7 Power ISA™
N \/ersion 2.05

October 23, 2007

<||Ii

[|n
@

Version 2.05

The following paragraph does not apply to the United
Kingdom or any country or state where such provisions
are inconsistent with local law.

The specifications in this manual are subject to change
without notice. This manual is provided “AS IS”. Inter-
national Business Machines Corp. makes no warranty
of any kind, either expressed or implied, including, but
not limited to, the implied warranties of merchantability
and fitness for a particular purpose.

International Business Machines Corp. does not war-
rant that the contents of this publication or the accom-
panying source code examples, whether individually or
as one or more groups, will meet your requirements or
that the publication or the accompanying source code
examples are error-free.

This publication could include technical inaccuracies or
typographical errors. Changes are periodically made to
the information herein; these changes will be incorpo-
rated in new editions of the publication.

Address comments to IBM Corporation, 11400 Burnett
Road, Austin, Texas 78758-3493. IBM may use or dis-
tribute whatever information you supply in any way it
believes appropriate without incurring any obligation to
you.

The following terms are trademarks of the International
Business Machines Corporation in the United States
and/or other countries:

IBM®

Power ISA
PowerPC®

Power Architecture
PowerPC Architecture
Power Family
RISC/System 6000®
POWER

POWER2

POWER4

POWERA4+

POWER5
System/370

System z

The POWER ARCHITECTURE and POWER.ORG.
word marks and the Power and Power.org logos and
related marks are trademarks and service marks
licensed by Power.org.

AltiVec is a trademark of Freescale Semiconductor,
Inc. used under license.

Notice to U.S. Government Users—Documentation
Related to Restricted Rights—Use, duplication or dis-
closure is subject to restrictions set fourth in GSA ADP
Schedule Contract with IBM Corporation.

© Copyright International Business Machines Corpora-
tion, 1994, 2007. All rights reserved.

ii Power ISA™

Version 2.05

Preface

The roots of the Power ISA (Instruction Set Architec-
ture) extend back over a quarter of a century, to IBM
Research. The POWER (Performance Optimization
With Enhanced RISC) Architecture was introduced with
the RISC System/6000 product family in early 1990. In
1991, Apple, IBM, and Motorola began the collabora-
tion to evolve to the PowerPC Architecture, expanding
the architecture’s applicability. In 1997, Motorola and
IBM began another collaboration, focused on optimiz-
ing PowerPC for embedded systems, which produced
Book E.

In 2006, Freescale and IBM collaborated on the cre-
ation of the Power ISA Version 2.03, which represented
the reunification of the architecture by combining Book
E content with the more general purpose PowerPC
Version 2.02. A significant benefit of the reunification is
the establishment of a single, compatible, 64-bit pro-
gramming model. The combining also extends explicit
architectural endorsement and control to Auxiliary Pro-
cessing Units (APUs), units of function that were origi-
nally developed as implementation- or product family-
specific extensions in the context of the Book E allo-
cated opcode space. With the resulting architectural
superset comes a framework that clearly establishes
requirements and identifies options.

To a very large extent, application program compatibil-
ity has been maintained throughout the history of the
architecture, with the main exception being application
exploitation of APUs. The framework identifies the
base, pervasive, part of the architecture, and differenti-
ates it from “categories” of optional function (see
Section 1.3.5 of Book |). Because of the substantial dif-
ferences in the supervisor (privileged) architecture that
developed as Book E was optimized for embedded
systems, the supervisor architectures for embedded
and general purpose implementations are represented
as mutually exclusive categories. Future versions of the
architecture will seek to converge on a common solu-
tion where possible.

This document defines the Power ISAversion 2.05. It is
comprised of five books and a set of appendices.

Book |, Power ISA User Instruction Set Architecture,
covers the base instruction set and related facilities
available to the application programmer. It includes five
chapters derived from APU function, including the vec-
tor extension also known as Altivec.

Book Il, Power ISA Virtual Environment Architecture,
defines the storage model and related instructions and
facilities available to the application programmer.

Book IlI-S, Power ISA Operating Environment Architec-
ture, defines the supervisor instructions and related
facilities used for general purpose implementations.

Book IlI-E, Power ISA Operating Environment Architec-
ture, defines the supervisor instructions and related
facilities used for embedded implementations. It was
derived from Book E and extended to include APU
function.

Book VLE, Power ISAVariable Length Encoded Instruc-
tions Architecture, defines alternative instruction
encodings and definitions intended to increase instruc-
tion density for very low end implementations. It was
derived from an APU description developed by Frees-
cale Semiconductor.

As used in this document, the term “Power ISA” refers
to the instructions and facilities described in Books |, I,
11-S, IlI-E, and VLE.

Usage of the phrase “Book 11" refers to both Book IlI-S
and Book IlI-E. An exception to this rule is when, at the
beginning of a Section or Book, it is specified that
usage of the phrase “Book II” implies only either “Book
11I-S” or “Book lI-E”.

Change bars have been included to indicate changes
from the Power ISA Version 2.04.

Preface i

Version 2.05

Summary of Changes in Power ISA 2.05

The PowerlSA was created by applying the following
requests for change(RFCs) to Power ISA version 2.04.

Power Management Architecture: Four new hypervi-
sor-level instructions are added that put the processor
into power-saving modes in which execution is sus-
pended and power consumption is reduced to varying
degrees; see Chapter 3.3.2 of Book IlI-S.

Decimal Floating-Point: Decimal Floating-Point (DFP)
support is added as a category to the architecture; see
Chapter 5 of Book | - III.

PCR (Program Compatibility Register): A hypervisor-
accessible register is added that controls the availabil-
ity of processor resources not available on implementa-
tions of previous versions of the architecture; see
Section 2.6 of Book IlI-S.

The next 2 RFCs facilitate Decimal Floating Point emu-
lation, as an alternative to supporting the instructions
described in RFC02080 in hardware.

Binary Coded Decimal Assist (BCD) Instructions:
Three new hypervisor-level instructions are aded that
operate on Binary Coded Decimal operands; see
Section 4.4.3 of Book IlI-S.

Hypervisor Emulation Assistance: lllegal Instruction
type Program interrupts are routed to a new interrupt
(Hypervisor Emulation Assistance interrupt), which
goes to the hypervisor, and the instruction image is
copied into a new register (HEIR); see Section 6.5.19
of Book IlI-S.

Changes to mtspr and mfspr: The behavior of the
mtspr and mfspr instructions is defined for when the
specified SPR is inaccessable due to the privilege
level; see Section 4.4.5 of Book III-S.

Load Floating-Point as Integer Word: A new instruction
is added that loads the specified word into the low-
order half of an FPR, and propagates the sign bit to fill
the high-order half of the FPR; see Section 4.6.2 of
Book I.

FPSCR extended to 64 bits: The FPSCR is extended
to 64 bits to accomodate an anticipated need for more
floating-point status and control bits. The mffs, mtfsfi,
and mtfsf instructions are extended to provide a
means of managing the extended FPSCR; see
Section 4.2.2 of Book .

Floating-Point Copy Sign: A new instruction is added
that combines the sign from one register with the rest of
the floating-point number in another register, and the
result is placed in the target register. This instruction
can be used for building a floating-point number effi-
ciently (without bitwise manipulation); see Section 4.6.5
of Book 1.

Parity Instructions: Two new instructions are added
that compute the parity on a word and a doubleword;
see Section 3.3.12 of Book I.

Compare Byte Instruction: A new instruction is added
that compares each byte of a register to a byte-sized
token; see Section 3.3.12 of Book I.

Come-From Address Register: A new hypervisor-
accessible register is added that is set to the effective
address of the rfid instruction upon execution of the
instruction. When a Branch instruction is executed and
the branch is taken, the register is set to the effective
address of an instruction in the instruction cache block
containing the Branch instruction; see Section 8.1.1 of
Book IlI-S.

Floating-Point Estimate: Additional language is added

to allow for implementations that provide higher than
the minimum architected precision. (To cover current
implementations, a new variant is introduced as cate-
gory: Phased-Out that allows denormalized operands
to be treated as 0, however this variant will be removed
in the next revision.) See Section 4.6.6.1 of Book I.

Load/Store Floating-Point Double Pair: New instruc-
tions are added that transfer pairs of doublewords
between adjacent locations in memory and adjacent
floating-point registers. These instructions are catego-
rized as category: Phased-Out so that software does
not develop a dependency on them. See Section 4.6.1
of Book 1.

Miscellaneous Changes for V 2.05: Miscellaneous pri-
marily editorial enhancements.

Disable Secondary Page Table Search: A new field is
added to the LPCR to disable the secondary hash func-
tion during a page table search; see Section 5.7.7.3 of
Book IlI-S.

SLB Find Entry ESID Instruction: A new instruction is
added that searches the SLB for an entry that matches
the ESID specified by a GPR operand; see
Section 5.9.3.1 of Book IlI-S.

Executed no-op Instruction: The instruction xori 0,0,0
is designated as a form of no-op that is excluded from
run-time optimizations related to no-ops; see
Section 3.3.12 of Book I.

Relaxed Page Table Alignment: The option is provided

to align the Page Table at any 2'8-byte boundary
instead of at a boundary that is a multiple of its size;
see Section 5.7.7.4 of Book llI-S.

Data Cache Block Flush Local Primary: A new variant
of the dcbf instruction is added that flushes the speci-
fied block from the local primary cache, but not from
lower level caches; see Section 3.3.2 of Book II.

Reserved no-op: Book E reserved-no-op instructions
are added to Power ISA as category: Phased-In. These

iv Power ISA™

Version 2.05

instructions are intended to be redefined as perfor-
mance hint type instructions in the future while treated
as no-ops in earlier processors; see Section 1.8.3 of
Book I.

Stream Prefetching Extensions: The ability to specify a
default prefetch depth for hardware-detected and soft-
ware-specified streams is added. Also, software-speci-
fication of store data streams is introduced; see
Section 3.3.2 of Book II.

Mutex Hint: A hint specification is added to the Load
And Reserve instructions to indicate the type of mutual
exclusion algorithm represented by the corresponding
sequence of instructions; see Section 3.4.2 of Book II.

Enhanced Lookaside Buffer ManagementHint bits are

added to the slbia instruction for limiting the invalida-
tion of implementation-specific lookaside information
(e.g. ERAT); see Section 5.9.3.1 of Book IlI-S.

Caching Inhibited Load/Store Instructions (Hypervisor
Only): The RMI bit in the LPCR is redefined as
reserved. Eight new hypervisor-level instructions are
added to replace the function previously provided by
the RMI bit: The storage accesses caused by the new
instructions are performed as though the specified stor-

age location is Caching Inhibited and Guarded; see
Section 4.4.1 of Book IlI-S.

Hypervisor Maintenance Interrupt: A new type of inter-
rupt is added that is caused by certain conditions in the
hardware requiring the attention of the Hypervisor but
that are not serious enough to require a Machine
Check; see Section 6.5.20 of Book IlI-S.

Mediated External Interrupt: A new type of External

exception is added, called the "Mediated External
exception”. The currently defined External exception is
renamed to be a “Direct External exception”. A new bit,
called the “Mediated External Exception Request”
(MER) bit, is added to the LPCR, to indicate that a
Mediated External exception is requested; see
Section 6.5.7 of Book IlI-S.

Scaled Processor Utilization of Resources (SPURR): A
new SPR is added that measures the fraction of hard-
ware resources used by a processor (as does the
PURR), but takes into account changes in processing
capacity made to help manage the thermal environ-
ment; see Section 7.6 of Book IlI-S.

Version Verification

B See the Power ISA representative for your com-
pany.

Preface \Y

Version 2.05

Vi Power ISA™

Version 2.05

Table of Contents

Preface. i

Summary of Changes in Power ISA 2.05
iv

Tableof Contents Vil
Figures., XXiii
Book I:

Power ISA User Instruction Set

Architecture. 1
Chapter 1. Introduction.......... 3
11 Overview.ovv.nn. 3
1.2 Instruction Mnemonics and Operands3
1.3 Document Conventions 4
1.3.1 Definitions 4
1.3.2 Notation..................... 4
1.3.3 Reserved Fields and Reserved Val-
UBS . ottt e 5
1.3.4 Description of Instruction Operation 7
135 Categories................... 9
1.3.5.1 Phased-In/Phased-Out. 10
1.3.5.2 Corequisite Category 10
1.3.5.3 Category Notation. 10
1.3.6 Environments................ 11
1.4 Processor Overview............ 12
1.5 Computationmodes............ 14
1.5.1 Modes [Category: Server] 14
1.5.2 Modes [Category: Embedded]. .. 14
1.6 Instructionformats 14
161 I-FFORM 14
162 B-FORM 14
163 SC-FORM 15
164 D-FORM 15
165 DS-FORM 15
166 DQ-FORM.................. 15
167 X-FORM 16

1.6.8 XL-FORM................... 16
1.6.9 XFX-FORM 16
1.6.10 XFL-FORM................. 16
1.6.11 XS-FORM.................. 17
1.6.12 XO-FORM 17
16.13 A-FORM................... 17
1.6.14 M-FORM 17
1.6.15 MD-FORM 17
1.6.16 MDS-FORM 17
1.6.17 VA-FORM.................. 17
1.6.18 VC-FORM 17
1.6.19 VX-FORM.................. 17
1.6.20 EVX-FORM 17
1.6.21 EVS-FORM 17
1.6.22 Z22-FORM................. 18
1.6.23 Z23-FORM................. 18
1.6.24 Instruction Fields 18
1.7 Classes of Instructions 21
1.7.1 Defined Instruction Class 21
1.7.2 lllegal Instruction Class 21
1.7.3 Reserved Instruction Class 21
1.8 Forms of Defined Instructions. 21
1.8.1 Preferred Instruction Forms 21
1.8.2 Invalid Instruction Forms 21
1.8.3 Reserved-no-op Instructions [Cate-
gory: Phased-In (sV2.07)] 22
1.9 Exceptions.................... 22
1.10 Storage Addressing............ 23
1.10.1 Storage Operands 23
1.10.2 Instruction Fetches. 24

1.10.3 Effective Address Calculation. . . 26

Chapter 2. Branch Processor. 29
2.1 Branch Processor Overview 29
2.2 Instruction Execution Order. 29
2.3 Branch Processor Registers 30
2.3.1 Condition Register 30
2.3.2 LinkRegister 31
2.3.3 CountRegister............... 31
2.4 Branch Instructions 31
2.5 Condition Register Instructions. . .. 37
2.5.1 Condition Register Logical Instruc-

tions. 37

2.5.2 Condition Register Field Instruction .
38
2.6 System Call Instruction 39

Table of Contents Vil

Version 2.05

Chapter 3. Fixed-Point Processor . 41

3.1 Fixed-Point Processor Overview . . .41
3.2 Fixed-Point Processor Registers . . .42
3.2.1 General Purpose Registers. 42
3.2.2 Fixed-Point Exception Register. . .42
3.2.3 Program Priority Register [Category:

Server] .. 43
3.2.4 Software Use SPRs [Category:

Embedded].............. 43
3.2.5 Device Control Registers

[Category: Embedded] 43

3.3 Fixed-Point Processor Instructions .44
3.3.1 Fixed-Point Storage Access Instruc-
tionNs ... 44
3.3.1.1 Storage Access Exceptions.. . . .44
3.3.2 Fixed-Point Load Instructions44
3.3.2.1 64-bit Fixed-Point Load Instruc-
tions [Category: 64-Bit]. 49
3.3.3 Fixed-Point Store Instructions. . . .51
3.3.3.1 64-bit Fixed-Point Store Instruc-

tions [Category: 64-Bit]. 54
3.3.4 Fixed-Point Load and Store with Byte
Reversal Instructions 55
3.3.5 Fixed-Point Load and Store Multiple
Instructions. 56
3.3.6 Fixed-Point Move Assist Instructions
[Category: Move Assist] 58

3.3.7 Other Fixed-Point Instructions. . . .61
3.3.8 Fixed-Point Arithmetic Instructions62
3.3.8.1 64-bit Fixed-Point Arithmetic
Instructions [Category: 64-Bit] 69
3.3.9 Fixed-Point Compare Instructions.71
3.3.10 Fixed-Point Trap Instructions . ..73
3.3.10.1 64-bit Fixed-Point Trap Instruc-

tions [Category: 64-Bit]. 74
3.3.11 Fixed-Point Select [Category:
Phased-In (sV2.06)] 74

