
���®

Power ISA™
Transactional Memory

December 12, 2012

Brad
Typewritten Text

Power ISA *** Preliminary *** Version 2.07

Power ISA™ ii

Brad
Text Box
The specifications in this RFC publication are preliminary and subject to change without notice. Periodic changes to this publication may be incorporated in new additions or supplements to this publication. This publication is provided “AS IS” and IBM Corporation makes no warranty of any kind, expressed or implied, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.IBM® and POWER® are trademarks of IBM Corp., registered in many jurisdictions worldwide. Notice to U.S. Government Users—Documentation Related to Restricted Rights—Use, duplication or disclosure is subject to restrictions set fourth in GSA ADP Schedule Contract with IBM Corporation.© Copyright International Business Machines Corporation, 1994, 2012. All rights reserved.

PRELIM
IN

ARY

 RFC02183: Transactional Memory

Power ISA *** Preliminary *** Version 2.07

1

RFC02183: Transactional Memory

Significance: Major

Status: New

Date: December 12, 2012
Target Version: 2.07
Source Version: 2.06
Books and sections affected:
Book 1:

Section 1.4.5 Categories
Section 2.2 Instruction Execution Order
Section 2.3.1 Condition Register
Section 3.2.2 Fixed-Point Exception Register
Section 3.3.18 Move To/From System Register
Instructions

Book 2:
Section 1.1 Definitions
Section 1.7.3.1 Reservations
Section 1.7+ Transactions [Category: Transac-
tional Memory]
Section 4.1 Parameters Useful to Application Pro-
grams
Section 4.3.2 Data Cache Instructions
Section 4.4.3 Memory Barrier Instructions
Chapter 7+ Transactional Memory Facility [Cate-
gory: Transactional Memory]
Section B.3+ Transactional Lock Elision [Category:
Transactional Memory]

Book 3-S:
Section 2.6 Processor Compatibility Register
Section 3.2.1 Machine State Register
Section 3.2.1+ State Transitions Associated with
the Transactional Memory Facility [Category:
Transactional Memory]
Section 3.3.1 System Linkage Instructions
Section 3.3.2 Power-Saving Mode Instructions
Section 4.4.2+ Transactional Memory Instructions
[Category: Transactional Memory]
Section 4.4.3 Move To/From System Register
Instructions
Section 5.7.8: Reference and Change Record-
ingTo convey that transactional accesses are per-
mitted to modify R/C/TS bits before the transaction
commits, and even if the transaction fails, make
the following changes in Figure 25:
Section 5.9.3.1 SLB Management Instructions
Section 5.9.3.3 TLB Management Instructions
Section 5.10.1 Page Table Updates

Sectino 6.4.3 Interrupt Processing
Section 6.5 Interrupt Definitions
Section 6.5.9 Program Interrupt
Section 6.5.14 Trace Interrupt [Category: Trace]
Section 6.5.21+ Facility Unavailable Interrupt
Section 6.7 Exception Ordering
Section 6.7 Exception Ordering
Section 6.8 Interrupt Priorities

Appendices:
Appendix C. Platform Support Requirements
Appendix D. Complete SPR List
Appendices G-J Opcode Map and Lists

Summary:

Transactional memory is a shared-memory synchroni-
zation construct allowing an application to perform a
sequence of storage accesses that appear to occur
atomically with respect to other threads.

Motivation
As systems include increasing levels of multiprocess-
ing, and power constraints gate the performance
improvements obtainable from frequency scaling, fur-
ther performance gains are dependent on finding and
exploiting parallelism. The described transactional
memory architecture is motivated by several software
usage cases, each involving optimistic execution as a
means of exposing parallelism.

1. Optimistic execution of lock-based programs.
Through speculative execution, the transactional
facility will be used to execute lock-based critical
sections without acquiring a lock, providing the
benefits of fine-grain locking to applications whose
locking protocols have not been carefully tuned for
performance.

2. Transactional programming in high-level lan-
guages. The transactional programming model is
an evolving industry-wide standard, offering pro-
grammer productivity advantages relative to lock-
based shared memory programs. The Power ISA
extensions described here will ensure that Power
systems are competitive in support for this pro-
gramming model.

3. Checkpoint/Rollback usage. This architecture
will be used by some applications for its ability to

PRELIM
IN

ARY

Power ISA *** Preliminary *** Version 2.07

Power ISA™2

checkpoint and restore architectural state, inde-
pendent of its atomic storage access guarantees.

.

Changes to the Books

Book 1:
Section 1.4.5 Categories

Add “Transactional Memory”, abbreviation “TM”, notes
“Full hardware Transactional Memory support” to the
table after Trace.

Section 2.2 Instruction Execution Order

Insert a new third bullet in the first bulleted list, adding
transaction failure to the list of things that can cause
instruction fetching to be redirected.

-------------------------- Begin text --------------------------------

In general, instructions appear to execute sequentially,
in the order in which they appear in storage. The
exceptions to this rule are listed below.

Branch instructions for which the branch is taken
cause execution to continue at the target address
specified by the Branch instruction.

Trap instructions for which the trap conditions are
satisfied, and System Call instructions, cause the
appropriate system handler to be invoked.

Transaction failure will eventually cause the trans-
action’s failure handler, implied by the tbegin.
instruction, to be invoked. See the programming
note following the tbegin. description in Section
8.5.

Exceptions can cause the system error handler to
be invoked, as described in Section 1.10, “Excep-
tions” on page 23.

Returning from a system service program, system
trap handler, or system error handler causes exe-
cution to continue at a specified address.

---------------------------- End text --------------------------------

Section 2.3.1 Condition Register

Extend the current 6th bullet to include tcheck. (NOTE
THAT OTHER RFCs ALSO CHANGE THIS LIST.)

-------------------------- Begin text --------------------------------

The bits in the Condition Register are grouped into
eight 4-bit fields, named CR Field 0 (CR0), ..., CR Field
7 (CR7), which are set in one of the following ways.

Specified fields of the CR can be set by a move to
the CR from a GPR (mtcrf, mtocrf).
A specified field of the CR can be set by a move to
the CR from another CR field (mcrf), from
XER32:35 (mcrxr), or from the FPSCR (mcrfs).

CR Field 0 can be set as the implicit result of a
fixed-point instruction.
CR Field 1 can be set as the implicit result of a
floating-point instruction.
CR Field 6 can be set as the implicit result of a
vector instruction.
A specified CR field can be set as the result of a
Compare instruction or of a tcheck instruction (see
Book II).
CR Field 1 can be set as the implicit result of a
decimal floating-point instruction.

---------------------------- End text --------------------------------

Insert the following text before the store conditional
paragraph, describing how TM instructions set the CR.

-------------------------- Begin text --------------------------------

With the exception of tcheck , the Transactional Mem-
ory instructions set CR00:2 indicating the state of the
facility prior to instruction execution, or transaction fail-
ure. A complete description of the meaning of these
bits is given in the instruction descriptions in <insert
crossref to TM description (Book II, Section 8.5?)>.
These bits are interpreted as follows:

The tcheck instruction similarly sets bits 1 and 2 of CR
field BF to indicate the transaction state, and addition-
ally sets bit 0 to TDOOMED, as defined in <insert cross
ref to TM description (Section 8.2.1?)>.

---------------------------- End text --------------------------------

CR0 Description

000 || 0 Transaction state of Non-transactional prior
to instruction

010 || 0 Transaction state of Transactional prior to
instruction

001 || 0 Transaction state of Suspended prior to
instruction

101 || 0 Transaction failure

CR field BF Description

TDOOMED || 00 || 0 Transaction state of Non-trans-
actional prior to instruction

TDOOMED || 10 || 0 Transaction state of Transac-
tional prior to instruction

TDOOMED || 01 || 0 Transaction state of Sus-
pended prior to instruction

Setting of bit 3 of the specified CR field to zero by
tcheck and of field CR03 to zero by other TM
instructions is intended to preserve these bits for
future function. Software should not depend on the
bits being zero.

Programming Note

PRELIM
IN

ARY

 RFC02183: Transactional Memory

Power ISA *** Preliminary *** Version 2.07

3

Section 3.2.2 Fixed-Point Exception Register

Modify the description of FXCC to include tcheck.

-------------------------- Begin text --------------------------------

---------------------------- End text --------------------------------

Section 3.3.18 Move To/From System Register
Instructions

Add TFHAR, TFIAR, TEXASR, and TEXASRU to the
mtspr table.

Near the end of the mtspr description, add a statement
that a move to a TM SPR in other than Non-transac-
tional state causes a TM Bad Thing type Program inter-
rupt.

-------------------------- Begin text --------------------------------

If execution of this instruction is attempted specifying
an SPR number that is not shown above, or an SPR
number that is shown above but is in a category that is
not supported by the implementation, one of the follow-
ing occurs.

If spr0 = 0, the illegal instruction error handler is
invoked.
If spr0 = 1, the system privileged instruction error
handler is invoked.

If an attempt is made to execute mtspr specifying a TM
SPR in other than Non-transactional state, a TM Bad
Thing type Program interrupt is generated.

A complete description of this instruction can be found
in Book III.

Special Registers Altered:
See above

---------------------------- End text --------------------------------

Zero the output for mfspr specifying the TFIAR when
executed from a privilege level lower than that in which
the TFIAR was set. Add TFHAR, TFIAR, TEXASR,
and TEXASRU to the mfspr table.

-------------------------- Begin text --------------------------------

Move From Special Purpose Register
XFX-form

mfspr RT,SPR

n spr5:9 || spr0:4
if n = 129 then see Book III-S
else
 if length(SPR(n)) = 64 then
 RT SPR(n)
 else
 RT 320 || SPR(n)

The SPR field denotes a Special Purpose Register,
encoded as shown in the table below. If the SPR field
contains 129, the instruction references the Transac-
tion Failure Instruction Address Register (TFIAR)<TM>
and the result is dependent on the privilege with which
it is executed. See Book III-S. Otherwise, the contents
of the designated Special Purpose Register are placed
into register RT. For Special Purpose Registers that are
32 bits long, the low-order 32 bits of RT receive the
contents of the Special Purpose Register and the high-
order 32 bits of RT are set to zero.

decimal SPR1 Register
Name spr5:9 spr0:4

1 00000 00001 XER
8 00000 01000 LR
9 00000 01001 CTR

13 00000 01101 AMR5

128 00100 00000 TFHAR5

129 00100 00001 TFIAR5

130 00100 00010 TEXASR5

131 00100 00011 TEXASRU5

256 01000 00000 VRSAVE
512 10000 00000 SPEFSCR2

896 11100 00000 PPR3

898 11100 00010 PPR324
1 Note that the order of the two 5-bit halves

of the SPR number is reversed.
2 Category: SPE.
3 Category: Server; see Book III-S.
4 Category: Phased-In. See Section 3.1 of

Book II.
5 Category: Transactional Memory. See

<crossref to Bk2 Ch 7+>.

31 RT spr 339 /
0 6 11 21 31

decimal SPR1

 spr5:9 spr0:4
Register

Name
1 00000 00001 XER
8 00000 01000 LR
9 00000 01001 CTR
13 00000 01101 AMR8

128 00100 00000 TFHAR8

129 00100 00001 TFIAR8

130 00100 00010 TEXASR8

131 00100 00011 TEXASRU8

136 00100 01000 CTRL
256 01000 00000 VRSAVE
259 01000 00011 SPRG3
260 01000 00100 SPRG42

1 Note that the order of the two 5-bit halves
of the SPR number is reversed.

2 Category: Embedded.
3 See Chapter 5 of Book II.
4 Category: SPE.
5 Category: Alternate Time Base.
6 Category: Server; see Book III-S.
7 Category: Phased-In. See Section 3.1 of

Book II.
8 Category: Transactional Memory. See

<crossref to Bk2 Ch 7+>.

PRELIM
IN

ARY

Power ISA *** Preliminary *** Version 2.07

Power ISA™4

---------------------------- End text --------------------------------

Book 2:
Section 1.1 Definitions

Add transaction failure to the list of causes of deviation
from the sequential execution model.

-------------------------- Begin text --------------------------------

program order
The execution of instructions in the order required
by the sequential execution model. (See
Section 2.2 of Book I.) A dcbz instruction that
modifies storage which contains instructions has
the same effect with respect to the sequential exe-
cution model as a Store instruction as described
there. An additional exception to the sequential
execution model beyond those described in Book I
is caused by transaction failure (see <crossref to
description of transaction failure handling>).

---------------------------- End text --------------------------------

Add the definition of aggregate store as a new bullet at
the end of the section.

-------------------------- Begin text --------------------------------

aggregate store
The set of stores caused by a successful transac-
tion, which are performed as an atomic unit.

---------------------------- End text --------------------------------

Section 1.7.3.1 Reservations

Rather than continue to maintain the classification of
the causes of reservation loss in the second sentence
of the third paragraph, replace that sentence as follows.

-------------------------- Begin text --------------------------------

A processor has at most one reservation at any time. A
reservation is established by executing a lbarx, lharx,
lwarx, or ldarx instruction, as described in item 1
below, and is lost or may be lost, depending on the
item, if any of the following occur. Items 1-8 apply only
if the relevant access is performed. (For example, an
access that would ordinarily be caused by an instruc-
tion might not be performed if the instruction causes the
system error handler to be invoked.)

---------------------------- End text --------------------------------

Add the following as a new third item in the list of
causes of reservation loss.

-------------------------- Begin text --------------------------------
4. <TM> Any of the following occurs on the processor

holding the reservation.
a. The transaction state changes (from Non-

transactional, Transactional, or Suspended
state to one of the other two states; see
Section 8.2, “Transactional Memory Facility
States”), except in the following cases

If the change is from Transactional
state to Suspended state, the reserva-
tion is not lost.
If the change is from Suspended state
to Transactional state, the reservation
is not lost if it was established in Trans-
actional state.
If the change is caused by a treclaim.
or trechkpt. instruction, whether the
reservation is lost is undefined.

b. The transaction nesting depth (see
Section 8.4, “Transactional Memory Facility
Registers”) changes; whether the reserva-
tion is lost is undefined. (This item applies
only if the processor is in Transactional
state both before and after the change.)

c. The processor is in Suspended state and
executes a Store Conditional instruction
(stbcx., sthcx., stwcx., or stdcx.) or a
waitrsv instruction; the reservation is lost if
it was established in Transactional state. In
this case the Store Conditional instruction’s
store is not performed, and the waitrsv
does not wait. (For Store Conditional, the
reservation is also lost if it was established
in Suspended state; see item 2.)

---------------------------- End text --------------------------------

Section 1.7+ Transactions [Category: Transactional
Memory]

Add the following section before the section on instruc-
tion storage.

261 01000 00101 SPRG52

262 01000 00110 SPRG62

263 01000 00111 SPRG72

268 01000 01100 TB3

269 01000 01101 TBU3

512 10000 00000 SPEFSCR4

526 10000 01110 ATB3,5

527 10000 01111 ATBU3,5

896 11100 00000 PPR6

898 11100 00010 PPR327

decimal SPR1

 spr5:9 spr0:4
Register

Name

1 Note that the order of the two 5-bit halves
of the SPR number is reversed.

2 Category: Embedded.
3 See Chapter 5 of Book II.
4 Category: SPE.
5 Category: Alternate Time Base.
6 Category: Server; see Book III-S.
7 Category: Phased-In. See Section 3.1 of

Book II.
8 Category: Transactional Memory. See

<crossref to Bk2 Ch 7+>.

PRELIM
IN

ARY

 RFC02183: Transactional Memory

Power ISA *** Preliminary *** Version 2.07

5

-------------------------- Begin text --------------------------------

A transaction is a group of instructions that collectively
have unique storage access behavior intended to facili-
tate parallel programming. (It is possible to nest trans-
actions within one another. The description in this
chapter will ignore nesting because it does not have a
significant impact on the properties of the memory
model. Nesting and its consequences will be described
elsewhere.) Sequences of instructions that are part of
the transaction may be interleaved with sequences of
Suspended state instructions that are not part of the
transaction. A transaction is said to succeed or to fail,
and failure may happen before all of the instructions in
the transaction have completed. If the transaction fails,
it is as if the instructions that are part of the transaction
were never executed. If the transaction succeeds, it
appears to execute as an atomic unit as viewed by
other processors and mechanisms. (Although the
transaction appears to execute atomically, some knowl-
edge of the inner workings will be necessary to avoid
apparent paradoxes in the rest of the model. These
details are described below.) The execution of Sus-
pended state sequences have the same effect that the
sequence would have in the absence of a transaction,
independent of the success or failure of the transaction,
including accessing storage according to the weakly
consistent storage model or SAO, based on storage
attributes. Upon failure, normal execution continues at
the failure handler. Except for the rollback of the
effects of transactional instructions upon transaction
failure, as viewed by the executing thread, the inter-
leaved sequences of Transactional and Suspended
state instructions appear to execute according to the
sequential execution model. See <cross ref to bk2
ch7+> for more details. The unique attributes of the
storage model for transactions are described below.

