot taken when the PMSR was last written.
0 iVRMs are not currently regulating voltage for this core.
1 iVRM regulation is enabled for this core.

36:59 Reserved Reserved for future enhancements. Set to all 0’s.

60:63 Version Version of PMCR (and PMSR) format supported by the current version of EnergyScale Firmware 
running on this system.

Table 23-2. PMSR Description  (Sheet 2 of 2)

Bits Field Description
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• Level 8 - 11: Quad-level states. All hypervisor states, including timing facilities might be lost. Level 8 
clocks off the powered-off cores’ L2 cache so that it has no state equivalent to previous POWER proces-
sors. Level 11 powers off the entire Quad, which is comparable to the legacy deep-winkle state. Level 9 or 
10 clocks off but does not power down the entire Quad, which is comparable to the legacy fast-winkle 
state and is not supported because the power and latency tradeoff does not warrant its use.

• Level 12 - 15: Reserved for future chip or system idle states.

Not all possible Stop levels are supported by EnergyScale firmware. If a nonimplemented Stop level is 
requested, the POWER9 processor enters the next lower implemented state.

Software requests a Stop state per thread. If any thread is still running, the core cannot enter a Stop state.   
The core only requests a Stop state based on the lowest Stop state of all its threads (for example, on an 
SMT4 normal core, if three threads request Stop state 15 and one thread requests Stop state 2, the core 
enters Stop state 2). The CME receives the Stop request and performs the entry (turn off the requested 
clocks and/or power). The CME only controls the core chiplet Stop transitions.  In Stop states greater than 
seven, the CME must ask Stop-GPE (in the OCC complex) for assistance to perform Quad-level Stop states.  

Idle state sequencing is almost completely managed by PPE microcode on the POWER9 core instead of 
hardware state machines.  

23.5.9.1 Wake-Up Events

When PSSCR[EC] = ‘0’, any interrupt causes an exit from the STOP state. 

When PSSCR[EC] = ‘1’, only interrupts enabled by PECE fields in the LPCR causes a STOP exit. 

When PSSCR[ESL] = ‘1’, any hypervisor state loss that is required for the core to resume execution is first 
restored by the hardware before an SRESET is seen by the hypervisor.

23.5.9.2 State Loss and Restoration

Only the hypervisor can initiate state loss with PSSCR[ESL] = ‘1’. The hypervisor is responsible for saving 
any nonhypervisor thread context (such as, GPRs, VSRs, FPRs) that must not be lost upon execution of the 
Stop instruction and then restore those values after wakeup. On the POWER9 core, the only state that can be 
lost for Stop levels less than four, when PSSCR[ESL] = ‘1’ are the following SPRs: CR, FPSCR, VSCR, XER, 
DSCR, AMR, IAMR, UAMOR, AMOR, DAWR, DAWRX. 

Note:  Although some minimal hypervisor state (AMOR, DAWR, DAWRX) might be lost, the POWER9 core 
reports SRR1[46:47] as ‘10’; otherwise, the hypervisor cannot distinguish between states when the Timebase 
is preserved (Stop levels 4 - 7) versus lost and requiring restoration. This deviates from the description in the 
Power ISA (Version 3.0B), which states that any hypervisor state loss should be reported as ‘11’. 

Before executing the Stop instruction for levels greater than three, the hypervisor is responsible for calling a 
Stop-API supported by the power-management firmware for saving a subset of hypervisor SPR values 
necessary to properly execute the SRESET interrupt vector immediately upon wakeup. These values are 
restored during wakeup by the power-management infrastructure before the SRESET interrupt is taken by 
the hypervisor, appearing as if they were not lost. These registers typically include SPRs important to the 
initial processor context such as the HRMOR, LPCR, and HSPRG0. The PSSCR and LPCR are required to 
be saved by the hypervisor via the Stop API for Stop levels greater than three. Otherwise, after a special 
wakeup the following scenarios might occur:
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• An unintended Stop11 can result while in the Stop state because PSSCR scan flushes to Stop level 15 by 
default. 

• The wakeup conditions might no longer be honored.

Although not necessarily required for the hypervisor to resume operation, other registers that are supported 
by this mechanism include the HMEER, PMCR, HID, MSR, and DAWR. These SPRs, handled by the 
StopAPI, are only restored for Stop levels greater than three (for example, calling the StopAPI to save DAWR 
does not restore it for Core Stop levels less than or equal to three).

For Stop states less than eight, the timing facilites (TB, VTB, DEC, PURR, SPURR, HDEC) are preserved, 
including any state required to maintain operation of those facilities, (such as, RWMR, TFMR, CTRL). Addi-
tionally, the following POWER9 registers are also preserved for states less than eleven: DPDES, SPRC, 
SPRD, HMER, HMEER, PSSCR, PMSR, PMSCR, PMCR, L2QOSR. 

For Stop states greater than seven, the timer facilities might be lost. Therefore, the hypervisor is responsible 
for restoring the timebase and associated timer-based registers after wakeup, as well as all other SPR states.

The CME is responsible for restoring the core and cache scan state and SCOM values, and for causing the 
core to restore the previously listed subset of hypervisor SPRs during the wakeup (via a special “self-restore” 
step after the core is powered on). System and host firmware is also required to call an SCOM restore API for 
any SCOM registers changed during runtime that must be restored on a core or cache power-on during Stop 
wakeup.
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Table 23-3 summarizes by unit which functions in the Quad are clocked and powered off by the various Stop 
levels. 

Any Stop levels not listed in Table 23-3 are rounded down to the the next smallest numbered level (for 
example, a Stop 9 request is rounded down to Stop 8).

As per the ISA, on wakeup from a core Stop state, SRR1[46:47] on every thread indicates the amount of 
architected state lost. 

If Stop level ≥ 8, all processor states might be lost and SRR1[46:47] = ‘11’. 

Else, if Stop level ≥ 4, or if PSSCR[ESL] = ‘1’, SRR1[46:46] = ‘10’ because the timing facilities are pre-
served, but other hypervisor state loss is allowed. 

Otherwise, SRR1[46:47] = ‘01’ because the system wokeup from Stop levels < 4 and PSSCR[ESL] was 
not set to enable state loss. 

23.5.9.3 Auto-Promote of Stop Levels

The POWER9 cores does not honor the optional auto-promote feature provided in the PSSCR. The 
requested level field (PSSCR[RL]) in conjunction with PSSCR[PSLL] is always used. The values in the 
maximum transition level field (PSSCR[MTL]) and PSSCR[TR] are ignored in this design.

Table 23-3. Stop Instruction to Unit Mapping   

Stop Level Stop 0 Stop 1 Stop 2 Stop 4 and 5 Stop 81 Stop 11

VSU, ISU Instruction Stop Clock off Clock off each 
core ≥ Stop 2

Power off ≥ Stop Level 4 

IFU, LSU – –

PC, Core EPS – –

L2-EX0 – – – – Clock off if both 
corresponding 

cores in EX0 are 
≥ Stop Level 8

Powered off if 
both core pairs 
(all four cores) 

are 
≥ Stop Level 11

L2-EX1 – – – – Clock off if both 
corresponding 

cores in EX1 are 
≥ Stop Level 8

NCU-EX0, NCU-EX1
L3-EX0, L3-EX1
CME-0, CME-1

Quad EPS, DPLL

– – – – –

SRR1[46:47] ‘01’ if PSSCR[ESL] = ‘0’, else ‘10’ ‘10’ ‘11’ ‘11’

1. Currently, Stop 8 is not supported. However, it might be supported in future POWER9 designs.
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23.5.9.4 Latency and Power Savings in each Stop Level

Figure 23-5 shows the relative latency and power saving features of the various supported Stop levels. 
Latency is generally exponential with the amount of power saved; therefore, it is described with a logarithmic 
scale. These power and latency numbers are estimated targets and are subject to change. 

Figure 23-5. Supported Stop Levels  
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23.5.9.5 Stop Level Examples

Figure 23-6 through Figure 23-9 on page 320 are graphical depictions of the various stop states, using the 
high-level Quad diagram in Figure 23-3 on page 303. 

Stop states 0 - 7 affect only the processor cores. Stop 0 only stops the core from dispatching instructions. 
Stop 1 clocks off a portion of the core, and Stop 2 clocks off the entire core. Stop 4 powers off the entire core, 
but leaves the L2 cache and timebase running. Stop 3 is an optional state that might in subsequent designs 
support lowering the voltage of a clocked off core to VMIN to save additional leakage power. 

See Figure 23-6 for more information.

Stop level 8 is possible only if both cores in the pair are in at least level 8, such that the L2 cache can be 
clocked off. For this level, the Stop-GPE is invoked for assistance in controlling L2 unit clocks. The L2 cache 
unit is clocked off independently for each core pair. See Figure 23-7 for more information.

Figure 23-6. Stop States (0 - 7) 

Figure 23-7. Stop Level 8 
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Both core pairs in Stop level 8 leave the L3 cache running even though both L2 caches are clocked off (see 
Figure 23-8). 

The deepest implemented Stop level is 11. All five chiplets in the Quad are powered off. This implementation 
requires a complete IPL-like restoration of the Quad on wakeup, which includes restoration of the CME 
SRAMs (see Figure 23-9).

Note:  Deconfigured or “bad” cores are considered to be in Stop level 15.

Figure 23-8. Stop Level 8 (both Core Pairs) 

Figure 23-9. Stop Level 11 
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24. Specific Security Features

Secure boot and security capabilities in the POWER9 processor include those security enhancements made 
in legacy designs, as well as several additional features. The POWER9 design includes support for a secure 
and trusted boot of the hypervisor through a sequence of verification operations that extend the initial trust in 
the hardware and embedded firmware through the remaining firmware components and finally to the hyper-
visor itself. The security design for the POWER9 processor also includes hardware features to protect the 
processor state and customer data from unauthorized access once the system is up and running. The 
POWER9 design also adds dynamic root of trust for measurement (DRTM) support; a blacklist mechanism to 
control access to a sensitive processor state; and a capability to securely dump the processor state in the 
event of a checkstop.

Some members of the POWER9 processor family enable the optional secure memory facility (SMF). This 
function can be leveraged to create the protected execution facility (PEF). Combined with a trusted and 
protected execution ultravisor and co-requisite customizations in the hypervisor, the secure memory facility 
enables the creation of protected partitions whose memory or register state cannot be accessed by other 
partitions or by the hypervisor. The data integrity of the protected partitions are only dependent on the trusted 
ultravisor software constructs and guaranties provided by the secure memory facility in hardware. Hypervisor 
customizations are required for launching or operating with protected partitions. However, the aspect of data 
integrity is completely detached from hypervisor behavior; that is, as long as the ultravisor and hardware are 
implemented correctly, even a malicious hypervisor will not be able to extract any data from protected parti-
tions.

24.1 Secure Boot

The goal of a secure boot is to extend the initial trust in hardware and secure code to each successively 
executed firmware and software component so that a chain of trust is established all the way up to the hyper-
visor. Trusted boot refers to a secure boot process in which secure measurements of code and configuration 
are maintained, such that a third party can determine the security of the system. Secure boot and trusted boot 
capabilities included in the POWER9 design are summarized in this section. The POWER9 processor also 
supports a DRTM, or late launch, capability that allows a system to rebuild a chain of trust after the initial one 
has been broken.

24.1.1 Secure Boot Sequence

The security threat model for POWER9 systems assumes that the development and manufacturing 
processes are secure. Therefore, the hardware itself is trusted. In addition, because it is maintained securely 
from the time a system is built, certain firmware is also trusted. That firmware is the security verification code 
(what was the security ROM code in POWER8) and the self-boot engine (SBE) code. These code compo-
nents are trusted because their initial image is committed to a secure non-volatile memory (SEEPROM) 
during manufacture, and can only be modified by a secure process. The hardware and these firmware 
components comprise the initial root of trust for the system. 

The flexible service processor (FSP), on the other hand, is not trusted because it is exposed to the network 
through potentially weak passwords and to incorrect or malicious use by a sysadmin. Any host code running 
on the system that is outside the chain of trust established during boot is also not trusted in our threat model, 
including operating systems and application code running within logical partitions. Software can implement 
processes to extend trust to additional code components, but that cannot be assumed in designing the hard-
ware. 

Serial electrically erasable programmable read-only memory
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To extend the initial root of trust to the boot firmware and hypervisor, the following sequence is used:

1. FSP powers the system on, applies clocks, and then starts the SBE.

2. SBE initializes one core, then loads the bootloader and verification code from the SEEPROM.

3. SBE asserts the instruction_start signal to initiate load and verification of Hostboot on the master core.

4. Verification code authenticates the Hostboot code and then begins to execute it.

5. Hostboot code performs various boot procedures to initialize system components.

6. Hostboot code authenticates and then securely stores core power-restore images (winkle images).

7. Hostboot loads and authenticates the hypervisor, and then begins to execute it.

24.1.1.1 Code Authentication

Trust is extended from one code component to another by having the first authenticate the second. This is 
done through the use of cryptographic operations applied to the header and payload of a code container that 
contains the code to be authenticated. The container header includes a number of public keys and the signa-
ture of other parts of the container using those keys. The signature is an encrypted hash of some piece of 
data. It is authenticated by recomputing the hash, and then decrypting the signature and verifying that the 
result matches the hash. 

The authentication procedure is summarized as follows. The container is loaded into memory. The code to be 
trusted is the payload of the container. It is signed using one or more (up to three) software private keys. The 
corresponding public keys are supplied in the header, as are the corresponding signatures. Each signature is 
verified by decrypting with the public key, hashing the payload, and comparing the results of these two opera-
tions. If all valid signatures are verified, the code is authenticated with respect to the software keys. However, 
the software public keys in the header must themselves be authenticated. The header segment containing 
those is signed by one or more hardware private keys, the corresponding signatures and hardware public 
keys also being included in the header. Those signatures are verified in a similar way. Finally, the hardware 
public keys are validated by hashing them and comparing to a hash that has been placed in the secure 
SEEPROM for this purpose. Successful validation of all signatures and keys is required for the code to be 
trusted and allowed to execute.

24.1.2 Trusted Boot

The term “trusted boot’ is used to refer to a procedure that not only boots securely, but provides a means of 
securely recording the conditions and content of the boot procedure. That secure recording can later be used 
by the system to attest to the software that is currently running (and any that has been run since the last boot) 
so that a third party (called a remote party) can decide whether to interact with the system or not.

For example, a particular version of the hypervisor that is properly signed can be securely booted and used 
on many systems over some period of time. The trust in that code has to do with verifying its source, but does 
not imply correctness. If a security vulnerability is eventually discovered in that code, a new version is 
released to correct that vulnerability. Now, a third party that needs to provide sensitive information to the 
system will want to ensure that the system is running the new version of the hypervisor. Trusted boot of that 
hypervisor provides the system with the ability to securely attest to that hypervisor version number.

POWER9 systems use a Trusted Platform Module (TPM) version 2.0 to securely store the measurements 
associated with the various software components loaded during the trusted boot. The TPM contains a 
number of Platform Configuration Registers (PCRs) that can be used by firmware to securely record 
measurements. A measurement is a cryptographic hash of code or other data and is recorded in a PCR by an 
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“extend” operation to that PCR. The extend operation combines the new measurement with the previous 
PCR value to prevent insecure manipulation of these measurements. For this process to be secure, a reset to 
those PCR values must always be accompanied by a reboot of the system, and vice versa. In the POWER9 
processor, this is guaranteed by the board wiring which connects the TPM reset pin and the processor  
standby_reset pin. 

The POWER9 processor communicates with the TPM using an I2C bus that is isolated from the FSP. Firm-
ware uses that bus to send commands to the TPM, such as that for extending PCR values, and for obtaining 
a secure quote of current PCR values from the TPM. In this way, firmware maintains the PCR values based 
on configuration and code measurements that it takes during boot and beyond, and can provide those PCR 
values to a third party in a secure manner to support the remote attestation capability. The TPM can be used 
for several other security-related functions, including NV storage, random number generation, binding data 
and sealed storage. These additional features are available to software with no special hardware support on 
the processor chip. 

To support trusted boot in a multi-node environment, a secure channel between nodes is needed early in the 
boot process so that nodes can exchange cryptographic material (nonces) that can later be used for inter-
node authentication. 

In the POWER9 processor, this secure channel is provided by the A-bus connecting each pair of nodes. Each 
A-bus link has four sets of mailbox registers associated with it. One of those is dedicated to this secure 
channel function, while the other three are available for general use. Hostboot uses the secure channel to 
exchange nonces, and then sets a security bit in pervasive to disable the channel. On the POWER9 
processor, when this security bit is set, it prevents reads from the security mailbox register on all A-bus links. 
The security bit is sticky, such that once it is set, it cannot be reset by host code. 

The sequence for making use of this secure channel is the following:

1. Train the A-bus links.

2. Use the security mailbox register on each A-bus link to trade nonces.

3. Assert the security bit to disable reads from the security mailbox on all A-bus links.

4. Set IOvalid for the A-bus links.

24.1.3 Dynamic Root of Trust for Measurement 

A DRTM capability allows the system to re-establish trust after some untrusted code has been run, typically 
during the boot process. For example, the device firmware required to initialize the boot device might be resi-
dent on the device itself and not otherwise known to or trusted by the system. When this firmware runs during 
the boot sequence, the secure boot chain of trust is broken. The DRTM mechanism can then be invoked, 
causing the processor hardware to quiesce and then to come back-up through a partial re-boot in which trust 
is again established and extended to firmware and eventually to the hypervisor. The DRTM sequence can 
similarly be invoked sometime after the initial boot, when for example, a new Linux kernel is to be run such 
that its security does not depend on that of the previous version. As in the previous case, the security of the 
system after the DRTM operation should not depend on an assumption of trust prior to that operation.

24.1.3.1 DRTM Sequence

The DRTM procedure is implemented by a combination of new hardware mechanisms and changes to the 
boot firmware. The primary use case for DRTM is in booting a KVM-based system when untrusted device 
firmware is part of that boot sequence. In that case, the boot sequence proceeds as in a non-DRTM scenario, 

Inter-integrated circuit
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including initialization of the processor and its interfaces, up to the point that the hypervisor is to be loaded. 
The untrusted device firmware is then executed to initialize the boot device. HAL_boot firmware then 
performs the following sequence to initiate the late launch.

Firmware Sequence Executed by HAL_boot Running on One Core

The firmware sequence executed by HAL_boot running on one core is as follows:

1. Load Linux/KVM into memory. This is the measured launch environment (MLE) to be authenticated by the 
authenticated code (AC).

2. Load the HAL_runtime into memory. This is the authenticated code. The AC must be loaded at a memory 
location known to the secure verification code that will authenticate it.

3. Put all other cores on this chip and on other chips in the system into a quiescent state (winkle mode).

4. Quiesce the NX, VAS, PHB, NPU/GPU, and CAPP/CAPI units on all chips.

5. Stop clocks to the OCC unit on all chips

6. Set the primary late_launch bit on this chip, and the secondary late_launch bit on all other chips. These 
are bits in the security register in the pervasive unit that when set, initiate the hardware DRTM sequence. 
When either of these late_launch bits transitions from ‘0’ to ‘1’, the local_quiesce_achieved and locali-
ty_4_access bits, also in the pervasive security register, are forced to ‘0’.

7. Put this core in winkle mode.

Hardware Sequence Executed by the SBE on Each Chip

The hardware sequence executed by the SBE on each chip is as follows:

1. When the SBE detects the assertion of either late_launch bit, it jumps to the appropriate entry point for 
late launch, as specified in the SBE base table in OTPROM. Hardware must ensure that the correspond-
ing code is copied from the SEEPROM, to ensure a fresh copy in PIBMEM.

2. The SBE checks to see that all cores on its chip have been quiesced, by checking a pervasive bit for each 
that indicates it is in winkle mode. 

3. The SBE code checks to see that the OCC clocks are stopped.

4. The SBE code asserts the quiesce_request SCOM bit in all PHB, CAPP, VAS, NX, and NPU units. With 
the cores quiescent, that bit remains asserted until the AC resets it. When the bit is asserted, the I/O and 
accelerators must go to a quiescent state and remain in the quiescent state until the bit is reset.

5. Now the SBE checks to see that the chip is quiescent. It checks the quiesce_achieved SCOM bit in each 
I/O and accelerator unit. It also checks again the status of each core.

6. Once the system has quiesced, the SBE checks to see that one and only one primary late_launch bit is 
set among all the chips. It also checks to see that all other chips have the secondary late_launch bit set. If 
these conditions are not met, the SBE forces a checkstop.

7. The SBE sets the local_quiesce_achieved bit in the pervasive security register, indicating that this chip is 
quiesced.

8. In a multi-chip system, the SBE now queries the local_quiesce_achieved bit of all other chips, and waits 
until all are set. 

9. The SBE now sets the locality_4_access bit in the pervasive security register, allowing access to the 
locality 4 PCR in the TPM.
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10. After the locality_4_access bit is set, each non-initiating SBE (having the secondary late_launch bit 
asserted) resets its late_launch bit and exits the late launch routine. The initiating SBE (having the pri-
mary late_launch bit asserted) resets its late_launch bit, scans one core to its IPL image, loads the 
DRTM security verification code from the SEEPROM, sets the NIA register in the core and asserts 
instruction_start. 

The assertion of instruction_start causes the security verification code to start executing from an entry point 
specific to this DRTM sequence. This code verifies the AC that was previously loaded, and checks that it has 
the appropriate key code for an AC. After the AC is verified, the verification code jumps to it and the AC 
begins to execute.

24.2 Protection of Sensitive State 

The secure boot process implemented on the POWER9 processor establishes a chain of trust from hardware 
and secure firmware to the running hypervisor. When a secure state is reached, it must be protected from 
potential attacks by untrusted code running on either host or auxiliary processors. Untrusted host code runs 
at a lower privilege level, and so can be controlled by higher privilege code such as the hypervisor. Untrusted 
code running on the FSP, which has side-band access to processor facilities through debug interfaces, must 
be explicitly controlled by limiting what it can access through those interfaces. 

24.2.1 Blacklist for SCOM Write Access

The FSP uses the serial communication (SCOM) mechanism to read and write processor resources that it 
must control and monitor to properly boot and manage the system. However, allowing the FSP access to 
certain other facilities exposes the system to security attacks. The FSP must therefore request SCOM access 
to processor facilities such that untrusted access to sensitive facilities can be blocked. 

The filtering of SCOM write requests from untrusted masters, including the FSP, is implemented in the 
POWER9 processor by the SBE using a blacklist approach. The blacklist identifies all sensitive facilities that 
must only be accessible to trusted masters. 

In addition to filtering write requests, the SBE also filters read requests to a short list of facilities contained in 
a “read blacklist”. The facilities on this read blacklist are ones that produce a security-related side effect when 
read. 

24.2.2 Secure Dump

The FSP is prevented by pervasive hardware from scanning the processor before clocks are started to boot 
the system, to prevent access to sensitive facilities that might open security holes. Scanning is also not 
possible while functional clocks are running. When clocks are stopped due to a checkstop, it is important to 
be able to scan out the system state for the sake of debug and diagnostics, but allowing the FSP to do so 
presents two potential security risks. 

• Allowing the FSP to scan the data gives the FSP access to its content. This risk is considered small, as 
the data in the scan rings is not considered sensitive. 

• Giving the FSP access to the scan rings allows it to manipulate the content of those rings. This is consid-
ered a significant risk, and so is addressed by the secure dump capability.
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As with the dump procedure in previous systems, the secure dump is initiated by the FSP when a checkstop 
occurs. Instead of accessing the scan rings directly, which access is blocked by hardware, the FSP makes a 
request to the SBE for the dump of each ring. Using its hardware dump table, the FSP provides the length of 
the data it expects to receive. The SBE validates the request before performing the scan operation. If the 
request is valid, the SBE provides the ring contents to the FSP. The validation includes checking the ring 
length provided by the FSP against the SBE’s own table of scan ring attributes to ensure that the FSP is 
requesting a full scan of the given ring.

24.3 Secure Memory Facility

The overall goal of the secure memory facility (SMF) is to provide register and memory isolation of a client 
compute stack (such as, a secure VM) from the rest of the untrusted system software stack (such as, an 
untrusted hypervisor or other untrusted VMs executing on the same machine). The POWER9 Processor 
Programming Model Bulletin provides this facility by implementing a privilege state bit defined as the Secure 
[S] bit in the Machine State Register (see Section 3.2.1 Machine State Register of the POWER9 Processor 
Programming Model Bulletin). The state bit is used in conjunction with existing privilege-level state bits to 
implement a higher privilege state known as the “ultravisor” state, which is defined as S = ‘1’, HV = ‘1’, and 
PR = ‘0’. This ultravisor state supersedes the hypervisor state (S = ‘0’, HV = ‘1’, PR = ‘0’) in both system priv-
ilege and trust. Any software executing in this privilege state is known as the ultravisor and its correctness is 
critical to fulfill the goals of SMF function, such as register isolation. In addition, the host real address space is 
divided up into secure and nonsecure regions, demarcated by a designated host real address bit, thus 
providing memory isolation. The PEF requires hardware support in the form of the SMF, ultravisor software 
support, and certain customizations to the hypervisor to interact with the ultravisor to create and maintain 
protected partitions, which are also known as secure virtual machines. Some members of the POWER9 
processor family implement the optional secure memory facility as described in the POWER9 Processor 
Programming Model Bulletin. 

24.3.1 Protected Execution Facility in the POWER9 Processor 

In the virtualized cloud-computing model, client-provided virtual machines (VMs) or logical partitions are often 
hosted by third-party open-source hypervisors such as XEN or KVM. Because a hypervisor can typically 
access any memory location in the host real address space, as well as observe any residual register state 
during a hypervisor call or hypervisor interrupt, all client data is effectively available to the hypervisor. Hyper-
visors are complex with many million lines of code. Over the years, many security exploitations have been 
found in hypervisors, whereby user code running under a VM breaks out into the hypervisor via privilege 
escalation attacks. Once they compromise the hypervisor from a VM, an attacker can compromise all client 
data from all VMs running in a server. Moreover, if the cloud provider is complicit, the hypervisor itself can be 
actively malicious and intentionally compromise client data. 

The PEF, which leverages the SMF function, provides protection against this type of attack by creating the 
abstraction of a protected partition known as a secure virtual machine (secure VM or SVM), preventing the 
previously mentioned attacks from extracting any information. To achieve this, the ultravisor privilege layer 
intercepts any call or interrupt into the hypervisor, which enables it to clean up the VM’s register state and 
provide register isolation before handing off control to the hypervisor. The ultravisor also establishes and 
manages memory regions (known as secure memory regions) that are exclusively accessible to trusted parts 
of the client computing stack (the applications and operating system belonging to a particular secure VM) and 
the ultravisor. This achieves memory isolation of trusted software components. The ultravisor system soft-
ware component is considered trusted. This solution is also referred to as coarse-grain SMF, because this 
solution provides isolation at the granularity of an entire VM. 

Kernal-based virtual machine
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The security claims of the PEF are upheld by a combination of the following:

• SMF facility in hardware which provides:

– Translation-based isolation in the memory management unit (MMU).

– Interception of hypervisor interrupts to ultravisor privilege state in hardware.

• Ultravisor software guaranties:

– Code procedural sequences to conceal state information of secure virtual machines on interrupt 
interception.

– Page table structure layout for isolation of secure VMs.

– Checks to be implemented in software as secondary mechanisms.

24.3.2 Deviations from the SMF Architecture Specification in the POWER9 Implementation

Certain architectural features described in the POWER9 Processor Programming Model Bulletin are not 
supported, or have restricted use in the POWER9 implementation of the secure memory facility, or deviate 
considerably from the description found in the POWER9 Processor Programming Model Bulletin. The 
following subsections describe these unsupported and restricted use features, as well as any notable devia-
tions. Note that these deviations have no impact on data integrity guaranties of secure virtual machines 
provided by the PEF. The impact of these deviations only results in restricted software implementation 
choices or longer code sequences in the ultravisor/hypervisor software stack.

24.3.2.1 Unsupported Instructions: Processor Control Instructions Related to Ultravisor Doorbell 
Interrupts are not Available

Ultravisor privileged msgsndu and msgclru instructions described in Section 10.4 “Processor Control 
Instructions” of the POWER9 Processor Programming Model Bulletin are unavailable in the POWER9 imple-
mentations that support SMF. Any attempt to execute those instructions results in a system checkstop. It is 
recommended that ultravisor developers use msgsnd and msgclr instructions (which are available to hyper-
visor and ultravisor privilege states, and can cause hypervisor doorbell interrupts on targeted threads) in 
combination with an ultravisor call on the targeted threads (implemented by “sc 2” instruction) alongside soft-
ware implementation-specific data structures to achieve the end goal of a directed ultravisor interrupt doorbell 
if necessary.

24.3.2.2 Implementation Restriction: Only URMOR[13:42] Bits are Implemented

Some members of the POWER9 processor family implement the secure memory facility described in the 
POWER9 Processor Programming Model Bulletin. Similar to the HRMOR register, only bits 13:42 of the 
URMOR Register are implemented. All other bits are reserved and return zero when read.

24.3.2.3 Implementation Deviation: Move to URMOR Instruction 

Some members of the POWER9 processor family implement the secure memory facility as described in the 
POWER9 Processor Programming Model Bulletin. The ultravisor privileged mturmor instruction has a 
non-compliant implementation, where the instruction machine code of the mturmor instruction is added to 
the lower 32 bits of the source register value provided before the mturmor instruction is performed. Hence, 
the value to be placed into the source register must be the intended value of the URMOR value subtracted by 
the opcode for the instruction.
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An example of this behavior follows: 

If the instruction “mturmor r31” (big-endian machine code x‘7FF97BA6’) executes with a value of  
GPR31 = x‘8FFF00000’ (there is an extra bit set in the value given the intended value is x‘8FFE0000’), 
the value to be moved into the URMOR will be x‘7FF97BA6’ + x‘8FFF00000’ = x‘97FE97BA6’. Because 
only bits [13:42] are implemented, the actual value moved into the URMOR will be x‘97FE00000’. Hence, 
in this case, the intended value to be moved into the register was x‘8FFE00000’; therefore, the value 
(x‘8FFE00000’ - x‘7FF97BA6’) = x‘87FE6845A’ needs to be programmed into GPR31.

24.3.2.4 Implementation Restriction: UILE Bit is not Implemented and is a Constant Zero, Ultravisor 
Must Execute in Big-Endian Mode

Some members of the POWER9 processor family implement the secure memory facility described in the 
POWER9 Processor Programming Model Bulletin. The implementation-specific UILE bit, defined in Section 
3.3 “Ultravisor Interrupt Little-Endian (UILE) Bit” of the POWER9 Processor Programming Model Bulletin, is 
not implemented in any special purpose register in the POWER9 processor family. The POWER9 processor 
assumes a fixed value of zero. Therefore, MSR[LE] is set to ‘0’ whenever an interrupt that results in an ultra-
visor state occurs. In the POWER9 processor family, the ultravisor software must also ensure that the 
MSR[LE] is set to ‘0’ when operating in the ultravisor state.

24.3.2.5 Implementation Restriction: SMFCTRL[62:63] Bits are Restricted to ‘10’ Value Only

Some members of the POWER9 processor family implement the secure memory facility described in the 
POWER9 Processor Programming Model Bulletin. The implementation-specific bits [62:63] of the ultravisor 
privileged special purpose register SMFCTRL, described in Section 3.4 “Secure Memory Facility Control 
Register (SMFCTRL)” of the POWER9 Processor Programming Model Bulletin, must be set to ‘10’ for correct 
operation of the secure memory facility when enabled by SMFCTRL[E] = ‘1’ in the POWER9 processor. 
Other values can result in an erroneous system behavior. 

24.3.3 Secure Memory Bit in System Memory Map

In the POWER9 processor family, host real address bit 15 is designated to differentiate secure versus nonse-
cure real-address access. Bit 15 in the system (host) real address is set to ‘1’ to indicate an attempt to access 
secure memory. 

24.3.4 Mandatory Software Procedures Followed by Ultravisor for Launching and Maintaining a 
Secure Virtual Machine

Because the security guarantees of the PEF are upheld by a combination of ultravisor software and SMF 
hardware extensions, it is imperative for the ultravisor to follow certain guidelines and implement certain 
checks. The ultravisor software layer can implement additional functions and checks, but the listed items are 
a bare minimum necessity. 

Table 24-1. System Memory Map for 56-Bit System Address (8:63)  

Bit 8:12 Bit 13:14 Bit 15 Bit 16:18 Bit 19:21 Bit 22:63

System Select Memory Select Secure Bit Group Select Chip Select Chip Internal 
Address
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Even though the architecture and implementation does not limit SMF to only radix translation, it is expected 
that SMF will only be used in radix translation mode in IBM products. Therefore, the following discussions 
only provide examples relevant to radix translation mode.

24.3.4.1 Essential Elements of Code Sequence to Convert a Non-Secure Virtual Machine into a Secure 
Virtual Machine

The actual code sequence to launch a secure VM by converting a non-secure VM might have many addi-
tional steps and actions in an actual implementation. However, the following steps must be present in some 
form. Supervisor software from a non-secure virtual machine invokes the ultravisor via an ultravisor system 
call (sc 2) with an indication of converting the non-secure VM into a secure VM. Ultravisor code prepares a 
VM to transform into a secure VM, which involves moving or copying all or some of its pages into secure 
memory and creating duplicates of all the necessary page tables in secure memory. Then, the ultravisor sets 
up USRR0/1 to the entry point of the secure VM: USRR0 = “EA of VM entry point”,  
USRR1(S, HV, PR) = ‘100’, and performs an urfid instruction. 

24.3.4.2 Ensuring Isolation of Register State of a Secure VM from the Hypervisor 

This section describes the procedure used to ensure that the isolation of the register state of a secure VM 
from the hypervisor by intercepting guest SVM hypervisor privileged interrupts by the ultravisor.

All hypervisor interrupts (hypervisor decrementer interrupt [HDEC], hypervisor instruction storage interrupt 
[HISI], hypervisor data storage interrupt [HDSI], hypervisor emulation interrupt, machine check, hypervisor 
mediated external) or a software-initiated system call to the hypervisor (sc 1) that causes hypervisor inter-
rupts are intercepted by the ultravisor when SMF is enabled and are routed to an effective address of the 
associated interrupt + URMOR offset in ultravisor real mode. Note that on such an intercept, MSR[LE] is 
always set to zero, which implies all ultravisor code must be big endian.

Upon invocation of the ultravisor execution context via the previous mechanism, the following steps must be 
performed by the ultravisor to ensure that no residual register state from the secure VM is left over for the 
hypervisor to access.

1. Save all the context-specific registers that are considered sensitive data and should not be read by an 
untrusted hypervisor in secure memory. This includes general purpose registers (GPR), vector-scalar 
registers (VSR), floating-point registers (FPR), and any sensitive SPRs such as decrementer (DEC), and 
depending on the interrupt type SRR0/SRR1 or HSRR0/HSRR1. The register contents must be saved to 
secure memory (RA[15] = ‘1’). 

2. Populate the registers saved in step 1 with random values except for (H)SRR0/(H)SRR1, because these 
two registers are used to convey information regarding the interrupt to the hypervisor.

Table 24-2. Essential Elements of Code Sequence to Launch a Secure Virtual Machine 

VM requesting conversion to secure VM makes an ultracall (sc 2) to the ultravisor.

After performing necessary validation on this ultracall, the ultravisor marks the partition table entry of this partition as secure and begins 
editing the entire translation structure of this partition.

The ultravisor moves the data pages and page tables of the non-secure VM into secure memory. This involves moving all the host real 
pages into secure memory and also moving all guest and host page tables associated with those translation into secure memory, as 
well as editing all necessary table entries to point to the new secure memory addresses. 

Set USRR0 = <target instruction address in new secure VM>

Set USRR1(S, HV, PR) = ‘100’

urfid
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3. Encrypt the pages that might be required by the hypervisor and store the encrypted data in the normal 
memory area (RA[15] = ‘0’). 

4. Update (H)SRR1[S] = ‘1’ before the interrupt is reflected into the hypervisor as if it came from the VM 
directly. The S bit in HSRR1 is used to indicate to the hypervisor that this interrupt originated from a 
secure VM and did not originate from a non-secure VM.

5. Setup USRR0/1 to reflect the interrupt to the hypervisor: USRR0 = “EA of interrupt”,  
USRR1(S, HV, PR) = “010”. 

6. The ultravisor performs an urfid instruction to start execution in the HV state at the USRR0 address + 
HRMOR value. 

7. The hypervisor handles the interrupt.

8. At the exit of the hypervisor, the handler tests the (H)SRR1[S] bit:

– If (H)SRR1[S] = ‘1’: perform an sc 2 (ultravisor call) to return to the ultravisor, because the original 
interrupt came from a secure VM.

– If (H)SRR1[S] = ‘0’: perform a (h)rfid instruction to directly return to the non-secure VM.

– Note that if a malicious hypervisor does not implement this step properly, it creates a disruption of 
execution but does not violate the memory and register state isolation guaranties.

9. Ultravisor restores the saved registers in step 1. 

10. Check that (H)SRR0 (H)SRR1 are still the same as when the interrupt came to the UV (to prevent any 
misdirection attack from the hypervisor via returning to a different address in the secure VM). 

11. Perform a (h)rfid in the ultravisor to return to the guest secure VM.

24.3.4.3 Ensuring Secure VM Translations for Secure Pages are Immutable by Hypervisor

To ensure that translations to secure memory pages can only be altered by the ultravisor, the following struc-
tures must be maintained within secure memory so that the hypervisor is required to make ultravisor system 
calls (ucall) to perform any changes. Hence, ultravisor software can perform the necessary checks. Hard-
ware ensures that the root register for locating the partition table, namely the Partition Table Control Register 
(PTCR) is only ultravisor writable. The rest of the conditions must be enforced by the ultravisor software. 

1. Partition table is maintained by the ultravisor and must be placed in secure memory.

2. Partition-scoped page tables (used during guest real address translation for the guest operating system) 
for a secure partition/SVM must be kept in secure memory.

3. Process-scoped page table (used during translation from a guest application, as well as when the guest 
operating system runs with translation enabled) must be kept in secure memory.

Alongside these restrictions, the ultravisor must also ensure that there is no code path in the ultravisor that 
can be called by the hypervisor to change the PTCR.
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24.3.4.4 Ensuring Secure Memory Region Separation between Different Secure VMs 

The ultravisor must ensure that during creation of a secure VM, all of the host real pages that are mapped to 
the secure VM belong within the bounds of the allocated area for that particular logical partition within the 
secure memory region. This is analogous to how hypervisors maintain partition separation.

In addition to original allocation during creation of the secure VM, the ultravisor must act on behalf of the 
hypervisor whenever a hypervisor fault (HISI, HDSI) occurs on the secure memory pages belonging to a 
SVM, because the host page tables for secure VMs are located in secure memory. The hypervisor can 
perform page table allocation and all policy decisions, but must use an ultravisor system call (sc 2) to ulti-
mately update the page table entries in secure memory. 

The ulravisor must check the following when such a page installation is taking place.

1. The LPID for which the translation is being installed is indeed a secure partition as per the partition table.

2. The secure host real address (RA[15] = ‘1’) being installed in a leaf page-table entry must be checked 
against the data structures in the ultravisor, which contain the host real-size bounds of each secure parti-
tion to ensure that one secure VM is not overlapping with another secure VM.

24.3.5 Code Sequence to Change Value of URMOR Register

Table 24-3 shows a code sequence that the ultravisor privileged software can use to update the URMOR 
value in a core with multiple hardware threads and also potentially across the multiple cores of a system. The 
thread changing the value of URMOR is considered to be the master thread while all others are considered to 
be slave threads.

24.3.6 Machine Check Conditions Specific to SMF

There are no SMF-specific machine check conditions in the POWER9 implementation.

Table 24-3. Code Sequence to Set Value of URMOR   

Master Slave

Thread sync up point 1 Thread sync up point 1

Jump to instruction EA[0] = ‘1’ Jump to instruction EA[0] = ‘1’

Thread sync up point 2 Thread sync up point 2

Change URMOR 
(via mtspr on same core, SCOM write to other cores)

Thread sync up point 3 Thread sync up point 3

isync isync

slbia IH = x‘7’ slbia IH = x‘7’

isync isync

Thread sync up point 4 Thread sync up point 4

Jump to instruction EA[0] = ‘0’, 
new URMOR value will take effect now

Jump to instruction EA[0] = ‘0’, 
new URMOR value will take effect now
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25. Performance Profile

This chapter supplements the POWER9 design descriptions and architectural features supported with addi-
tional specifications relevant for software optimization. 

25.1 Core

25.1.1 Microarchitecture and Pipeline Overview

Figure 25-1 shows the POWER9 core pipeline functions. 

Figure 25-1. POWER9 Microarchitecture 
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The POWER9 core includes the following features, which are described in further detail in subsequent 
sections:

• Instruction fetch of up to eight instructions per cycle from the L1 instruction cache into the processor pipe-
line and buffered into a fetch instruction buffer (IBUF).

• Improved branch predictors for both direction and target.

• Instruction decode, cracking, resource allocation and dispatch of up to six internal-operations (iops) per 
cycle. Figure 25-1 on page 333 shows this pipeline shaded in blue.

• Issue of up to nine iops per cycle.

• Execution across four execution slices, each slice contains a floating-point pipeline (DP) that supports 
multiply-add, divide, and square-root, as well as fixed-point multiply-add (MUL) and complex (XC) opera-
tions, a pipeline for arithmetic/logical unit (ALU) and simple (XS) operations, and 64-bit store data produc-
tion (ST-D).

• Execution across two execution superslices, that each provide 128-bit dataflow through the execution 
slice pipelines and additionally provide: a permute (PM), a 128-bit fixed-point and BCD pipeline (DX), and 
a 64-bit fixed-point divide pipeline (DIV). Figure 25-1 on page 333 shows each superslice (shaded in 
green); each superslice is composed of a pair of slices.

• Execution pipelines for cryptographic (CY), as well as decimal floating-point and quad-precision floating 
point operations (DFU).

• Execution of four load/store address generations per cycle, each broadcast to load/store slices (LS slices) 
together with store data from the execution slices. Figure 25-1 on page 333 depicts load/store broadcasts 
outlined in blue.

• Execution across four LS slices providing independent access to one of four doubleword slices of the L1 
data cache. 

• LS slices supporting enhanced store forwarding and local re-issue from the load queue (LRQ) and store 
queue (SRQ) to handle cache misses, translation misses, and pipeline hazards.

• A connected cache subsystem providing a dedicated L2 and L3 cache region per pair of cores, as well as 
shared and local-castout (LCO) utilization of on-chip caches; providing up to 120 MB of on-chip L3 cache.

• Support for accessing the on-chip accelerator subsystem (NX) via the cut and paste architecture and for 
accessing an on-chip random number generator. 

• Simultaneous multi-threading (SMT) that allows for up to four threads to share each processor core in 
one of three modes: ST (single-thread), SMT2 (up to two threads), and SMT4 (up to four threads). 

25.1.2 SMT Modes and Thread Count Sensitivity

Generally, all resources are shared within the pipeline between threads unless otherwise stated. Portions of 
the POWER9 pipeline and other resources are partitioned between threads depending on the active SMT 
mode.

The most significant partitioning related to threads occurs when more than two threads are active, placing the 
core in SMT4 mode. In SMT4 mode, the decode/dispatch pipeline, shown in the blue shaded area in 
Figure 25-1 on page 333, is split into two pipelines, each pipeline is three iops wide and each pipeline serves 
two threads. The split decode/dispatch pipes each feed one of the two superslices, shown in the green 
shaded box in Figure 25-1, providing two execution slices for each pair of threads. The branch slice and 
LS-slices are shared between all threads.

Binary coded decimal

Level 2

Level 3
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Major partitioning of resources between thread modes is further depicted in Figure 25-2.

Additionally, the instruction completion table (ICT), which tracks iops in flight, is statically partitioned between 
two threads in SMT2 mode and between four threads in SMT4 mode. 

Other pipeline and resource implications of SMT mode are discussed in subsequent sections.

As the number of active cores on the chip drops below the maximum, it is advantageous for the operating 
system and hypervisor to preserve only one active core per L2/L3 cache when possible. This has the advan-
tage of providing the entire L2/L3 bandwidth and capacity to a single core as shown in Figure 25-3 on 
page 336.

Figure 25-2. Partitioning of Resources Between Thread Modes 
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25.1.3 Instruction Fetch

In each cycle, up to eight instructions (4 bytes each) are retrieved from the L1 instruction cache (I-cache), 
branch prediction is performed on all valid instructions, and an instruction prefetcher fetches lines specula-
tively to reduce I-cache miss occurrences. The compiler should align critical-code segments (targets, inner 
loops) on a quadword boundary.

The fetched instructions are packed eight at a time into the IBUF or bypassed, up to six at a time, into the 
decode stage.

In SMT2 and SMT4 modes, fetches are rotated between threads, round-robin style, until the IBUF is full for 
the thread. Requests for thread priority at fetch and decode are honored per specification of thread priority 
(see Section 4 Power Architecture Compliance on page 51). The POWER9 core also optimizes thread-
priority selection to improve inter-thread efficiency during long latency stall events. By lowering thread priority 
during a low-productivity state, additional processing resources are provided to higher-priority threads.