3.3.12 Fixed-Point Logical Instructions .75

3.3.12.1 64-bit Fixed-Point Logical Instruc-
tions [Category: 64-Bit]. 81

3.3.12.2 Phased-In Fixed-Point Logical
Instructions [Category: Phased-In

(SV2.05)]. ... 81
3.3.13 Fixed-Point Rotate and Shift
Instructions. 82

3.3.13.1 Fixed-Point Rotate Instructions 82
3.3.13.1.1 64-bit Fixed-Point Rotate
Instructions [Category: 64-Bit] 85
3.3.13.2 Fixed-Point Shift Instructions . .88
3.3.13.2.1 64-bit Fixed-Point Shift Instruc-

tions [Category: 64-Bit]. 90
3.3.14 Move To/From System Register
Instructions. 92

3.3.14.1 Move to/From One Condition
Register Field Instructions [Category:
Phased-In (sV2.05)]................ 96

3.3.14.2 Move To/From System Registers
[Category: Embedded] 97

Chapter 4. Floating-Point Processor
[Category: Floating-Point] 99

4.1 Floating-Point Processor Overview 99
4.2 Floating-Point Processor Registers100

4.2.1 Floating-Point Registers 100
4.2.2 Floating-Point Status and Control

Register. i 101
4.3 Floating-Point Data. 103
431 DataFormat................ 103
4.3.2 Value Representation 104
4.3.3 SignofResult 105
4.3.4 Normalization and

Denormalization 106

4.3.5 Data Handling and Precision. .. 106
4.3.5.1 Single-Precision Operands. .. 106

4.3.5.2 Integer-Valued Operands 107
436 Rounding.................. 107
4.4 Floating-Point Exceptions. 108
4.4.1 Invalid Operation Exception. ... 110
4.41.1 Definition................. 110
4412 Action................... 110
4.4.2 Zero Divide Exception......... 111
4.4.2.1 Definition.................. 111
4422 Action.................... 111
4.4.3 Overflow Exception 111
4.43.1 Definition. 111
4432 Action.................... 111
4.4.4 Underflow Exception......... 112
4441 Definition................. 112
4442 Action................... 112
4.45 Inexact Exception 113
4.45.1 Definition................. 113
4452 Action................... 113

4.5 Floating-Point Execution Models . 113
4.5.1 Execution Model for IEEE Opera-

fionNs 113
4.5.2 Execution Model for
Multiply-Add Type Instructions 115

4.6 Floating-Point Processor Instructions.
116

4.6.1 Floating-Point Storage Access
Instructions 117

4.6.1.1 Storage Access Exceptions .. 117

4.6.2 Floating-Point Load Instructions 117

4.6.3 Floating-Point Store Instructions 121

4.6.4 Floating-Point Load Store Double-
word Pair Instructions [Category: Floating-
PointPhased-Out]. 125

4.6.5 Floating-Point Move Instructions 126

4.6.6 Floating-Point Arithmetic Instructions
127

4.6.6.1 Floating-Point Elementary Arith-
metic Instructions 127

viii

Power ISA™ [-1ll, VLE

Version 2.05

4.6.6.2 Floating-Point Multiply-Add Instruc-

tions 132
4.6.7 Floating-Point Rounding and Con-
version Instructions. 134
4.6.7.1 Floating-Point Rounding Instruc-
tion ... 134
4.6.7.2 Floating-Point Convert To/From
Integer Instructions 134

4.6.7.3 Floating Round to Integer Instruc-
tions [Category: Floating-PointPhased-In
(SV2.05)] ..o 136

4.6.8 Floating-Point Compare Instructions
138

4.6.9 Floating-Point Select Instruction 139

4.6.10 Floating-Point Status and Control
Register Instructions 140

Chapter 5. Decimal Floating-Point
[Category: Decimal Floating-Point]. .
143

5.1 Decimal Floating-Point (DFP) Proces-
SOrOVervieW.ot 143
5.2 DFP Register Handling......... 144
5.2.1 DFP Usage of Floating-Point Regis-
ters ... 144
5.3 DFP Support for Non-DFP Data Types
146
5.4 DFP Number Representation 147
5.4.1 DFP DataFormat 148
5.4.1.1 Fields Within the Data Format 148
5.4.1.2 Summary of DFP Data Formats . .
149

5.4.1.3 Preferred DPD Encoding 149
5.4.2 Classesof DFP Data......... 149
5.5 DFP Execution Model. 150
551 Rounding.................. 150
5.5.2 Rounding Mode Specification .. 151
5.5.3 Formation of Final Result. 152
5.5.3.1 Use of Ideal Exponent 152
5.5.4 Arithmetic Operations 152
5.5.4.1 Sign of Arithmetic Result 152
5.5.5 Compare Operations......... 153
5.5.6 TestOperations............. 153
5.5.7 Quantum Adjustment Operations 153
5.5.8 Conversion Operations 153
5.5.8.1 Data-Format Conversion 153
5.5.8.2 Data-Type Conversion 154
5.5.9 Format Operations. 154
5.5.10 DFP Exceptions. 154
5.5.10.1 Invalid Operation Exception . 156
5.5.10.2 Zero Divide Exception 157
5.5.10.3 Overflow Exception. 157
5.5.10.4 Underflow Exception. 158
5.5.10.5 Inexact Exception......... 159

5.5.11 Summary of Normal Rounding And

Range Actions. 160
5.6 DFP Instruction Descriptions. 162
5.6.1 DFP Arithmetic Instructions 163
5.6.2 DFP Compare Instructions. 167
5.6.3 DFP Test Instructions. 170
5.6.4 DFP Quantum Adjustment Instruc-

tions. 173

5.6.5 DFP Conversion Instructions . .. 182
5.6.5.1 DFP Data-Format Conversion

Instructions 182
5.6.5.2 DFP Data-Type Conversion

Instructions 185
5.6.6 DFP Format Instructions 187
5.6.7 DFP Instruction Summary 191

Chapter 6. Vector Processor

[Category: Vector] 193
6.1 Vector Processor Overview. 194
6.2 Chapter Conventions 194

6.2.1 Description of Instruction Operation.
194

6.3 Vector Processor Registers 195

6.3.1 Vector Registers. 195

6.3.2 Vector Status and Control Register .
195

6.3.3 VR Save Register. 196

6.4 Vector Storage Access Operations 196

6.4.1 Accessing Unaligned Storage Oper-

ands. 198
6.5 Vector Integer Operations. 199
6.5.1 Integer Saturation............ 199
6.6 Vector Floating-Point Operations . 200
6.6.1 Floating-Point Overview. 200
6.6.2 Floating-Point Exceptions 200
6.6.2.1 NaN Operand Exception. 201
6.6.2.2 Invalid Operation Exception .. 201
6.6.2.3 Zero Divide Exception. 201
6.6.2.4 Log of Zero Exception. 201
6.6.2.5 Overflow Exception......... 201
6.6.2.6 Underflow Exception........ 202

6.7 Vector Storage Access Instructions . .
202
6.7.1 Storage Access Exceptions. ... 202

6.7.2 Vector Load Instructions 203
6.7.3 Vector Store Instructions 206
6.7.4 Vector Alignment Support Instruc-
ioNS. . ..o 208
6.8 Vector Permute and Formatting
Instructions 209

6.8.1 Vector Pack and Unpack Instructions
209

6.8.2 Vector Merge Instructions 214
6.8.3 Vector Splat Instructions 216
6.8.4 Vector Permute Instruction. 217
6.8.5 Vector Select Instruction 217

Table of Contents iX

Version 2.05

6.8.6 Vector Shift Instructions 218

6.9 Vector Integer Instructions. 220

6.9.1 Vector Integer Arithmetic Instructions
220

6.9.1.1 Vector Integer Add Instructions 220

6.9.1.2 Vector Integer Subtract Instruc-
tions 223

6.9.1.3 Vector Integer Multiply Instructions
226

6.9.1.4 Vector Integer Multiply-Add/Sum

Instructions. 228
6.9.1.5 Vector Integer Sum-Across Instruc-
tions 233
6.9.1.6 Vector Integer Average Instruc-
tions 235
6.9.1.7 Vector Integer Maximum and Mini-
mum Instructions 237

6.9.2 Vector Integer Compare Instructions
241

6.9.3 Vector Logical Instructions 244
6.9.4 Vector Integer Rotate and Shift
Instructions. 245

6.10 Vector Floating-Point Instruction Set .
249
6.10.1 Vector Floating-Point Arithmetic
Instructions. 249
6.10.2 Vector Floating-Point Maximum and
Minimum Instructions 251
6.10.3 Vector Floating-Point Rounding and
Conversion Instructions 252
6.10.4 Vector Floating-Point Compare
Instructions. 255
6.10.5 Vector Floating-Point Estimate
Instructions. 257
6.11 Vector Status and Control Register
Instructions. 259

Chapter 7. Signal Processing Engine

(SPE)
[Category: Signal Processing Engine
............................ 261
7.1 Overview 261
7.2 Nomenclature and Conventions. . .261
7.3 Programming Model. 262
7.3.1 General Operation. 262
7.3.2 GPRRegisters 262
7.3.3 Accumulator Register 262

7.3.4 Signal Processing Embedded Float-
ing-Point Status and Control Register

(SPEFSCR) oo 262
735 DataFormats 265
7.3.5.1 IntegerFormat............. 265
7.3.5.2 Fractional Format........... 265
7.3.6 Computational Operations 266
7.3.7 SPEInstructions............. 267

7.3.8 Saturation, Shift, and Bit Reverse

Models 267
7.3.8.1 Saturation................ 267
7.3.8.2 ShiftLeft................. 267
7.3.83 BitReverse............... 267
7.3.9 SPE Instruction Set.......... 268

Chapter 8. Embedded Floating-Point
[Category: SPE.Embedded Float Scal

ar Double]

[Category: SPE.Embedded Float Scal

ar Single]

[Category: SPE.Embedded Float Vect

O] o 315
81 Overview.................... 315
8.2 Programming Model 316

8.2.1 Signal Processing Embedded Float-
ing-Point Status and Control Register

(SPEFSCR).o 316
8.2.2 Floating-Point Data Formats ... 316
8.2.3 Exception Conditions. 317

8.2.3.1 Denormalized Values on Input 317
8.2.3.2 Embedded Floating-Point Overflow

and Underflow. 317
8.2.3.3 Embedded Floating-Point Invalid
Operation/Input Errors 317
8.2.3.4 Embedded Floating-Point Round
(Inexact) it 317
8.2.3.5 Embedded Floating-Point Divide
byZero 317
8.2.3.6 DefaultResults............ 318
8.2.4 |EEE 754 Compliance........ 318
8.2.4.1 Sticky Bit Handling For Exception
Conditions. 318
8.3 Embedded Floating-Point Instructions
319
8.3.1 Load/Store Instructions 319

8.3.2 SPE.Embedded Float Vector Instruc-
tions [Category: SPE.Embedded Float
Vector]. ... 319

8.3.3 SPE.Embedded Float Scalar Single
Instructions
[Category: SPE.Embedded Float Scalar
Single]. ... 328

8.3.4 SPE.Embedded Float Scalar Double
Instructions
[Category: SPE.Embedded Float Scalar
Double] 335

8.4 Embedded Floating-Point Results
summary. 344

Power ISA™ [-1ll, VLE

Version 2.05

Chapter 9. Legacy Move Assist
Instruction [Category: Legacy Move
Assist] ... 349

Chapter 10. Legacy Integer Multiply-
Accumulate Instructions

[Category: Legacy Integer Multiply-
Accumulate] 351

Appendix A. Suggested Floating-
Point Models [Category: Floating-

Point] 361

A.1 Floating-Point Round to Single-Preci-
sionModel. 361

A.2 Floating-Point Convert to Integer
Model 365

A.3 Floating-Point Convert from Integer
Model 368

A.4 Floating-Point Round to Integer Model
369

Appendix A. Densely Packed

Decimal 371
A.1 BCD-to-DPD Translation 371
A.2 DPD-to-BCD Translation 371
A.3 Preferred DPD encoding 372

Appendix B. Vector RTL Functions
[Category: Vector]............. 375

Appendix C. Embedded Floating-
Point RTL Functions

[Category: SPE.Embedded Float
Scalar Double]
[Category: SPE.Embedded Float
Scalar Single]
[Category: SPE.Embedded Float

Vector] ... 377

C.1 Common Functions 377
C.2 Convert from Single-Precision Embed-
ded Floating-Point to Integer Word with
Saturation 378
C.3 Convert from Double-Precision
Embedded Floating-Point to Integer Word
with Saturation 379
C.4 Convert from Double-Precision
Embedded Floating-Point to Integer Dou-
bleword with Saturation. 380

C.5 Convert to Single-Precision Embed-
ded Floating-Point from Integer Word . 381

C.6 Convert to Double-Precision Embed-
ded Floating-Point from Integer Word . 381

C.7 Convert to Double-Precision Embed-
ded Floating-Point from Integer Double-
word. 382

Appendix D. Assembler Extended

Mnemonics................... 383
D.1 Symbols.................... 383
D.2 Branch Mnemonics. 384
D.21 BOandBlFields............ 384
D.2.2 Simple Branch Mnemonics 384
D.2.3 Branch Mnemonics Incorporating

Conditions 385
D.2.4 Branch Prediction 386
D.3 Condition Register Logical Mnemonics

387
D.4 Subtract Mnemonics. 387
D.4.1 Subtract Immediate.......... 387
D.4.2 Subtract................... 387
D.5 Compare Mnemonics.......... 388
D.5.1 Doubleword Comparisons. 388
D.5.2 Word Comparisons 388
D.6 Trap Mnemonics.............. 389

D.7 Rotate and Shift Mnemonics 391
D.7.1 Operations on Doublewords . .. 391

D.7.2 Operations on Words. 392

D.8 Move To/From Special Purpose Reg-
ister Mnemonics 393

D.9 Miscellaneous Mnemonics. 393

Appendix E. Programming Examples
397

E.1 Multiple-Precision Shifts........ 397
E.2 Floating-Point Conversions [Category:
Floating-Point] 400

E.2.1 Conversion from

Floating-Point Number to

Floating-Point Integer 400
E.2.2 Conversion from

Floating-Point Number to Signed Fixed-

Point Integer Doubleword 400
E.2.3 Conversion from

Floating-Point Number to Unsigned Fixed-

Point Integer Doubleword 400
E.2.4 Conversion from

Floating-Point Number to Signed Fixed-

Point Integer Word. 400
E.2.5 Conversion from

Floating-Point Number to Unsigned Fixed-

Point Integer Word. 401

Table of Contents Xi

Version 2.05

E.2.6 Conversion from Signed Fixed-Point
Integer Doubleword to Floating-Point Num-
ber 401

E.2.7 Conversion from Unsigned Fixed-
Point Integer Doubleword to Floating-Point
Number. 401

E.2.8 Conversion from Signed Fixed-Point
Integer Word to Floating-Point Number 401

E.3 Floating-Point Selection [Category:

Floating-Point] 402
E.3.1 ComparisontoZero 402
E.3.2 Minimum and Maximum 402
E.3.3 Simple if-then-else

Constructions 402
E34 Notes 402
E.4 Vector Unaligned Storage Operations

[Category: Vector]. 403

E.4.1 Loading a Unaligned Quadword
Using Permute from Big-Endian Storage . .
403

Book II:

Power ISA Virtual Environment

Architecture. 405

Chapter 1. Storage Model 407

1.1 Definitions 407

1.2 Introduction 408

1.3 Virtual Storage 408

1.4 Single-copy Atomicity 409

15 CacheModel 409

1.6 Storage Control Attributes 410

1.6.1 Write Through Required 410

1.6.2 Caching Inhibited 411

1.6.3 Memory Coherence Required [Cate-

gory: Memory Coherence] 411

164 Guarded 411
1.6.5 Endianness [Category: Embed-

ded.Little-Endian] 412
1.6.6 Variable Length Encoded (VLE)

Instructions. 412

1.7 Shared Storage 413

1.7.1 Storage Access Ordering 413

1.7.2 Storage Ordering of I/O Accesses . .
415

1.7.3 Atomic Update............... 415
1.7.3.1 Reservations 415
1.7.3.2 Forward Progress 417
1.8 Instruction Storage. 417
1.8.1 Concurrent Modification and Execu-
tion of Instructions 419

