

 $\ensuremath{\mathbb{C}}$ 2017 - 2018 Raptor Computing Systems, LLC All Rights Reserved

Table of Contents

COPYRIGHT AND DISCLAIMERS	5
SAFETY INFORMATION	6
Electrical Safety	6
Operational Safety	6
NOTICES	7
Federal Communications Commission Statement	.7
Environmental Disposal Statements	.7
MAINBOARD SPECIFICATIONS	8
MAINBOARD OVERVIEW1	0
Design1	0
Installation1	11
Removal1	11
CPU INSTALLATION AND REMOVAL1	2
Background1	2
Installation1	3
Removal1	5
RAM INSTALLATION AND REMOVAL1	6
Population Tables1	6
Installation1	17
Removal1	17
HEADERS AND CONNECTORS1	8
Pin Numbering Conventions1	8
Front Panel1	9

BMC Serial Console	21
Trusted Platform Module Connector	22
FlexVer™ Connector	24
OCC Mode	
BMC External Reset Header	27
BMC TTL Auxiliary Serial Header	28
BMC Heartbeat Indicator Header	
Internal USB 3.0 Header	
BMC I2C Port 5	
BMC I2C Port 6	
Planar VPD Programming Header	34
FPGA Programming Header	35
FPGA Mode Switch 1	
FPGA Mode Switch 2	
PM8068 SAS Debug Connector	
5V Power	
CPU 1 Secure Mode Disable	
CPU 2 Secure Mode Disable	42
PMBus Connector	43
CPU EPS Power Connectors	
ATX Power Connector	45
CPU 1 PCI Express Slots	47
CPU 2 PCI Express Slots	51
Micro PCle Connector	
CPU 1 Fan Header	
CPU 2 Fan Header	
Primary Chassis Fan Headers	59
Secondary Chassis Fan Header	60
© 2017 - 2018 Raptor Computing Systems, LLC	T2P9D01 User's Guide Version 1.03

© 2017 - 2018 Raptor Computing Systems, LLC All Rights Reserved

FAN ZONES6 ⁴	1
Connections	1
Algorithm Description6	1
USAGE	2
nitial Power-On	2
Selecting a Boot Medium	2
BMC Access	3
Host Firmware Updates	3
BMC Firmware Updates	3
SUPPORT	5
Getting Help6	5
ERRATA	6
PCB Version 1.00	6
PCB Version 1.01	6

Copyright and Disclaimers

Copyright © 2017 – 2018 Raptor Computing Systems, LLC. All Rights Reserved.

Product warranty or service will not be extended if: (1) the product is damaged by the consumer in any way, including any alterations that affect the operability of the feature or features being claimed under warranty and/or product service; or (2) the serial number of the product is defaced or missing.

RAPTOR COMPUTING SYSTEMS, LLC PROVIDES THIS MANUAL "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OR CONDITIONS OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL RAPTOR COMPUTING SYSTEMS, LLC, ITS DIRECTORS, OFFICERS, MEMBERS, MANAGERS, EMPLOYEES OR AGENTS BE LIABLE FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES (INCLUDING DAMAGES FOR LOSS OF PROFITS, LOSS OF BUSINESS, LOSS OF USE OR DATA, INTERRUPTION OF BUSINESS AND THE LIKE), EVEN IF RAPTOR COMPUTING SYSTEMS, LLC HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES ARISING FROM ANY DEFECT OR ERROR IN THIS MANUAL OR PRODUCT.

SPECIFICATIONS AND INFORMATION CONTAINED IN THIS MANUAL ARE FURNISHED FOR INFORMATIONAL USE ONLY, AND ARE SUBJECT TO CHANGE AT ANY TIME WITHOUT NOTICE, AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY RAPTOR COMPUTING SYSTEMS, LLC. RAPTOR COMPUTING SYSTEMS, LLC ASSUMES NO RESPONSIBILITY OR LIABILITY FOR ANY ERRORS OR INACCURACIES THAT MAY APPEAR IN THIS MANUAL, INCLUDING THE PRODUCTS AND SOFTWARE DESCRIBED IN IT.

Products and corporate names appearing in this manual may or may not be registered trademarks or copyrights of their respective companies, and are used only for identification or explanation and to the owners' benefit, without intent to infringe.

© 2017 - 2018 Raptor Computing Systems, LLC All Rights Reserved

Safety Information

ELECTRICAL SAFETY

- To reduce the risk of electric shock, disconnect the power cable before relocating or servicing the system.
- When adding or removing devices to or from the system, ensure that the power cables for the devices are unplugged before the signal cables are connected. If possible, disconnect all power cables from the existing system before you add a device.
- Before connecting or removing signal cables from the motherboard, ensure that all power cables are unplugged.
- Seek professional assistance before using an adapter or extension cord. These devices could interrupt the grounding circuit.
- Make sure that your power supply is set to the correct voltage in your area. If you are not sure about the voltage of the electrical outlet you are using, contact your local power company.
- If your power supply is not functioning, do not attempt to repair it. Contact a qualified service technician or your retailer.

OPERATIONAL SAFETY

- Before installing the motherboard or connecting devices to it, carefully read any and all provided manuals for the devices in question.
- Before using the product, make sure all cables are correctly connected and the power cables are not damaged. If you find any damage, contact your dealer immediately.
- To avoid short circuits, keep paper clips, screws, staples, and other foreign metallic objects away from connectors, slots, sockets and circuitry.
- Avoid dust, humidity, and temperature extremes. Do not locate the product in any area where it may become wet or damp.
- Place the product on a stable surface at all times.
- If you encounter technical problems with the product, contact a qualified service technician or your retailer.