Transaction processing does not support the rollback of
operations on the reservation mechanism. To prevent
this possibility, a reservation is lost as a result of a state
change from Transactional to Non-transactional or
Non-transactional to Transactional. It is possible to
successfully complete an atomic update in Transac-
tional state, though such a sequence would have no
benefit. It is also possible to complete an atomic
update in Suspended state, or straddling an interval in
Suspended state if Suspended state is entered via an
interrupt or tsuspend. and exited via tresume., , rfid,
hrfid, or mtmsrd. However, an atomic update will not
succeed if only one of the Load and Reserve / Store
Conditional instruction pair is executed in Suspended
state.

Successful transactions are serialized in some order,
and no processor or mechanism is able to observe the
accesses caused by any subset of these transactions
as occurring in an order that conflicts with this order.
Specifically, let processor i execute transactions 0,
1,…, j, j+1, …, where only successful transactions are
numbered, and the numbering reflects program order.
Let Tij be transaction j on processor i. Then there is an
ordering of the Tij such that no processor or mechanism
is able to observe the accesses caused by the transac-
tions Tij in an order that conflicts with this ordering.
Note that Suspended state storage accesses are not
included in the serialization property.

Because of the difference between a transaction’s
instantaneous appearance and the finite time required
to execute it in an implementation, it is exposed to
changes in memory management state in a way that is
not true for individual accesses. A change to the trans-
lation or protection state that would prevent any access

Note that if a Store Conditional instruction within a
transaction does not store, it may still be possible
for the transaction to succeed. Software must not
depend on the two operations having the same out-
come. For example, software must not use suc-
cess of an enclosing transaction as a replacement
for checking the condition code from a transac-
tional Store Conditional instruction.

Accessing storage locations in Suspended state
that have been accessed transactionally has the
potential to create apparent storage paradoxes.
Consider, for example, a case where variable X
has intial value zero, is updated transactionally to
one, is read in Suspended state, subsequently the
transaction fails, and variable X is read again. In
the absence of external conflicts, the observed
sequence of values will be zero, one, zero: old,
new, old.

Performing an atomic update on X in Suspended
state may be even more confusing. Suppose the
atomic sequence increments X, but that the only
way to have X=1 is via the transactional store that
occurs before entering Suspended state. The store
conditional, if it succeeds, will store X=2 and in so
doing, kill the transaction. But with the transaction
having failed, X was never equal to one.

The flexibility of the Suspended state programming
model can create unintuitive results. It must be
used with care.

The ordering of the Tij for a given i is consistent
with program order for processor i.

Programming Note

Programming Note

Programming Note

PRELIM
IN

ARY

Power ISA *** Preliminary *** Version 2.07

Power ISA™6

from taking place at any time during its processing for
the transaction compromises the integrity of the trans-
action. Any such change must either be prevented or
must cause the transaction to fail. The architecture will
automatically fail a transaction if the memory manage-
ment state change is accomplished using tlbie. An
implementation may overdetect such conflicts between
the tlbie and the transaction footprint. (Overdetection
may result from the technique used to detect the con-
flict. A bloom filter may be used, as an example. Sub-
sequent references to translation invalidation conflicts
implicitly include any cases of spurious overdetec-
tion.) Changes made in some other manner must be
managed by software, for example by explicitly abort-
ing any affected transactions. Examples of instructions
that require software management are tlbiel, slbie,
slbia, and tlbia.

The atomic nature of a transaction, together with the
cumulative memory barrier created by the transaction
and the memory barriers created by tbegin. and tend.
described below, has the potential to eliminate the
need for explicit memory barriers within the transaction,
and before and after the transaction as well. However,
since there may be a desire to preserve existing algo-
rithms while exploiting transactions, the interaction of
memory barriers and transactions is defined. In the
presence of transactions, storage access ordering is
the same as if no transactions are present, with the fol-
lowing exceptions. Memory barriers that are created
while the transaction is running (other than the inte-
grated cumulative barrier of the transaction described
below), data dependencies, and SAO do not order
transactional stores. Instead, transactional stores are
grouped together into an aggregate store, which is per-
formed as an atomic unit with respect to other proces-
sors and mechanisms when the transaction succeeds,
after all the transactional loads have been performed.
With this store behavior, the appearance of transac-
tional atomicity is created in a manner similarly to that
for a Load and Reserve / Store Conditional pair. Suc-
cess of the transaction is conditional on the storage
locations specified by the loads not having been stored
into by a more recent Suspended state store or by any
store by another processor or mechanism since the
load was performed. (There are additional conditions
for the success of transactions.)

The tbegin. instruction creates a memory barrier that
immediately precedes the transaction and orders stor-
age accesses pairwise, as follows. Let A and B be sets
of storage accesses as defined below. For each pair
aibj of storage accesses such that ai is in A and bj is in
B, the memory barrier ensures that ai will be performed
with respect to any processor or mechanism, to the
extent required by the associated Memory Coherence
Required attributes, before bj is performed with respect
to that processor or mechanism. Set A contains all
data accesses caused by instructions preceding the
tbegin. that are neither Write Through Required nor
Caching Inhibited. Set B contains all data accesses

caused by instructions following the tbegin., including
Suspended state accesses, that are neither Write
Through Required nor Caching Inhibited.

A successful transaction has an integrated memory
barrier behavior. When a processor (P1) executes a
tend. instruction and tend. processing determines that
the transaction will succeed, a memory barrier is cre-
ated, which orders storage accesses pairwise, as fol-
lows. Let A and B be sets of storage accesses as
defined below. For each pair aibj of storage accesses
such that ai is in A and bj is in B, the memory barrier
ensures that ai will be performed with respect to any
processor or mechanism, to the extent required by the
associated Memory Coherence Required attributes,
before bj is performed with respect to that processor or
mechanism. Set A contains all non-transactional data
accesses by other processors and mechanisms that
have been performed with respect to P1 before the
memory barrier is created and are neither Write
Through Required nor Caching Inhibited. Set B con-
tains the aggregate store and all non-transactional data
accesses by other processors and mechanisms that
are performed after a Load instruction executed by that
processor or mechanism has returned the value stored
by a store that is in set B. Note that the cumulative bar-
rier does not order Suspended state storage accesses
interleaved with the transaction.

A tend. instruction that ends a successful transaction
creates a memory barrier that immediately follows the
transaction and orders storage accesses pairwise, as
follows. Let A and B be sets of storage accesses as
defined below. For each pair aibj of storage accesses
such that ai is in A and bj is in B, the memory barrier
ensures that ai will be performed with respect to any
processor or mechanism, to the extent required by the
associated Memory Coherence Required attributes,
before bj is performed with respect to that processor or
mechanism. Set A contains all data accesses caused
by instructions preceding the tend., including Sus-
pended state accesses, that are neither Write Through
Required nor Caching Inhibited. Set B contains all data
accesses caused by instructions following the tend.
that are neither Write Through Required nor Caching
Inhibited.

Section 1.7+.1 Rollback-Only Transactions

A Rollback-Only Transaction (ROT) is a sequence of
instructions that is executed, or not, as a unit. The pur-
pose of the ROT is to enable bulk speculation of
instructions with minimum overhead. It leverages the
rollback mechanism that is invoked as part of transac-
tion failure handling, but has reduced overhead in that it
does not have the full atomic nature of the transaction
and its synchronization and serialization properties.
The absence of a (normal) transaction’s atomic quality
means that a ROT must not be used to manipulate
shared data.

PRELIM
IN

ARY

 RFC02183: Transactional Memory

Power ISA *** Preliminary *** Version 2.07

7

More specifically, a ROT differs from a normal transac-
tion as follows.

ROTs are not serialized.
There are no barriers created by tbegin. and tend.
A ROT has no integrated cumulative barrier.
There is no monitoring of storage locations speci-
fied by loads for modification by other processors
and mechanisms between the performing of the
loads and the completion of the ROT.
The stores that are included in the ROT need not
appear to be performed as an aggregate store.
(Implementations are likely to provide an aggre-
gate store appearance, but the correctness of the
program must not depend on the aggregate store
appearance.)

---------------------------- End text --------------------------------

Section 4.1 Parameters Useful to Application Pro-
grams

Add item 13 to the list: “Maximum transaction level”.

Section 4.3.2 Data Cache Instructions

Add a programming note at the end of the dcbst
description warning against treating it like dcbf.

-------------------------- Begin text --------------------------------

---------------------------- End text --------------------------------

Section 4.4.3 Memory Barrier Instructions

Add another pointer to the introductory material, point-
ing to the description of transaction behavior in
Bk2Ch1.

-------------------------- Begin text --------------------------------

The Memory Barrier instructions can be used to control
the order in which storage accesses are performed.
See <crossref to new sec 1.7+, Bk2> for a description
of how the Memory Barrier instructions interact with
transactions. Additional information about these
instructions and about related aspects of storage man-
agement can be found in Book III.

---------------------------- End text --------------------------------

Chapter 7+ Transactional Memory Facility [Category:
Transactional Memory]

Add a chapter describing TM at the end of Book 2.

-------------------------- Begin text --------------------------------

8.1 Transactional Memory Facil-
ity Overview
This chapter describes the registers and instructions
that make up the transactional memory (TM) facility.

Transactional memory is a shared-memory synchroni-
zation construct allowing an application to perform a
sequence of storage accesses that appear to occur
atomically with respect to other threads.

A set of instructions, special-purpose registers, and
state bits in the MSR (see Book III) are used to control
a transactional facility that is associated with each
hardware thread. A tbegin. instruction is used to ini-
tiate transactional execution, and a tend. instruction is
used to terminate transactional execution. Loads and
stores that occur between the tbegin. and tend.
instruction appear to occur atomically. An implementa-
tion may prematurely terminate transactional execution
for a variety of reasons, rolling back all transactional
storage updates that have been made by the thread
since the tbegin. was executed, and rolling back the
contents of a subset of the thread’s book I registers to
their contents before the tbegin. was executed. In the
event of such premature termination, control is trans-
ferred to a software failure handler associated with the
transaction, which may then retry the transaction or
choose an alternate path depending on the cause of
transaction failure. A transaction can be explicitly
aborted via a set of conditional abort instructions and
an unconditional abort instruction, tabort.. A tsr.
instruction is used to suspend or resume transactional
execution, while allowing the transaction to remain
active.

A tbegin. should always be followed immediately
by a beq as the first instruction of the failure han-
dler, that branches to the main body of the failure
handler. The failure handler should always either
retry the transaction or use non-transactional code
to perform the same operation. (The number of
retries should be limited to avoid the possibility of
an infinite loop. The limit could be based on the
perceived permanence / transience of the failure.)
A failure handler policy which includes trying a dif-
ferent transaction before returning to the one that
failed may fail to make forward progress.

The architecture does not include a “fairness guar-
antee” or a “forward progress” guarantee for trans-
actions. If two processors repeatedly conflict with
one another in an attempt to complete a transac-
tion, one of the two may always succeed while the
other may always fail. If two processors repeatedly
conflict with one another in an attempt to complete
a transaction, both may always fail, depending on
the details of the transaction. This is different from
the behavior of a typical locking routine, in which
one or the other of the competitors will generally
get the lock.

Programming Note

Programming Note

PRELIM
IN

ARY

Power ISA *** Preliminary *** Version 2.07

Power ISA™8

Transactions performed using this facility are “strongly
atomic”, meaning that they appear atomic with respect
to both transactional and non-transactional accesses
performed by other threads. Transactions are isolated
from reads and writes performed by other threads; i.e.
transactional reads and writes will not appear to be
interleaved with the reads and writes of other threads.

Nesting of transactions is supported using a form of
nesting called flattened nesting, in which transactions
that are initiated during transactional execution are
subsumed by the pre-existing transaction. Conse-
quently, the effects of a nested transaction do not
become visible until the outer transaction commits, and
if a nested transaction fails, the entire set of transac-
tions (outer as well as nested) is rolled back, and con-
trol is transferred to the outer transaction’s failure
handler. The barriers created by tbegin. and tend. and
the integrated cumulative barrier that are described in
<crossref to ch1 transaction description> are only cre-
ated for outer transactions and not any transactions
nested within them.

References to Store instructions, and stores, include
dcbz and the storage accesses that it causes.

Rollback-Only Transactions
Rollback-Only Transactions (ROTs) differ from nornal
transactions in that they are speculative but not atomic.
They are initated by a unique variant of tbegin. They
may be nested with other ROTs or with normal transac-
tions. When a normal transaction is nested within a
ROT, the behavior from the normal tbegin. until the end
of the outer transaction is characteristic of a normal
transaction. Although subject to failure from storage
conflicts, the typical cause of ROT failure is via a Tabort
variant that is executed after the program detects an
error in its (software) speculation. Except where specif-
ically differentiated or where differences follow from
specific differentiation, the following description applies
to ROTs as well as normal transactions.

8.1.1 Definitions
Commit: A transaction is said to commit when it suc-
cessfully completes execution. When a transaction is
committed, its transactional accesses become irrevo-
cable, and are made visible to other threads. A transac-
tion completes by either commiting or failing.

Speculative registers: The set of registers that are
saved when a transaction is initiated, and restored
upon transaction failure, is a subset of the architected
register state, consisting of the General Purpose Regis-
ters, Floating-Point Registers, Vector Registers, Vector-
Scalar Registers, and the following Special Registers
and fields: CR fields other than CR0, LR, CTR,
FPSCR, AMR, PPR, VRSAVE, VSCR, DSCR, and
TAR. This subset is referred to as the speculative reg-
ister state. The speculative register state includes all

problem-state writable registers with the exception of
CR0, , the performance monitor registers, and the
Transactional Memory registers. With the exception
updates of CR0 and the Transactional Memory regis-
ters, explicit updates of registers that are not included
in the set of speculative registers are disallowed in
Transactional state (i.e. will cause the transaction to
fail), but are permitted in Suspended state. Sus-
pended state modifications of these registers will not be
rolled back in the event of transaction failure. (Modifi-
cations of Transactional Memory registers are only per-
mitted in Non-transactional state. Attempts to modify
Transactional Memory registers in other than Non-
transactional state will cause a TM Bad Thing type Pro-
gram interrupt.)

Transactional accesses: Data accesses that are
caused by an instruction that is executed when the
thread is in the Transactional state (see Section 8.2)
are said to be transactional, or to have been performed
transactionally. The set of accesses caused by a com-
mitted normal transaction is performed as if it were a
single atomic access. That is, it is always performed in
its entirety with no visible fragmentation. The sets per-
formed by normal transactions are thus serialized: each
happens in its entirety in some order, even when that
order is not specified in the program or enforced
between processors. Until a transaction commits, its
set of transactional accesses is provisional, and will be
discarded should the transaction fail.

Non-transactional accesses: Storage accesses per-
formed in the existing Power® storage model are said to
be non-transactional. In contrast to transactional stor-
age accesses, there is no provision of atomicity across
multiple non-transactional accesses. Non-transac-
tional storage updates are not discarded in the event of
a transaction failure.

Outer transaction: A transaction that is initiated from
the Non-transactional state is said to be an outer trans-
action. A tbegin. instruction that initiates an outer
transaction is sometimes referred to as an outer tbe-
gin.. Similarly, a tend. instruction with A=0 that ends

CR0 and the Transactional Memory registers
(TFHAR, TEXASR, TFIAR) are not saved, or
restored when the transaction fails, because they
are modified as a side effect of transaction failure
(so restoring them would lose information needed
by the failure handler). The performance monitor
registers are not saved or restored because saving
and restoring them would add significant imple-
mentation complexity and is not needed by soft-
ware. Also, these registers can be modified
asynchronously by the processor, so restoring
them when the transaction fails could cause loss of
information.

Programming Note

PRELIM
IN

ARY

 RFC02183: Transactional Memory

Power ISA *** Preliminary *** Version 2.07

9

an outer transaction is sometimes referred to as an
outer tend..

Nested Transaction: A transaction that is initiated
while already executing a transaction is said to be
nested within the pre-existing transaction. The set of
active nested transactions forms a stack growing from
the outer transaction.

Failure: A transaction failure is an exceptional condi-
tion causing the set of transactional storage updates to
be discarded, and speculative registers to be reverted
to their pre-transactional values.

Failure handler: A failure handler is a software compo-
nent responsible for handling transaction failure. On
transaction failure, hardware redirects control to the
failure handler associated with the outer transaction.

Conflict: A transactional memory access is said to
conflict with another transactional or non-transactional
access if both accesses reference the same storage
block, and at least one of them is a store. If two trans-
actions make conflicting accesses, at least one of them
will fail. If a transaction fails as a result of a conflict with
a store, the store may have been executed by another
processor or may have been executed in Suspended
state by the processor with the failing transaction. For a
ROT, no conflict is caused if the ROT performs a load
and another program performs a non-transactional
store to the same block.

A transactional memory access is said to conflict with a
tlbie if the storage location being accessed is in the
page the translation for which is being invalidated by
the tlbie. For a ROT, no conflict is caused if the access
is a load.

A Suspended state cache control instruction is said to
cause a conflict if it would cause the destruction of a
transactional update or if it would make a transactional
update visible to another thread.

8.2 Transactional Memory Facil-
ity States
The transactional memory facility supports several
modes of operation, referred to in this document as the
transaction state. These states control the behavior of
storage accesses made during the transaction and the
handling of transaction failure. Changes to transaction
state affect all transactions currently using the transac-
tional facility on the affected thread: the outer transac-
tion as well as any nested transactions, should they
exist.