Chapter 2. Effect of Operand
Placement on Performance. 421
2.1 Instruction Restart 423

Chapter 3. Storage Control

Instructions. 425
3.1 Parameters Useful to Application Pro-
grams 425

3.2 Data Stream Control Register (DSCR)
[Category: Stream] 426
3.3 Cache Management Instructions . 427
3.3.1 Instruction Cache Instructions . . 428

3.3.2 Data Cache Instructions 429

3.3.2.1 Obsolete Data Cache Instructions
[Category: VectorPhased-Out]. 437

3.4 Synchronization Instructions. 440

3.4.1 Instruction Synchronize Instruction .
440

3.4.2 Load and Reserve and Store Condi-
tional Instructions 440

3.4.2.1 64-BitLoad and Reserve and Store
Conditional Instructions [Category: 64-Bit]

444
3.4.3 Memory Barrier Instructions ... 446
3.4.4 Wait Instruction 449
Chapter 4. TimeBase 451
4.1 Time Base Overview. 451
42 TimeBase 451
4.2.1 Time Base Instructions 451
4.3 Alternate Time Base [Category: Alter-
nate TimeBase] 454

Chapter 5. External Control

[Category: External Control] ... 455
5.1 External Access Instructions 456

Appendix A. Assembler Extended

Mnemonics 457
A.1 Data Cache Block Flush Mnemonics .
457
A.2 Synchronize Mnemonics 457

Appendix B. Programming Examples

for Sharing Storage 459

B.1 Atomic Update Primitives. 459

B.2 Lock Acquisition and Release, and
Related Techniques 461

B.2.1 Lock Acquisition and Import Barriers
461

B.2.1.1 Acquire Lock and Import Shared
Storage 461

Xii

Power ISA™ [-1ll, VLE

Version 2.05

B.2.1.2 Obtain Pointer and Import Shared
Storage 461

B.2.2 Lock Release and Export Barriers. .
462

B.2.2.1 Export Shared Storage and

ReleaseLock 462
B.2.2.2 Export Shared Storage and

Release Lock using lwsync. 462
B.2.3 SafeFetch................. 462
B.3 Listlnsertion................. 463
B4 Notes...................... 463

Book IlI-S:

Power ISA Operating Environment
Architecture - Server Environment . .
465

Chapter 1. Introduction........ 467
1.1 Overview.................... 467
1.2 Document Conventions 467
1.2.1 Definitions and Notation. 467
1.2.2 Reserved Fields............. 468
1.3 General Systems Overview 468
1.4 Exceptions 469
1.5 Synchronization 469
1.5.1 Context Synchronization 469
1.5.2 Execution Synchronization 469

Chapter 2. Logical Partitioning

(LPAR) 471
21 Overview. 471

2.2 Logical Partitioning Control Register
(LPCR) ... 471

2.3 Real Mode Offset Register (RMOR). .
473
2.4 Hypervisor Real Mode Offset Register

(HRMOR), 474
2.5 Logical Partition

Identification Register (LPIDR) 474
2.6 Processor Compatibility Register

(PCR) ..o 474
2.7 Other Hypervisor Resources 475

2.8 Sharing Hypervisor Resources. .. 476
2.9 Hypervisor Interrupt Little-Endian

(HILE)Bitt 476
Chapter 3. Branch Processor ... 477
3.1 Branch Processor Overview. 477

3.2 Branch Processor Registers. 477
3.2.1 Machine State Register....... 477

3.3 Branch Processor Instructions . .. 479
3.3.1 System Linkage Instructions ... 479
3.3.2 Power-Saving Mode Instructions 481

3.3.2.1 Entering and Exiting Power-Sav-
ingMode 485

Chapter 4. Fixed-Point Processor 487

4.1 Fixed-Point Processor Overview. . 487

4.2 Special Purpose Registers 487
4.3 Fixed-Point Processor Registers. . 487
4.3.1 Processor Version Register 487
4.3.2 Processor Identification Register 487
4.3.3 Control Register............. 488
4.3.4 Program Priority Register. 488
4.3.5 Software-use SPRs 489

4.4 Fixed-Point Processor Instructions 490
4.4.1 Fixed-Point Load and Store Caching
Inhibited Instructions 490
4.4.2 Fixed-Point Load and Store Quad-
word Instructions [Category: Load/Store
Quadword]. 493
4.4.3 Binary Coded Decimal (BCD) Assis-
tance Instructions [Category: BCD Assis-

tance]. 494
4.4.4 ORlnstruction 496
4.4.5 Move To/From System Register

Instructions 496

Chapter 5. Storage Control 505
51 Overview.................... 505
5.2 Storage Exceptions. 506
5.3 InstructionFetch 506
5.3.1 ImplicitBranch.............. 506
5.3.2 Address Wrapping Combined with

Changing MSRBitSF............. 506
54 DataAccess 506
5.5 Performing Operations

Out-of-Order 506
5.6 Invalid Real Address........... 507
5.7 Storage Addressing. 508
571 32-BitMode 508
5.7.2 Virtualized Partition Memory (VPM)

Mode 508
5.7.3 Real And Virtual Real Addressing

Modes 508
5.7.3.1 Hypervisor Offset Real Mode

Address 509

5.7.3.2 Offset Real Mode Address . .. 509
5.7.3.3 Storage Control Attributes for
Accesses in Real and Hypervisor Real

Addressing Modes. 510
5.7.3.3.1 Hypervisor Real Mode Storage
Control. 510
5.7.3.4 Virtual Real Mode Addressing
Mechanism 510
5.7.3.5 Storage Control Attributes for
Implicit Storage Accesses.......... 511
5.7.4 Address Ranges Having Defined
USeS .. i 512

Table of Contents Xiii

Version 2.05

5.7.5 Address Translation Overview . .514

5.7.6 Virtual Address Generation. 514

5.7.6.1 Segment Lookaside Buffer (SLB) .
514

576.2 SLBSearch............... 515
5.7.7 Virtual to Real Translation. 517
5771 PageTable................ 518
5.7.7.2 Storage Description
Register1....................... 520
5.7.7.3 Page Table Search 520

5.7.7.4 Relaxed Page Table Alignment
[Category: Server.Relaxed Page Table
Alignment]. 522

5.7.8 Reference and Change Recording . .
522

5.7.9 Storage and Virtual Page Class Key
Protection....................... 524

5.7.9.1 Virtual Page Class Key Protection.
524

5.7.9.2 Storage Protection, Address

Translation Enabled 525
5.7.9.3 Storage Protection, Address

Translation Disabled. 526
5.8 Storage Control Attributes 527
5.8.1 Guarded Storage. 527
5.8.1.1 Out-of-Order Accesses to Guarded

Storage. 527
5.8.2 Storage ControlBits 527

5.8.2.1 Storage Control Bit Restrictions. . .
528

5.8.2.2 Altering the Storage Control Bits . .
528

5.9 Storage Control Instructions. 529
5.9.1 Cache Management Instructions 529
5.9.2 Synchronize Instruction. 529
5.9.3 Lookaside Buffer

Management. 529

5.9.3.1 SLB Management Instructions 530
5.9.3.2 Bridge to SLB Architecture [Cate-

gory:ServerPhased-Out] 536
5.9.3.2.1 Segment Register
Manipulation Instructions 536

5.9.3.3 TLB Management Instructions .539
5.10 Page Table Update Synchronization
Requirements. 543
5.10.1 Page Table Updates......... 543
5.10.1.1 Adding a Page Table Entry . .544
5.10.1.2 Modifying a Page Table Entry 545
5.10.1.3 Deleting a Page Table Entry .546

Chapter 6. Interrupts 547
6.1 OVerview 547

6.2 Interrupt Registers............. 548
6.2.1 Machine Status Save/Restore Regis-

ters. ... 548

6.2.2 Hypervisor Machine Status Save/
Restore Registers. 548

6.2.3 Data Address Register 548

6.2.4 Hypervisor Data Address Register
548

6.2.5 Data Storage Interrupt

Status Register 548
6.2.6 Hypervisor Data Storage Interrupt
Status Register 549

6.2.7 Hypervisor Emulation Instruction
Register [Category: Hypervisor Emula-

tion Assistance] 549
6.2.8 Hypervisor Maintenance Exception
Register. 549
6.2.9 Hypervisor Maintenance Exception
Enable Register 549
6.3 Interrupt Synchronization 550
6.4 |InterruptClasses 550
6.4.1 Precise Interrupt 550
6.4.2 Imprecise Interrupt. 550
6.4.3 Interrupt Processing 551
6.4.4 Implicit alteration of HSRRO and
HSRR1 554
6.5 Interrupt Definitions. 555
6.5.1 System Reset Interrupt 556
6.5.2 Machine Check Interrupt. 557
6.5.3 Data Storage Interrupt. 559
6.5.4 Data Segment Interrupt....... 560

6.5.5 Instruction Storage Interrupt . .. 560
6.5.6 Instruction Segment

Interrupt. 561
6.5.7 External Interrupt. 561
6.5.8 Alignment Interrupt 562
6.5.9 Program Interrupt 563
6.5.10 Floating-Point Unavailable

Interrupt. 564
6.5.11 Decrementer Interrupt 565
6.5.12 Hypervisor Decrementer

Interrupt. 565
6.5.13 System Call Interrupt........ 565

6.5.14 Trace Interrupt [Category: Trace] .
565
6.5.15 Hypervisor Data Storage Inter-

rupt. . ..o 566
6.5.16 Hypervisor Instruction Storage
Interrupt. 567
6.5.17 Hypervisor Data Segment Inter-
rupt. 567
6.5.18 Hypervisor Instruction Segment
Interrupt 568

6.5.19 Hypervisor Emulation Assis-
tance Interrupt [Category: Hypervisor
Emulation Assistance] 568

6.5.20 Hypervisor Maintenance Interrupt .
568

Xiv

Power ISA™ [-1ll, VLE

Version 2.05

6.5.21 Performance Monitor
Interrupt [Category: ServerPerformance

Monitor]. 569
6.5.22 Vector Unavailable Interrupt [Cate-
gory:Vector] 569
6.6 Partially Executed
Instructions 570
6.7 Exception Ordering............ 571
6.7.1 Unordered Exceptions. 571
6.7.2 Ordered Exceptions. 571
6.8 Interrupt Priorities. 571
Chapter 7. Timer Facilities. 575
7.1 Overview. 575
7.2 TimeBase(TB) 575
7.2.1 Writing the Time Base........ 576
7.3 Decrementer................. 576
7.3.1 Writing and Reading the Decre-
menter.iiiin.. 577
7.4 Hypervisor Decrementer........ 577
7.5 Processor Utilization of Resources
Register (PURR). 578
7.6 Scaled Processor Utilization of
Resources Register (PURR). 578
Chapter 8. Debug Facilities 581
8.1 Overview.................... 581
8.1.1 Come-From Address Register. . 581
8.1.2 Data Address Breakpoint. 581
Chapter 9. External Control
[Category: External Control] 583
9.1 External Access Register....... 583
9.2 External Access Instructions. 583

Chapter 10. Synchronization
Requirements for Context Alterations
585

Appendix A. Assembler Extended

Mnemonics 589
A.1 Move To/From Special Purpose Reg-
ister MNnemonics 589

Appendix B. Example Performance

Monitor. 591

B.1 PMM Bit of the Machine State Register
592

B.2 Special Purpose Registers. 592

B.2.1 Performance Monitor Counter Regis-

ters ... 593

B.2.2 Monitor Mode Control Register 0594
B.2.3 Monitor Mode Control Register 1596

B.2.4 Monitor Mode Control Register A596
B.2.5 Sampled Instruction Address Regis-
er .. 597
B.2.6 Sampled Data Address Register 597
B.3 Performance Monitor
Interrupt. 598
B.4 Interaction with the Trace Facility . 598

Appendix C. Example Trace
Extensions 599

Appendix D. Interpretation of the
DSISR as Set by an Alignment
Interrupt 601

Appendix E. Programming Examples
603
E.1 Unsigned Single-PrecisionBCD Atrith-

metic 603
E.2 Signed Single-Precision BCD Arith-
metic 603
E.3 Unsigned Extended-Precision BCD
Arithmetic. 604
Book llI-E:

Power ISA Operating Environment
Architecture - Embedded

Environment.................. 605
Chapter 1. Introduction......... 607
11 Overview.................... 607

1.2 32-Bit Implementations 607

1.3 Document Conventions. 607
1.3.1 Definitions and Notation. 607
1.3.2 ReservedFields............. 608

1.4 General Systems Overview. 608

15 Exceptions................... 608

1.6 Synchronization 609
1.6.1 Context Synchronization 609
1.6.2 Execution Synchronization. 609

Chapter 2. Branch Processor. ...611

2.1 Branch Processor Overview 611
2.2 Branch Processor Registers 611
2.2.1 Machine State Register 611
2.3 Branch Processor Instructions . .. 613
2.4 System Linkage Instructions.. 613

Chapter 3. Fixed-Point Processor 617
3.1 Fixed-Point Processor Overview. . 617
3.2 Special Purpose Registers 617

Table of Contents XV

Version 2.05

3.3 Fixed-Point Processor Registers . .617

3.3.1 Processor Version Register617
3.3.2 Processor ldentification Register 617
3.3.3 Software-use SPRs........... 618
3.3.4 External Process ID Registers [Cate-
gory: Embedded.External PID]. 619
3.3.4.1 External Process ID Load Context
(EPLC) Register. 619
3.3.4.2 External Process ID Store Context
(EPSC) Register. 620

3.4 Fixed-Point Processor Instructions 621

3.4.1 Move To/From System Register
Instructions. 621

3.4.2 External Process ID Instructions
[Category: Embedded.External PID] . .627

Chapter 4. Storage Control 639
4.1 Storage Addressing............ 639
4.2 Storage Exceptions 639
4.3 Instruction Fetch 640
4.3.1 ImplicitBranch............... 640
4.3.2 Address Wrapping Combined with

Changing MSR BitCM 640
44 DataAccess.................. 640
4.5 Performing Operations

Out-of-Order. 640
4.6 Invalid Real Address 641
4.7 Storage Control 641
4.7.1 Storage Control Registers. 641
4.7.1.1 Process ID Register......... 641
4.7.1.2 Translation Lookaside Buffer. .641
4.7.2 Page ldentification. 643
4.7.3 Address Translation 646
4.7.4 Storage Access Control 647
47.4.1 Execute Access............ 647
4742 Write Access 647
4743 ReadAccess 647
4.7.4.4 Storage Access Control Applied to

Cache Management Instructions 647
4.7.4.5 Storage Access Control Applied to

String Instructions. 648
4,75 TLB Management............ 648
4.8 Storage Control Attributes 649
4.8.1 Guarded Storage. 649
4.8.1.1 Out-of-Order Accesses to Guarded

Storage. 650
4.8.2 User-Definable 650
4.8.3 Storage Control Bits 650

4.8.3.1 Storage Control Bit Restrictions. . .
650

4.8.3.2 Altering the Storage Control Bits . .
651

4.9 Storage Control Instructions. 652

4.9.1 Cache Management Instructions 652

4.9.2 Cache Locking [Category: Embed-
ded Cache Locking] 653

Chapter 5.
661

4.9.2.1 Lock Setting and Clearing ... 653

4.9.2.2 Error Conditions 653
4,9.2.2.1 Overlocking............. 653
4.9.2.2.2 Unable-to-lock and Unable-to-

unlock Conditions 654
4.9.2.3 Cache Locking Instructions .. 655
4.9.3 Synchronize Instruction. 657
4.9.4 Lookaside Buffer

Management. 657

4.9.4.1 TLB Management Instructions 658

Interrupts and Exceptions
51 OvVerview.................... 662
5.2 Interrupt Registers 662
5.2.1 Save/Restore Register0. 662
5.2.2 Save/Restore Register1...... 662