Notices

FEDERAL COMMUNICATIONS COMMISSION STATEMENT

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:

- This device may not cause harmful interference, and
- This device must accept any interference received including interference that may cause undesired operation.

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with manufacturer's instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment to an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

ENVIRONMENTAL DISPOSAL STATEMENTS

DO NOT throw the motherboard in municipal waste. This product has been designed to enable proper reuse of parts and recycling. This symbol of the crossed out wheeled bin indicates that the product (electrical and electronic equipment) should not be placed in municipal waste. Check local regulations for disposal of electronic products.

DO NOT throw the mercury-containing button cell battery in municipal waste. This symbol of the crossed out wheeled bin indicates that the battery should not be placed in municipal waste.

Mainboard Specifications

Processor		2x IBM POWER9 "Sforza" Socket (LGA 2601) 4 - 24 core IBM POWER9 Processors High speed XBUS interconnect			
Core Logic		Direct Attach PCIe			
Form Factor		EATX, 12" x 13"			
System Features	Fan Control	Y			
	Nominal Fan Zones	3			
	Fan Connectors	7			
	Fan Control Driver	MAX31785 / AST2500			
	Rack Ready	Y			
	Front Panel Header	SuperMicro Compatible			
	TPM Header	LPC / I2C			
	SMBus Header	Y			
	BMC	Y			
	ВМС Туре	OpenBMC Compatible (AST2500)			
FlexVer™ Ready		Y			
Memory	Total Slots	16 (4 channels per CPU)			
	Capacity	2TB maximum			
	Memory Type	DDR4 1600/1866/2133/2400/2666			
	Memory Features	ECC			
	Module Sizes	8GB, 16GB, 32GB, 64GB, 128GB (RDIMM)			
Expansion Slots	Total PCIe Slots	5			
	Total µPCle Ports	1			
	PCIe Generation	1,2,3,4			
	CAPI 2 Capable Slots	3 x16 slots			
Storage	Microsemi PM8068	4 SAS (iPASS+)			
	(optional)	4 SAS/SATA			
Networking Broadcom BCM5719		2 host GbE			
		NCSI-SI BMC link			
Graphics	AST2500	VGA			
USB	TI TUSB7430	2x USB3.0 ports on rear panel			
		2x USB3.0 ports on internal header			
Serial	Host	1x RS232 port on rear panel			

 $\ensuremath{\mathbb{C}}$ 2017 - 2018 Raptor Computing Systems, LLC All Rights Reserved

	ВМС	1x RS232 port on internal header			
		1x TTL port on internal header			
Environmental Requirements		Operation: 10°C - 35°C			
		Storage: -40°C - 70°C			
		Humidity: 20% - 90%, non-condensing			

NOTE: Specifications are subject to change without notice.

Mainboard Overview

DESIGN

The T2P9D01 has been specifically designed for applications requiring high security, high I/O capability, and large amounts of processing capability. PCIe slots and peripherals are directly connected to each CPU, therefore two CPUs must be installed to use all PCIe slots.

Illustration 1: TL2P9D01 Block Diagram

© 2017 - 2018 Raptor Computing Systems, LLC All Rights Reserved

INSTALLATION

NOTE: Before you install this mainboard into your chassis, study the pattern of mounting studs, rear panel slots, and internal chassis components to ensure the mainboard fits correctly. There are 10 mounting holes available on the T2P9D01; ensure that your chassis provides studs for all 10 for maximum reliability and longevity of the mainboard.

NOTE: Installation of the mainboard should take place in a static-controlled environment using appropriate anti-static measures. Failure to follow these precautions could result in permanent damage to the mainboard and attached components.

Begin installation by examining your chassis. If there is an existing I/O shield in your chassis, remove it by gently striking it from the outside of your chassis; it should pop free. Align the new I/O shield inside your chassis so that the ridges on the I/O shield point away from the interior of your chassis; then, gently but firmly snap the new I/O shield into place in the rear of your chassis.

Carefully place the mainboard inside the chassis, ensuring that the I/O ports are aligned with the corresponding holes in the I/O shield. Gently press the mainboard into the I/O shield until the mounting holes are aligned with the chassis studs. Secure the mainboard with one screw in the lower right corner, followed by one in the upper left corner, then install the remaining screws. Torque all mainboard mounting screws to 7 ft-lbs (0.8N-m).

WARNING: There are fragile electronic components located on the entire bottom surface of the mainboard, including near the mainboard mounting holes. Ensure that the mainboard is aligned with the studs *before* allowing any part of the rear surface to contact the mounting studs; also ensure that the mainboard does not slide on the studs once positioned. Failure to follow these instructions could result in severe damage to the mainboard. If you believe you have damaged one or more parts on the bottom of the mainboard, but have not yet applied power, **stop** and remove the mainboard *without* applying power. Inspect the mainboard for mechanical damage, and if present return the mainboard for repair service.

REMOVAL

Begin by moving the chassis to a static-controlled environment. Before removing the mainboard, remove all attached cables, peripherals, and RAM. Ensure that both CPUs and heatsinks have been removed, and that both protective socket covers are in place. Carefully loosen and remove all screws, saving the lower right hand corner for last. Gently lift the side of the mainboard farthest from the I/O shield, then slide the ports out of the I/O shield. Do not allow the mainboard to fall onto or contact the chassis mounting studs at this point. Carefully remove the mainboard from the chassis. If the mainboard is to be returned for service, immediately place it in an appropriately sized anti-static bag.

CPU Installation and Removal

BACKGROUND

The POWER9 CPU uses a unique retention mechanism designed to center-load the CPU in the socket and ensure good contact in the area of the central lands. This mechanism is spring loaded; a single 5/32" hex screw engages and disengages the retention system.