Lowering the priority of a thread to “very low” causes the instruction fetch for that thread to enter a low-energy 
consumption state (low-power mode). In low-power mode, each thread performs one fetch of up to eight 
instructions approximately every 128 cycles. Low-power mode can also be used as a pacing mechanism for 

Figure 25-3. Single Core Active per L2/L3 Cache 
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thread execution. The context-synchronizing instruction, OR R31 R31 R31, has been implemented to enable 
entering low-power mode deterministically and executing instructions with paced execution. Use the following 
instruction sequence:

OR R31 R31 R31 // Sets the CSI-bit and requests low-power mode
isync // Causes a pipeline flush due to the CSI-bit being 

set to force entry into low-power mode
loop: 

<groups of eight instructions> // Each group is executed approximately every 128 
cycles

...

OR R2 R2 R2 // Return to normal priority

The I-cache can be accessed on any 16-byte quadword boundary and returns up to two 32 consecutive bytes 
per cycle, which results in fetching eight instructions for in-line code. Branch target fetches fetch 5 - 8 instruc-
tions in one cycle depending on quadword alignment, except when crossing a 128-byte cache-line boundary. 
Instruction fetches do not span a cache-line boundary in a single cycle. 

25.1.3.1 L1 Instruction Cache

Each core contains a 32 KB, 8-way set-associative L1 instruction cache (I-cache). The I-cache is allocated in 
128-byte lines with 32-byte sector valid tracking. The replacement algorithm is pseudo LRU. The I-cache is 
banked and allows concurrent reads and writes to different banks. The I-cache and associated effective 
address directory (EADIR) are accessed using EA bits 52:56 and tagged using EA bits 41:51. Entries in the 
I-cache directory are also tagged with MSR bits PR, LE, and HV. The EADIR is used to predict the way selec-
tion for each I-cache access. An EADIR hit that is later determined to be an I-cache miss adds approximately 
eight cycles to the base miss latency. 

For each thread, aliasing can occur when a given EA(41:56) cache line is required for more than one real 
address, or a combination of MSR bits. Only one of the two combinations can be valid in the I-cache for a 
given thread at any one time, and an EADIR invalidate is required before fetching the other alias. Multi-thread 
EADIR aliasing results when two threads map the same EA(41:56) to two different real addresses or MSR 
combinations. When address aliasing occurs between threads, lines are brought in as private to the thread 
after first invaliding the existing entries.

On instruction fetches, effective address bits are used to index into the I-cache, the directory, and the instruc-
tion effective-to-real-address-translation (I-ERAT) table. The I-ERAT is a fully-associative 64-entry table and 
contains both the effective addresses and the associated real addresses. For an I-ERAT hit, the effective 
address of the instruction must match the effective address contained in the I-ERAT entry being indexed, and 
the I-ERAT entry must be valid. In addition, the IR, US, HV, and PR bits from the MSR at the time of I-ERAT 
miss are stored in the I-ERAT when the I-ERAT is loaded on an I-ERAT miss. These bits must match the 
corresponding bits in the MSR at the time of instruction fetch for an I-ERAT hit. The I-ERAT minimum miss 
penalty (assuming a TLB hit) is 18 cycles.

The I-ERAT directly supports 4 KB, 64 KB, and 16 MB page sizes. Other page sizes are stored in multiple 
entries using the next smaller supported page-size granule. 

Least-recently used

Translation lookaside buffer



User’s Manual 
OpenPOWER
POWER9 Processor  

Performance Profile

Page 338 of 508
Version 2.1 

10 October 2019 
 

25.1.3.2 Instruction Prefetch

An instruction prefetch mechanism is used to fetch additional lines after an I-cache miss is detected. The 
instruction prefetcher uses the I-cache miss history to make decisions about the depth of prefetching on a per 
miss basis, ranging from 0 - 7 lines ahead. The mechanism is not active in SMT4 mode. The bandwidth of the 
instruction prefetcher is extended when the sibling core is inactive.

The banked cache design of the POWER9 instruction cache allows a concurrent read and write (as long as 
they reference different cache banks), so that writing prefetched lines into the instruction cache does not steal 
cycles from the fetching of instructions from the cache.

25.1.3.3 Software-Initiated Instruction Prefetch 

An icbt instruction initiates the prefetch of a line into the L3 cache for use by the instruction cache. For 
processors on which the static hint bits are enabled, the static hint bits can be used to force an instruction 
prefetch by intentionally predicting down the wrong path. Note that the default setting for the POWER9 
processor is to ignore the static hint bits. Because this method causes a pipeline flush, it should only be used 
when experimentation to demonstrate performance advantage can be performed on the target system. With 
this method, some instructions are speculatively executed or processed to some extent by the instruction 
fetch logic before they are discarded. The instruction in the (wrongly) predicted path can be used as a hint 
instruction to the memory subsystem. For example, software prefetching of instructions from location 
“Line_to_touch” can be initiated by forcing a branch misprediction as follows (the “a” bit in the bc instruction 
indicates “must agree with static prediction”). 

Short distance touches: 

bc Line_to_touch // Static prediction taken, but CR bit is set to 
“not-taken”

Long distance touches: 

bc Next // Static prediction not-taken, but CR bit is set to 
“taken”

b Line_to_touch // Initiate prefetch for cache line “Line_to_touch” 
Next:... // Instructions in the actual instruction stream

This type of software prefetching is useful if the line to prefetch is in the L3 cache or beyond. Because of the 
high penalty for branch misprediction, it might not be beneficial if the referenced line is already in the L2 
cache and even harmful if it is already in the I-cache. It is beneficial if the compiler makes special attempts to 
schedule code around such a branch that reduces the misprediction penalty. Attempts to reduce the forced 
branch misprediction penalty can be made by:

• Setting the CR bit used by the “bc” as early as possible.

• Scheduling such a branch in a code segment, where there are relatively few branches so that the branch 
does not wait too long in the branch issue queue behind other branches.

• Trying to overlap a likely D-cache miss with the forced branch misprediction.

• Scheduling such a branch after an existing long chain of flow dependency.
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25.1.3.4 Branch Prediction

As instructions are fetched, they are scanned for branches. Up to eight branches are simultaneously 
processed by the branch prediction logic that predicts both the direction and/or target of the branches, 
depending on the branch type.

Branch direction prediction for conditional branches is performed using four branch history tables and a 
TAGE predictor. For nonrelative branches, target prediction is performed using a link stack for link returns 
and a count cache and pattern cache for other indirect branches. For relative branches, the target address is 
computed precisely. All conditional branches are predicted using the branch predictors. An incorrectly 
predicted branch results in a pipeline flush after the branch is executed.

The pipeline latency for a predicted taken branch from one of the predictors other than the TAGE is three 
cycles, and the latency for a TAGE prediction is five cycles. The POWER9 processor also includes a BTAC 
predictor that reduces the predicted branch taken latency to one cycle.

Static branch direction prediction is performed using hints as defined by Power ISA User Instruction Set 
Architecture (Book I). Branches that are statically predicted are treated as unconditional branches.

These predictors are described in more detail in the following subsections.

Branch Direction Prediction Using the Branch History Tables

The POWER9 core uses a set of four branch history tables (BHTs) to predict the direction of branch instruc-
tions, supplemented by a TAGE predictor. Each of the four tables has 8K entries:

• Local predictor: Predict branch taken based on history. Indexed by the branch address.

• Global predictor: Predict branch taken based on the path of execution to reach the branch. Indexed with a 
global-history-vector (GHV), formed from a taken branch history hashed with the address of the branch.

• Selector: Track which of the local or global predictor results should be used. Indexed by the global predic-
tor index.

• Local selector: Tracks branches predicted well by the local predictor and prevents them from installing in 
(polluting) the global predictor. Indexed by the global predictor index.

Unconditional branches (including branches with the BO field set to ‘1z1zz’) and statically predicted condi-
tional branches (such as branches with the “a” bit set to ‘1’) do not have an entry in the BHTs. 

Branch Direction Prediction Using the TAGE

While the main BHTs are not tagged, the tagged geometric history length predictor (TAGE) has a 10-bit tag 
per entry to uniquely identify the optimal GHV length for a particular branch. The TAGE consists of four 
different global history predictors, each uses a different length of GHV. All four predictors are accessed 
concurrently and the longest predictor with a matching tag is used. The TAGE maintains a usefulness indi-
cator with each table entry, when the indicator is showing poor prediction, the next longest table is updated. 

Branch Direction Prediction Using Static Prediction

The POWER9 core normally ignores any software that attempts to override the dynamic branch prediction by 
setting the “a” bit in the BO field. This is done because historically programmers and compilers have made 
poor choices for setting the “a” bit, which limited the performance of codes where the hardware can do a 
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superior job of predicting the branches. However, the “a” bit can still be an important tool for certain perfor-
mance-sensitive cases, such as those identified after careful analysis of branch misprediction on a POWER9 
system. To force the honoring of the “a” bit, a change in firmware settings is required. 

Incorrect setting of the “at” bits results in a pipeline flush; therefore, setting of the “a” bit should be avoided 
except in extraordinary cases where a thorough analysis has been performed. 

The following cases are the only suggested uses of the “a” bit. When the “a” bit is set, then the “t” bit of the BO 
field specifies ‘1’ for taken and ‘0’ for not-taken. These uses are honored even when the hardware is config-
ured to ignore the “a” bit.

• For the branches that close out a lock acquisition sequence, it is desirable to force the branch prediction 
to be not taken. This provides the best performance for the most common case where the lock is suc-
cessfully acquired. Even if the lock is not successfully acquired on this iteration, it is still best for the 
branch predictor to behave as if the lock will be acquired in the next iteration. 

– Without static prediction, if the lock is not acquired in the first iteration, the branch history mechanism 
works to update the prediction to predict taken; that is, predict lock acquisition failure and cause more 
“lwarx” traffic for the next iteration. When the hardware detects a l*arx instruction near a static pre-
diction, the static prediction is honored.

top:  lwarx
      add
      stwcx
      bc- top     <-- POWER9 core predicts this branch to be not taken, through 
                     software directives that properly set the “a” and “t” bits.

Branch Target Address Prediction Using the Link Stack

The POWER9 core uses a link stack to predict the target address for a branch-to-link instruction that it 
believes corresponds to a subroutine return. By setting the hint bits in a branch-to-link instruction, software 
communicates to the processor whether the instruction represents a subroutine return, or a target address 
that is likely to repeat, or neither (see Table 25-1).

When instruction fetch logic fetches a branch and link instruction either unconditional or conditional but 
predicted taken, it pushes the address of the next instruction into the stack. When it fetches a branch-to-link 
instruction with “taken” prediction and with hint bits indicating a subroutine return, the stack is popped and 
instruction fetching starts from the popped address.

In the POWER9 core, the link stack is 64-entries deep and is split per thread mode: 32 entries per thread in 
SMT2 and 16 entries per thread in SMT4 mode.  
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Table 25-1 summarizes the handling of the POWER9 bclr and bclrl instructions.

Branch Target Address Prediction Using the Count Cache

The count cache is used to predict the target address for branch to count (bcctr[l]) instructions and branch-
to-link (bclr[l]) instructions which do not set the BH field to indicate a subroutine return and are therefore not 
predictable by the link stack. 

The count cache predicts the branch target based on previous target addresses from previous executions of 
the same instruction. By setting the hint bits appropriately, software communicates to the hardware whether 
the target address for such branches are predictable using a cache. See Table 25-1 and Table 25-2. 

Note:  The count caches can only be accessed for one branch per cycle. The bcctr[l] and bclr[l] instructions 
use the count cache, Therefore, no more than one such branch should be place per aligned 32-byte or 
octword block. Other branches that do not access the count cache are still predicted using the other predic-
tors. 

The POWER9 core maintains two count cache arrays: 

• A global 512-entry array maintaining only the lower 32 bits of the target address (the upper bits are 
assumed to be unchanged). It is indexed similar to the global BHT using a GHV hashed with the instruc-
tion address.

• A local 256-entry array with a full 64 bit target address in each entry. It is indexed using the instruction 
address.

A 2-bit selector value is stored in the local array to select between use of the local and global caches. 

Table 25-1. Handling of bclr and bclrl Instructions   

Instruction BH Field POWER9 Design Power ISA

bclrl xx If the branch is predicted taken, the link stack address is used as the 
predicted target address; however, the link stack is not popped.

Reserved.

bclr 00 If the branch is predicted taken, the link stack is popped and the popped 
address is used as the predicted target address. 

The branch is a subroutine 
return.

bclr 01 If the branch is predicted taken, the target is predicted using the count 
cache. The count cache data and confidence fields might be updated 
when the branch is executed and resolved. No action is taken by the 
link stack.

Target address is likely to 
repeat.

bclr 10 Same as BH = ‘00’. Reserved.

bclr 11 Same as BH = ‘01’. Target is not predictable.

Table 25-2. Handling of bcctr and bcctrl Instructions  (Sheet 1 of 2)

Instruction BH field POWER9 Design Power ISA

bcctr, bcctrl 00 If the branch is predicted taken, the target address is predicted 
using the count cache. Update the count cache when the branch 
is executed, if the branch is resolved as taken. For the bcctrl 
instruction, if the branch is predicted taken, push in the link stack 
the address of the next sequential instruction when the bcctrl 
instruction is fetched.

Target address is likely to 
repeat.

bcctr, bcctrl 01 Same as BH = ‘00’. Reserved.

bcctr, bcctrl 10 Same as BH = ‘00’. Reserved.



User’s Manual 
OpenPOWER
POWER9 Processor  

Performance Profile

Page 342 of 508
Version 2.1 

10 October 2019 
 

Branch Target Address Prediction using the Pattern Cache

The POWER9 core also predicts target addresses using a pattern cache, which predicts future targets based 
on a pattern relative to previous targets.

The pattern cache is a 256-entry table that is indexed and tagged by the previous instruction target address 
and is used to predict the lower 32 bits of the next target address. 

When the pattern cache encounters a hit and the usefulness field is above a threshold, the pattern-cache 
target prediction is used instead of the address predicted by the count cache.

Branch Target Address Prediction Using the BTAC

The branch target address calculation (BTAC) is used to provide target fetch addresses for the current fetch 
group without wasting any fetch cycles due to a delay in a taken branch prediction. That is, the BTAC has a 
1-cycle latency versus the 3 - 5 cycles of latency for other predictors. 

The BTAC is only active in ST mode.

Obtaining the Next Instruction Address/BC+4 Handling

On the POWER9 core, the preferred method of obtaining the next instruction address is to use the addpcis; 
for example, addpcis with a displacement of 0.

Codes that instead use unconditional branches with the link bit set and a displacement of ‘4’ to set the 
address of the next instruction into the link register are handled specially. Architecturally, these branches are 
taken and go to the next instruction. The hardware handles BCL + 4, with a BO = 20 (unconditional taken) as 
a special case. For this special case, the branch is always treated as not taken for fetch, resulting in no fetch 
penalty. When the special branch executes, it updates the link register, and does not cause a flush (even 
though fetch processed it as not taken and architecturally it was taken). The PMU sees these special 
branches as requiring direction prediction, direction predicted correctly, and branch not taken counts.

Branch Prediction Power Down

Branch history tables can be disabled based on sequences of consecutively predicted branches.

25.1.4 Instruction Decode and Dispatch Pipeline

After instructions are fetched from the I-cache, they are decoded into iops and then dispatched to slices for 
execution scheduling. The decode/dispatch pipeline can process up to six iops per cycle. In SMT4 mode, it is 
split into two independent pipelines, each handling up to two threads and each processing up to three iops 
per cycle.

bcctr, bcctrl 11 Same as BH = ‘00’. Target is not predictable.

Table 25-2. Handling of bcctr and bcctrl Instructions  (Sheet 2 of 2)

Instruction BH field POWER9 Design Power ISA

Performance monitor unit 
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25.1.4.1 Instruction Buffer

When the decode stage cannot accept all the fetched instructions due to the high fetch rate, or due to stalls in 
the pipeline, instructions are stored in the IBUF. This allows the instruction fetch and branch prediction to 
proceed during the pipeline stall condition.

Instructions that are not bypassed are written into the IBUF. Bypass from instruction fetch occurs even when 
instructions remain in the IBUF, such that six instructions are fed to the decode pipeline each cycle; either 
from the IBUF, fetch, or a combination of both. The IBUF holds 96 instruction entries and is partitioned per 
thread statically in SMT2 mode and SMT4 mode. Fetch for a given thread does not occur unless there are at 
least eight entries available in the IBUF.

25.1.4.2 Effective Address Tracking

The effective address table (EAT) stores branches and retains a correlation of branches to instruction 
addresses. The EAT hold 40 entries, 20 entries per thread in SMT2 mode and 10 entries per thread in SMT4 
mode. A new EAT entry is consumed for each new 128-byte cache line that is accessed as part of the in-flight 
instruction stream and for each predicted-taken branch. Fetch is held for a thread when there are no 
remaining EAT entries for the thread, thus limiting the number of predicted-taken branches in flight to 40 for 
the core.

25.1.4.3 Instruction Decode/Cracking

Instruction decode maps instructions into iops. 

Most instructions in the Power ISA are not cracked and are decoded into a single iop. However, some instruc-
tions are cracked or expanded into more than one iop. There are three categories of instruction 
cracking/expansion:

• 2-way crack: the operation is cracked in-line into two decode slots.
– Cracking is done independently per split pipeline in SMT4 mode.
– The cracked iops must decode together. For example, this might cause iops to shift decode to the fol-

lowing cycle if the first iop takes the last decode slot.

• 3-way crack: the operation is cracked into three decode slots that consume a decode cycle; that is, no 
additional instructions can be decoded in the same cycle.

– Cracking is done independently per split pipeline in SMT4 mode.

• Microcode expansion: expanded instructions include those that crack into more than three iops or those 
that have a variable number of iops.

– There is one microcode expansion engine per core, meaning only one expansion can be decoded at 
a time. This engine is shared between the two split decode pipelines in SMT4 mode.

– The microcode expander produces up to three iops per cycle.
– There is a 2-cycle decode startup penalty for each expanded instruction; that is, there are two cycles 

in the pipeline for which no instructions are decoded. In SMT4 mode, the decode penalty applies only 
to the split decode pipeline on which the expansion instruction is detected.

A listing of cracked and expanded instructions can be found in Table A-1.  Instruction Properties on page 375, 
by examining the “Instruction Type” column. 

When the decode/dispatch pipeline is empty, such as after a pipeline flush condition, the decode/crack pipe-
line bypasses two instructions, skipping one pipeline stage only if they do not require cracking or microcode 
expansion. If there were more than two instructions in the fetch group, or if the decode pipe backs up due to 
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downstream stalls, cracking, or expansion, the subsequent instructions go through the entire decode/crack 
pipeline without a stage bypass at the maximum rate. For example, up to six iops per cycle or three iops per 
cycle per pipeline half in SMT4 mode.

25.1.4.4 Instruction/IOP Completion Table

The instruction/iop completion table (ICT) tracks iops from dispatch through completion and is allocated at 
decode time. Each iop from a crack or microcode expansion consumes one entry in the ICT. 

The ICT tracks 256 iops and is split for SMT: 128 entries per thread in SMT2 mode and 64 entries per thread 
in SMT4 mode. 

25.1.4.5 IOP Dispatch

The iop dispatcher routes instructions to execution slices, the branch slice, and the ICT.

Resource availability per slice can limit which slices are dispatchable or the number of iops that can dispatch 
to a particular slice. Required resources for iops to dispatch to a given slice must be available in some cases 
in the cycle of dispatch, even if the specific iop does not absolutely require that resource. All iops dispatch as 
an execution slice iop with respect to resource requirements, unless they are executed by the branch (BR) 
unit as specified in the “Pipe Class” column of Table A-1.  Instruction Properties on page 375. The required 
slice resources are as follows:

• Execution slice: 
– One issue queue entry available
– One history buffer entry available

• Branch slice: 
– One issue queue entry available
– One history buffer entry available
– One link/count mapper entry available

When a single slice is busy, it does not preclude dispatch to other slices. If there are not sufficient resources 
in any of the slices for an iop, that iop will stall at dispatch for that thread until a resource becomes available.

Up to three iops can dispatch to each execution superslice (pair of slices) each cycle, with each slice 
receiving a maximum of two iops per cycle. Certain iops are precluded from dispatching as part of a 3-tuple to 
a superslice and can therefore limit the maximum dispatch rate in the cycle in which they are dispatched. See 
the “Tuple Restricted” dispatch rule in the following list.

The following list of iop attributes and dispatch rules provide additional requirements and behaviors for 
specific instructions. See the “Dispatch Rules” column of Table A-1.  Instruction Properties on page 375 for 
which of these attributes are relevant for a given instruction/iop. 

• Even slice (“E”)- certain operations must be sent only to an even slice.
– For example, this includes instructions that use the DIV (fixed-point divide) engine and SPR instruc-

tions.
– Also consumes odd dispatch slice slot of the same superslice at dispatch
– When a multiple of these instructions, such as a fixed-point divide, are scheduled in proximity and 

might be able to execute in parallel, it is ideal to have these instructions balanced between supers-
lices. To achieve an optimal balance of these instructions between superslices, it is suggested to pair 
these types of instructions back-to-back. 
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• Vector (“V”) - vector iops (128-bit operand) take only one decode and dispatch slot but are dispatched to 
both the even and odd slices of a superslice.

– Both the even and odd slice of a superslice must have resources for dispatch. 
– Store-vector instructions are considered as vector for dispatch requirements, whereas load vector 

instructions are not.

• Paired (“P”) - certain cracked and expanded iops are paired such that they must dispatch together to the 
same superslice.

– Similar to a vector iop, a pair of slices on the same superslice must have sufficient resources for dis-
patch to occur.

• Tuple Restricted (“R”) - certain iops preclude dispatching more than one operation per slice for the super-
slice to which they are dispatched. The following list shows the primary types of operations with this 
restriction:

– Load vector operations, unless dispatched with a vector
– Scalar operations with FPR/VSR targets. 
– Scalar operations with certain source operand attributes, includes most stores and three 

(GPR/FPR/VSR) source operations.

Iops are routed to the execution slices based on slice resource availability and iop requirements. The 
dispatcher generally rotates the distribution of iops to each slice, but might bias toward sending particular iops 
to the same slice or superslice. 

The dispatcher can dispatch up to six iops per cycle, but some of these can be multi-routed to more than one 
slice, including 128-bit vector iops (vector dispatch rule) that go to two execution slices (one superslice), and 
mf/mt LINK/CNT/TAR that go to both the branch slice and an execution slice. 

Load-vector iops consume only one decode and one dispatch slot and can dispatch up to two per superslice. 

Branch Slice Iops

Each execution and branch slice can receive up to two iops per cycle, with the maximum total iops dispatched 
numbering six. In SMT4 mode, the branch slice can receive a maximum of one iop from each set of three 
decode pipes or one branch per two threads.

Operations that are routed to the branch slice include all branch iops, mf/mt LINK/CNT/TAR, addpcis, and 
svc.

Dispatch Interlock and Stop Conditions

Pipe drain conditions can stop dispatch for a thread and can cause a dispatch flush in SMT mode to clear the 
decode pipe to allow another thread to use the pipe. A dispatch flush removes iops from the decode/dispatch 
pipe and causes them to refetch into the IBUF until the stop condition is removed. See the Dispatch Interlock 
column of Table A-1.  Instruction Properties on page 375.

A list of dispatch interlock conditions follows: 

• tlbie, ptesync, tlbsync, eieio must wait for older loads and stores to drain

• tbegin: outer tbegin must wait for a previous transaction to complete

• eieio, tsuspend, tresume, trechkpt must wait for older operations in the pipeline to complete and drain

• Certain SPR access instructions are dispatch scoreboard checkers and must wait for certain older SPR 
writers (dispatch scoreboard writers) to drain the pipe 
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• Certain SPR access instructions must wait for the EAT to be drained

Dispatch Rules Summary

Basic rules are as follows:

• A maximum of six iops can dispatch per cycle.

• Up to three iops can be dispatched to each superslice (even/odd slice pair) each cycle. 

• Each vector or even type operation consumes a slot for both slices of a superslice at dispatch.

• Each execution slice and branch slice can receive up to two iops per cycle. 

• Dispatching an iop requires at least one issue queue entry and one history buffer entry.

• If it is a branch iop, one additional link/count mapper entry is required. 

• NOPs count as one of six per cycle that can be dispatched.

• NOPs and branches consume at least one of the three execution superslice slots, unless there are no 
younger execution slice operations that can dispatch concurrently.

• The dispatcher rotates the distribution of iops to each slice subject to various optimizations.

Exceptions:

• In SMT4 mode, the branch slice can receive a maximum of one iop from each set of three decode pipes 
or one branch per two threads.

• If it is an even-slice instruction, it can dispatch only to an even slice (example: fx divide, spr instructions) 
but also requires that the odd slice be available at dispatch.

• If it is a vector operation (includes vector arithmetic or vector store iop), both slices in a superslice must 
be available for concurrent dispatch.

• Paired instructions must dispatch to the same superslice together.

• Certain iops cannot be part of the 3-tuple per superslice, for the superslice to which they are routed; limit-
ing the superslice to receive one iop per slice. The operation set includes load vector (except with vector), 
scalar operations with three sources or special restrictions, and scalar writers of FPR/VSR registers.

• Dispatcher biases that are first to send iops requiring both slices of a superslice be together when 
allowed by program order.

Optimizing for Dispatch Rate

The available slice destinations are shown in Figure 25-4 on page 347, where:

• The candidate iops for dispatch are shown in the register “pd1”.

• x0, x1, x2, and x3 are the dedicated slice dispatch ports, where each corresponds to one of the four exe-
cution slices. 

• b0 and b1 are dedicated dispatch ports into the branch slice. 

• The third iop slots per superslice are labeled xa and xb, and correspond to superslice-0 and superslice-1 
respectively. The xa and xb ports can be used to send an iop to either of the two slices of the superslice, 
but are restricted to iops with only two primary sources.

• A dotted line illustrates the split that occurs in SMT4 mode, where candidate dispatch iops are only dis-
patched to the slice dispatch ports shown on the same side of the line.
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Optimizing Load-Vector Instructions Example

When interleaving load vectors with nonvector instructions, the compiler should bias toward dispatching load-
vectors in pairs to maximize the dispatch rate. When interleaving load vector with vector instructions, optimal 
dispatch rate is obtained when the vector operations and load-vector operations are alternated in program 
order.

Similarly, the compiler should bias toward sending scalar iops in pairs or triplets (if they qualify for a 3-tuple 
dispatch to a superslice) when they are interleaved with vector operations to achieve the maximum dispatch 
rate.

Vector (SIMD) code that includes loads can benefit from pairing load vector operations together and inter-
leaving with vector operations to maximize the dispatch rate. Consider the following example:

Scheduling for a loop with four 128-bit SIMD operations (V1,V2,V3,V4) and four 128-bit load-
vector operations (LV1, LV2,LV3,LV4):

Option A: V1 V2 V3 V4 LV1 LV2 LV3 LV4 
Option B: V1 LV1 V2 LV2 V3 LV3 V4 LV4

Option A dispatches as follows in ST and SMT2 modes across a minimum of three cycles

Cycle 1: V1 V2 # note vector dispatch rate limited to 2 per cycle

Cycle 2: V3 V4 

Cycle 3: LV3 LV4 

Option B dispatches as follows in ST and SMT2 modes across a minimum of two cycles

Cycle 1: V1 LV1 V2 LV2

Cycle 2: V3 LV3 V4 LV4

Optimal scheduling in the example is shown in Option B. The same scheduling is preferred for SMT4 mode.

Figure 25-4. Available Slice Destinations 

pd1 i0 i1 i2 i3 i4 i5

x0 x1 xa

x2 x3 xb

even odd
uq - ss0

uq - ss1

brq b0 b1
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Note that vector and even routed iops should also be scheduled in pairs to maximize execution bandwidth for 
independent operations. Two independent fixed-point divide operations can execute in parallel on each core 
if they are routed to separate superslices. This is more probable when the two iops are scheduled back-to-
back.

Optimizing Dispatch for Issue Latency

It is advantageous for dependent iops routed to the PM, DX, and DP pipelines to be routed to the same 
superslice, because this minimizes the issue latency of the dependent iop. See Section 25.11 Instruction 
Properties on page 372 for additional information.

Placement of dependent scalar DP iops back-to-back in the instruction stream increases the probability for 
placement into the same superslice. To increase the probability of being placed in the same superslice, 
dependent vector DP routed iops should not be placed back-to-back, because back-to-back placement 
increases the chance of not being dispatched to the same superslice.

25.1.4.6 Register Renaming

A register mapper renames target and source registers enabling out-of-order execution. Renaming is 
performed for GPR, FRP, VR, VSX, CR, as well as for fields of the XER and FPSCR. A history buffer (HB) 
provides a backing store for the previous architected mappings associated with each iop target register being 
executed and restores the register state after a pipeline flush. 

The HB also serves as the backing store for active TM transactions. The HB tracks the pre-transactional 
registers so that they can be restored if a transaction is aborted. 

The HB is kept per execution slice and handles the backup of all targets dispatched to the slice. The HB is 
partitioned into a primary and secondary level. The primary HB tracks previous targets until after the previous 
iop writing the same register is finished. The secondary HB tracks previous targets after the previous writing 
iop is finished. Therefore, codes with very high instruction-level parallelism should use multiple target regis-
ters and extend the same register target reuse distance to minimize chances of encountering HB resource 
limitations. 

HB entries each track 64 bit operations, such that 128-bit target registers are backed up by two entries; for 
example, one in each of two slices. 

The sizes for each HB are shown in Table 25-3. While there is ample room in the HBs to handle most trans-
actions, if a program writes a very large number of registers in each transaction, they consume HB entries 
and can reduce the performance of the transaction, as well as degrade performance of other active threads. 

The LNK, CNT, and TAR Registers are renamed to a physical register pool using a mapper with ROB with 20 
rename entries.

Table 25-3. History Buffer Sizes 

Primary Secondary Total Notes

64 bit GR/FR/VR/VSR 20 per slice x 4 = 80 96 per slice x 4 = 384 464 128 bit targets take two 
entries

CR/XER/FPSCR 12 per slice x 4 = 48 12 per slice x 4 = 48 96

Transaction memory

Re-order buffer
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25.1.5 Iop Issue and Execution Slices 

As iops are dispatched to a slice, they are held in an independent slice issue queue until all register sources 
and other dependencies have been resolved and they can be issued. Each of four execution slices has a 
13-entry iop issue queue and the branch slice has a 16-entry iop issue queue, for a maximum of 68 issueable 
iops.

Each POWER9 core includes nine slice issue ports:

• One address generation (AGEN) issue per execution slice (×4)

• One execution (EXEC) issue per execution slice (×4)

• One branch (BR) issue from the branch slice (×1)

In each cycle, each issue port of each slice selects for issue of the oldest eligible iop, if any, from the set of 
iops held in its issue queue. 

Iops that have 128-bit sources are issued synchronously from both slices of a superslice on the EXEC issue 
port. This includes iops that are vector, as well as paired and is indicated in the Issue Synchronization column 
in Table A-1.  Instruction Properties on page 375. Examples of paired operations include cracked iops 
providing 128-bit operands to quad-precision operations. 

Store iops are dual issued from a single-issue queue entry to both the AGEN and EXEC issue ports. Store-
vector iops are both vector operations and dual issue operations, such that they are dual issued from one of 
the two slices and they perform a data only issue from a second slice. If the store iop’s data source is ready, 
the store data can issue to the EXEC issue port as quickly as two cycles after the AGEN issue, or as quickly 
as three cycles after the AGEN issue for a store-vector.

Load/store iops issued from the AGEN ports are consumed by one or more LS slices for further processing. 
Once accepted, each LS slice takes over responsibility for executing the iop including the finishing of the iop, 
as well as the handling of all execution hazards encountered thereafter.

A data and address recirculation queue (DARQ) is provided to stage load/store addresses computed after 
AGEN issue and store data computed after EXEC issue, as needed, en route to each LS slice. The DARQ 
allows for iops issued for processing in LS slices to be released quickly from the issue queue.
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25.1.5.1 Load/Store AGEN Issue

The AGEN port handles iops routed to the following pipelines (see Pipe Class in Table A-1.  Instruction Prop-
erties on page 375):

• LD: load iop address generation, headed to load/store pipeline within LS slice

• LD2: +1 cycle to execute versus a normal LD iop
– Includes load string indexed expansions
– Includes lvx, lvxl, lvebx, lvehx, lvewx, when their computed EA(60:63) ≠ 0 

• LD3: +3 cycles to execute versus a normal LD iop 
– Includes lq, lfdp, lqarx

• ST: store iop address generation, headed to load/store pipeline within LS slice

• ST2: +1 cycle to execute versus the normal ST
– Includes store string indexed expansions
– Includes stvx, stvxl, stvebx, stvehx, stvewx, when their computed EA(60:63) ≠ 0

An AGEN port iop is eligible to be issued in the next cycle on the AGEN port, if in the current cycle:

1. Its sources are ready.

2. It has not been flushed.

3. It was marked as an NTC issue (see Table A-1.  Instruction Properties on page 375), the next older ITAG 
has completed.

4. DARQ has available entries to hold the AGEN result.

5. If it is a load and if there is an older store on which it is dependent because of LHS/SHL optimization, then 
that store agen has been launched in the LSU.

6. The same instruction was not issued in the current cycle.

Next-to-complete
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25.1.5.2 EXEC Issue

The EXEC port handles iops routed to the following pipelines (see Pipe Class in Table A-1.  Instruction Prop-
erties on page 375):

• ST/ST2 data pipeline - per slice (4)
– store data (64 bit/128 bit) issued to the LS slice store queue (STQ)

• ALU/ALU2 pipeline - per slice (4)
– ALU: 2-cycle arithmetic/logical iops
– ALU2: 3-cycle arithmetic/logical iops

• DP/DP-XC/DP-MUL pipeline - per slice (4)
– DP: double-precision iops
– DP-XC: vector complex iops 
– DP-MUL: GPR target: fixed-point multiply iops (MUL)
– Supports multi-cycle operations with interleaved issue. In Table A-1.  Instruction Properties on 

page 375 note the Busy cycles for a count of cycles in which pipelined operations cannot issue while 
the multicycles operation is in progress. Figure 25-5 on page 352 shows the interleaving opportuni-
ties for various length multicycle floating-point iops. 

• PM/DX pipeline - per superslice (2)
– PM: (128 bit) permute iops
– DX: (128 bit) fixed-point and BCD iops
– Operations issue from both slices synchronously 

• DIV/SPR pipeline - per superslice (2)
– DIV: fixed-point divide iops - entries can have a note indicating that the minimum latency is for early-

out scenarios, such as for a power of 2 operand or for a value of ‘0’ operand.
– SPR: used for move-to special purpose register
– Multi-cycle operations only

• CY pipeline - per core (1)
– CY: cryptographic iops

• DFU pipeline - per core (1)
– DFU: decimal floating-point iops and quad-precision floating-point iops
– Multi-cycle operations and pipelined operations

• SPR - per core (1)
– SPR-CTR/LR: move to CNT/LR/TAR registers
– SPR: move to other SPR registers
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An EXEC port iop is eligible to be issued in the next cycle, if in the current cycle: 

• Its sources are ready.

• It has not been flushed.

• It was marked NTC issue at dispatch, then the next older ITAG has completed.

• It is a store data, then DARQ has room to accept the store data.

• There is not a higher latency operation already in the pipe (already issued from the same slice) that will 
produce the result in the same cycle as the one that is trying to get ready to issue in the next cycle.

– There is only one writeback port per issue port such that as iops of different latencies are executed, 
only iops which will not produce writeback results at the same time can be chosen for issue.

– The issue selection policy can schedule an iop of compatible length in lieu of an older iop with incom-
patible length.

– The issue selection policy employs an arbitration policy for iops of different execution length and rela-
tive age.

• There is a long latency iop in the pipeline issued from this slice, such as floating-point divide (see Table 
A-1.  Instruction Properties on page 375 for execution latencies over 13), then there is a cycle where 
issue is blocked for other iops to allow dependent iop wakeup.

• For the iop’s execution pipeline, there cannot be a non-fully-pipelined operation causing a busy of the 
pipe; for example, DP/DP-XC pipe. 

– Non-fully-pipelined iops are identified in Table A-1.  Instruction Properties on page 375 as those iops 
with busy cycles greater than one. 

• If it is a non-fully-pipelined iop (see Table A-1.  Instruction Properties on page 375 for instructions with 
busy cycles greater then one), there is not another non-fully-pipelined iop executing on the same pipeline; 
for example, DP/DP-XC pipe.

• If the same instruction was not issued in the current cycle.

Figure 25-5. Double-Precision Pipeline Multicycle Busy versus Issueable Cycles 



User’s Manual 
OpenPOWER

 POWER9 Processor

Version 2.1 
10 October 2019 
 

Performance Profile

Page 353 of 508

25.1.5.3 Branch Issue

The BR port handles iops routed to the following pipelines (see Pipe Class in Table A-1.  Instruction Proper-
ties on page 375):

• BR: per core (1)
– BR-CR - CR dependency feeding branch pipe.

• SPR: per core (1)
– SPR-CTR/LR - move from CTR/LR/TAR/NIA

A BR port iop is eligible to be issued in the next cycle, if in the current cycle:

• Its sources are ready.

• It has not been flushed.

• It was marked NTC issue at dispatch, then the next older ITAG has completed.

• It is an SPR instruction, then it has arbitrated successfully for a slice writeback port.
– SPR-CTR/LR/TAR/NIA results use a slice writeback port and steal the port as long as there is not 

already a longer latency result scheduled for writeback in the same cycle.

25.1.5.4 Execution Pipeline Issue to Issue Latencies

Iops with register dependencies become eligible for issues as the register results are written back, or 1 - 2 
cycles before depending on the respective iop pipeline. The pipeline-to-pipeline latencies for dependent issue 
between each execution pipeline are shown in Table 25-4 on page 354. When forwarding data between PM, 
DX, or DP pipelines in a different superslice, an additional delay of 1 - 2 cycles occurs, depending on the 
specific pipeline, as shown in the +SS column of Table 25-4.

The POWER9 core is optimized to exchange data between various data types and registers providing ALU 
latency to exchange data between register types including GPR, FPR, VR, VSR, CR, XER; allowing for 
optimal movement via register in place of exchanges through storage. This has the effect of reducing the 
overhead for spilling registers, such as between GPR and FR.

Additional latency might be required for dependent iop issue in the following cases:

• Iops with a synchronous superslice issue (“S”) subject to a +1 cycle issue-to-issue delay if they are 
dependent on the source iop, which did not have a synchronous superslice issue. For example, a 1-cycle 
delay might apply to an mtvsrd feeding an xvadddp, but would not apply for an mtvsrd iop feeding an 
xsadddp. This additional delay might be hidden by the processor by converting nonsynchronous issue 
operations to have the same issue pipeline as synchronous issue operations. When this occurs, the addi-
tional latency between an mtvsrd feeding an xvadddp would not be realized. However, in this mode 
loads feeding the nonsynchronous issue operation experience the same latency as feeding synchronous 
operations, see Section 25.1.7.8 Load-to-Use Latency on page 359.

• An additional issue delay of +3 cycles can be encountered when forwarding CR, XER, or FPSCR results 
between instructions. This delay is captured in the “Additional Latency for CR/XER/FPSCR/VSCR 
Source” column of Table A-1.  Instruction Properties on page 375. Note that XER has a grouped field, 
CA/CA32/OC. For grouped fields, this delay applies when the producing iop is writing a field within the 
same group as the source field. See Move-To and Move-From FPSCR on page 354 for additional details 
related to latencies incurred for FPSCR exception summary, “sticky” field dependencies.

Next instruction address

Superslice
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Move from LNK, CNT, and TAR Registers are executed in the branch slice and have a latency of six cycles. 
These iops borrow a write-back port from an execution slice and therefore, consume an issue/writeback slot 
from the execution slice similar to an ALU operation. Move to LNK, CNT, and TAR Registers are executed 
from the execution slice and have a latency of five cycles. Other move from and SPR instructions are 
executed by one of two pipelines:

• LD pipeline: iop issue to dependent iop issue = 14 cycles

• SPR pipeline: iop issue to dependent iop issue = 12 cycles

25.1.6 Iop Execution

25.1.6.1 Execution Pipeline Hazards

XER-SO

The processor core speculates that the XER[SO] bit will not change during execution of operations; for 
example, that the SO bit is rarely cleared. When a change to SO is detected, the instruction that changes SO 
is flushed from the pipeline once it becomes NTC and is re-fetched for execution.

Move-To and Move-From FPSCR

The processor core manages a mode that speculates on the value of the FPSCR exception/sticky bits. The 
core favors speculation that sticky bits are not changing during the pipeline lifetime of sticky field readers, 
including certain move-from FPSCR instructions as well as certain move-to FPSCR instructions, see the iops 
marked with “F” in the “Next to Complete” column in Table A-1.  Instruction Properties on page 375. This 
speculative FPSCR mode allows these instructions to execute without delay in an out-of-order fashion. When 
sticky field changes are encountered by these iops, they can cause a pipeline flush and the core will enter a 
nonspeculative mode for these iops. In the nonspeculative mode, the iops execute when they are next-to-
complete. The processor maintains the nonspeculative mode while sticky changes continue to be observed.

Table 25-4. Issue-to-Issue Latencies between Execution Pipelines 

Consumer:
Producer WB AGEN ALU/

ALU2
PM/ 
DX +SS DP +SS DP-XC +SS MUL +SS DIV CY DFU BR-CR

ALU 2 2 2 2 2 2 2 2 2 2 2

ALU2 3 3 3 3 3 3 3 3 3 3 3

PM 3 - 3 3 3 +1 3 - - 3 3 3

DX 3 - 3 3 3 +1 3 - - 3 3 3

DP 7 - 7 6 +1 5 +2 6 +1 - - 7 7 7

DP-XC 7 - 7 7 7 7 - - 7 7 7

MUL 5 5 5 - - - 5 5 - - 5

DIV 12 12 12 - - - 12 12 - - 12

CY 6 - 6 6 6 6 - - 6 6 6

DFU 12 - 12 12 12 12 - - 12 12 12

BR-CTR/LR/NIA 6 6 6
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Note:  Lightweight move-to FPSCR instructions that only modify the control field of the FPSCR including 
mffscrn, mffscrni, mffscdrn, mffscdrni, mffsl, as well as mtfsb0, and mtfsb1 that only update the control 
field, will never cause a flush and can always execute out-of-order. 

25.1.6.2 FPR Result Forwarding Restrictions

The internal dataflow was optimized for common cases of data type exchange. Certain internal data type 
representations are not eligible for fowarding. If forwarding occurs due to an instruction dependency, a flush 
is generated. Avoid the following dependent scenarios:

• Convert float-to-integer feeding a floating-point input

• Floating-point output feeding convert integer-to-float

• 64-bit floating-point result feeding a 32-bit floating-point input operand; for example, xvadddp feeding 
xvcvspuxds

• 32-bit floating-point result feeding a 64-bit floating-point input operand; for example, xscvdpsp feeding 
fadd 

25.1.7 Load/Store Processing

Load and store iops are broadcast to the four LS slices on address and store-data buses. Each iop is 
received by 1 - 3 of the doubleword (DW) aligned slices based on the computed operand effective address 
(EA) and length of the load or store operation as shown in Table 25-5. Each doubleword slice starts at one of 
four values of EA bits 59:60, each specifying one of slices 0, 1, 2, 3, and includes bytes from EA(61:63) = 0 
through EA(61:63) = 7. 

The “Fits in Aligned Doubleword” column (applicable to operations less then or equal to 8 bytes) means that 
the EA bits(59:60) of all bytes of the operation are equal; that is, the operation does not cross a doubleword 
boundary. Whereas, the column “Aligned to Doubleword Boundary” (applicable to 16-byte operations) means 
that the computed operation EA(61:63) = 0; that is, the operation is doubleword aligned.

All operations of less then or equal to 8 bytes that do not cross a doubleword boundary (which includes all 
naturally aligned operation sizes) and all 16-byte operations, which are either doubleword or quadword 
aligned, consume the minimum number of LS slices for execution: one slice for 8 bytes or less and two slices 
for 16 bytes.

For example:

A 4-byte load with EA(59:60) = 1 and EA(61:63) = {0, 1, 2, 3} goes to LS slice 1.
A 4-byte load with EA(59:60) = 1 and EA(61:63) = {5, 6, 7, 8} goes to LS slices 1 and 2.

Table 25-5. Slices per Load/Store Operation 

Operation Length Fits in Aligned Doubleword? Aligned to Doubleword 
Boundary? Number of Slices

1 Byte - - 1

2 - 8 Bytes Y - 1

2 - 8 Bytes N - 2

16 Bytes - Y 2

16 Bytes - N 3
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A 16-byte load with EA(59:60) = 3 and EA(61:63) ≠ 0 starts at LS slice 3 and also goes to LS slices 0 and 
1.

25.1.7.1 Tracking Load and Store Ordering

Load iops are tracked by a load reorder queue (LRQ) and store iops are tracked by a store reorder queue 
(SRQ) to maintain correct architectural storage ordering and cache coherency. The LRQ and SRQ are shown 
in Figure 25-1.