5.2.3 Critical Save/Restore Register 0 663

5.2.4 Critical Save/Restore Register 1 663

5.2.5 Debug Save/Restore Register 0
[Category: Embedded.Enhanced Debug] .
663

5.2.6 Debug Save/Restore Register 1
[Category: Embedded.Enhanced Debug] .
663

5.2.7 Data Exception Address Register . .
664

5.2.8 Interrupt Vector Prefix Register . 664

5.2.9 Exception Syndrome Register. . 665

5.2.10 Interrupt Vector Offset Registers. .
666

5.2.11 Machine Check Registers 666
5.2.11.1 Machine Check Save/Restore
RegisterO...................... 667
5.2.11.2 Machine Check Save/Restore
Registerl 667
5.2.11.3 Machine Check Syndrome Regis-
er . . 667
5.2.12 External Proxy Register [Category:
External Proxy] 667
5.3 Exceptions 668
5.4 Interrupt Classification 668
5.4.1 Asynchronous Interrupts 668
5.4.2 Synchronous Interrupts....... 668

5.4.2.1 Synchronous, Precise Interrupts .
669

5.4.2.2 Synchronous, Imprecise Interrupts
669

5.4.3 InterruptClasses............ 669
5.4.4 Machine Check Interrupts 669
5.5 Interrupt Processing........... 670
5.6 Interrupt Definitions. 672
5.6.1 Critical Input Interrupt 674
5.6.2 Machine Check Interrupt. 674
5.6.3 Data Storage Interrupt. 675

5.6.4 |Instruction Storage Interrupt ... 676

XVi

Power ISA™ [-1ll, VLE

Version 2.05

5.6.5 External Input Interrupt 676
5.6.6 Alignment Interrupt 677
5.6.7 Program Interrupt 678

5.6.8 Floating-Point Unavailable Interrupt
679

5.6.9 System Call Interrupt......... 679
5.6.10 Auxiliary Processor Unavailable
Interrupt. L 679
5.6.11 Decrementer Interrupt 680
5.6.12 Fixed-Interval Timer Interrupt . 680
5.6.13 Watchdog Timer Interrupt 680
5.6.14 Data TLB Error Interrupt 681
5.6.15 Instruction TLB Error Interrupt. 681
5.6.16 DebugInterrupt............ 682

5.6.17 SPE/Embedded Floating-Point/
Vector Unavailable Interrupt
[Categories: SPE.Embedded Float Scalar
Double, SPE.Embedded Float Vector,
Vector]. 683

5.6.18 Embedded Floating-Point Data
Interrupt
[Categories: SPE.Embedded Float Scalar
Double, SPE.Embedded Float Scalar Sin-
gle, SPE.Embedded Float Vector] ... 684

5.6.19 Embedded Floating-Point Round
Interrupt
[Categories: SPE.Embedded Float Scalar
Double, SPE.Embedded Float Scalar Sin-
gle, SPE.Embedded Float Vector] ... 684

5.6.20 Performance Monitor Interrupt [Cat-
egory: Embedded Performance Monitor]. .
685

5.6.21 Processor Doorbell Interrupt [Cate-
gory: Embedded.Processor Control] . . 685

5.6.22 Processor Doorbell Critical Interrupt
[Category: Embedded.Processor Control].
685

5.7 Partially Executed Instructions . .. 686

5.8 Interrupt Ordering and Masking .. 687

5.8.1 Guidelines for System Software 688

5.8.2 InterruptOrder.............. 689

5.9 Exception Priorities............ 689

5.9.1 Exception Priorities for Defined
Instructions 690

5.9.1.1 Exception Priorities for Defined
Floating-Point Load and Store Instructions
690

5.9.1.2 Exception Priorities for Other
Defined Load and Store Instructions and
Defined Cache Management Instructions.
690

5.9.1.3 Exception Priorities for Other
Defined Floating-Point Instructions. . . 690

5.9.1.4 Exception Priorities for Defined
Privileged Instructions. 690

5.9.1.5 Exception Priorities for Defined
Trap Instructions 690
5.9.1.6 Exception Priorities for Defined
System Call Instruction 691
5.9.1.7 Exception Priorities for Defined
Branch Instructions 691
5.9.1.8 Exception Priorities for Defined
Return From Interrupt Instructions. . . . 691
5.9.1.9 Exception Priorities for Other
Defined Instructions. 691
5.9.2 Exception Priorities for Reserved
Instructions 691

Chapter 6. Reset and Initialization. . .
693

6.1 Background.................. 693
6.2 Reset Mechanisms............ 693
6.3 Processor State After Reset 693

6.4 Software Initialization Requirements. .
694

Chapter 7. Timer Facilities 695

7.1 OVerview.ouvuu.n. 695

7.2 TimeBase(TB)............... 695

7.2.1 Writing the Time Base 696

7.3 Decrementer................. 697
7.3.1 Writing and Reading the Decre-

menter.............. ... 697

7.3.2 Decrementer Events 697

7.4 Decrementer Auto-Reload Register . .
698

7.5 Timer Control Register 698
7.5.1 Timer Status Register. 700
7.6 Fixed-Interval Timer 700
7.7 Watchdog Timer 701
7.8 Freezing the Timer Facilities. 702
Chapter 8. Debug Facilities 703
8.1 Overview.................... 703
8.2 Internal Debug Mode. 703
8.3 External Debug Mode [Category:
Embedded.Enhanced Debug] 704
84 DebugEvents................ 704
8.4.1 Instruction Address Compare Debug
Event............ 705
8.4.2 Data Address Compare Debug
Event............ 707
8.4.3 TrapDebugEvent........... 708

8.4.4 Branch Taken Debug Event. ... 708

8.4.5 Instruction Complete Debug Event .
709

8.4.6 Interrupt Taken Debug Event. .. 709

8.4.6.1 Causes of Interrupt Taken Debug
Events 709

Table of Contents XVii

Version 2.05

8.4.6.2 Interrupt Taken Debug Event
Description 709

8.4.7 Return Debug Event.......... 710

8.4.8 Unconditional Debug Event. 710

8.4.9 Critical Interrupt Taken Debug Event
[Category: Embedded.Enhanced Debug]. .
710

8.4.10 Critical Interrupt Return Debug
Event [Category: Embedded.Enhanced

Debug] L 711
8.5 Debug Registers 711
8.5.1 Debug Control Registers. 711
8.5.1.1 Debug Control Register 0 (DBCRO0)

711
8.5.1.2 Debug Control Register 1 (DBCR1)

712
8.5.1.3 Debug Control Register 2 (DBCR2)

714
8.5.2 Debug Status Register 715
8.5.3 Instruction Address Compare Regis-

ters . ..o 716
8.5.4 Data Address Compare Registers . .

716

8.5.5 Data Value Compare Registers .717

8.6 Debugger Notify Halt Instruction
[Category: Embedded.Enhanced Debug]. .
718

Chapter 9. Processor Control
[Category: Embedded Processor

Control] 719

9.1 OVerviewc.covuuunn.. 719

9.2 Programming Model. 719
9.2.1 Processor Message Handling and

Filtering. 719

9.2.1.1 Doorbell Message Filtering .. .720

9.2.1.2 Doorbell Critical Message Filtering
720

9.3 Processor Control Instructions. . . .721

Chapter 10. Synchronization
Requirements for Context Alterations
723

Appendix A. Implementation-

Dependent Instructions 727

A.1 Embedded Cache Initialization
[Category: Embedded.Cache Initialization]
727

A.2 Embedded Cache Debug Facility
[Category: Embedded.Cache Debug]. .728

A.2.1 Embedded Cache Debug Registers.
728

A.2.1.1 Data Cache Debug Tag Register

High. o 728
A.2.1.2 Data Cache Debug Tag Register
LOW . .t 728
A.2.1.3 Instruction Cache Debug Data
Register. 729
A.2.1.4 Instruction Cache Debug Tag Reg-
ister High. 729
A.2.1.5 Instruction Cache Debug Tag Reg-
isterLow 729
A.2.2 Embedded Cache Debug Instruc-
tions 730

Appendix B. Assembler Extended

Mnemonics 733
B.1 Move To/From Special Purpose Reg-
ister Mnemonics 734

Appendix C. Guidelines for 64-bit
Implementations in 32-bit Mode and
32-bit Implementations 735

C.1 Hardware Guidelines.......... 735

C.1.1 64-bit Specific Instructions 735
C.1.2 Registers on 32-bit Implementations

735
C.1.3 Addressing on 32-bit Implementa-
ions 735
C.1.4 TLB Fields on 32-bit Implementa-
tions 735
C.2 32-bit Software Guidelines. 735
C.2.1 32-bit Instruction Selection 735

Appendix D. Type FSL Storage
Control
[Category: Embedded.MMU Type

FSL] .. 737
D.1 Type FSL Storage Control Overview .
737
D.2 Type FSL Storage Control Registers.
737
D.2.1 Process ID Registers (PIDn). .. 737
D.2.2 Translation Lookaside Buffer .. 737

D.2.3 Address Space Identifiers. 738
D.2.4 MMU Assist Registers. 738
D.2.4.1 MASO Register............ 738
D.2.4.2 MAS1 Register............ 739
D.2.4.3 MAS2Register............ 739
D.2.4.4 MAS3Register............ 740
D.2.45 MAS4 Register............ 740
D.2.4.6 MASG6 Register............ 741
D.2.4.7 MAS7 Register............ 741
D.2.5 MMU Configuration and Control
Registers. 743

XViii Power ISA™ |-|Il, VLE

Version 2.05

D.2.5.1 MMU Configuration Register

(MMUCFG) 743
D.2.5.2 TLB Configuration Registers
(TLBNCFG) ... oo 743
D.2.5.3 MMU Control and Status Register
(MMUCSRO) o 743
D.3 Page Identification and Address
Translation 744
D.4 TLB Management............. 744
D.4.1 Reading TLB Entries......... 744
D.4.2 Writing TLB Entries 744
D.4.3 Invalidating TLB Entries 745
D.4.4 Searching TLB Entries 745
D.4.5 TLB Replacement Hardware Assist
745
D.5 32-bit and 64-bit Specific MMU Behav-
o 746
D.6 Type FSL MMU Instructions. 747

Appendix E. Example Performance
Monitor [Category:
Embedded Performance Monitor] 751

E.1 Overview 751

E.2 Programming Model. 751

E.2.1 EventCounting............. 752

E.2.2 Processor Context Configurability. .
752

E.2.3 EventSelection............. 752

E.2.4 Thresholds 753

E.2.5 Performance Monitor Exception 753
E.2.6 Performance Monitor Interrupt . 753
E.3 Performance Monitor Registers .. 753
E.3.1 Performance Monitor Global Control

RegisterO...................... 753
E.3.2 Performance Monitor Local Control
ARegisters 754
E.3.3 Performance Monitor Local Control
B Registers 754
E.3.4 Performance Monitor Counter Regis-
ers ..o e 755

E.4 Performance Monitor Instructions 756
E.5 Performance Monitor Software Usage

Notes. 757

E.5.1 Chaining Counters 757

E.5.2 Thresholding............... 757
Book VLE:

Power ISA Operating Environment
Architecture -

Variable Length Encoding (VLE) Envi
ronment. 759

Chapter 1. Variable Length Encoding

Introduction 761
1.1 Overview.................... 761
1.2 Documentation Conventions. 762
1.2.1 Description of Instruction Operation.

762
1.3 Instruction Mnemonics and Operands
762
1.4 VLE Instruction Formats 762
1.4.1 BD8-form (16-bit Branch Instruc-
tions) 762
1.4.2 C-form (16-bit Control Instructions) .
762
1.4.3 IM5-form (16-bit register + immediate
Instructions) 762
1.4.4 OIM5-form (16-bit register + offset
immediate Instructions) 762
1.4.5 IM7-form (16-bit Load immediate
Instructions) 762
1.4.6 R-form (16-bit Monadic Instructions)
763
1.4.7 RR-form (16-bit Dyadic Instructions)
763
1.4.8 SD4-form (16-bit Load/Store Instruc-
tions) 763
1.49 BD15-form................. 763
1.410 BD24-form................ 763
1.411 D8form 763
1.412 116A-form................. 763
1.4.13 I116L-form 763
1414 M-form................... 763
1.4.15 SCI8form................. 763
1.416 LI20-form................. 763
1.4.17 Instruction Fields 763

Chapter 2. VLE Storage Addressing .
767
2.1 Data Storage Addressing Modes . 767
2.2 Instruction Storage Addressing Modes
768
2.2.1 Misaligned, Mismatched, and Byte
Ordering Instruction Storage Exceptions. .
768
2.2.2 VLE Exception Syndrome Bits . . 768

Chapter 3. VLE Compatibility with

Books I-lll.................... 771
31 Overview.................... 771
3.2 VLE Processor and Storage Control

Extensions. 771
3.2.1 Instruction Extensions 771

Table of Contents XixX

Version 2.05

3.2.2 MMU Extensions............. 771
3.3 VLE Limitations 771

Chapter 4. Branch Operation

Instructions 773
4.1 Branch Processor Registers 773
4.1.1 Condition Register (CR) 773
4.1.1.1 Condition Register Setting for

Compare Instructions 774
4.1.1.2 Condition Register Setting for the

Bit Test Instruction 774
4.1.2 Link Register (LR)............ 774
4.1.3 Count Register (CTR) 774
4.2 Branch Instructions 775
4.3 System Linkage Instructions 778

4.4 Condition Register Instructions . ..781

Chapter 5. Fixed-Point Instructions .
783

5.1 Fixed-Point Load Instructions. 783
5.2 Fixed-Point Store Instructions787
5.3 Fixed-Point Load and Store with Byte

Reversal Instructions 790
5.4 Fixed-Point Load and Store Multiple
Instructions. 790

5.5 Fixed-Point Arithmetic Instructions.791
5.6 Fixed-Point Compare and Bit Test

Instructions. 795
5.7 Fixed-Point Trap Instructions.. 799
5.8 Fixed-Point Select Instruction799
5.9 Fixed-Point Logical, Bit, and Move

Instructions. 800
5.10 Fixed-Point Rotate and Shift Instruc-

tioNs ... 805
5.11 Move To/From System Register

Instructions. 808

Chapter 6. Storage Control
Instructions 809

6.1 Storage Synchronization Instructions. .
809

6.2 Cache Management Instructions . .810

6.3 Cache Locking Instructions 810

6.4 TLB Management Instructions810

6.5 Instruction Alignment and Byte Order-

1 810
Chapter 7. Additional Categories

Availablein VLE. 811
7.1 MoveAssist.................. 811

7.2 Vector................... 811

7.3 Signal Processing Engine 811

7.4 Embedded Floating Point. 811

7.5 Legacy Move Assist. 811

76 ExternalPID................. 811
7.7 Embedded Performance Monitor . 812
7.8 Processor Control. 812

Appendix A. VLE Instruction Set

Sorted by Mnemonic 813
Appendix B. VLE Instruction Set

Sorted by Opcode. 829
Appendices:

Power ISA Book I-Ill Appendices 845

Appendix A. Incompatibilities with

the POWER Architecture 847

A.1 New Instructions, Formerly Privileged

Instructions 847
A.2 Newly Privileged

Instructions 847
A.3 Reserved Fields in

Instructions 847
A.4 Reserved Bits in Registers. 847
A5 AlignmentCheck 847
A.6 Condition Register 848
A7 LKandRcBits............... 848
A8 BOField.................... 848
A9 BHField.................... 848
A.10 Branch Conditional to Count Register

848
A1l SystemCall 848
A.12 Fixed-Point Exception

Register (XER) 849
A.13 Update Forms of Storage Access

Instructions 849
A.14 Multiple Register Loads 849
A.15 Load/Store Multiple Instructions. 849
A.16 Move Assist Instructions 849
A.17 Move To/FromSPR.......... 849
A.18 Effects of Exceptions on FPSCR Bits

FRandFl 850
A.19 Store Floating-Point Single Instruc-

tions 850
A.20 Move FromFPSCR 850
A.21 Zeroing Bytes in the Data Cache 850
A.22 Synchronization 850
A.23 Move To Machine State Register

Instruction 850
A.24 Direct-Store Segments. 850
A.25 Segment Register

Manipulation Instructions 850
A.26 TLB Entry Invalidation 851
A.27 Alignment Interrupts.......... 851
A.28 Floating-Point Interrupts. 851

XX

Power ISA™ [-1ll, VLE

Version 2.05

A.29 Timing Facilities 851
A.29.1 Real-TimeClock 851
A.29.2 Decrementer.............. 851
A.30 Deleted Instructions.......... 852
A.31 Discontinued Opcodes. 852
A.32 POWER2 Compatibility 853
A.32.1 Cross-Reference for Changed
POWER2 Mnemonics. 853
A.32.2 Load/Store Floating-Point Double .
853
A.32.3 Floating-Point Conversion to Inte-
OB o 853
A.32.4 Floating-Point Interrupts 854
A325 Trace.................... 854
A.33 Deleted Instructions 854
A.33.1 Discontinued Opcodes 854