Non-transactional: The default, initial state of execu-
tion; no transaction is executing. The transactional
facility is available for the initiation of a new transaction.

Transactional: This state is initiated by the execution
of a tbegin. instruction in the Non-transactional state.

Storage accesses (data accesses) caused by instruc-
tions executed in the Transactional state are performed
transactionally. Other storage accesses associated
with instructions executed in the Transactional state
(instruction fetches, implicit accesses)are performed
non-transactionally. In the event of transaction failure,
failure is recorded as defined in Section 8.3.2, and con-
trol is transferred to the failure handler as described in
Section 8.3.3.

Suspended: The Suspended execution state is
explicitly entered with the execution of a tsuspend.
form of tsr. instruction during a transaction, the execu-
tion of a trechkpt. instruction from non-transactional
state, or as a side-effect of interrupt while in the Trans-
actional state. Storage accesses and accesses to
SPRs that are not part of the speculative register state
are performed non-transactionally; they will be per-
formed independently of the outcome of the transac-
tion. The initiation of a new transaction is prevented in
this state. In the event of transaction failure, failure
recording is performed as defined in Section 8.3.2, but
failure handling is usually deferred until transactional
execution is resumed (see Section 8.3.3 for details).

Until failure occurs, Load instructions that access stor-
age locations that were transactionally written by the
same thread will return the transactionally written data.
After failure is detected, but before failure handling is
performed, such loads may return either the transac-
tionally written data, or the current non-transactional
contents of the accessed location. The tcheck instruc-
tion can be used to determine whether any previous
such loads may have returned non-transactional con-
tents.

Suspended state Store instructions that access cache
blocks that have been accessed transactionally (due to
load or store) by the same thread may cause the trans-
action to fail.

The intent of the Suspended execution state is to
temporarily escape from transactional handling
when transactional semantics are undesirable.
Examples of such cases include storage updates
that should be retained in the event of transactional
failure, which is useful for debugging, interthread
communication, the access of Caching-Inhibited
storage, and the handling of interrupts. In the event
of transaction failure during the Suspended execu-
tion state, failure handling is deferred until transac-
tional execution is resumed, allowing the block of
Suspended state code to complete its activities.

Programming Note

PRELIM
IN

ARY

Power ISA *** Preliminary *** Version 2.07

Power ISA™10

 Table 1 enumerates the set of Transactional Memory
instructions and events that can cause changes to the
transaction state. Transaction states are abbreviated N
(Non-transactional), T (Transactional), and S (Sus-
pended). (Interrupts, and the , rfid, hrfid, and mtmsrd
instructions, can also cause changes to the transaction
state; see Book III.)

Table 1: Transaction state transitions caused by TM
instructions and transaction failure

8.2.1 The TDOOMED bit
The status of an active transaction is summarized by a
transaction doomed bit (TDOOMED) that resides in an
implementation-dependent location. When 0, it indi-
cates that the active transaction is valid, meaning that it
remains possible for the transaction to commit suc-
cessfully, if failure does not occur before committing.
When 1 it indicates that transaction failure has already
occurred for the transaction.

The TDOOMED bit is set to 0 upon the successful initi-
ation of an outer transaction by tbegin.. It is set to 1
when failure occurs or as a result of executing trech-
kpt.. When failure occurs, TDOOMED is set to 1
before any other effects of the transaction failure
(recording the failure in TEXASR, rollback of transac-
tional stores, over-writing of the transactionally
accessed locations by a conflicting store, etc.) are visi-
ble to software executing on the processor that exe-
cuted the transaction. In Non-transactional state, the
value of TDOOMED is undefined.

During Suspended state execution, accessing
cache blocks that have been transactionally
accessed by the same thread prior to entering Sus-
pended state requires special care, because failure
may occur due to uncontrollable events such as
interactions with other threads or the operating sys-
tem. Up until a transaction fails, loads from transac-
tionally modified cache blocks will return the
transactionally modified data. However once the
transaction fails, the loads may return either the
transactionally updated version of storage, or the
most recent non-transactional version. Stores to
transactionally modified blocks may or may not
cause the thread’s transaction to fail.

Programming Note

tbegin. in Suspended state merely updates CR0.
When tbegin. is followed by beq, this will result in
a transfer to the failure handler. Nothing more
severe (e.g. an interrupt) is required.

Programming Note

Instr/
event

State

tbegin. tend. Abort caused
by tabort. and
conditional
tabort. variants

tsuspend. tresume. Failure treclaim. trechkpt.

N7 T N3 N3 N3 N3 Not appli-
cable

N8 S9

T T N, if outer trans-
action or A=1
form; otherwise T

N4,5 S T N4,5 N4 S8

S S1 S8
S4 S3 T6 S4 N4 S8

Notes
1. CR0 updated indicating transactional initiation was unsuccessful, due to a pre-existing transaction occupying the

transactional facility.
3. Execution of these operations does not affect transaction state, allowing for the instructions to be used in software

modules called from Non-transactional, Transactional, and Suspended paths.
4. If failure recording has not previously occurred, failure recording is performed as defined in Section 8.3.2.
5. Failure handling is performed as defined in Section 8.3.3.
6. If failure has occurred during Suspended execution, failure handling will be performed sometime after the execu-

tion of tresume, and no later than the set of events listed in Section 8.3.3.
7. Any attempt to execute a TM instruction when MSRTM=0 causes a Transactional Memory type of Facility Unavail-

able interrupt. Any attempt to execute a TM instruction in other than hypervisor state when HFSCRTM=0 causes a
Transactional Memory type of Hypervisor Facility Unavailable interrupt. The contents of this row assumes that
Transactional Memory is enabled.

8. Generate TM Bad Thing type Program interrupt.
9. If TEXASRFS=0, generate a TM Bad Thing type Program interrupt.

PRELIM
IN

ARY

 RFC02183: Transactional Memory

Power ISA *** Preliminary *** Version 2.07

11

8.3 Transaction Failure

8.3.1 Causes of Transaction Fail-
ure
A transaction failure is said to be “externally-induced” if
the failure is caused by a thread other than the transac-
tional thread. Likewise, a transaction failure is said to
be “self-induced” if the failure is caused by the transac-
tional thread itself.

For self-induced failure as a result of attempting to exe-
cute an instruction that is forbidden in the Transactional
state, a Privileged Instruction type of Program Interrupt
takes precedence over transaction failure. (For exam-
ple, an attempt to execute stdcix in Transactional state
and problem state will result in a Privileged Instruction
type of Program interrupt.) Transaction failure takes
precedence over all other interrupt types. The relevant
instructions are listed in the third bullet of the second
set of bullets below and the first bullet in the third set of
bullets below.

In general, a ROT will not fail in the following scenarios
when the failure is specified as a conflict on a transac-
tional access and the access is a load.

Transactions will fail for the following externally-
induced causes

Conflict with transactional access by another
thread
Conflict with non-transactional access by another
thread
Conflict with a translation invalidation caused by a
tlbie performed by another thread

Transactions will fail for the following self-induced
causes

Abort caused by the execution of tabort.,
tabortdc., tabortdci., tabortwc., tabortwci. or
treclaim. instruction.
Transaction level overflow, defined as an attempt
to execute tbegin. when the transaction level is
already at its maximum value
Footprint overflow, defined as an attempt to per-
form a storage access in Transactional state which
exceeds the capacity for tracking transactional
accesses.
Execution of the following instructions while in the
Transactional state: doze, sleep, nap, rvwinkle,
icbi, , dcbf, dcbi, dcbst, [h]rfid, , mtmsr[d],
mtsle, mtsr, mtsrin, msgsnd, msgsndp, msgclr,
msgclrp, slbie, slbia, slbmte, slbfee, and
tlbie[l]. (These instructions are considered to be
disallowed in Transactional state.) The disallowed
instruction is not executed; failure handling occurs
before it has been executed.

Execution, while in Transactional state, of mtspr
specifying an SPR that is not part of the specula-
tive register state and is not a Transactional Mem-
ory SPR. The mtspr is not executed; failure
handling occurs before it has been executed.
(Modification of XERFXCC and CRCR0 are allowed,
but the changes will not be rolled back in the event
of transaction failure.)
Conflict caused by a Suspended state store to a
block that was previously accessed transactionally.
Conflict caused by a Suspended state tlbie that
specifies a translation that was previously used
transactionally. (This case will be recorded as a
translation invalidation conflict because it may be
hard to differentiate from a conflict caused by a
tlbie performed by another thread and because it
is highly likely to be a transient failure.)

For each of the following potential causes, the transac-
tion will fail if the absence of failure would compromise
transaction semantics; otherwise, whether the transac-
tion fails is undefined.

Execution of the following instructions while in the
Transactional state: eciwx, ecowx, lbzcix, ldcix,
lhzcix, lwzcix, stbcix, stdcix, sthcix, stwci. The
disallowed instruction is not executed; failure han-
dling occurs before it has been executed. (These
instructions are considered to be disallowed in
Transactional state if they cause transaction failure
in Transactional state.) Execution of these instruc-
tions in the Suspended state is allowed and does
not cause transaction failure.
Execution of the following instructions in the Trans-
actional state: wait, waitasec. The disallowed
instruction is not executed; failure handling occurs
before it has been executed. (These instructions
are considered to be disallowed in a transaction if
they cause transaction failure.)
Execution of the following instructions in the Sus-
pended state: wait, waitasec. The disallowed
instruction is treated as a no-op; failure recording
occurs. (These instructions are considered to be
disallowed in a transaction if they cause transac-
tion failure.)
Access of a disallowed type while in the Transac-
tional state: Caching Inhibited, Write Through
Required, and Memory Coherence not Required
for data access; Caching-Inhibited for instruction
fetch. The disallowed access is not performed;
failure handling occurs such that the instruction
that would cause (or be associated with, for
instruction fetch) the disallowed access type
appears not to have been executed. Accesses of
this type in the Suspended state are allowed and
do not cause transaction failure.

Note that execution of a Power Saving instruc-
tion in Suspended state causes a TM Bad
Thing type Program interrupt.

Programming Note

PRELIM
IN

ARY

Power ISA *** Preliminary *** Version 2.07

Power ISA™12

Instruction fetch from a block that was previously
written transactionally (reported as a unique cause
that includes both self-induced and externally-
induced instances)
dcbf, dcbi, or icbi specifying a block that was pre-
viously accessed transactionally, in either of the
following cases.

the instruction (dcbf, dcbi, or icbi) is exe-
cuted in Suspended state on the processor
executing the transaction (self-induced con-
flict)
the instruction is executed by another proces-
sor (externally-induced conflict)

dcbst specifying a block that was previously writ-
ten transactionally, in either of the following cases.

dcbst is executed in Suspended state on the
processor executing the transaction (self-
induced conflict)
dcbst is executed by another processor
(externally-induced conflict)

Cache eviction of a block that was previously
accessed transactionally

If an instruction or event does not cause transaction
failure, it behaves as defined in the architecture.

The set of failure causes and events are further classi-
fied as precise and imprecise failure causes. All exter-
nally induced events are imprecise, and all self-induced

events are precise with the exception of the following
cases:

Self-induced conflicts caused by instruction fetch
Self-induced conflicts caused by footprint overflow
Self-induced conflicts in Suspended state, caused
by a store to a block that was previously accessed
transactionally, or a dcbf, dcbi, or icbi specifying
a block that was previously accessed transaction-
ally, or a dcbst specifying a block that was previ-
ously written transactionally, or a tlbie specifying a
translation that was previously used transaction-
ally.

When failure recording and handling occur (as defined
in Section 8.3.2 and 8.3.3) for a precise failure, they will
occur precisely according to the sequential execution
model, adhering to the following rules:

1. Effects of the failure occur such that all instructions
preceding the instruction causing the failure
appear to have completed with respect to the exe-
cuting thread.

2. The instruction causing the failure may appear not
to have begun execution (except for causing the
failure), or may have completed, depending on the
failure cause.

3. Architecturally, no subsequent instruction has
begun execution.

Failure handling for imprecise failure types is guaran-
teed to occur no later than the execution of tend. with
A=1 or TEXASRTL =1. Failure recording for imprecise
failure types is guaranteed to occur no later than failure
handling. Any operation that can cause imprecise fail-
ure if performed in-order can also cause imprecise fail-
ure if performed out-of-order.

Note that dcbf with L=3 should never compro-
mise transactional semantics, but it is still per-
mitted to cause transaction failure in
Suspended state and it is disallowed in Trans-
actional state.

WARNING: Software should not depend for its cor-
rect execution on the behavior (whether or not the
relevant transaction fails) of the cases described in
the preceding set of bullets. The behavior is likely
to vary from design to design. Such a dependence
would impact the software’s portability without any
tangible advantage.

Because the atomic nature of a transaction implies
an apparent delay of its component accesses until
they can be performed in unison, the use of cache
control instructions to manage cache residency
and/or the performing of storage accesses may
have unexpected consequences. Although they
may not cause transaction failure directly, their use
in a transaction is strongly discouraged.

Programming Note

Programming Note

Programming Note

Because instruction fetch from a transactionally
written block may result in failure, it is recom-
mended that transactionally accessed data and
transactionally accessed instructions not be co-
located within a single block.

The architecture does not detect and cause trans-
action failure for translation invalidations to trans-
actionally accessed pages or segments, when the
translation invalidation is caused by instructions
other than tlbie (i.e. slbie, slbia, tlbiel, tlbia). Con-
sequently, software is responsible for aborting
transactions in circumstances where such local
translation invalidations may affect a local transac-
tion.

Programming Note

Programming Note

PRELIM
IN

ARY

 RFC02183: Transactional Memory

Power ISA *** Preliminary *** Version 2.07

13

8.3.2 Recording of Transaction
Failure
When transaction failure occurs, information about the
cause and circumstances of failure are recorded in
SPRs associated with the transactional facility. Failure
recording is performed a single time per transaction
that fails, controlled by the state of the TEXASR failure
summary (FS) bit; when 0, FS indicates that failure
recording has not already been performed, and is
therefore permissible.

The following RTL function specifies the actions taken
during the recording of transaction failure:

TMRecordFailure(FailureCause)
#FailureCause is 32-bit cause

code
if TEXASRFS = 0
 if failure IA known then
 TFIAR <- CIA
 TEXASR37 <- 1
 else
 TFIAR <- approximate instruction address
 TEXASR37 <- 0
 TEXASR0:31 <- FailureCause

 if MSRTS=0b01 then TEXASRSuspended <- 1
 TEXASRPR <- MSRPR
 TEXASRHV <- MSRHV
 TFIARHV PR <- MSRHV PR
 TEXASRFS <- 1

 TDOOMED <- 1

When failure recording occurs, the TEXASR and
TFIAR SPRs are set indicating the source of failure.
When possible, TFIAR is set to the effective address of
the instruction that caused the failure, and TEXASR37
is set to 1 indicating that the contents of TFIAR are
exact. When the instruction address is not known
exactly, an approximate value is placed in TFIAR and
TEXASR37 is set to 0. TEXASR bits 0:31 are set indi-
cating the cause of the failure, and the TEXASRSus-
pended, TEXASRHV, TEXASRPR, TFIARHV, and
TFIARPR bits are set indicating the machine state in
which the failure was recorded. TEXASRTL is
unchanged. The TDOOMED bit is set to 1.

8.3.3 Handling of Transaction
Failure
After detection of failure, the timing of failure handling is
dependent on the state of the transactional facility.

In Transactional state, failure handling may occur
immediately, but an implementation is free to delay
handling until one of the following failure handling syn-
chronizing events occurs in Transactional state.

An abort caused by the execution of a tabort.,
tabortdc., tabortdci., tabortwc., or tabortwci.
instruction.
An attempt, in Transactional state, to execute a
disallowed instruction, perform an access of a dis-
allowed type, or execute an mtspr instruction that
specifies an SPR that is not part of the speculative
register state and is not a Transactional Memory
SPR.
An attempt to commit a transaction, caused by the
execution of tend. with A = 1 or when TEXASRTL =
1.
The execution of a treclaim. instruction.

If the failure is caused by an event in the preceding list,
failure handling occurs immediately. (If the failure is
caused by treclaim., CR0 is not set to indicate failure
and the transaction’s failure handler is not invoked.)

When failure handling occurs, speculative registers are
reverted to their pre-transactional values, all transac-
tional updates to storage are discarded if they have not
previously been discarded, and any resources occu-
pied by the transaction are discarded. CR0 is set to
0b101 || 0. The transaction state is set to Non-transac-
tional, and control flow is redirected to the instruction
address stored in TFHAR.

The following RTL function specifies the actions taken
during the handling of transaction failure:

TMHandleFailure()
 If speculative storage updates have not previ-
ously been discarded
 Discard speculative storage updates
 Revert speculative registers to pre-transac-
tional values
 Discard all resources related to current trans-
action
 MSRTS <- 0b00 #Non-transactional
 NIA <- TFHAR
 CR0 <- 0b101 || 0

Upon failure detected in Suspended state from causes
other than the execution of a treclaim., tabort.,
tabortdc., tabortdci., tabortwc., or tabortwci.
instruction, failure recording occurs as described in
Section 8.3.2, but failure handling is deferred until the
transaction is resumed. Once resumed, failure handling
will occur no later than the set of failure handling syn-
chronizing events listed above. However, speculative
storage updates may be discarded at any time between

TFIAR is intended for use in the debugging of
transactional programs by identifying the source of
transaction failure. Because TFIAR may not always
be set exactly, software should test TEXASR37
before use; if zero, the contents of TFIAR are an
approximation.