The heatsink assemblies you have received may have had the screw tighten or loosen in transit. After placing the heatsink on the CPU per the following instructions, visually inspect the two latching prongs protruding from the load frame assembly. If these prongs are not vertical, loosen the retention screw of the heatsink assembly and gently reposition the heatsink, watching for the latching prongs to move into a vertical position.

Illustration 2: Correct Retention Mechanism Prong Alignment (Unlocked)

NOTE: Incorrectly positioned locking pins will cause the heatsink to start to tilt as the retention screw is tightened. If this happens, **immediately stop tightening the screw**, carefully loosen the retention screw, and double-check the prong and pin alignment before attempting to reattach the heatsink. In some cases, removing and re-placing the heatsink is the easiest method to allow it to seat correctly.

INSTALLATION

WARNING: Both the CPUs and the mainboard are static sensitive. Installation and removal of either CPU must take place in an appropriate anti-static environment.

Illustration 3: Socket as Shipped

Carefully remove the protective cover, making sure not to touch any of the exposed socket pins.

Illustration 4: Remove Protective Cover

 $\ensuremath{\mathbb{C}}$ 2017 - 2018 Raptor Computing Systems, LLC All Rights Reserved

Align the notches of the CPU with the protrusions on the socket, then carefully place the CPU in the socket. If no indium pad is present on the bottom of the heatsink assembly, carefully center an indium pad on top of the CPU.

Illustration 5: Align Notches and Carefully Place CPU in Socket

Place the heatsink assembly on top of the CPU, following instructions given earlier.

Illustration 6: Align Pins and Place Heatsink on CPU

 $\ensuremath{\mathbb{C}}$ 2017 - 2018 Raptor Computing Systems, LLC All Rights Reserved

Using a 5/32" hex driver fully inserted into the retention mechanism screw, tighten the retention mechanism screw by turning the driver clockwise until a hard stop has been reached.

Illustration 7: Tighten Retention Scew until Hard Stop

Your CPU now is correctly installed. If you have a second CPU, repeat this process for the other socket.

REMOVAL

Removal of the heatsink and CPU follows the installation procedure given above, only in reverse. Start with step 5, turning the hex driver counterclockwise, and end with step 1, replacing the socket protective cover into postion over the socket.

WARNING: Before attempting to remove the heatsink, ensure the mainboard has been placed horizontal to the ground. Failing to do so could cause the CPU to fall out of the socket, causing damage to the CPU, the CPU socket, and any components located below the CPU.

RAM Installation and Removal

POPULATION TABLES

Quantity Slot Population					tion											
		Processor 1							sor 1 Processor 2							
	A1	B1	C1	D1	A2	B2	C2	D2	A1	B1	C1	D1	A2	B2	C2	D2
1 DIMM		X													1	
2 DIMMs		Х		Х												
3 DIMMs	Х	Х		Х												
4 DIMMs	Х	X	X	Х							Droop	aaar	Notir	otalla	d	
5 DIMMs	Х	X	X	Х	X						PIOCE	5501	INOL II	Istalle	a	
6 DIMMs	Х	X	X	Х	X			Х								
7 DIMMs	X	X	X	Х	X	X		Х								
8 DIMMs	Х	Х	X	Х	X	X	X	Х								
1 DIMM		X														
2 DIMMs		X								Х						
3 DIMMs		X		Х						Х						
4 DIMMs		X		Х						X		Х				
5 DIMMs	Х	X		Х						X		Х				
6 DIMMs	X	X		X					X	Х		Х				
7 DIMMs	X	X	X	Х					Х	Х		Х				
8 DIMMs	X	X	X	Х					Х	Х	X	Х				
9 DIMMs	Х	X	X	Х		X			Х	Х	X	Х				
10 DIMMs	X	X	X	Х		X			Х	Х	X	Х		Х		
11 DIMMs	Х	X	X	Х		X		Х	Х	Х	X	Х		Х		
12 DIMMs	Х	Х	X	Х		X		Х	Х	Х	Х	Х		Х		Х
13 DIMMs	X	X	Х	Х	Х	Х		Х	Х	Х	Х	Х		Х		Х
14 DIMMs	Х	X	Х	X	Х	Х		Х	X	Х	X	Х	Х	Х		Х
15 DIMMs	Х	X	Х	X	Х	Х	X	Х	X	Х	X	Х	Х	Х		Х
16 DIMMs	Х	Х	X	Х	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х

(X) denotes memory DIMM is installed in indicated slot

INSTALLATION

For maximum performance under typical workloads, RAM should be populated according to the table above.

Using proper anti-static procedures, locate the slot in which you want to install RAM, then gently move the two retaining prongs away from the center of the slot until they reach a hard stop. Grasping the memory DIMM by the edges, align the notch on the memory DIMM with the key in the slot, then firmly and evenly press the DIMM into place while holding the DIMM at a 90° angle to the mainboard. The DIMM is properly seated when both retaining prongs move inward and contact the sides of the DIMM. Do not touch the electrical contacts on the memory DIMM as this may induce corrosion, leading to poor connections and unreliable operation.

WARNING: If a DIMM will not fully seat, or tilts to one side, **stop**. Remove the DIMM and doublecheck the location of the notch versus the slot key. If the DIMM still will not seat, double check that the type of memory is correct. The T2P9D01 only accepts full-size 288-pin DDR4 DIMMs, and other types of memory will not seat or function. DO NOT attempt to force a DIMM into a slot as this may cause permanent damage to the RAM, CPU, and/or mainboard.

WARNING: Do not attempt to install memory DIMMs in an improperly mounted mainboard. Due to the pressure required to properly seat a DIMM, mainboard flex tolerances could be exceeded if one or more mounting studs is missing. Exceeding flex tolerances may cause irreparable damage to the mainboard.