Appendix B. Platform Support
Requirements 855

Appendix C. Complete SPR List. 859
Appendix D. lllegal Instructions . 863

Appendix E. Reserved Instructions .
865

Appendix F. Opcode Maps 867
Appendix G. Power ISA Instruction
Set Sorted by Mnemonic 889
Appendix H. Power ISA Instruction
Set Sorted by Category 907
Appendix . Power ISA Instruction
Set Sorted by Opcode 925
Index 943
Last Page - End of Document 953

Table of Contents

XXi

Version 2.05

XXii Power ISA™ |-|Il, VLE

Version 2.05

Figures

Preface ..o, ili
Table of Contentscccoeeevveeeeinnnnnnns Vi
FIQUIES...ueiii i, XXiii
Book I:

Power ISA User Instruction Set Architec-
TUME o, 1
1. CategoryListing 9
2. Logical processingmodel 12
3. Power ISA userregisterset. 13
4, linstructionformat. 14
5. Binstructionformat...................... 14
6. SCinstructionformat. 15
7. Dinstructionformat. 15
8. DSinstructionformat. 15
9. DQinstructionformat 15
10. XlInstruction Format 16
11. XL instructionformat.................... 16
12. XFXinstructionformat. 16
13. XFL instructionformat................... 16
14. XSinstructionformat.................... 17
15. XOinstructionformat. 17
16. Ainstructionformat. 17
17. Minstructionformat. 17
18. MD instructionformat 17
19. MDSinstructionformat 17
20. VAinstructionformat. 17
21. VCinstructionformat. 17
22. VXinstructionformat.................... 17
23. EVXinstructionformat. 17
24. EVSinstructionformat.................. 17
25. Z22 instructionformat 18
26. Z23instructionformat 18
27. Storage operands and byte ordering. 23
28. C structure ‘s’, showing values of elements .. 24
29. Big-Endian mapping of structure ‘'s’. 24
30. Little-Endian mapping of structure ‘'s’ 24
31. Instructions and byte ordering. 24
32. Assembly language program ‘p’ 24
33. Big-Endian mapping of program ‘p’......... 24
34. Little-Endian mapping of program ‘p’. 25

35.
36.
37.
38.
39.
40.
41.
42.
43.
44,
45,
46.
47.

48.
49.
50.
51.
52.
53.
54.
55.
56.

57.
58.

60.
61.
62.
63.
64.
65.
66.
67.

68.
69.

70.
71.
72.

73.
74.

75.
76.

Condition Register 30
Link Registert 31
CountRegister. 31
BOfieldencodings. 32
“at"bitencodings L 32
BH field encodings. 32
General Purpose Registers 42
Fixed-Point Exception Register 42
Program Priority Register. 43
Software-use SPRs 43
Priority levels for or RX,RX,Rx 77
Floating-Point Registers. 101
Floating-Point Status and Control

Register. i 101
Floating-Point ResultFlags 103
Floating-point single format. 103
Floating-point double format 104
IEEE floating-point fields 104
Approximation to real numbers 104
Selectionof Zland Z2. 108
IEEE 64-bit execution model 114
Interpretation of G, R, and X bits 114
Location of the Guard, Round, and

Sticky bits in the IEEE execution model . .. 114
Multiply-add 64-bit execution model. 115

Location of the Guard, Round, and Sticky bits in the

multiply-add execution model........... 115
Format for Unsigned DecimalData 147
Format for Signed DecimalData 147
Summary of BCD Digit and Sign Codes 147
DFP Shortformat. 148
DFP Longformat 148
DFP Extended format. 148
Encoding of the G field for Special Symbols . 148

Encoding of bits 0:4 of the G field for Finite Numbers
148

Summary of DFP Formats 149
Value Ranges for Finite Number Data Classes

150
Encoding of NaN and Infinity Data Classes.. 150
Rounding 151

Encoding of DFP Rounding-Mode Control (DRN) .
151

Primary Encoding of Rounding-Mode Control 152

Secondary Encoding of Rounding-Mode Contral. .
152

Summary of Ideal Exponents. 152

Overflow Results When Exception Is Disabled 158

Figures xxiii

Version 2.05

77. Rounding and Range Actions (Part 1). 160 4. Logical Partition Identification Register 474
78. Rounding and Range Actions (Part2). 161 5. Processor Compatibility Register. 474
79. Actions: Add 164 6. Machine State Register 477
80. Actions: Multiply 165 7. Processor Version Register. 487
81. Actions:Divide. 166 8. Processor Identification Register. 488
82. Actions: Compare Unordered 168 9. Control Register. 488
83. Actions: Compare Ordered 169 10. Program Priority Register. 488
84. Actions: TestExponent................. 171 11. Software-use SPRs 489
85. Actions: Test Significance............... 172 12. SPRs for use by hypervisor programs 489
86. DFP Quantizeexamples................ 174 13. Priority levels for or RX,RX,Rx 496
87. Actions (part 1) Quantize. 175 14. SPRencodingsiiiiian. 497
88. Actions (part2) Quantize 175 15. SLBEforVRMA 511
89. DFP Reround examples 177 16. Address translation overview. 514
90. Actions: Reround. 178 17. Translation of 64-bit effective address to
91. Actions: Round to FP Integer With Inexact.. 180 78 bitvirtual address. 514
92. Actions: Round to FP Integer Without Inexact 181 18. SLBENtry 515
93. Actions: Data-Format Conversion Instructions 182 19. SLBLyp Encoding 515
94. Actions: Convert ToFixed. 186 20. Translation of 78-bit virtual address to 60-bit real
95. Actions: Insert Biased Exponent 189 address. 517
96. Decimal Floating-Point Instructions Summary 191 21. PageTableEntry........... 518
97. Vector Registerelements 195 22. Formatof PTEp. 519
98. VectorRegisters 195 23. SDR1 520
99. Vector Status and Control Register. 195 24. Setting the Reference and Change hits. 523
100. VR Save Register 196 25. Authority Mask Register (AMR) 524
101. Aligned quadword storage operand 197 26. PP bit protection states, address
102. Vector Register contents for aligned quadword translationenabled 526
LoadorStore..............coin.. 197 27. Protection states, address translation
103. Unaligned quadword storage operand 197 disabled 526
104. Vector Registercontents. 197 28. Storage control bits 528
105. GPR. ... 262 29. GPR contentsforslbmte 533
106. Accumulator 262 30. GPR contents for slbmfev 534
107. Signal Processing and Embedded Floating-Point 31. GPR contents for slbmfee 534
Status and Control Register. 262 32. GPR contents forslbfee. 535
108. Floating-Point Data Format............. 316 33. GPR contents for mtsr, mtsrin, mfsr, and
MISHN. 536
Book II: 34. Save/Restore Registers. 548
35. Hypervisor Save/Restore Registers. 548
36. Data Address Register. 548
Power ISA Virtual Environment Architec- 37. Hypervisor Data Address Register. 548
BUFE 1o 405 38 Data Storage Interrupt Status Register 548
39. Hypervisor Data Storage Interrupt Status Register
549
1. Performance effects of storage operand placement 40. Hypervisor Emulation Instruction Register. .. 549
422 41. Hypervisor Maintenance Exception Register. 549
2. [Category: Server] Performance e_ffects of storage 42. Hypervisor Maintenance Exception Enable Regis-
operand placement, Little-Endian 422 ter .. 549
3. l?ata Stream Control Register 426 43. MSR setting due to interrupt 555
4. TimeBase.................covvvienn, 451 44. Effective address of interrupt vector by
5. Alternate TimeBase 454 INEITUPEYPE .+« « oo oo 556
45. TimeBase 575
Book IlI-S: 46. DECrEMENtEr . . oo vttt 576
47. Hypervisor Decrementer 577
. . . 48. Processor Utilization of Resources Register . 578
Power ISA Operat'”g Environment Archi- 49. Scaled Processor Utilization of Resources Register
tecture - Server Environment............ 465 578
50. Come-From Address Register............ 581
1. Logical Partitioning Control Register. 471 51. Data Address Breakpoint Register. so. 982
2. Real Mode Offset Register 473 52. Data Address Breakpoint Register Extension 582
3. Hypervisor Real Mode Offset Register 474 53. External Access Register. 583
XXV Power ISA™ |-1ll, VLE

Version 2.05

54.

55.

56.
57.
58.
59.
60.
61.

Performance Monitor SPR encodings for

MISPr .. 593
Performance Monitor SPR encodings for

MESPr .« . 593
Performance Monitor Counter registers 593
Monitor Mode Control Register0 594
Monitor Mode Control Register1 596
Monitor Mode Control Register A 596
Sampled Instruction Address Register 597
Sampled Data Address Register. 597

Book IlI-E:

Power ISA Operating Environment Archi-

40. MMU Control and Status Register0 744
41. Processor States and PMLCan Bit Settings. . 752
42. [User] Performance Monitor Global Control Regis-

ter0. .. 753
43. [User] Performance Monitor Local Control A Regis-
erS . o 754
44. [User] Performance Monitor Local Control B Regis-
T 754
45. [User] Performance Monitor Counter Registers. . .
755
46. Embedded.Peformance Monitor PMRs 756

Book VLE:

tecture - Embedded Environment..... 605 Power ISA Operating Environment Archi-
tecture -
1. Machine State Register. 611 Variable Length Encoding (VLE) Environ
2. Processor Version Register. 617 [0 01=) 8| S 759
3. Processor Identification Register. 618
4. Special Purpose Registers 618 . .
5. External Process ID Load Context Register .. 619 ; ED8 |tnstrtgct|(f)n forrtnat """""""""" ;g;
6. External Process ID Store Context Register.. 620 ' |n§ fuc 'Or.‘ Ormat. .
3. IM5instructionformat. 762
7. SPRNumbers......................... 621 4 OIMS instruction f t 762
8. Virtual Address to TLB Entry Match Process . 644 5' M7 i n:s nf[C '0? ormta """"""""" 762
9. Effective-to-Real Address Translation Flow .. 645 6. Ri ":S rtl.c |ofn orrrtla """""""""" 763
10. Access Control Process 646 7' Rll?n's “:C |<:_n ofrma t """""""""" 763
11. Storage controlbits.................... 650 8. SDA:r.'s rtuc '?n c;rmai """""""""" 763
12. Exception Syndrome Register ' |r!s ruc 'O.n ormat.vveee
. 9. BD15 instructionformat 763
Definitions. 665 10. BD24 instruction f t 763
13. Interrupt Vector Offset Register ' ~7 Instructionformat.o
. 11. D8instructionformat 763
Assignments 666 . .
. 12. 116Ainstruction format.................. 763
14. External Proxy Register. 667 13. 6L instruction f i 763
15. Interrupt and Exception Types 673 ' L Instructionformat.
: 14. Minstructionformat.................... 763
16. Interrupt Hierarchy. 687 15. SC18 instruction f t 763
17. Machine State Register Initial Values 693 ' . ns rug lonformat.................
. 16. LI20 instructionformat.................. 763
18. TLBInitialValues 694 . .
] 17. Condition Register 773
19. TimeBase. 695 .]
18. BO32fieldencodings. 775
20. Decrementer, 697 19 BO16 field di 775
21. Decrementer 698) Ield encodings..
22, ... Relationships of the Timer Facilities 699)
23. Watchdog State Machine 701 Appendices:
24. Watchdog Timer Controls 702
25. Data Cache Debug Tag Register High 728 _ :
26. Data Cache Debug Tag Register Low. 728 Power ISA Book I-Il1 Appendlces """ 845
27. Instruction Cache Debug Data Register 729
28. Instruction Cache Debug Tag Register High. 729 20. Platform Support Requirements. 856
29. Instruction Cache Debug Tag Register Low . 729 21. SPRNumbers 859
30. Process ID Register (PIDO-PID2)......... 737
31 MASOegister..........ovveenen 738 INAEX e 943
32. MAS1register..........ciiii 739
33. MAS2register 739
34, MAS3TEQISIEr . . o vvoe e 740 Last Page - End of Document........... 953
35. MAS4register 740
36. MAS6register. i 741
37. MAST7register i 741
38. MMU Configuration Register. 743
39. TLB Configuration Register. 743
Figures XXV

Version 2.05

XXVi Power ISA™ |-Il, VLE

Version 2.05

Book I:

Power ISA User Instruction Set Architecture

Book I: Power ISA User Instruction Set Architecture

1

Version 2.05

2 Power ISA™ |

Version 2.05

Chapter 1. Introduction

11 Overview.covvnnn. 3
1.2 Instruction Mnemonics and Operands3
1.3 Document Conventions 4
1.3.1 Definitions 4
1.3.2 Notation..................... 4
1.3.3 Reserved Fields and Reserved Val-
UBS . ottt e 5
1.3.4 Description of Instruction Operation 7
1.35 Categories................... 9
1.3.5.1 Phased-In/Phased-Out. 10
1.3.5.2 Corequisite Category 10
1.3.5.3 Category Notation. 11
1.3.6 Environments................ 11
1.4 Processor Overview............ 12
1.5 Computationmodes............ 14
1.5.1 Modes [Category: Server] 14
1.5.2 Modes [Category: Embedded]. .. 14
1.6 Instructionformats 14
161 I-FFORM 15
162 B-FORM 15
163 SC-FORM 15
164 D-FORM 15
165 DS-FORM 15
166 DQ-FORM.................. 15
167 X-FORM 16
168 XL-FORM 16
169 XFX-FORM 16
1.6.10 XFL-FORM 16
1611 XS-FORM 17

1.6.12 XO-FORM 17
1613 A-FORM................... 17
1614 M-FORM 17
16.15 MD-FORM 17
16.16 MDS-FORM................ 17
16.17 VA-FORM.................. 17
16.18 VC-FORM 17
16.19 VX-FORM. 17
1.6.20 EVX-FORM 17
1.6.21 EVS-FORM 17
1.6.22 Z22-FORM................. 18
16.23 Z23-FORM................. 18
1.6.24 InstructionFields 18
1.7 Classes of Instructions 21
1.7.1 Defined InstructionClass 21
1.7.2 lllegal Instruction Class 21
1.7.3 Reserved Instruction Class 21
1.8 Forms of Defined Instructions. 21
1.8.1 Preferred Instruction Forms.. 21
1.8.2 Invalid Instruction Forms 21
1.8.3 Reserved-no-op Instructions [Cate-
gory: Phased-In (sV2.07)] 22
1.9 Exceptions.................... 22
1.10 Storage Addressing............ 23
1.10.1 Storage Operands 23
1.10.2 Instruction Fetches........... 24

1.10.3 Effective Address Calculation. . . 26

1.1 Overview

This chapter describes computation modes, document
conventions, a processor overview, instruction formats,
storage addressing, and instruction fetching.

1.2 Instruction Mnemonics and
Operands

The description of each instruction includes the mne-
monic and a formatted list of operands. Some exam-
ples are the following.

stw RS,D(RA)
addis RT,RA,SI

Power ISA-compliant Assemblers will support the mne-
monics and operand lists exactly as shown. They
should also provide certain extended mnemonics, such
as the ones described in Appendix D of Book I.