Programming Note

PRELIM
IN

ARY

Power ISA *** Preliminary *** Version 2.07

Power ISA™14

the time that failure is detected, up until the occurrence
of one of the failure handling synchronizing events
listed above. Upon failure in Suspended state caused
by treclaim., failure recording, discarding of specula-
tive storage updates, and reverting of the speculative
registers to pre-transactional values are immediate (but
CR0 is not set to indicate failure and the transaction’s
failure handler is not invoked). Upon failure in Sus-
pended state caused by a conditional or unconditional
Abort instruction, failure recording and discarding of
speculative storage updates are immediate. The
remainder of failure handling occurs immediately after
the transaction is resumed (e.g., the next instruction
executed after the tresume (or rfid, etc.) is the instruc-
tion at the address contained in TFHAR).

8.4 Transactional Memory Facil-
ity Registers
The architecture is augmented with three Special Pur-
pose Registers in support of transactional memory.
TFHAR stores the effective address of the software fail-
ure handler used in the event of transaction failure.
TFIAR is used to inform software of the exact location
of the transaction failure, when possible. TEXASR con-
tains a transaction level indicating the nesting depth of
an active transaction, as well as an indicator of the
cause of transaction failure and some machine state
when the transaction failed. These registers can be
accessed only when MSRTM=1 and either HFSCRTM=1
or the processor is in hypervisor state, (see Book III-S),
and can be written only when also in Non-transactional
state.

8.4.1 Transaction Failure Handler
Address Register (TFHAR)
The Transaction Failure Handler Address Register is a
64-bit SPR that records the effective address of a soft-
ware failure handler used in the event of transaction
failure. Bits 62:63 are reserved.

This register is written with the NIA for the tbegin. as a
side-effect of the execution of an outer tbegin. instruc-
tion (tbegin. executed in the Non-transactional state).

8.4.2 Transaction EXception And
Summary Register (TEXASR)
The Transaction EXception And Summary Register is a
64-bit register, containing a transaction level (TEXAS-
RTL) and summary information for use by transaction
failure handlers. Bits 0:31 are called the failure cause in
the instruction descriptions.

Bit(s Description

0:6 Failure Code
The Failure Code is copied from the tabort. or
treclaim. source operand. When set, TFIAR
is exact.

7 Failure Persistent
The failure is likely to recur on each execution
of the transaction. This bit is a hint. It is set to
1 for causes in bits 8:11, copied from the
tabort. or treclaim. source operand when RA
is nonzero, and set to 0 for all other failure
causes.

8 Disallowed
The instruction, SPR, or access type is not
permitted. When set, TFIAR is exact. <cross-
ref to 1.3.1 list of inst>

A Load instruction executed immediately after tre-
claim. or a conditional or unconditional Abort
instruction is guaranteed not to load a speculative
storage update.

In order to preserve the appearance of precise fail-
ures, failure handling should occur no later than the
following events that would allow such delay in fail-
ure handling to be detected for the precise causes
of failure

An abort caused by the execution of tabort.,
tabortdc., tabortdci., tabortwc., tabortwci.
The execution of treclaim.
An execution of tsr., tend., , rfid, hrfid, or
mtmsrd, that change Transactional state
Interrupts

Programming Note

Engineering Note

TFHA //
0 62 63

TEXASR
0 63

The Failure Persistent bit may be
viewed as an eighth bit in the failure
code in that both fields are supplied by
the least significant byte of RA and
software may use all eight to differenti-
ate among the cases for which it per-
forms an abort or reclaim. However,
software is expected to organize its
cases so that bit 7 predicts the persis-
tence of the case.

Programming Note

PRELIM
IN

ARY

 RFC02183: Transactional Memory

Power ISA *** Preliminary *** Version 2.07

15

9 Nesting Overflow
The maximum transaction level was
exceeded. When set, TFIAR is exact.

10 Footprint Overflow
The tracking limit for transactional storage
accesses was exceeded. When set, TFIAR is
an approximation.

11 Self-Induced Conflict
A self-induced conflict occurred in Suspended
state, due to one of the following: a store to a
block that was previously accessed transac-
tionally; a dcbf, dcbi, or icbi specifying a
block that was previously accessed transac-
tionally; a dcbst specifying a block that was
previously written transactionally; or a tlbie
that specifies a translation that was previously
used transactionally. When set, TFIAR may
be exact.

12 Non-Transactional Conflict
A conflict occurred with a non-transactional
access by another processor. When set,
TFIAR is an approximation.

13 Transaction Conflict
A conflict occurred with another transaction.
When set, TFIAR may be exact.

14 Translation Invalidation Conflict
A conflict occurred with a TLB invalidation.
When set, TFIAR is an approximation.

15 Implementation-specific
An implementation-specific condition caused
the transaction to fail. Such conditions are
transient and the value in the TFIAR may be
exact.

16 Instruction Fetch Conflict
An instruction fetch (by this or another thread)
was performed from a block that was previ-
ously written transactionally. Such conditions
are transient and the value in the TFIAR may
be exact.

17-30 Reserved for future failure causes

31 Abort
An abort was caused by the execution of a
tabort., tabortdc., tabortdci., tabortwc.,
tabortwci. or treclaim. instruction. When due
to tabort. or treclaim., bits in TEXASR0:7 are
user-supplied. When set, TFIAR is exact.

32 Suspended
When set to 1, the failure was recorded in
Suspended state. When set to 0, the failure
was recorded in Transactional state.

33 Reserved

34:35 Privilege
The thread was in this privilege state (HV||PR)
when the failure was recorded.

36 Failure Summary (FS)
Set to 1 when a failure has been detected and
failure recording has been performed.

37 TFIAR Exact
Set to 1 when the value in the TFIAR is exact.
Otherwise the value in the TFIAR is approxi-
mate.

38 ROT
Set to 1 when a ROT is initiated. Set to zero
when a non-ROT tbegin. is executed.

39 Reserved

40:51 Reserved

52:63 Transaction Level (TL)
Transaction level (nesting depth + 1) for the
active transaction, if any; otherwise 0 if the
most recently executed transaction completed
successfully, or the transaction level at which
the most recently executed transaction failed
if the most recently executed transaction did
not complete successfully.

An instruction fetch to storage that is
Caching Inhibited, while nominally dis-
allowed, will be reported as Implemen-
tation-specific (bit 15). This choice was
made because it seems like a relatively
unlikely programming error, and there
is a significant chance that data from
an external conflict (store by another
thread) could indirectly cause a wild
branch to storage that is Caching Inhib-
ited.

Note that transactional footprint track-
ing resources may be shared by multi-
ple programs executing concurrently.
Depending on the circumstances, this
failure cause may or may not be persis-
tent.

Programming Note

Programming Note

When looking at the state of the bits above, note
that the transaction may fail in one state but the fail-
ure may be recorded in another if the failure cause
is imprecise. An access that causes footprint over-
flow and is immediately followed by a tsuspend. is
an example of when such a scenario is likely.

Programming Note

PRELIM
IN

ARY

Power ISA *** Preliminary *** Version 2.07

Power ISA™16

The transaction level in TEXASRTL contains an
unsigned integer indicating whether the current trans-
action is an outer transaction, or is nested, and if
nested, its depth. The maximum transaction level sup-
ported by a given implementation is of the form 2t - 1.
The value of t corresponding to the smallest maximum
is 4; the value of t corresponding to the largest maxi-
mum is 12. This value is tied to the “Maximum transac-
tion level” parameter useful for application
programmers, as specified in Section 4.1. The high-
order 12-t bits of TEXASRTL are treated as reserved.

Transaction failure information is contained in
TEXASR0:37. The fields of TEXASR are initialized upon
the successful initiation of a transaction from the Non-
transactional state, by setting TEXASRTL to 1, indicat-
ing an outer transaction, and all other fields to 0.

When transaction failure is recorded, the failure sum-
mary bit TEXASRFS is set to 1, indicating that failure
has been detected for the active transaction and that
failure recording has been performed. TEXASR0:31 are
set indicating the source of the failure. Exactly one of
bits 8 through 31 will be set indicating the instruction or
event that caused failure. In the event of failure due to
the execution of a tabort., tabortdc., tabortdci.,
tabortwc., tabortwci. or treclaim. instruction,
TEXASR31 is set to 1, and, for tabort. and treclaim., a
software defined failure code is copied from a register
operand to TEXASR0:7. TEXASRSuspended indicates
whether the transaction was in the Suspended state at
the time that failure occurred. The value of MSRHV and
MSRPR at the time that failure occurs are copied to
TEXASR34 and TEXASR35, respectively. In some cir-
cumstances, the failure causing instruction address in
TFIAR may not be exact. In such circumstances,
TEXASR37 is set to 0 indicating that the contents of
TFIAR are not exact; otherwise TEXASR37 is set to 1.

8.4.3 Transaction Failure Instruc-
tion Address Register (TFIAR)
The Transaction Failure Instruction Address Register is
a 64-bit SPR that is set to the exact effective address of
the instruction causing the failure, when possible. Bits
62:63 contain MSRHV PR at the time of the failure..

In certain cases, the exact address may not be avail-
able, and therefore TFIAR will be an approximation. An
approximate value will point to an instruction near the
instruction that was executing at the time of the failure.
TFIAR accuracy is recorded in an Exact bit residing in
TEXASR37.

8.5 Transactional Facility
Instructions
The Transactional Memory instructions may only be
executed when MSRTM=1 and either HFSCRTM=1 or
the processor is in hypervisor state (see Book III-S).

Similar to the Floating-Point Status and Control Regis-
ter instructions, modifications of transaction state
caused by the execution of Transactional Memory
instructions or by failure handling synchronize the
effects of exception-causing floating-point instructions
executed by a given processor. Executing a Transacti-
nal Memory instruction, or invocation of the failure han-
dler, ensures that all floating-point instructions
previously initiated by the given processor have com-
pleted before the transaction state is modified, and that
no subsequent floating-point instructions are initiated

A value of 1 corresponds to an outer
transaction. A value greater than 1 cor-
responds to a nested transaction.

The transaction level contained in TEXASRTL
should be interpreted by software as follows:

When in the Transactional or Suspended state, this
field contains an unsigned integer representing the
transaction level of the active transaction, with 1
indicating an outer transaction, and a number
greater than 1 indicating a nested transaction. The
nesting depth of the active transaction is TEXAS-
RTL – 1.

When in the Non-transactional state, TEXASRTL
contains 0 if the last transaction committed suc-
cessfully, otherwise it contains the transaction level
at which the most recent transaction failed.

Programming Note

Programming Note

The Privilege bits in TEXASR represent the state of
the machine at the point when failure occurs. This
information may be used by problem-state software
to determine whether an unexpected hypervisor or
operating system interaction was responsible for
transaction failure. This information may be useful
to operating systems or hypervisors when restoring
register state for failure handling after the transac-
tional facility was reclaimed, to determine which of
the operating system or the hypervisor has retained
the pre-transactional version of the speculative reg-
isters.

If multiple failure causes occur at the same time,
hardware must choose one cause to report. In
general, it will be most beneficial to report a persis-
tent cause when both types occur simultaneously.

TFIA HV PR
0 62 63

Programming Note

Engineering Note

PRELIM
IN

ARY

 RFC02183: Transactional Memory

Power ISA *** Preliminary *** Version 2.07

17

by the given processor until the transaction state has
been modified. In particular:

All exceptions that will be caused by the previously
initiated instructions are recorded in the FPSCR
before the transaction state is modified.
All invocations of the system floating-point enabled
exception error handler that will be caused by the
previously initiated instructions have occurred
before the transaction state is modified.
No subsequent floating-point instruction that alters
the settings of any FPSCR bits is initiated until the
transaction state has been modified.

(Floating-point Storage Access instructions are not
affected.)

Transaction Begin X-form

tbegin. R

ROT <- R
CR0 <- 0 || MSRTS || 0

if MSRTS = 0b00 then #Non-transactional
 TEXASR <- 0x000000000 || 0b00 || ROT || 0b0 ||
0x000001

 TFHAR <- CIA + 4
 TDOOMED <- 0
 MSRTS <- 0b10
 save registers to speculative register check-
point
 if not ROT then
 enforce_barrier(mbll)
 enforce_barrier(mbls)
 enforce_barrier(mbsl)
 enforce_barrier(mbss)
else if MSRTS = 0b10 then #Transactional
 if TEXASRTL=TLmax then
 cause <- 0x00400000
 TMRecordFailure(cause)
 TMHandleFailure()
 else
 TEXASRTL <- TEXASRTL + 1
 if (TEXASRROT=1) & (not ROT)
 enforce_barrier(mbll)
 enforce_barrier(mbls)
 enforce_barrier(mbsl)
 enforce_barrier(mbss)
 TEXASRROT <- 0

The tbegin. instruction initiates execution of a transac-
tion, either an outer transaction or a nested transaction,
as described below.

An outer transaction is initiated when tbegin. is exe-
cuted in the Non-transactional state. If R=0, a barrier is
inserted equivalent to that produced by a sync instruc-
tion with E=0b1111. (See <crossref to sync descrip-
tion>.) TEXASR and TFHAR are initialized, and the

TDOOMED bit is set to 0. A nested transaction is initi-
ated when tbegin. is executed in the Transactional
state unless the transaction level is already at its maxi-
mum value, in which case failure recording is per-
formed with a failure cause of 0x00400000 and failure
handling is performed. When initiating a nested trans-
action, the transaction level held in TEXASRTL is incre-
mented by 1, and if TEXASRROT =1 but R=0, a barrier
is inserted equivalent to that produced by a sync
instruction with E=0b1111 and TEXASRROT is turned
off. The effects of a nested transaction will not be visi-
ble until the outer transaction commits, and in the event
of failure, speculative registers are reverted to the pre-
transactional value of the outer transaction. Initiation of
a transaction is unsuccessful when in the Suspended
state.

When successfully initiated, transactional execution
continues until the transaction is terminated using a
tend., tabort., tabortdc., tabortdci., tabortwc.,
tabortwci., or treclaim. instruction, suspended using a
tsr instruction, or failure occurs. Upon transaction fail-
ure while in the Transactional state, transaction failure
recording and failure handling are performed as
defined in Section 8.3. Upon transaction failure while in
the Suspended state, failure recording is performed as
defined in Section 8.3.2, but failure handling is usually
deferred.

CR0 is set as follows.

Other than the setting of CR0, tbegin. in the Sus-
pended state is treated as a no-op.

The use of the A field is implementation specific.

Special Registers Altered
 CR0 TEXASR TFHAR TS

31 A // R /// /// 654 1
0 6 7 10 11 16 21 31

CR0 Description

000 || 0 Transaction initiation successful,
unnested (Transaction state of Non-
transactional prior to tbegin.)

010 || 0 Transaction initiation successful, nested
(Transaction state of Transactional
prior to tbegin.)

001 || 0 Transaction initiation unsuccessful,
(Transaction state of Suspended prior
to tbegin.)

PRELIM
IN

ARY

Power ISA *** Preliminary *** Version 2.07

Power ISA™18

Transaction End X-form

tend. A

CR0 <- 0b0 || MSRTS || 0

if MSRTS = 0b10 then #Transactional
 if A = 1 | TEXASRTL = 1 then
 if (TDOOMED) then
 TMHandleFailure()
 else
 if not TEXASRROT
 insert integrated cumulative barrier
 Commit transaction
 TEXASRTL <- 0

Discard all resources related to current
transaction

MSRTS <- 0b00 #Non-transactional
if not TEXASRROT

 enforce_barrier(mbll)
 enforce_barrier(mbls)
 enforce_barrier(mbsl)
 enforce_barrier(mbss)
 else TEXASRTL <- TEXASRTL - 1 # nested

The A=0 variant of tend. supports nested transactions,
in which the transaction is committed only if the execu-
tion of tend. completes an outer transaction. Execution
of this variant by a nested transaction (TEXASRTL > 1)
causes TEXASRTL to be decremented by 1. The A=1
variant of tend. unconditionally completes the current
outer transaction and all nested transactions.

When the tend. instruction completes an outer transac-
tion, transaction commit is predicated on the
TDOOMED bit. If TDOOMED is 1, failure handling
occurs as defined in Section 8.3.3. If TDOOMED is 0,
the transaction is committed, and TEXASRTL is set to
0. In both cases, the transaction state is set to Non-
transactional.

When the tend. instruction commits a transaction, it
atomically commits its writes to storage. If TEXASR-
ROT=0, the integrated cumulative barrier is inserted

prior to the creation of the aggregate store, and a bar-
rier is inserted equivalent to that produced by a sync
instruction with E=0b1111 after the aggregate store.
(See <crossref to sync description>.) If the transaction
has failed prior to the execution of tend. no storage
updates are performed and no barrier is inserted. In
either case (success or failure), all resources associ-
ated with the transaction are discarded.