There is one LRQ per pair of LS slices, one for LS slices 0/1, and one for LS slices 2/3. The LRQ tracks each 
load iop which is executed in one of its slices and tracks up a 16-byte load in each entry. 

A 16-byte load, which is naturally (quadword) aligned, is therefore tracked in a single LRQ entry. Whereas, 
16-byte loads that span a quadword boundary are tracked in two LRQ entries; one in each LS slice pair. 

The LRQs are two level: the first level (pre-finish) LRQ tracks loads that have not yet executed successfully, 
while the second level finish-LRQ tracks loads after they have finished and until they are completed. Each of 
the two LS slice pair LRQs has 10 pre-finish and 28 post-finish entries, for a total of 76 LRQ entries per core.

There is one SRQ for each of the four LS slices. The SRQ tracks each store iop which is executed in the slice. 
Therefore the number of SRQ entries per iop is given by the number of slices indicated in Table 25-5 on 
page 355. Each slice SRQ holds 16 entries for a total of 64 SRQ entries per core.

25.1.7.2 LS Slice Execution

Load/store iops are received by the LS slices and are bypassed to each LS-slice pipeline for execution if the 
pipeline is not already processing a previously received load or store operation. When the load/store iop is 
not able to execute immediately, it is queued in either the Data Address Recirculation Queue (DARQ) or the 
Load Store Address Queue (LSAQ) per LS-slice pair for issue into the pipeline in a future cycle. 

Queuing in the LSAQ allows iops to be freed from the main slice issue queues after their dependencies are 
met. Dependent operations for load/store iops are issued only after the load/store iop is finally issued into the 
pipeline. 

Iops that have been executed but encounter an execution hazard, such as an L1 D-cache miss or effective-
to-real address translation for data (D-ERAT) miss are re-issued from their LRQ or SRQ entry back into the 
slice pipeline after their hazard condition is resolved. See Section 25.1.7.10 Load/Store Pipeline Hazards for 
a complete list of LS-slice execution hazards that are tracked in the LRQ and SRQ entries.

Iop execution takes place in each LS slice independently from each other LS slice, such that iops that are 
routed to more then one slice are not completely finished with execution until they are finished in each slice 
on which they are executing.

25.1.7.3 L1 D-Cache

The L1 D-cache is the first level of cache available to load and store operations. It is 32 KB and organized as 
8-way set-associative with 128-byte cache lines. Half cache lines, with 64 bytes of data each, are supported.

The L1 D-cache is sliced by a doubleword providing four independent ports (one per LS slice) each returning 
up to 8 bytes, for a total of 32 bytes of cache access per cycle. The L1 D-cache is reloaded by the L2 cache 
at a rate of up to 64 bytes per cycle. The L2 reload bus is dynamically shared with the other core of a core-
pair (when active). 
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The L1 D-cache has eight banks. Cache writes and reads to different banks occur simultaneously from each 
LS slice. 

When load and store operations execute, they use a set prediction directory (SETP) to reduce cache access 
latency. The SETP provides a cache-hit and set selection indication. In parallel to accessing the SETP, the L1 
D-cache directory and ERAT are also accessed and are used to confirm the SETP cache-hit and set-selec-
tion. 

When a load encounters an SETP hit and ERAT miss, a translation is performed to confirm the SETP predic-
tion. If the translation results in a TLB miss or an SLB miss for a hashed-page table (HPT) translation mode, 
the load is flushed from the pipeline and is re-fetched while the translation process proceeds. 

When a load encounters an L1 D-cache miss, the following occurs:

• A request is made to the L2 to retrieve the cache line.

• A load miss queue (LMQ) entry is allocated for the cache line or the request is merged into an existing 
LMQ entry for a matching cache line.

• An LRQ entry associated with the load waits for the cache line to return from the cache hierarchy before 
waking the load back up for re-issue into the execution pipeline. 

The LMQ holds 12 cache-line miss requests per core, eight for general loads and one per thread to handle 
load-and-reserve operations, which are discussed in Section 25.1.8.1 larx/stcx Instruction on page 365. 

If there is already an LMQ entry active for the same cache line, the load becomes dependent on the same 
LMQ entry for re-execution, with no limit on the number of loads that are dependent on a particular LMQ 
entry. Otherwise, if there are no remaining LMQ entries, the load re-arbitrates for an LMQ entry once an entry 
becomes available.

The L1 D-cache is store-through. Stores that miss the cache write into the L2 cache after they are complete, 
but do not allocate an entry in the L1 D-cache. If a store hits the SETP/L1 D-cache, it writes the cache once it 
is complete as it is being sent to the L2 cache. 

A write into the L1 D-cache by a store makes the line private to the thread of the store performing the write. If 
any other thread requests to access the line that is marked as private, the line is evicted from the L1 D-cache. 
If the request from the other thread was a load, the line is brought back into the cache in a non-private state 
available to all threads.

25.1.7.4 D-ERAT

Each pair of LS slices has two D-ERAT structures for performing address translation. The two pairs of 
D-ERAT are kept synchronized. Each D-ERAT is implemented as a fully-associative 64-entry array, with a 
binary LRU replacement algorithm. D-ERAT entries are created for 4 KB, 64 KB, 2 MB, and 16 MB pages 
only. 1 GB and 16 GB pages are broken into 16 MB entries in the D-ERAT, where the installed page contains 
the referenced address. Each D-ERAT can support one lookup per cycle and also supports hit-under-miss. 

D-ERAT misses are tracked in a 4-entry ERAT miss queue (EMQ). One EMQ entry is allocated per cycle per 
core. EMQ entries arbitrate with I-ERAT misses to perform translation. The EMQ holds the ERAT miss while 
translation is being performed. After translation has been performed, all D-ERATs are loaded with the new 
effective-to-real address translation. Both load and store translations are requested and performed specula-
tively. That is, as iops miss the ERAT during execution, translations are performed and the D-ERATs are 
loaded based on the speculative translations. 
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D-ERAT entries are invalidated based on any tlbie for which a match is architecturally required. For a 
256 MB, 1 GB, or 16 GB tlbie invalidate, all D-ERAT entries for the matching LPID/PID are invalidated. 

25.1.7.5 Translation Look-Aside Buffer

The TLB has 1024 entries and is four-way associative. It supports translation for both D-ERAT and I-ERAT 
misses. The TLB uses a true LRU replacement algorithm.

When any thread is initialized on the processor that supports Radix page table (RPT) mode, the TLB is also 
used as a page-walk cache (PWC), which holds individual page table references cached from previous trans-
lations. In RPT mode, the TLB has 512 entries and the PWC has 128 entries for the L1, 128 entries for the L2, 
and 128 entries for L3 references. The PWC is implemented as direct mapped.

After a thread is activated with RPT mode active, the processor core TLB remains in the TLB/PWC split 
mode. 

The TLBs are indexed with a hashed address calculated from portions of the virtual address and the page 
size. Each entry in the TLB represents a particular page size: 4 KB, 64 KB, 2MB, 1 GB, and 16 GB, that is, all 
page sizes are natively supported in the TLB and consume only one entry.

If a translation request does not hit in the TLB, a tablewalk is initiated that loads the TLB and either the 
D-ERAT or I-ERAT depending on if it was a load/store data access or instruction access respectively. Up to 
two outstanding tablewalks can be active at one time. The implementation allows tablewalks for speculative 
instructions but does not update the Ts or change (C) bit in a PTE entry unless the instruction is NTC when 
the PTE entry is found. The TLB is reloaded with the corresponding PTE entry even if the instruction that 
requested the translation is speculative. 

If a store misses the TLB after missing translation, and the C bit is not on, then a second tablewalk is done 
after the iop is NTC, so that the C bit can be updated.

There are four 32-entry SLBs, one per thread, that are accessed before accessing the TLB during HPT mode. 
If there is an SLB miss, a segment tablewalk is performed. Four entries of the SLB are architected and can be 
loaded by the software (one per thread). The SLB supports FIFO replacement for the other 28 entries.

25.1.7.6 Store Forwarding

As loads are issued into each LS-slice pipeline, they check each SRQ entry for older stores on which they are 
dependent (that is, for stores with overlapping address ranges). A load-hit-store (LHS) is when an overlap-
ping store is found. When a store with an overlapping EA(44:63) is found, the load is identified as a candidate 
for store-forwarding and its execution is delayed by two cycles, allowing store forwarding to take place. Any 
iop selected for issue within the same LS slice that collides with the execution of the two-cycle delayed iop, is 
also delayed by two cycles, instead of being rejected or recycled for future execution. This allows for a fully 
pipelined execution of iops that are able to perform store forwarding. 

In addition to matching EA(44:63) bits between a load iop and a STQ entry, the rest of the EA, as well as the 
RA, is also compared to confirm the store forwarding condition. When the RA compare matches between a 
load and the store but the EA compare does not match, or vice-versa, and store forwarding was not restricted 
due to another reason, then the load iop is flushed from the pipeline and re-fetched for execution. 

Store forwarding is supported within each LS slice by taking overlapping bytes from a single store and non-
overlapping bytes from an L1 D-cache hit. However, in the following cases, store forwarding cannot take 
place:

Page table entry
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• Forwarding is required from more than one store per LS slice; for example, different byte ranges within a 
single LS slice are being stored to by more than one store iop. The load iop must wait for an overlapping 
store to drain from the STQ after completion and be written to and read from the cache hierarchy before it 
is able to successfully execute.

• Forwarding is required from both a single store in the STQ-slice, and from non-overlapping bytes of the 
same cache line but the cache line data is not in the L1-D-cache; for example, an L1-D-cache miss. The 
load iop must wait for the store to drain and for a miss condition to bring the updated line back into the L1 
D-cache.

• If the load iop or store iop are on pages that are caching inhibited or guarded.

To increase store forwarding opportunities, stores are kept in the STQ after they are drained when they were 
an L1 D-cache miss to allow for loads to perform store forwarding. These stores are evicted from the STQ if 
their STQ entry is required by younger executing stores.

25.1.7.7 Out-of-Order Load/Store Execution

As stores execute they check each LRQ entry for the corresponding LS slice for any younger loads accessing 
overlapping bytes of storage that have already accessed the cache or generated a cache miss. Any matching 
loads are flushed from the pipeline and re-executed. Such a condition is called store-hit-load (SHL) flush.

To avoid the SHL flush condition, the POWER9 core has mechanisms to restrict load execution ahead of 
older stores, as in the following cases:

• When a load detects an older store in the pipeline with a matching base register and displacement and/or 
base and index register, an execution ordering dependency is created between the load and the older 
store. This mechanism is subject to the distance of the load from the store.

• When a load at the same instruction EA has previously encountered an SHL flush. Upon re-execution, the 
load is made dependent on an older store. This mechanism is not employed for load-string and load-mul-
tiple. This mechanism is subject to the distance of the load from the store.

Because of the risk for an SHL flush, compilers should generally avoid producing loads dependent on older 
stores in near proximity, especially those where the base and displacement, and/or base/indexed registers do 
not match.

25.1.7.8 Load-to-Use Latency

Iops dependent on register results from older loads are able to issue with a nominal issue-to-issue latency of 
four core cycles. Table 25-6 lists the full set of issue-to-issue latencies for various iop types and alignments 
when data is resident in the L1 D-cache or is available to be forwarded from an older store. Each of these 
latencies is further dependent on the actual LS-slice execution time per the description in Section 25.1.7.2 LS 
Slice Execution on page 356.



User’s Manual 
OpenPOWER
POWER9 Processor  

Performance Profile

Page 360 of 508
Version 2.1 

10 October 2019 
 

Dependent iops that have a synchronous issue, including iops marked as having vector-dispatch and/or 
paired-issue in Table A-1.  Instruction Properties on page 375, have a 5-cycle nominal issue latency after the 
load issues. Nonsynchronous iops that are concurrent in the execution pipeline together with synchronous 
iops can be issued with synchronous issue latency, nominal five cycles, to improve pipeline usage.

Load iops that take more then the minimum number of LS slices due to alignment, see Table 25-5 on 
page 355, have a 6-cycle nominal issue latency to a dependent iop issue of any type.

Load iops that cross a 32-byte aligned granule take an additional three cycles to execute.

Note:  The effective issue latency for single-precision floating-point load iops and load algebraic iops feeding 
dependent instructions is increased because they are cracked instructions. Each instruction is cracked into a 
load iop followed by a conversion iop that takes an additional two cycles to execute before a dependent 
instruction can issue.

25.1.7.9 Load/Store Throughput

Each of the two LS-slice pairs is capable of executing the following iops per cycle:

• An 8-byte load/store per slice; for example, either two doubleword contained iops or one iop spanning 
both slices

• A combination of any one load iop and any one store iop, each spanning one or both slices
– For example, includes one 16-byte load and one 16-byte store per cycle per LS-slice pair if quadword 

aligned
– For example, includes one unaligned 8-byte load and one unaligned 8-byte store per cycle per LS-

slice pair

After they complete, stores are drained from each LS-slice STQ at a rate one iop (8 bytes) per cycle per STQ 
into a 16-entry per core store drain queue (S2Q), with each entry holding up to 16 bytes. For example, store-
vector and store-quad instructions can store up to 16 bytes per cycle. The stores are then pipelined through a 
core interface unit queue (CIU-STQ) to the L2 STQ at a rate of one instruction per cycle, up to 16 bytes, into 
two L2 STQ banks, even and odd lines. 

In the L2 STQ, the stores are gathered before writeback of up to 128 bytes per 2:1 clock. 

Table 25-6. Load Issue to Dependent Iop Issue Latencies for L1 Hit or Store Forwarding   

Load Iop Dependent Iop Nominal Latency 
(core cycles)

Additional Latency 
(core cycles) Notes

Base Nonsynchronous Issue 4 -

Base Synchronous Issue 5 - 128-bit Operand 
Dependent Iops

≤8 bytes and Does Not
‘Fit in Aligned DW’

- 6 -

16 byte and 
Not ‘DW Aligned’

- 6 -

Crosses Aligned 32-byte 
Granule

- - +3

Store Forwarding - - +2
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The store drain interface to the L2 CIU STQ is private to a given core, but shares L2 STQ entries with the 
other core of the core pair, allowing up to 16 bytes per core to drain to the L2 STQ when stores are going to 
different L2 STQ banks. The two CIU STQs maximize their unload rate by searching for even/odd bank 
entries that can be unloaded in the same cycle. 

In the L2 STQ, the stores are gathered before writeback to the L2 cache of up to 128 bytes per 2:1 clock. This 
allows stores with line locality to sustain a drain rate of 16 bytes per core into the L2 cache.

Note:  When a load is detected as overlapping a store in the L2 STQ, the STQ entry is marked for quick write-
back to allow the load request to be processed.

Figure 25-6. Store Drain Path from Core-to-L2 Cache  

SRQ SDQ

DW1/5

LSU

DW2/6

LSU

DW3/7

LSU

DW0/4

LSU

Core 0 Core 1

SRQSDQ

LMQ S2Q
16 Entry x 16B

CIU STQ

Shared L2: 512k 8W

Shared L3: 10MB 20W

DIR

Store Data

LMQS2Q

Check Dir:
miss @ agen

store hit reload

SRQ SDQSRQSDQ

8B x4

Core-0 Q
6 Entry + 1 MB

Even Lines
16B

16B

L2 STQ
Odd Lines

24 Entry (1 stcx)
64B Gathering

16B

Odd Lines
16B

64 B / cycle

STQ:
16 x 8B

L2 STQ
Even Lines

24 Entry (1 stcx)
64B Gathering

D$ DW0

Write
for Hit

STQ:
16 x 8B

D$ DW1

Write
for Hit

STQ:
16 x 8B

D$ DW2

Write
for Hit

STQ:
16 x 8B

D$ DW3

Write
for Hit

8B 8B 8B 8BDIR
Check Dir:

miss @ agen
store hit reload

Core-1 Q
6 Entry + 1 MB

128B (Clustered drain of 2 entries)

CIU Load Q
Detect LHS

Core-0 CIU STQ

6 Entry + 1 MB

Core-1 CIU STQ

6 Entry + 1 MB

L2 STQ
Even Lines

28 Entry (1 stcx)
64-byte Gathering

L2 STQ
Odd Lines

28 Entry (1 stcx)
64-byte Gathering



User’s Manual 
OpenPOWER
POWER9 Processor  

Performance Profile

Page 362 of 508
Version 2.1 

10 October 2019 
 

25.1.7.10 Load/Store Pipeline Hazards

The following conditions detected in the load/store pipeline result in a pipeline flush at or after the problem 
instruction:

• SETP hit but tag miss, see Section 25.1.7.3 L1 D-Cache on page 356.

• TLB miss after an SETP hit, ERAT miss, see Section 25.1.7.3 on page 356.

• TLB miss followed by SETP/L1 D-cache miss, ERAT miss; invalidate or eviction in translation window.

• Load-hit-store flush: RA does not match, but forwarding was selected, see Section 25.1.7.6 Store For-
warding on page 358.

• Store-hit-load flush: Older store executes after younger load to same address, see Section 25.1.7.7 Out-
of-Order Load/Store Execution on page 359.

• Cache inhibited load (I = ‘1’) detected in PTE entry (not explicit cache-inhibited instruction).

• Out-of-order larx detected for same thread

• Snoop or store from the other thread, invalidates the younger load data while the older load in the pipeline 
is flushed.

• SAO mode: Snoop or store from the other thread invalidates the younger load data while the older load to 
same address in the pipeline is flushed. 

• Snoop or store from other thread invalidates part of load-quad

• Snoop or store from other thread invalidates load while sync is pending

• Snoop or store from other thread invalidates load while tend is pending

• TLBIE snoop response expedited and flush impacted stores and load misses

• ECC: UE on data from memory 

25.1.7.11 64-Byte Cache-Line Data

The POWER9 core implements a memory controller with adaptive behaviors to manage high-memory band-
width utilization effectively. One of these features is the capability to fetch only 64 bytes of data (half cache 
lines), instead of the normal full cache-line size of 128 bytes of data from the memory when memory band-
width utilization is very high. 

The processor core is responsible for indicating on all cache-hierarchy requests if the request is allowed to 
return as 64 bytes; for example, 64B_ok. When this 64B_ok indication is not set, the memory controller must 
return the full 128-byte cache line. Additionally, the processor dynamically forces the 64B_ok indication to ‘0’ 
to optimize performance. The 64B_ok indication is set to ‘0’ in the following cases; otherwise, it is set to ‘1’:

• Instruction fetch
• Data prefetch
• Translation tablewalks
• IOP crosses 64-byte granule
• Larx
• Partial hit in the L1 cache
• Control register specifies require-128B 
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25.1.7.12 Data Prefetch

The data prefetch engine can recognize sequentially increasing or decreasing accesses to adjacent cache 
lines and then request anticipated lines from more distant levels of the cache/memory hierarchy. The useful-
ness of these prefetches is reinforced, as repeated demand references are made along such a path or 
stream. The depth of prefetch is then increased until enough lines are being brought into L1, L2, and L3 that 
much or all of the load latency can be hidden. The most urgently needed lines are prefetched into the nearest 
cache levels. 

Data Prefetch Features

• Eight active streams tracked

• EA based

• Software eDCBT/ST control support

• L1 and L3 prefetching

• Stride-N detection

• Duplicate stream removal

• Finite stream length support

• Full LRU

• Full set of user controls (HID, LPCR, DSCR, SCAN)

• Fully pipelined, 4 prefetches in-flight in core

• 32 prefetch engines in L3 shared by up to two paired cores

• Bandwidth sensitivity controls: adaptive prefetch 

Track all Load and Store Addresses to Identify Stream Patterns

The prefetch subunit tracks load and store addresses using a register file referred to as the prefetch queue 
(PRQ). Loads that miss the L1 data cache, and which do not appear to be part of an existing stream that the 
PRQ is already tracking, are eligible for consideration to be added to PRQ as a new potential stream to track. 
This is referred to as allocating a new stream. When streams are allocated, the address of the next predicted 
cache line in the stream is written into the PRQ.

After a stream has been allocated, subsequent loads and stores that match the next predicted address in the 
stream are said to confirm the stream. This confirmation results in an update to the PRQ for that entry. The 
entry is updated to the address of the next predicted in the stream.1

During stream start up (allocate), a burst of lines can be requested from the memory subsystem, depending 
on the measured confidence. After a steady state is achieved, each stream confirm causes the engine to 
bring one additional line into the L1/L2 cache, and one additional line into the L3 cache. 

1. The stream is always assumed to be going up in address space on an allocate (for example, N+ 1). However, if the next 
sequential load is going downward (for example, N-1 is seen), the stream direction is reversed. This reversal can happen 
again (for example, if N+1 is seen again), the stream direction is then reversed to an upward direction again.



User’s Manual 
OpenPOWER
POWER9 Processor  

Performance Profile

Page 364 of 508
Version 2.1 

10 October 2019 
 

PRQ tracks load and store addresses as they are accessed by the program. After a pattern has been identi-
fied and a stream is established, the prefetch subunit begins making L1/L3 prefetch requests by injecting into 
one of the LS-slice execution pipes for a single cycle and inserting the L1/L3 prefetch address into the data-
flow. If the prefetch hits the L1 data cache, it is discarded.

L1 prefetches are then placed in the LMQ and the request is sent to the memory subsystem to bring the data 
back into the L1/L2 cache. L3 prefetches bypass the LMQ and are sent to the memory subsystem using the 
shared translate interface. Unlike L1 prefetch requests, the L3 prefetch requests only indicate to the memory 
subsystem that the data should be brought into the L3 cache.

Adaptive Prefetching

The POWER9 core implements a memory controller with adaptive behaviors to manage high-memory band-
width use effectively. One of these features is the capability to drop prefetch requests based on the demands 
for memory bandwidth observed at the memory controller. 

The data prefetcher is designed to provide guidance to the memory controller to control the priority per 
prefetch, by assigning a confidence level to each prefetch request. This allows the memory controller to drop 
less confident prefetches while holding on to more confident prefetches, depending on the extent of memory 
bandwidth contention. The data prefetcher predicts the confidence based on stream and program history.

The data prefetcher is able to identify phases of program execution where prefetching might be more effec-
tive. It uses this information, and also receives feedback from the memory controller to assist with making 
decisions about the ramp (how many prefetches to send relative to the number of confirms), and the depth 
(how far ahead to prefetch). 

Adaptive prefetch assists programs in achieving optimal performance without detailed prefetch tuning. 
However, for data sensitive programs, it is recommended to perform prefetch tuning to achieve optimal 
performance. A DSCR URG setting of ‘1’ forces the machine into the most conservative adaptive prefetch 
mode. Conversely, a DSCR URG setting of ‘7’ precludes the adaptive mechanism from entering a conserva-
tive mode of operation.  

As streams are detected, initial prefetches are sent out to look ahead; initially between 0 - 4 lines depending 
on urgency and the adaptive prefetch state. As load and store addresses for subsequent operations are 
detected to align with the ongoing stream, the stream is advanced. The stream can move ahead of the 
current load/store address position to a maximum depth, which is configurable. The default is between 4 - 24 
lines ahead depending on the DSCR DPFD setting and SMT mode (other depths are available based on the 
configuration). 

Stride-N prefetching on the POWER9 processor operates in all SMT modes. The hypervisor and operating 
system should initialize the DSCR with stride-N active.
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25.1.7.13 Software-Initiated Data Prefetch 

The dcbt TH = ‘0’ and dcbtst instructions cause a single-line prefetch (dcbt into the L1 cache and dcbtst 
into the L3 cache). 

The dcbt/dcbtst TH = x‘8’, x‘B’, x‘A’ values identify start and stop streams that bring data into the L1 cache:

• A stream takes a PRQ entry

• Streams can specify a finite length (UNITCNT) or unlimited. If the UNITCNT is never reached, the stream 
stays active occupying a PRQ entry until it is converted to a software stream on a context switch.

• At creation, software streams initiate prefetches until either the specified depth (as indicated in DSCR or 
LPCR DFPD) is reached or the UNITCNT is reached, which ever comes first.

• Software streams are converted to hardware streams as follows: 

– On a context switch
– When prefetch stop is indicated
– When the UNITCNT is reached

• Transient indication impacts L3 cache replacement, biasing toward being more easily replaced when set.

In practice, scheduling the prefetch (dcbt/dcbtst) far enough ahead for misses is challenging due to aggres-
sive pipelining. To hide the latency of a memory miss, a long stream or a long lead time is required to start 
prefetching. However, when used effectively, software prefetch streams are a very powerful tool for boosting 
performance.

Software streams can also be used to guarantee that a particular stream of importance is allowed to gain 
maturity and remain active and not be evicted if it is deemed critical. This is because the software streams are 
able to stay resident and are eligible for eviction from the PRQ until they are either stopped or encounter a 
context switch.

DCBZ

The dcbz instruction enables invalidation and zeroing of lines before storing to them, which reduces traffic to 
the memory controller and reduces time to ownership of a line. The dcbz instruction is a powerful tool when 
software knows that a line is fresh (writable) without consequence. 

The best practices are to issue the dcbz ahead of where stores will occur to a region.

25.1.8 Special Instruction Sequences

25.1.8.1 larx/stcx Instruction

Load reserved and store reserved sequences give the programmer/compiler the ability to share storage in an 
effective manner by exchanging locks and updating atomic variables between program threads.

The POWER9 core has improved lock performance for both uncontested and contested locks. However, care 
must be taken to follow the coding guideline reservations.
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EH Bits

The EH hint bits are honored by the POWER9 core and should be used diligently to distinguish between:

• Critical sections (EH = ‘1’), where the lock-line is held while work is performed and the lock will later be 
released with a store to the lock granule.

• Atomic updates (EH = ‘0’), where a passing stcx completes the use of the lock.

If the correct usage is unknown, the compiler should set the EH hint bits to favor the atomic update case.

Contested Locks

Contested locks should be kept on separate and unique lines relative to shared data. To achieve this separa-
tion might require padding by the programmer. This allows the locks to be contested by the caches without 
the side effect of the lock granule false sharing in the same cache line as the critical section data. Looping on 
a contested lock is a common strategy. While looping, it is preferred to poll the lock with a load and then 
attempt a larx instruction after the lock is free. It is also common to go into a lower-thread priority state while 
polling. However, priority NOPs should be avoided within the inner polling loop, and instead the NOPs should 
be inserted before starting and after exiting the polling loop.

25.1.8.2 icbi Instruction

The icbi is treated as a NOP on the POWER9 core, except that it provides isync with the required synchroni-
zation around storing into the instruction stream.

25.1.8.3 isync Instruction

An isync pauses briefly at NTC to check if any special conditions have occurred. If no special conditions have 
occurred, it completes with no effect. However, if a special condition has occurred since the last flush of the 
pipeline, all subsequent instructions are flushed from the pipeline and re-fetched.

Some isync special conditions are as follows:

• Store invalidate to I-cache

• CSI required by move-to SPR scoreboard operations (see Power ISA Operating Environment Architec-
ture - Book III (version 3.0B) for CSI registers)

• Set by the following operations when they are NTC: icbi, ptesync, tlbie, tlbiel, slbie, slbia, mtsr, mts-
rin, slbmte

25.1.8.4 ptesync Instruction

A ptesync is held at dispatch until all loads have been executed; for example, including no outstanding load 
misses. It synchronizes at NTC with the L2 cache to ensure that no snoop or store from another thread 
matches any of the loads in the pipeline. If any does match, it causes a flush of the pipeline and a refetch of 
subsequent instructions. 
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25.1.8.5 sync Instruction

The sync (hwsync) instruction synchronizes at NTC with the L2 cache to ensure no snoop or store from 
another thread matches any loads in the pipeline. If a match is detected, a pipeline flush occurs along with a 
refetch of the subsequent instructions.

25.1.8.6 eieio Instruction

An eieio instruction is held at dispatch until all loads have been executed; for example, including no 
outstanding load misses. Cache-inhibited loads are rejected when an older eieio is active in the pipeline.

25.2 Cache and Memory Hierarchy 

Each L2 and L3 cache are connected to a pair of processors and also to other caches and services on the 
chip through a fabric bus. Both caches support 128-byte cache lines and also support 64-byte cache line data 
valids allowing for half cache-line memory reads. Cache coherency is maintained on a 128-byte line size.

When the processor core requests the invalid portion of a 64-byte valid cache line, the L2 or L3 cache 
performs a read of only the other half of the cache line from memory and returns the entire 128-byte cache 
line to the L1 cache.

25.2.1 L2 Cache

Each L2 cache is 512 KB and 8-way set associative with fast access to its own private 10 MB L3 cache region 
through a private low-latency bus. The L2 cache maintains full hardware coherence within the system and 
can supply intervention data to the other cores on this POWER9 chip or to other cores on other POWER9 
chips. Logically, the L2 cache is an in-line cache. Unlike the L1 caches, which are store-through, it is a store-
in cache. The L2 cache is fully inclusive of the L1 D-caches and the L1 I-caches.

The L2 replacement policy uses an LRU with a vector-tracking tree that includes cache-invalidate state 
biasing and takes L1 access updates from each core.

The L2 cache is dual-banked, even versus odd lines, and can support a read to one bank while performing a 
write on a different bank.

On an L2 hit, the L2 cache returns data to the core at a rate of 64 bytes per core cycle, installing a full cache 
line over two back-to-back core cycles. On an L2 miss, the L2 cache returns 32 bytes per core cycle. 

25.2.2 L3 Cache 

Each L3 cache region on the POWER9 chip is a unified victim cache for its respective core/L2 cache, as well 
as for other L3 caches on chip. The resident cache lines installed from the attached L2 cache are referred to 
as L3.0 lines, and the resident cache lines installed from other on-chip L3 caches are referred to as L3.1 
lines. When castout from an L3 cache are victimized, L3.1 lines go to memory and L3.0 lines have the option 
of being castout to other L3 caches on chip. The L3 cache is a 20-way associative 10 MB cache. The L3 
cache maintains full hardware coherence within the system and can supply intervention data to the other 
cores on this POWER9 chip or to other cores on other POWER9 chips. Logically, the L3 cache is an in-line 
cache. The L3 cache is a victim cache1 of the L2 cache. The L3 cache is not inclusive of the L2 cache. 

1. All valid lines that are victimized in the L2 cache are castout to the L3 cache.
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The L3 replacement policy uses a per entry state that is based on historical access rates, data sources, and 
requesting transfer types. The state is kept as multiple bits per entry over two sets of 10 entries. The decay 
rate for entries controls the stickiness of previously referenced cache lines and can be adjusted via SCOM. 
The install stickiness can be tuned and adjusted at IPL time for instruction-cache and translation operations. 

The L3 cache returns data to the core at a rate of 32 bytes per core cycle, with a full cache line delivered over 
four core cycles.

The L3 cache supports full and partial cache line injection that allows for updates from the PCIe and other 
sources.

25.2.3 Cache Latencies and Bandwidth

Table 25-7 lists several key bandwidth and latency values for the chip. These represent best case values 
under ideal conditions. Actual values can vary due to resource limitations or queueing effects. The pclk in 
Table 25-7 is the clock rate of the processor core and the latency is relative to the four core cycle nominal 
latency for load to a dependent issue.

Table 25-7. Cache and Memory Hierarchy Load to Issue Latencies and Bandwidth  

Description Latency Bandwidth

L2 D-cache load hit (bypass) 15.5 pclks  64 bytes/pclk

L2 I-cache load hit (bypass) 16.5 pclks  64 bytes/pclk

L3 load hit 35.5 pclks  32 bytes/pclk

L2.1 load hit variable  16 bytes/pclk

L3.1 load hit variable  16 bytes/pclk

Memory load (local)2 68 ns (see Section 25.4 on page 369)

1. Pclks represent one processor core clock.
2. DDR4-2400, CAS latency = 17 tCK, 2 GHz nest, 4 GHz core, nominal wire length, no refresh. Note that single and double refresh, 

along with memory speed, rank, and core location relative to the memory controller impacts memory latency. 

Peripheral component interconnect express
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25.3 NX Accelerators

The NX accelerators support the throughput shown in Table 25-8.

25.4 Direct Attach Memory

There are eight memory controllers on each POWER9 chip that can be configured into address interleave 
groupings. The maximum memory that a grouping can address is 4 TB and the maximum that can be 
addressed from a single chip is 4 TB. The maximum memory speed supported is 2667. 

Table 25-9 shows the sustained memory bandwidth for a selection of workloads with single-refresh on, two 
ranks and one DIMM for each of the eight channels. 

Table 25-8. NX Accelerator Throughput  

Operation Engine Single-Engine Throughput at 2 GHz1

AES CBC encrypt 128-bit key 4 KB block AES 8 Gbps

AES CBC encrypt 256-bit key 4 KB block AES 6.4 Gbps

SHA 256 256-byte block SHA 3.7 Gbps

SHA 512 256-byte block SHA 5.8 Gbps

Compression 842 16 GBps peak into compressor2

Decompression 842 16 GBps peak out of decompressor2

Compression Gzip 16 GBps peak into compressor2, 3

Decompression Gzip 16 GBps peak out of decompressor2, 3

Random number output stream RNG 80 Mbps4

Note:  

1. Aggregate throughput can be less than the sum of individual engine peak throughputs. Processor bus ramp is limited to 32 GBps 
per direction. Use of indirect DDEs reduces throughput. ERAT hit assumed on all memory accesses. Not reduced for any copro-
cessor invocation overhead. Memory is assumed to be nodal and engine throughput is not limited by memory bandwidth.

2. Throughput in the reverse direction depends on compression ratio.
3. Dependent on compression ratio, fixed or dynamic Huffman coding, and data size.
4. Subject to lab validation. The stated bit rate assumes the RNG can deliver a high-quality random number stream with the RNG 

Pacing Control Register set to deliver this rate.

Table 25-9. POWER9 Memory Bandwidth for Eight Channels Active 

Workload Bin Speed POWER9 Bandwidth (GBps)

Read-only (ddot) 2400 141

2:1 stream (daxpy) 2400 132

1:1 stream (copy) 2400 127
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25.5 PCI Express

PCIe supports PCIe Gen4 with payload sizes of 512-byte write and 256-byte read, delivering an effective 
bandwidth of 28 GBps read and write.

The PCIe can process writes into the on-chip cache using DMA inject, which can write in increments as small 
as one byte.

25.6 CAPI

The POWER9 processor supports both the CAPI 2.0 interface that operates over the PCIe and the Open-
CAPI 3.0 interface operating on up to 32 lanes of 25G link. 

25.7 Interrupt Controller

The interrupt controller supports up to 40 million interrupts per second, requiring about 18 GBps read and 
18 GBps write bandwidth onto the fabric.

25.8 Nest MMU

The Nest MMU (NMMU) processes address translation requests for the NX accelerators, NPU, and CAPI 
interfaces. 

Table 25-10 shows the range of expected peak latencies and throughput (translations per second) that can 
be performed by the 12 tablewalk state machines.

Table 25-10. NMMU Translation Latency and Throughput  

Streaming Random

Average Latency (ns) 46 - 52.5 76 - 85 

Translation Rate (translations per second) 221 - 261 million 141 - 158 million
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25.9 NVLink

The NPU provides a cache coherent interconnect between POWER9 and GPU chips over the NVLink inter-
face. The NPU maintains cache coherency on 128-byte cache lines. 

The NPU can process writes into the on-chip cache using DMA inject, which can write in increments as small 
as 1 byte.

The POWER9 processor supports up to six NVLink bricks. Each NVLink brick supports the following peak 
bandwidth shown in Table 25-11 on page 371.

Each pair of bricks is connected to the fabric bus with a 64 GBps link, providing an effective 32 GBps per 
brick to handle the NVLink data, as well as address translation.

25.10 WOF/Power Management

The POWER9 processor provides the capability to automatically boost the processor frequency for perfor-
mance when there is available power headroom. Workload optimized frequency (WOF) enables various 
workloads to achieve optimal performance. To enable the full benefits of WOF, programs should make make 
use of the low-power mode capabiity per thread as described in Section 25.1.3 Instruction Fetch on 
page 336.

The POWER9 processor provides enhanced power management controls including a new STOP instruction. 
This instruction can be used to reach power-savings states, including sleeping (power-gate) the entire core 
with reduced overhead compared with prior designs, providing greater utility and opportunity to save power. 
Together with the WOF, appropriate use of the STOP instruction can provide increased total system perfor-
mance.

Table 25-11. NVLink Peak Bandwidths Per Brick 

Workload NVLink Bandwidth (GBps) P9 SMP Bandwidth (GBps) Effective Bandwidth (GBps) 
with Command Overhead

Chip Total Effective 
Bandwidth

Read 25 32 23.5 141

Write 25 32 21.1 127



User’s Manual 
OpenPOWER
POWER9 Processor  

Performance Profile

Page 372 of 508
Version 2.1 

10 October 2019 
 

25.11 Instruction Properties

Characteristics for instructions are listed in Table A-1.  Instruction Properties on page 375 including various 
latency, throughput, and interlock specifications:

• Instruction Mnemonic and Name: For cracked and expanded operations, this field is only valid for the 
first iop and subsequent rows indicate the behaviors for additional iops. Includes the architectural name 
for this instruction. A small number of instructions differ in their behavior between little-endian and big-
endian modes. These instructions are listed with “_le” and “_be” suffix to distinguish behavior. When 
applicable, the mask or sub fields are shown as a hexadecimal suffix appended to the mnemonic.

• Cracked/Expanded:

– C2 - cracked into 2 iops
– C3 - cracked into 3 iops
– X - expanded

• Operation Number: the number of the iop for the instruction

– “-” - single iop instruction
– 1-N - iop number
– Nu - Nth iop in the sequence is repeated depending on length field

• Pipe Class: designates the pipeline

– ALU
– ALU2
– BR
– CY
– DIV
– DFU
– DP
– DP-XC
– DP-MUL
– DX
– PM
– LD
– LD2 - LD3
– NOP
– ST
– ST2

• Main Dst: Indicates the main register target type.

– GPR, FPR, VR, or VSR

• CR Dst: Indicates a CR target, if any.

• XER/FPSCR/VSCR Dst: Indicates XER, FPSCR, or VSCR target field, if any.

– XER field groupings: ca/oc, dcds, fxcc, ov, reserved, string, tgcc
– FPSCR field groupings: ctlr, excp, fpcc, fric (Note: excp is a sticky field)
– VSCR field groupings: nj, sat

• Maximum Operations Per Cycle: The maximum rate of executing this iop within the processing pipeline: 
for multicycle instructions, this is shown as a ratio less than one. This is not always an indication of the 
peak sustainable execution rate for the specific instruction as various throughput limitations might apply.
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• Latency (Minimum): The minimum latency for executing a dependent iop relative to execution of this iop 
for the main register destination, if any. Additional latency for the non-main register destinations is added 
as specified in the consuming iop’s field “Additional Latency for CR/XER//FPSR/VSCR Source”. Note that 
issue-to-issue latencies should be consulted in Section 25.1.5.4 Execution Pipeline Issue to Issue Laten-
cies on page 353 to identify additional latency components incurred when exchanging data between 
pipelines and between various data types. For load instructions, the latency reflects optimal address 
alignment. Additional latency can also be incurred as shown in Section 25.1.7.8 Load-to-Use Latency on 
page 359.

• Latency (Maximum): The maximum latency for executing a dependent iop relative to execution of this iop 
for the main register destination, if any. Additional latency for nonmain register destinations is added as 
specified in the consuming iop’s field “Additional Latency for CR/XER//FPSR/VSCR Source”. Note that 
issue-to-issue latencies should be consulted in Section 25.1.5.4 Execution Pipeline Issue to Issue Laten-
cies on page 353 to identify additional latency components incurred when exchanging data between 
pipelines and between various data types. For load instructions, the latency reflects optimal address 
alignment. Additional latency can also be incurred as shown in Section 25.1.7.8 Load-to-Use Latency on 
page 359.

• Pipe Busy Cycles (Minimum): The number of cycles for which the execution pipeline is blocked by exe-
cuting this iop. Multicycle instructions have a cycle count greater than one. Note that pipe-busy cycles are 
shared across shared pipeline groups {DIV}, {CY, DFU}, {DP, DP-XC, DP-MUL}, precluding execution 
within the group, during the busy cycles. See Section 25.1.5.4 Execution Pipeline Issue to Issue Laten-
cies on page 353 for a description of multicycle instruction interactions.

• Dispatch Rule: See section Section 25.1.4.5 IOP Dispatch on page 344 for additional details.

– “E” - Must dispatch to even slice, also consumes odd dispatch slice slot of the same superslice at dis-
patch

– “P” - Dispatches together with previous iop from the same cracked instruction to the same superslice

– “R” - Dispatch of this iop to a superslice restricts dispatch of a tuple of iops (restricts a second iop 
from going to either of the two slices of a superslice that cycle). 

– “R-st” - For ST and SMT2 modes, the dispatch of this iop to a superslice restricts dispatch of a tuple 
of iops (restricts a second iop from going to either of the two slices of a superslice that cycle).

– “V” - Dispatches as a vector iop, a single decode iop is routed to both the even and odd slices of a 
superslice at dispatch

• Dispatch Interlock: See section Section 25.1.4.5 IOP Dispatch on page 344 and Section 25.1.8 Special 
Instruction Sequences on page 365 for additional details.

– “WB” - This iop is held at dispatch if outstanding entries remain in the EAT; that is, until all older 
branches are completed and deallocated from the EAT.

– “WS” - This iop is held at dispatch if any older dispatch score-board setting iops  
(Dispatch Interlock = SS) remain in the ICT; that is, until all older SS iops are completed.

– “SS” - This iop sets a dispatch score-board. The score-board remains set while this iop is in the ICT.

• Additional Dispatch to Issue Latency: The number of additional minimum cycles that an iop must wait 
for issue beyond the nominal pipeline delay after first dispatched. This delay can overlap with source 
dependency delays.

• Additional Latency for CR/XER/FPSR/VSCR Source: The number of additional cycles that an iop must 
wait to issue relative to the producing iop if the iop is dependent on a register target other than the main 
register destination (CR/XER/FPSCR/VSCR). For dependency on a sticky field (such as FPSCR excp), 
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an “F” is shown indicating that the iop will issue depending on the current state of the FPSCR speculation 
mode, as described in Move-To and Move-From FPSCR on page 354.

• Issue Synchronized: “S” indicates that the iop issues concurrently across the even/odd slices of a super-
slice as a vector or with a paired iop from the same cracked instruction.

• Issue Depend on Previous Iop: For a cracked instruction, this iop is dependent on a register destination 
of a prior iop from the same instruction:

– “D1P” - this iop is dependent on the previous iop (OpNum - 1).
– “D2P” - this iop is dependent on the second previous iop (OpNum - 2).

• Issue Next-to-Complete: This iop is held from issue until all older instructions in program order are com-
plete. If this iop is a cracked iop, it is also held from issue until all previous iops from the same instruction 
(lower OpNum) are finished. For dependency on a sticky field (such as FPSCR excp), an “F” is shown 
indicating that the iop will issue depending on the current state of the FPSCR speculation mode as 
described in Move-To and Move-From FPSCR on page 354.
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Appendix A. Instruction Properties

Table A-1.  lists the POWER9 instruction characteristics including latency, throughput, and interlock specifications. See Section 25.11 Instruc-
tion Properties on page 372 for descriptions of the table headings and values.