REMOVAL

Locate the DIMM you wish to remove, then, using proper anti-static procedures, gently move the two retaining prongs away from the center of the slot until they reach a hard stop. The memory DIMM will partially unseat from the slot, and may be fully removed by gently and evenly pulling away from the mainboard while grasping the DIMM by its two short edges. Do not touch the electrical contacts on the memory DIMM as this may induce corrosion and lead to poor connections and unreliable operation.

Headers and Connectors

PIN NUMBERING CONVENTIONS

Illustration 8: Dual Row Header with Annotated Pins, Marker, and Key

All headers on the TLP9D01 follow a standard layout, with pin 1 being denoted with a white silkscreen marking. Dual row headers follow the numbering convention shown above, where all even pins are on one side of the header and all odd pins are on the other. Single row headers use a monotonically increasing pin number, starting from pin 1. Key pins are not physically present, but are still counted as pins in the numbering scheme.

FRONT PANEL

J9800								
Pin	Function	Pin	Function					
1	Power button (active low)	2	Ground					
3	Reset button (active low)	4	Ground					
5	+3.3V (main power)	6	Fan fail LED cathode					
7	LED Anode +3.3V (main power)	8	Fan Fail LED Anode (+5V main power)					
9	LED Anode +3.3V (standby power)	10	NIC 2 link / activity LED cathode					
11	LED Anode +3.3V (standby power)	12	NIC 1 link / activity LED cathode					

 $\ensuremath{\mathbb{C}}$ 2017 - 2018 Raptor Computing Systems, LLC All Rights Reserved

13	Identify button (active low)	14	HDD activity LED cathode
15	+3.3V (main power)	16	Power LED cathode
17	KEY	18	KEY
19	NMI button (active low)	20	Ground

BMC SERIAL CONSOLE

J7701							
Pin	Function	Pin	Function				
1	DCD	2	RXD				
3	TXD	4	DTR				
5	Ground	6	DSR				
7	RTS	8	CTS				
9	NRI	10	KEY				

 $\ensuremath{\mathbb{C}}$ 2017 - 2018 Raptor Computing Systems, LLC All Rights Reserved

TRUSTED PLATFORM MODULE CONNECTOR

J10105								
Pin	Function	Pin	Function					
1	LPC clock	2	Ground					
3	LPC frame (active low)	4	KEY					
5	TPM reset (active low)	6	N/C					
7	LPC address / data bit 3	8	LPC address / data bit 2					
9	+3.3V (main power)	10	LPC address / data bit 1					
11	LPC address / data bit 0	12	Ground					
13	I2C clock	14	I2C data					

 $\ensuremath{\mathbb{C}}$ 2017 - 2018 Raptor Computing Systems, LLC All Rights Reserved

15	+3.3V (standby power)	16	LPC serial IRQ
17	Ground	18	N/C
19	Window open (active low)	20	BMC GPIO B3 (active low)

FLEXVER™ CONNECTOR

J10111								
Pin	Function	Pin	Function					
1	RTC battery (+3.0V)	2	Ground					
3	+3.3V (standby power)	4	Ground					
5	+3.3V (main power)	6	Module presence detect 1 (active low)					
7	Integrity loop 0	8	Integrity loop 0					
9	LPC address / data bit 3 (secure)	10	LPC address / data bit 0 (platform)					
11	LPC address / data bit 2 (secure)	12	LPC address / data bit 1 (platform)					

© 2017 - 2018 Raptor Computing Systems, LLC All Rights Reserved

13	LPC address / data bit 1 (secure)	14	LPC address / data bit 2 (platform)
15	LPC address / data bit 0 (secure)	16	LPC address / data bit 3 (platform)
17	LPC serial IRQ (secure)	18	LPC serial IRQ (platform)
19	LPC frame (active low, secure)	20	LPC frame (active low, platform)
21	CPU 0 presence detect (active low)	22	CPU 1 presence detect (active low)
23	LPC clock (secure)	24	LPC clock (platform)
25	LPC reset (active low, secure)	26	LPC reset (active low, platform)
27	BMC SPI MOSI (secure)	28	BMC SPI clock (platform)
29	BMC SPI clock (secure)	30	BMC SPI MOSI (platform)
31	BMC SPI MISO (secure)	32	BMC SPI MISO (platform)
33	BMC SPI chip select (active low, secure)	34	BMC SPI chip select (active low, platform)
35	N/C	36	Module presence detect 2 (active low)
37	Integrity loop 1	38	Integrity loop 1
39	Force FSI secure mode (active high)	40	Platform reset (active low)

OCC MODE

J6912				
Pin	Function	Pin	Function	
1	OCC alert (active low)	2	Ground (current limited)	

BMC EXTERNAL RESET HEADER

J7000			
Pin	Function	Pin	Function
1	N/C	2	BMC reset (active low)
3	Ground		

BMC TTL AUXILIARY SERIAL HEADER

J10116			
Pin	Function	Pin	Function
1	Ground	2	BMC COM2 RXD (TTL)
3	BMC COM2 TXD (TTL)		

BMC HEARTBEAT INDICATOR HEADER

J10114				
Pin	Function	Pin	Function	
1	Ground	2	BMC heartbeat LED cathode	

INTERNAL USB 3.0 HEADER

J10106			
Pin	Function	Pin	Function
1	+5.0V USB power (current limited)	2	SuperSpeed RX (Port 4, negative polarity)
3	SuperSpeed RX (Port 4, positive polarity)	4	Ground
5	SuperSpeed TX (Port 4, negative polarity)	6	SuperSpeed TX (Port 4, positive polarity)
7	Ground	8	Hub (Port 1, negative polarity)
9	Hub (Port 1, positive polarity)	10	Ground