If the transaction succeeds, Condition Register field 0
is set to 0 || MSRTS || 0.If the transaction fails, CR0 is
set to 0b101 || 0.

Other than the setting of CR0, tend. in Non-transac-
tional state is treated as a no-op. If an attempt is made
to execute tend. in Suspended state, a TM Bad Thing
type Program interrupt occurs.

Special Registers Altered
 CR0 TEXASR TS

Extended Mnemonics
Extended mnemonics for transaction end.

Extended: Equivalent To:
tend. tend. 0
tendall. tend. 1

Transaction Abort X-form

tabort. RA

CR0 <- 0 || MSRTS || 0

if MSRTS = 0b10 | MSRTS = 0b01 then
#Transactional, or Suspended

if RA = 0 then cause <-0x00000001
else cause <- GPR(RA)56:63 || 0x000001
if MSRTS= 0b01 & TEXASRFS = 0 then #Suspended
 Discard speculative storage updates

 TMRecordFailure(cause)
 if MSRTS = 0b10 then #Transactional

 TMHandleFailure()

When a transaction is successfully initiated, and
failure subsequently occurs, control flow will be
redirected to the instruction following the tbegin.
instruction. When failure handling occurs, as
described in Section 8.3.3, CR0 is set to 0b101 || 0.
Consequently, instructions following tbegin. should
also expect this value as an indication of transac-
tion failure. Most applications will follow tbegin.
with a conditional branch predicated on CR02; code
at this target is responsible for handling the trans-
action failure.

31 A // / /// /// 686 1
0 6 7 10 11 16 21 31

Programming Note

When an outer tend. or a tend. with A=1 is exe-
cuted in the Transactional state, the CR0 value
0b101 || 0 will never be visible to the instruction that
immediately follows tend., because in the event of
failure the failure handler will have been invoked
not later than the completion of the tend. instruc-
tion.

31 /// RA /// 910 1
0 6 11 16 21 31

Programming Note

PRELIM
IN

ARY

 RFC02183: Transactional Memory

Power ISA *** Preliminary *** Version 2.07

19

The tabort. instruction sets condition register field 0 to
0 || MSRTS || 0. When in the Transactional state or the
Suspended state the tabort. instruction causes trans-
action failure, resulting in the following:

Failure recording is performed as defined in Section
8.3.2. If RA is 0, the failure cause is set to 0x00000001,
otherwise it is set to GPR(RA)56:63 || 0x000001.

If the transaction state is Transactional, failure handling
is performed as defined in Section 8.3.3 (this includes
discarding the set of transactional storage updates).

If the transaction state is Suspended, the set of trans-
actional storage updates is discarded (if not already
discarded for a pending failure), but failure handling is
deferred.

Other than the setting of CR0, execution of tabort. in
the Non-transactional state is treated as a no-op.

Special Registers Altered
 CR0 TEXASR TFIAR TS

Transaction Abort Word Conditional

X-form

tabortwc. TO,RA,RB

a <- EXTS((RA)32:63)
b <- EXTS((RB)32:63)
abort <- 0

CR0 <- 0 || MSRTS || 0

if (a < b) & TO0 then abort <- 1
if (a > b) & TO1 then abort <- 1
if (a = b) & TO2 then abort <- 1
if (a u< b) & TO3 then abort <- 1
if (a >u b) & TO4 then abort <- 1

if abort & (MSRTS = 0b10 | MSRTS = 0b01) then
 #Transactional or Suspended
 cause <- 0x00000001

if MSRTS= 0b01 & TEXASRFS = 0 then #Suspended
 Discard speculative storage updates

 TMRecordFailure(cause)
 if MSRTS = 0b10 then #Transactional

 TMHandleFailure()

The tabortwc. instruction sets condition register field 0
to 0 || MSRTS || 0. The contents of register RA32:63 are
compared with the contents of register RB32:63. If any
bit in the TO field is set to 1 and its corresponding con-
dition is met by the result of the comparison, and the
transaction state is Transactional or Suspended, then
the tabortwc. instruction causes transaction failure,
resulting in the following:

Failure recording is performed as defined in Section
8.3.2, using the failure cause 0x00000001.

If the transaction state is Transactional, failure handling
is performed as defined in Section 8.3.3 (this includes
discarding the set of transactional storage updates).

If the transaction state is Suspended, the set of trans-
actional storage updates is discarded (if not already
discarded for a pending failure), but failure handling is
deferred.

Other than the setting of CR0, execution of tabortwc.
in the Non-transactional state is treated as a no-op.

Special Registers Altered
 CR0 TEXASR TFIAR TS

Transaction Abort Word Conditional
Immediate X-form

tabortwci. TO,RA,SI

a <- EXTS((RA)32:63)
abort <- 0

CR0 <- 0 || MSRTS || 0

if a < EXTS(SI) & TO0 then abort <- 1
if a > EXTS(SI) & TO1 then abort <- 1
if a = EXTS(SI) & T02 then abort <- 1
if a u< EXTS(SI) & TO3 then abort <- 1
if a >u EXTS(SI) & TO4 then abort <- 1

if abort & (MSRTS = 0b10 | MSRTS = 0b01) then
 #Transactional or Suspended
 cause <- 0x00000001

if MSRTS= 0b01 & TEXASRFS = 0 then #Suspended
 Discard speculative storage updates

 TMRecordFailure(cause)
 if MSRTS = 0b10 then #Transactional

 TMHandleFailure()

The tabortwci. instruction sets condition register field 0
to 0 || MSRTS || 0. The contents of register RA32:63 are
compared with the sign-extended value of the SI field. If
any bit in the TO field is set to 1 and its corresponding
condition is met by the result of the comparison, and
the transaction state is Transactional or Suspended
then the tabortwci. instruction causes transaction fail-
ure, resulting in the following:

Failure recording is performed as defined in Section
8.3.2, using the failure cause 0x00000001.

31 TO RA RB 782 1
0 6 11 16 21 31

31 TO RA SI 846 1
0 6 11 16 21 31

PRELIM
IN

ARY

Power ISA *** Preliminary *** Version 2.07

Power ISA™20

If the transaction state is Transactional, failure handling
is performed as defined in Section 8.3.3 (this includes
discarding the set of transactional storage updates).

If the transaction state is Suspended, the set of trans-
actional storage updates is discarded (if not already
discarded for a pending failure), but failure handling is
deferred.

Other than the setting of CR0, execution of tabortwci.
in the Non-transactional state is treated as a no-op.

Special Registers Altered
 CR0 TEXASR TFIAR TS

Transaction Abort Doubleword
Conditional X-form

tabortdc. TO,RA,RB

a <- (RA)
b <- (RB)
abort <- 0

CR0 <- 0 || MSRTS || 0

if (a < b) & TO0 then abort <- 1
if (a > b) & TO1 then abort <- 1
if (a = b) & TO2 then abort <- 1
if (a u< b) & TO3 then abort <- 1
if (a >u b) & TO4 then abort <- 1

if abort & (MSRTS = 0b10 | MSRTS = 0b01) then
 #Transactional or Suspended
 cause <- 0x00000001

if MSRTS= 0b01 & TEXASRFS = 0 then #Suspended
 Discard speculative storage updates

 TMRecordFailure(cause)
 if MSRTS = 0b10 then #Transactional

 TMHandleFailure()

The tabortdc. instruction sets condition register field 0
to 0 || MSRTS || 0. The contents of register RA are com-
pared with the contents of register RB. If any bit in the
TO field is set to 1 and its corresponding condition is
met by the result of the comparison, and the transac-
tion state is Transactional or Suspended, then the
tabortdc. instruction causes transaction failure, result-
ing in the following:

Failure recording is performed as defined in Section
8.3.2, using the failure cause 0x00000001.

If the transaction state is Transactional, failure handling
is performed as defined in Section 8.3.3 (this includes
discarding the set of transactional storage updates).

If the transaction state is Suspended, the set of trans-
actional storage updates is discarded (if not already

discarded for a pending failure), but failure handling is
deferred.

Other than the setting of CR0, execution of tabortdc.
in the Non-transactional state is treated as a no-op.

Special Registers Altered
 CR0 TEXASR TFIAR TS

Transaction Abort Doubleword
Conditional Immediate X-form

tabortdci. TO,RA, SI

a <- (RA)
abort <- 0

CR0 <- 0 || MSRTS || 0

if a < EXTS(SI) & TO0 then abort <- 1
if a > EXTS(SI) & TO1 then abort <- 1
if a = EXTS(SI) & T02 then abort <- 1
if a u< EXTS(SI) & TO3 then abort <- 1
if a >u EXTS(SI) & TO4 then abort <- 1

if abort & (MSRTS = 0b10 | MSRTS = 0b01) then
 #Transactional or Suspended
 cause <- 0x00000001

if MSRTS= 0b01 & TEXASRFS = 0 then #Suspended
 Discard speculative storage updates

 TMRecordFailure(cause)
 if MSRTS = 0b10 then #Transactional

 TMHandleFailure()

The tabortdci. instruction sets condition register field 0
to 0 || MSRTS || 0. The contents of register RA are com-
pared with the sign-extended value of the SI field. If any
bit in the TO field is set to 1 and its corresponding con-
dition is met by the result of the comparison, and the
transaction state is Transactional or Suspended then
the tabortdci. instruction causes transaction failure,
resulting in the following:

Failure recording is performed as defined in Section
8.3.2, using the failure cause 0x00000001.

If the transaction state is Transactional, failure handling
is performed as defined in Section 8.3.3 (this includes
discarding the set of transactional storage updates).

If the transaction state is Suspended, the set of trans-
actional storage updates is discarded (if not already
discarded for a pending failure), but failure handling is
deferred.

Other than the setting of CR0, execution of tabortdci.
in the Non-transactional state is treated as a no-op.

31 TO RA RB 814 1
0 6 11 16 21 31

31 TO RA SI 878 1
0 6 11 16 21 31

PRELIM
IN

ARY

 RFC02183: Transactional Memory

Power ISA *** Preliminary *** Version 2.07

21

Special Registers Altered
 CR0 TEXASR TFIAR TS

Transaction Suspend or Resume X-form

tsr. L

CR0 <- 0 || MSRTS || 0
if L = 0 then
 if MSRTS = 0b10 then #Transactional
 MSRTS <- 0b01 #Suspended
else
 if MSRTS = 0b01 #Suspended
 MSRTS <- 0b10 #Transactional

The tsr. instruction sets condition register field 0 to 0 ||
MSRTS || 0. Based on the value of the L field, two vari-
ants of tsr. are used to change the transaction state.

If L = 0, and the transaction state is Transactional, the
transaction state is set to Suspended.

If L = 1, and the transaction state is Suspended, the
transaction state is set to Transactional.

Other than the setting of CR0, the execution of tsr. in
the Non-transactional state is treated as a no-op.

Special Registers Altered
 CR0 TS

Extended Mnemonics
Extended mnemonics for Transaction Suspend or
Resume.

Extended: Equivalent To:
tsuspend. tsr. 0
tresume. tsr. 1

Transaction Check X-form

tcheck BF

if MSRTS = 0b10 | MSRTS = 0b01 then #transactional
 #or suspended
 for each load caused by an instruction following
 the outer tbegin and preceding this tcheck
 if (Load instruction was executed in T state
 with TEXASRROT=0 or accessing a location
 previously stored transactionally) |
 (Load instruction was executed in S state
 with TEXASRROT=0 and accessed a location
 previously accessed transactionally)|
 (Load instruction was executed in S state
 with TEXASRROT=1 and accessed a location
 previously stored transactionally)
 then wait until load has been performed with
 respect to all processors and mechanisms
CR field BF <- TDOOMED || MSRTS || 0

If the transaction state is Transactional or Suspended,
the tcheck instruction ensures that all loads, that are
caused by instructions that follow the outer tbegin.
instruction and precede the tcheck instruction and sat-
isfy one of the following properties, have been per-
formed with respect to all processors and mechanisms.

The load is caused by an instruction that was exe-
cuted in Transactional state, either while TEXASR-
ROT=0 or accessing a location previously stored
transactionally.
The load is caused by an instruction that was exe-
cuted in Suspended state while TEXASRROT=0
and accesses a location that was accessed trans-
actionally.
The load is caused by an instruction that was exe-
cuted in Suspended state while TEXASRROT=1
and accesses a location that was stored transac-
tionally.

The tcheck instruction then copies the TDOOMED bit
into bit 0 of CR field BF, copies MSRTS to bits 1:2 of CR
field BF, and sets bit 3 of CR field BF to 0.

Other than the setting of CR field BF, execution of
tcheck in the Non-transactional state is treated as a
no-op.

Special Registers Altered
 CR field BF

31 /// L /// /// 750 1
0 6 10 11 16 21 31

When resuming a transaction that has encountered
failure while in the Suspended state, failure han-
dling is performed after the execution of tresume
and no later than transaction completion due to the
execution of one of the following instructions: an
outer tend. or tend. with A=1, tabort., a tabortdc.,
tabortdci., tabortwc., or tabortwci. that causes
the transaction to be aborted, or treclaim..

Programming Note

31 BF // /// /// 718 /
0 6 9 11 16 21 31

PRELIM
IN

ARY

Power ISA *** Preliminary *** Version 2.07

Power ISA™22

---------------------------- End text --------------------------------

Section B.3+ Transactional Lock Elision [Category:
Transactional Memory]

Add a new section after B.3 describing Transactional
Lock Elision examples.

-------------------------- Begin text --------------------------------

8.6 Transactional Lock Elision
This section illustrates the use of the Transactional
Memory facility to implement transactional lock elision
(TLE), in which lock-based critical sections are specu-
latively executed as a transaction without first acquiring
a lock. This locking protocol is an alternative to the rou-
tines described above, yielding increased concurrency
when the lock that guards a critical section is frequently
unnecessary.

8.6.1 Enter Critical Section
The following example shows the entry point to a criti-
cal section using transactional lock elision. The entry
code starts a transaction using the tbegin. instruction
and checks whether the transaction was aborted or not.
If not, it checks whether the lock is free or not. If the
lock is found to be free, the thread proceeds to execute
the critical section.

In this example it is assumed that the address of the
lock is in GPR 3, and the value indicating that the lock
is free is in GPR 4. The handling of cases of transaction
abort and busy lock are described in subsequent exam-
ples.

tle_entry:
 tbegin. #Start TLE transaction
 beq- tle_abort #Handle TLE transaction abort
 lwz r6,0(r3) #Read lock
 cmpw r6,r4 #Check if lock is free
 bne- busy_lock #If not, handle lock busy case

critical_section1:

8.6.2 Handling Busy Lock
In the event that the lock is already held, by either
another thread or the current thread, the transaction is
aborted using the tabort instruction, using a software-
defined code TLE_BUSY_LOCK indicating the cause
of the abort. The abort returns control to the beq follow-
ing tbegin. in the critical section entrance sequence,
allowing for an abort handler to react appropriately.

busy_lock:
 li r3, TLE_BUSY_LOCK
 tabort r3 #Abort TLE transaction

8.6.3 Handling TLE Abort
A TLE transaction may fail for one of a variety of
causes, persistent and transient. Persistent causes are
certain—or at least highly likely—to cause future
attempts to execute the same transaction to fail. How-

One use of the tcheck instruction in Suspended
state is to determine whether preceding loads from
transactionally modified locations have returned
the data the transaction stored. (If the transaction
has failed, some of the loads may have returned a
more recent value that was stored by a conflicting
store, or may have returned the pre-transaction
contents of the location.).

Another use of tcheck in Suspended state is to
determine whether the contents of storage, as seen
in Suspended state, are consistent with the trans-
action succeeding -- e.g., whether no location that
has been accessed transactionally (stored transac-
tionally, for ROTs), and has been seen in Sus-
pended state, has been subject of a conflict thus
far. (A location is seen in Suspended state either
by being loaded in Suspended state or by being
loaded in Transactional state and the value (or a
value derived therefrom) passed, in a register, into
Suspended state.)

A use of tcheck in Transactional state is to deter-
mine whether the transaction still has the potential
to succeed.

Note that tcheck provides an instantaneous check
on the integrity of a subset of the accesses per-
formed within a transaction. tcheck is not a failure
synchronizing mechanism. Even if no accesses
follow the tcheck, there may still be latent failures
that haven’t been recorded, for example caused by
accesses that tcheck does not wait for, by external
conflicts that will happen in the future, or simply by
time of flight to the failure detection mechanism for
operations that have already been performed.

The tcheck instruction can return 1 in bit 0 of CR
field BF before the failure has been recorded in
TEXASR and TFIAR.

The tcheck instruction may cause pipeline syn-
chronization. As a result, programs that use
tcheck excessively may perform poorly.

Programming Note

Programming Note

Programming Note

PRELIM
IN

ARY

 RFC02183: Transactional Memory

Power ISA *** Preliminary *** Version 2.07

23

ever, for transient causes, it is possible that the failure
cause may not be re-encountered in a subsequent
attempt. Thus, persistent aborts are handled by taking
a non-transactional path that involves the actual acqui-
sition of the lock, while transient aborts retry the critical
section using TLE.