Table A-1. Instruction Properties  (Sheet 1 of 94)
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add Add - - ALU GPR 4 2 2 1 - - - - -

add. Add and Record - - ALU GPR CR fxcc 4 2 2 1 - - - - -

addc Add Carrying - - ALU GPR caoc 4 2 2 1 - - - - -

addc. Add Carrying and Record - - ALU GPR CR caoc,fxcc 4 2 2 1 - - - - -

addco Add Carrying and Record OV - - ALU GPR caoc,ov 4 2 2 1 - - - - -

addco. Add Carrying and Record OV and 
Record

- - ALU GPR CR caoc,fxcc,ov 4 2 2 1 - - - - -

adde Add Extended - - ALU GPR caoc 4 2 2 1 - - 3 - - -

adde. Add Extended and Record - - ALU GPR CR caoc,fxcc 4 2 2 1 - - 3 - - -

addeo Add Extended and Record OV - - ALU GPR caoc,ov 4 2 2 1 - - 3 - - -

addeo. Add Extended and Record OV 
and Record

- - ALU GPR CR caoc,fxcc,ov 4 2 2 1 - - 3 - - -

addex Add Extended Using Alternate 
Carry Bit

- - ALU GPR ov 4 2 2 1 - - 3 - - -

addg6s Add and Generate Sixes C2 1 ALU dcds 4 2 2 1 - - - - -

2 ALU2 GPR 4 3 3 1 - - 3 - D1P -

addi Add Immediate - - ALU GPR 4 2 2 1 - - - - -

addic Add Immediate Carrying - - ALU GPR caoc 4 2 2 1 - - - - -

addic. Add Immediate Carrying - - ALU GPR CR caoc,fxcc 4 2 2 1 - - - - -

addis Add Immediate Shifted - - ALU GPR 4 2 2 1 - - - - -
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addme Add to Minus One Extended - - ALU GPR caoc 4 2 2 1 - - 3 - - -

addme. Add to Minus One Extended and 
Record

- - ALU GPR CR caoc,fxcc 4 2 2 1 - - 3 - - -

addmeo Add to Minus One Extended and 
Record OV

- - ALU GPR caoc,ov 4 2 2 1 - - 3 - - -

addmeo. Add to Minus One Extended and 
Record OV and Record

- - ALU GPR CR caoc,fxcc,ov 4 2 2 1 - - 3 - - -

addo Add and Record OV - - ALU GPR ov 4 2 2 1 - - - - -

addo. Add and Record OV and Record - - ALU GPR CR fxcc,ov 4 2 2 1 - - - - -

addpcis Add PC Immediate Shifted - - BR GPR 1 5 5 1 - - 2 - - -

addpcis Add PC Immediate Shifted C2 1 BR GPR 1 5 5 1 - - 2 - - -

2 ALU GPR 4 2 2 1 - - - D1P -

addze Add to Zero Extended - - ALU GPR caoc 4 2 2 1 - - 3 - - -

addze. Add to Zero Extended and Record - - ALU GPR CR caoc,fxcc 4 2 2 1 - - 3 - - -

addzeo Add to Zero Extended and Record 
OV

- - ALU GPR caoc,ov 4 2 2 1 - - 3 - - -

addzeo. Add to Zero Extended and Record 
OV and Record

- - ALU GPR CR caoc,fxcc,ov 4 2 2 1 - - 3 - - -

and AND - - ALU GPR 4 2 2 1 - - - - -

and. AND and Record - - ALU GPR CR fxcc 4 2 2 1 - - - - -

andc AND with Complement - - ALU GPR 4 2 2 1 - - - - -

andc. AND with Complement and 
Record

- - ALU GPR CR fxcc 4 2 2 1 - - - - -

andi. AND Immediate and Record - - ALU GPR CR fxcc 4 2 2 1 - - - - -

andis. AND Immediate Shifted and 
Record

- - ALU GPR CR fxcc 4 2 2 1 - - - - -

Table A-1. Instruction Properties  (Sheet 2 of 94)
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b Branch - - BR 1 2 2 1 - - - - -

ba Branch Absolute - - BR 1 2 2 1 - - - - -

bc Branch Conditional - - BR 1 2 2 1 - - - - -

bca Branch Conditional Absolute - - BR 1 2 2 1 - - - - -

bcctr Branch Conditional to CTR - - BR 1 2 2 1 - - - - -

bcctrl Branch Conditional to CTR and 
Link

- - BR 1 2 2 1 - - - - -

bcdadd. Decimal Add Modulo and Record - - DX VR CR 2 3 3 1 V - 1 S - -

bcdcfn. Decimal Convert From National 
and Record

- - DX VR CR 2 3 3 1 V - 1 S - -

bcdcfsq. Decimal Convert From Signed 
Qword and Record

- - DFU VR CR 1/26 37 37 25 V - 1 S - -

bcdcfz. Decimal Convert From Zoned and 
Record

- - DX VR CR 2 3 3 1 V - 1 S - -

bcdcpsgn. Decimal CopySign and Record - - DX VR CR 2 3 3 1 V - 1 S - -

bcdctn. Decimal Convert to National and 
Record

- - DX VR CR 2 3 3 1 V - 1 S - -

bcdctsq. Decimal Convert to Signed Qword 
and Record

- - DFU VR CR 1/12 23 23 11 V - 1 S - -

bcdctz. Decimal Convert to Zoned and 
Record

- - DX VR CR 2 3 3 1 V - 1 S - -

bcds. Decimal Shift and Record - - DX VR CR 2 3 3 1 V - 1 S - -

bcdsetsgn. Decimal Set Sign and Record - - DX VR CR 2 3 3 1 V - 1 S - -

bcdsr. Decimal Shift and Round and 
Record

- - DFU VR CR 1 12 12 1 V - 1 S - -

bcdsub. Decimal Subtract Modulo and 
Record

- - DX VR CR 2 3 3 1 V - 1 S - -
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bcdtrunc. Decimal Truncate and Record - - DX VR CR 2 3 3 1 V - 1 S - -

bcdus. Decimal Unsigned Shift and 
Record

- - DX VR CR 2 3 3 1 V - 1 S - -

bcdutrunc. Decimal Unsigned Truncate and 
Record

- - DX VR CR 2 3 3 1 V - 1 S - -

bcl Branch Conditional and Link - - BR 1 2 2 1 - - - - -

bcla Branch Conditional and Link 
Absolute

- - BR 1 2 2 1 - - - - -

bl Branch and Link - - BR 1 2 2 1 - - - - -

bla Branch and Link Absolute - - BR 1 2 2 1 - - - - -

bpermd Bit Permute Dword - - ALU2 GPR 4 3 3 1 - - - - -

cbcdtd Convert Binary Coded Decimal to 
Declets

- - ALU2 GPR 4 3 3 1 - - - - -

cdtbcd Convert Declets to Binary Coded 
Decimal

- - ALU2 GPR 4 3 3 1 - - - - -

cmp Compare - - ALU CR fxcc 4 2 2 1 - - - - -

cmpb Compare Bytes - - ALU2 GPR 4 3 3 1 - - - - -

cmpeqb Compare Equal Byte - - ALU2 CR fxcc 4 3 3 1 R - - - -

cmpi Compare Immediate - - ALU CR fxcc 4 2 2 1 - - - - -

cmpl Compare Logical - - ALU CR fxcc 4 2 2 1 - - - - -

cmpli Compare Logical Immediate - - ALU CR fxcc 4 2 2 1 - - - - -

cmprb Compare Ranged Byte - - ALU2 CR fxcc 4 3 3 1 R - - - -

cntlzd Count Leading Zeros Dword - - ALU2 GPR 4 3 3 1 - - - - -

cntlzd. Count Leading Zeros Dword and 
Record

- - ALU2 GPR CR fxcc 4 3 3 1 - - - - -

cntlzw Count Leading Zeros Word - - ALU2 GPR 4 3 3 1 - - - - -
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cntlzw. Count Leading Zeros Word and 
Record

- - ALU2 GPR CR fxcc 4 3 3 1 - - - - -

cnttzd Count Trailing Zeros Dword - - ALU2 GPR 4 3 3 1 - - - - -

cnttzd. Count Trailing Zeros Dword and 
Record

- - ALU2 GPR CR fxcc 4 3 3 1 - - - - -

cnttzw Count Trailing Zeros Word - - ALU2 GPR 4 3 3 1 - - - - -

cnttzw. Count Trailing Zeros Word and 
Record

- - ALU2 GPR CR fxcc 4 3 3 1 - - - - -

copy Copy - - LD 4 4 4 1 - - - - -

cp_abort CP_Abort - - LD 4 4 4 1 - - - - -

crand CR AND - - ALU CR 4 2 2 1 R - 3 - - -

crandc CR AND with Complement - - ALU CR 4 2 2 1 R - 3 - - -

creqv CR Equivalent - - ALU CR 4 2 2 1 R - 3 - - -

crnand CR NAND - - ALU CR 4 2 2 1 R - 3 - - -

crnor CR NOR - - ALU CR 4 2 2 1 R - 3 - - -

cror CR OR - - ALU CR 4 2 2 1 R - 3 - - -

crorc CR OR with Complement - - ALU CR 4 2 2 1 R - 3 - - -

crxor CR XOR - - ALU CR 4 2 2 1 R - 3 - - -

dadd DFP Add - - DFU FPR fpcc,fric,excp 1 12 12 1 E - 3 - - -

dadd. DFP Add and Record C2 1 DFU FPR fpcc,fric,excp 1 12 12 1 E - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

daddq DFP Add Quad C3 1 ALU VSR 2 2 2 1 V - 1 S - -

2 DFU FPR fpcc,fric,excp 1 12 12 1 P - 3 S - -

3 DFU FPR 1 12 12 1 P - 3 S - -
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daddq. DFP Add Quad and Record X 1 ALU VSR 2 2 2 1 V - 1 S - -

2 NOP 6 0 0 1 - - - - -

3 NOP 6 0 0 1 - - - - -

4 DFU FPR fpcc,fric,excp 1 12 12 1 P - 3 S - -

5 DFU FPR 1 12 12 1 P - 3 S - -

6 ALU2 CR 4 3 3 1 - - F - - F

darn Deliver A Random Number - - LD GPR 4 4 4 1 - - - - -

darn Deliver A Random Number - - NOP 6 0 0 1 - - - - -

dcbf Data Cache Block Flush - - LD 4 4 4 1 - - - - -

dcbst Data Cache Block Store - - LD 4 4 4 1 - - - - -

dcbt. 
TH00xxx

Data Cache Block Touch - - LD 4 4 4 1 - - - - -

dcbt. 
TH01000

Data Cache Block Touch - - LD 4 4 4 1 - - - - -

dcbt. 
TH01001

Data Cache Block Touch - - LD 4 4 4 1 - - - - -

dcbt. 
TH01010

Data Cache Block Touch - - LD 4 4 4 1 - - - - -

dcbt. 
TH01011

Data Cache Block Touch - - LD 4 4 4 1 - - - - -

dcbt. 
TH011xx

Data Cache Block Touch - - LD 4 4 4 1 - - - - -

dcbt. 
TH10000

Data Cache Block Touch - - LD 4 4 4 1 - - - - -

dcbt. 
TH10001

Data Cache Block Touch - - LD 4 4 4 1 - - - - -

Table A-1. Instruction Properties  (Sheet 6 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n 
N

um
be

r

P
ip

e 
C

la
ss

M
ai

n 
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns
  

pe
r 

C
yc

le

La
te

nc
y 

(M
in

im
um

)

La
te

nc
y 

(M
ax

im
um

)

P
ip

e 
B

us
y 

C
yc

le
s 

(M
in

im
um

)

D
is

pa
tc

h 
R

ul
e

D
is

pa
tc

h 
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h 

to
 Is

su
e 

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r 
 

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e 
S

yn
ch

ro
ni

ze
d

Is
su

e 
D

ep
en

d 
on

 P
re

vi
ou

s 
Io

p

Is
su

e 
N

ex
t-

to
-C

om
pl

et
e



U
ser’s M

anual 
O

penP
O

W
E

R
 

P
O

W
E

R
9 P

ro
cesso

r

V
ersion 2.1 

10 O
ctober 2019 

 

Instruction P
roperties

P
age 381 of 508

dcbt. 
TH1001x

Data Cache Block Touch - - LD 4 4 4 1 - - - - -

dcbt. 
TH101xx

Data Cache Block Touch - - LD 4 4 4 1 - - - - -

dcbt. 
TH11000

Data Cache Block Touch - - LD 4 4 4 1 - - - - -

dcbt. 
TH11001

Data Cache Block Touch - - LD 4 4 4 1 - - - - -

dcbt. 
TH1101x

Data Cache Block Touch - - LD 4 4 4 1 - - - - -

dcbt. 
TH111xx

Data Cache Block Touch - - LD 4 4 4 1 - - - - -

dcbtst. 
TH00xxx

Data Cache Block Touch for Store - - LD 4 4 4 1 - - - - -

dcbtst. 
TH01000

Data Cache Block Touch for Store - - LD 4 4 4 1 - - - - -

dcbtst. 
TH01001

Data Cache Block Touch for Store - - LD 4 4 4 1 - - - - -

dcbtst. 
TH01010

Data Cache Block Touch for Store - - LD 4 4 4 1 - - - - -

dcbtst. 
TH01011

Data Cache Block Touch for Store - - LD 4 4 4 1 - - - - -

dcbtst. 
TH011xx

Data Cache Block Touch for Store - - LD 4 4 4 1 - - - - -

dcbtst. 
TH10000

Data Cache Block Touch for Store - - LD 4 4 4 1 - - - - -

dcbtst. 
TH10001

Data Cache Block Touch for Store - - LD 4 4 4 1 - - - - -

dcbtst. 
TH1001x

Data Cache Block Touch for Store - - LD 4 4 4 1 - - - - -
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dcbtst. 
TH101xx

Data Cache Block Touch for Store - - LD 4 4 4 1 - - - - -

dcbtst. 
TH11000

Data Cache Block Touch for Store - - LD 4 4 4 1 - - - - -

dcbtst. 
TH11001

Data Cache Block Touch for Store - - LD 4 4 4 1 - - - - -

dcbtst. 
TH1101x

Data Cache Block Touch for Store - - LD 4 4 4 1 - - - - -

dcbtst. 
TH111xx

Data Cache Block Touch for Store - - LD 4 4 4 1 - - - - -

dcbz Data Cache Block Zero - - LD 4 4 4 1 - - - - -

dcffix DFP Convert From Fixed - - DFU FPR fpcc,fric,excp 1/21 32 32 20 E - 3 - - -

dcffix. DFP Convert From Fixed and 
Record

C2 1 DFU FPR fpcc,fric,excp 1/21 32 32 20 E - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

dcffixq DFP Convert From Fixed Quad C2 1 DFU FPR fpcc,fric,excp 1/21 32 32 20 P - 3 S - -

2 DFU FPR 1/21 32 32 20 P - 3 S - -

dcffixq. DFP Convert From Fixed Quad 
and Record

C3 1 DFU FPR fpcc,fric 1/21 32 32 20 P - 3 S - -

2 DFU FPR 1/21 32 32 20 P - 3 S - -

3 ALU2 CR 4 3 3 1 - - F - - F

dcmpo DFP Compare Ordered - - DFU CR excp,fpcc 1 12 12 1 E - 3 - - -

dcmpoq DFP Compare Ordered Quad C3 1 ALU VSR 2 2 2 1 V - 1 S - -

2 DFU CR fpcc,excp 1 12 12 1 P - 3 S - -

3 DFU 1 12 12 1 P - 3 S - -

dcmpu DFP Compare Unordered - - DFU CR excp,fpcc 1 12 12 1 E - 3 - - -
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dcmpuq DFP Compare Unordered Quad C3 1 ALU VSR 2 2 2 1 V - 1 S - -

2 DFU CR fpcc,excp 1 12 12 1 P - 3 S - -

3 DFU 1 12 12 1 P - 3 S - -

dctdp DFP Convert to DFP Long - - DFU FPR fpcc,fric 1 12 12 1 E - 3 - - -

dctdp. DFP Convert to DFP Long and 
Record

C2 1 DFU FPR fpcc,fric,excp 1 12 12 1 E - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

dctfix DFP Convert to Fixed - - DFU FPR fpcc,fric,excp 1/14 25 25 13 E - 3 - - -

dctfix. DFP Convert to Fixed and Record C2 1 DFU FPR fpcc,fric,excp 1/14 25 25 13 E - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

dctfixq DFP Convert to Fixed Quad C2 1 DFU FPR fpcc,fric,excp 1/14 25 25 13 P - 3 S - -

2 DFU 1/14 25 25 13 P - 3 S - -

dctfixq. DFP Convert to Fixed Quad and 
Record

C3 1 DFU FPR fpcc,fric,excp 1/14 25 25 13 P - 3 S - -

2 DFU 1/14 25 25 13 P - 3 S - -

3 ALU2 CR 4 3 3 1 - - F - D2P F

dctqpq DFP Convert to DFP Extended C2 1 DFU FPR fpcc,fric,excp 1 12 12 1 P - 3 S - -

2 DFU FPR 1 12 12 1 P - 3 S - -

dctqpq. DFP Convert to DFP Extended 
and Record

C3 1 DFU FPR fpcc,fric,excp 1 12 12 1 P - 3 S - -

2 DFU FPR 1 12 12 1 P - 3 S - -

3 ALU2 CR 4 3 3 1 - - F - D2P F

ddedpd DFP Decode DPD to BCD - - DFU FPR 1 12 12 1 E - - - -

ddedpd. DFP Decode DPD to BCD and 
Record

C2 1 DFU FPR 1 12 12 1 E - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - - F
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ddedpdq DFP Decode DPD to BCD Quad C2 1 DFU FPR 1 12 12 1 P - 3 S - -

2 DFU FPR 1 12 12 1 P - 3 S - -

ddedpdq. DFP Decode DPD to BCD Quad 
and Record

C3 1 DFU FPR 1 12 12 1 P - 3 S - -

2 DFU FPR 1 12 12 1 P - 3 S - -

3 ALU2 CR 4 3 3 1 - - F - - F

ddiv DFP Divide - - DFU FPR fpcc,fric,excp 1/28 39 99 27 E - 3 - - -

ddiv. DFP Divide and Record C2 1 DFU FPR fpcc,fric,excp 1/28 39 99 27 E - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

ddivq DFP Divide Quad C3 1 ALU VSR 2 2 2 1 V - 1 S - -

2 DFU FPR fpcc,fric,excp 1/28 39 171 27 P - 3 S - -

3 DFU FPR 1/28 39 171 27 P - 3 S - -

ddivq. DFP Divide Quad and Record X 1 ALU VSR 2 2 2 1 V - 1 S - -

2 NOP 6 0 0 1 - - - - -

3 NOP 6 0 0 1 - - - - -

4 DFU FPR fpcc,fric,excp 1/28 39 171 27 P - 3 S - -

5 DFU FPR 1/28 39 171 27 P - 3 S - -

6 ALU2 CR 4 3 3 1 - - F - - F

denbcd DFP Encode BCD to DPD - - DFU FPR fpcc,fric,excp 1 12 12 1 E - 3 - - -

denbcd. DFP Encode BCD to DPD and 
Record

C2 1 DFU FPR fpcc,fric,excp 1 12 12 1 E - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

denbcdq DFP Encode BCD to DPD Quad C2 1 DFU FPR fpcc,fric,excp 1 12 12 1 P - 3 S - -

2 DFU FPR 1 12 12 1 P - 3 S - -
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denbcdq. DFP Encode BCD to DPD Quad 
and Record

C3 1 DFU FPR fpcc,fric,excp 1 12 12 1 P - 3 S - -

2 DFU FPR 1 12 12 1 P - 3 S - -

3 ALU2 CR 4 3 3 1 - - F - D2P F

diex DFP Insert Exponent - - DFU FPR 1 12 12 1 E - - - -

diex. DFP Insert Exponent and Record C2 1 DFU FPR 1 12 12 1 E - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - - F

diexq DFP Insert Exponent Quad C2 1 DFU FPR 1 12 12 1 P - 3 S - -

2 DFU FPR 1 12 12 1 P - 3 S - -

diexq. DFP Insert Exponent Quad and 
Record

C3 1 DFU FPR 1 12 12 1 P - 3 S - -

2 DFU FPR 1 12 12 1 P - 3 S - -

3 ALU2 CR 4 3 3 1 - - F - - F

divd Divide Dword - - DIV GPR 2/9 12 24 8 E - - - -

divd. Divide Dword and Record C2 1 DIV GPR 2/9 12 24 8 E - - - -

2 ALU CR fxcc 4 2 2 1 - - - D1P -

divde Divide Dword Extended - - DIV GPR 2/9 12 40 8 E - - - -

divde. Divide Dword Extended and 
Record

C2 1 DIV GPR 2/9 12 40 8 E - - - -

2 ALU CR fxcc 4 2 2 1 - - - D1P -

divdeo Divide Dword Extended and 
Record OV

- - DIV GPR ov 2/9 12 40 8 E - - - -

divdeo. Divide Dword Extended and 
Record OV and Record

C2 1 DIV GPR ov 2/9 12 40 8 E - - - -

2 ALU CR fxcc 4 2 2 1 - - 3 - D1P -

divdeu Divide Dword Extended Unsigned - - DIV GPR 2/9 12 40 8 E - - - -
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divdeu. Divide Dword Extended Unsigned 
and Record

C2 1 DIV GPR 2/9 12 40 8 E - - - -

2 ALU CR fxcc 4 2 2 1 - - - D1P -

divdeuo Divide Dword Extended Unsigned 
and Record OV

- - DIV GPR ov 2/9 12 40 8 E - - - -

divdeuo. Divide Dword Extended Unsigned 
and Record OV and Record

C2 1 DIV GPR ov 2/9 12 40 8 E - - - -

2 ALU CR fxcc 4 2 2 1 - - 3 - D1P -

divdo Divide Dword and Record OV - - DIV GPR ov 2/9 12 24 8 E - - - -

divdo. Divide Dword and Record OV and 
Record

C2 1 DIV GPR ov 2/9 12 24 8 E - - - -

2 ALU CR fxcc 4 2 2 1 - - 3 - D1P -

divdu Divide Dword Unsigned - - DIV GPR 2/9 12 24 8 E - - - -

divdu. Divide Dword Unsigned and 
Record

C2 1 DIV GPR 2/9 12 24 8 E - - - -

2 ALU CR fxcc 4 2 2 1 - - - D1P -

divduo Divide Dword Unsigned and 
Record OV

- - DIV GPR ov 2/9 12 24 8 E - - - -

divduo. Divide Dword Unsigned and 
Record OV and Record

C2 1 DIV GPR ov 2/9 12 24 8 E - - - -

2 ALU CR fxcc 4 2 2 1 - - 3 - D1P -

divw Divide Word - - DIV GPR 2/9 12 16 8 E - - - -

divw. Divide Word and Record C2 1 DIV GPR 2/9 12 16 8 E - - - -

2 ALU CR fxcc 4 2 2 1 - - - D1P -

divwe Divide Word Extended - - DIV GPR 2/9 12 24 8 E - - - -

divwe. Divide Word Extended and 
Record

C2 1 DIV GPR 2/9 12 24 8 E - - - -

2 ALU CR fxcc 4 2 2 1 - - - D1P -

divweo Divide Word Extended and 
Record OV

- - DIV GPR ov 2/9 12 24 8 E - - - -
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divweo. Divide Word Extended and 
Record OV and Record

C2 1 DIV GPR ov 2/9 12 24 8 E - - - -

2 ALU CR fxcc 4 2 2 1 - - 3 - D1P -

divweu Divide Word Extended Unsigned - - DIV GPR 2/9 12 24 8 E - - - -

divweu. Divide Word Extended Unsigned 
and Record

C2 1 DIV GPR 2/9 12 24 8 E - - - -

2 ALU CR fxcc 4 2 2 1 - - - D1P -

divweuo Divide Word Extended Unsigned 
and Record OV

- - DIV GPR ov 2/9 12 24 8 E - - - -

divweuo. Divide Word Extended Unsigned 
and Record OV and Record

C2 1 DIV GPR ov 2/9 12 24 8 E - - - -

2 ALU CR fxcc 4 2 2 1 - - 3 - D1P -

divwo Divide Word and Record OV - - DIV GPR ov 2/9 12 16 8 E - - - -

divwo. Divide Word and Record OV and 
Record

C2 1 DIV GPR ov 2/9 12 16 8 E - - - -

2 ALU CR fxcc 4 2 2 1 - - 3 - D1P -

divwu Divide Word Unsigned - - DIV GPR 2/9 12 16 8 E - - - -

divwu. Divide Word Unsigned and 
Record

C2 1 DIV GPR 2/9 12 16 8 E - - - -

2 ALU CR fxcc 4 2 2 1 - - - D1P -

divwuo Divide Word Unsigned and 
Record OV

- - DIV GPR ov 2/9 12 16 8 E - - - -

divwuo. Divide Word Unsigned and 
Record OV and Record

C2 1 DIV GPR ov 2/9 12 16 8 E - - - -

2 ALU CR fxcc 4 2 2 1 - - 3 - D1P -

dmul DFP Multiply - - DFU FPR fpcc,fric,excp 1/11 24 39 12 E - 3 - - -

dmul. DFP Multiply and Record C2 1 DFU FPR fpcc,fric,excp 1/11 22 27 10 E - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F
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dmulq DFP Multiply Quad C3 1 ALU VSR 2 2 2 1 V - 1 S - -

2 DFU FPR fpcc,fric,excp 1/7 18 84 6 P - 3 S - -

3 DFU FPR 1/7 18 84 6 P - 3 S - -

dmulq. DFP Multiply Quad and Record X 1 ALU VSR 2 2 2 1 V - 1 S - -

2 NOP 6 0 0 1 - - - - -

3 NOP 6 0 0 1 - - - - -

4 DFU FPR fpcc,fric,excp 1/7 18 84 6 P - 3 S - -

5 DFU FPR 1/7 18 84 6 P - 3 S - -

6 ALU2 CR 4 3 3 1 - - F - - F

dqua DFP Quantize - - DFU FPR fpcc,fric,excp 1 12 12 1 E - 3 - - -

dqua. DFP Quantize and Record C2 1 DFU FPR fpcc,fric,excp 1 12 12 1 E - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

dquai DFP Quantize Immediate - - DFU FPR fpcc,fric,excp 1 12 12 1 E - 3 - - -

dquai. DFP Quantize Immediate and 
Record

C2 1 DFU FPR fpcc,fric,excp 1 12 12 1 E - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

dquaiq DFP Quantize Immediate Quad C2 1 DFU FPR fpcc,fric,excp 1 12 12 1 P - 3 S - -

2 DFU FPR 1 12 12 1 P - 3 S - -

dquaiq. DFP Quantize Immediate Quad 
and Record

C3 1 DFU FPR fpcc,fric,excp 1 12 12 1 P - 3 S - -

2 DFU FPR 1 12 12 1 P - 3 S - -

3 ALU2 CR 4 3 3 1 - - F - D2P F

dquaq DFP Quantize Quad C3 1 ALU VSR 2 2 2 1 V - 1 S - -

2 DFU FPR fpcc,fric,excp 1 12 12 1 P - 3 S - -

3 DFU FPR 1 12 12 1 P - 3 S - -
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dquaq. DFP Quantize Quad and Record X 1 ALU VSR 2 2 2 1 V - 1 S - -

2 NOP 6 0 0 1 - - - - -

3 NOP 6 0 0 1 - - - - -

4 DFU FPR fpcc,fric,excp 1 12 12 1 P - 3 S - -

5 DFU FPR 1 12 12 1 P - 3 S - -

6 ALU2 CR 4 3 3 1 - - F - - F

drdpq DFP Round to DFP Long C2 1 DFU FPR fpcc,fric,excp 1/13 24 24 12 P - 3 S - -

2 DFU FPR 1/13 24 24 12 P - 3 S - -

drdpq. DFP Round to DFP Long and 
Record

C3 1 DFU FPR fpcc,fric,excp 1/13 24 24 12 P - 3 S - -

2 DFU FPR 1/13 24 24 12 P - 3 S - -

3 ALU2 CR 4 3 3 1 - - F - D2P F

drintn DFP Round to FP Integer Without 
Inexact

- - DFU FPR fpcc,fric,excp 1 12 12 1 E - 3 - - -

drintn. DFP Round to FP Integer Without 
Inexact and Record

C2 1 DFU FPR fpcc,fric,excp 1 12 12 1 E - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

drintnq DFP Round to FP Integer Without 
Inexact Quad

C2 1 DFU FPR fpcc,fric,excp 1 12 12 1 P - 3 S - -

2 DFU FPR 1 12 12 1 P - 3 S - -

drintnq. DFP Round to FP Integer Without 
Inexact Quad and Record

C3 1 DFU FPR fpcc,fric,excp 1 12 12 1 P - 3 S - -

2 DFU FPR 1 12 12 1 P - 3 S - -

3 ALU2 CR 4 3 3 1 - - F - D2P F

drintx DFP Round to FP Integer With 
Inexact

- - DFU FPR fpcc,fric,excp 1 12 12 1 E - 3 - - -

drintx. DFP Round to FP Integer With 
Inexact and Record

C2 1 DFU FPR fpcc,fric,excp 1 12 12 1 E - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

Table A-1. Instruction Properties  (Sheet 15 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n 
N

um
be

r

P
ip

e 
C

la
ss

M
ai

n 
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns
  

pe
r 

C
yc

le

La
te

nc
y 

(M
in

im
um

)

La
te

nc
y 

(M
ax

im
um

)

P
ip

e 
B

us
y 

C
yc

le
s 

(M
in

im
um

)

D
is

pa
tc

h 
R

ul
e

D
is

pa
tc

h 
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h 

to
 Is

su
e 

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r 
 

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e 
S

yn
ch

ro
ni

ze
d

Is
su

e 
D

ep
en

d 
on

 P
re

vi
ou

s 
Io

p

Is
su

e 
N

ex
t-

to
-C

om
pl

et
e



U
ser’s M

anual 
O

penP
O

W
E

R
P

O
W

E
R

9 P
ro

cesso
r

 

Instruction P
roperties

P
age 390 of 508

V
ersion 2.1 

10 O
ctober 2019  

drintxq DFP Round to FP Integer With 
Inexact Quad

C2 1 DFU FPR fpcc,fric,excp 1 12 12 1 P - 3 S - -

2 DFU FPR 1 12 12 1 P - 3 S - -

drintxq. DFP Round to FP Integer With 
Inexact Quad and Record

C3 1 DFU FPR fpcc,fric,excp 1 12 12 1 P - 3 S - -

2 DFU FPR 1 12 12 1 P - 3 S - -

3 ALU2 CR 4 3 3 1 - - F - D2P F

drrnd DFP Reround - - DFU FPR fpcc,fric,excp 1 12 12 1 E - 3 - - -

drrnd. DFP Reround and Record C2 1 DFU FPR fpcc,fric,excp 1 12 12 1 E - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

drrndq DFP Reround Quad C2 1 DFU FPR fpcc,fric,excp 1 12 12 1 P - 3 S - -

2 DFU FPR 1 12 12 1 P - 3 S - -

drrndq. DFP Reround Quad and Record C3 1 DFU FPR fpcc,fric,excp 1 12 12 1 P - 3 S - -

2 DFU FPR 1 12 12 1 P - 3 S - -

3 ALU2 CR 4 3 3 1 - - F - D2P F

drsp DFP Round to DFP Short - - DFU FPR fpcc,fric,excp 1/13 24 24 12 E - 3 - - -

drsp. DFP Round to DFP Short and 
Record

C2 1 DFU FPR fpcc,fric,excp 1/13 24 24 12 E - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

dscli DFP Shift Significand Left 
Immediate

- - DFU FPR 1 12 12 1 E - - - -

dscli. DFP Shift Significand Left 
Immediate and Record

C2 1 DFU FPR 1 12 12 1 E - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - - F

dscliq DFP Shift Significand Left 
Immediate Quad

C2 1 DFU FPR 1 12 12 1 P - 3 S - -

2 DFU FPR 1 12 12 1 P - 3 S - -
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dscliq. DFP Shift Significand Left 
Immediate Quad and Record

C3 1 DFU FPR 1 12 12 1 P - 3 S - -

2 DFU FPR 1 12 12 1 P - 3 S - -

3 ALU2 CR 4 3 3 1 - - F - - F

dscri DFP Shift Significand Right 
Immediate

- - DFU FPR 1 12 12 1 E - - - -

dscri. DFP Shift Significand Right 
Immediate and Record

C2 1 DFU FPR 1 12 12 1 E - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - - F

dscriq DFP Shift Significand Right 
Immediate Quad

C2 1 DFU FPR 1 12 12 1 P - 3 S - -

2 DFU FPR 1 12 12 1 P - 3 S - -

dscriq. DFP Shift Significand Right 
Immediate Quad and Record

C3 1 DFU FPR 1 12 12 1 P - 3 S - -

2 DFU FPR 1 12 12 1 P - 3 S - -

3 ALU2 CR 4 3 3 1 - - F - - F

dsub DFP Subtract - - DFU FPR fpcc,fric,excp 1 12 12 1 E - 3 - - -

dsub. DFP Subtract and Record C2 1 DFU FPR fpcc,fric,excp 1 12 12 1 E - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

dsubq DFP Subtract Quad C3 1 ALU VSR 2 2 2 1 V - 1 S - -

2 DFU FPR fpcc,fric,excp 1 12 12 1 P - 3 S - -

3 DFU FPR 1 12 12 1 P - 3 S - -
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dsubq. DFP Subtract Quad and Record X 1 ALU VSR 2 2 2 1 V - 1 S - -

2 NOP 6 0 0 1 - - - - -

3 NOP 6 0 0 1 - - - - -

4 DFU FPR fpcc,fric,excp 1 12 12 1 P - 3 S - -

5 DFU FPR 1 12 12 1 P - 3 S - -

6 ALU2 CR 4 3 3 1 - - F - - F

dtstdc DFP Test Data Class - - DFU CR fpcc 1 12 12 1 E - - - -

dtstdcq DFP Test Data Class Quad C2 1 DFU CR fpcc 1 12 12 1 P - 3 S - -

2 DFU 1 12 12 1 P - 3 S - -

dtstdg DFP Test Data Group - - DFU CR fpcc 1 12 12 1 E - - - -

dtstdgq DFP Test Data Group Quad C2 1 DFU CR fpcc 1 12 12 1 P - 3 S - -

2 DFU 1 12 12 1 P - 3 S - -

dtstex DFP Test Exponent - - DFU CR fpcc 1 12 12 1 E - 3 - - -

dtstexq DFP Test Exponent Quad - - DFU CR fpcc 1 12 12 1 E - 3 - - -

dtstsf DFP Test Significance - - DX CR fpcc 2 3 3 1 E - 3 - - -

dtstsfi DFP Test Significance Immediate - - DX CR fpcc 2 3 3 1 E - - - -

dtstsfiq DFP Test Significance Immediate 
Quad

C2 1 DX CR fpcc 2 3 3 1 P - - - -

2 DX 2 3 3 1 P - - - -

dtstsfq DFP Test Significance Quad C2 1 DX CR fpcc 2 3 3 1 P - - - -

2 DX 2 3 3 1 P - - - -

dxex DFP Extract Exponent - - DFU FPR 1 12 12 1 E - - - -

dxex. DFP Extract Exponent and 
Record

C2 1 DFU FPR 1 12 12 1 E - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - - F
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dxexq DFP Extract Exponent Quad - - DFU FPR 1 12 12 1 E - - - -

dxexq. DFP Extract Exponent Quad and 
Record

C2 1 DFU FPR 1 12 12 1 E - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - - F

eieio Enforce In-order Execution of I/O - - LD 4 4 4 1 - - - - -

eqv Equivalent - - ALU GPR 4 2 2 1 - - - - -

eqv. Equivalent and Record - - ALU GPR CR fxcc 4 2 2 1 - - - - -

extsb Extend Sign Byte - - ALU GPR 4 2 2 1 - - - - -

extsb. Extend Sign Byte and Record - - ALU GPR CR fxcc 4 2 2 1 - - - - -

extsh Extend Sign Hword - - ALU GPR 4 2 2 1 - - - - -

extsh. Extend Sign Hword and Record - - ALU GPR CR fxcc 4 2 2 1 - - - - -

extsw Extend Sign Word - - ALU GPR 4 2 2 1 - - - - -

extsw. Extend Sign Word and Record - - ALU GPR CR fxcc 4 2 2 1 - - - - -

extswsli Extend Sign Word and Shift Left 
Immediate

- - ALU GPR 4 2 2 1 - - - - -

extswsli. Extend Sign Word and Shift Left 
Immediate and Record

C2 1 ALU GPR 4 2 2 1 - - - - -

2 ALU CR fxcc 4 2 2 1 - - - D1P -

fabs Floating Absolute - - ALU FPR 4 2 2 1 R - - - -

fabs. Floating Absolute and Record C2 1 ALU FPR 4 2 2 1 R - - - -

2 ALU2 CR 4 3 3 1 - - F - - F

fadd Floating Add - - DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

fadd. Floating Add and Record C2 1 DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

fadds Floating Add Single - - DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -
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fadds. Floating Add Single and Record C2 1 DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

fcfid Floating Convert From Integer 
Dword

- - DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

fcfid. Floating Convert From Integer 
Dword and Record

C2 1 DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

fcfids Floating Convert From Integer 
Dword Single

- - DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

fcfids. Floating Convert From Integer 
Dword Single and Record

C2 1 DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

fcfidu Floating Convert From Integer 
Dword Unsigned

- - DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

fcfidu. Floating Convert From Integer 
Dword Unsigned and Record

C2 1 DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

fcfidus Floating Convert From Integer 
Dword Unsigned Single

- - DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

fcfidus. Floating Convert From Integer 
Dword Unsigned Single and 
Record

C2 1 DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

fcmpo Floating Compare Ordered - - ALU2 CR excp,fpcc 4 3 3 1 R - 3 - - -

fcmpu Floating Compare Unordered - - ALU2 CR excp,fpcc 4 3 3 1 R - 3 - - -

fcpsgn Floating Copy Sign - - ALU FPR 4 2 2 1 R - - - -

fcpsgn. Floating Copy Sign and Record C2 1 ALU FPR 4 2 2 1 R - - - -

2 ALU2 CR 4 3 3 1 - - F - - F

fctid Floating Convert to Integer Dword - - DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -
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fctid. Floating Convert to Integer Dword 
and Record

C2 1 DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

fctidu Floating Convert to Integer Dword 
Unsigned

- - DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

fctidu. Floating Convert to Integer Dword 
Unsigned and Record

C2 1 DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

fctiduz Floating Convert to Integer Dword 
Unsigned truncate

- - DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

fctiduz. Floating Convert to Integer Dword 
Unsigned truncate and Record

C2 1 DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

fctidz Floating Convert to Integer Dword 
truncate

- - DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

fctidz. Floating Convert to Integer Dword 
truncate and Record

C2 1 DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

fctiw Floating Convert to Integer Word - - DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

fctiw. Floating Convert to Integer Word 
and Record

C2 1 DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

fctiwu Floating Convert to Integer Word 
Unsigned

- - DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

fctiwu. Floating Convert to Integer Word 
Unsigned and Record

C2 1 DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

fctiwuz Floating Convert to Integer Word 
Unsigned truncate

- - DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

fctiwuz. Floating Convert to Integer Word 
Unsigned truncate and Record

C2 1 DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F
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fctiwz Floating Convert to Integer Word 
truncate

- - DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

fctiwz. Floating Convert to Integer Word 
truncate and Record

C2 1 DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

fdiv Floating Divide - - DP FPR fpcc,fric,excp 4/21 27 33 7-8 R - 3 - - -

fdiv. Floating Divide and Record C2 1 DP FPR fpcc,fric,excp 4/21 27 33 7-8 R - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

fdivs Floating Divide Single - - DP FPR fpcc,fric,excp 4/20 22 22 5 R - 3 - - -

fdivs. Floating Divide Single and Record C2 1 DP FPR fpcc,fric,excp 4/20 22 22 5 R - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

fmadd Floating Multiply-Add - - DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

fmadd. Floating Multiply-Add and Record C2 1 DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

fmadds Floating Multiply-Add Single - - DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

fmadds. Floating Multiply-Add Single and 
Record

C2 1 DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

fmr Floating Move Register - - ALU FPR 4 2 2 1 R - - - -

fmr. Floating Move Register and 
Record

C2 1 ALU FPR 4 2 2 1 R - - - -

2 ALU2 CR 4 3 3 1 - - F - - F

fmrgew Floating Merge Even Word - - ALU FPR 4 2 2 1 R - - - -

fmrgow Floating Merge Odd Word - - ALU FPR 4 2 2 1 R - - - -

fmsub Floating Multiply-Subtract - - DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -
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fmsub. Floating Multiply-Subtract and 
Record

C2 1 DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

fmsubs Floating Multiply-Subtract Single - - DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

fmsubs. Floating Multiply-Subtract Single 
and Record

C2 1 DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

fmul Floating Multiply - - DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

fmul. Floating Multiply and Record C2 1 DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

fmuls Floating Multiply Single - - DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

fmuls. Floating Multiply Single and 
Record

C2 1 DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

fnabs Floating Negative Absolute Value - - ALU FPR 4 2 2 1 R - - - -

fnabs. Floating Negative Absolute Value 
and Record

C2 1 ALU FPR 4 2 2 1 R - - - -

2 ALU2 CR 4 3 3 1 - - F - - F

fneg Floating Negate - - ALU FPR 4 2 2 1 R - - - -

fneg. Floating Negate and Record C2 1 ALU FPR 4 2 2 1 R - - - -

2 ALU2 CR 4 3 3 1 - - F - - F

fnmadd Floating Negative Multiply-Add - - DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

fnmadd. Floating Negative Multiply-Add 
and Record

C2 1 DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

fnmadds Floating Negative Multiply-Add 
Single

- - DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -
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fnmadds. Floating Negative Multiply-Add 
Single and Record

C2 1 DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

fnmsub Floating Negative Multiply-
Subtract

- - DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

fnmsub. Floating Negative Multiply-
Subtract and Record

C2 1 DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

fnmsubs Floating Negative Multiply-
Subtract Single

- - DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

fnmsubs. Floating Negative Multiply-
Subtract Single and Record

C2 1 DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

fre Floating Reciprocal Estimate - - DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

fre. Floating Reciprocal Estimate and 
Record

C2 1 DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

fres Floating Reciprocal Estimate 
Single

- - DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

fres. Floating Reciprocal Estimate 
Single and Record

C2 1 DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

frim Floating Round to Integer Minus - - DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

frim. Floating Round to Integer Minus 
and Record

C2 1 DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

frin Floating Round to Integer Nearest - - DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

frin. Floating Round to Integer Nearest 
and Record

C2 1 DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

frip Floating Round to Integer Plus - - DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -
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frip. Floating Round to Integer Plus 
and Record

C2 1 DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

friz Floating Round to Integer Zero - - DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

friz. Floating Round to Integer Zero 
and Record

C2 1 DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

frsp Floating Round to SP - - DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

frsp. Floating Round to SP and Record C2 1 DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

frsqrte Floating Reciprocal Square Root 
Estimate

- - DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

frsqrte. Floating Reciprocal Square Root 
Estimate and Record

C2 1 DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

frsqrtes Floating Reciprocal Square Root 
Estimate Single

- - DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

frsqrtes. Floating Reciprocal Square Root 
Estimate Single and Record

C2 1 DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

fsel Floating Select - - DP FPR 4 5 7 1 R - - - -

fsel. Floating Select and Record C2 1 DP FPR 4 5 7 1 R - - - -

2 ALU2 CR 4 3 3 1 - - F - - F

fsqrt Floating Square Root - - DP FPR fpcc,fric,excp 4/37 36 36 10 R - 3 - - -

fsqrt. Floating Square Root and Record C2 1 DP FPR fpcc,fric,excp 4/37 36 36 10 R - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

fsqrts Floating Square Root Single - - DP FPR fpcc,fric,excp 4/20 26 26 5 R - 3 - - -
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fsqrts. Floating Square Root Single and 
Record

C2 1 DP FPR fpcc,fric,excp 4/20 26 26 5 R - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

fsub Floating Subtract - - DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

fsub. Floating Subtract and Record C2 1 DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

fsubs Floating Subtract Single - - DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

fsubs. Floating Subtract Single and 
Record

C2 1 DP FPR fpcc,fric,excp 4 5 7 1 R - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - D1P F

ftdiv Floating Test for Software Divide - - ALU2 CR 4 3 3 1 R - - - -

ftsqrt Floating Test for Software Square 
Root

- - ALU2 CR 4 3 3 1 R - - - -

icbi Instruction Cache Block Invalidate - - LD 4 4 4 1 - - - - N

icbt Instruction Cache Block Touch - - LD 4 4 4 1 - - - - -

isel Integer Select - - ALU GPR 4 2 2 1 R - 3 - - -

isync Instruction Synchronize - - LD 4 4 4 1 - - - - -

lbarx Load Byte And Reserve Indexed - - LD GPR 4 4 4 1 - - - - -

lbz Load Byte and Zero - - LD GPR 4 4 4 1 - - - - -

lbzcix Load Byte and Zero Caching 
Inhibited Indexed

- - LD GPR 4 4 4 1 - - - - -

lbzu Load Byte and Zero with Update C2 1 LD GPR 4 4 4 1 - - - - -

2 ALU GPR 4 2 2 1 - - - - -

lbzux Load Byte and Zero with Update 
Indexed

C2 1 LD GPR 4 4 4 1 P - - - -

2 ALU GPR 4 2 2 1 P - - - -

lbzx Load Byte and Zero Indexed - - LD GPR 4 4 4 1 - - - - -
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ld Load Dword - - LD GPR 4 4 4 1 - - - - -

ldarx Load Dword And Reserve Indexed - - LD GPR 4 4 4 1 - - - - -

ldat Load Dword Atomic X 1 NOP 6 0 0 1 - - - - -

2 ST 4 - - 1 R - - - -

3 ST 4 - - 1 R - - - -

4 LD 4 4 4 1 - - - - -

5 LD GPR 4 4 4 1 - - - - N

6 LD 4 4 4 1 - - - - -

ldbrx Load Dword Byte-Reverse 
Indexed

- - LD GPR 4 4 4 1 - - - - -

ldcix Load Dword Caching Inhibited 
Indexed

- - LD GPR 4 4 4 1 - - - - -

ldmx Load Dword Monitored Indexed C2 1 LD GPR 4 4 4 1 - - - - -

2 NOP 6 0 0 1 - - - - -

ldmx Load Dword Monitored Indexed C2 1 LD GPR 4 4 4 1 - - - - -

2 NOP 6 0 0 1 - - - - -

ldmx Load Dword Monitored Indexed C2 1 LD GPR 4 4 4 1 - - - - -

2 LD 4 4 4 1 - - - D1P -

ldu Load Dword with Update C2 1 LD GPR 4 4 4 1 - - - - -

2 ALU GPR 4 2 2 1 - - - - -

ldux Load Dword with Update Indexed C2 1 LD GPR 4 4 4 1 P - - - -

2 ALU GPR 4 2 2 1 P - - - -

ldx Load Dword Indexed - - LD GPR 4 4 4 1 - - - - -

lfd Load Floating Double - - LD FPR 4 4 4 1 R - - - -
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lfdp Load Floating Double Pair C2 1 LD3 FPR 4 6 6 1 P - - - -