 $\ensuremath{\mathbb{C}}$ 2017 - 2018 Raptor Computing Systems, LLC All Rights Reserved

11	Hub (Port 2, positive polarity)	12	Hub (Port 2, negative polarity)
13	Ground	14	SuperSpeed TX (Port 3, positive polarity)
15	SuperSpeed TX (Port 3, negative polarity)	16	Ground
17	SuperSpeed RX (Port 3, positive polarity)	18	SuperSpeed RX (Port 3, negative polarity)
19	+5.0V USB power (current limited)	20	KEY

BMC I2C PORT 5

J9602			
Pin	Function	Pin	Function
1	BMC I2C SCL	2	Ground
3	BMC I2C SDA		

BMC I2C PORT 6

J9603			
Pin	Function	Pin	Function
1	BMC I2C SCL	2	Ground
3	BMC I2C SDA		

PLANAR VPD PROGRAMMING HEADER

J10104				
Pin	Function	Pin	Function	
1	+3.3V (standby power)	2	SCL	
3	Ground	4	SDA	

FPGA PROGRAMMING HEADER

J10107			
Pin	Function	Pin	Function
1	Ground	2	SPI clock
3	SPI MOSI	4	SPI MISO
5	SPI slave select (active low)	6	+3.3V (standby power)

 $\ensuremath{\mathbb{C}}$ 2017 - 2018 Raptor Computing Systems, LLC All Rights Reserved

FPGA MODE SWITCH 1

J7800				
Pin	Function	Pin	Function	
1	Mode enable bit 1 (active low, pullup)	2	Ground	

FPGA MODE SWITCH 2

J10109				
Pin	Function	Pin	Function	
1	Mode enable bit 2 (active low, pullup)	2	Ground	

PM8068 SAS DEBUG CONNECTOR

J1	J1			
Pin	Function	Pin	Function	
1	+1.8V (main power)	2	UART TX (Port 0)	
3	UART TX (Port 1)	4	UART RX (Port 0)	
5	UART RX (Port 1)	6	Ground	
7	Reset (active low)	8	JTAG TDI	
9	JTAG TMS	10	JTAG TCLK	

 $\ensuremath{\mathbb{C}}$ 2017 - 2018 Raptor Computing Systems, LLC All Rights Reserved

11	JTAG reset (active low)	12	JTAG TDO
----	-------------------------	----	----------

5V POWER

J19511			
Pin	Function	Pin	Function
1	+5V (main power)	2	Ground
3	Ground		

CPU 1 SECURE MODE DISABLE

J1600			
Pin	Function	Pin	Function
1	N/C	2	Secure Mode Disable (active high)
3	+1.1V (standby power, current limited)		

CPU 2 SECURE MODE DISABLE

J4300			
Pin	Function	Pin	Function
1	N/C	2	Secure Mode Disable (active high)
3	+1.1V (standby power, current limited)		

PMBUS CONNECTOR

J10103			
Pin	Function	Pin	Function
1	I2C SCL	2	I2C SDA
3	Alert (active low, open drain)	4	Ground
5	+3.3V (main power)		

CPU EPS POWER CONNECTORS

J10101 / J10102			
Pin	Function	Pin	Function
1	Ground	2	Ground
3	Ground	4	Ground
5	+12V (EPS main power)	6	+12V (EPS main power)
7	+12V (EPS main power)	8	+12V (EPS main power)

© 2017 - 2018 Raptor Computing Systems, LLC All Rights Reserved

ATX POWER CONNECTOR

J10100			
Pin	Function	Pin	Function
1	+3.3V (main power)	2	+3.3V (main power)
3	Ground	4	+5.0V (main power)
5	Ground	6	+5.0V (main power)
7	Ground	8	ATX power good (active high)
9	+5.0V (standby power)	10	+12V (main power)

 $\ensuremath{\mathbb{C}}$ 2017 - 2018 Raptor Computing Systems, LLC All Rights Reserved

11	+12V (main power)	12	+3.3V (main power)
13	+3.3V (main power)	14	No connection
15	Ground	16	ATX power enable (active low)
17	Ground	18	Ground
19	Ground	20	No connection
21	+5.0V (main power)	22	+5.0V (main power)
23	+5.0V (main power)	24	Ground

CPU 1 PCI EXPRESS SLOTS

J6100 / J6200			
Pin	Function	Pin	Function
A1	Ground	B1	+12V (main power)
A2	+12V (main power)	B2	+12V (main power)
A3	+12V (main power)	B3	+12V (main power)
A4	Ground	B4	Ground
A5	JTAG TCK (N/C, pull down)	B5	SMBus Clock

 $\ensuremath{\mathbb{C}}$ 2017 - 2018 Raptor Computing Systems, LLC All Rights Reserved