Chapter 1. Introduction 3

Version 2.05

1.3 Document Conventions

1.3.1 Definitions

The following definitions are used throughout this docu-
ment.

program
A sequence of related instructions.

application program
A program that uses only the instructions and
resources described in Books | and II.

guadwords, doublewords, words, halfwords,
and bytes

128 bits, 64 bits, 32 bits, 16 bits, and 8 bits,
respectively.

positive
Means greater than zero.

negative
Means less than zero.

floating-point single format (or simply single
format)

Refers to the representation of a single-precision
binary floating-point value in a register or storage.

floating-point double format (or simply double
format)

Refers to the representation of a double-precision
binary floating-point value in a register or storage.

system library program

A component of the system software that can be
called by an application program using a Branch
instruction.

system service program

A component of the system software that can be
called by an application program using a System
Call instruction.

system trap handler

A component of the system software that receives
control when the conditions specified in a Trap
instruction are satisfied.

system error handler

A component of the system software that receives
control when an error occurs. The system error
handler includes a component for each of the vari-
ous kinds of error. These error-specific compo-
nents are referred to as the system alignment error
handler, the system data storage error handler,
etc.

latency

Refers to the interval from the time an instruction
begins execution until it produces a result that is
available for use by a subsequent instruction.

unavailable

Refers to a resource that cannot be used by the
program. For example, storage is unavailable if
access to it is denied. See Book Il

undefined value

May vary between implementations, and between
different executions on the same implementation,
and similarly for register contents, storage con-
tents, etc., that are specified as being undefined.

boundedly undefined

The results of executing a given instruction are
said to be boundedly undefined if they could have
been achieved by executing an arbitrary finite
sequence of instructions (none of which yields
boundedly undefined results) in the state the pro-
cessor was in before executing the given instruc-
tion. Boundedly undefined results may include the
presentation of inconsistent state to the system
error handler as described in Section 1.8.1 of Book
1. Boundedly undefined results for a given instruc-
tion may vary between implementations, and
between different executions on the same imple-
mentation.

“must”
If software violates a rule that is stated using the
word “must” (e.g., “this field must be set to 0”), the
results are boundedly undefined unless otherwise
stated.

sequential execution model

The model of program execution described in
Section 2.2, “Instruction Execution Order” on
page 29.

Auxiliary Processor

An implementation-specific processing unit. Previ-
ous versions of the architecture use the term Auxil-
iary Processing Unit (APU) to describe this
extension of the architecture. Architectural support
for auxiliary processors is part of the Embedded
category.

1.3.2 Notation

The following notation is used throughout the Power
ISA documents.

B All numbers are decimal unless specified in some

special way.

- Obnnnn means a number expressed in binary
format.

- Oxnnnn means a number expressed in hexa-
decimal format.

Underscores may be used between digits.

B RT, RA, R1, ... refer to General Purpose Registers.
B FRT, FRA, FR1, ... refer to Floating-Point Regis-

ters.

Power ISA™ |

Version 2.05

FRTp, FRAp, FRBp, ... refer to an even-odd pair of
Floating-Point Registers. Values must be even,
otherwise the instruction form is invalid.

VRT, VRA, VR1, ... refer to Vector Registers.

(x) means the contents of register x, where x is the
name of an instruction field. For example, (RA)
means the contents of register RA, and (FRA)
means the contents of register FRA, where RA
and FRA are instruction fields. Names such as LR
and CTR denote registers, not fields, so parenthe-
ses are not used with them. Parentheses are also
omitted when register x is the register into which
the result of an operation is placed.

(RA|0) means the contents of register RA if the RA
field has the value 1-31, or the value O if the RA
field is 0.

Bits in registers, instructions, fields, and bit strings
are specified as follows. In the last three items
(definition of X, etc.), if X is a field that specifies a
GPR, FPR, or VR (e.g., the RS field of an instruc-
tion), the definitions apply to the register, not to the
field.

- Bits in instructions, fields, and bit strings are
numbered from left to right, starting with bit O

- For all registers except the Vector category,
bits in registers that are less than 64 bits start
with bit number 64-L, where L is the register
length; for the Vector category, bits in regis-
ters that are less than 128 bits start with bit
number 128-L.

- The leftmost bit of a sequence of bits is the
most significant bit of the sequence.

- X, means bit p of register/instruction/field/
bit_string X.

- Xp,q Means bits p through q of register/instruc-
tion/field/bit_string X.

- Xy q.. means bits p, g, ... of register/instruc-
tion/field/bit_string X.

—(RA) means the one’s complement of the con-
tents of register RA.

A period (.) as the last character of an instruction
mnemonic means that the instruction records sta-
tus information in certain fields of the Condition
Register as a side effect of execution.

The symbol || is used to describe the concatena-
tion of two values. For example, 010 || 111 is the
same as 010111.

x" means x raised to the nt power.

"x means the replication of x, n times (i.e., x con-
catenated to itself n-1 times). (n)0 and (n)1 are
special cases:

- "0 means a field of n bits with each bit equal to
0. Thus 20 is equivalent to 0b00000.

- ™ means a field of n bits with each bit equal to
1. Thus 1 is equivalent to 0b11111.

B Each bit and field in instructions, and in status and
control registers (e.g., XER, FPSCR) and Special
Purpose Registers, is either defined or reserved.
Some defined fields contain reserved values. In
such cases when this document refers to the spe-
cific field, it refers only to the defined values,
unless otherwise specified.

m / /,/ll, ... denotes a reserved field, in a register,
instruction, field, or bit string.

m ?, ??, ??7?, ... denotes an implementation-depen-
dent field in a register, instruction, field or bit string.

1.3.3 Reserved Fields and
Reserved Values

Reserved fields in instructions are ignored by the pro-
cessor. This is a requirement in the Server environment
and is being phased into the Embedded environment.

In some cases a defined field of an instruction has cer-
tain values that are reserved. This includes cases in
which the field is shown in the instruction layout as con-
taining a particular value; in such cases all other values
of the field are reserved. In general, if an instruction is
coded such that a defined field contains a reserved
value the instruction form is invalid; see Section 1.8.2
on page 21. The only exceptions to the preceding rule
is that it does not apply to Reserved and lllegal classes
of instructions (see Section 1.7) or to portions of
defined fields that are specified, in the instruction
description, as being treated as reserved fields.

To maximize compatibility with future architecture
extensions, software must ensure that reserved fields
in instructions contain zero and that defined fields of
instructions do not contain reserved values.

The handling of reserved bits in System Registers
(e.g., XER, FPSCR) is implementation-dependent.
Unless otherwise stated, software is permitted to write
any value to such a bit. A subsequent reading of the bit
returns O if the value last written to the bit was 0 and
returns an undefined value (0 or 1) otherwise.

In some cases a defined field of a System Register has
certain values that are reserved. Software must not set
a defined field of a System Register to a reserved
value.

References elsewhere in this document to a defined
field (in an instruction or System Register) that has
reserved values assume the field does not contain a
reserved value, unless otherwise stated or obvious
from context.

Chapter 1. Introduction 5

Version 2.05

—— Assembler Note

Assemblers should report uses of reserved values
of defined fields of instructions as errors.

— Programming Note

It is the responsibility of software to preserve bits
that are now reserved in System Registers,
because they may be assigned a meaning in some
future version of the architecture.

In order to accomplish this preservation in imple-
mentation-independent fashion, software should do
the following.

B Initialize each such register supplying zeros for
all reserved bits.

B Alter (defined) bit(s) in the register by reading
the register, altering only the desired bit(s),
and then writing the new value back to the reg-
ister.

The XER and FPSCR are partial exceptions to this
recommendation. Software can alter the status bits
in these registers, preserving the reserved bits, by
executing instructions that have the side effect of
altering the status bits. Similarly, software can alter
any defined bit in the FPSCR by executing a Float-
ing-Point Status and Control Register instruction.
Using such instructions is likely to yield better per-
formance than using the method described in the
second item above.

6 Power ISA™ |

Version 2.05

1.3.4 Description of Instruction
Operation

Instruction descriptions (including related material such
as the introduction to the section describing the instruc-
tions) mention that the instruction may cause a system
error handler to be invoked, under certain conditions, if
and only if the system error handler may treat the case
as a programming error. (An instruction may cause a
system error handler to be invoked under other condi-
tions as well; see Chapter 6 of Book IlI-S and Chapter 5
of Book IlI-E).

A formal description is given of the operation of each
instruction. In addition, the operation of most instruc-
tions is described by a semiformal language at the reg-
ister transfer level (RTL). This RTL uses the notation
given below, in addition to the notation described in
Section 1.3.2. Some of this notation is also used in the
formal descriptions of instructions. RTL notation not
summarized here should be self-explanatory.

The RTL descriptions cover the normal execution of the
instruction, except that “standard” setting of status reg-
isters, such as the Condition Register, is not shown.
(“Non-standard” setting of these registers, such as the
setting of the Condition Register by the Compare
instructions, is shown.) The RTL descriptions do not
cover cases in which the system error handler is
invoked, or for which the results are boundedly unde-
fined.

The RTL descriptions specify the architectural transfor-
mation performed by the execution of an instruction.
They do not imply any particular implementation.

Notation Meaning

< Assignment

“iea Assignment of an instruction effective
address. In 32-bit mode the high-order 32
bits of the 64-bit target address are set to
0.

- NOT logical operator

+ Two’s complement addition
Two's complement subtraction, unary
minus

X Multiplication

Xsi Signed-integer multiplication

X Unsigned-integer multiplication

/ Division

+ Division, with result truncated to integer

y Square root

=, # Equals, Not Equals relations

<, <,>, 2 Signed comparison relations

St Unsigned comparison relations

? Unordered comparison relation

&, | AND, OR logical operators

®, = Exclusive OR, Equivalence logical opera-
tors ((a=b) = (a®-b))

ABS(X) Absolute value of x

CEIL(x) Least integer > x
DCR(x) Device Control Register x
DOUBLE(x) Result of converting x from floating-point
single format to floating-point double for-
mat, using the model shown on page 117
Result of extending x on the left with sign
bits
FLOOR(x) Greatest integer < x
GPR(x) General Purpose Register x
MASK(x, y) Mask having 1s in positions x through y
(wrapping if x > y) and Os elsewhere
MEM(x, y) Contents of a sequence of y bytes of stor-
age. The sequence depends on the byte
ordering used for storage access, as fol-
lows.
Big-Endian byte ordering:
The sequence starts with the byte at
address x and ends with the byte at
address x+y-1.
Little-Endian byte ordering:
The sequence starts with the byte at
address x+y-1 and ends with the byte at
address x.
ROTLg4(x, Y)
Result of rotating the 64-bit value x left y
positions
ROTLg,(x, y)
Result of rotating the 64-bit value x||x left y
positions, where x is 32 bits long
SINGLE(x) Result of converting x from floating-point
double format to floating-point single for-
mat, using the model shown on page 121
SPR(x) Special Purpose Register x
TRAP Invoke the system trap handler
characterization
Reference to the setting of status bits, in a
standard way that is explained in the text
undefined An undefined value.

EXTS(X)

CIA Current Instruction Address, which is the
64-bit address of the instruction being
described by a sequence of RTL. Used by
relative branches to set the Next Instruc-
tion Address (NIA), and by Branch instruc-
tions with LK=1 to set the Link Register.
Does not correspond to any architected
register.

NIA Next Instruction Address, which is the
64-bit address of the next instruction to be
executed. For a successful branch, the
next instruction address is the branch tar-
get address: in RTL, this is indicated by
assigning a value to NIA. For other
instructions that cause non-sequential
instruction fetching (see Book Ill), the RTL
is similar. For instructions that do not
branch, and do not otherwise cause
instruction fetching to be non-sequential,

Chapter 1. Introduction 7

Version 2.05

the next instruction address is CIA+4 (VLE
behavior is different; see Book VLE). Does
not correspond to any architected register.
if... then... else...
Conditional execution, indenting shows
range; else is optional.
do Do loop, indenting shows range. “To” and/
or “by” clauses specify incrementing an
iteration variable, and a “while” clause
gives termination conditions.

leave Leave innermost do loop, or do loop
described in leave statement.
for For loop, indenting shows range. Clause

after “for” specifies the entities for which to
execute the body of the loop.

The precedence rules for RTL operators are summa-
rized in Table 1. Operators higher in the table are
applied before those lower in the table. Operators at
the same level in the table associate from left to right,
from right to left, or not at all, as shown. (For example,
- associates from left to right, so a-b-c = (a-b)-c.)
Parentheses are used to override the evaluation order
implied by the table or to increase clarity; parenthe-
sized expressions are evaluated before serving as
operands.

Table 1: Operator precedence

Operators Associativity
subscript, function evaluation left to right
pre-superscript (replication), right to left
post-superscript (exponentiation)

unary -, - right to left
X, + left to right
+ -, left to right
[left to right
= #,<, 5,5, 2<8 >U 2 left to right
&, @, = left to right
| left to right
: (range) none
“,“ica none

8 Power ISA™ |

Version 2.05

1.3.5 Categories

Each facility (including registers and fields therein) and
instruction is in exactly one of the categories listed in
Figure 1.

A category may be defined as a dependent category.
These are categories that are supported only if the cat-
egory they are dependent on is also supported. Depen-

“w

dent categories are identified by the “.” in their category
name, e.g., if an implementation supports the Float-
ing-Point.Record category, then the Floating-Point cat-
egory is also supported.

An implementation that supports a facility or instruction
in a given category, except for the two categories
described in Section 1.3.5.1, supports all facilities and
instructions in that category.

Category Abvr. Notes
Base B Required for all implementations
Server S Required for Server implementations
Embedded E Required for Embedded implementations
Alternate Time Base IATB IAn additional Time Base; see Book Il
BCD Assistance BCDA [Binary Coded Decimal Assistance Instructions
Cache Specification CS Specify a specific cache for some instructions; see Book Il
Decimal Floating-Point DFP |Decimal Floating-Point facilities
Embedded.Cache Debug E.CD |Provides direct access to cache data and directory content
Embedded.Cache Initialization E.Cl |[Instructions that invalidate the entire cache
Embedded.Enhanced Debug E.ED [Embedded Enhanced Debug facility; see Book IlI-E
Embedded.External PID EPD [Embedded External PID facility; see Book IlI-E
Embedded.Little-Endian E.LE |[Embedded Little-Endian page attribute; see Book IlI-E
Embedded.MMU Type FSL E.MF [Embedded MMU example Type FSL; see Book IlI-E
Embedded Performance Monitor EPM |[Embedded performance monitor example; see Book IlI-E
Embedded Processor Control EPC [Processor control facility; see Book IlI-E
Embedded Cache Locking ECL |[Embedded Cache Locking facility; see Book IlI-E
External Control EC External Control facility; see Book Il
External Proxy EXP [External Proxy facility; see Book IlI-E
Floating-Point FP Floating-Point Facilities

Floating-Point.Record FP.R Floating-Point instructions with Rc=1
Hypervisor Emulation Assistance HEA [Hypervisor Emulation Assistance Facilities
Legacy Integer Multiply-Accumulatel |LMA |Legacy Integer Multiply-accumulate instructions
Legacy Move Assist LMV Determine Left most Zero Byte instruction
Load/Store Quadword LSQ |Load/Store Quadword instructions; see Book IlI-S
Memory Coherence MMC [Requirement for Memory Coherence; see Book Il
Move Assist MA Move Assist instructions
Processor Compatibility PCR [Processor Compatibility Register
Server Performance Monitor SPM |Performance monitor example for Servers; see Book IlI-S
Server.Relaxed Page Table Alignment [S.RPTAHTAB alignment on 256 KB boundary; see Book IlI-S
Signal Processing Enginel' 2 SP Facility for signal processing
SPE.Embedded Float Scalar Double |[SPFD | GPR-based Floating-Point double-precision instruction set
SPE.Embedded Float Scalar Single [SP.FS | GPR-based Floating-Point single-precision instruction set
SPE.Embedded Float Vector SP.FV | GPR-based Floating-Point Vector instruction set
Stream STM [Stream variant of dcbt instruction; see Book Il
Trace TRC [Trace Facility; see Book IlI-S

1

Because of overlapping opcode usage, SPE is mutually exclusive with Vector and with Legacy Integer Multi-
ply-Accumulate, and Legacy Integer Multiply-Accumulate is mutually exclusive with Vector.
2 The SPE-dependent Floating-Point categories are collectively referred to as SPE.Embedded Float_* or SP.*.

Figure 1.

Category Listing (Sheet 1 of 2)

Chapter 1. Introduction

Version 2.05

Category Abvr. |Notes

\Variable Length Encoding VLE |ariable Length Encoding facility; see Book VLE

Vector! v Vector facilities

Vector.Little-Endian V.LE [Little-Endian support for Vector storage operations.

\Wait WT wait instruction; see Book I

64-Bit 64 Required for 64-bit implementations; not defined for 32-bit impl’s

1 Because of overlapping opcode usage, SPE is mutually exclusive with Vector and with Legacy Integer Multi-
ply-Accumulate, and Legacy Integer Multiply-Accumulate is mutually exclusive with Vector.