2 LD3 FPR 4 6 6 1 P - - - -

lfdpx Load Floating Double Pair 
Indexed

C2 1 LD3 FPR 4 6 6 1 P - - - -

2 LD3 FPR 4 6 6 1 P - - - -

lfdu Load Floating Double with Update C2 1 LD FPR 4 4 4 1 R - - - -

2 ALU GPR 4 2 2 1 - - - - -

lfdux Load Floating Double with Update 
Indexed

C2 1 LD FPR 4 4 4 1 R - - - -

2 ALU GPR 4 2 2 1 - - - - -

lfdx Load Floating Double Indexed - - LD FPR 4 4 4 1 R - - - -

lfiwax Load Floating as Integer Word 
Algebraic Indexed

C2 1 LD FPR 4 4 4 1 R - - - -

2 ALU FPR 4 2 2 1 R - - D1P -

lfiwzx Load Floating as Integer Word 
and Zero Indexed

- - LD FPR 4 4 4 1 R - - - -

lfs Load Floating Single C2 1 LD FPR 4 4 4 1 R - - - -

2 ALU2 FPR 4 3 3 1 R - - D1P -

lfsu Load Floating Single with Update C3 1 LD FPR 4 4 4 1 R - - - -

2 ALU2 FPR 4 3 3 1 R - - D1P -

3 ALU GPR 4 2 2 1 - - - - -

lfsux Load Floating Single with Update 
Indexed

C3 1 LD FPR 4 4 4 1 R - - - -

2 ALU2 FPR 4 3 3 1 R - - D1P -

3 ALU GPR 4 2 2 1 - - - - -

lfsx Load Floating Single Indexed C2 1 LD FPR 4 4 4 1 R - - - -

2 ALU2 FPR 4 3 3 1 R - - D1P -
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lha Load Hword Algebraic C2 1 LD GPR 4 4 4 1 - - - - -

2 ALU GPR 4 2 2 1 - - - D1P -

lharx Load Hword And Reserve Indexed 
Xform

- - LD GPR 4 4 4 1 - - - - -

lhau Load Hword Algebraic with 
Update

C3 1 LD GPR 4 4 4 1 - - - - -

2 ALU GPR 4 2 2 1 - - - - -

3 ALU GPR 4 2 2 1 - - - D2P -

lhaux Load Hword Algebraic with 
Update Indexed

C3 1 LD GPR 4 4 4 1 P - - - -

2 ALU GPR 4 2 2 1 P - - - -

3 ALU GPR 4 2 2 1 - - - D2P -

lhax Load Hword Algebraic Indexed C2 1 LD GPR 4 4 4 1 - - - - -

2 ALU GPR 4 2 2 1 - - - D1P -

lhbrx Load Hword Byte-Reverse 
Indexed

- - LD GPR 4 4 4 1 - - - - -

lhz Load Hword and Zero - - LD GPR 4 4 4 1 - - - - -

lhzcix Load Hword and Zero Caching 
Inhibited Indexed

- - LD GPR 4 4 4 1 - - - - -

lhzu Load Hword and Zero with Update C2 1 LD GPR 4 4 4 1 - - - - -

2 ALU GPR 4 2 2 1 - - - - -

lhzux Load Hword and Zero with Update 
Indexed

C2 1 LD GPR 4 4 4 1 P - - - -

2 ALU GPR 4 2 2 1 P - - - -

lhzx Load Hword and Zero Indexed - - LD GPR 4 4 4 1 - - - - -

lmw Load Multiple Word X 1u LD GPR 4 4 4 1 - - - - -
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lq Load Qword C2 1 LD3 GPR 4 6 6 1 P - - - -

2 LD3 GPR 4 6 6 1 P - - - -

lqarx Load Qword And Reserve 
Indexed

C2 1 LD3 GPR 4 6 6 1 P - - - -

2 LD3 GPR 4 6 6 1 P - - - -

lswi Load String Word Immediate X 1u LD GPR 4 4 4 1 - - - - -

lswx Load String Word Indexed X 1 DIV 2 12 12 1 E - 3 - - -

2u LD2 GPR 4 5 5 1 - - - - -

lvebx Load Vector Element Byte 
Indexed

- - LD VR 2 5 5 1 - - - - -

lvehx Load Vector Element Hword 
Indexed

- - LD VR 2 5 5 1 - - - - -

lvewx Load Vector Element Word 
Indexed

- - LD VR 2 5 5 1 - - - - -

lvsl Load Vector for Shift Left - - PM VR 2 3 3 1 V - 1 S - -

lvsr Load Vector for Shift Right - - PM VR 2 3 3 1 V - 1 S - -

lvx Load Vector Indexed - - LD VR 2 5 5 1 - - - - -

lvxl Load Vector Indexed Last - - LD VR 2 5 5 1 - - - - -

lwa Load Word Algebraic C2 1 LD GPR 4 4 4 1 - - - - -

2 ALU GPR 4 2 2 1 - - - D1P -

lwarx Load Word and Reserve Indexed - - LD GPR 4 4 4 1 - - - - -
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lwat Load Word Atomic X 1 NOP 6 0 0 1 - - - - -

2 ST 4 - - 1 R - - - -

3 ST 4 - - 1 R - - - -

4 LD 4 4 4 1 - - - - -

5 LD GPR 4 4 4 1 - - - - N

6 LD 4 4 4 1 - - - - -

lwaux Load Word Algebraic with Update 
Indexed

C3 1 LD GPR 4 4 4 1 P - - - -

2 ALU GPR 4 2 2 1 P - - - -

3 ALU GPR 4 2 2 1 - - - D2P -

lwax Load Word Algebraic Indexed C2 1 LD GPR 4 4 4 1 - - - - -

2 ALU GPR 4 2 2 1 - - - D1P -

lwbrx Load Word Byte-Reverse Indexed - - LD GPR 4 4 4 1 - - - - -

lwz Load Word and Zero - - LD GPR 4 4 4 1 - - - - -

lwzcix Load Word and Zero Caching 
Inhibited Indexed

- - LD GPR 4 4 4 1 - - - - -

lwzu Load Word and Zero with Update C2 1 LD GPR 4 4 4 1 - - - - -

2 ALU GPR 4 2 2 1 - - - - -

lwzux Load Word and Zero with Update 
Indexed

C2 1 LD GPR 4 4 4 1 P - - - -

2 ALU GPR 4 2 2 1 P - - - -

lwzx Load Word and Zero Indexed - - LD GPR 4 4 4 1 - - - - -

lxsd Load VSX Scalar Dword - - LD VR 2 5 5 1 - - - - -

lxsdx Load VSX Scalar Dword Indexed - - LD VSR 2 5 5 1 - - - - -

lxsibzx Load VSX Scalar as Integer Byte 
and Zero Indexed

- - LD VSR 2 5 5 1 - - - - -
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lxsihzx Load VSX Scalar as Integer 
Hword and Zero Indexed

- - LD VSR 2 5 5 1 - - - - -

lxsiwax Load VSX Scalar as Integer Word 
Algebraic Indexed

C2 1 LD VSR 2 5 5 1 - - - - -

2 ALU VSR 2 2 2 1 - - - D1P -

lxsiwzx Load VSX Scalar as Integer Word 
and Zero Indexed

- - LD VSR 2 5 5 1 - - - - -

lxssp Load VSX Scalar Single C2 1 LD VR 2 5 5 1 - - - - -

2 ALU2 VR 2 3 3 1 - - - D1P -

lxsspx Load VSX Scalar SP Indexed C2 1 LD VSR 2 5 5 1 - - - - -

2 ALU2 VSR 2 3 3 1 - - - D1P -

lxv Load VSX Vector - - LD VSR 2 5 5 1 - - - - -

lxvb16x Load VSX Vector Byte*16 Indexed - - LD VSR 2 5 5 1 - - - - -

lxvd2x Load VSX Vector Dword*2 
Indexed

- - LD VSR 2 5 5 1 - - - - -

lxvdsx_be Load VSX Vector Dword and 
Splat Indexed

C2 1 LD VSR 2 5 5 1 - - - - -

2 NOP 6 0 0 1 - - - - -

lxvdsx_le Load VSX Vector Dword and 
Splat Indexed

C2 1 LD VSR 2 5 5 1 - - - - -

2 PM VSR 2 3 3 1 V - 1 S D1P -

lxvh8x_be Load VSX Vector Hword*8 
Indexed

C2 1 LD VSR 2 5 5 1 - - - - -

2 NOP 6 0 0 1 - - - - -

lxvh8x_le Load VSX Vector Hword*8 
Indexed

C2 1 LD VSR 2 5 5 1 - - - - -

2 PM VSR 2 3 3 1 V - 1 S D1P -

lxvl Load VSX Vector with Length - - LD2 VSR 2 6 6 1 - - - - -

lxvll Load VSX Vector Left-justified 
with Length

- - LD2 VSR 2 6 6 1 - - - - -
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lxvw4x_be Load VSX Vector Word*4 Indexed C2 1 LD VSR 2 5 5 1 - - - - -

2 NOP 6 0 0 1 - - - - -

lxvw4x_le Load VSX Vector Word*4 Indexed C2 1 LD VSR 2 5 5 1 - - - - -

2 PM VSR 2 3 3 1 V - 1 S D1P -

lxvwsx_be Load VSX Vector Word and Splat 
Indexed

C2 1 LD VSR 2 5 5 1 - - - - -

2 NOP 6 0 0 1 - - - - -

lxvwsx_le Load VSX Vector Word and Splat 
Indexed

C2 1 LD VSR 2 5 5 1 - - - - -

2 NOP 6 0 0 1 - - - - -

lxvx Load VSX Vector Indexed - - LD VSR 2 5 5 1 - - - - -

maddhd Multiply-Add High Dword - - DP-
MUL

GPR 4 5 5 1 R - - - -

maddhdu Multiply-Add High Dword 
Unsigned

- - DP-
MUL

GPR 4 5 5 1 R - - - -

maddld Multiply-Add Low Dword - - DP-
MUL

GPR 4 5 5 1 R - - - -

mcrf Move CR Field - - ALU CR 4 2 2 1 - - 3 - - -

mcrfs Move to CR from FPSCR C2 1 ALU2 CR 4 3 3 1 - - F - - F

2 ALU2 ctrl,excp_clr 4 3 3 1 - - 3 - - N

mcrfs Move to CR from FPSCR - - ALU2 CR 4 3 3 1 - - 3 - - -

mcrxrx Move XER to CR Extended - - ALU CR 4 2 2 1 - - 3 - - -

mfcr Move From CR C3 1 ALU GPR 4 2 2 1 R - 3 - - -

2 ALU GPR 4 2 2 1 R - 3 - D1P -

3 ALU GPR 4 2 2 1 R - 3 - D1P -
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mffs Move From FPSCR C2 1 ALU2 FPR 4 3 3 1 R - 3 - - -

2 ALU2 FPR 4 3 3 1 R - F - D1P F

mffs. Move From FPSCR and Record C2 1 ALU2 FPR 4 3 3 1 R - 3 - - -

2 ALU2 FPR CR 4 3 3 1 R - F - D1P F

mffscdrn Move From FPSCR Control and 
set DRN

- - ALU2 FPR ctrl 4 3 3 1 R - 3 - - -

mffscdrni Move From FPSCR Control and 
set DRN Immediate

- - ALU2 FPR ctrl 4 3 3 1 R - 3 - - -

mffsce Move From FPSCR and Clear 
Enables

C2 1 ALU2 FPR ctrl 4 3 3 1 R - 3 - - -

2 ALU2 FPR 4 3 3 1 R - F - D1P F

mffscrn Move From FPSCR Control and 
set RN

- - ALU2 FPR ctrl 4 3 3 1 R - 3 - - -

mffscrni Move From FPSCR Control and 
set RN Immediate

- - ALU2 FPR ctrl 4 3 3 1 R - 3 - - -

mffsl Move From FPSCR Lightweight C2 1 ALU2 FPR 4 3 3 1 R - 3 - - -

2 ALU2 FPR 4 3 3 1 R - 3 - D1P -

mfmsr Move From MSR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfocrf Move From One CR Field - - ALU GPR 4 2 2 1 R - 3 - - -

mfspr Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - N

mfspr_acop Move From SPR - - LD GPR 4 4 4 1 E WB,WS - - -

mfspr_amor Move From SPR - - LD GPR 4 4 4 1 E WB,WS - - -

mfspr_amr Move From SPR - - LD GPR 4 4 4 1 E WB,WS - - -

mfspr_apscr Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_apscru Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_asdr Move From SPR - - LD GPR 4 4 4 1 E WB,WS - - -
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mfspr_bescr Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_bescrr Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_bescrru Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_bescrs Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_bescrsu Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_cfar Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - N

mfspr_ciabr Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_cir Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - N

mfspr_ctr Move From SPR - - BR GPR 1 6 6 1 E - 2 - - -

mfspr_ctrl Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - N

mfspr_dar Move From SPR - - LD GPR 4 4 4 1 E WB,WS - - -

mfspr_dawr0 Move From SPR - - LD GPR 4 4 4 1 E WB,WS - - -

mfspr_dawrx0 Move From SPR - - LD GPR 4 4 4 1 E WB,WS - - N

mfspr_dec Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - N

mfspr_dhdes Move From SPR - - LD GPR 4 4 4 1 E WB,WS - - -

mfspr_dpdes Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - N

mfspr_dscr Move From SPR - - LD GPR 4 4 4 1 E WB,WS - - -

mfspr_dsisr Move From SPR - - LD GPR 4 4 4 1 E WB,WS - - -

mfspr_ebbhr Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_ebbrr Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_fscr Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_gsr Move From SPR - - NOP 6 0 0 1 - - - - -

mfspr_hdar Move From SPR - - LD GPR 4 4 4 1 E WB,WS - - -
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mfspr_hdec Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - N

mfspr_hdsisr Move From SPR - - LD GPR 4 4 4 1 E WB,WS - - -

mfspr_heir Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_hfscr Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_hid Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - N

mfspr_hmeer Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - N

mfspr_hmer Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - N

mfspr_hpmc1 Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_hpmc2 Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_hpmc3 Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_hpmc4 Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_hrmor Move From SPR - - LD GPR 4 4 4 1 E WB,WS - - -

mfspr_hsprg0 Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_hsprg1 Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_hsrr0 Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_hsrr1 Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_iamr Move From SPR - - LD GPR 4 4 4 1 E WB,WS - - -

mfspr_ic Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - N

mfspr_imc Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - N

mfspr_l2hadsr Move From SPR - - LD GPR 4 4 4 1 E WB,WS - - -

mfspr_l2mvsr0 Move From SPR - - LD GPR 4 4 4 1 E WB,WS - - -

mfspr_l2mvsr1 Move From SPR - - LD GPR 4 4 4 1 E WB,WS - - -

mfspr_l2qosr Move From SPR - - NOP 6 0 0 1 - - - - -
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mfspr_l3harpr Move From SPR - - LD GPR 4 4 4 1 E WB,WS - - -

mfspr_l3hawpr Move From SPR - - LD GPR 4 4 4 1 E WB,WS - - -

mfspr_ldbar Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - N

mfspr_lmrr Move From SPR - - LD GPR 4 4 4 1 E WB,WS - - -

mfspr_lmrr Move From SPR - - NOP 6 0 0 1 - - - - -

mfspr_lmser Move From SPR - - LD GPR 4 4 4 1 E WB,WS - - -

mfspr_lmser Move From SPR - - NOP 6 0 0 1 - - - - -

mfspr_lpcr Move From SPR - - LD GPR 4 4 4 1 E WB,WS - - -

mfspr_lpidr Move From SPR - - LD GPR 4 4 4 1 E WB,WS - - -

mfspr_lr Move From SPR - - BR GPR 1 6 6 1 E - 2 - - -

mfspr_mmcr0 Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_mmcr1 Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_mmcr2 Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_mmcra Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_mmcrc Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_mmcrh Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_mmcrs Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_mppr Move From SPR - - LD GPR 4 4 4 1 E WB,WS - - -

mfspr_pcr Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - N

mfspr_pidr Move From SPR - - LD GPR 4 4 4 1 E WB,WS - - -

mfspr_pir Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - N

mfspr_pmc1 Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_pmc2 Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -
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mfspr_pmc3 Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_pmc4 Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_pmc5 Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_pmc6 Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_pmcr Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - N

mfspr_pmicr Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_pmmar Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - N

mfspr_pmsr Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - N

mfspr_ppr Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - N

mfspr_ppr32 Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - N

mfspr_pspb Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - N

mfspr_psscr Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_ptcr Move From SPR - - LD GPR 4 4 4 1 E WB,WS - - -

mfspr_purr Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - N

mfspr_pvr Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - N

mfspr_reserve
d808

Move From SPR - - NOP 6 0 0 1 - - - - -

mfspr_reserve
d809

Move From SPR - - NOP 6 0 0 1 - - - - -

mfspr_reserve
d810

Move From SPR - - NOP 6 0 0 1 - - - - -

mfspr_reserve
d811

Move From SPR - - NOP 6 0 0 1 - - - - -

mfspr_rpr Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_rwmr Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - N
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mfspr_sdar Move From SPR - - LD GPR 4 4 4 1 E WB,WS - - N

mfspr_siar Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_sier Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_smfctrl Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_spmc1 Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_spmc2 Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_sprc Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - N

mfspr_sprd Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - N

mfspr_sprg0 Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_sprg1 Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_sprg2 Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_sprg3 Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_spurr Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - N

mfspr_srr0 Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_srr1 Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_tar Move From SPR - - BR GPR 1 6 6 1 E - 2 - - -

mfspr_tb Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - N

mfspr_tbl Move From SPR - - NOP 6 0 0 1 - - - - -

mfspr_tbu Move From SPR - - NOP 6 0 0 1 - - - - -

mfspr_tbu40 Move From SPR - - NOP 6 0 0 1 - - - - -

mfspr_texasr Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - N

mfspr_texasru Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - N

mfspr_tfhar Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - N
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mfspr_tfiar Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - N

mfspr_tfmr Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - N

mfspr_tidr Move From SPR - - LD GPR 4 4 4 1 E WB,WS - - -

mfspr_tir Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_trace Move From SPR - - DIV 2 12 12 1 - - - - -

mfspr_trig0 Move From SPR - - NOP 6 0 0 1 - - - - -

mfspr_trig1 Move From SPR - - NOP 6 0 0 1 - - - - -

mfspr_trig2 Move From SPR - - NOP 6 0 0 1 - - - - -

mfspr_tscr Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_tsr Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_ttr Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_uamor Move From SPR - - LD GPR 4 4 4 1 E WB,WS - - -

mfspr_uamr Move From SPR - - LD GPR 4 4 4 1 E WB,WS - - -

mfspr_urmor Move From SPR - - LD GPR 4 4 4 1 E WB,WS - - -

mfspr_usprg0 Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_usprg1 Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_usrr0 Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_usrr1 Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_vr Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_worc Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_wort Move From SPR - - DIV GPR 2 12 12 1 E WB,WS - - -

mfspr_xer Move From SPR C2 1 ALU2 GPR 4 3 3 1 R - 3 - - -

2 ALU2 GPR 4 3 3 1 R - 3 - D1P -
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mftb_old Move From Time Base - - DIV GPR 2 12 12 1 E WB,WS - - -

mfvscr Move From VSCR - - ALU2 VR 2 3 3 1 V - 1 3 S - N

mfvsrd Move From VSR Dword - - ALU GPR 4 2 2 1 - - - - -

mfvsrld Move From VSR Lower Dword - - PM GPR 4 3 3 1 V - 1 S - -

mfvsrwz Move From VSR Word and Zero - - ALU GPR 4 2 2 1 - - - - -

modsd Modulo Signed Dword - - DIV GPR 2/9 12 24 8 E - - - -

modsw Modulo Signed Word - - DIV GPR 2/9 12 16 8 E - - - -

modud Modulo Unsigned Dword - - DIV GPR 2/9 12 24 8 E - - - -

moduw Modulo Unsigned Word - - DIV GPR 2/9 12 24 8 E - - - -

msgclr Message Clear - - DIV 2 12 12 1 E SS - - N

msgclrp Message Clear Privileged - - DIV 2 12 12 1 E SS - - N

msgsnd Message Send - - LD 4 4 4 1 - - - - N

msgsndp Message Send Privileged - - DIV 2 12 12 1 E SS - - N

msgsync Message Synchronize - - LD 4 4 4 1 - - - - N

mtcrf Move to CR Fields C2 1 ALU CR CR* 4 2 2 1 R - - - -

2 ALU CR CR* 4 2 2 1 R - - - -

mtfsb0_ctrl Move to FPSCR Bit 0 - - ALU2 ctrl 4 3 3 1 R - 3 - - -

mtfsb0_ctrl. Move to FPSCR Bit 0 C2 1 ALU2 ctrl 4 3 3 1 R - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - - F

mtfsb0_excp Move to FPSCR Bit 0 - - ALU2 ctrl,excp_clr 4 3 3 1 R - 3 - - N

mtfsb0_excp. Move to FPSCR Bit 0 C2 1 ALU2 ctrl,excp_clr 4 3 3 1 R - 3 - - N

2 ALU2 CR 4 3 3 1 - - F - D1P F
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mtfsb0_excp. Move to FPSCR Bit 0 C2 1 ALU2 ctrl,excp_clr 4 3 3 1 R - 3 - - N

2 ALU2 CR 4 3 3 1 - - F - D1P F

mtfsb0_fpcc Move to FPSCR Bit 0 - - ALU2 fpcc 4 3 3 1 R - 3 - - -

mtfsb0_fpcc. Move to FPSCR Bit 0 C2 1 ALU2 fpcc 4 3 3 1 R - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - - F

mtfsb0_fric Move to FPSCR Bit 0 - - ALU2 fric 4 3 3 1 R - 3 - - -

mtfsb0_fric. Move to FPSCR Bit 0 C2 1 ALU2 fric 4 3 3 1 R - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - - F

mtfsb1_ctrl Move to FPSCR Bit 1 C2 1 ALU2 4 3 3 1 R - F - - F

2 ALU2 ctrl 4 3 3 1 R - 3 - - -

mtfsb1_ctrl. Move to FPSCR Bit 1 C2 1 ALU2 CR 4 3 3 1 R - F - - F

2 ALU2 ctrl 4 3 3 1 R - 3 - - -

mtfsb1_excp Move to FPSCR Bit 1 - - ALU2 excp 4 3 3 1 R - 3 - - -

mtfsb1_excp. Move to FPSCR Bit 1 - - ALU2 CR excp 4 3 3 1 R - F - - F

mtfsb1_fpcc Move to FPSCR Bit 1 - - ALU2 fpcc 4 3 3 1 R - 3 - - -

mtfsb1_fpcc. Move to FPSCR Bit 1 C2 1 ALU2 fpcc 4 3 3 1 R - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - - F

mtfsb1_fric Move to FPSCR Bit 1 - - ALU2 fric 4 3 3 1 R - 3 - - -

mtfsb1_fric. Move to FPSCR Bit 1 C2 1 ALU2 fric 4 3 3 1 R - 3 - - -

2 ALU2 CR 4 3 3 1 - - F - - F

mtfsfi_ctrl Move to FPSCR Field Immediate C2 1 ALU2 4 3 3 1 R - F - - F

2 ALU2 ctrl 4 3 3 1 R - 3 - - -
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mtfsfi_ctrl. Move to FPSCR Field Immediate C2 1 ALU2 CR 4 3 3 1 R - F - - F

2 ALU2 ctrl 4 3 3 1 R - 3 - - -

mtfsfi_drn Move to FPSCR Field Immediate - - ALU2 ctrl 4 3 3 1 R - 3 - - -

mtfsfi_drn. Move to FPSCR Field Immediate C2 1 ALU2 CR 4 3 3 1 R - F - - F

2 ALU2 ctrl 4 3 3 1 R - 3 - - -

mtfsfi_excp0 Move to FPSCR Field Immediate C2 1 ALU2 excp 4 3 3 1 R - F - - F

2 ALU2 ctrl,excp_clr 4 3 3 1 R - 3 - - N

mtfsfi_excp0. Move to FPSCR Field Immediate C2 1 ALU2 CR excp 4 3 3 1 R - F - - F

2 ALU2 ctrl,excp_clr 4 3 3 1 R - 3 - - N

mtfsfi_excp2 Move to FPSCR Field Immediate C2 1 ALU2 excp 4 3 3 1 R - F - - F

2 ALU2 ctrl,excp_clr 4 3 3 1 R - 3 - - N

mtfsfi_excp2. Move to FPSCR Field Immediate C2 1 ALU2 CR excp 4 3 3 1 R - F - - F

2 ALU2 ctrl,excp_clr 4 3 3 1 R - 3 - - N

mtfsfi_excp5 Move to FPSCR Field Immediate C2 1 ALU2 excp 4 3 3 1 R - F - - F

2 ALU2 ctrl,excp_clr 4 3 3 1 R - 3 - - N

mtfsfi_excp5. Move to FPSCR Field Immediate C2 1 ALU2 CR excp 4 3 3 1 R - F - - F

2 ALU2 ctrl,excp_clr 4 3 3 1 R - 3 - - N

mtfsfi_fpcc Move to FPSCR Field Immediate - - ALU2 fpcc 4 3 3 1 R - - - -

mtfsfi_fpcc. Move to FPSCR Field Immediate - - ALU2 CR fpcc 4 3 3 1 R - F - - F

mtfsfi_fric Move to FPSCR Field Immediate C2 1 ALU2 fric,excp 4 3 3 1 R - F - - F

2 ALU2 ctrl,excp_clr 4 3 3 1 R - 3 - - N

mtfsfi_fric. Move to FPSCR Field Immediate C2 1 ALU2 CR fric,excp 4 3 3 1 R - F - - F

2 ALU2 ctrl,excp_clr 4 3 3 1 R - 3 - - N
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mtfsf_l0_fpcc Move to FPSCR Fields C2 1 ALU2 fpcc,excp 4 3 3 1 R - F - - F

2 ALU2 ctrl,excp_clr 4 3 3 1 R - 3 - - N

mtfsf_l0_fpcc. Move to FPSCR Fields C2 1 ALU2 CR fpcc,excp 4 3 3 1 R - F - - F

2 ALU2 ctrl,excp_clr 4 3 3 1 R - 3 - - N

mtfsf_l0_fpcc_ 
fric

Move to FPSCR Fields C2 1 ALU2 fric,fpcc,excp 4 3 3 1 R - F - - F

2 ALU2 ctrl,excp_clr 4 3 3 1 R - 3 - - N

mtfsf_l0_fpcc_ 
fric.

Move to FPSCR Fields C2 1 ALU2 CR fric,fpcc,excp 4 3 3 1 R - F - - F

2 ALU2 ctrl,excp_clr 4 3 3 1 R - 3 - - N

mtfsf_l0_fric Move to FPSCR Fields C2 1 ALU2 fric,excp 4 3 3 1 R - F - - F

2 ALU2 ctrl,excp_clr 4 3 3 1 R - 3 - - N

mtfsf_l0_fric. Move to FPSCR Fields C2 1 ALU2 CR fric,excp 4 3 3 1 R - F - - F

2 ALU2 ctrl,excp_clr 4 3 3 1 R - 3 - - N

mtfsf_l0_w0 Move to FPSCR Fields C2 1 ALU2 excp 4 3 3 1 R - F - - F

2 ALU2 ctrl,excp_clr 4 3 3 1 R - 3 - - N

mtfsf_l0_w0. Move to FPSCR Fields C2 1 ALU2 CR excp 4 3 3 1 R - F - - F

2 ALU2 ctrl,excp_clr 4 3 3 1 R - 3 - - N

mtfsf_l0_w1. Move to FPSCR Fields C2 1 ALU2 CR 4 3 3 1 R - F - - F

2 ALU2 ctrl 4 3 3 1 R - 3 - - -

mtfsf_l1 Move to FPSCR Fields C2 1 ALU2 fric,fpcc,excp 4 3 3 1 R - 3 - - -

2 ALU2 ctrl,excp_clr 4 3 3 1 R - 3 - - N

mtfsf_l1. Move to FPSCR Fields C2 1 ALU2 CR fric,fpcc,excp 4 3 3 1 R - 3 - - -

2 ALU2 ctrl,excp_clr 4 3 3 1 R - 3 - - N

mtmsr Move to MSR - - DIV 2 12 12 1 E - - - N
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mtmsrd Move to MSR Dword - - DIV 2 12 12 1 E - - - N

mtocrf Move to One CR Field - - ALU CR 4 2 2 1 R - - - -

mtspr Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_acop Move to SPR - - LD 4 4 4 1 E SS - - N

mtspr_amor Move to SPR - - LD 4 4 4 1 E SS - - N

mtspr_amr Move to SPR - - LD 4 4 4 1 E SS - - N

mtspr_apscr Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_apscru Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_asdr Move to SPR - - LD 4 4 4 1 E SS - - N

mtspr_bescr Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_bescrr Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_bescrru Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_bescrs Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_bescrsu Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_cfar Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_ciabr Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_cir Move to SPR - - NOP 6 0 0 1 - - - - -

mtspr_ctr Move to SPR - - DIV 2 5 5 1 E - - - -

mtspr_ctrl Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_dar Move to SPR - - LD 4 4 4 1 E SS - - N

mtspr_dawr0 Move to SPR - - LD 4 4 4 1 E SS - - N

mtspr_dawrx0 Move to SPR - - LD 4 4 4 1 E SS - - N

mtspr_dec Move to SPR - - DIV 2 12 12 1 E SS - - N
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mtspr_dhdes Move to SPR - - LD 4 4 4 1 E SS - - N

mtspr_dpdes Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_dscr Move to SPR - - LD 4 4 4 1 E SS - - N

mtspr_dsisr Move to SPR - - LD 4 4 4 1 E SS - - N

mtspr_ebbhr Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_ebbrr Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_fscr Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_gsr Move to SPR - - DIV 2 12 12 1 - - - - -

mtspr_hdar Move to SPR - - LD 4 4 4 1 E SS - - N

mtspr_hdec Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_hdsisr Move to SPR - - LD 4 4 4 1 E SS - - N

mtspr_heir Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_hfscr Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_hid Move to SPR C2 1 DIV 2 12 12 1 E SS - - N

2 LD 4 4 4 1 - SS - - N

mtspr_hmeer Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_hmer Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_hpmc1 Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_hpmc2 Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_hpmc3 Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_hpmc4 Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_hrmor Move to SPR - - LD 4 4 4 1 E SS - - N

mtspr_hsprg0 Move to SPR - - DIV 2 12 12 1 E SS - - N
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mtspr_hsprg1 Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_hsrr0 Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_hsrr1 Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_iamr Move to SPR C2 1 LD 4 4 4 1 P SS - - N

2 LD 4 4 4 1 P SS - - N

mtspr_ic Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_imc Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_l2hadsr Move to SPR - - LD 4 4 4 1 E SS - - N

mtspr_l2mvsr0 Move to SPR - - LD 4 4 4 1 E SS - - N

mtspr_l2mvsr1 Move to SPR - - LD 4 4 4 1 E SS - - N

mtspr_l2qosr Move to SPR - - LD 4 4 4 1 E SS - - N

mtspr_l3harpr Move to SPR - - LD 4 4 4 1 E SS - - N

mtspr_l3hawpr Move to SPR - - LD 4 4 4 1 E SS - - N

mtspr_ldbar Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_lmrr Move to SPR - - LD 4 4 4 1 E SS - - N

mtspr_lmser Move to SPR - - LD 4 4 4 1 E SS - - N

mtspr_lpcr Move to SPR C2 1 DIV 2 12 12 1 E SS - - N

2 LD 4 4 4 1 - SS - - N

mtspr_lpidr Move to SPR C2 1 LD 4 4 4 1 P SS - - N

2 LD 4 4 4 1 P SS - - N

mtspr_lr Move to SPR - - DIV 2 5 5 1 E - - - -

mtspr_mmcr0 Move to SPR - - DIV 2 12 12 1 E SS - - N
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mtspr_mmcr1 Move to SPR C2 1 DIV 2 12 12 1 E SS - - N

2 LD 4 4 4 1 - SS - - N

mtspr_mmcr2 Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_mmcra Move to SPR C2 1 DIV 2 12 12 1 E SS - - N

2 LD 4 4 4 1 - SS - - N

mtspr_mmcrc Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_mmcrh Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_mmcrs Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_mppr Move to SPR - - LD 4 4 4 1 E SS - - N

mtspr_pcr Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_pidr Move to SPR C2 1 LD 4 4 4 1 P SS - - N

2 LD 4 4 4 1 P SS - - N

mtspr_pir Move to SPR - - NOP 6 0 0 1 - - - - -

mtspr_pmc1 Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_pmc2 Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_pmc3 Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_pmc4 Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_pmc5 Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_pmc6 Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_pmcr Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_pmicr Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_pmmar Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_pmsr Move to SPR - - NOP 6 0 0 1 - - - - -
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mtspr_ppr Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_ppr32 Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_pspb Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_psscr Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_ptcr Move to SPR - - LD 4 4 4 1 E SS - - N

mtspr_purr Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_pvr Move to SPR - - NOP 6 0 0 1 - - - - -

mtspr_reserve
d808

Move to SPR - - NOP 6 0 0 1 - - - - -

mtspr_reserve
d809

Move to SPR - - NOP 6 0 0 1 - - - - -

mtspr_reserve
d810

Move to SPR - - NOP 6 0 0 1 - - - - -

mtspr_reserve
d811

Move to SPR - - NOP 6 0 0 1 - - - - -

mtspr_rpr Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_rwmr Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_sdar Move to SPR - - LD 4 4 4 1 E SS - - N

mtspr_siar Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_sier Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_smfctrl Move to SPR C2 1 DIV 2 12 12 1 E SS - - N

2 LD 4 4 4 1 - SS - - N

mtspr_spmc1 Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_spmc2 Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_sprc Move to SPR - - DIV 2 12 12 1 E SS - - N
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mtspr_sprd Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_sprg0 Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_sprg1 Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_sprg2 Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_sprg3 Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_spurr Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_srr0 Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_srr1 Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_tar Move to SPR - - DIV 2 5 5 1 E - - - -

mtspr_tb Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_tbl Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_tbu Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_tbu40 Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_texasr Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_texasru Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_tfhar Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_tfiar Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_tfmr Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_tidr Move to SPR - - LD 4 4 4 1 E SS - - N

mtspr_tir Move to SPR - - NOP 6 0 0 1 - - - - -

mtspr_trace Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_trig0 Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_trig1 Move to SPR - - DIV 2 12 12 1 E SS - - N
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mtspr_trig2 Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_tscr Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_tsr Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_ttr Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_uamor Move to SPR - - LD 4 4 4 1 E SS - - N

mtspr_uamr Move to SPR - - LD 4 4 4 1 E SS - - N

mtspr_urmor Move to SPR - - LD 4 4 4 1 E SS - - N

mtspr_usprg0 Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_usprg1 Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_usrr0 Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_usrr1 Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_vr Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_worc Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_wort Move to SPR - - DIV 2 12 12 1 E SS - - N

mtspr_xer Move to SPR C2 1 ALU2 caoc,fxcc,ov,d
cds

4 3 3 1 R - - - -

2 ALU2 tgcc,string,res
erved

4 3 3 1 R - - - -

mtvscr Move to VSCR - - ALU2 nj,sat 4 3 3 1 V - 1 S - N

mtvsrd Move to VSR Dword - - ALU VSR 2 2 2 1 - - - - -

mtvsrdd Move to VSR Double Dword - - ALU VSR 2 2 2 1 V - 1 S - -

mtvsrwa Move to VSR Word Algebraic - - ALU VSR 2 2 2 1 - - - - -

mtvsrws Move to VSR Word and Splat - - PM VSR 2 3 3 1 V - 1 S - -

mtvsrwz Move to VSR Word and Zero - - ALU VSR 2 2 2 1 - - - - -
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mulhd Multiply High Dword - - DP-
MUL

GPR 4 5 5 1 R - - - -

mulhd. Multiply High Dword and Record C2 1 DP-
MUL

GPR 4 5 5 1 R - - - -

2 ALU CR fxcc 4 2 2 1 - - - D1P -

mulhdu Multiply High Dword Unsigned - - DP-
MUL

GPR 4 5 5 1 R - - - -

mulhdu. Multiply High Dword Unsigned 
and Record

C2 1 DP-
MUL

GPR 4 5 5 1 R - - - -

2 ALU CR fxcc 4 2 2 1 - - - D1P -

mulhw Multiply High Word - - DP-
MUL

GPR 4 5 5 1 R - - - -

mulhw. Multiply High Word and Record C2 1 DP-
MUL

GPR 4 5 5 1 R - - - -

2 ALU CR fxcc 4 2 2 1 - - - D1P -

mulhwu Multiply High Word Unsigned - - DP-
MUL

GPR 4 5 5 1 R - - - -

mulhwu. Multiply High Word Unsigned and 
Record

C2 1 DP-
MUL

GPR 4 5 5 1 R - - - -

2 ALU CR fxcc 4 2 2 1 - - - D1P -

mulld Multiply Low Dword - - DP-
MUL

GPR 4 5 5 1 R - - - -

mulld. Multiply Low Dword and Record C2 1 DP-
MUL

GPR 4 5 5 1 R - - - -

2 ALU CR fxcc 4 2 2 1 - - - D1P -

mulldo Multiply Low Dword and Record 
OV

- - DP-
MUL

GPR ov 4 5 5 1 R - - - -
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mulldo. Multiply Low Dword and Record 
OV and Record

C2 1 DP-
MUL

GPR ov 4 5 5 1 R - - - -

2 ALU CR fxcc 4 2 2 1 - - 3 - D1P -

mulli Multiply Low Immediate - - DP-
MUL

GPR 4 5 5 1 R - - - -

mullw Multiply Low Word - - DP-
MUL

GPR 4 5 5 1 R - - - -

mullw. Multiply Low Word and Record C2 1 DP-
MUL

GPR 4 5 5 1 R - - - -

2 ALU CR fxcc 4 2 2 1 - - - D1P -

mullwo Multiply Low Word and Record 
OV

- - DP-
MUL

GPR ov 4 5 5 1 R - - - -

mullwo. Multiply Low Word and Record 
OV and Record

C2 1 DP-
MUL

GPR ov 4 5 5 1 R - - - -

2 ALU CR fxcc 4 2 2 1 - - 3 - D1P -

nand NAND - - ALU GPR 4 2 2 1 - - - - -

nand. NAND and Record - - ALU GPR CR fxcc 4 2 2 1 - - - - -

neg Negate - - ALU GPR 4 2 2 1 - - - - -

neg. Negate and Record - - ALU GPR CR fxcc 4 2 2 1 - - - - -

nego Negate and Record OV - - ALU GPR ov 4 2 2 1 - - - - -

nego. Negate and Record OV and 
Record

- - ALU GPR CR fxcc,ov 4 2 2 1 - - - - -

nor NOR - - ALU GPR 4 2 2 1 - - - - -

nor. NOR and Record - - ALU GPR CR fxcc 4 2 2 1 - - - - -

or OR - - ALU GPR 4 2 2 1 - - - - -

or. OR and Record - - ALU GPR CR fxcc 4 2 2 1 - - - - -
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orc OR with Complement - - ALU GPR 4 2 2 1 - - - - -

orc. OR with Complement and Record - - ALU GPR CR fxcc 4 2 2 1 - - - - -

ori OR Immediate - - ALU GPR 4 2 2 1 - - - - -

oris OR Immediate Shifted - - ALU GPR 4 2 2 1 - - - - -

paste Paste - - LD 4 4 4 1 - - - - -

paste. Paste and Record C2 1 LD fxcc 4 4 4 1 - - - - -

2 ALU CR 4 2 2 1 - - 3 - D1P -

popcntb Population Count Byte - - ALU GPR 4 2 2 1 - - - - -

popcntd Population Count Dword - - ALU2 GPR 4 3 3 1 - - - - -

popcntw Population Count Words - - ALU2 GPR 4 3 3 1 - - - - -

prtyd Parity Dword - - ALU2 GPR 4 3 3 1 - - - - -

prtyw Parity Word - - ALU2 GPR 4 3 3 1 - - - - -

rfebb Return from Event Based Branch - - ALU 4 2 2 1 - - - - -

rldcl Rotate Left Dword then Clear Left - - ALU GPR 4 2 2 1 R - - - -

rldcl. Rotate Left Dword then Clear Left 
and Record

C2 1 ALU GPR 4 2 2 1 R - - - -

2 ALU CR fxcc 4 2 2 1 - - - D1P -

rldcr Rotate Left Dword then Clear 
Right

- - ALU GPR 4 2 2 1 R - - - -

rldcr. Rotate Left Dword then Clear 
Right and Record

C2 1 ALU GPR 4 2 2 1 R - - - -

2 ALU CR fxcc 4 2 2 1 - - - D1P -

rldic Rotate Left Dword Immediate then 
Clear

- - ALU GPR 4 2 2 1 - - - - -

rldic. Rotate Left Dword Immediate then 
Clear and Record

C2 1 ALU GPR 4 2 2 1 - - - - -

2 ALU CR fxcc 4 2 2 1 - - - D1P -
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rldicl Rotate Left Dword Immediate then 
Clear Left

- - ALU GPR 4 2 2 1 R - - - -

rldicl. Rotate Left Dword Immediate then 
Clear Left and Record

C2 1 ALU GPR 4 2 2 1 R - - - -

2 ALU CR fxcc 4 2 2 1 - - - D1P -

rldicr Rotate Left Dword Immediate then 
Clear Right

- - ALU GPR 4 2 2 1 R - - - -

rldicr. Rotate Left Dword Immediate then 
Clear Right and Record

C2 1 ALU GPR 4 2 2 1 R - - - -

2 ALU CR fxcc 4 2 2 1 - - - D1P -

rldimi Rotate Left Dword Immediate then 
Mask Insert

- - ALU GPR 4 2 2 1 R - - - -

rldimi. Rotate Left Dword Immediate then 
Mask Insert and Record

C2 1 ALU GPR 4 2 2 1 R - - - -

2 ALU CR fxcc 4 2 2 1 - - - D1P -

rlwimi Rotate Left Word Immediate then 
Mask Insert

- - ALU GPR 4 2 2 1 R - - - -

rlwimi. Rotate Left Word Immediate then 
Mask Insert and Record

C2 1 ALU GPR 4 2 2 1 R - - - -

2 ALU CR fxcc 4 2 2 1 - - - D1P -

rlwinm Rotate Left Word Immediate then 
AND with Mask

- - ALU GPR 4 2 2 1 R - - - -

rlwinm. Rotate Left Word Immediate then 
AND with Mask and Record

C2 1 ALU GPR 4 2 2 1 R - - - -

2 ALU CR fxcc 4 2 2 1 - - - D1P -

rlwnm Rotate Left Word then AND with 
Mask

- - ALU GPR 4 2 2 1 R - - - -

rlwnm. Rotate Left Word then AND with 
Mask and Record

C2 1 ALU GPR 4 2 2 1 R - - - -

2 ALU CR fxcc 4 2 2 1 - - - D1P -

setb Set Boolean - - ALU2 GPR 4 3 3 1 - - 3 - - -
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slbfee. SLB Find Entry ESID and Record C3 1 LD 4 4 4 1 P - - - N

2 LD GPR fxcc 4 4 4 1 P - - - N

3 ALU CR 4 2 2 1 P - 3 - D1P N

slbia.IH000 SLB Invalidate All C2 1 LD 4 4 4 1 P WB,WS - - N

2 LD 4 4 4 1 P WB,WS - - N

slbia.IH001 SLB Invalidate All C2 1 LD 4 4 4 1 P WB,WS - - N

2 LD 4 4 4 1 P WB,WS - - N

slbia.IH010 SLB Invalidate All C2 1 LD 4 4 4 1 P WB,WS - - N

2 LD 4 4 4 1 P WB,WS - - N

slbia.IH011 SLB Invalidate All C2 1 LD 4 4 4 1 P WB,WS - - N

2 LD 4 4 4 1 P WB,WS - - N

slbia.IH100 SLB Invalidate All C2 1 LD 4 4 4 1 P WB,WS - - N

2 LD 4 4 4 1 P WB,WS - - N

slbia.IH101 SLB Invalidate All C2 1 LD 4 4 4 1 P WB,WS - - N

2 LD 4 4 4 1 P WB,WS - - N

slbia.IH110 SLB Invalidate All C2 1 LD 4 4 4 1 P WB,WS - - N

2 LD 4 4 4 1 P WB,WS - - N

slbia.IH111 SLB Invalidate All C2 1 LD 4 4 4 1 P WB,WS - - N

2 LD 4 4 4 1 P WB,WS - - N

slbie SLB Invalidate Entry C2 1 LD 4 4 4 1 P - - - N

2 LD 4 4 4 1 P - - - N

slbieg SLB Invalidate Entry Global - - ST 4 - - 1 R - - - -
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slbmfee SLB Move From Entry ESID C2 1 LD 4 4 4 1 P - - - N