A6	JTAG TDI (N/C, +3.3V pull up)	B6	SMBus Data
A7	JTAG TDO (N/C)	B7	Ground
A8	JTAG TMS (N/C, +3.3V pull up)	B8	+3.3V (main power)
A9	+3.3V (main power)	B9	JTAG TRST (N/C, pull down)
A10	+3.3V (main power)	B10	+3.3V (standby power)
A11	PE Reset (active low)	B11	Wake (active low)
A12	Ground	B12	Reserved (N/C)
A13	Differential clock (P)	B13	Ground
A14	Differential clock (N)	B14	Lane 0 TX (P)
A15	Ground	B15	Lane 0 TX (N)
A16	Lane 0 RX (N)	B16	Ground
A17	Lane 0 RX (P)	B17	Presence detect (active low)
A18	Ground	B18	Ground
A19	Reserved (N/C)	B19	Lane 1 TX (P)
A20	Ground	B20	Lane 1 TX (N)
A21	Lane 1 RX (N)	B21	Ground
A22	Lane 1 RX (P)	B22	Ground
A23	Ground	B23	Lane 2 TX (P)
A24	Ground	B24	Lane 2 TX (N)
A25	Lane 2 RX (N)	B25	Ground
A26	Lane 2 RX (P)	B26	Ground
A27	Ground	B27	Lane 3 TX (P)
A28	Ground	B28	Lane 3 TX (N)
A29	Lane 3 RX (N)	B29	Ground
A30	Lane 3 RX (P)	B30	Reserved (N/C)
A31	Ground	B31	Presence detect (active low)
A32	Reserved (N/C)	B32	Ground
A33	Reserved (N/C)	B33	Lane 4 TX (P)
A34	Ground	B34	Lane 4 TX (N)
A35	Lane 4 RX (N)	B35	Ground
A36	Lane 4 RX (P)	B36	Ground
A37	Ground	B37	Lane 5 TX (P)
A38	Ground	B38	Lane 5 TX (N)
A39	Lane 5 RX (N)	B39	Ground
A40	Lane 5 RX (P)	B40	Ground
A41	Ground	B41	Lane 6 TX (P)

 $\ensuremath{\mathbb{C}}$ 2017 - 2018 Raptor Computing Systems, LLC All Rights Reserved

A42	Ground	B42	Lane 6 TX (N)
A43	Lane 6 RX (N)	B43	Ground
A44	Lane 6 RX (P)	B44	Ground
A45	Ground	B45	Lane 7 TX (P)
A46	Ground	B46	Lane 7 TX (N)
A47	Lane 7 RX (N)	B47	Ground
A48	Lane 7 RX (P)	B48	Presence detect (active low)
A49	Ground	B49	Ground
A50	Reserved (N/C)	B50	Lane 8 TX (P)
A51	Ground	B51	Lane 8 TX (N)
A52	Lane 8 RX (N)	B52	Ground
A53	Lane 8 RX (P)	B53	Ground
A54	Ground	B54	Lane 9 TX (P)
A55	Ground	B55	Lane 9 TX (N)
A56	Lane 9 RX (N)	B56	Ground
A57	Lane 9 RX (P)	B57	Ground
A58	Ground	B58	Lane 10 TX (P)
A59	Ground	B59	Lane 10 TX (N)
A60	Lane 10 RX (N)	B60	Ground
A61	Lane 10 RX (P)	B61	Ground
A62	Ground	B62	Lane 11 TX (P)
A63	Ground	B63	Lane 11 TX (N)
A64	Lane 11 RX (N)	B64	Ground
A65	Lane 11 RX (P)	B65	Ground
A66	Ground	B66	Lane 12 TX (P)
A67	Ground	B67	Lane 12 TX (N)
A68	Lane 12 RX (N)	B68	Ground
A69	Lane 12 RX (P)	B69	Ground
A70	Ground	B70	Lane 13 TX (P)
A71	Ground	B71	Lane 13 TX (N)
A72	Lane 13 RX (N)	B72	Ground
A73	Lane 13 RX (P)	B73	Ground
A74	Ground	B74	Lane 14 TX (P)
A75	Ground	B75	Lane 14 TX (N)
A76	Lane 14 RX (N)	B76	Ground
A77	Lane 14 RX (P)	B77	Ground

 $\ensuremath{\mathbb{C}}$ 2017 - 2018 Raptor Computing Systems, LLC All Rights Reserved

A78	Ground	B78	Lane 15 TX (P)
A79	Ground	B79	Lane 15 TX (N)
A80	Lane 15 RX (N)	B80	Ground
A81	Lane 15 RX (P)	B81	Presence detect (active low)
A82	Ground	B82	Reserved (N/C)

CPU 2 PCI EXPRESS SLOTS

J6300 / J6400 / J6500				
Pin	Function	Pin	Function	
A1	Ground	B1	+12V (main power)	
A2	+12V (main power)	B2	+12V (main power)	
A3	+12V (main power)	B3	+12V (main power)	
A4	Ground	B4	Ground	
A5	JTAG TCK (N/C, pull down)	B5	SMBus Clock	
A6	JTAG TDI (N/C, +3.3V pull up)	B6	SMBus Data	
A7	JTAG TDO (N/C)	B7	Ground	
A8	JTAG TMS (N/C, +3.3V pull up)	B8	+3.3V (main power)	
A9	+3.3V (main power)	B9	JTAG TRST (N/C, pull down)	
A10	+3.3V (main power)	B10	+3.3V (standby power)	
A11	PE Reset (active low)	B11	Wake (active low)	
A12	Ground	B12	Reserved (N/C)	
A13	Differential clock (P)	B13	Ground	
A14	Differential clock (N)	B14	Lane 0 TX (P)	
A15	Ground	B15	Lane 0 TX (N)	
A16	Lane 0 RX (N)	B16	Ground	
A17	Lane 0 RX (P)	B17	Presence detect (active low)	
A18	Ground	B18	Ground	
A19	Reserved (N/C)	B19	Lane 1 TX (P)	
A20	Ground	B20	Lane 1 TX (N)	
A21	Lane 1 RX (N)	B21	Ground	
A22	Lane 1 RX (P)	B22	Ground	
A23	Ground	B23	Lane 2 TX (P)	
A24	Ground	B24	Lane 2 TX (N)	
A25	Lane 2 RX (N)	B25	Ground	
A26	Lane 2 RX (P)	B26	Ground	
A27	Ground	B27	Lane 3 TX (P)	
A28	Ground	B28	Lane 3 TX (N)	
A29	Lane 3 RX (N)	B29	Ground	
A30	Lane 3 RX (P)	B30	Reserved (N/C)	
A31	Ground	B31	Presence detect (active low)	
A32	Reserved (N/C)	B32	Ground	