2 The SPE-dependent Floating-Point categories are collectively referred to as SPE.Embedded Float_* or SP.*.

Figure 1. Category Listing (Sheet 2 of 2)

An instruction in a category that is not supported by the
implementation is treated as an illegal instruction or an
unimplemented instruction on that implementation (see
Section 1.7.2).

For an instruction that is supported by the implementa-
tion with field values that are defined by the architec-
ture, the field values defined as part of a category that
is not supported by the implementation are treated as
reserved values on that implementation (see Section
1.3.3 and Section 1.8.2).

Bits in a register that are in a category that is not sup-
ported by the implementation are treated as reserved.

1.3.5.1 Phased-In/Phased-Out

There are two special dependent
Phased-In and Phased-Out, defined below.

categories,

Phased-In (sVxxx) These are facilities and instruc-
tions that, in some future ver-
sion of the architecture, will be
required as part of the category
they are dependent on.

Starting with version 2.05, serv-
ers may not implement a facility
in this category until the version
indicated. Starting with the ver-
sion indicated, servers must
implement the facility. Servers
that comply with earlier ver-
sions of this architecture may
have optionally implemented
features that were category
Phased-In.

Phased-Out These are facilities and instruc-
tions that, in some future ver-
sion of the architecture, will be
dropped out of the architecture.
System developers should
develop a migration plan to
eliminate use of them in new
systems.

These facilities are required for
the Server Platform.

—— Programming Note

Warning: Instructions and facilities being phased
out of the architecture are likely to perform poorly
on future implementations. New programs should
not use them.

—— Programming Note

Facilities are categorized as Phased-In only in
cases where there is a difference between the
Server and Embedded environments. As soon as
the facility is supported by both environments, the
Phased-In categorization will be removed.

1.3.5.2 Corequisite Category

A corequisite category is an additional category that is
associated with an instruction or facility, and must be
implemented if the instruction or facility is implemented.

1.3.5.3 Category Notation

Instructions and facilities are considered part of the
Base category unless otherwise marked. If a section is
marked with a specific category tag, all material in that
section and its subsections are considered part of the
category, unless otherwise marked. Overview sections
may contain discussion of instructions and facilities
from various categories without being explicitly marked.

An example of a category tag is: [Category: Server].

An example of a dependent category is:
[Category: ServerPhased-In]

10 Power ISA™ |

Version 2.05

The shorthand <E> and <S> may also be used for Cat-
egory: Embedded and Server respectively.

1.3.6 Environments

All implementations support one of the two defined
environments, Server or Embedded. Environments
refer to common subsets of instructions that are shared
across many implementations. The Server environment
describes implementations that support Category:
Base and Server. The Embedded environment
describes implementations that support Category:
Base and Embedded.

Chapter 1. Introduction 11

Version 2.05

1.4 Processor Overview

The processor implements the instruction set, the stor-
age model, and other facilities defined in this docu-
ment. There are four basic classes of instructions:

B branch instructions (Chapter 2)

B fixed-point instructions (Chapter 3), and other
instructions that use the fixed-point registers
(Chapters 7, 8, 9, and 10)

m floating-point instructions (Chapter 4) and decimal
floating-point instructions (Chapter 5)

W vector instructions (Chapter 6)

Fixed-point instructions operate on byte, halfword,
word, and doubleword operands. Floating-point instruc-
tions operate on single-precision and double-precision
floating-point operands. Vector instructions operate on
vectors of scalar quantities and on scalar quantities
where the scalar size is byte, halfword, word, and
guadword. The Power ISA uses instructions that are
four bytes long and word-aligned (VLE has different
instruction characteristics; see Book VLE). It provides
for byte, halfword, word, and doubleword operand
fetches and stores between storage and a set of 32
General Purpose Registers (GPRs). It provides for
word and doubleword operand fetches, and stores
between storage and a set of 32 Floating-Point Regis-
ters (FPRs). It also provides for byte, halfword, word,
and quadword operand fetches and stores between
storage and a set of 32 Vector Registers (VRS).

Signed integers are represented in two’s complement
form.

There are no computational instructions that modify
storage; instructions that reference storage may refor-
mat the data (e.g. load halfword algebraic). To use a
storage operand in a computation and then modify the
same or another storage location, the contents of the
storage operand must be loaded into a register, modi-
fied, and then stored back to the target location.
Figure 2 is a logical representation of instruction pro-
cessing. Figure 3 shows the registers of the Power ISA
User Instruction Set Architecture.

. | Branch

"| Processing

Category:
Fixed-Point Floating-Point Vector
Instructions Instructions Instructions
Fixed-Pt Float-Pt Vector
Processing Processing Processing

Data to/from

Storage

Figure 2.

Instructions
from Storage

I

Storage

Logical processing model

12 Power ISA™ |

Version 2.05

CR
32 63
“Condition Register” on page 30

LR

0
“Link Register” on page 31

63

CTR

0
“Count Register” on page 31

63

GPRO

GPR 1

GPR 30

GPR 31

0
“General Purpose Registers” on page 42

63

XER

0
“Fixed-Point Exception Register” on page 42

Category: Embedded:

63

SPRG4

SPRG5

SPRG6

SPRG7

0
“Software-use SPRs” on page 43.

Category: Embedded, Vector

| VRSAVE |
32 63

“VR Save Register” on page 196

63

Category: Floating-Point, Decimal
Floating-Point:

FPR O
FPR 1

FPR 30
FPR 31
0 63

“Floating-Point Registers” on page 101

| FPSCR

0 63

“Floating-Point Registers” on page 101 and “DFP
Usage of Floating-Point Registers” on page 144.

Category: Vector:

VR 0
VR 1

VR 30

VR 31
0 127

“Vector Registers” on page 195

| VSCR |
96 127
“Vector Status and Control Register” on page 195

Category: SPE:

| Accumulator
0 63

“Accumulator” on page 262

| SPEFSCR

32 63

“Signal Processing and Embedded Floating-Point Status
and Control Register” on page 262

Figure 3. Power ISA user register set

Chapter 1. Introduction 13

Version 2.05

1.5 Computation modes

1.5.1 Modes [Category: Server]

Processors provide two execution modes, 64-bit mode
and 32-bit mode. In both of these modes, instructions
that set a 64-bit register affect all 64 bits. The computa-
tional mode controls how the effective address is inter-
preted, how status bits are set, how the Link Register is
set by Branch instructions in which LK=1, and how the
Count Register is tested by Branch Conditional instruc-
tions. Nearly all instructions are available in both
modes (the only exceptions are a few instructions that
are defined in Book 11I-S). In both modes, effective
address computations use all 64 bits of the relevant
registers (General Purpose Registers, Link Register,
Count Register, etc.) and produce a 64-bit result. How-
ever, in 32-bit mode the high-order 32 bits of the com-
puted effective address are ignored for the purpose of
addressing storage; see Section 1.10.3 for additional
details.

1.5.2 Modes [Category: Embed-
ded]

Processors may provide 32-bit mode, or both 64-bit
mode and 32-bit mode. The modes differ in the follow-
ing ways.

B In 64-bit mode, the processor behaves as
described for 64-bit mode in the Server environ-
ment; see Section 1.5.1.

B In 32-bit mode, instructions other than SP,
SP.Embedded Float Scalar Double, and
SP.Embedded Float Vector use only the lower 32
bits of a GPR and produce a 32-bit result. Results
written to the GPRs write only the lower 32-bits
and the upper 32 bits are undefined except for
SP.Embedded Float Scalar Single instructions
which leave the upper 32-bits unchanged. SP,
SP.Embedded Float Scalar Double, and
SP.Embedded Float Vector instructions use all 64
bits of a GPR and produce a 64-bit result regard-
less of the mode.

Instructions that set condition bits do so based on
the 32-bit result computed. Effective addresses
and all SPRs operate on the lower 32 bits only
unless otherwise stated. The instructions in the
64-Bit category are not necessarily available; if
they are not available, attempting to execute such
an instruction causes the system illegal instruction
error handler to be invoked.

Floating-Point and and Decimal Floating-Point instruc-
tions operate on FPRs, and Vector instructions operate
VPRs, independent of mode.

1.6 Instruction formats

All instructions are four bytes long and word-aligned
(except for VLE instructions; see Book VLE). Thus,
whenever instruction addresses are presented to the
processor (as in Branch instructions) the low-order two
bits are ignored. Similarly, whenever the processor
develops an instruction address the low-order two bits
are zero.

Bits 0:5 always specify the opcode (OPCD, below).
Many instructions also have an extended opcode (XO,
below). The remaining bits of the instruction contain
one or more fields as shown below for the different
instruction formats.

The format diagrams given below show horizontally all
valid combinations of instruction fields. The diagrams
include instruction fields that are used only by instruc-
tions defined in Book Il or in Book 1.

Split Field Notation

In some cases an instruction field occupies more than
one contiguous sequence of bits, or occupies one con-
tiguous sequence of bits that are used in permuted
order. Such a field is called a split field. In the format
diagrams given below and in the individual instruction
layouts, the name of a split field is shown in small let-
ters, once for each of the contiguous sequences. In the
RTL description of an instruction having a split field,
and in certain other places where individual bits of a
split field are identified, the name of the field in small
letters represents the concatenation of the sequences
from left to right. In all other places, the name of the
field is capitalized and represents the concatenation of
the sequences in some order, which need not be left to
right, as described for each affected instruction.

1.6.1 I|-FORM

0 6 30 31

| oPcD | LI AA|LK|
Figure 4. linstruction format

1.6.2 B-FORM

0 6 1 16 30 31
opcD | BO | BI | BD AA|LK]

Figure 5. B instruction format

14 Power ISA™ |

Version 2.05

1.6.3 SC-FORM
0 6 11 16 20 27 30 31
OPCD 1" i I LEV n1a1/
OPCD 1" 7 1" " /iy
Figure 6. SCinstruction format
1.6.4 D-FORM
0 6 11 16 31
OPCD RT RA D
OPCD RT RA SI
OPCD RS RA D
OPCD RS RA ul
OPCD |BF|/|L| RA Sl
OPCD |BF|/|L| RA ul
OPCD TO RA SI
OPCD FRT RA D
OPCD FRS RA D
Figure 7. D instruction format
1.6.5 DS-FORM
0 6 11 16 30 31
OPCD RT RA DS XO
OPCD RS RA DS XO
OPCD RSp RA DS XO
OPCD | FRTp RA DS XO
OPCD | FRSp RA DS XO
Figure 8. DS instruction format
1.6.6 DQ-FORM
0 6 11 16 28 31
| | OPCD | RTp RA DQ mn
Figure 9. DQ instruction format

Chapter 1. Introduction

15

Version 2.05

1.6.7 X-FORM
0 6 11 16 21 31
OPCD | RT | RA i X0 /
OPCD | RT | RA | RB X0 /
] [oPCD | RT | RA | RB X0 [EH
OPCD [RT | RA | NB X0 /
OPCD | RT /[SR | I X0 /
OPCD | RT I RB X0 /
| [oPcD | RT I RB X0 1
OPCD | RT I I X0 /
OPCD | RS | RA | RB X0 [Rc
] [oPCD | RT | RA | RB X0 [Rc
OPCD | RS | RA | RB X0 1
OPCD | RS | RA | RB X0 /
OPCD | RS | RA | NB X0 /
opcD | RS | RA | sH X0 [Rc
OPCD | RS | RA i X0 [Rc
OPCD | RS | RA I X0 /
OPCD | RS |/[SR | /I X0 /
OPCD | RS I RB X0 /
OPCD | RS I i X0 /
OPCD | RS | || m X0 /
] [opcD | TH | RA | RB X0 /
opcD |BF[/[L| RA | RB X0 /
OPCD |BF | //| FRA | FRB X0 /
OPCD |BF |/ |BFA|/I| Il X0 /
| | opcD [BF[/]| m W U [/ X0 |Rc
OPCD |BF [/ | /i I X0 /
] [oPcD | TH | RA | RB X0 /
OPCD |/[CT | /i I X0 /
opcD |/[cT | RA | RB X0 /
| [opcD [/ [L] RA | RB X0 /
opcD | /i [L| RB X0 /
OPCD [/ |[L| i I X0 /
OPCD | TO | RA | RB X0 /
OPCD | FRT | RA | RB X0 /
OPCD | FRT | FRA | FRB X0 /
OPCD | FRTp | RA | RB X0 /
OPCD | FRT | /il | FRB X0 [Rc
| | opCcD | FRT | /I | FRBp X0 |Rc
OPCD | FRT | /i I X0 |Rc
OPCD | FRTp | I | FRB X0 [Re
OPCD | FRTp | /I | FRBp X0 [Rc
OPCD | FRTp | FRA | FRBp X0 [Re
OPCD | FRTp | FRAp | FRBp X0 [Re
OPCD |BF[//| FRA | FRBp X0 /
OPCD | BF | // | FRAp | FRBp X0 /
OPCD | FRT |[s FRB X0 [Rc

Figure 10. X Instruction Format

| OPCD | FRTp |S FRBp XO Rc
OPCD FRS RA RB X0 /
| OPCD | FRSp RA RB X0 /
OPCD BT i " XO Rc
OPCD " RA RB XO /
OPCD i 7 RB XO /
OPCD i i mn XO /
OPCD i i \gl XO /
| OPCD | /I |IH i mn XO /
OPCD ??7? RA RB XO ?
OPCD ??7? ??? ??? XO /
OPCD VRT RA RB XO /
OPCD VRS RA RB X0 /
OPCD MO i 1 XO /
Figure 10. X Instruction Format
1.6.8 XL-FORM
0 6 11 16 21 31
OPCD BT BA BB X0 /
OPCD [BO Bl [/ [BH X0 [K
OPCD | BF |/ |[BFA| /| 1l X0 /
OPCD i 1 m XO /
Figure 11. XL instruction format
1.6.9 XFX-FORM
0 6 11 21 31
OPCD RT spr X0 /
OPCD RT tbr XO /
OPCD RT |0 7 XO /
OPCD RT |1 FXM / X0 /
OPCD RT der X0 /
OPCD RT pmrn X0 /
OPCD DUI DUIS XO /
OPCD RS |0 FXM / XO /
OPCD RS |1 FXM / X0 /
OPCD RS spr X0 /
OPCD RS der XO /
OPCD RS pmrn X0 /
Figure 12. XFX instruction format
1.6.10 XFL-FORM
0 6 7 15 16 21 31
| |[OPCD L] FM W FRB | X0 [|Rq|

Figure 13. XFL instruction format

16 Power ISA™ |

Version 2.05

1.6.11 XS-FORM

0 6 1 16 21

30

31

|opcD | RS | RA | sh | XO [sh[Re

Figure 14. XS instruction format

1.6.12 XO-FORM

0 6 11 16 21 22 31
OPCD RT RA RB |OE| XO |Rc
OPCD RT RA RB / XO |Rc
OPCD RT RA RB / XO /
OPCD RT RA /Il |OE| XO |Rc

Figure 15. XO instruction format

1.6.13 A-FORM

0 6 11 16 21 26 31
OPCD | FRT FRA FRB | FRC | XO |Rc
OPCD | FRT FRA FRB 7 XO |Rc
OPCD | FRT FRA 7 FRC | XO |Rc
OPCD | FRT i FRB 7 XO |Rc
OPCD | FRT /Il |L| FRB i XO |Rc
OPCD RT RA RB BC X0 |/

Figure 16. A instruction format

1.6.14 M-FORM

0 6 11 16 21 26 31
OPCD RS RA RB MB ME |Rc
OPCD RS RA SH MB ME |Rc

Figure 17. M instruction format

1.6.15 MD-FORM

0 6 11 16 21 27 30 31
OPCD RS RA sh mb [XO|sh|Rc
OPCD RS RA sh me |XO|sh|Rc

Figure 18. MD instruction format

1.6.16 MDS-FORM

0 6 11 16 21 27 31
OPCD RS RA RB mb XO |Rc
OPCD RS RA RB me XO |Rc

Figure 19. MDS instruction format

1.6.17 VA-FORM

0 6 11 16 21 26 31
OPCD | VRT | VRA | VRB | VRC XO
OPCD | VRT | VRA | VRB /\ SHB XO

Figure 20. VA instruction format

1.6.18 VC-FORM

22

31

0 6 1 16 21
‘ OPCD ‘ VRT ‘ VRA ‘ VRB ‘RC‘

XO

Figure 21. VC instruction format

1.6.19 VX-FORM

0 6 11 16 21 31
OPCD | VRT VRA [VRB X0
OPCD | VRT i VRB X0
OPCD | VRT UM | VRB X0
OPCD | VRT |/[UM |VRB X0
OPCD | VRT |//| UM | VRB X0
OPCD | VRT | /il [UIM| VRB X0
OPCD | VRT SIM mn X0
OPCD | VRT 7 X0
OPCD 1 | VRB X0

Figure 22. VX instruction format

1.6.20 EVX-FORM

0 6 11 16 21 31
OPCD | RS RA RB)
OPCD | RS RA ul X0
OPCD RT il RB)
OPCD | RT RA RB X0
OPCD RT RA i X0
OPCD | RT ul RB)
OPCD [BF[//| RA RB)
OPCD | RT RA ul)
OPCD RT Sl i X0

Figure 23. EVX instruction format

1.6.21 EVS-FORM

0 6 11 16 21 29 31

[OPCD | RT | RA | RB | XO [BFA]

Figure 24. EVS instruction format

Chapter 1. Introduction

17

Version 2.05

1.6.22 Z22-FORM

0 6 1 1516 22 31
OPCD | BF |//| FRA DCM XO /
OPCD | BF | //| FRAp DCM XO /
OPCD | BF | /| FRA DGM XO /
OPCD |BF |//| FRAp | DGM XO /
OPCD FRT FRA SH XO Re
OPCD | FRTp | FRAp SH XO Re

Figure 25. Z22 instruction format

1.6.23 Z23-FORM

0 6 1 16 A 23 31
OPCD | FRT TE FRB (RMC X0 Re

OPCD | FRTp TE FRBp |RMC XO Re
OPCD FRT FRA FRB |RMC XO Re
OPCD | FRTp | FRA | FRBp |RMC XO Re
OPCD | FRTp | FRAp | FRBp |RMC XO Re
OPCD FRT /Il R FRB [RMC XO Re
OPCD | FRTp | /Il |R FRBp |RMC XO Re

Figure 26. Z23 instruction format

1.6.24 Instruction Fields

AA (30)
Absolute Address bit.