2 LD GPR 4 4 4 1 P - - - N

slbmfev SLB Move From Entry VSID C2 1 LD 4 4 4 1 P - - - N

2 LD GPR 4 4 4 1 P - - - N

slbmte SLB Move to Entry C2 1 LD 4 4 4 1 P - - - N

2 LD 4 4 4 1 P - - - N

sld Shift Left Dword - - ALU GPR 4 2 2 1 - - - - -

sld. Shift Left Dword and Record C2 1 ALU GPR 4 2 2 1 - - - - -

2 ALU CR fxcc 4 2 2 1 - - - D1P -

slw Shift Left Word - - ALU GPR 4 2 2 1 R - - - -

slw. Shift Left Word and Record C2 1 ALU GPR 4 2 2 1 R - - - -

2 ALU CR fxcc 4 2 2 1 - - - D1P -

srad Shift Right Algebraic Dword - - ALU GPR caoc 4 2 2 1 - - - - -

srad. Shift Right Algebraic Dword and 
Record

C2 1 ALU GPR caoc 4 2 2 1 - - - - -

2 ALU CR fxcc 4 2 2 1 - - - D1P -

sradi Shift Right Algebraic Dword 
Immediate

- - ALU GPR caoc 4 2 2 1 - - - - -

sradi. Shift Right Algebraic Dword 
Immediate and Record

C2 1 ALU GPR caoc 4 2 2 1 - - - - -

2 ALU CR fxcc 4 2 2 1 - - - D1P -

sraw Shift Right Algebraic Word - - ALU GPR caoc 4 2 2 1 R - - - -

sraw. Shift Right Algebraic Word and 
Record

C2 1 ALU GPR caoc 4 2 2 1 R - - - -

2 ALU CR fxcc 4 2 2 1 - - - D1P -

srawi Shift Right Algebraic Word 
Immediate

- - ALU GPR caoc 4 2 2 1 R - - - -

Table A-1. Instruction Properties  (Sheet 57 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n 
N

um
be

r

P
ip

e 
C

la
ss

M
ai

n 
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns
  

pe
r 

C
yc

le

La
te

nc
y 

(M
in

im
um

)

La
te

nc
y 

(M
ax

im
um

)

P
ip

e 
B

us
y 

C
yc

le
s 

(M
in

im
um

)

D
is

pa
tc

h 
R

ul
e

D
is

pa
tc

h 
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h 

to
 Is

su
e 

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r 
 

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e 
S

yn
ch

ro
ni

ze
d

Is
su

e 
D

ep
en

d 
on

 P
re

vi
ou

s 
Io

p

Is
su

e 
N

ex
t-

to
-C

om
pl

et
e



U
ser’s M

anual 
O

penP
O

W
E

R
P

O
W

E
R

9 P
ro

cesso
r

 

Instruction P
roperties

P
age 432 of 508

V
ersion 2.1 

10 O
ctober 2019  

srawi. Shift Right Algebraic Word 
Immediate and Record

C2 1 ALU GPR caoc 4 2 2 1 R - - - -

2 ALU CR fxcc 4 2 2 1 - - - D1P -

srd Shift Right Dword - - ALU GPR 4 2 2 1 - - - - -

srd. Shift Right Dword and Record C2 1 ALU GPR 4 2 2 1 - - - - -

2 ALU CR fxcc 4 2 2 1 - - - D1P -

srw Shift Right Word - - ALU GPR 4 2 2 1 R - - - -

srw. Shift Right Word and Record C2 1 ALU GPR 4 2 2 1 R - - - -

2 ALU CR fxcc 4 2 2 1 - - - D1P -

stb Store Byte - - ST 4 - - 1 R-st - - - -

stbcix Store Byte Caching Inhibited 
Indexed

- - ST 4 - - 1 R - - - -

stbcx. Store Byte Conditional Indexed 
and Record

C2 1 ST fxcc 4 - - 1 R - - - -

2 ALU CR 4 2 2 1 - - 3 - D1P -

stbu Store Byte with Update C2 1 ST 4 - - 1 R-st - - - -

2 ALU GPR 4 2 2 1 - - - - -

stbux Store Byte with Update Indexed C2 1 ST 4 - - 1 R - - - -

2 ALU GPR 4 2 2 1 - - - - -

stbx Store Byte Indexed - - ST 4 - - 1 R - - - -

std Store Dword - - ST 4 - - 1 R-st - - - -

stdat Store Dword Atomic X 1 LD 4 4 4 1 - - - - -

2 ST 4 - - 1 R - - - N

3 LD 4 4 4 1 - - - - -

stdbrx Store Dword Byte-Reverse 
Indexed

- - ST 4 - - 1 R - - - -
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stdcix Store Dword Caching Inhibited 
Indexed

- - ST 4 - - 1 R - - - -

stdcx. Store Dword Conditional Indexed 
and Record

C2 1 ST fxcc 4 - - 1 R - - - -

2 ALU CR 4 2 2 1 - - 3 - D1P -

stdu Store Dword with Update C2 1 ST 4 - - 1 R-st - - - -

2 ALU GPR 4 2 2 1 - - - - -

stdux Store Dword with Update Indexed C2 1 ST 4 - - 1 R - - - -

2 ALU GPR 4 2 2 1 - - - - -

stdx Store Dword Indexed - - ST 4 - - 1 R - - - -

stfd Store Floating Double - - ST 4 - - 1 R - - - -

stfdp Store Floating Double Pair C2 1 ST 4 - - 1 R - - - -

2 ST 4 - - 1 R - - - -

stfdpx Store Floating Double Pair 
Indexed

C2 1 ST 4 - - 1 R - - - -

2 ST 4 - - 1 R - - - -

stfdu Store Floating Double with Update C2 1 ST 4 - - 1 R - - - -

2 ALU GPR 4 2 2 1 - - - - -

stfdux Store Floating Double with Update 
Indexed

C2 1 ST 4 - - 1 R - - - -

2 ALU GPR 4 2 2 1 - - - - -

stfdx Store Floating Double Indexed - - ST 4 - - 1 R - - - -

stfiwx Store Floating as Integer Word 
Indexed

- - ST 4 - - 1 R - - - -

stfs Store Floating Single - - ST 4 - - 1 R - - - -

stfsu Store Floating Single with Update C2 1 ST 4 - - 1 R - - - -

2 ALU GPR 4 2 2 1 - - - - -
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stfsux Store Floating Single with Update 
Indexed

C2 1 ST 4 - - 1 R - - - -

2 ALU GPR 4 2 2 1 - - - - -

stfsx Store Floating Single Indexed - - ST 4 - - 1 R - - - -

sth Store Hword - - ST 4 - - 1 R-st - - - -

sthbrx Store Hword Byte-Reverse 
Indexed

- - ST 4 - - 1 R - - - -

sthcix Store Hword Caching Inhibited 
Indexed

- - ST 4 - - 1 R - - - -

sthcx. Store Hword Conditional Indexed 
and Record

C2 1 ST fxcc 4 - - 1 R - - - -

2 ALU CR 4 2 2 1 - - 3 - D1P -

sthu Store Hword with Update C2 1 ST 4 - - 1 R-st - - - -

2 ALU GPR 4 2 2 1 - - - - -

sthux Store Hword with Update Indexed C2 1 ST 4 - - 1 R - - - -

2 ALU GPR 4 2 2 1 - - - - -

sthx Store Hword Indexed - - ST 4 - - 1 R - - - -

stmw Store Multiple Word X 1u ST 4 - - 1 R - - - -

stop Stop - - 0 - - - 1 - - - - -

stq Store Qword C2 1 ST 4 - - 1 R-st - - - -

2 ST 4 - - 1 R-st - - - -

stqcx. Store Qword Conditional Indexed 
and Record

C3 1 ST 4 - - 1 R - 3 - - -

2 ST fxcc 4 - - 1 R - 3 - - -

3 ALU CR 4 2 2 1 - - 3 - D1P -

stswi Store String Word Immediate X 1u ST 4 - - 1 R-st - - - -
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stswx Store String Word Indexed X 1 DIV 2 12 12 1 E - 3 - - -

2u ST2 4 - - 1 R - - - -

stvebx Store Vector Element Byte 
Indexed

- - ST 4 - - 1 V - 1 S - -

stvehx Store Vector Element Hword 
Indexed

- - ST 4 - - 1 V - 1 S - -

stvewx Store Vector Element Word 
Indexed

- - ST 4 - - 1 V - 1 S - -

stvx Store Vector Indexed - - ST 4 - - 1 V - 1 S - -

stvxl Store Vector Indexed Last - - ST 4 - - 1 V - 1 S - -

stw Store Word - - ST 4 - - 1 R-st - - - -

stwat Store Word ATomic X 1 LD 4 4 4 1 - - - - -

2 ST 4 - - 1 R - - - N

3 LD 4 4 4 1 - - - - -

stwbrx Store Word Byte-Reverse Indexed - - ST 4 - - 1 R - - - -

stwcix Store Word Caching Inhibited 
Indexed

- - ST 4 - - 1 R - - - -

stwcx. Store Word Conditional Indexed 
and Record

C2 1 ST fxcc 4 - - 1 R - - - -

2 ALU CR 4 2 2 1 - - 3 - D1P -

stwu Store Word with Update C2 1 ST 4 - - 1 R-st - - - -

2 ALU GPR 4 2 2 1 - - - - -

stwux Store Word with Update Indexed C2 1 ST 4 - - 1 R - - - -

2 ALU GPR 4 2 2 1 - - - - -

stwx Store Word Indexed - - ST 4 - - 1 R - - - -

stxsd Store VSX Scalar Dword - - ST 4 - - 1 R-st - - - -
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stxsdx Store VSX Scalar Dword Indexed - - ST 4 - - 1 R - - - -

stxsibx Store VSX Scalar as Integer Byte 
Indexed

- - ST 4 - - 1 R - - - -

stxsihx Store VSX Scalar as Integer 
Hword Indexed

- - ST 4 - - 1 R - - - -

stxsiwx Store VSX Scalar as Integer Word 
Indexed

- - ST 4 - - 1 R - - - -

stxssp Store VSX Scalar SP - - ST 4 - - 1 R-st - - - -

stxsspx Store VSX Scalar SP Indexed - - ST 4 - - 1 R - - - -

stxv Store VSX Vector - - ST 4 - - 1 V - 1 S - -

stxvb16x Store VSX Vector Byte*16 
Indexed

- - ST 4 - - 1 V - 1 S - -

stxvd2x Store VSX Vector Dword*2 
Indexed

- - ST 4 - - 1 V - 1 S - -

stxvh8x Store VSX Vector Hword*8 
Indexed

- - ST 4 - - 1 V - 1 S - -

stxvl Store VSX Vector with Length - - ST2 4 - - 1 V - 1 S - -

stxvll Store VSX Vector Left-justified 
with Length

- - ST2 4 - - 1 V - 1 S - -

stxvw4x Store VSX Vector Word*4 Indexed - - ST 4 - - 1 V - 1 S - -

stxvx Store VSX Vector Indexed - - ST 4 - - 1 V - 1 S - -

subf Subtract From - - ALU GPR 4 2 2 1 - - - - -

subf. Subtract From and Record - - ALU GPR CR fxcc 4 2 2 1 - - - - -

subfc Subtract From Carrying - - ALU GPR caoc 4 2 2 1 - - - - -

subfc. Subtract From Carrying and 
Record

- - ALU GPR CR caoc,fxcc 4 2 2 1 - - - - -
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subfco Subtract From Carrying and 
Record OV

- - ALU GPR caoc,ov 4 2 2 1 - - - - -

subfco. Subtract From Carrying and 
Record OV and Record

- - ALU GPR CR caoc,fxcc,ov 4 2 2 1 - - - - -

subfe Subtract From Extended - - ALU GPR caoc 4 2 2 1 - - 3 - - -

subfe. Subtract From Extended and 
Record

- - ALU GPR CR caoc,fxcc 4 2 2 1 - - 3 - - -

subfeo Subtract From Extended and 
Record OV

- - ALU GPR caoc,ov 4 2 2 1 - - 3 - - -

subfeo. Subtract From Extended and 
Record OV and Record

- - ALU GPR CR caoc,fxcc,ov 4 2 2 1 - - 3 - - -

subfic Subtract From Immediate 
Carrying

- - ALU GPR caoc 4 2 2 1 - - - - -

subfme Subtract From Minus One 
Extended

- - ALU GPR caoc 4 2 2 1 - - 3 - - -

subfme. Subtract From Minus One 
Extended and Record

- - ALU GPR CR caoc,fxcc 4 2 2 1 - - 3 - - -

subfmeo Subtract From Minus One 
Extended and Record OV

- - ALU GPR caoc,ov 4 2 2 1 - - 3 - - -

subfmeo. Subtract From Minus One 
Extended and Record OV and 
Record

- - ALU GPR CR caoc,fxcc,ov 4 2 2 1 - - 3 - - -

subfo Subtract From and Record OV - - ALU GPR ov 4 2 2 1 - - - - -

subfo. Subtract From and Record OV 
and Record

- - ALU GPR CR fxcc,ov 4 2 2 1 - - - - -

subfze Subtract From Zero Extended - - ALU GPR caoc 4 2 2 1 - - 3 - - -

subfze. Subtract From Zero Extended and 
Record

- - ALU GPR CR caoc,fxcc 4 2 2 1 - - 3 - - -

subfzeo Subtract From Zero Extended and 
Record OV

- - ALU GPR caoc,ov 4 2 2 1 - - 3 - - -
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subfzeo. Subtract From Zero Extended and 
Record OV and Record

- - ALU GPR CR caoc,fxcc,ov 4 2 2 1 - - 3 - - -

sync Synchronize - - LD 4 4 4 1 - - - - -

tabort. Transaction Abort and Record - - ALU CR fxcc 4 2 2 1 R - - - -

tabortdc. Transaction Abort Dword 
Conditional and Record

- - ALU2 CR fxcc 4 3 3 1 R - - - -

tabortdci. Transaction Abort Dword 
Conditional Immediate and 
Record

- - ALU2 CR fxcc 4 3 3 1 R - - - -

tabortwc. Transaction Abort Word 
Conditional and Record

- - ALU2 CR fxcc 4 3 3 1 R - - - -

tabortwci. Transaction Abort Word 
Conditional Immediate and 
Record

- - ALU2 CR fxcc 4 3 3 1 R - - - -

tbegin. Transaction Begin and Record C2 1 NOP 6 0 0 1 - - - - -

2 ALU CR fxcc 4 2 2 1 - - - - -

tcheck Transaction Check and Record C2 1 LD fxcc 4 4 4 1 - - - - -

2 ALU CR fxcc 4 2 2 1 - - 3 - D1P -

td_ti Trap Dword - - ALU2 4 3 3 1 R - - - -

tdi_ti Trap Dword Immediate - - ALU2 4 3 3 1 R - - - -

tend. Transaction End and Record C2 1 LD 4 4 4 1 - - - - -

2 ALU CR fxcc 4 2 2 1 - - - - -

tlbie TLB Invalidate Entry - - ST 4 - - 1 R - - - -

tlbie_h TLB Invalidate Entry - - ST 4 - - 1 R - - - -

tlbiel TLB Invalidate Entry Local C2 1 LD 4 4 4 1 P - - - N

2 LD 4 4 4 1 P - - - N
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tlbiel_h TLB Invalidate Entry Local C2 1 LD 4 4 4 1 P - - - N

2 LD 4 4 4 1 P - - - N

tlbsync TLB Synchronize - - LD 4 4 4 1 - - - - -

trechkpt. Transaction Recheckpoint and 
Record

- - ALU CR fxcc 4 2 2 1 - - - - N

treclaim. Transaction Reclaim and Record - - ALU CR fxcc 4 2 2 1 R - - - -

tsr. Transaction Suspend or Resume 
and Record

- - ALU CR fxcc 4 2 2 1 R - - - -

tw Trap Word - - ALU2 4 3 3 1 R - - - -

twi Trap Word Immediate - - ALU2 4 3 3 1 R - - - -

vabsdub Vector Absolute Difference 
Unsigned Byte

- - ALU2 VR 2 3 3 1 V - 1 S - -

vabsduh Vector Absolute Difference 
Unsigned Hword

- - ALU2 VR 2 3 3 1 V - 1 S - -

vabsduw Vector Absolute Difference 
Unsigned Word

- - ALU2 VR 2 3 3 1 V - 1 S - -

vaddcuq Vector Add and write Carry 
Unsigned Qword

- - DX VR 2 3 3 1 V - 1 S - -

vaddcuw Vector Add and Write Carry-Out 
Unsigned Word

- - ALU2 VR 2 3 3 1 V - 1 S - -

vaddecuq Vector Add Extended and write 
Carry Unsigned Qword

- - DX VR 2 3 3 1 V - 1 S - -

vaddeuqm Vector Add Extended Unsigned 
Qword Modulo

- - DX VR 2 3 3 1 V - 1 S - -

vaddfp Vector Add Floating-Point - - DP VR 2 5 7 1 V - 1 3 S - -

vaddsbs Vector Add Signed Byte Saturate - - ALU2 VR sat 2 3 3 1 V - 1 3 S - -

vaddshs Vector Add Signed Hword 
Saturate

- - ALU2 VR sat 2 3 3 1 V - 1 3 S - -
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vaddsws Vector Add Signed Word Saturate - - ALU2 VR sat 2 3 3 1 V - 1 3 S - -

vaddubm Vector Add Unsigned Byte Modulo - - ALU VR 2 2 2 1 V - 1 S - -

vaddubs Vector Add Unsigned Byte 
Saturate

- - ALU2 VR sat 2 3 3 1 V - 1 3 S - -

vaddudm Vector Add Unsigned Dword 
Modulo

- - ALU VR 2 2 2 1 V - 1 S - -

vadduhm Vector Add Unsigned Hword 
Modulo

- - ALU VR 2 2 2 1 V - 1 S - -

vadduhs Vector Add Unsigned Hword 
Saturate

- - ALU2 VR sat 2 3 3 1 V - 1 3 S - -

vadduqm Vector Add Unsigned Qword 
Modulo

- - DX VR 2 3 3 1 V - 1 S - -

vadduwm Vector Add Unsigned Word 
Modulo

- - ALU VR 2 2 2 1 V - 1 S - -

vadduws Vector Add Unsigned Word 
Saturate

- - ALU2 VR sat 2 3 3 1 V - 1 3 S - -

vand Vector Logical AND - - ALU VR 2 2 2 1 V - 1 S - -

vandc Vector Logical AND with 
Complement

- - ALU VR 2 2 2 1 V - 1 S - -

vavgsb Vector Average Signed Byte - - ALU2 VR 2 3 3 1 V - 1 S - -

vavgsh Vector Average Signed Hword - - ALU2 VR 2 3 3 1 V - 1 S - -

vavgsw Vector Average Signed Word - - ALU2 VR 2 3 3 1 V - 1 S - -

vavgub Vector Average Unsigned Byte - - ALU2 VR 2 3 3 1 V - 1 S - -

vavguh Vector Average Unsigned Hword - - ALU2 VR 2 3 3 1 V - 1 S - -

vavguw Vector Average Unsigned Word - - ALU2 VR 2 3 3 1 V - 1 S - -

vbpermd Vector Bit Permute Dword - - ALU2 VR 2 3 3 1 V - 1 S - -

vbpermq Vector Bit Permute Qword - - PM VR 2 3 3 1 V - 1 S - -
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vcfsx Vector Convert From Signed 
Word

- - DP VR 2 5 7 1 V - 1 S - -

vcfux Vector Convert From Unsigned 
Word

- - DP VR 2 5 7 1 V - 1 S - -

vcipher Vector AES Cipher - - CY VR 1 6 6 1 V - 1 S - -

vcipherlast Vector AES Cipher Last - - CY VR 1 6 6 1 V - 1 S - -

vclzb Vector Count Leading Zeros Byte - - ALU2 VR 2 3 3 1 V - 1 S - -

vclzd Vector Count Leading Zeros 
Dword

- - ALU2 VR 2 3 3 1 V - 1 S - -

vclzh Vector Count Leading Zeros 
Hword

- - ALU2 VR 2 3 3 1 V - 1 S - -

vclzlsbb Vector Count Leading Zero Least-
Significant Bits Byte

- - PM GPR 4 3 3 1 V - 1 S - -

vclzw Vector Count Leading Zeros Word - - ALU2 VR 2 3 3 1 V - 1 S - -

vcmpbfp Vector Compare Bounds Floating-
Point

- - ALU2 VR 2 3 3 1 V - 1 3 S - -

vcmpbfp. Vector Compare Bounds Floating-
Point and Record

- - ALU2 VR CR 2 3 3 1 V - 1 3 S - -

vcmpeqfp Vector Compare Equal to 
Floating-Point

- - ALU2 VR 2 3 3 1 V - 1 3 S - -

vcmpeqfp. Vector Compare Equal to 
Floating-Point and Record

- - ALU2 VR CR 2 3 3 1 V - 1 3 S - -

vcmpequb Vector Compare Equal Unsigned 
Byte

- - ALU2 VR 2 3 3 1 V - 1 S - -

vcmpequb. Vector Compare Equal Unsigned 
Byte and Record

- - ALU2 VR CR 2 3 3 1 V - 1 S - -

vcmpequd Vector Compare Equal Unsigned 
Dword

- - ALU2 VR 2 3 3 1 V - 1 S - -

vcmpequd. Vector Compare Equal Unsigned 
Dword and Record

- - ALU2 VR CR 2 3 3 1 V - 1 S - -
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vcmpequh Vector Compare Equal Unsigned 
Hword

- - ALU2 VR 2 3 3 1 V - 1 S - -

vcmpequh. Vector Compare Equal Unsigned 
Hword and Record

- - ALU2 VR CR 2 3 3 1 V - 1 S - -

vcmpequw Vector Compare Equal Unsigned 
Word

- - ALU2 VR 2 3 3 1 V - 1 S - -

vcmpequw. Vector Compare Equal Unsigned 
Word and Record

- - ALU2 VR CR 2 3 3 1 V - 1 S - -

vcmpgefp Vector Compare Greater Than or 
Equal to Floating-Point

- - ALU2 VR 2 3 3 1 V - 1 3 S - -

vcmpgefp. Vector Compare Greater Than or 
Equal to Floating-Point and 
Record

- - ALU2 VR CR 2 3 3 1 V - 1 3 S - -

vcmpgtfp Vector Compare Greater Than 
Floating-Point

- - ALU2 VR 2 3 3 1 V - 1 3 S - -

vcmpgtfp. Vector Compare Greater Than 
Floating-Point and Record

- - ALU2 VR CR 2 3 3 1 V - 1 3 S - -

vcmpgtsb Vector Compare Greater Than 
Signed Byte

- - ALU2 VR 2 3 3 1 V - 1 S - -

vcmpgtsb. Vector Compare Greater Than 
Signed Byte and Record

- - ALU2 VR CR 2 3 3 1 V - 1 S - -

vcmpgtsd Vector Compare Greater Than 
Signed Dword

- - ALU2 VR 2 3 3 1 V - 1 S - -

vcmpgtsd. Vector Compare Greater Than 
Signed Dword and Record

- - ALU2 VR CR 2 3 3 1 V - 1 S - -

vcmpgtsh Vector Compare Greater Than 
Signed Hword

- - ALU2 VR 2 3 3 1 V - 1 S - -

vcmpgtsh. Vector Compare Greater Than 
Signed Hword and Record

- - ALU2 VR CR 2 3 3 1 V - 1 S - -

vcmpgtsw Vector Compare Greater Than 
Signed Word

- - ALU2 VR 2 3 3 1 V - 1 S - -
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vcmpgtsw. Vector Compare Greater Than 
Signed Word and Record

- - ALU2 VR CR 2 3 3 1 V - 1 S - -

vcmpgtub Vector Compare Greater Than 
Unsigned Byte

- - ALU2 VR 2 3 3 1 V - 1 S - -

vcmpgtub. Vector Compare Greater Than 
Unsigned Byte and Record

- - ALU2 VR CR 2 3 3 1 V - 1 S - -

vcmpgtud Vector Compare Greater Than 
Unsigned Dword

- - ALU2 VR 2 3 3 1 V - 1 S - -

vcmpgtud. Vector Compare Greater Than 
Unsigned Dword and Record

- - ALU2 VR CR 2 3 3 1 V - 1 S - -

vcmpgtuh Vector Compare Greater Than 
Unsigned Hword

- - ALU2 VR 2 3 3 1 V - 1 S - -

vcmpgtuh. Vector Compare Greater Than 
Unsigned Hword and Record

- - ALU2 VR CR 2 3 3 1 V - 1 S - -

vcmpgtuw Vector Compare Greater Than 
Unsigned Word

- - ALU2 VR 2 3 3 1 V - 1 S - -

vcmpgtuw. Vector Compare Greater Than 
Unsigned Word and Record

- - ALU2 VR CR 2 3 3 1 V - 1 S - -

vcmpneb Vector Compare Not Equal Byte - - ALU2 VR 2 3 3 1 V - 1 S - -

vcmpneb. Vector Compare Not Equal Byte 
and Record

- - ALU2 VR CR 2 3 3 1 V - 1 S - -

vcmpneh Vector Compare Not Equal Hword - - ALU2 VR 2 3 3 1 V - 1 S - -

vcmpneh. Vector Compare Not Equal Hword 
and Record

- - ALU2 VR CR 2 3 3 1 V - 1 S - -

vcmpnew Vector Compare Not Equal Word - - ALU2 VR 2 3 3 1 V - 1 S - -

vcmpnew. Vector Compare Not Equal Word 
and Record

- - ALU2 VR CR 2 3 3 1 V - 1 S - -

vcmpnezb Vector Compare Not Equal or 
Zero Byte

- - ALU2 VR 2 3 3 1 V - 1 S - -
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vcmpnezb. Vector Compare Not Equal or 
Zero Byte and Record

- - ALU2 VR CR 2 3 3 1 V - 1 S - -

vcmpnezh Vector Compare Not Equal or 
Zero Hword

- - ALU2 VR 2 3 3 1 V - 1 S - -

vcmpnezh. Vector Compare Not Equal or 
Zero Hword and Record

- - ALU2 VR CR 2 3 3 1 V - 1 S - -

vcmpnezw Vector Compare Not Equal or 
Zero Word

- - ALU2 VR 2 3 3 1 V - 1 S - -

vcmpnezw. Vector Compare Not Equal or 
Zero Word and Record

- - ALU2 VR CR 2 3 3 1 V - 1 S - -

vctsxs Vector Convert to Signed Word 
Saturate

- - DP VR sat 2 5 7 1 V - 1 3 S - -

vctuxs Vector Convert to Unsigned Word 
Saturate

- - DP VR sat 2 5 7 1 V - 1 3 S - -

vctzb Vector Count Trailing Zeros Byte - - ALU2 VR 2 3 3 1 V - 1 S - -

vctzd Vector Count Trailing Zeros 
Dword

- - ALU2 VR 2 3 3 1 V - 1 S - -

vctzh Vector Count Trailing Zeros 
Hword

- - ALU2 VR 2 3 3 1 V - 1 S - -

vctzlsbb Vector Count Trailing Zero Least-
Significant Bits Byte

- - PM GPR 4 3 3 1 V - 1 S - -

vctzw Vector Count Trailing Zeros Word - - ALU2 VR 2 3 3 1 V - 1 S - -

veqv Vector Logical Equivalence - - ALU VR 2 2 2 1 V - 1 S - -

vexptefp Vector 2 Raised to the Exponent 
Estimate Floating-Point

- - DP VR 2 5 7 1 V - 1 3 S - -

vextractd Vector Extract Dword - - PM VR 2 3 3 1 V - 1 S - -

vextractub Vector Extract Unsigned Byte - - PM VR 2 3 3 1 V - 1 S - -

vextractuh Vector Extract Unsigned Hword - - PM VR 2 3 3 1 V - 1 S - -

vextractuw Vector Extract Unsigned Word - - PM VR 2 3 3 1 V - 1 S - -
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vextsb2d Vector Extend Sign Byte to Dword - - ALU VR 2 2 2 1 V - 1 S - -

vextsb2w Vector Extend Sign Byte to Word - - ALU VR 2 2 2 1 V - 1 S - -

vextsh2d Vector Extend Sign Hword to 
Dword

- - ALU VR 2 2 2 1 V - 1 S - -

vextsh2w Vector Extend Sign Hword to 
Word

- - ALU VR 2 2 2 1 V - 1 S - -

vextsw2d Vector Extend Sign Word to 
Dword

- - ALU VR 2 2 2 1 V - 1 S - -

vextublx Vector Extract Unsigned Byte 
Left-Indexed

- - PM GPR 4 3 3 1 V - 1 S - -

vextubrx Vector Extract Unsigned Byte 
Right-Indexed

- - PM GPR 4 3 3 1 V - 1 S - -

vextuhlx Vector Extract Unsigned Hword 
Left-Indexed

- - PM GPR 4 3 3 1 V - 1 S - -

vextuhrx Vector Extract Unsigned Hword 
Right-Indexed

- - PM GPR 4 3 3 1 V - 1 S - -

vextuwlx Vector Extract Unsigned Word 
Left-Indexed

- - PM GPR 4 3 3 1 V - 1 S - -

vextuwrx Vector Extract Unsigned Word 
Right-Indexed

- - PM GPR 4 3 3 1 V - 1 S - -

vgbbd Vector Gather Bits by Byte by 
Dword

- - PM VR 2 3 3 1 V - 1 S - -

vinsertb Vector Insert Byte - - PM VR 2 3 3 1 V - 1 S - -

vinsertd Vector Insert Dword - - PM VR 2 3 3 1 V - 1 S - -

vinserth Vector Insert Hword - - PM VR 2 3 3 1 V - 1 S - -

vinsertw Vector Insert Word - - PM VR 2 3 3 1 V - 1 S - -

vlogefp Vector Log Base 2 Estimate 
Floating-Point

- - DP VR 2 5 7 1 V - 1 3 S - -

vmaddfp Vector Multiply-Add Floating-Point - - DP VR 2 5 7 1 V - 1 3 S - -
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vmaxfp Vector Maximum Floating-Point - - ALU2 VR 2 3 3 1 V - 1 3 S - -

vmaxsb Vector Maximum Signed Byte - - ALU2 VR 2 3 3 1 V - 1 S - -

vmaxsd Vector Maximum Signed Dword - - ALU2 VR 2 3 3 1 V - 1 S - -

vmaxsh Vector Maximum Signed Hword - - ALU2 VR 2 3 3 1 V - 1 S - -

vmaxsw Vector Maximum Signed Word - - ALU2 VR 2 3 3 1 V - 1 S - -

vmaxub Vector Maximum Unsigned Byte - - ALU2 VR 2 3 3 1 V - 1 S - -

vmaxud Vector Maximum Unsigned Dword - - ALU2 VR 2 3 3 1 V - 1 S - -

vmaxuh Vector Maximum Unsigned Hword - - ALU2 VR 2 3 3 1 V - 1 S - -

vmaxuw Vector Maximum Unsigned Word - - ALU2 VR 2 3 3 1 V - 1 S - -

vmhaddshs Vector Multiply-High-Add Signed 
Hword Saturate

- - DP VR sat 2 5 7 1 V - 1 3 S - -

vmhraddshs Vector Multiply-High-Round-Add 
Signed Hword Saturate

- - DP-XC VR sat 2 7 7 1 V - 1 3 S - -

vminfp Vector Minimum Floating-Point - - ALU2 VR 2 3 3 1 V - 1 3 S - -

vminsb Vector Minimum Signed Byte - - ALU2 VR 2 3 3 1 V - 1 S - -

vminsd Vector Minimum Signed Dword - - ALU2 VR 2 3 3 1 V - 1 S - -

vminsh Vector Minimum Signed Hword - - ALU2 VR 2 3 3 1 V - 1 S - -

vminsw Vector Minimum Signed Word - - ALU2 VR 2 3 3 1 V - 1 S - -

vminub Vector Minimum Unsigned Byte - - ALU2 VR 2 3 3 1 V - 1 S - -

vminud Vector Minimum Unsigned Dword - - ALU2 VR 2 3 3 1 V - 1 S - -

vminuh Vector Minimum Unsigned Hword - - ALU2 VR 2 3 3 1 V - 1 S - -

vminuw Vector Minimum Unsigned Word - - ALU2 VR 2 3 3 1 V - 1 S - -

vmladduhm Vector Multiply-Low-Add 
Unsigned Hword Modulo

- - DP-XC VR 2 7 7 1 V - 1 S - -
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vmrgew Vector Merge Even Word - - ALU VR 2 2 2 1 V - 1 S - -

vmrghb Vector Merge High Byte - - PM VR 2 3 3 1 V - 1 S - -

vmrghh Vector Merge High Hword - - PM VR 2 3 3 1 V - 1 S - -

vmrghw Vector Merge High Word - - PM VR 2 3 3 1 V - 1 S - -

vmrglb Vector Merge Low Byte - - PM VR 2 3 3 1 V - 1 S - -

vmrglh Vector Merge Low Hword - - PM VR 2 3 3 1 V - 1 S - -

vmrglw Vector Merge Low Word - - PM VR 2 3 3 1 V - 1 S - -

vmrgow Vector Merge Odd Word - - ALU VR 2 2 2 1 V - 1 S - -

vmsummbm Vector Multiply-Sum Mixed Byte 
Modulo

- - DP-XC VR 2 7 7 1 V - 1 S - -

vmsumshm Vector Multiply-Sum Signed 
Hword Modulo

- - DP-XC VR 2 7 7 1 V - 1 S - -

vmsumshs Vector Multiply-Sum Signed 
Hword Saturate

- - DP-XC VR sat 2 7 7 1 V - 1 3 S - -

vmsumubm Vector Multiply-Sum Unsigned 
Byte Modulo

- - DP-XC VR 2 7 7 1 V - 1 S - -

vmsumudm Vector Multiply-Sum Unsigned 
Doubleword Modulo

- - DP VR 2 5 7 1 V - 1 S - -

vmsumuhm Vector Multiply-Sum Unsigned 
Hword Modulo

- - DP-XC VR 2 7 7 1 V - 1 S - -

vmsumuhs Vector Multiply-Sum Unsigned 
Hword Saturate

- - DP-XC VR sat 2 7 7 1 V - 1 3 S - -

vmul10cuq Vector Multiply-by-10 and write 
Carry Unsigned Qword

- - DX VR 2 3 3 1 V - 1 S - -

vmul10ecuq Vector Multiply-by-10 Extended 
and write Carry Unsigned Qword

- - DX VR 2 3 3 1 V - 1 S - -

vmul10euq Vector Multiply-by-10 Extended 
Unsigned Qword

- - DX VR 2 3 3 1 V - 1 S - -
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vmul10uq Vector Multiply-by-10 Unsigned 
Qword

- - DX VR 2 3 3 1 V - 1 S - -

vmulesb Vector Multiply Even Signed Byte - - DP-XC VR 2 7 7 1 V - 1 S - -

vmulesh Vector Multiply Even Signed 
Hword

- - DP-XC VR 2 7 7 1 V - 1 S - -

vmulesw Vector Multiply Even Signed Word - - DP-XC VR 2 7 7 1 V - 1 S - -

vmuleub Vector Multiply Even Unsigned 
Byte

- - DP-XC VR 2 7 7 1 V - 1 S - -

vmuleuh Vector Multiply Even Unsigned 
Hword

- - DP-XC VR 2 7 7 1 V - 1 S - -

vmuleuw Vector Multiply Even Unsigned 
Word

- - DP-XC VR 2 7 7 1 V - 1 S - -

vmulosb Vector Multiply Odd Signed Byte - - DP-XC VR 2 7 7 1 V - 1 S - -

vmulosh Vector Multiply Odd Signed Hword - - DP-XC VR 2 7 7 1 V - 1 S - -

vmulosw Vector Multiply Odd Signed Word - - DP-XC VR 2 7 7 1 V - 1 S - -

vmuloub Vector Multiply Odd Unsigned 
Byte

- - DP-XC VR 2 7 7 1 V - 1 S - -

vmulouh Vector Multiply Odd Unsigned 
Hword

- - DP-XC VR 2 7 7 1 V - 1 S - -

vmulouw Vector Multiply Odd Unsigned 
Word

- - DP-XC VR 2 7 7 1 V - 1 S - -

vmuluwm Vector Multiply Unsigned Word 
Modulo

- - DP-XC VR 2 7 7 1 V - 1 S - -

vnand Vector Logical NAND - - ALU VR 2 2 2 1 V - 1 S - -

vncipher Vector AES Inverse Cipher - - CY VR 1 6 6 1 V - 1 S - -

vncipherlast Vector AES Inverse Cipher Last - - CY VR 1 6 6 1 V - 1 S - -

vnegd Vector Negate Dword - - ALU VR 2 2 2 1 V - 1 S - -
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vnegw Vector Negate Word - - ALU VR 2 2 2 1 V - 1 S - -

vnmsubfp Vector Negative Multiply-Subtract 
Floating-Point

- - DP VR 2 5 7 1 V - 1 3 S - -

vnor Vector Logical NOR - - ALU VR 2 2 2 1 V - 1 S - -

vor Vector Logical OR - - ALU VR 2 2 2 1 V - 1 S - -

vorc Vector Logical OR with 
Complement

- - ALU VR 2 2 2 1 V - 1 S - -

vperm Vector Permute - - PM VR 2 3 3 1 V - 1 S - -

vpermr Vector Permute Right-indexed - - PM VR 2 3 3 1 V - 1 S - -

vpermxor Vector Permute and Exclusive-OR - - PM VR 2 3 3 1 V - 1 S - -

vpkpx Vector Pack Pixel - - PM VR 2 3 3 1 V - 1 S - -

vpksdss Vector Pack Signed Dword 
Signed Saturate

- - PM VR sat 2 3 3 1 V - 1 3 S - -

vpksdus Vector Pack Signed Dword 
Unsigned Saturate

- - PM VR sat 2 3 3 1 V - 1 3 S - -

vpkshss Vector Pack Signed Hword 
Signed Saturate

- - PM VR sat 2 3 3 1 V - 1 3 S - -

vpkshus Vector Pack Signed Hword 
Unsigned Saturate

- - PM VR sat 2 3 3 1 V - 1 3 S - -

vpkswss Vector Pack Signed Word Signed 
Saturate

- - PM VR sat 2 3 3 1 V - 1 3 S - -

vpkswus Vector Pack Signed Word 
Unsigned Saturate

- - PM VR sat 2 3 3 1 V - 1 3 S - -

vpkudum Vector Pack Unsigned Dword 
Unsigned Modulo

- - PM VR 2 3 3 1 V - 1 S - -

vpkudus Vector Pack Unsigned Dword 
Unsigned Saturate

- - PM VR sat 2 3 3 1 V - 1 3 S - -

vpkuhum Vector Pack Unsigned Hword 
Unsigned Modulo

- - PM VR 2 3 3 1 V - 1 S - -
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vpkuhus Vector Pack Unsigned Hword 
Unsigned Saturate

- - PM VR sat 2 3 3 1 V - 1 3 S - -

vpkuwum Vector Pack Unsigned Word 
Unsigned Modulo

- - PM VR 2 3 3 1 V - 1 S - -

vpkuwus Vector Pack Unsigned Word 
Unsigned Saturate

- - PM VR sat 2 3 3 1 V - 1 3 S - -

vpmsumb Vector Polynomial Multiply-Sum 
Byte

- - CY VR 1 6 6 1 V - 1 S - -

vpmsumd Vector Polynomial Multiply-Sum 
Dword

- - CY VR 1 6 6 1 V - 1 S - -

vpmsumh Vector Polynomial Multiply-Sum 
Hword

- - CY VR 1 6 6 1 V - 1 S - -

vpmsumw Vector Polynomial Multiply-Sum 
Word

- - CY VR 1 6 6 1 V - 1 S - -

vpopcntb Vector Population Count Byte - - ALU VR 2 2 2 1 V - 1 S - -

vpopcntd Vector Population Count Dword - - ALU2 VR 2 3 3 1 V - 1 S - -

vpopcnth Vector Population Count Hword - - ALU VR 2 2 2 1 V - 1 S - -

vpopcntw Vector Population Count Word - - ALU2 VR 2 3 3 1 V - 1 S - -

vprtybd Vector Parity Byte Dword - - ALU2 VR 2 3 3 1 V - 1 S - -

vprtybq Vector Parity Byte Qword - - PM VR 2 3 3 1 V - 1 S - -

vprtybw Vector Parity Byte Word - - ALU2 VR 2 3 3 1 V - 1 S - -

vrefp Vector Reciprocal Estimate 
Floating-Point

- - DP VR 2 5 7 1 V - 1 3 S - -

vrfim Vector Round to Floating-Point 
Integral toward -Infinity

- - DP VR 2 5 7 1 V - 1 3 S - -

vrfin Vector Round to Floating-Point 
Integral Nearest

- - DP VR 2 5 7 1 V - 1 3 S - -

vrfip Vector Round to Floating-Point 
Integral toward +Infinity

- - DP VR 2 5 7 1 V - 1 3 S - -
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vrfiz Vector Round to Floating-Point 
Integral toward Zero

- - DP VR 2 5 7 1 V - 1 3 S - -

vrlb Vector Rotate Left Byte - - ALU VR 2 2 2 1 V - 1 S - -

vrld Vector Rotate Left Dword - - ALU VR 2 2 2 1 V - 1 S - -

vrldmi Vector Rotate Left Dword then 
Mask Insert

- - ALU VR 2 2 2 1 V - 1 S - -

vrldnm Vector Rotate Left Dword then 
AND with Mask

- - ALU VR 2 2 2 1 V - 1 S - -

vrlh Vector Rotate Left Hword - - ALU VR 2 2 2 1 V - 1 S - -

vrlw Vector Rotate Left Word - - ALU VR 2 2 2 1 V - 1 S - -

vrlwmi Vector Rotate Left Word then 
Mask Insert

- - ALU VR 2 2 2 1 V - 1 S - -

vrlwnm Vector Rotate Left Word then 
AND with Mask

- - ALU VR 2 2 2 1 V - 1 S - -

vrsqrtefp Vector Reciprocal Square Root 
Estimate Floating-Point

- - DP VR 2 5 7 1 V - 1 3 S - -

vsbox Vector AES SubBytes - - CY VR 1 6 6 1 V - 1 S - -

vsel Vector Select - - ALU VR 2 2 2 1 V - 1 S - -

vshasigmad Vector SHA-512 Sigma Dword - - ALU2 VR 2 3 3 1 V - 1 S - -

vshasigmaw Vector SHA-256 Sigma Word - - ALU2 VR 2 3 3 1 V - 1 S - -

vsl Vector Shift Left - - PM VR 2 3 3 1 V - 1 S - -

vslb Vector Shift Left Byte - - ALU VR 2 2 2 1 V - 1 S - -

vsld Vector Shift Left Dword - - ALU VR 2 2 2 1 V - 1 S - -

vsldoi Vector Shift Left Double by Octet 
Immediate

- - PM VR 2 3 3 1 V - 1 S - -

vslh Vector Shift Left Hword - - ALU VR 2 2 2 1 V - 1 S - -
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vslo Vector Shift Left by Octet - - PM VR 2 3 3 1 V - 1 S - -

vslv Vector Shift Left Variable - - PM VR 2 3 3 1 V - 1 S - -

vslw Vector Shift Left Word - - ALU VR 2 2 2 1 V - 1 S - -

vspltb Vector Splat Byte - - PM VR 2 3 3 1 V - 1 S - -

vsplth Vector Splat Hword - - PM VR 2 3 3 1 V - 1 S - -

vspltisb Vector Splat Immediate Signed 
Byte

- - PM VR 2 3 3 1 V - 1 S - -

vspltish Vector Splat Immediate Signed 
Hword

- - PM VR 2 3 3 1 V - 1 S - -

vspltisw Vector Splat Immediate Signed 
Word

- - PM VR 2 3 3 1 V - 1 S - -

vspltw Vector Splat Word - - PM VR 2 3 3 1 V - 1 S - -

vsr Vector Shift Right - - PM VR 2 3 3 1 V - 1 S - -

vsrab Vector Shift Right Algebraic Byte - - ALU VR 2 2 2 1 V - 1 S - -

vsrad Vector Shift Right Algebraic 
Dword

- - ALU VR 2 2 2 1 V - 1 S - -

vsrah Vector Shift Right Algebraic 
Hword

- - ALU VR 2 2 2 1 V - 1 S - -

vsraw Vector Shift Right Algebraic Word - - ALU VR 2 2 2 1 V - 1 S - -

vsrb Vector Shift Right Byte - - ALU VR 2 2 2 1 V - 1 S - -

vsrd Vector Shift Right Dword - - ALU VR 2 2 2 1 V - 1 S - -

vsrh Vector Shift Right Hword - - ALU VR 2 2 2 1 V - 1 S - -

vsro Vector Shift Right by Octet - - PM VR 2 3 3 1 V - 1 S - -

vsrv Vector Shift Right Variable - - PM VR 2 3 3 1 V - 1 S - -

vsrw Vector Shift Right Word - - ALU VR 2 2 2 1 V - 1 S - -
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vsubcuq Vector Subtract and write Carry 
Unsigned Qword