The following example illustrates the handling of aborts
in TLE. It is assumed that the address of the lock is in
GPR 3. The immediate value of the andis. instruction
selects the Failure Persistent bit in the upper half of
TEXASR to be tested.

tle_abort:
 mfspr r4, TEXASRU # Read high-order half
 # of TEXASR
 andis. r5,r4,0x0100 # determine whether failure
 # is likely to be persistent
 bne tle_acquire_lock #Persistent, acquire lock
 #enter critical sec
 b tle_entry #Transient, try TLE again

This example can be extended to keep track of the
number of transient aborts and fall back on the acquisi-
tion of the lock after the number of transient failures
reaches some threshold. It can also be extended to
handle reentrant locks. Acquisition of TLE locks is
described in a subsequent example.

8.6.4 TLE Exit Section Critical
Path
The following example illustrates the instruction
sequence used to exit a TLE critical section. The CR0
value set by tend. indicates whether the current thread
was in a transaction. If so, the exited critical section
was entered speculatively, and the transaction is
ended. If not, the execution takes a path to release the
lock.

Release of an acquired TLE lock is described in a sub-
sequent example.

tle_exit:
 tend. #End the current trans-
 #action, if any
 bng- tle_release_lock #Release lock, if was
 #not in a transaction

8.6.5 Acquisition and Release of
TLE Locks
The steps for acquiring and releasing a lock associated
with a TLE critical section are nearly identical to those
for acquiring and releasing conventional locks that are
not elided, as described in Section B.2. The only differ-
ence is special care must be taken to prevent loads and

stores inside the critical section protected by the lock
from being performed before the Store Conditional
instruction to the lock variable.

The isync from the Acquire Lock and Import Shared
Storage sequence described in Section B.2.1.1 is insuf-
ficient for ordering subsequent instructions. Instead, a
stronger storage access ordering instruction is needed.
The following example shows the resulting steps for
acquiring a TLE lock, replacing the isync instruction
with a sync instruction. In this example it is assumed
that the address of the lock is in GPR 3, the value indi-
cating that the lock is free is in GPR 4, the value to
which the lock should be set is in GPR 5.

tle_acquire_lock:
 lwarx r10,0,r3,1 #Load lock and reserve
 cmpw r4,r10 #Skip ahead if
 bne- wait #Lock not free
 stwcx. r5,0,r3 #Try to set lock
 bne- tle_acquire_lock #Loop if lost reservation
 sync #Import barrier for TLE

critical_section1:

The instruction sequence necessary for the release of
a TLE lock is identical to the conventional lock release
sequence, where lwsync is sufficient to prevent the
store that releases the lock from being performed
before the loads and stores in the critical section pro-
tected by the lock.

---------------------------- End text --------------------------------

Book 3-S:
Section 2.6 Processor Compatibility Register

Update Figure 5, adding bit 2 as “TM”. Add the follow-
ing description for bit 2 to the description of the PCR.

-------------------------- Begin text --------------------------------

Bit Description

2 Transactional Memory (TM) [Category:
Transactional Memory]

This bit controls the availability, in problem
state, of the instructions and facilities in the
Transactional Memory category as it was
defined in the latest version of the architecture
for which new problem-state resources are
made available; if the Transactional Memory
category was not defined in that version of the
architecture, then Transactional Memory
instructions and facilities are unavailable.
0 The instructions and facilities in the Trans-

actional Memory category are available in
problem state.

PRELIM
IN

ARY

Power ISA *** Preliminary *** Version 2.07

Power ISA™24

1 The instructions and facilities in the Trans-
actional Memory category are unavail-
able in problem state.

---------------------------- End text --------------------------------

Section 3.2.1 Machine State Register

The MSR is augmented with a new two bit Transaction
State field (TS) from the set of available full-function
range bits. These bits encode three transaction states
described in Book II, section 8.2. Changes to MSR[TS]
that are caused by Transactional Memory instructions,
and by invocation of the transaction's failure handler,
take effect immediately (even though these instructions
and events are not context synchronizing).

Add the following descriptions for bits 29-31 and asso-
ciated programming note to the descxription of the
MSR.

-------------------------- Begin text --------------------------------

Bit Description

29:30 Transaction State (TS) [Category: Transac-
tional Memory]

00 Non-transactional
01 Suspended
10 Transactional
11 Reserved

Changes to MSR[TS] that are caused by
Transactional Memory instructions, and by
invocation of the transaction's failure handler,
take effect immediately (even though these
instructions and events are not context syn-
chronizing).

31 Transactional Memory Available (TM) [Cat-
egory: Transactional Memory]

0 The thread cannot execute any Transac-
tional Memory instructions or access any
Transactional Memory registers.

1 The thread can execute Transactional
Memory instructions and access Transac-
tional Memory registers.

----------------------------End text --------------------------------

Exclude instructions that are forbidden in Transactional
mode from being traced

-------------------------- Begin text --------------------------------

Bit Description

53 Single-Step Trace Enable (SE)
[Category: Trace]

0 The thread executes instructions normally.
1 The thread generates a Single-Step type

Trace interrupt after successfully complet-
ing the execution of the next instruction,
unless that instruction is hrfid or rfid,
which are never traced. Successful com-
pletion means that the instruction caused
no other interrupt and, if the processor is
in the Transactional state <TM>, is not
one of the instructions that is forbidden in
Transactional state (e.g., dcbf; see
<crossref to failure cause section>).

----------------------------End text --------------------------------

Section 3.2.1+ State Transitions Associated with
the Transactional Memory Facility [Category:
Transactional Memory]

Add the following section after Section 3.2.1, giving
details about MSR bit state transitions.

-------------------------- Begin text --------------------------------

Updates to MSRTS and MSRTM caused by , rfid, hrfid,
or mtmsrd occur as described in Table 2. The value
written, and whether or not the instruction causes an
interrupt, are dependent on the current values of
MSRTS and MSRTM, and the values being written to
these fields. When the setting of MSRTS causes an ille-
gal state transition, a TM Bad Thing type Program inter-
rupt is generated.

To access Transactional Memory registers and
execute Transactional Memory instructions, it must
also be true that HFSCRTM=1 or the processor is in
hypervisor state. See <cross ref to HFSCR
description> for more information.

Programming Note

The transition rules are the same for mtmsrd as for
the rfid-type instructions because if a transition
were illegal for mtmsrd but allowed for rfid, or vice
versa, software could use the instruction for which
the transition is allowed to achieve the effect of the
other instruction.

Programming Note

PRELIM
IN

ARY

 RFC02183: Transactional Memory

Power ISA *** Preliminary *** Version 2.07

25

Table 2 shows all the Transaction State transitions that
can be requested by , rfid, hrfid, and mtmsrd. The
table covers behavior when TM is enabled by the PCR.
For causes of the TM Bad Thing exception when TM is
disabled by the PCR, see <crossref to TM Bad Thing>.
In the table, the contents of MSRTS and MSRTM are
abbreviated in the form AB, where A represents MSRTS
(N, T or S) and B represents MSRTM (0 or 1). “x” in the
“B” position means that the entry covers both MSRTM

values, with the same value applying in all columns of a
given row for a given instance of the transition. (E.g.,
the first row means that the transition from N0 to N0 is
allowed and results in N0, and that the transition from
N0 to N1 is allowed and results in N1.) “Input MSRTSM-
SRTM” in the second column refers to the MSRTS and
MSRTM values supplied by SRR1 for rfid, HSRR1 for
hrfid, or register RS for mtmsrd.

Table 2: Transaction state transitions that can be
requested by , rfid, hrfid, and mtmsrd.

Current
MSRTSMSRTM

Input
MSRTSMSRTM

Resulting
MSRTS MSRTM

Comments

N0 Nx Nx

May occur in the context of a Transactional Memory type of Facil-
ity Unavailable interrupt handler, enabling/disabling transactions
for user-level applications.

All others - Illegal1 N0

T0 N/A Unreachable state

S0 N02 S0

Operating system code that is not TM aware may attempt to set
TS and TM to zero, thinking they’re reserved bits. Change is sup-
pressed.

T1 T1
May occur at an rfid returning to an application whose transaction
was suspended on interrupt.

Sx Sx
This case may occur for an rfid returning to an application whose
suspended transaction was interrupted.

All others - Illegal1 S0

N1 Nx Nx
After a treclaim, the OS dispatches Nx program.

All others -IIllegal1 N0

T1 All N1 Disallowed instructions in Transactional state.

S1 T1 T1 May occur after trechkpt. when returning to an application.

Sx Sx

All others - Illegal1 S0

Notes:
1.Generate TM Bad Thing type Program interrupt. “All others" includes all attempts to set MSRTS to 0b11

(reserved value).
2.Instruction completes, change to MSRTM suppressed,

PRELIM
IN

ARY

Power ISA *** Preliminary *** Version 2.07

Power ISA™26

---------------------------- End text --------------------------------

For [h]rfid, and mtmsrd, the attempted transition
from S0 to N0 is suppressed in order that interrupt
handlers that are "unaware" of transactional mem-
ory, and load an MSR value that has not been
updated to take account of transactional memory,
will continue to work correctly. (If the interrupt
occurs when a transaction is running or sus-
pended, the interrupt will set MSR[TS || TM] to S0.
If the interrupt handler attempts to load an MSR
value that has not been updated to take account of
transactional memory, that MSR value will have TS
|| TM = N0. It is desirable that the interrupt handler
remain in state S0, so that it can return normally to
the interrupted transaction.)

Programming Note

PRELIM
IN

ARY

 RFC02183: Transactional Memory

Power ISA *** Preliminary *** Version 2.07

27

Section 3.3.1 System Linkage Instructions

Change the RTL and verbal descriptions of rfid, and
hrfid operation to account for the case in which the
change to TS is suppressed.

-------------------------- Begin text --------------------------------

Return From Interrupt Doubleword
XL-form

rfid

MSR51 (MSR3 & SRR151) | ((¬MSR3) & MSR51)
MSR3 MSR3 & SRR13
if (MSR29:31 ¬= 0b010 | SRR129:31 ¬= 0b000) then
 MSR29:31 <- SRR129:31
MSR48 SRR148 | SRR149
MSR58 SRR158 | SRR149
MSR59 SRR159 | SRR149
MSR0:2 4:28 32 37:41 49:50 52:57 60:63 SRR10:2 4:28 32 37:41 49:50 52:57
60:63
NIA iea SRR00:61 || 0b00

If MSR3=1 then bits 3 and 51 of SRR1 are placed into
the corresponding bits of the MSR. If bits 29 through 31
of the MSR are not equal to 0b010 or bits 29 through
31 of SRR1 are not equal to 0b000, then the value of
bits 29 through 31 of SRR1 is placed into bits 29
through 31 of the MSR. The result of ORing bits 48 and
49 of SRR1 is placed into MSR48. The result of ORing
bits 58 and 49 of SRR1 is placed into MSR58. The
result of ORing bits 59 and 49 of SRR1 is placed into
MSR59. Bits 0:2, 4:28, 32, 37:41, 49:50, 52:57, and
60:63 of SRR1 are placed into the corresponding bits of
the MSR.

If the instruction attempts to cause an illegal transaction
state transition (see Table 2, “Transaction state transi-
tions that can be requested by , rfid, hrfid, and mtm-
srd.,” on page 25) or when TM is disabled by the PCR,
a transition to Problem state with an active transaction,
a TM Bad Thing type Program interrupt is generated
(unless a higher-priority exception is pending). If this
interrupt is generated, the value placed into SRR0 by
the interrupt processing mechanism (see Section 6.4.3)
is the address of the rfid instruction. Otherwise, if the
new MSR value does not enable any pending excep-
tions, then the next instruction is fetched, under control
of the new MSR value, from the address SRR00:61 ||
0b00 (when SF=1 in the new MSR value) or 320 ||
SRR032:61 || 0b00 (when SF=0 in the new MSR value).
If the new MSR value enables one or more pending
exceptions, the interrupt associated with the highest
priority pending exception is generated; in this case the
value placed into SRR0 or HSRR0 by the interrupt pro-
cessing mechanism (see Section 6.4.3) is the address

of the instruction that would have been executed next
had the interrupt not occurred.

---------------------------- End text --------------------------------

-------------------------- Begin text --------------------------------

19 /// /// /// 18 /
0 6 11 16 21 31

PRELIM
IN

ARY

Power ISA *** Preliminary *** Version 2.07

Power ISA™28

Hypervisor Return From Interrupt
Doubleword XL-form

hrfid

if (MSR29:31 ¬= 0b010 | HSRR129:31 ¬= 0b000) then
 MSR29:31 <- HSRR129:31
MSR48 HSRR148 | HSRR149
MSR58 HSRR158 | HSRR149
MSR59 HSRR159 | HSRR149
MSR0:28 32 37:41 49:57 60:63 HSRR10:28 32 37:41 49:57 60:63
NIA iea HSRR00:61 || 0b00

If bits 29 through 31 of the MSR are not equal to 0b010
or bits 29 through 31 of HSRR1 are not equal to 0b000,
then the value of bits 29 through 31 of HSRR1 is placed
into bits 29 through 31 of the MSR. The result of ORing
bits 48 and 49 of HSRR1 is placed into MSR48. The
result of ORing bits 58 and 49 of HSRR1 is placed into
MSR58. The result of ORing bits 59 and 49 of HSRR1 is
placed into MSR59. Bits 0:28, 32, 37:41, 49:57, and
60:63 of HSRR1 are placed into the corresponding bits
of the MSR.

If the instruction attempts to cause an illegal transaction
state transition (see Table 2, “Transaction state transi-
tions that can be requested by , rfid, hrfid, and mtm-
srd.,” on page 25) or when TM is disabled by the PCR,
a transition to Problem state with an active transaction,
a TM Bad Thing type Program interrupt is generated
(unless a higher-priority exception is pending). If this
interrupt is generated, the value placed into SRR0 by
the interrupt processing mechanism (see Section 6.4.3)
is the address of the hrfid instruction. Otherwise, if the
new MSR value does not enable any pending excep-
tions, then the next instruction is fetched, under control
of the new MSR value, from the address HSRR00:61 ||
0b00 (when SF=1 in the new MSR value) or 320 ||
HSRR032:61 || 0b00 (when SF=0 in the new MSR
value). If the new MSR value enables one or more
pending exceptions, the interrupt associated with the
highest priority pending exception is generated; in this
case the value placed into SRR0 or HSRR0 by the
interrupt processing mechanism (see Section 6.4.3) is
the address of the instruction that would have been
executed next had the interrupt not occurred.

---------------------------- End text --------------------------------

Section 3.3.2 Power-Saving Mode Instructions

The verbal descriptions of each of the power saving
instructions is extended to note that execution in Trans-
actional state results in a TM Bad Thing type of Pro-
gram interrupt.

-------------------------- Begin text --------------------------------

Doze XL-form

doze

The thread is placed into doze power-saving level.

When the thread is in doze power-saving level, the
state of all thread resources is maintained as if the
thread was not in power-saving mode.

When the interrupt that causes exit from doze power-
saving level occurs, resource state is as described in
the preceding paragraph, except that if the exception
that caused the exit is a System Reset, Machine
Check, or Hypervisor Maintenance exception, resource
state that would be lost if the exception occurred when
the thread was not in power-saving mode may be lost.

An attempt to execute this instruction in Suspended
state will result in a TM Bad Thing type of Program
interrupt. <TM>

This instruction is hypervisor privileged and context
synchronizing.

Special Registers Altered:
None

19 /// /// /// 274 /
0 6 11 16 21 31

19 /// /// /// 402 /
0 6 11 16 21 31

PRELIM
IN

ARY

 RFC02183: Transactional Memory

Power ISA *** Preliminary *** Version 2.07

29

Nap XL-form

nap

The thread is placed into nap power-saving level.

When the thread is in nap power-saving level, the state
of the Decrementer and all hypervisor resources is
maintained as if the thread was not in power-saving
mode, and sufficient information is maintained to allow
the hypervisor to resume execution.

When the interrupt that causes exit from nap power-
saving level occurs, resource state is as described in
the preceding paragraph, except that if the exception
that caused the exit is a System Reset, Machine
Check, or Hypervisor Maintenance exception, resource
state that would be lost if the exception occurred when
the thread was not in power-saving mode may be lost.

An attempt to execute this instruction in Suspended
state will result in a TM Bad Thing type of Program
interrupt. <TM>

This instruction is hypervisor privileged and context
synchronizing.

Special Registers Altered:
None

Sleep XL-form

sleep

The thread is placed into sleep power-saving level.

When the thread is in sleep power-saving level, the
state of all resources may be lost except for the
HRMOR.

When the interrupt that causes exit from sleep power-
saving level occurs, resource state is as described in
the preceding paragraph, except that if the exception
that caused the exit is a System Reset, Machine
Check, or Hypervisor Maintenance exception, resource
state that would be lost if the exception occurred when
the thread was not in power-saving mode may be lost.

An attempt to execute this instruction in Suspended
state will result in a TM Bad Thing type of Program
interrupt. <TM>

This instruction is hypervisor privileged and context
synchronizing.

Special Registers Altered:
None

19 /// /// /// 434 /
0 6 11 16 21 31

If the state of the Decrementer were not maintained
and updated as if the thread was not in power-sav-
ing mode, Decrementer exceptions would not reli-
ably cause exit from nap power-saving level even if
Decrementer exceptions were enabled to cause
exit.