A33	Reserved (N/C)	B33	Lane 4 TX (P)
A34	Ground	B34	Lane 4 TX (N)
A35	Lane 4 RX (N)	B35	Ground
A36	Lane 4 RX (P)	B36	Ground
A37	Ground	B37	Lane 5 TX (P)
A38	Ground	B38	Lane 5 TX (N)
A39	Lane 5 RX (N)	B39	Ground
A40	Lane 5 RX (P)	B40	Ground
A41	Ground	B41	Lane 6 TX (P)
A42	Ground	B42	Lane 6 TX (N)
A43	Lane 6 RX (N)	B43	Ground
A44	Lane 6 RX (P)	B44	Ground
A45	Ground	B45	Lane 7 TX (P)
A46	Ground	B46	Lane 7 TX (N)
A47	Lane 7 RX (N)	B47	Ground
A48	Lane 7 RX (P)	B48	Presence detect (active low)
A49	Ground	B49	Ground
A50	Reserved (N/C)	B50	Lane 8 TX (P)
A51	Ground	B51	Lane 8 TX (N)
A52	Lane 8 RX (N)	B52	Ground
A53	Lane 8 RX (P)	B53	Ground
A54	Ground	B54	Lane 9 TX (P)
A55	Ground	B55	Lane 9 TX (N)
A56	Lane 9 RX (N)	B56	Ground
A57	Lane 9 RX (P)	B57	Ground
A58	Ground	B58	Lane 10 TX (P)
A59	Ground	B59	Lane 10 TX (N)
A60	Lane 10 RX (N)	B60	Ground
A61	Lane 10 RX (P)	B61	Ground
A62	Ground	B62	Lane 11 TX (P)
A63	Ground	B63	Lane 11 TX (N)
A64	Lane 11 RX (N)	B64	Ground
A65	Lane 11 RX (P)	B65	Ground
A66	Ground	B66	Lane 12 TX (P)
A67	Ground	B67	Lane 12 TX (N)
A68	Lane 12 RX (N)	B68	Ground

 $\ensuremath{\mathbb{C}}$ 2017 - 2018 Raptor Computing Systems, LLC All Rights Reserved

A69	Lane 12 RX (P)	B69	Ground
A70	Ground	B70	Lane 13 TX (P)
A71	Ground	B71	Lane 13 TX (N)
A72	Lane 13 RX (N)	B72	Ground
A73	Lane 13 RX (P)	B73	Ground
A74	Ground	B74	Lane 14 TX (P)
A75	Ground	B75	Lane 14 TX (N)
A76	Lane 14 RX (N)	B76	Ground
A77	Lane 14 RX (P)	B77	Ground
A78	Ground	B78	Lane 15 TX (P)
A79	Ground	B79	Lane 15 TX (N)
A80	Lane 15 RX (N)	B80	Ground
A81	Lane 15 RX (P)	B81	Presence detect (active low)
A82	Ground	B82	Reserved (N/C)

MICRO PCIE CONNECTOR

J10108			
Pin	Function	Pin	Function
A1	+3.3V (main power)	B1	N/C (reserved)
A2	Ground	B2	Ground
A3	Lane 0 RX (P)	B3	Lane 0 TX (P)
A4	Lane 0 RX (N)	B4	Lane 0 TX (N)
A5	Ground	B5	Ground

 $\ensuremath{\mathbb{C}}$ 2017 - 2018 Raptor Computing Systems, LLC All Rights Reserved

A6	Lane 1 RX (P)	B6	Lane 1 TX (P)
A7	Lane 1 RX (N)	B7	Lane 1 TX (N)
A8	Ground	B8	Ground
A9	N/C (SCL)	B9	N/C (BP Type)
A10	N/C (SDA)	B10	N/C (Wake)
A11	Ground	B11	Ground
A12	PE Reset (active low)	B12	Differential clock (P)
A13	Presence detect (active low)	B13	Differential clock (N)
A14	Ground	B14	Ground
A15	Lane 2 RX (N)	B15	Lane 2 TX (P)
A16	Lane 2 RX (P)	B16	Lane 2 TX (N)
A17	Ground	B17	Ground
A18	Lane 3 RX (P)	B18	Lane 3 TX (P)
A19	Lane 3 RX (N)	B19	Lane 3 TX (N)
A20	Ground	B20	Ground
A21	N/C (reserved)	B21	+3.3V (main power)

CPU 1 FAN HEADER

J7905			
Pin	Function	Pin	Function
1	Ground	2	+12V (main power)
3	Tachometer input	4	PWM output

CPU 2 FAN HEADER

J7904			
Pin	Function	Pin	Function
1	Ground	2	+12V (main power)
3	Tachometer input	4	PWM output

PRIMARY CHASSIS FAN HEADERS

J7900 / J7901 / J7902 / J7903				
Pin	Function	Pin	Function	
1	Ground	2	+12V (main power)	
3	Tachometer input	4	PWM output	

SECONDARY CHASSIS FAN HEADER

J10110			
Pin	Function	Pin	Function
1	Ground	2	+12V (main power)
3	Tachometer input	4	PWM output

Fan Zones

CONNECTIONS

The T2P9D01 supports three separate fan zones:

Zone 1: CPU 1 (1 fan) Zone 2: CPU 2 (1 fan) Zone 3: Chassis (4 fans, fifth connector not monitored)

NOTE: At least one chassis fan providing airflow over the mainboard surface is strongly recommended. A minimum of 7CFM airflow over the SAS controller heatsink is required if the SAS controller option has been installed on the mainboard. Failure to provide adequate airflow over the SAS controller heatsink may result in system instability and premature failure.