- - DX VR 2 3 3 1 V - 1 S - -

vsubcuw Vector Subtract and Write Carry-
Out Unsigned Word

- - ALU2 VR 2 3 3 1 V - 1 S - -

vsubecuq Vector Subtract Extended and 
write Carry Unsigned Qword

- - DX VR 2 3 3 1 V - 1 S - -

vsubeuqm Vector Subtract Extended 
Unsigned Qword Modulo

- - DX VR 2 3 3 1 V - 1 S - -

vsubfp Vector Subtract Floating-Point - - DP VR 2 5 7 1 V - 1 3 S - -

vsubsbs Vector Subtract Signed Byte 
Saturate

- - ALU2 VR sat 2 3 3 1 V - 1 3 S - -

vsubshs Vector Subtract Signed Hword 
Saturate

- - ALU2 VR sat 2 3 3 1 V - 1 3 S - -

vsubsws Vector Subtract Signed Word 
Saturate

- - ALU2 VR sat 2 3 3 1 V - 1 3 S - -

vsububm Vector Subtract Unsigned Byte 
Modulo

- - ALU VR 2 2 2 1 V - 1 S - -

vsububs Vector Subtract Unsigned Byte 
Saturate

- - ALU2 VR sat 2 3 3 1 V - 1 3 S - -

vsubudm Vector Subtract Unsigned Dword 
Modulo

- - ALU VR 2 2 2 1 V - 1 S - -

vsubuhm Vector Subtract Unsigned Hword 
Modulo

- - ALU VR 2 2 2 1 V - 1 S - -

vsubuhs Vector Subtract Unsigned Hword 
Saturate

- - ALU2 VR sat 2 3 3 1 V - 1 3 S - -

vsubuqm Vector Subtract Unsigned Qword 
Modulo

- - DX VR 2 3 3 1 V - 1 S - -

vsubuwm Vector Subtract Unsigned Word 
Modulo

- - ALU VR 2 2 2 1 V - 1 S - -

vsubuws Vector Subtract Unsigned Word 
Saturate

- - ALU2 VR sat 2 3 3 1 V - 1 3 S - -
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vsum2sws Vector Sum across Half Signed 
Word Saturate

- - DP-XC VR sat 2 7 7 1 V - 1 3 S - -

vsum4sbs Vector Sum across Quarter 
Signed Byte Saturate

- - DP-XC VR sat 2 7 7 1 V - 1 3 S - -

vsum4shs Vector Sum across Quarter 
Signed Hword Saturate

- - DP-XC VR sat 2 7 7 1 V - 1 3 S - -

vsum4ubs Vector Sum across Quarter 
Unsigned Byte Saturate

- - DP-XC VR sat 2 7 7 1 V - 1 3 S - -

vsumsws Vector Sum across Signed Word 
Saturate

- - DP-XC VR sat 2 7 7 1 V - 1 3 S - -

vupkhpx Vector Unpack High Pixel - - PM VR 2 3 3 1 V - 1 S - -

vupkhsb Vector Unpack High Signed Byte - - PM VR 2 3 3 1 V - 1 S - -

vupkhsh Vector Unpack High Signed 
Hword

- - PM VR 2 3 3 1 V - 1 S - -

vupkhsw Vector Unpack High Signed Word - - PM VR 2 3 3 1 V - 1 S - -

vupklpx Vector Unpack Low Pixel - - PM VR 2 3 3 1 V - 1 S - -

vupklsb Vector Unpack Low Signed Byte - - PM VR 2 3 3 1 V - 1 S - -

vupklsh Vector Unpack Low Signed Hword - - PM VR 2 3 3 1 V - 1 S - -

vupklsw Vector Unpack Low Signed Word - - PM VR 2 3 3 1 V - 1 S - -

vxor Vector Logical XOR - - ALU VR 2 2 2 1 V - 1 S - -

wait Wait for Interrupt - - ALU 4 2 2 1 - - - - -

xor XOR - - ALU GPR 4 2 2 1 - - - - -

xor. XOR and Record - - ALU GPR CR fxcc 4 2 2 1 - - - - -

xori XOR Immediate - - ALU GPR 4 2 2 1 - - - - -

xoris XOR Immediate Shifted - - ALU GPR 4 2 2 1 - - - - -

xsabsdp VSX Scalar Absolute DP - - ALU VSR 4 2 2 1 - - - - -
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xsabsqp VSX Scalar Absolute QP - - ALU VR 4 2 2 1 V - 1 S - -

xsadddp VSX Scalar Add DP - - DP VSR fpcc,fric,excp 4 5 7 1 - - 3 - - -

xsaddqp VSX Scalar Add QP - - DFU VR fpcc,fric,excp 1 12 12 1 V - 1 3 S - -

xsaddqpo VSX Scalar Add QP and Record 
OV

- - DFU VR fpcc,fric,excp 1 12 12 1 V - 1 3 S - -

xsaddsp VSX Scalar Add SP - - DP VSR fpcc,fric,excp 4 5 7 1 - - 3 - - -

xscmpeqdp VSX Scalar Compare Equal 
Double-Precision

- - ALU2 VSR excp 4 3 3 1 - - 3 - - -

xscmpexpdp VSX Scalar Compare Exponents 
DP

- - ALU2 CR fpcc 4 3 3 1 - - - - -

xscmpexpqp VSX Scalar Compare Exponents 
QP

- - DX CR excp,fpcc 2 3 3 1 V - 1 3 S - -

xscmpgedp VSX Scalar Compare Greater 
Than or Equal Double-Precision

- - ALU2 VSR excp 4 3 3 1 - - 3 - - -

xscmpgtdp VSX Scalar Compare Greater 
Than Double-Precision

- - ALU2 VSR excp 4 3 3 1 - - 3 - - -

xscmpodp VSX Scalar Compare Ordered DP - - ALU2 CR excp,fpcc 4 3 3 1 - - 3 - - -

xscmpoqp VSX Scalar Compare Ordered QP - - DX CR excp,fpcc 2 3 3 1 V - 1 3 S - -

xscmpudp VSX Scalar Compare Unordered 
DP

- - ALU2 CR excp,fpcc 4 3 3 1 - - 3 - - -

xscmpuqp VSX Scalar Compare Unordered 
QP

- - DX CR excp,fpcc 2 3 3 1 V - 1 3 S - -

xscpsgndp VSX Scalar Copy Sign DP - - ALU VSR 4 2 2 1 - - - - -

xscpsgnqp VSX Scalar Copy Sign QP - - ALU VR 4 2 2 1 V - 1 S - -

xscvdphp VSX Scalar Convert DP to HP - - DP VSR fpcc,fric,excp 4 5 7 1 - - 3 - - -

xscvdpqp VSX Scalar Convert DP to QP - - DFU VR fpcc,fric,excp 1 12 12 1 V - 1 3 S - -

xscvdpsp VSX Scalar Convert DP to SP - - DP VSR fpcc,fric,excp 4 5 7 1 - - 3 - - -
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xscvdpspn VSX Scalar Convert DP to SP 
Non-signalling

- - DP VSR 4 5 7 1 - - - - -

xscvdpsxds VSX Scalar Convert DP to Signed 
Dword truncate

- - DP VSR fpcc,fric,excp 4 5 7 1 - - 3 - - -

xscvdpsxws VSX Scalar Convert DP to Signed 
Word truncate

- - DP VSR fpcc,fric,excp 4 5 7 1 - - 3 - - -

xscvdpuxds VSX Scalar Convert DP to 
Unsigned Dword truncate

- - DP VSR fpcc,fric,excp 4 5 7 1 - - 3 - - -

xscvdpuxws VSX Scalar Convert DP to 
Unsigned Word truncate

- - DP VSR fpcc,fric,excp 4 5 7 1 - - 3 - - -

xscvhpdp VSX Scalar Convert HP to DP - - DP VSR fpcc,fric,excp 4 5 7 1 - - 3 - - -

xscvqpdp VSX Scalar Convert QP to DP - - DFU VR fpcc,fric,excp 1 12 12 1 V - 1 3 S - -

xscvqpdpo VSX Scalar Convert QP to DP and 
Record OV

- - DFU VR fpcc,fric,excp 1 12 12 1 V - 1 3 S - -

xscvqpsdz VSX Scalar Convert QP to Signed 
Dword truncate

- - DFU VR fpcc,fric,excp 1 12 12 1 V - 1 3 S - -

xscvqpswz VSX Scalar Convert QP to Signed 
Word truncate

- - DFU VR fpcc,fric,excp 1 12 12 1 V - 1 3 S - -

xscvqpudz VSX Scalar Convert QP to 
Unsigned Dword truncate

- - DFU VR fpcc,fric,excp 1 12 12 1 V - 1 3 S - -

xscvqpuwz VSX Scalar Convert QP to 
Unsigned Word truncate

- - DFU VR fpcc,fric,excp 1 12 12 1 V - 1 3 S - -

xscvsdqp VSX Scalar Convert Signed 
Dword to QP

- - DFU VR fpcc,fric 1 12 12 1 V - 1 3 S - -

xscvspdp VSX Scalar Convert SP to DP - - DP VSR fpcc,fric,excp 4 5 7 1 - - 3 - - -

xscvspdpn VSX Scalar Convert SP to DP 
Non-signalling

- - ALU2 VSR 4 3 3 1 - - - - -

xscvsxddp VSX Scalar Convert Signed 
Dword to DP

- - DP VSR fpcc,fric,excp 4 5 7 1 - - 3 - - -
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xscvsxdsp VSX Scalar Convert Signed 
Dword to SP

- - DP VSR fpcc,fric,excp 4 5 7 1 - - 3 - - -

xscvudqp VSX Scalar Convert Unsigned 
Dword to QP

- - DFU VR fpcc,fric 1 12 12 1 V - 1 3 S - -

xscvuxddp VSX Scalar Convert Unsigned 
Dword to DP

- - DP VSR fpcc,fric,excp 4 5 7 1 - - 3 - - -

xscvuxdsp VSX Scalar Convert Unsigned 
Dword to SP

- - DP VSR fpcc,fric,excp 4 5 7 1 - - 3 - - -

xsdivdp VSX Scalar Divide DP - - DP VSR fpcc,fric,excp 4/21 27 33 7-8 - - 3 - - -

xsdivqp VSX Scalar Divide QP - - DFU VR fpcc,fric,excp 1/45 56 58 44 V - 1 3 S - -

xsdivqpo VSX Scalar Divide QP and 
Record OV

- - DFU VR fpcc,fric,excp 1/45 56 58 44 V - 1 3 S - -

xsdivsp VSX Scalar Divide SP - - DP VSR fpcc,fric,excp 4/16 22 22 5 - - 3 - - -

xsiexpdp VSX Scalar Insert Exponent DP - - ALU VSR 4 2 2 1 R - - - -

xsiexpqp VSX Scalar Insert Exponent QP - - ALU VR 4 2 2 1 V - 1 S - -

xsmaddadp VSX Scalar Multiply-Add Type-A 
DP

- - DP VSR fpcc,fric,excp 4 5 7 1 R - 3 - - -

xsmaddasp VSX Scalar Multiply-Add Type-A 
SP

- - DP VSR fpcc,fric,excp 4 5 7 1 R - 3 - - -

xsmaddmdp VSX Scalar Multiply-Add Type-M 
DP

- - DP VSR fpcc,fric,excp 4 5 7 1 R - 3 - - -

xsmaddmsp VSX Scalar Multiply-Add Type-M 
SP

- - DP VSR fpcc,fric,excp 4 5 7 1 R - 3 - - -

xsmaddqp VSX Scalar Multiply-Add QP - - DFU VR fpcc,fric,excp 1/13 24 24 12 V - 1 3 S - -

xsmaddqpo VSX Scalar Multiply-Add QP and 
Record OV

- - DFU VR fpcc,fric,excp 1/13 24 24 12 V - 1 3 S - -

xsmaxcdp VSX Scalar Maximum Type-C 
Double-Precision

- - ALU2 VSR excp 4 3 3 1 - - 3 - - -

xsmaxdp VSX Scalar Maximum DP - - ALU2 VSR excp 4 3 3 1 - - 3 - - -
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xsmaxjdp VSX Scalar Maximum Type-J 
Double-Precision

- - ALU2 VSR excp 4 3 3 1 - - 3 - - -

xsmincdp VSX Scalar Minimum Type-C 
Double-Precision

- - ALU2 VSR excp 4 3 3 1 - - 3 - - -

xsmindp VSX Scalar Minimum DP - - ALU2 VSR excp 4 3 3 1 - - 3 - - -

xsminjdp VSX Scalar Minimum Type-J 
Double-Precision

- - ALU2 VSR excp 4 3 3 1 - - 3 - - -

xsmsubadp VSX Scalar Multiply-Subtract 
Type-A DP

- - DP VSR fpcc,fric,excp 4 5 7 1 R - 3 - - -

xsmsubasp VSX Scalar Multiply-Subtract 
Type-A SP

- - DP VSR fpcc,fric,excp 4 5 7 1 R - 3 - - -

xsmsubmdp VSX Scalar Multiply-Subtract 
Type-M DP

- - DP VSR fpcc,fric,excp 4 5 7 1 R - 3 - - -

xsmsubmsp VSX Scalar Multiply-Subtract 
Type-M SP

- - DP VSR fpcc,fric,excp 4 5 7 1 R - 3 - - -

xsmsubqp VSX Scalar Multiply-Subtract QP - - DFU VR fpcc,fric,excp 1/13 24 24 12 V - 1 3 S - -

xsmsubqpo VSX Scalar Multiply-Subtract QP 
and Record OV

- - DFU VR fpcc,fric,excp 1/13 24 24 12 V - 1 3 S - -

xsmuldp VSX Scalar Multiply DP - - DP VSR fpcc,fric,excp 4 5 7 1 R - 3 - - -

xsmulqp VSX Scalar Multiply QP - - DFU VR fpcc,fric,excp 1/13 24 24 12 V - 1 3 S - -

xsmulqpo VSX Scalar Multiply QP and 
Record OV

- - DFU VR fpcc,fric,excp 1/13 24 24 12 V - 1 3 S - -

xsmulsp VSX Scalar Multiply SP - - DP VSR fpcc,fric,excp 4 5 7 1 R - 3 - - -

xsnabsdp VSX Scalar Negative Absolute DP - - ALU VSR 4 2 2 1 - - - - -

xsnabsqp VSX Scalar Negative Absolute QP - - ALU VR 4 2 2 1 V - 1 S - -

xsnegdp VSX Scalar Negate DP - - ALU VSR 4 2 2 1 - - - - -

xsnegqp VSX Scalar Negate QP - - ALU VR 4 2 2 1 V - 1 S - -
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xsnmaddadp VSX Scalar Negative Multiply-Add 
Type-A DP

- - DP VSR fpcc,fric,excp 4 5 7 1 R - 3 - - -

xsnmaddasp VSX Scalar Negative Multiply-Add 
Type-A SP

- - DP VSR fpcc,fric,excp 4 5 7 1 R - 3 - - -

xsnmaddmdp VSX Scalar Negative Multiply-Add 
Type-M DP

- - DP VSR fpcc,fric,excp 4 5 7 1 R - 3 - - -

xsnmaddmsp VSX Scalar Negative Multiply-Add 
Type-M SP

- - DP VSR fpcc,fric,excp 4 5 7 1 R - 3 - - -

xsnmaddqp VSX Scalar Negative Multiply-Add 
QP

- - DFU VR fpcc,fric,excp 1/13 24 24 12 V - 1 3 S - -

xsnmaddqpo VSX Scalar Negative Multiply-Add 
QP and Record OV

- - DFU VR fpcc,fric,excp 1/13 24 24 12 V - 1 3 S - -

xsnmsubadp VSX Scalar Negative Multiply-
Subtract Type-A DP

- - DP VSR fpcc,fric,excp 4 5 7 1 R - 3 - - -

xsnmsubasp VSX Scalar Negative Multiply-
Subtract Type-A SP

- - DP VSR fpcc,fric,excp 4 5 7 1 R - 3 - - -

xsnmsubmdp VSX Scalar Negative Multiply-
Subtract Type-M DP

- - DP VSR fpcc,fric,excp 4 5 7 1 R - 3 - - -

xsnmsubmsp VSX Scalar Negative Multiply-
Subtract Type-M SP

- - DP VSR fpcc,fric,excp 4 5 7 1 R - 3 - - -

xsnmsubqp VSX Scalar Negative Multiply-
Subtract QP

- - DFU VR fpcc,fric,excp 1/13 24 24 12 V - 1 3 S - -

xsnmsubqpo VSX Scalar Negative Multiply-
Subtract QP and Record OV

- - DFU VR fpcc,fric,excp 1/13 24 24 12 V - 1 3 S - -

xsrdpi VSX Scalar Round DP to Integral 
to Nearest Away

- - DP VSR fpcc,fric,excp 4 5 7 1 - - 3 - - -

xsrdpic VSX Scalar Round DP to Integral 
using Current rounding mode

- - DP VSR fpcc,fric,excp 4 5 7 1 - - 3 - - -

xsrdpim VSX Scalar Round DP to Integral 
toward -Infinity

- - DP VSR fpcc,fric,excp 4 5 7 1 - - 3 - - -

Table A-1. Instruction Properties  (Sheet 85 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n 
N

um
be

r

P
ip

e 
C

la
ss

M
ai

n 
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns
  

pe
r 

C
yc

le

La
te

nc
y 

(M
in

im
um

)

La
te

nc
y 

(M
ax

im
um

)

P
ip

e 
B

us
y 

C
yc

le
s 

(M
in

im
um

)

D
is

pa
tc

h 
R

ul
e

D
is

pa
tc

h 
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h 

to
 Is

su
e 

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r 
 

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e

Is
su

e 
S

yn
ch

ro
ni

ze
d

Is
su

e 
D

ep
en

d 
on

 P
re

vi
ou

s 
Io

p

Is
su

e 
N

ex
t-

to
-C

om
pl

et
e



U
ser’s M

anual 
O

penP
O

W
E

R
P

O
W

E
R

9 P
ro

cesso
r

 

Instruction P
roperties

P
age 460 of 508

V
ersion 2.1 

10 O
ctober 2019  

xsrdpip VSX Scalar Round DP to Integral 
toward +Infinity

- - DP VSR fpcc,fric,excp 4 5 7 1 - - 3 - - -

xsrdpiz VSX Scalar Round DP to Integral 
toward Zero

- - DP VSR fpcc,fric,excp 4 5 7 1 - - 3 - - -

xsredp VSX Scalar Reciprocal Estimate 
DP

- - DP VSR fpcc,fric,excp 4 5 7 1 - - 3 - - -

xsresp VSX Scalar Reciprocal Estimate 
SP

- - DP VSR fpcc,fric,excp 4 5 7 1 - - 3 - - -

xsrqpi VSX Scalar Round QP to Integral - - DFU VR fpcc,fric,excp 1 12 12 1 V - 1 3 S - -

xsrqpxp VSX Scalar Round QP to XP - - DFU VR fpcc,fric,excp 1 12 12 1 V - 1 3 S - -

xsrsp VSX Scalar Round DP to SP - - DP VSR fpcc,fric,excp 4 5 7 1 - - 3 - - -

xsrsqrtedp VSX Scalar Reciprocal Square 
Root Estimate DP

- - DP VSR fpcc,fric,excp 4 5 7 1 - - 3 - - -

xsrsqrtesp VSX Scalar Reciprocal Square 
Root Estimate SP

- - DP VSR fpcc,fric,excp 4 5 7 1 - - 3 - - -

xssqrtdp VSX Scalar Square Root DP - - DP VSR fpcc,fric,excp 4/30 36 36 10 - - 3 - - -

xssqrtqp VSX Scalar Square Root QP - - DFU VR fpcc,fric,excp 1/63 74 76 62 V - 1 3 S - -

xssqrtqpo VSX Scalar Square Root QP and 
Record OV

- - DFU VR fpcc,fric,excp 1/63 74 76 62 V - 1 3 S - -

xssqrtsp VSX Scalar Square Root SP - - DP VSR fpcc,fric,excp 4/20 26 26 5 - - 3 - - -

xssubdp VSX Scalar Subtract DP - - DP VSR fpcc,fric,excp 4 5 7 1 - - 3 - - -

xssubqp VSX Scalar Subtract QP - - DFU VR fpcc,fric,excp 1 12 12 1 V - 1 3 S - -

xssubqpo VSX Scalar Subtract QP and 
Record OV

- - DFU VR fpcc,fric,excp 1 12 12 1 V - 1 3 S - -

xssubsp VSX Scalar Subtract SP - - DP VSR fpcc,fric,excp 4 5 7 1 - - 3 - - -

xstdivdp VSX Scalar Test for software 
Divide DP

- - ALU2 CR 4 3 3 1 - - - - -
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xstsqrtdp VSX Scalar Test for software 
Square Root DP

- - ALU2 CR 4 3 3 1 - - - - -

xststdcdp VSX Scalar Test Data Class DP - - ALU2 CR fpcc 4 3 3 1 R - - - -

xststdcqp VSX Scalar Test Data Class QP - - DX CR fpcc 2 3 3 1 V - 1 S - -

xststdcsp VSX Scalar Test Data Class SP - - ALU2 CR fpcc 4 3 3 1 R - - - -

xsxexpdp VSX Scalar Extract Exponent DP - - ALU GPR 4 2 2 1 - - - - -

xsxexpqp VSX Scalar Extract Exponent QP - - ALU VR 4 2 2 1 V - 1 S - -

xsxsigdp VSX Scalar Extract Significand 
DP

- - ALU2 GPR 4 3 3 1 - - - - -

xsxsigqp VSX Scalar Extract Significand 
QP

- - DX VR 2 3 3 1 V - 1 S - -

xvabsdp VSX Vector Absolute DP - - ALU VSR 2 2 2 1 V - 1 S - -

xvabssp VSX Vector Absolute SP - - ALU VSR 2 2 2 1 V - 1 S - -

xvadddp VSX Vector Add DP - - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvaddsp VSX Vector Add SP - - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvcmpeqdp VSX Vector Compare Equal DP - - ALU2 VSR excp 2 3 3 1 V - 1 3 S - -

xvcmpeqdp. VSX Vector Compare Equal DP 
and Record

- - ALU2 VSR CR excp 2 3 3 1 V - 1 3 S - -

xvcmpeqsp VSX Vector Compare Equal SP - - ALU2 VSR excp 2 3 3 1 V - 1 3 S - -

xvcmpeqsp. VSX Vector Compare Equal SP 
and Record

- - ALU2 VSR CR excp 2 3 3 1 V - 1 3 S - -

xvcmpgedp VSX Vector Compare Greater 
Than or Equal DP

- - ALU2 VSR excp 2 3 3 1 V - 1 3 S - -

xvcmpgedp. VSX Vector Compare Greater 
Than or Equal DP and Record

- - ALU2 VSR CR excp 2 3 3 1 V - 1 3 S - -

xvcmpgesp VSX Vector Compare Greater 
Than or Equal SP

- - ALU2 VSR excp 2 3 3 1 V - 1 3 S - -
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xvcmpgesp. VSX Vector Compare Greater 
Than or Equal SP and Record

- - ALU2 VSR CR excp 2 3 3 1 V - 1 3 S - -

xvcmpgtdp VSX Vector Compare Greater 
Than DP

- - ALU2 VSR excp 2 3 3 1 V - 1 3 S - -

xvcmpgtdp. VSX Vector Compare Greater 
Than DP and Record

- - ALU2 VSR CR excp 2 3 3 1 V - 1 3 S - -

xvcmpgtsp VSX Vector Compare Greater 
Than SP

- - ALU2 VSR excp 2 3 3 1 V - 1 3 S - -

xvcmpgtsp. VSX Vector Compare Greater 
Than SP and Record

- - ALU2 VSR CR excp 2 3 3 1 V - 1 3 S - -

xvcpsgndp VSX Vector Copy Sign DP - - ALU VSR 2 2 2 1 V - 1 S - -

xvcpsgnsp VSX Vector Copy Sign SP - - ALU VSR 2 2 2 1 V - 1 S - -

xvcvdpsp VSX Vector Convert DP to SP - - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvcvdpsxds VSX Vector Convert DP to Signed 
Dword truncate

- - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvcvdpsxws VSX Vector Convert DP to Signed 
Word truncate

- - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvcvdpuxds VSX Vector Convert DP to 
Unsigned Dword truncate

- - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvcvdpuxws VSX Vector Convert DP to 
Unsigned Word truncate

- - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvcvhpsp VSX Vector Convert HP to SP - - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvcvspdp VSX Vector Convert SP to DP - - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvcvsphp VSX Vector Convert SP to HP - - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvcvspsxds VSX Vector Convert SP to Signed 
Dword truncate

- - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvcvspsxws VSX Vector Convert SP to Signed 
Word truncate

- - DP VSR excp 2 5 7 1 V - 1 3 S - -
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xvcvspuxds VSX Vector Convert SP to 
Unsigned Dword truncate

- - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvcvspuxws VSX Vector Convert SP to 
Unsigned Word truncate

- - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvcvsxddp VSX Vector Convert Signed 
Dword to DP

- - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvcvsxdsp VSX Vector Convert Signed 
Dword to SP

- - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvcvsxwdp VSX Vector Convert Signed Word 
to DP

- - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvcvsxwsp VSX Vector Convert Signed Word 
to SP

- - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvcvuxddp VSX Vector Convert Unsigned 
Dword to DP

- - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvcvuxdsp VSX Vector Convert Unsigned 
Dword to SP

- - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvcvuxwdp VSX Vector Convert Unsigned 
Word to DP

- - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvcvuxwsp VSX Vector Convert Unsigned 
Word to SP

- - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvdivdp VSX Vector Divide DP - - DP VSR excp 2/21 27 33 7-8 V - 1 3 S - -

xvdivsp VSX Vector Divide SP - - DP VSR excp 2/18 24 24 8 V - 1 3 S - -

xviexpdp VSX Vector Insert Exponent DP - - ALU VSR 2 2 2 1 V - 1 S - -

xviexpsp VSX Vector Insert Exponent SP - - ALU VSR 2 2 2 1 V - 1 S - -

xvmaddadp VSX Vector Multiply-Add Type-A 
DP

- - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvmaddasp VSX Vector Multiply-Add Type-A 
SP

- - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvmaddmdp VSX Vector Multiply-Add Type-M 
DP

- - DP VSR excp 2 5 7 1 V - 1 3 S - -
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xvmaddmsp VSX Vector Multiply-Add Type-M 
SP

- - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvmaxdp VSX Vector Maximum DP - - ALU2 VSR excp 2 3 3 1 V - 1 3 S - -

xvmaxsp VSX Vector Maximum SP - - ALU2 VSR excp 2 3 3 1 V - 1 3 S - -

xvmindp VSX Vector Minimum DP - - ALU2 VSR excp 2 3 3 1 V - 1 3 S - -

xvminsp VSX Vector Minimum SP - - ALU2 VSR excp 2 3 3 1 V - 1 3 S - -

xvmsubadp VSX Vector Multiply-Subtract 
Type-A DP

- - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvmsubasp VSX Vector Multiply-Subtract 
Type-A SP

- - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvmsubmdp VSX Vector Multiply-Subtract 
Type-M DP

- - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvmsubmsp VSX Vector Multiply-Subtract 
Type-M SP

- - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvmuldp VSX Vector Multiply DP - - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvmulsp VSX Vector Multiply SP - - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvnabsdp VSX Vector Negative Absolute DP - - ALU VSR 2 2 2 1 V - 1 S - -

xvnabssp VSX Vector Negative Absolute SP - - ALU VSR 2 2 2 1 V - 1 S - -

xvnegdp VSX Vector Negate DP - - ALU VSR 2 2 2 1 V - 1 S - -

xvnegsp VSX Vector Negate SP - - ALU VSR 2 2 2 1 V - 1 S - -

xvnmaddadp VSX Vector Negative Multiply-Add 
Type-A DP

- - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvnmaddasp VSX Vector Negative Multiply-Add 
Type-A SP

- - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvnmaddmdp VSX Vector Negative Multiply-Add 
Type-M DP

- - DP VSR excp 2 5 7 1 V - 1 3 S - -
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xvnmaddmsp VSX Vector Negative Multiply-Add 
Type-M SP

- - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvnmsubadp VSX Vector Negative Multiply-
Subtract Type-A DP

- - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvnmsubasp VSX Vector Negative Multiply-
Subtract Type-A SP

- - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvnmsubmdp VSX Vector Negative Multiply-
Subtract Type-M DP

- - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvnmsubmsp VSX Vector Negative Multiply-
Subtract Type-M SP

- - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvrdpi VSX Vector Round DP to Integral 
to Nearest Away

- - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvrdpic VSX Vector Round DP to Integral 
using Current rounding mode

- - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvrdpim VSX Vector Round DP to Integral 
toward -Infinity

- - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvrdpip VSX Vector Round DP to Integral 
toward +Infinity

- - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvrdpiz VSX Vector Round DP to Integral 
toward Zero

- - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvredp VSX Vector Reciprocal Estimate 
DP

- - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvresp VSX Vector Reciprocal Estimate 
SP

- - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvrspi VSX Vector Round SP to Integral 
to Nearest Away

- - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvrspic VSX Vector Round SP to Integral 
using Current rounding mode

- - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvrspim VSX Vector Round SP to Integral 
toward -Infinity

- - DP VSR excp 2 5 7 1 V - 1 3 S - -
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xvrspip VSX Vector Round SP to Integral 
toward +Infinity

- - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvrspiz VSX Vector Round SP to Integral 
toward Zero

- - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvrsqrtedp VSX Vector Reciprocal Square 
Root Estimate DP

- - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvrsqrtesp VSX Vector Reciprocal Square 
Root Estimate SP

- - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvsqrtdp VSX Vector Square Root DP - - DP VSR excp 2/30 36 36 10 V - 1 3 S - -

xvsqrtsp VSX Vector Square Root SP - - DP VSR excp 2/21 27 27 10 V - 1 3 S - -

xvsubdp VSX Vector Subtract DP - - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvsubsp VSX Vector Subtract SP - - DP VSR excp 2 5 7 1 V - 1 3 S - -

xvtdivdp VSX Vector Test for software 
Divide DP

- - ALU2 CR 4 3 3 1 V - 1 S - -

xvtdivsp VSX Vector Test for software 
Divide SP

- - ALU2 CR 4 3 3 1 V - 1 S - -

xvtsqrtdp VSX Vector Test for software 
Square Root DP

- - ALU2 CR 4 3 3 1 V - 1 S - -

xvtsqrtsp VSX Vector Test for software 
Square Root SP

- - ALU2 CR 4 3 3 1 V - 1 S - -

xvtstdcdp VSX Vector Test Data Class DP - - ALU2 VSR 2 3 3 1 V - 1 S - -

xvtstdcsp VSX Vector Test Data Class SP - - ALU2 VSR 2 3 3 1 V - 1 S - -

xvxexpdp VSX Vector Extract Exponent DP - - ALU VSR 2 2 2 1 V - 1 S - -

xvxexpsp VSX Vector Extract Exponent SP - - ALU VSR 2 2 2 1 V - 1 S - -

xvxsigdp VSX Vector Extract Significand 
DP

- - ALU2 VSR 2 3 3 1 V - 1 S - -

xvxsigsp VSX Vector Extract Significand 
SP

- - ALU2 VSR 2 3 3 1 V - 1 S - -

Table A-1. Instruction Properties  (Sheet 92 of 94)
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xxbrd VSX Vector Byte-Reverse Dword - - PM VSR 2 3 3 1 V - 1 S - -

xxbrh VSX Vector Byte-Reverse Hword - - PM VSR 2 3 3 1 V - 1 S - -

xxbrq VSX Vector Byte-Reverse Qword - - PM VSR 2 3 3 1 V - 1 S - -

xxbrw VSX Vector Byte-Reverse Word - - PM VSR 2 3 3 1 V - 1 S - -

xxextractuw VSX Vector Extract Unsigned 
Word

- - PM VSR 2 3 3 1 V - 1 S - -

xxinsertw VSX Vector Insert Word - - PM VSR 2 3 3 1 V - 1 S - -

xxland VSX Vector Logical AND - - ALU VSR 2 2 2 1 V - 1 S - -

xxlandc VSX Vector Logical AND with 
Complement

- - ALU VSR 2 2 2 1 V - 1 S - -

xxleqv VSX Vector Logical Equivalence - - ALU VSR 2 2 2 1 V - 1 S - -

xxlnand VSX Vector Logical NAND - - ALU VSR 2 2 2 1 V - 1 S - -

xxlnor VSX Vector Logical NOR - - ALU VSR 2 2 2 1 V - 1 S - -

xxlor VSX Vector Logical OR - - ALU VSR 2 2 2 1 V - 1 S - -

xxlorc VSX Vector Logical OR with 
Complement

- - ALU VSR 2 2 2 1 V - 1 S - -

xxlxor VSX Vector Logical XOR - - ALU VSR 2 2 2 1 V - 1 S - -

xxmrghw VSX Vector Merge Word High - - PM VSR 2 3 3 1 V - 1 S - -

xxmrglw VSX Vector Merge Word Low - - PM VSR 2 3 3 1 V - 1 S - -

xxperm VSX Vector Permute - - PM VSR 2 3 3 1 V - 1 S - -

xxpermr VSX Vector Permute Right-
indexed

- - PM VSR 2 3 3 1 V - 1 S - -

xxsel VSX Vector Select - - ALU VSR 2 2 2 1 V - 1 S - -
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xxsldwi VSX Vector Shift Left Double by 
Word Immediate

- - PM VSR 2 3 3 1 V - 1

xxspltib VSX Vector Splat Immediate Byte - - PM VSR 2 3 3 1 V - 1

xxspltw VSX Vector Splat Word - - PM VSR 2 3 3 1 V - 1

Table A-1. Instruction Properties  (Sheet 94 of 94)

Instruction Mnemonic and Name

C
ra

ck
ed

/E
xp

an
de

d

O
pe

ra
tio

n 
N

um
be

r

P
ip

e 
C

la
ss

M
ai

n 
D

S
T

C
R

 D
S

T

X
E

R
/F

P
S

C
R

 D
S

T

M
ax

im
um

 O
pe

ra
tio

ns
  

pe
r 

C
yc

le

La
te

nc
y 

(M
in

im
um

)

La
te

nc
y 

(M
ax

im
um

)

P
ip

e 
B

us
y 

C
yc

le
s 

(M
in

im
um

)

D
is

pa
tc

h 
R

ul
e

D
is

pa
tc

h 
In

te
rlo

ck

A
dd

iti
on

al
 D

is
pa

tc
h 

to
 Is

su
e 

La
te

nc
y

A
dd

iti
on

al
 L

at
en

cy
 fo

r 
 

C
R

/X
E

R
/F

P
S

C
R

/V
S

C
R

 S
ou

rc
e



U
ser’s M

anual 
O

penP
O

W
E

R
 

P
O

W
E

R
9 P

ro
cesso

r

V
ersion 2.1 

10 O
ctober 2019 

 

tlbie and tlbiel E
ncodings for R

adix T
ranslations

P
age 469 of 508

Appendix B. tlbie and tlbiel Encodings for Radix Translations

Table B-1.  lists the tlbie encodings for Radix translations with R = ‘1’ and GTSE = ‘1’, and Table B-2.  on page 476 lists the tlbiel encodings 
for Radix translations with R = ‘1’.

Note:  The yellow rows result in a Machine Check interrupt (invalid form of tlbie/tlbiel instruction) and the red rows result in a privileged 
instruction interrupt. 

Table B-1. tlbie Encodings for Radix Translations (with R = ‘1’ and GTSE = ‘1’)  (Sheet 1 of 7)

IS HV PRS RIC EA Match 
Required?

LPID Match 
Required?

LPID Taken 
from RS or 

LPIDR

PID Match 
Required?

TLB Entry/ 
Entries 

Invalidated

PWC 
Invalidated?

ERATs 
Invalidated?

Process/ 
Partition Table 

Caching 
Invalidated?

Invalid 
Form 

Machine 
Check 
Case?
(yellow)

Privileged 
Instruction 
Interrupt?
HV = 0, 
PRS = 0

(red)

0 0 0 0 NO YES

0 0 0 1 YES YES

0 0 0 2 YES YES

0 0 0 3 YES YES

0 0 1 0 YES YES LPIDR YES Guest entry 
with gEA 

match

NO YES - match-
ing address, 

PID and LPID 
(by thread ID)

NO NO NO

0 0 1 1 YES NO

0 0 1 2 YES NO

0 0 1 3 YES NO

0 1 0 0 YES YES RS NO Partition-
scoped host 
entry with 
gRA/hEA 

match

NO YES - match-
ing address 

and LPID (by 
thread ID)

NO NO NO

0 1 0 1 YES NO

0 1 0 2 YES NO

0 1 0 3 YES NO

Effective address

Logical partition ID

Process ID

Translation lookaside buffer

Page-walk cache

Effective-to-real address translation
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0 1 1 0 YES YES RS YES Guest entry 
with gEA 
match if 
LPID ≠ 0
Process-

scoped host 
entry with hEA 

match if 
LPID = 0

NO YES - match-
ing address, 

PID and LPID 
(by thread ID)

NO NO NO

0 1 1 1 YES NO

0 1 1 2 YES NO

0 1 1 3 YES NO

1 0 0 0 YES YES

1 0 0 1 YES YES

1 0 0 2 YES YES

1 0 0 3 YES YES

1 0 1 0 NO YES LPIDR YES Guest entries 
with matching 

PID

NO YES - all with 
matching  

LPID and PID 
(by thread ID)

NO NO NO

1 0 1 1 NO YES LPIDR YES NONE Guest PWC 
with matching 

PID (for a 
matching 

LPID)

NO NO NO NO

1 0 1 2 NO YES LPIDR YES Guest entries 
with matching 

PID (for a 
matching 

LPID)

Guest PWC 
with matching 

PID (for a 
matching 

LPID)

YES - all with 
matching  

LPID and PID 
(by thread ID)

YES - process 
table regard-
less of LPID

NO NO

1 0 1 3 YES NO

1 1 0 0 YES NO

Table B-1. tlbie Encodings for Radix Translations (with R = ‘1’ and GTSE = ‘1’)  (Sheet 2 of 7)

IS HV PRS RIC EA Match 
Required?

LPID Match 
Required?

LPID Taken 
from RS or 

LPIDR

PID Match 
Required?

TLB Entry/ 
Entries 

Invalidated

PWC 
Invalidated?

ERATs 
Invalidated?

Process/ 
Partition Table 

Caching 
Invalidated?

Invalid 
Form 

Machine 
Check 
Case?
(yellow)

Privileged 
Instruction 
Interrupt?
HV = 0, 
PRS = 0

(red)
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1 1 0 1 YES NO

1 1 0 2 YES NO

1 1 0 3 YES NO

1 1 1 0 NO YES RS YES Guest entries 
with matching 
PID if LPID ≠ 0

Process-
scoped host 
entries with 

matching PID 
if LPID = 0

NO YES - all with 
matching  

LPID and PID 
(by thread ID)

NO NO NO

1 1 1 1 NO YES RS YES NONE Guest PWC 
with matching 
PID if LPID ≠ 0

Process-
scoped host 
PWC with 

matching PID 
if LPID = 0

NO NO NO NO

1 1 1 2 NO YES RS YES Guest entries 
with matching 
PID if LPID ≠ 0

Process-
scoped host 
entries with 

matching PID 
if LPID = 0

Guest PWC 
with matching 
PID if LPID ≠ 0

Process-
scoped host 
PWC with 

matching PID 
if LPID = 0

YES - all with 
matching  

LPID and PID 
(by thread ID)

YES - process 
table regard-
less of LPID

NO NO

1 1 1 3 YES NO

2 0 0 0 NO YES

2 0 0 1 NO YES

2 0 0 2 NO YES

2 0 0 3 YES YES

Table B-1. tlbie Encodings for Radix Translations (with R = ‘1’ and GTSE = ‘1’)  (Sheet 3 of 7)

IS HV PRS RIC EA Match 
Required?

LPID Match 
Required?

LPID Taken 
from RS or 

LPIDR

PID Match 
Required?

TLB Entry/ 
Entries 

Invalidated

PWC 
Invalidated?

ERATs 
Invalidated?

Process/ 
Partition Table 

Caching 
Invalidated?

Invalid 
Form 

Machine 
Check 
Case?
(yellow)

Privileged 
Instruction 
Interrupt?
HV = 0, 
PRS = 0

(red)
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2 0 1 0 NO YES LPIDR NO Guest entries 
with matching 

LPID

NO YES - all with 
matching LPID 
(by thread ID)

NO NO NO

2 0 1 1 NO YES LPIDR NO NONE Guest PWC 
with matching 

LPID

NO NO NO NO

2 0 1 2 NO YES LPIDR NO Guest entries 
with matching 

LPID

Guest PWC 
with matching 

LPID

YES - all with 
matching LPID 
(by thread ID)

YES - process 
table regard-
less of LPID

NO NO

2 0 1 3 YES NO

2 1 0 0 NO YES RS NO Partition-
scoped host 
entries with 

matching LPID

NO YES - all with 
matching LPID 
(by thread ID)

NO NO NO

2 1 0 1 NO YES RS NO NONE Partition-
scoped host 
PWC with 

matching LPID

NO NO NO NO

2 1 0 2 NO YES RS NO Partition-
scoped host 
entries with 

matching LPID

Partition-
scoped host 
PWC with 

matching LPID

YES - all with 
matching LPID 
(by thread ID)

YES - all pro-
cess and parti-

tion table 
caching 

regardless of 
LPID

NO NO

2 1 0 3 YES NO

2 1 1 0 NO YES RS NO Guest entries 
with matching 

LPID if 
LPID ≠ 0
Process-

scoped host 
entries with 

matching LPID 
if LPID = 0

NO YES - all with 
matching LPID 
(by thread ID)

NO NO NO

Table B-1. tlbie Encodings for Radix Translations (with R = ‘1’ and GTSE = ‘1’)  (Sheet 4 of 7)

IS HV PRS RIC EA Match 
Required?

LPID Match 
Required?

LPID Taken 
from RS or 

LPIDR

PID Match 
Required?

TLB Entry/ 
Entries 

Invalidated

PWC 
Invalidated?

ERATs 
Invalidated?

Process/ 
Partition Table 

Caching 
Invalidated?

Invalid 
Form 

Machine 
Check 
Case?
(yellow)

Privileged 
Instruction 
Interrupt?
HV = 0, 
PRS = 0

(red)
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2 1 1 1 NO YES RS NO NONE Guest PWC 
with matching 

LPID if 
LPID ≠ 0
Process-

scoped host 
PWC with 

matching LPID 
if LPID = 0

NO NO NO NO

2 1 1 2 NO YES RS NO Guest entries 
with matching 

LPID if 
LPID ≠ 0
Process-

scoped host 
entries with 

matching LPID 
if LPID = 0

Guest PWC 
with matching 

LPID if 
LPID ≠ 0
Process-

scoped host 
PWC with 

matching LPID 
if LPID = 0

YES - all with 
matching LPID 
(by thread ID)

YES - 
process table 
regardless of 

LPID

NO NO

2 1 1 3 YES NO

3 0 0 0 NO YES

3 0 0 1 NO YES

3 0 0 2 NO YES

3 0 0 3 YES YES

3 0 1 0 NO YES LPIDR NO Guest entries 
with matching 

LPID

NO YES - all with 
matching LPID 
(by thread ID)

NO NO NO

3 0 1 1 NO YES LPIDR NO NONE Guest PWC 
with matching 

LPID

NO NO NO NO

3 0 1 2 NO YES LPIDR NO Guest entries 
with matching 

LPID

Guest PWC 
with matching 

LPID

YES - all with 
matching LPID 
(by thread ID)

YES - process 
table regard-
less of LPID

NO NO

3 0 1 3 YES NO

Table B-1. tlbie Encodings for Radix Translations (with R = ‘1’ and GTSE = ‘1’)  (Sheet 5 of 7)

IS HV PRS RIC EA Match 
Required?

LPID Match 
Required?

LPID Taken 
from RS or 

LPIDR

PID Match 
Required?

TLB Entry/ 
Entries 

Invalidated

PWC 
Invalidated?

ERATs 
Invalidated?

Process/ 
Partition Table 

Caching 
Invalidated?

Invalid 
Form 

Machine 
Check 
Case?
(yellow)

Privileged 
Instruction 
Interrupt?
HV = 0, 
PRS = 0

(red)
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3 1 0 0 NO NO NA NO All partition-
scoped host 

entries regard-
less of LPID

NO YES - regard-
less of LPID 

(thread)

NO NO NO

3 1 0 1 NO NO NA NO NONE All partition-
scoped host 
PWC entries 
regardless of 

LPID

NO NO NO NO

3 1 0 2 NO NO NA NO All partition-
scoped host 

entries regard-
less of LPID

All partition-
scoped host 
PWC entries 
regardless of 

LPID

YES - regard-
less of LPID 

(thread)

YES - all pro-
cess and parti-

tion table 
regardless of 

LPID

NO NO

3 1 0 3 YES NO

3 1 1 0 NO NO NA NO Guest entries 
regardless of 

LPID if 
LPID ≠ 0
Process-

scoped host 
entries with 

matching LPID 
if LPID = 0

NO YES - regard-
less of LPID 

(thread)

NO NO NO

Table B-1. tlbie Encodings for Radix Translations (with R = ‘1’ and GTSE = ‘1’)  (Sheet 6 of 7)

IS HV PRS RIC EA Match 
Required?

LPID Match 
Required?

LPID Taken 
from RS or 

LPIDR

PID Match 
Required?

TLB Entry/ 
Entries 

Invalidated

PWC 
Invalidated?

ERATs 
Invalidated?

Process/ 
Partition Table 

Caching 
Invalidated?