Programming Note

19 /// /// /// 466 /
0 6 11 16 21 31

If the state of the Decrementer is not maintained
and updated, in sleep or rvwinkle power-saving
level, as if the thread was not in power-saving
mode, Decrementer exceptions will not reliably
cause exit from power-saving mode even if Decre-
menter exceptions are enabled to cause exit.

See the Notes that appear in the rvwinkle instruc-
tion description.

Programming Note

Note

PRELIM
IN

ARY

Power ISA *** Preliminary *** Version 2.07

Power ISA™30

Rip Van Winkle XL-form

rvwinkle

The thread is placed into rvwinkle power-saving level.

When the thread is in rvwinkle power-saving level, the
state of all resources may be lost except for the
HRMOR.

When the interrupt that causes exit from rvwinkle
power-saving level occurs, resource state is as
described in the preceding paragraph, except that if the
exception that caused the exit is a System Reset,
Machine Check, or Hypervisor Maintenance exception,
resource state that would be lost if the exception
occurred when the thread was not in power-saving
mode may be lost.

An attempt to execute this instruction in Suspended
state will result in a TM Bad Thing type of Program
interrupt. <TM>

This instruction is hypervisor privileged and context
synchronizing.

Special Registers Altered:
None

---------------------------- End text --------------------------------

Section 4.4.2+ Transactional Memory Instructions
[Category: Transactional Memory]

Insert the following section after Section 4.4.2.

-------------------------- Begin text --------------------------------

Privileged software that makes the Transactional Mem-
ory Facility available to applications takes on the
responsibility of managing the facility’s resources and
the application’s transactional state during interrupt
handling, service calls, task switches, and its own use
of TM. In addition to the existing instructions like rfid
and problem state TM instructions that play a role in
this management, treclaim and trechkpt. may be
used, as described below. See <crossref to sec

3.2.1+> for additional information about managing the
TM facility and associated state transitions.

Transaction Reclaim X-form

treclaim. RA

CR0 <- 0 || MSRTS || 0

if MSRTS = 0b10 | MSRTS = 0b01 then
 #Transactional or Suspended
 if RA = 0 then cause <- 0x00000001
 else cause <- GPR(RA)56:63 || 0x000001
 if TEXASRFS = 0 then
 Discard speculative storage updates
 TMRecordFailure(cause)

 Revert speculative registers to pre-transac-
tional values

 Discard all resources related to current
transaction

MSRTS <- 0b00 #Non-transactional

The treclaim. instruction frees the transactional facility
for use by a new transaction. It sets condition register
field 0 to 0 || MSRTS || 0. If the transactional facility is in
the Transactional state or Suspended state, failure
recording is performed as defined in Section 8.3.2. If
RA is 0, the failure cause is set to 0x00000001, other-
wise it is set to GPR(RA)56:63 || 0x000001. The specu-
lative registers are reverted to their pre-transactional
values, and all resources related to the current transac-
tion are discarded, including any transactional storage
updates (if they weren’t already discarded for a pend-
ing failure).

The transaction state is set to Non-transactional.

If an attempt is made to execute treclaim. in Non-
transactional state, a TM Bad Thing type Program inter-
rupt will be generated.

This instruction is privileged.

Special Registers Altered
 CR0 TEXASR TFIAR TS

19 /// /// /// 498 /
0 6 11 16 21 31

In the short story by Washington Irving, Rip Van
Winkle is a man who fell asleep on a green knoll
and awoke twenty years later.

See the Notes that appear in the sleep instruction
description.

Programming Note

Note

31 /// RA /// 942 1
0 6 11 16 21 31

PRELIM
IN

ARY

 RFC02183: Transactional Memory

Power ISA *** Preliminary *** Version 2.07

31

Transaction Recheckpoint X-form

trechkpt.

CR0 <- 0 || MSRTS || 0

MSRTS <- 0b01
TDOOMED <- 1
copy registers to speculative register checkpoint

The trechkpt. instruction copies the current (pre-trans-
actional, saved and restored by the operating system)
register state to the speculative register checkpoint. It
sets condition register field 0 to 0 || MSRTS || 0. The
pre-transactional values are loaded into the speculative
register checkpoint. TDOOMED is set to 0b1.

The transaction state is set to Suspended.

If an attempt is made to execute this instruction in
Transactional or Suspended state or when TEXAS-
RFS=0, a TM Bad Thing type Program interrupt will be
generated.

This instruction is privileged.

Special Registers Altered
 CR0 TS

---------------------------- End text --------------------------------

Section 4.4.3 Move To/From System Register
Instructions

Extend the mtmsrd description to cover TM-related
state transitions (specifically the suppression of TM
change).

------------------------- Begin text --------------------------------

Move To Machine State Register
Doubleword X-form

mtmsrd RS,L

if L = 0 then

if (MSR29:31 ¬= 0b010 | RS29:31 ¬= 0b000) then
 MSR29:31 <- RS29:31

 MSR48 (RS)48 | (RS)49
 MSR58 (RS)58 | (RS)49
 MSR59 (RS)59 | (RS)49
 MSR0:2 4:28 32:47 49:50 52:57 60:62
 (RS)0:2 4:28 32:47 49:50 52:57 60:62
else
 MSR48 62 (RS)48 62

The MSR is set based on the contents of register RS
and of the L field.

L=0:

If bits 29 through 31 of the MSR are not equal to
0b010 or bits 29 through 31 of RS are not equal to
0b000, then the value of bits 29 through 31 of RS
is placed into bits 29 through 31 of the MSR. The
result of ORing bits 48 and 49 of register RS is
placed into MSR48. The result of ORing bits 58 and
49 of register RS is placed into MSR58. The result
of ORing bits 59 and 49 of register RS is placed
into MSR59. Bits 0:2, 4:28, 32:47, 49:50, 52:57,
and 60:62 of register RS are placed into the corre-
sponding bits of the MSR.

L=1:

Bits 48 and 62 of register RS are placed into the
corresponding bits of the MSR. The remaining bits
of the MSR are unchanged.

If the instruction attempts to cause an illegal transaction
state transition (see Table 2, “Transaction state transi-
tions that can be requested by , rfid, hrfid, and mtm-
srd.,” on page 25) or when TM is disabled by the PCR,
a transition to Problem state with an active transaction,
a TM Bad Thing type Program interrupt is generated
(unless a higher-priority exception is pending). If this
interrupt is generated, the value placed into SRR0 by
the interrupt processing mechanism (see Section 6.4.3)
is the address of the mtmsrd instruction.

The treclaim. instruction can be used by an inter-
rupt handler to deallocate the current thread’s
transactional resources in preparation for subse-
quent use of the facility by a new transaction.
(tabort is not appropriate for this use, because (a)
the interrupt handler is in Suspended state and
tabort in Suspended state leaves the thread in
Suspended state, and (b) tabort in Suspended
state does not restore the speculative registers to
their pre-transaction values.) After treclaim. is
executed, when the interrupted program is next dis-
patched it should be resumed by first using trech-
kpt. to restore the pre-transactional register values
into the speculative register checkpoint. Failure
handling for that program will occur when the pro-
gram next attempts to execute an instruction in the
Transactional state, which will cause the failure
handler to be invoked because TDOOMED will be
1. (This will be immediate if the program was in the
Transactional state when the interrupt occurred, or
will be after tresume. is executed if the program
was in the Suspended state when the interrupt
occurred.)

31 /// /// /// 1006 1
0 6 11 16 21 31

Programming Note

31 RS /// L /// 178 /
0 6 11 15 16 21 31

PRELIM
IN

ARY

Power ISA *** Preliminary *** Version 2.07

Power ISA™32

This instruction is privileged.

If L=0 this instruction is context synchronizing. If L=1
this instruction is execution synchronizing; in addition,
the alterations of the EE and RI bits take effect as soon
as the instruction completes.

Special Registers Altered:
MSR

---------------------------- End text --------------------------------

Add SPRs to the mtspr/mfspr tables.

-------------------------- Begin text --------------------------------

PRELIM
IN

ARY

 RFC02183: Transactional Memory

Power ISA *** Preliminary *** Version 2.07

33

PRELIM
IN

ARY

Power ISA *** Preliminary *** Version 2.07

Power ISA™34

Figure 1. SPR encodings (Sheet 1 of 2)

decimal SPR1
Register Name Privileged Length

(bits) Cat2spr5:9 spr0:4 mtspr mfspr
1 00000 00001 XER no no 64 B
8 00000 01000 LR no no 64 B
9 00000 01001 CTR no no 64 B
13 00000 01101 AMR no6 no 64 S
17 00000 10001 DSCR yes yes 64 STM
18 00000 10010 DSISR yes yes 32 S
19 00000 10011 DAR yes yes 64 S
22 00000 10110 DEC yes yes 32 B
25 00000 11001 SDR1 hypv3 hypv3 64 S
26 00000 11010 SRR0 yes yes 64 B
27 00000 11011 SRR1 yes yes 64 B
28 00000 11100 CFAR yes yes 64 S
29 00000 11101 AMR yes6 yes 64 S

128 00100 00000 TFHAR no no 64 TM
129 00100 00001 TFIAR no no 64 TM
130 00100 00010 TEXASR no no 64 TM
131 00100 00011 TEXASRU no no 32 TM
136 00100 01000 CTRL - no 32 S
152 00100 11000 CTRL yes - 32 S
157 00100 11101 UAMOR yes7 yes 64 S
256 01000 00000 VRSAVE no no 32 B
259 01000 00011 SPRG3 - no 64 B
268 01000 01100 TB - no 64 B
269 01000 01101 TBU - no 32 B

272-275 01000 100xx SPRG[0-3] yes yes 64 B
282 01000 11010 EAR hypv3 hypv3 32 EC
284 01000 11100 TBL hypv3 - 32 B
285 01000 11101 TBU hypv3 - 32 B
286 01000 11110 TBU40 hypv - 64 S
287 01000 11111 PVR - yes 32 B
304 01001 10000 HSPRG0 hypv3 hypv3 64 S
305 01001 10001 HSPRG1 hypv3 hypv3 64 S
306 01001 10010 HDSISR hypv3 hypv3 32 S
307 01001 10011 HDAR hypv3 hypv3 64 S
308 01001 10100 SPURR hypv3 yes 64 S
309 01001 10101 PURR hypv3 yes 64 S
310 01001 10110 HDEC hypv3 hypv3 32 S
312 01001 11000 RMOR hypv3 hypv3 64 S
313 01001 11001 HRMOR hypv3 hypv3 64 S
314 01001 11010 HSRR0 hypv3 hypv3 64 S
315 01001 11011 HSRR1 hypv3 hypv3 64 S

PRELIM
IN

ARY

 RFC02183: Transactional Memory

Power ISA *** Preliminary *** Version 2.07

35

---------------------------- End text --------------------------------

Just before the special registers altered part of the
mtspr description, add a statement that a move to a TM
SPR in other than Non-transactional state causes a TM
Bad Thing type Program interrupt.

-------------------------- Begin text --------------------------------

Execution of this instruction specifying an SPR number
that is not defined for the implementation, including
SPR numbers that are shown in Figure 1 but are in a
category that is not supported by the implementation,
causes one of the following.

if spr0=0:

- if MSRPR=1: Hypervisor Emulation Assistance
interrupt

- if MSRPR=0: Hypervisor Emulation Assistance
interrupt for SPR 0 and no operation (i.e. the
instruction is treated as a no-op) for all other
SPRs

if spr0=1:
- if MSRPR=1: Privileged Instruction type Pro-

gram interrupt

- if MSRPR=0: no operation (i.e. the instruction
is treated as a no-op)

If an attempt is made to execute mtspr specifying a TM
SPR in other than Non-transactional state, a TM Bad
Thing type Program interrupt is generated.

Special Registers Altered:
See Figure 1

---------------------------- End text --------------------------------

Zero the output for mfspr specifying the TFIAR when
executed from a privilege level lower than that in which
the TFIAR was set.

-------------------------- Begin text --------------------------------

318 01001 11110 LPCR hypv3 hypv3 64 S
319 01001 11111 LPIDR hypv3 hypv3 32 S
336 01010 10000 HMER hypv3,4 hypv3 64 S
337 01010 10001 HMEER hypv3 hypv3 64 S
338 01010 10010 PCR hypv3 hypv3 64 S
339 01010 10011 HEIR hypv3 hypv3 32 S
349 01010 11101 AMOR hypv3 hypv3 64 S
512 10000 00000 SPEFSCR no no 32 SP
526 10000 01110 ATB/ATBL - no 64 ATB
527 10000 01111 ATBU - no 32 ATB

768-783 11000 0xxxx perf_mon - no 64 S.PM
784-799 11000 1xxxx perf_mon yes yes 64 S.PM

896 11100 00000 PPR no no 64 S
898 11100 00010 PPR32 no no 32 B5

1013 11111 10101 DABR hypv3 hypv3 64 S
1015 11111 10111 DABRX hypv3 hypv3 64 S
1023 11111 11111 PIR - yes 32 S

- This register is not defined for this instruction.
1 Note that the order of the two 5-bit halves of the SPR number is reversed.
2 See Section 1.4.5 of Book I.
3 This register is a hypervisor resource, and can be accessed by this instruction only in hypervisor

state (see Chapter 2).
4 This register cannot be directly written. Instead, bits in the register corresponding to 0 bits in (RS)

can be cleared using mtspr SPR,RS.
5 The register is Category: Phased-in.
6 The value specified in register RS may be masked by the contents of the [U]AMOR before being

placed into the AMR; see the mtspr instruction description.
7 The value specified in register RS may be ANDed with the contents of the AMOR before being

placed into the UAMOR; see the mtspr instruction description.
All SPR numbers that are not shown above and are not implementation-specific are reserved.

Figure 1. SPR encodings (Sheet 2 of 2)

decimal SPR1
Register Name Privileged Length

(bits) Cat2spr5:9 spr0:4 mtspr mfspr

PRELIM
IN

ARY

Power ISA *** Preliminary *** Version 2.07

Power ISA™36

Move From Special Purpose Register
XFX-form

mfspr RT,SPR

n spr5:9 || spr0:4
if length(SPR(n)) = 64 then
 if (n ¬= 129) | (MSRHV PR = 0b10)|
 (TFIARHV PR=MSRHV PR) |
 ((MSRHV PR = 0b00) & (TFIARHV PR= 0b01))then
 RT SPR(n)
 else
 RT 0
else
 RT 320 || SPR(n)

The SPR field denotes a Special Purpose Register,
encoded as shown in Figure 1. If the designated Spe-
cial Purpose Register is the TFIAR and TFIAR indi-
cates the failure was recorded in a state more
privileged than the current state, register RT is set to
zero.<tm> Otherwise, the contents of the designated
Special Purpose Register are placed into register RT.
For Special Purpose Registers that are 32 bits long, the
low-order 32 bits of RT receive the contents of the Spe-
cial Purpose Register and the high-order 32 bits of RT
are set to zero.

---------------------------- End text --------------------------------

Section 5.7.8: Reference and Change RecordingTo
convey that transactional accesses are permitted to
modify R/C/TS bits before the transaction commits, and
even if the transaction fails, make the following
changes in Figure 25:

-------------------------- Begin text --------------------------------

Figure 2. Setting the Reference and Change bits

---------------------------- End text --------------------------------

Section 5.9.3.1 SLB Management Instructions

Add the following programming note after the program-
ming note that begins the section, noting the risk asso-
ciated with modifying segment mappings of storage
that has been accessed transactionally.

-------------------------- Begin text --------------------------------

31 RT spr 339 /
0 6 11 21 31

Note that when a problem state transaction’s failure
is recorded in hypervisor state and there is a sub-
sequent need for a context switch in privileged,
non-hypervisor state, an attempt to save TFIAR will
result in zeros being saved. This is harmless
because if the original application ever tries to read
the TFIAR, it would read zeros anyway, since the
failure took place in hypervisor state.

Programming Note

Status of Access R C
Indexed Move Assist insn w 0 len in XER No No
Storage protection violation Acc1 No
Out-of-order I-fetch or Load-type Inst’n

(including transactional Load-type
inst’n or dcbtst)

Acc No

Out-of-order Store-type inst’n, including
transactional Store-type inst’n, exclud-
ing dcbtst

 Would be required by the sequential
 execution model in the absence of
 system-caused or imprecise
 interrupts3, or transaction failure Acc Acc1 2

 All other cases Acc No
In-order Load-type or Store-type insn,
 access not performed4
 Load-type insn Acc No
 Store-type insn Acc Acc2

Other in-order access
 I-fetch Yes No
 Ordinary Load, eciwx Yes No
 Other ordinary Store, ecowx, dcbz Yes Yes
 icbi, dcbt, dcbtst, dcbst, dcbf[l] Acc No
“Acc” means that it is acceptable to set the bit.
1 It is preferable not to set the bit.
2 If C is set, R is also set unless it is already set.
3 For Floating-Point Enabled Exception type Pro-

gram interrupts, “imprecise” refers to the exception
mode controlled by MSRFE0 FE1.