ALGORITHM DESCRIPTION

The stock fan control algorithm detects the presence or absence of CPU 2; if CPU 2 is missing, all fan controls for Zone 2 are deactivated and the Zone 2 fan headers are configured to run any attached fans at full speed.

On initial powerup, the functionality of all attached fans in each zone is tested. If any zone lacks at least one connected or functional fan, an alert will be set for that zone and all fans within the zone will be set to full speed. The CPU fans have additional cross-failure logic that will set the opposite CPU fan to full speed if one of the CPU fans is disconnected or is non-functional in a dual-CPU system.

If a fan fails during system operation, an alert will be set for that zone and all fans within the zone will be set to full speed. The CPU fans have additional cross-failure logic that will set the opposite CPU fan to full speed if one of the CPU fans fails in a dual-CPU system.

The T2P9D01 factory setpoint for CPU core temperature is 50°C, and the system will attempt to maintain the cores at that temperature even under light or no load. As a result, a lightly loaded system may not benefit from air drawn over the CPU heatsink(s), and mainboard / peripheral cooling predominantly comes from chassis fans in this situation. For this reason, it is important to connect at least one chassis fan providing airflow over the mainboard surface in order to provide cooling for memory modules and other active components.

Usage

INITIAL POWER-ON

When first applying standby power to the T2P9D01, i.e., when the system is plugged in after being disconnected from power, the internal BMC needs to boot before any other operation request will be accepted. The status of this BMC boot is indicated by two front panel LED patterns:

Illustration 9: BMC Boot Phase 1

Illustration 10: BMC Boot Phase 2

When these patterns have been replaced by normal front panel operation, the system is ready to accept commands.

There are two primary methods of interacting with the OpenPOWER bootloader, serial and graphical. By default, the rear serial port is an active serial console during the IPL process; it may be accessed either via a terminal running at 115,200 baud or via the obmc-console-client application on the BMC. Alternatively, the integrated VGA port and/or any discrete GPUs supported by the internal Linux kernel will allow interaction with the bootloader.

With your choice of peripherals connected for bootloader menu access, press the power button on your chassis. Within a few seconds the system should initiate the IPL cycle, and in about 10 seconds the front panel will start showing IPL status information on the ID / NIC1 / NIC2 LEDs. This front panel status information will override normal front panel indicators until IPL has completed, at which point the system will also emit one short beep to indicate IPL completion.

SELECTING A BOOT MEDIUM

After IPL has completed, you will be presented with the Petitboot main menu. If this system has already been configured with a supported operating system, a boot countdown will start. Pressing any key will abort this countdown and allow interaction with the boot menu. Petitboot currently supports a wide variety of boot media, from TFTP sources to NVMe storage and local SATA / SAS devices; any connected media with a compatible boot structure will be automatically detected and added to the list of boot options.

To select an option, use the arrow keys to move the highlighted entry, then press <Return> to select the highlighted entry. Note that depending on your selected boot medium, you may need to edit the Linux command line parameters before booting via the "e" command. Most current ppc64/ppc64el boot media assumes that the serial console will be the primary method of early and low level I/O; if you are not using the serial console, you may need to adjust the console parameter of the Linux command line appropriately.

BMC ACCESS

Certain operations require BMC access to execute. The T2P9D01 BMC is attached to network port 1 via NCSI, and is configured to request an IP address via DHCP. Once it is connected and has a valid IP address, you can log in via SSH using the following default credentials:

Username: root Password: 0penBmc

NOTE: It is strongly recommended that you change this default password immediately after login via the passwd command on the BMC.

HOST FIRMWARE UPDATES

Host firmware updates are controlled by the BMC. To update firmware, power down the host system but leave the system connected to wall power. Transfer the PNOR image to the BMC /tmp/ directory using scp, then execute pflash -E -p /tmp/<filename>.pnor to update the host firmware.

BMC FIRMWARE UPDATES

BMC firmware updates are controlled by the BMC. To update firmware, power down the host system but leave

© 2017 - 2018 Raptor Computing Systems, LLC All Rights Reserved

the system connected to wall power. Transfer the BMC firmware image to the BMC /tmp/ directory using scp, then execute pflash -b -E -p /tmp/<filename>.pnor to update the BMC firmware.

NOTE: When updating early revisions of the BMC firmware, and to a lesser degree during any BMC firmware update, there is a possibility that the update process may result in a non-functional BMC. Recovery of the BMC in this situation would requiring external programming of the socketed BMC Flash ROM, so it may be useful to have an external programming method available before attempting to update the BMC firmware.

Support

GETTING HELP

If you require assistance operating your T2P9D01, you may contact Raptor Computing Systems technical support directly at <u>support@raptorcs.com</u>. Alternatively, we also have a Wiki and other support resources available online at <u>https://www.raptorcs.com</u>; the information you require may already be available on one of these resources.

Errata

PCB VERSION 1.00

ER0001

 μ PCIe connector (J10108) is incorrectly identified as OCuLink (SFF-8621) due to errors that were discovered post-production in IBM OpenPOWER reference designs. While the physical connector is the same as OCuLink ports, the wiring is different, notably in the presence detect / clocking pins. As such, while an OCuLink peripheral is unlikely to be damaged by being plugged in to the μ PCIe port, it will not function while attached.

ER0002

No reference clock is available to the on-board control FPGA while in power state S5. An internal ring oscillator may be used to work around this limitation.

PCB VERSION 1.01

ER0001

 μ PCIe connector (J10108) is incorrectly identified as OCuLink (SFF-8621) due to errors that were discovered post-production in IBM OpenPOWER reference designs. While the physical connector is the same as OCuLink ports, the wiring is different, notably in the presence detect / clocking pins. As such, while an OCuLink peripheral is unlikely to be damaged by being plugged in to the μ PCIe port, it will not function while attached.