Invalid 
Form 

Machine 
Check 
Case?
(yellow)

Privileged 
Instruction 
Interrupt?
HV = 0, 
PRS = 0

(red)
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3 1 1 1 NO NO NA NO NONE All guest PWC 
regardless  of 

LPID if 
LPID ≠ 0
Process-

scoped host 
PWC regard-
less of LPID if 

LPID = 0

NO NO NO NO

3 1 1 2 NO NO NA NO Guest entries 
regardless of 

LPID if 
LPID ≠ 0
Process-

scoped host 
entries with 

matching LPID 
if LPID = 0

All guest PWC 
regardless  of 

LPID if 
LPID ≠ 0
Process-

scoped host 
PWC regard-
less of LPID if 

LPID = 0

YES - regard-
less of LPID 

(thread)

YES - 
process table 
regardless of 

LPID

NO NO

3 1 1 3 YES NO

Table B-1. tlbie Encodings for Radix Translations (with R = ‘1’ and GTSE = ‘1’)  (Sheet 7 of 7)

IS HV PRS RIC EA Match 
Required?

LPID Match 
Required?

LPID Taken 
from RS or 

LPIDR

PID Match 
Required?

TLB Entry/ 
Entries 

Invalidated

PWC 
Invalidated?

ERATs 
Invalidated?

Process/ 
Partition Table 

Caching 
Invalidated?

Invalid 
Form 

Machine 
Check 
Case?
(yellow)

Privileged 
Instruction 
Interrupt?
HV = 0, 
PRS = 0

(red)
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Table B-2. tlbiel Encodings for Radix Translations (with R = ‘1’)  (Sheet 1 of 9)

IS HV PRS RIC EA Match 
Required?

LPID 
Match 

Required?

LPID 
Taken 

from RS 
or LPIDR

PID Match 
Required?

TLB Entry/ 
Entries 

Invalidated

PWC 
Invalidated?

ERATs 
Invalidated?

Process/
Partition Table 

Caching 
Invalidated?

Invalid 
Form 

Machine 
Check 
case?

(yellow)

Privileged 
Instruction 
Interrupt?
HV = 0,
PRS = 0

(red)

0 0 0 0 NO YES

0 0 0 1 YES YES

0 0 0 2 YES YES

0 0 0 3 YES YES

0 0 1 0 YES YES LPIDR YES Guest entry with 
gEA match

NO YES - matching 
address for that 

thread only

NO NO NO

0 0 1 1 YES NO

0 0 1 2 YES NO

0 0 1 3 YES NO

0 1 0 0 YES YES LPIDR NO Partition-scoped 
host entry with 

gRA/hEA match

NO YES - matching 
address for that 

thread only

NO NO NO

0 1 0 1 YES NO

0 1 0 2 YES NO

0 1 0 3 YES NO

0 1 1 0 YES YES LPIDR YES Guest entry with 
gEA match if 

LPID ≠ 0
Process-

Scoped Host 
entry with hEA 

match if 
LPID = 0

NO YES - matching 
address for that 

thread only

NO NO NO

0 1 1 1 YES NO

0 1 1 2 YES NO

1 0 0 0 YES YES
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1 0 0 1 YES YES

1 0 0 2 YES YES

1 0 0 3 YES YES

1 0 1 0 NO YES LPIDR YES Guest entries 
with matching 

PID in set 
specified by 
RB(40:51)

NO YES - all for that 
thread only

NO NO NO

1 0 1 1 NO YES LPIDR YES NONE Guest PWC 
with matching 

PID (for a 
matching LPID)

NO NO NO NO

1 0 1 2 NO YES LPIDR YES Guest entries 
with matching 

PID in set 
specified by 
RB(40:51)

Guest PWC 
with matching 

PID (for a 
matching LPID)

YES - all for that 
thread only

YES - all 
process table cach-

ing:
1. effPID = PIDR 
and effLPID = 0
2. effPID = PIDR 
and 
effLPID = LPIDR
3. effPID = 0 and 
effLPID = LPIDR
4. effPID = 0 and 
effLPID = 0

NO NO

1 0 1 3 YES NO

1 1 0 0 YES NO

1 1 0 1 YES NO

1 1 0 2 YES NO

1 1 0 3 YES NO

Table B-2. tlbiel Encodings for Radix Translations (with R = ‘1’)  (Sheet 2 of 9)

IS HV PRS RIC EA Match 
Required?

LPID 
Match 

Required?

LPID 
Taken 

from RS 
or LPIDR

PID Match 
Required?

TLB Entry/ 
Entries 

Invalidated

PWC 
Invalidated?

ERATs 
Invalidated?

Process/
Partition Table 

Caching 
Invalidated?

Invalid 
Form 

Machine 
Check 
case?

(yellow)

Privileged 
Instruction 
Interrupt?
HV = 0,
PRS = 0

(red)
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1 1 1 0 NO YES LPIDR YES Guest entries 
with matching 

PID in set speci-
fied by 

RB(40:51) if 
LPID ≠ 0

Process-scoped 
host entries with 
matching PID in 
set specified by 

RB(40:51) if 
LPID = 0

NO YES - all for that 
thread only

NO NO NO

1 1 1 1 NO YES LPIDR YES NONE Guest PWC 
with matching 
PID if LPID ≠ 0

Process-scoped 
host PWC with 
matching PID if 

LPID = 0

NO NO NO NO

1 1 1 2 NO YES LPIDR YES Guest entries 
with matching 

PID in set speci-
fied by 

RB(40:51) if 
LPID ≠ 0

Process-scoped 
host entries with 
matching PID in 
set specified by 

RB(40:51) if 
LPID = 0

Guest PWC 
with matching 
PID if LPID ≠ 0

Process-scoped 
host PWC with 
matching PID if 

LPID = 0

YES - All for 
that thread only

YES - all 
process table cach-

ing:
1. effPID = PIDR 
and effLPID = 0
2. effPID=PIDR 
and 
effLPID = LPIDR
3. effPID = 0 and 
effLPID = LPIDR
4. effPID = 0 and 
effLPID = 0

NO NO

1 1 1 3 YES NO

2 0 0 0 NO YES

2 0 0 1 NO YES

2 0 0 2 NO YES

2 0 0 3 YES YES

Table B-2. tlbiel Encodings for Radix Translations (with R = ‘1’)  (Sheet 3 of 9)

IS HV PRS RIC EA Match 
Required?

LPID 
Match 

Required?

LPID 
Taken 

from RS 
or LPIDR

PID Match 
Required?

TLB Entry/ 
Entries 

Invalidated

PWC 
Invalidated?

ERATs 
Invalidated?

Process/
Partition Table 

Caching 
Invalidated?

Invalid 
Form 

Machine 
Check 
case?

(yellow)

Privileged 
Instruction 
Interrupt?
HV = 0,
PRS = 0

(red)
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2 0 1 0 NO YES LPIDR NO Guest entries 
with matching 

LPID in set 
specified by 
RB(40:51)

NO YES - All for 
that thread only

NO NO NO

2 0 1 1 NO YES LPIDR NO NONE Guest PWC 
with matching 

LPID

NO NO NO NO

2 0 1 2 NO YES LPIDR NO Guest entries 
with matching 

LPID in set 
specified by 
RB(40:51)

Guest PWC 
with matching 

LPID

YES - all for that 
thread only

YES - all 
process table cach-

ing:
1. effPID = PIDR 
and effLPID = 0
2. effPID = PIDR 
and 
effLPID=LPIDR
3. effPID = 0 and 
effLPID = LPIDR
4. effPID = 0 and 
effLPID = 0

NO NO

2 0 1 3 YES NO

2 1 0 0 NO YES LPIDR NO All partition-
scoped host 

entries regard-
less of LPID in 
set specified by 

RB(40:51)

NO YES - all for that 
thread only

NO NO NO

2 1 0 1 NO YES LPIDR NO NONE Partition-scoped 
host PWC with 
matching LPID

NO NO NO NO

Table B-2. tlbiel Encodings for Radix Translations (with R = ‘1’)  (Sheet 4 of 9)

IS HV PRS RIC EA Match 
Required?

LPID 
Match 

Required?

LPID 
Taken 

from RS 
or LPIDR

PID Match 
Required?

TLB Entry/ 
Entries 

Invalidated

PWC 
Invalidated?

ERATs 
Invalidated?

Process/
Partition Table 

Caching 
Invalidated?

Invalid 
Form 

Machine 
Check 
case?

(yellow)

Privileged 
Instruction 
Interrupt?
HV = 0,
PRS = 0

(red)
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2 1 0 2 NO YES LPIDR NO All partition-
scoped host 

entries regard-
less of LPID in 
set specified by 

RB(40:51)

Partition-scoped 
host PWC with 
matching LPID

YES - all for that 
thread only

YES - all 
process table 

caching:
1. effPID = PIDR 
and effLPID = 0
2. effPID = PIDR 
and 
effLPID = LPIDR
3. effPID = 0 and 
effLPID = LPIDR
4. effPID = 0 and 
effLPID = 0
AND  
All partition table 
caching:
1. effLPID = 0 and
2. effLPID = LPIDR

NO NO

2 1 0 3 YES NO

2 1 1 0 NO YES LPIDR NO Guest entries 
with matching 

LPID in set 
specified by 
RB(40:51) if 

LPID ≠ 0
Process-scoped 
host entries with 
matching LPID 
in set specified 
by RB(40:51) if 

LPID = 0

NO YES - all for that 
thread only

NO NO NO

2 1 1 1 NO YES LPIDR NO NONE Guest PWC 
with matching 

LPID if LPID ≠ 0
Process-scoped 
host PWC with 
matching LPID 

if LPID = 0

NO NO NO NO

Table B-2. tlbiel Encodings for Radix Translations (with R = ‘1’)  (Sheet 5 of 9)

IS HV PRS RIC EA Match 
Required?

LPID 
Match 

Required?

LPID 
Taken 

from RS 
or LPIDR

PID Match 
Required?

TLB Entry/ 
Entries 

Invalidated

PWC 
Invalidated?

ERATs 
Invalidated?

Process/
Partition Table 

Caching 
Invalidated?

Invalid 
Form 

Machine 
Check 
case?

(yellow)

Privileged 
Instruction 
Interrupt?
HV = 0,
PRS = 0

(red)
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2 1 1 2 NO YES LPIDR NO Guest entries 
with matching 

LPID in set 
specified by 
RB(40:51) if 

LPID ≠ 0
Process-scoped 
host entries with 
matching LPID 
in set specified 
by RB(40:51) if 

LPID = 0

Guest PWC 
with matching 

LPID if LPID ≠ 0
Process-scoped 
host PWC with 
matching LPID 

if LPID = 0

YES - all with 
matching thread

YES - all process 
table caching:

1. effPID = PIDR 
and effLPID = 0
2. effPID = PIDR 
and 
effLPID = LPIDR
3. effPID = 0 and 
effLPID = LPIDR
4. effPID = 0 and 
effLPID = 0

NO NO

2 1 1 3 YES NO

3 0 0 0 NO YES

3 0 0 1 NO YES

3 0 0 2 NO YES

3 0 0 3 YES YES

3 0 1 0 NO YES LPIDR NO Guest entries 
with matching 

LPID in set 
specified by 
RB(40:51)

NO YES - All for 
that thread only

NO NO NO

3 0 1 1 NO YES LPIDR NO NONE Guest PWC 
with matching 

LPID

NO NO NO NO

Table B-2. tlbiel Encodings for Radix Translations (with R = ‘1’)  (Sheet 6 of 9)

IS HV PRS RIC EA Match 
Required?

LPID 
Match 

Required?

LPID 
Taken 

from RS 
or LPIDR

PID Match 
Required?

TLB Entry/ 
Entries 

Invalidated

PWC 
Invalidated?

ERATs 
Invalidated?

Process/
Partition Table 

Caching 
Invalidated?

Invalid 
Form 

Machine 
Check 
case?

(yellow)

Privileged 
Instruction 
Interrupt?
HV = 0,
PRS = 0

(red)
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3 0 1 2 NO YES LPIDR NO Guest entries 
with matching 

LPID in set 
specified by 
RB(40:51)

Guest PWC 
with matching 

LPID

YES - all for that 
thread only

YES - all process 
table caching:

1. effPID = PIDR 
and effLPID = 0
2. effPID = PIDR 
and 
effLPID = LPIDR
3. effPID = 0 and 
effLPID = LPIDR
4. effPID = 0 and 
effLPID = 0

NO NO

3 0 1 3 YES NO

3 1 0 0 NO NO NA NO All partition-
scoped host 

entries regard-
less of LPID in 
set specified by 

RB(40:51)

NO YES - all for that 
thread only

NO NO NO

3 1 0 1 NO NO NA NO NONE All partition-
scoped host 
PWC entries 
regardless of 

LPID

NO NO NO NO

Table B-2. tlbiel Encodings for Radix Translations (with R = ‘1’)  (Sheet 7 of 9)

IS HV PRS RIC EA Match 
Required?

LPID 
Match 

Required?

LPID 
Taken 

from RS 
or LPIDR

PID Match 
Required?

TLB Entry/ 
Entries 

Invalidated

PWC 
Invalidated?

ERATs 
Invalidated?

Process/
Partition Table 

Caching 
Invalidated?

Invalid 
Form 

Machine 
Check 
case?

(yellow)

Privileged 
Instruction 
Interrupt?
HV = 0,
PRS = 0

(red)
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3 1 0 2 NO NO NA NO All partition-
scoped host 

entries regard-
less of LPID in 
set specified by 

RB(40:51)

All partition-
scoped host 
PWC entries 
regardless of 

LPID

YES - all for that 
thread only

YES - all process 
table caching:

1. effPID=PIDR 
and effLPID = 0
2. effPID=PIDR 

and 
effLPID=LPIDR

3. effPID = 0 and 
effLPID=LPIDR

4. effPID = 0 and 
effLPID = 0

AND All Partition 
Table caching:

1. effLPID = 0 and
2. effLPID=LPIDR

NO NO

3 1 0 3 YES NO

3 1 1 0 NO NO NA NO Guest entries 
regardless of 

LPID if LPID ≠ 0 
in set specified 
by RB(40:51)

Process-scoped 
host entries with 
matching LPID 
if LPID = 0 in 

set specified by 
RB(40:51)

NO YES - all for that 
thread only

NO NO NO

Table B-2. tlbiel Encodings for Radix Translations (with R = ‘1’)  (Sheet 8 of 9)

IS HV PRS RIC EA Match 
Required?

LPID 
Match 

Required?

LPID 
Taken 

from RS 
or LPIDR

PID Match 
Required?

TLB Entry/ 
Entries 

Invalidated

PWC 
Invalidated?

ERATs 
Invalidated?

Process/
Partition Table 

Caching 
Invalidated?

Invalid 
Form 

Machine 
Check 
case?

(yellow)

Privileged 
Instruction 
Interrupt?
HV = 0,
PRS = 0

(red)
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3 1 1 1 NO NO NA NO NONE All guest PWC 
regardless  of 

LPID if LPID ≠ 0
Process-scoped 

host PWC 
regardless of 

LPID if LPID = 0

NO NO NO NO

3 1 1 2 NO NO NA NO Guest entries 
regardless of 

LPID if LPID ≠ 0 
in set specified 
by RB(40:51)

Process-scoped 
host entries with 
matching LPID 
if LPID = 0 in 

set specified by 
RB(40:51)

All guest PWC 
regardless  of 

LPID if LPID ≠ 0
Process-scoped 

host PWC 
regardless of 

LPID if LPID = 0

YES - all for that 
thread only

YES - all process 
table caching:

1. effPID = PIDR 
and effLPID = 0
2. effPID = PIDR 
and 
effLPID = LPIDR
3. effPID = 0 and 
effLPID = LPIDR
4. effPID = 0 and 
effLPID = 0

NO NO

3 1 1 3 YES NO

Table B-2. tlbiel Encodings for Radix Translations (with R = ‘1’)  (Sheet 9 of 9)

IS HV PRS RIC EA Match 
Required?

LPID 
Match 

Required?

LPID 
Taken 

from RS 
or LPIDR

PID Match 
Required?

TLB Entry/ 
Entries 

Invalidated

PWC 
Invalidated?

ERATs 
Invalidated?

Process/
Partition Table 

Caching 
Invalidated?

Invalid 
Form 

Machine 
Check 
case?

(yellow)

Privileged 
Instruction 
Interrupt?
HV = 0,
PRS = 0

(red)
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Appendix C. tlbie and tlbiel Encodings for HPT Translations

Table C-1.  lists the tlbie encodings for HPT translation (with R = ‘0’ and GTSE = ‘1’) and Table C-2.  on page 490 lists the tlbiel encodings for 
HPT translation (with R = ‘0’). 

Note:  The yellow rows result in a Machine Check interrupt (invalid form of tlbie/tlbiel instruction) and the red rows result in a privileged 
instruction interrupt. 

Table C-1. tlbie Encodings for HPT Translations (with R = ‘0’ and GTSE = ‘1’)  (Sheet 1 of 5)

IS HV PRS RIC VA Match 
Required?

LPID 
Match 

Required?

LPID Taken 
From RS or 

LPIDR

PID Match 
Required?

TLB Entry/ 
Entries 

Invalidated

PWC 
Invalidated?

ERATs 
Invalidated?

Process/
Partition 

Table 
Caching 

Invalidated?

RIC = 3 
TLB 

Invalidations

Invalid 
Form 

Machine 
Check 
Case?
(yellow)

Privileged 
Instruction 
Interrupt?
HV = 0, 
PRS = 0

(red)

0 0 0 0 YES YES LPIDR NO VA match NO YES - match-
ing address 

and LPID (by 
thread ID)

NO NA NO NO

0 0 0 1 YES NO

0 0 0 2 YES NO

0 0 0 3 YES YES LPIDR NO Series of 
eight con-
secutive 

pages (see 
column 
RIC = 3)

NO YES - match-
ing address 

and LPID (by 
thread ID)

NO AP = 110:8 
consecutive 
4 KB pages 
aligned on 

32 KB 
boundary

AP = 111:8 
consecutive 
64 KB pages 
aligned on 

512 KB 
boundary

NO NO

0 0 1 0 YES NO

0 0 1 1 YES NO

0 0 1 2 YES NO

0 0 1 3 YES NO

0 1 0 0 YES YES RS NO VA match NO YES - match-
ing address 

and LPID (by 
thread ID)

NO NA NO NO

Virtual address

Logical partition ID

Process ID

Translation lookaside buffer

Page-walk cache

Effective-to-real address translation
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0 1 0 1 YES NO

0 1 0 2 YES NO

0 1 0 3 YES YES RS NO Series of 
eight con-
secutive 

pages (see 
column 
RIC = 3)

NO YES - match-
ing address 

and LPID (by 
thread ID)

NO AP = 110:8 
consecutive 
4 KB pages 
aligned on 

32 KB 
boundary

AP = 111:8 
consecutive 
64 KB pages 
aligned on 

512 KB 
boundary

NO NO

0 1 1 0 YES NO

0 1 1 1 YES NO

0 1 1 2 YES NO

0 1 1 3 YES NO

1 0 0 0 YES NO

1 0 0 1 YES NO

1 0 0 2 YES NO

1 0 0 3 YES NO

1 0 1 0 YES NO

1 0 1 1 YES NO

1 0 1 2 NO YES LPIDR YES NONE NO YES - all with 
matching  
LPID and 
PID (by 

thread ID)

YES - pro-
cess table 
regardless 

of LPID

NA NO NO

1 0 1 3 YES NO

Table C-1. tlbie Encodings for HPT Translations (with R = ‘0’ and GTSE = ‘1’)  (Sheet 2 of 5)

IS HV PRS RIC VA Match 
Required?

LPID 
Match 

Required?

LPID Taken 
From RS or 

LPIDR

PID Match 
Required?

TLB Entry/ 
Entries 

Invalidated

PWC 
Invalidated?

ERATs 
Invalidated?

Process/
Partition 

Table 
Caching 

Invalidated?

RIC = 3 
TLB 

Invalidations

Invalid 
Form 

Machine 
Check 
Case?
(yellow)

Privileged 
Instruction 
Interrupt?
HV = 0, 
PRS = 0

(red)
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1 1 0 0 YES NO

1 1 0 1 YES NO

1 1 0 2 YES NO

1 1 0 3 YES NO

1 1 1 0 YES NO

1 1 1 1 YES NO

1 1 1 2 NO YES RS YES NONE NO YES - all with 
matching  
LPID and 
PID (by 

thread ID)

YES - pro-
cess table 
regardless 

of LPID

NA NO NO

1 1 1 3 YES NO

2 0 0 0 NO YES LPIDR NO Host 
entries with 
matching 

LPID

NO YES - all with 
matching 
LPID (by 
thread ID)

NO NA NO NO

2 0 0 1 YES NO

2 0 0 2 YES NO

2 0 0 3 YES NO

2 0 1 0 YES NO

2 0 1 1 YES NO

2 0 1 2 NO YES LPIDR NO NONE NO YES - all with 
matching 
LPID (by 
thread ID)

YES - pro-
cess table 
regardless 

of LPID

NA NO NO

2 0 1 3 YES NO

Table C-1. tlbie Encodings for HPT Translations (with R = ‘0’ and GTSE = ‘1’)  (Sheet 3 of 5)

IS HV PRS RIC VA Match 
Required?

LPID 
Match 

Required?

LPID Taken 
From RS or 

LPIDR

PID Match 
Required?

TLB Entry/ 
Entries 

Invalidated

PWC 
Invalidated?

ERATs 
Invalidated?

Process/
Partition 

Table 
Caching 

Invalidated?

RIC = 3 
TLB 

Invalidations

Invalid 
Form 

Machine 
Check 
Case?
(yellow)

Privileged 
Instruction 
Interrupt?
HV = 0, 
PRS = 0

(red)
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2 1 0 0 NO YES RS NO Host 
entries with 
matching 

LPID

NO YES - all with 
matching 
LPID (by 
thread ID)

NO NA NO NO

2 1 0 1       NO  YES NO

2 1 0 2 NO YES RS NO Host 
entries with 
matching 

LPID

NO YES - all with 
matching 
LPID (by 
thread ID)

YES - parti-
tion table 

with match-
ing LPID

NA NO NO

2 1 0 3 YES NO

2 1 1 0         YES NO

2 1 1 1         YES NO

2 1 1 2 NO YES RS NO NONE NO YES - all with 
matching 
LPID (by 
thread ID)

YES - pro-
cess table 
regardless 

of LPID

NA NO NO

2 1 1 3 YES NO

3 0 0 0 NO YES LPIDR NO Host 
entries with 
matching 

LPID

NO YES - all with 
matching 
LPID (by 
thread ID)

NO NA NO NO

3 0 0 1 YES NO

3 0 0 2 YES NO

3 0 0 3 YES NO

3 0 1 0         YES NO

3 0 1 1         YES NO

Table C-1. tlbie Encodings for HPT Translations (with R = ‘0’ and GTSE = ‘1’)  (Sheet 4 of 5)

IS HV PRS RIC VA Match 
Required?

LPID 
Match 

Required?

LPID Taken 
From RS or 

LPIDR

PID Match 
Required?

TLB Entry/ 
Entries 

Invalidated

PWC 
Invalidated?

ERATs 
Invalidated?

Process/
Partition 

Table 
Caching 

Invalidated?

RIC = 3 
TLB 

Invalidations

Invalid 
Form 

Machine 
Check 
Case?
(yellow)

Privileged 
Instruction 
Interrupt?
HV = 0, 
PRS = 0

(red)
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3 0 1 2 NO YES LPIDR NO NONE Guest PWC 
with match-

ing LPID

YES - all with 
matching 
LPID (by 
thread ID)

YES - pro-
cess table 
regardless 

of LPID

NA NO NO

3 0 1 3 YES NO

3 1 0 0 NO NO NA NO All host 
entries 

regardless 
of LPID

NO YES - 
regardless of 

LPID 
(thread)

NO NO NO NO

3 1 0 1        YES NO

3 1 0 2 NO NO NA NO All host 
entries 

regardless 
of LPID

All partition-
scoped host 

PWC 
entries 

regardless 
of LPID

YES - 
regardless of 

LPID 
(thread)

YES - parti-
tion table 

regardless 
of LPID

NA NO NO

3 1 0 3 NO

3 1 1 0 YES NO

3 1 1 1 YES NO

3 1 1 2 NO NO NA NO All host 
entries 

regardless 
of LPID

All guest 
PWC 

regardless  
of LPID if 
LPID ≠ 0
Process-

scoped host 
PWC 

regardless 
of LPID if 
LPID = 0

YES - 
regardless of 

LPID 
(thread)

YES - pro-
cess table 
regardless 

of LPID

NA NO

3 1 1 3 YES NO

Table C-1. tlbie Encodings for HPT Translations (with R = ‘0’ and GTSE = ‘1’)  (Sheet 5 of 5)

IS HV PRS RIC VA Match 
Required?

LPID 
Match 

Required?

LPID Taken 
From RS or 

LPIDR

PID Match 
Required?

TLB Entry/ 
Entries 

Invalidated

PWC 
Invalidated?

ERATs 
Invalidated?

Process/
Partition 

Table 
Caching 

Invalidated?

RIC = 3 
TLB 

Invalidations

Invalid 
Form 

Machine 
Check 
Case?
(yellow)

Privileged 
Instruction 
Interrupt?
HV = 0, 
PRS = 0

(red)
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Table C-2. tlbiel Encodings for HPT Translation (with R = ‘0’)  (Sheet 1 of 5)

IS HV PRS RIC VA Match 
Required?

LPID Match 
Required?

LPID Taken 
from RS or 

LPIDR

PID Match 
Required?

TLB Entry/ 
Entries 

Invalidated

PWC 
Invali-
dated?

ERATs 
Invali-
dated?

Process/ 
Partition 

Table 
Caching 

Invalidated?

RIC = 3 TLB 
Invalidations

Invalid 
Form 

Machine 
Check 
Case?
(yellow)

Privileged 
Instruction 
Interrupt?
HV = 0, 
PRS = 0

(red)

0 0 0 0 YES YES LPIDR NO VA match NO YES - 
matching 

address for 
that thread 

only

NO NA NO NO

0 0 0 1 YES NO

0 0 0 2 YES NO

0 0 0 3 NO NA YES NO

0 0 1 0 YES NO

0 0 1 1 YES NO

0 0 1 2 YES NO

0 0 1 3 YES NO

0 1 0 0 YES YES LPIDR NO VA match NO YES - 
matching 

address for 
that thread 

only

NO NA NO NO

0 1 0 1 YES NO

0 1 0 2 YES NO

0 1 0 3 YES NO

0 1 1 0 YES NO

0 1 1 1 YES NO

0 1 1 2 YES NO

0 1 1 3 YES NO

1 0 0 0 YES NO

1 0 0 1 YES NO
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1 0 0 2 YES NO

1 0 0 3 YES NO

1 0 1 0 YES NO

1 0 1 1 YES NO

1 0 1 2 NO YES LPIDR YES NONE NO YES - all 
for that 

thread only

YES - pro-
cess table 
(regardless 
of LPID) for 

issuing 
thread

NA NO NO

1 0 1 3 YES NO

1 1 0 0 YES NO

1 1 0 1 YES NO

1 1 0 2 YES NO

1 1 0 3 YES NO

1 1 1 0 YES NO

1 1 1 1 YES NO

1 1 1 2 NO YES LPIDR YES NONE NO YES - all 
for that 

thread only

YES - pro-
cess table 
(regardless 
of LPID) for 

issuing 
thread

NA NO NO

1 1 1 3 YES NO

2 0 0 0 NO YES LPIDR NO Host 
entries with 
matching 

LPID in set 
specified 

by 
RB(40:51) 

NO YES - all 
for that 

thread only

NO NA NO NO

Table C-2. tlbiel Encodings for HPT Translation (with R = ‘0’)  (Sheet 2 of 5)

IS HV PRS RIC VA Match 
Required?

LPID Match 
Required?

LPID Taken 
from RS or 

LPIDR

PID Match 
Required?

TLB Entry/ 
Entries 

Invalidated

PWC 
Invali-
dated?

ERATs 
Invali-
dated?

Process/ 
Partition 

Table 
Caching 

Invalidated?

RIC = 3 TLB 
Invalidations

Invalid 
Form 

Machine 
Check 
Case?
(yellow)

Privileged 
Instruction 
Interrupt?
HV = 0, 
PRS = 0

(red)
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2 0 0 1 YES NO

2 0 0 2 YES NO

2 0 0 3 YES NO

2 0 1 0 YES NO

2 0 1 1 YES NO

2 0 1 2 NO YES LPIDR NO NONE NO YES - all 
for that 

thread only

YES - pro-
cess table 
(regardless 
of LPID) for 

issuing 
thread

NA NO NO

2 0 1 3 YES NO

2 1 0 0 NO YES LPIDR NO Host 
entries with 
matching 

LPID in set 
specified 

by 
RB(40:51) 

NO YES - all 
for that 

thread only

NO NA NO NO

2 1 0 1       NO  YES NO

2 1 0 2 NO YES LPIDR NO Host 
entries with 
matching 

LPID in set 
specified 

by 
RB(40:51) 

NO YES - all 
for that 

thread only

YES - parti-
tion table 
for issuing 

thread

NA NO NO

2 1 0 3 YES NO

2 1 1 0         YES NO

2 1 1 1         YES NO

Table C-2. tlbiel Encodings for HPT Translation (with R = ‘0’)  (Sheet 3 of 5)

IS HV PRS RIC VA Match 
Required?

LPID Match 
Required?

LPID Taken 
from RS or 

LPIDR

PID Match 
Required?

TLB Entry/ 
Entries 

Invalidated

PWC 
Invali-
dated?

ERATs 
Invali-
dated?

Process/ 
Partition 

Table 
Caching 

Invalidated?

RIC = 3 TLB 
Invalidations

Invalid 
Form 

Machine 
Check 
Case?
(yellow)

Privileged 
Instruction 
Interrupt?
HV = 0, 
PRS = 0

(red)
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2 1 1 2 NO YES LPIDR NO NONE NO YES - all 
for that 

thread only

YES - pro-
cess table 
regardless 
of LPID for 

issuing 
thread

NA NO NO

2 1 1 3 YES NO

3 0 0 0 NO YES LPIDR NO Host 
entries with 
matching 

LPID in set 
specified 

by 
RB(40:51) 

NO YES - all 
for that 

thread only

NO NA NO NO

3 0 0 1 YES NO

3 0 0 2 YES NO

3 0 0 3 YES NO

3 0 1 0         YES NO

3 0 1 1         YES NO

3 0 1 2 NO YES LPIDR NO NONE Guest 
PWC with 
matching 

LPID

YES - all 
for that 

thread only

YES - pro-
cess table 
(regardless 
of LPID) for 

issuing 
thread

NA NO NO

3 0 1 3 YES NO

Table C-2. tlbiel Encodings for HPT Translation (with R = ‘0’)  (Sheet 4 of 5)

IS HV PRS RIC VA Match 
Required?

LPID Match 
Required?

LPID Taken 
from RS or 

LPIDR

PID Match 
Required?

TLB Entry/ 
Entries 

Invalidated

PWC 
Invali-
dated?

ERATs 
Invali-
dated?

Process/ 
Partition 

Table 
Caching 

Invalidated?

RIC = 3 TLB 
Invalidations

Invalid 
Form 

Machine 
Check 
Case?
(yellow)

Privileged 
Instruction 
Interrupt?
HV = 0, 
PRS = 0

(red)
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3 1 0 0 NO NO NA NO All host 
entries 

regardless 
of LPID in 
set speci-

fied by 
RB(40:51)

NO YES - all 
for that 

thread only

NO NO NO NO

3 1 0 1         YES NO

3 1 0 2 NO NO NA NO All host 
entries 

regardless 
of LPID in 
set speci-

fied by 
RB(40:51)

All parti-
tion-scoped 
host PWC 

entries 
regardless 

of LPID

YES - all 
for that 

thread only

YES - parti-
tion table 

regardless 
of LPID for 
issueing 
thread

NA NO NO

3 1 0 3 NO

3 1 1 0 YES NO

3 1 1 1 YES NO

3 1 1 2 NO NO NA NO All host 
entries 

regardless 
of LPID in 
set speci-

fied by 
RB(40:51)

All guest 
PWC 

regardless  
of LPID if 
LPID ≠ 0
Process-
scoped 

host PWC 
regardless 
of LPID if 
LPID = 0

YES - all 
for that 

thread only

YES - pro-
cess table 
(regardless 
of LPID) for 

issuing 
thread

NA NO

3 1 1 3 YES NO

Table C-2. tlbiel Encodings for HPT Translation (with R = ‘0’)  (Sheet 5 of 5)

IS HV PRS RIC VA Match 
Required?

LPID Match 
Required?

LPID Taken 
from RS or 

LPIDR

PID Match 
Required?

TLB Entry/ 
Entries 

Invalidated

PWC 
Invali-
dated?

ERATs 
Invali-
dated?

Process/ 
Partition 

Table 
Caching 

Invalidated?

RIC = 3 TLB 
Invalidations

Invalid 
Form 

Machine 
Check 
Case?
(yellow)

Privileged 
Instruction 
Interrupt?
HV = 0, 
PRS = 0

(red)
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ABIST Array built-in self test

AC Authenticated code

ACAM Adress content-addressable memory

AES Advanced Encryption Standard

AIB ASIC interface bus 

ALI Alignment interrupt

ALU Arithmetic logic unit 

AMC Architected mapper cache

AMO Atomic memory operation

ARF Architected register file 

ASIC Application-specific integrated circuit

ASST At-speed structure-test 

ATS Address translation services

AVA Abbreviated vrtual address

BAR Base Address Register

BCD Binary coded decimal

BER Bit error ratio

BFP Binary floating-point

BFU Binary floating-point unit

BHT Branch history table

BIST Built-in self-test

BMC Baseboard management control

BR Branch register unit

BTAC Branch target address cache

CAM Content-addressable memory

CAPI Coherent accelerator processor interface

CBC Cipher-block chaining

CC Completion code
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CCM Counter with CBC-MAC

CCS Configured command sequencer 

CEC Central electronics complex

cgc Congruence class

CI Cast-in

CIABR Current Instruction Address Breakpoint Register

CIR Chip information register

CIU Core interface unit

CLB Cache load buffer (IBuffer)

CME Core management engine 

CMOS Complementary metal–oxide–semiconductor

CO Cast-out

CPB Coprocessor parameter block

CPU Central processing unit

CR Condition Register

CRB Coprocessor request block 

CRC Cyclic redundancy check

CRN Conditioned random numbers

CT Coprocessor type

CTLE Continuous time linear equalizer

darn Deliver a random number instruction

DARQ Data and address recirculation queue

DAWR Data Address Watch Register

dcbt Data cache block touch

dcbtst Data cache block touch for store

dcbz Data cache block zero

dcbst Data cache block store

dcbst Data cache block store

dcbf Data cache block flush
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dcbfl Data cache block flush local

dcbflp Data cache block flush local primary

DDL Data descriptor list 

DDR Double data rate 

DDR4 Double data rate memory interface, 4th generation

DECFP Decimal floating-point unit 

DFE Decision feedback equalizer

DFP Decimal floating-point 

DFU Decimal floating-point unit

DIMM Dual in-line memory module

DLL Delay-locked loop

DMA Direct memory attach

DMI Differential memory interface

DPC DIMMs per channel or dynamic peaking control

DPLL Digital phase-locked loop

DRAM Dynamic random access memory

DRTM Dynamic root of trust for measurement 

DSI Data storage interrupt

dss Data stream stop 

dst Data stream touch

dstst Data stream touch for store

DTS Digital thermal sensor

EA Effective address

EADIR Effective address directory 

EAE Event assignment entry

EAS Event assignment structure

EASC Event assignment structure cache

EAST Event assignment structure table 

EAT Effective address translation 



User’s Manual 
OpenPOWER
POWER9 Processor  

Glossary

Page 498 of 508
Version 2.1 

10 October 2019 
 

EAT Event assignment table

EBB Event-based branch

EBB Event-based branch

ECB Electronic codebook

ECC Error correcting code

ECID Electronic chip identification

ECO Extended cache option

ECRC End-to-end cyclic redundacy check

EDI Elastic differential I/O 

EDRAM Enhanced dynamic random access memory

EEH Enhance error handling

EEPROM Electrically erasable programmable read-only memory

EMC Extended memory controller

EMQ ERAT miss queue 

END Event notification descriptor

ENDC Event notification descriptor cache

ENDE Event notification descriptor entry

ENDT Event notification descriptor table

EOI End of interrupt

EQ Event queue

EQD Event queue descriptor

EQDT Event queue descriptor table

EQOC Event queue page offset counter

ERAT Effective-to-real address translation

ESB Event state buffer

ESBC Event state buffer cache

ESID Effective segment identifier

FBC SMP interconnect controller

FC Function code
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FFE Feed-forward equalizer

FIFO First-in, first-out

FIR Fault Isolation Register

FLIT Flow control digit 

FLOPs Floating-point operations per second

FPGA Field-programmable gate array

FPR Floating-point register

FPSCR Floating-Point Status and Control Register

FPU Floating-point unit

FSP Flexible service processor

FXU Fixed-point units

GCM Galois counter mode

GCT Global completion table 

GFW Global firmware

GHV Global history vector

GPE General purpose engine

GPR General purpose register

GPS Global Pstate

GPST Global Pstates table

GPU Graphics processor unit

GR Guest Radix 

GTps Gigatransfers per second

HDEC Hypervisor decrementer

HDSI Hypervisor data storage interrupt

hEA Host effective address

HISI Hypervisor instruction storage interrupt

HMAC Hash message authentication code

HMER Hypervisor Maintenance Exception Register

HMI Hypervisor maintenance interrupt
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HPT Hashed page table

HR Host Radix

hRA Host real address 

HRMOR Hypervisor Real Mode Offset Register

HSS High-speed serial

HTM Hardware trace monitor 

hVA Host virtual address

I2C Inter-integrated circuit

IBUF Instruction buffer

ICA Instruction cache access

icbi Instruction cache block invalidate

icbt Instruction cache block touch

isync Instruction cache synchronize

ICP Interrupt control presenter

ICS Interrupt controller source

ICT Instruction completion table

IEEE Institute of Electrical and Elctronics Engineers

IFAR Instruction fetch address register

IFB Instruction fetch buffer

IFU Instruction fetch and decode unit

IMA In memory accumulate

IOO OpenPOWER interface

IOP Internal operation

IPB Interrupt Pending Buffer

IPC Instruction per cycle

IPL Interrupt presenter layer; orinitial program load

IRL Interrupt routing layer

IRR Instruction retry and recovery

ISU Instruction sequencing unit
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ISV Independent software vendor

IVE Interrupt vector entry

IVE Interrupt Virtualization Entry

IVPE Interrupt Virtualization Presentation Engine

IVRE Interrupt Virtualization Routing Engine

iVRM Internal voltage regulation

IVSE Interrupt Virtualization Source Engine

IVT Interrupt Virtualization Table

JEDEC Joint Electron Device Engineering Council

JTAG Joint Test Action Group

KVM Kernal-based virtual machine

LBIST Logic built-in self test

LCO Later castout or lateral castout (cast out to another cache rather than memory)

LDS Load station

LE Little-endian

LFSR Linear Feedback Shift Register

LGA Land grid array

LHR Load-hit-reload

LMQ Load-miss queue

LPAR Logical partition

LPC Low-pin count 

LPID Logical partition ID

LPIDR Logical Partition ID Register

LPST Local Pstate table

LRDIMM Load-reduced dual in-line memory module

LRQ Load reorder queue

LRU Least-recently used

LSAQ Load store address queue

LSI Level signaled interrupt 
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LSMFB Logical Server Most Favored Backlog

LSSD Level-sensitive scan design

LSU Load store units

LTE Long-tail equalizer

LU Load-only unit

MBA Memory buffer asynchronous

MCA Memory controller asynchronous

MCBIST Memory card built in self-test

MCD Memory cache-line domain

MCE Machine check exception

MCS Memory controller synchronous

MD5 Message Digest 5 

MDI Memory domain indicator

MDS Memory domain status 

MHCRO Model hardware correlation ring oscillator

MMIO Memory-mapped input/output

MMU Memory nanagement unit 

MPG Multi-protocol gateway

MPSS Multiple page sizes per segment

MRS Mode register set

MSI Message signalled interrupt

NaN Not a number

NCU Noncacheable unit

NDL NVLink Datalink layer 

NMMU Nest memory nanagement unit 

NPCQ NPU common queue

NPS Nap Pstate

NPU NVLink processing unit

NTC Next-to-complete
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NVC Notification virtual descriptor cache 

NVT Notification Virtual Target

NVTS Notfication Virtual Target Structure

NVTT Notification Virtual Target Table

OCC On-chip controller

OCTS On-chip thermal sensor 

OEM Original equipment manufacturer

OHA On-chiplet hardware assist

OpenCAPI Open Coherent Accelerator Processor Interface

ODL OpenCAPI datalink layer

OTL OpenCAPI transaction layer

P3CQ POWER9 fabric bus interface common queue

P3PC Presentation Controller

P3SC Source Controller

P3VC Virtualization Controller

PAPR Power Architecture Platform Reference

PATB Partition Table Base field

PATS Partition Table Size field

PB Processor bus

PBL Packet buffer layer

PC Pervasive core unit 

PCIe Peripheral component interconnect express

PCR Processor Compatibility Register or Platform Configuration Register

PCS Physical coding sublayer

PDE Page directory entry

PE Partitionable endpoints

PEC PCI Express controller

PEF Protected execution facility

PF Prefetch machine
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PFD Phase-frequency detector

PFWI Prefetch write inject

PHB PCI host bridge

PHY Physical layer

PHYP Power hypervisor 

PID Process ID 

PIDR Process ID Register

PIPR Pending Interrupt Priority Register

PLL Phase-locked loop

PMA Physical media access

PMC Power management control

PMU Performance monitor unit 

POR Power-on reset

PPE Programmable PowerPC-lite engine

PRI Private register interface

PRQ Prefetch request queue

PSI Processor serial interface

PSPB Problem-state priority boost

PSRO Performance sort-ring oscillator

Pstate Performance state

PTCR Partition Table Control Register 

PTE Page table entry

PTEG Page table entry group

PTER Physical Thread Enable Register

PURR Processor Utilization Resource Register

PVR Processor Version Register

PWC Page-walk cache

QNaN Quiet Not a number

QoS Quality of service
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qpos Queue position

RA Read address

RAIM Redundant array of independent memory 

RAM Random access memory

RAS Reliability, availability, and serviceability

RAW Read after write

RC Root complex or read claim

RCD Register clock driver

RCMD Remote command

RDIMM Registered dual in-line memory module

RMA Remote memory access

RMSC Real mode storage control

RNG Random number generator

ROB Re-order buffer

ROT Rollback-only transaction

RPT Radix page table

RRN Raw random numbers

S2Q Store drain queue

SAM Store address machine

SAO Strong access ordering

SAR Second-level Architected Register 

SBE Self-boot engine

SBE State bit entry

Sc Store clean (transactional memory value before a speculative store)

SCM Single-chip module

SCOM Scan communications

SDM Store data machine

SDQ Store data queue

SEC/DED Single-error correction, double-error detection
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SEEPROM Serial electrically erasable programmable read-only memory

SERDES Serializer/Deserializer

SETP Set prediction directory

SHA Secure hash algorithm

SHR Store-hit-reload

SICQ SMP interconnect common queue

SIMD Single-instruction, multiple-data

SIU SMP interconnect unit

SLB Segment lookaside buffer

SMF Secure memory facility

SMP Symmetric multiprocessing

SMPI SMP interconnect 

SMT Simultaneous multithreading

SN Snoop machine

SOI Silicon-on-insulator

SP Single-precision

SPI Serial peripheral interconnect

SPIVID Serial Peripheral Interface - Voltage ID

SPR Special purpose register

SPS Sleep Pstate 

SPURR Scaled Processor Utilization Resource Register

SRAM Static random access memory

SRQ Store reorder queue

ST Single thread 

STAG Storage tag

STE Send Window Table Entry (STE) or segment table entry

STEG Segment table entry group

SVIC Slave VME interface controller

SVM Secure virtual machine
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TCE Translation control entry

TCTXT Thread context 

TDP Thermal design point

TEXASRU Transaction Exception And Summary Register Upper

TID Thread ID 

TLB Translation lookaside buffer

TLBI translation look-aside buffer invalidate

TLDLP Transaction and data link layer

TLE Transaction lock elision

TLP Translation layer packet

TM Transactional memory

TOD Time of day

TPM Trusted platform module 

UE Uncorrectable error

UI Unit interval

UILE Ultravisor Interrupt Little Endian

UMAC User mode access control

UniQ Unified issue queues

VAS Virtual Accelerator Switchboard

VCO Voltage-controlled oscillator

VID Voltage identification

VLE Variable length encoding

VMX Virtual machine extensions

VPD Vital product data

VPD Virtual Processor Descriptor

VPDT Virtual Processor Descriptor Table

VPN Virtual page number

VRF Vector scalar register file

VRM Voltage regulator module
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VRMA Virtualized real mode area

VS Vector scalar 

VSCR Vector Status and Control Register

VSD Virtualization Structure Descriptor

VST Virtual Structure Table 

VSU Vector and scalar unit

VSX Vector-scalar extension

WAW Write after write

WI Write inject

WOF Workload optimized frequency

WPS Winkle Pstate

X bus An X bus is the socket-to-socket SMP interconnect between 2 POWER9 proces-
sors.

Note:  This is not really an acronym but a name (X bus).

XER Fixed-Point Exception Register

XIVE External Interrupt Virtualization Engine 

XMAC XCBC-MAC-96 

XSL Adress translation block

XTS Extended translation services (NVlink protocol over 25G Link address translation 
services)
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