4 This case does not apply to the Touch instructions,
because they do not cause a storage access.

PRELIM
IN

ARY

 RFC02183: Transactional Memory

Power ISA *** Preliminary *** Version 2.07

37

---------------------------- End text --------------------------------

Section 5.9.3.3 TLB Management Instructions

Insert the following programming note at the beginning
of the section, explaining that tlbie maintains transac-
tion consistency, but the tlbia and tlbiel do not.

-------------------------- Begin text --------------------------------

---------------------------- End text --------------------------------

Section 5.10.1 Page Table Updates

Add text to the fourth paragraph in the section, stating
that the execution of the sequence will cause effected
transactions to fail.

-------------------------- Begin text --------------------------------

Software must execute tlbie and tlbsync instructions
only as part of the following sequence, and must
ensure that no other thread will execute a “conflicting
instruction” while the instructions in the sequence are
executing on the given thread. In addition to achieving
the required system synchronization, the sequence will
cause transactions that include accesses to the
effected page(s) to fail.

---------------------------- End text --------------------------------

Sectino 6.4.3 Interrupt Processing

Add a new bullet to the first programming note, sug-
gesting that treclaim should be executed in an interrupt
handler prior to dispatching a new program.

-------------------------- Begin text --------------------------------

---------------------------- End text --------------------------------

Section 6.5 Interrupt Definitions

TM Unavailable is a type of Facility Unavailable inter-
rupt. See RFC 2230 for details. TM Bad Thing is a
type of Program interrupt. There are no new vectors or
state transitions to describe. The value of TM may be
changed by interrupts, as indicated below.

-------------------------- Begin text --------------------------------

Changes to the segment mappings in the presence
of active transactions may compromise transac-
tional semantics if the transaction has accessed a
segment that is assigned a new VSID. Conse-
quently, when modifying segment mappings, it is
the responsibility of the OS or hypervisor to ensure
that any transaction that may have touched the
modified segment is aborted, using a tabort. or tre-
claim. instruction.

Changes to the page table in the presence of active
transactions may compromise transactional
semantics if a page accessed by a translation is
remapped within the lifetime of a transaction.
Through the use of a tlbie instruction to the
unmapped page, an operating system or hypervi-
sor can ensure that any transaction that has
touched the affected page is aborted.

Changes to local translation lookaside buffers,
through the tlbia and tlbiel instructions have no
effect on transactions. Consequently, if these
instructions are used to invalidate TLB entries after
the unmapping of a page, it is the responsibility of
the OS or hypervisor to ensure that any transaction
that may have touched the modified page is
aborted, using a tabort. or treclaim instruction.

Programming Note

Programming Note

In general, when an interrupt occurs, the following
instructions should be executed by the operating
system before dispatching a “new” program.

stbcx., sthcx., stwcx., or stdcx., to clear the
reservation if one is outstanding, to ensure that
a lbarx, lharx, lwarx, or ldarx in the inter-
rupted program is not paired with a stbcx.,
sthcx., stwcx., or stdcx. in the “new” pro-
gram.

sync, to ensure that all storage accesses
caused by the interrupted program will be per-
formed with respect to another thread before
the program is resumed on that other thread.

isync or rfid, to ensure that the instructions in
the “new” program execute in the “new” con-
text.

treclaim, to ensure that any previous use
of the transactional facility is terminated.

Programming Note

PRELIM
IN

ARY

Power ISA *** Preliminary *** Version 2.07

Power ISA™38

Figure 3. MSR setting due to interrupt

---------------------------- End text --------------------------------

Section 6.5.9 Program Interrupt

Insert the description of the TM Bad Thing after the
description of the Floating-Point Enabled Exception.

------------------------- Begin text --------------------------------

Interrupt Type MSR Bit
 IR DR FE0 FE1 EE RI ME HV

System Reset 0 0 0 0 0 0 p 1

Machine Check 0 0 0 0 0 0 0 1

Data Storage 0 0 0 0 0 0 - m

Data Segment 0 0 0 0 0 0 - m

Instruction Storage 0 0 0 0 0 0 - m

Instruction Segment 0 0 0 0 0 0 - m

External 0 0 0 0 0 h - e

Alignment 0 0 0 0 0 0 - m

Program 0 0 0 0 0 0 - m

FP Unavailable3 0 0 0 0 0 0 - m

Decrementer 0 0 0 0 0 0 - m

Hypervisor Decrementer 0 0 0 0 0 - - 1

System Call 0 0 0 0 0 0 - s

Trace 0 0 0 0 0 0 - m

Hypervisor Data Storage 0 0 0 0 0 - - 1

Hypervisor Instr. Storage. 0 0 0 0 0 - - 1

Hypv Emulation Assistance 0 0 0 0 0 - - 1

Hypervisor Maintenance 0 0 0 0 0 - - 1

Performance Monitor 0 0 0 0 0 0 - m

Vector Unavailable1 0 0 0 0 0 0 - m

VSX Unavailable2 0 0 0 0 0 0 - m

0 bit is set to 0
1 bit is set to 1
p bit is set to 1 if interrupt ocurred while the thread was in power-saving mode; other-

wise not altered
- bit is not altered
m if LPES1=0, set to 1; otherwise not altered
e if LPES0=0, set to 1; otherwise not altered
h if LPES0=1, set to 0; otherwise not altered
s if LEV=1 or LPES1=0, set to 1; otherwise not altered
Settings for Other Bits

Bits BE, FP, PMM, PR, SE, VEC1, VSX2, and TM4 are set to 0.

If the interrupt results in HV being equal to 1, the LE bit is copied from the HILE bit; other-
wise the LE bit is copied from the LPCRILE bit.

The SF bit is set to 1.

If the TS field contained 0b10 (Transactional) when the interrupt occurred, the TS field is
set to 0b01 (Suspended); otherwise the TS field is not altered.

Reserved bits are set as if written as 0.

1 Category: Vector
2 Category: Vector Scalar Emulation
3 Category: Floating-Point
4 Category: Transactional Memory

PRELIM
IN

ARY

 RFC02183: Transactional Memory

Power ISA *** Preliminary *** Version 2.07

39

TM Bad Thing Exception[Category: Transac-
tional Memory]

A TM Bad Thing exception is generated when any
of the following occurs.

An , rfid, hrfid, or mtmsrd instruction
attempts to cause an illegal state transition
(see <crossref to Section 3.2.1+>).
An rfid, hrfid, or mtmsrd instruction attempts
to cause a transition to Problem state with an
active transaction (Transactional or Sus-
pended state) when TM is disabled by the
PCR (PCRTM=1 or PCRv2.06=1).
An attempt is made to execute trechkpt. in
Transactional or Suspended state or when
TEXASRFS=0.
An attempt is made to execute tend. in Sus-
pended state.
An attempt is made to execute treclaim. in
Non-transactional state.
An attempt is made to execute a mtspr target-
ing a TM register in other than Non-transac-
tional state.
An attempt is made to execute a power saving
instruction in Suspended state.

---------------------------- End text --------------------------------

Add bit 42 to SRR1 as the indicator for the TM Bad
Thing exception.

------------------------- Begin text --------------------------------

SRR1
33:36 Set to 0.
42 Set to 1 for a TM Bad Thing Exception type

Program interrupt; otherwise set to 0.
43 Set to 1 for a Floating-Point Enabled

Exception type Program interrupt; other-
wise set to 0.

44 Set to 0.
45 Set to 1 for a Privileged Instruction type

Program interrupt; otherwise set to 0.
46 Set to 1 for a Trap type Program interrupt;

otherwise set to 0.
47 Set to 0 if SRR0 contains the address of

the instruction causing the exception and
there is only one such instruction; other-
wise set to 1.

Others Loaded from the MSR.

Exactly one of bits 42, 43, 45, and 46 is set to 1.

---------------------------- End text --------------------------------

Section 6.5.14 Trace Interrupt [Category: Trace]

Exclude instructions that are forbidden in Transactional
state from being traced. The first paragraph of the sec-
tion is modified as follows.

------------------------- Begin text --------------------------------

A Trace interrupt occurs when no higher priority excep-
tion exists and either MSRSE=1 and any instruction
except rfid or hrfid, is successfully completed, or
MSRBE=1 and a Branch instruction is completed. Suc-
cessful completion means that the instruction caused
no other interrupt and, if the processor is in the Trans-
actional state <TM>, did not cause the transaction to
fail in such a way that the instruction did not complete.
(see <crossref to failure cause section>). Thus a Trace
interrupt never occurs for a System Call instruction, for
a Trap instruction that traps, or for a dcbf that is exe-
cuted in Transactional state. The instruction that
causes a Trace interrupt is called the “traced instruc-
tion”.

When a Trace interrupt occurs, the following registers
are set:

SRR0 Set to the effective address of the instruc-
tion that the thread would have attempted
to execute next if no interrupt conditions
were present.

SRR1
33:36 and 42:47

Set to an implementation-dependent value.
Others Loaded from the MSR.

MSR See Figure 3 on page 38.

Execution resumes at effective address
0x0000_0000_0000_0D00.

Extensions to the Trace facility are described in
Appendix C.

SRR147 can be set to 1 only if the
exception is a Floating-Point Enabled
Exception and either MSRFE0 FE1 =
0b01 or 0b10 or MSRFE0 FE1 has just
been changed from 0b00 to a nonzero
value. (SRR147 is always set to 1 in the
last case.)

Programming Note

PRELIM
IN

ARY

Power ISA *** Preliminary *** Version 2.07

Power ISA™40

---------------------------- End text --------------------------------

Section 6.5.21+ Facility Unavailable Interrupt

Add the following programming note at the end of sec-
tion.

------------------------- Begin text --------------------------------

---------------------------- End text --------------------------------

Section 6.7 Exception Ordering

Extend the last paragraph of the section to include
transaction failure and restore data segment interrupt,
which was removed accidentally during integration of
RFC 2108 going into v2.06. Also add clarification that
data accesses need not be complete up to the point of
interruption.

-------------------------- Begin text --------------------------------

Data Storage, Hypervisor Data Storage, Data Segment,
and Alignment exceptions and transaction failure due
to attempted access of a disallowed type while in
Transactional state occur as if the storage operand
were accessed one byte at a time in order of increasing
effective address (with the obvious caveat if the oper-
and includes both the maximum effective address and
effective address 0). (The required ordering of excep-
tions on components of non-atomic accesses does not

extend to the performing of the component accesses in
the event of an exception. For example, if byte n
causes a data storage exception, it is not necessarily
true that the access to byte n-1 has been performed.)

---------------------------- End text --------------------------------

Section 6.7.2 Ordered Exceptions

Add the Transactional Memory type of (Hypervisor)
Facility Unavailable interrupt(s). and the TM Bad Thing
exception.

-------------------------- Begin text --------------------------------

The following instructions are not traced.

rfid
hrfid
sc, and Trap instructions that trap
other instructions that cause interrupts (other
than Trace interrupts)
the first instructions of any interrupt handler
instructions that are emulated by software
instructions, executed in Transactional state,
that are disallowed in Transactional state
instructions, executed in Transactional state,
that cause types of accesses that are disal-
lowed in Transactional state
mtspr, executed in Transactional state, speci-
fying an SPR that is not part of the Transac-
tional Memory speculative register state
tbegin. executed at maximum nesting depth

In general, interrupt handlers can achieve the effect
of tracing these instructions.

For the case of an outer tbegin., the interrupt han-
dler should either return to the tbegin. with MSRTM
= 1 (allowing the program to use transactions), or
treat the attempt to initiate an outer transaction as a
program error.

Programming Note

Programming Note

PRELIM
IN

ARY

 RFC02183: Transactional Memory

Power ISA *** Preliminary *** Version 2.07

41

Instruction-Caused and Precise

1. Instruction Segment
2. [Hypervisor] Instruction Storage
3.a Hypervisor Emulation Assistance
3.b Program
 - Privileged Instruction
4. Function-Dependent
 4.a Fixed-Point and Branch
 1 Hypervisor Facility Unavailable
 2 Facility Unavailable
 3a Program
 - Trap
 - TM Bad Thing
 3b System Call
 3c [Hypervisor] Data Storage, [Hypervisor] Data
 Segment, or Alignment
 4 Trace
 4.b Floating-Point
 1 Hypervisor Facility Unavailable
 2 Floating-Point Unavailable
 3a Program
 - Precise Mode Floating-Pt Enabled Excep’n
 3b [Hypervisor] Data Storage, [Hypervisor] Data
 Segment, or Alignment
 4 Trace
 4.c Vector
 1 Hypervisor Facility Unavailable
 2 Vector Unavailable
 3a [Hypervisor] Data Storage, [Hypervisor] Data
 Segment, or Alignment
 4 Trace

---------------------------- End text --------------------------------

Section 6.8 Interrupt Priorities

In the paragraph introducing the “instruction caused
and precise” interrupts, add a statement that transac-
tion failure takes priority over all but privileged instruc-
tion exceptions and group disallowed access types with
“other” [H]DSI’s, etc.

Add the (Hypervisor) Facility Unavailable interrupt.(s)
and the TM Bad Thing exception here, too.

-------------------------- Begin text --------------------------------

4. Instruction-Dependent

This exception is the third highest priority excep-
tion. When this exception is created, the interrupt
mechanism waits for all possible Imprecise excep-
tions to be reported. It then generates the appro-
priate ordered interrupt if no higher priority
exception exists when the interrupt is to be gener-
ated. Within this category a particular instruction
may present more than a single exception. When
this occurs, those exceptions are ordered in prior-
ity as indicated in the following lists. Where [Hyper-
visor] Data Storage, Data Segment, and Alignment

exceptions are listed in the same item they have
equal priority (i.e., the hardware may generate any
one of the three interrupts for which an exception
exists). For instructions that are forbidden in
Transactional state, transaction failure takes prior-
ity over all interrupts except Privileged Instruction
type of Program Interrupts. For data accesses that
are forbidden in Transactional state, transaction
failure has the same priority as the group of “other”
[Hypervisor] Data Storage, Data Segment, and
Alignment exceptions. (See <crossref to Bk2 Sec
7+.3.1>).

 A. Fixed-Point Loads and Stores
a.These exceptions are mutually exclusive

and have the same priority:
Hypervisor Emulation Assistance
Program - Privileged Instruction

b)Hypervisor Facility Unavailable
c)Facility Unavailable
d. [Hypervisor] Data Storage, [Hypervisor]

Data Segment, or Alignment
e.Trace

 B. Floating-Point Loads and Stores
a.Hypervisor Emulation Assistance
b)Hypervisor Facility Unavailable
c)Floating-Point Unavailable
d. [Hypervisor] Data Storage, [Hypervisor]

Data Segment, or Alignment
e.Trace

 C. Vector Loads and Stores
a.Hypervisor Emulation Assistance
b)Hypervisor Facility Unavailable
c)Vector Unavailable
d. [Hypervisor] Data Storage, [Hypervisor]

Data Segment, or Alignment
e.Trace

 D. Other Floating-Point Instructions
a)Hypervisor Facility Unavailable
b)Floating-Point Unavailable
c. Program - Precise Mode Floating-Point

Enabled Exception
d.Trace

 E. Other Vector Instructions
a)Hypervisor Facility Unavailable
b)Vector Unavailable
c. Trace

 F. TM instruction, mt/fspr specifying TM SPR
a.)Program - Privileged Instruction (only for

treclaim., trechkpt.., and mtspr)
b)Hypervisor Facility Unavailable
c)Facility Unavailable
d)Program - TM Bad Thing (only for treclaim.,

trechkpt., and mtspr)

 G. rfid, hrfid and mtmsr[d]
a) Program - Privileged Instruction
b Program - TM Bad Thing exception for all

except mtmsr.

PRELIM
IN

ARY

Power ISA *** Preliminary *** Version 2.07

Power ISA™42

c. Program - Floating-Point Enabled Exception
d.Trace, for mtmsr[d] only

H. Other Instructions
 a.These exceptions are mutually exclusive

 and have the same priority:
Program - Trap
System Call
Program - Privileged Instruction
Hypervisor Emulation Assistance

b)Hypervisor Facility Unavailable
c)Facility Unavailable
d.Trace

I. [Hypervisor] Instruction Storage and
 Instruction Segment

These exceptions have the lowest priority in
this category. They are recognized only when
all instructions prior to the instruction causing
one of these exceptions appear to have com-
pleted and that instruction is the next instruc-
tion to be executed. The two exceptions are
mutually exclusive.

The priority of these exceptions is specified for
completeness and to ensure that they are not
given more favorable treatment. It is accept-
able for an implementation to treat these
exceptions as though they had a lower priority.

---------------------------- End text --------------------------------

Final Appendices
Appendix C. Platform Support Requirements

Add line for “Transactional Memory” after Trace, and
mark it as a server requirement.

Appendix D. Complete SPR List

Carry the changes from the SPR tables in 3S 4.4.3 over
to the table in this appendix.

Appendices G-J Opcode Map and Lists

Add the tbegin., tend., tabort., tabortwc., tabortwci.,
tabortdc., tabortdci., tsr., tcheck, treclaim., and tre-
chkpt. instructions to all the opcode maps and lists,
indicating that the instructions are category: Transac-
tional Memory.

---------------------------- End RFC -------------------------------