0 The immediate field represents an
address relative to the current instruction
address. For I-form branches the effec-
tive address of the branch target is the
sum of the LI field sign-extended to 64 bits
and the address of the branch instruc-
tion. For B-form branches the effective
address of the branch target is the sum of
the BD field sign-extended to 64 bits and
the address of the branch instruction.

1 The immediate field represents an abso-
lute address. For I-form branches the
effective address of the branch target is
the LI field sign-extended to 64 bits. For
B-form branches the effective address of
the branch target is the BD field
sign-extended to 64 bits.

BA (11:15)
Field used to specify a bit in the CR to be used as
a source.

BB (16:20)

Field used to specify a bit in the CR to be used as
a source.

BC (21:25)
Field used to specify a bit in the CR to be used as
a source.

BD (16:29)
Immediate field used to specify a 14-bit signed
two's complement branch displacement which is
concatenated on the right with 0b0OO and
sign-extended to 64 hits.

BF (6:8)
Field used to specify one of the CR fields or one of
the FPSCR fields to be used as a target.

BFA (11:13 or 29:31)
Field used to specify one of the CR fields or one of
the FPSCR fields to be used as a source.

BH (19:20)
Field used to specify a hint in the Branch Condi-
tional to Link Register and Branch Conditional to
Count Register instructions. The encoding is
described in Section 2.4, “Branch Instructions”.

Bl (11:15)
Field used to specify a bit in the CR to be tested by
a Branch Conditional instruction.

BO (6:10)
Field used to specify options for the Branch Condi-
tional instructions. The encoding is described in
Section 2.4, “Branch Instructions”.

BT (6:10)
Field used to specify a bit in the CR or in the
FPSCR to be used as a target.

CT (7:10)
Field used in X-form instructions to specify a cache
target (see Section 3.3.2 of Book II).

D (16:31)
Immediate field used to specify a 16-bit signed
two's complement integer which is sign-extended
to 64 bits.

DCM (16:21)
Immediate field used as the Data Class Mask.

DCR (11:20)
Field used by the Move To/From Device Control
Register instructions (see Book IlI-E).

DGM (16:21)
Immediate field used as the Data Group Mask.

DQ (16:27)
Immediate field used to specify a 12-bit signed
two's complement integer which is concatenated
on the right with 0b0000 and sign-extended to 64
bits.

18 Power ISA™ |

Version 2.05

DS (16:29)
Immediate field used to specify a 14-bit signed
two’s complement integer which is concatenated
on the right with Ob00 and sign-extended to 64
bits.

DUI (6:10)
Field used by the dnh instruction (see Book Il).

DUIS (11:20)
Field used by the dnh instruction (see Book Il).

E (16)
Field used by the Write MSR External Enable
instruction (see Book IlI-E).

EH (31)
Field used to specify a hint in the Load and
Reserve instructions. The meaning is described in
Section 3.4.2, “Load and Reserve and Store Con-
ditional Instructions”, in Book II.

FLM (7:14)
Field mask used to identify the FPSCR fields that
are to be updated by the mtfsf instruction.

FRA (11:15)
Field used to specify an FPR to be used as a
source.

FRAp (11:15)
Field used to specify an even/odd pair of FPRs to
be concatenated and used as a source.

FRB (16:20)
Field used to specify an FPR to be used as a
source.

FRBp (16:20)
Field used to specify an even/odd pair of FPRs to
be concatenated and used as a source.

FRC (21:25)
Field used to specify an FPR to be used as a
source.

FRS (6:10)
Field used to specify an FPR to be used as a
source.

FRSp (6:10)
Field used to specify an even/odd pair of FPRs to
be concatenated and used as a source.

FRT (6:10)
Field used to specify an FPR to be used as a tar-
get.

FRTp (6:10)
Field used to specify an even/odd pair of FPRs to
be concatenated and used as a target.

FXM (12:19)

Field mask used to identify the CR fields that are to
be written by the mtcrf and mtocrf instructions, or
read by the mfocrf instruction.

IH (8:10)
Field used to specify a hint in the SLB Invalidate
All instruction. The meaning is described in
Section 5.9.3.1, “SLB Management Instructions”,
in Book I1I-S.

L (6)
Field used to specify whether the mtfsf instruction
updates the entire FPSCR.

L (10 or 15)
Field used to specify whether a fixed-point Com-
pare instruction is to compare 64-bit numbers or
32-bit numbers.

Field used by the Data Cache Block Flush instruc-
tion (see Section 3.3.2 of Book).

Field used by the Move To Machine State Register
and TLB Invalidate Entry instructions (see Book

).

Field used to specify whether the Floating-Point
Estimate instructions may treat denormalized
operands as 0.

L (9:10)
Field used by the Synchronize instruction (see
Section 3.4.1 of Book II).

LEV (20:26)
Field used by the System Call instruction.

LI (6:29)
Immediate field used to specify a 24-bit signed
two's complement integer which is concatenated
on the right with Ob00 and sign-extended to 64
bits.

LK (31)
LINK bit.
0 Do not set the Link Register.
1 Set the Link Register. The address of the
instruction following the Branch instruction
is placed into the Link Register.

MB (21:25) and ME (26:30)
Fields used in M-form instructions to specify a
64-bit mask consisting of 1-bits from bit MB+32
through bit ME+32 inclusive and 0-bits elsewhere,
as described in Section 3.3.13, “Fixed-Point
Rotate and Shift Instructions” on page 82.

MB (21:26)
Field used in MD-form and MDS-form instructions
to specify the first 1-bit of a 64-bit mask, as
described in Section 3.3.13, “Fixed-Point Rotate
and Shift Instructions” on page 82.

ME (21:26)

Chapter 1. Introduction 19

Version 2.05

Field used in MD-form and MDS-form instructions
to specify the last 1-bit of a 64-bit mask, as
described in Section 3.3.13, “Fixed-Point Rotate
and Shift Instructions” on page 82.

MO (6:10)
Field used in X-form instructions to specify a sub-
set of storage accesses.

NB (16:20)
Field used to specify the number of bytes to move
in an immediate Move Assist instruction.

OPCD (0:5)
Primary opcode field.

OE (21)
Field used by XO-form instructions to enable set-
ting OV and SO in the XER.

PMRN (11:20)
Field used to specify a Performance Monitor Reg-
ister for the mfpmr and mtpmr instructions.

R (15)
Immediate field that specifies whether the RMC is
specifiying the primary or secondary encoding

RA (11:15)
Field used to specify a GPR to be used as a
source or as a target.

RB (16:20)
Field used to specify a GPR to be used as a
source.

Rc (21 OR 31)
RECORD bit.
0 Do not alter the Condition Register.
1 Set Condition Register Field 0, Field 1, or
Field 6 as described in Section 2.3.1,
“Condition Register” on page 30.

RMC (21:22)
Immediate field used for DFP rounding mode con-
trol.

RS (6:10)
Field used to specify a GPR to be used as a
source.

RSp (6:10)
Field used to specify an even/odd pair of GPRs to
be concatenated and used as a source.

RT (6:10)
Field used to specify a GPR to be used as a target.

RTp (6:10)
Field used to specify an even/odd pair of GPRs to
be concatenated and used as a target.

S (11)

Immediate field that specifies signed versus
unsigned conversion.

SH (16:20, or 16:20 and 30, or 16:21)
Field used to specify a shift amount.

SHB (22:25)
Field used to specify a shift amount in bytes.

S1(16:31 or 11:15)
Immediate field used to specify a 16-bit signed
integer.

SIM (11:15)
Immediate field used to specify a 5-bit signed inte-
ger.

SP (11:12)
Immediate field that specifies signed versus
unsigned conversion.

SPR (11:20)
Field used to specify a Special Purpose Register
for the mtspr and mfspr instructions.

SR (12:15)
Field used by the Segment Register Manipulation
instructions (see Book III-S).

TBR (11:20)
Field used by the Move From Time Base instruc-
tion (see Section 4.2.1 of Book II).

TE (11:15)
Immediate field that specifies a DFP exponent.

TH (6:10)
Field used by the data stream variant of the dcbt
and dcbtst instructions (see Section 3.3.2 of Book

).

TO (6:10)
Field used to specify the conditions on which to
trap. The encoding is described in Section 3.3.10,
“Fixed-Point Trap Instructions” on page 73.

U (16:19)
Immediate field used as the data to be placed into
a field in the FPSCR.

Ul (11:15, 16:20, or 16:31)
Immediate field used to specify an unsigned inte-
ger.

UIM (11:15, 12:15, 13:15, 14:15)
Immediate field used to specify an unsigned inte-
ger.

VRA (11:15)
Field used to specify a VR to be used as a source.

VRB (16:20)
Field used to specify a VR to be used as a source.

20 Power ISA™ |

Version 2.05

VRC (21:25)
Field used to specify a VR to be used as a source.

VRS (6:10)
Field used to specify a VR to be used as a source.

VRT (6:10)
Field used to specify a VR to be used as a target.

W (15)
Field used by the mtfsfi and mtfsf instructions to
specify the target word in the FPSCR.

XO (21:28, 21:29, 21:30, 21:31, 22:30, 22:31, 23:30,
26:30, 26:31, 27:29, 27:30, or 30:31)
Extended opcode field.

1.7 Classes of Instructions

An instruction falls into exactly one of the following
three classes:

Defined
lllegal
Reserved

The class is determined by examining the opcode, and
the extended opcode if any. If the opcode, or combina-
tion of opcode and extended opcode, is not that of a
defined instruction or a reserved instruction, the
instruction is illegal.

1.7.1 Defined Instruction Class

This class of instructions contains all the instructions
defined in this document.

A defined instruction can have preferred and/or invalid
forms, as described in Section 1.8.1, “Preferred Instruc-
tion Forms” and Section 1.8.2, “Invalid Instruction
Forms”. Instructions that are part of a category that is
not supported are treated as illegal instructions.

1.7.2

This class of instructions contains the set of instruc-
tions described in Appendix D of Book Appendices. llle-
gal instructions are available for future extensions of
the Power ISA ; that is, some future version of the
Power ISA may define any of these instructions to per-
form new functions.

lllegal Instruction Class

Any attempt to execute an illegal instruction will cause
the system illegal instruction error handler to be
invoked and will have no other effect.

An instruction consisting entirely of binary Os is guaran-
teed always to be an illegal instruction. This increases
the probability that an attempt to execute data or unini-
tialized storage will result in the invocation of the sys-
tem illegal instruction error handler.

1.7.3 Reserved Instruction Class

This class of instructions contains the set of instruc-
tions described in Appendix E of Book Appendices.

Reserved instructions are allocated to specific pur-
poses that are outside the scope of the Power ISA.

Any attempt to execute a reserved instruction will:

m perform the actions described by the implementa-
tion if the instruction is implemented; or

B cause the system illegal instruction error handler to
be invoked if the instruction is not implemented.

1.8 Forms of Defined Instruc-
tions

1.8.1 Preferred Instruction Forms

Some of the defined instructions have preferred forms.
For such an instruction, the preferred form will execute
in an efficient manner, but any other form may take sig-
nificantly longer to execute than the preferred form.

Instructions having preferred forms are:

m the Condition Register Logical instructions

the Load/Store Multiple instructions

the Load/Store String instructions

the Or Immediate instruction (preferred form of
no-op)

m the Move To Condition Register Fields instruction

1.8.2

Some of the defined instructions can be coded in a
form that is invalid. An instruction form is invalid if one
or more fields of the instruction, excluding the opcode
field(s), are coded incorrectly in a manner that can be
deduced by examining only the instruction encoding.

Invalid Instruction Forms

In general, any attempt to execute an invalid form of an
instruction will either cause the system illegal instruc-
tion error handler to be invoked or yield boundedly
undefined results. Exceptions to this rule are stated in
the instruction descriptions.

Some instruction forms are invalid because the instruc-
tion contains a reserved value in a defined field (see
Section 1.3.3 on page 5); these invalid forms are not
discussed further. All other invalid forms are identified
in the instruction descriptions.

References to instructions elsewhere in this document
assume the instruction form is not invalid, unless other-
wise stated or obvious from context.

Chapter 1. Introduction 21

Version 2.05

Assembler Note

Assemblers should report uses of invalid instruc-
tion forms as errors.

1.8.3 Reserved-no-op Instructions
[Category: Phased-In (sV2.07)]

Reserved-no-op instructions include the following
extended opcodes under primary opcode 31: 530, 562,
594, 626, 658, 690, 722, and 754.

Reserved-no-op instructions are provided in the archi-
tecture to anticipate the eventual adoption of perfor-
mance hint instructions to the architecture. For these
instructions, which cause no visible change to archi-
tected state, employing a reserved-no-op opcode will
allow software to use this new capability on new imple-
mentations that support it while remaining compatible
with existing implementations that may not support the
new function.

When a reserved-no-op instruction is executed, no
operation is performed.

Reserved-no-op instructions are not assigned instruc-
tion names or mnemonics. There are no individual
descriptions of reserved-no-op instructions in this docu-
ment.

1.9 Exceptions

There are two kinds of exception, those caused directly
by the execution of an instruction and those caused by
an asynchronous event. In either case, the exception
may cause one of several components of the system
software to be invoked.

The exceptions that can be caused directly by the exe-
cution of an instruction include the following:

B an attempt to execute an illegal instruction, or an
attempt by an application program to execute a
“privileged” instruction (see Book IlI) (system ille-
gal instruction error handler or system privileged
instruction error handler)

B the execution of a defined instruction using an
invalid form (system illegal instruction error han-
dler or system privileged instruction error handler)

B an attempt to execute an instruction that is not pro-
vided by the implementation (system illegal
instruction error handler)

B an attempt to access a storage location that is
unavailable (system instruction storage error han-
dler or system data storage error handler)

B an attempt to access storage with an effective
address alignment that is invalid for the instruction
(system alignment error handler)

B the execution of a System Call instruction (system
service program)

B the execution of a Trap instruction that traps (sys-
tem trap handler)

B the execution of a floating-point instruction that
causes a floating-point enabled exception to exist
(system floating-point enabled exception error
handler)

B the execution of an auxiliary processor instruction
that causes an auxiliary processor enabled excep-
tion to exist (system auxiliary processor enabled
exception error handler)

The exceptions that can be caused by an asynchro-
nous event are described in Book Il1.

The invocation of the system error handler is precise,
except that the invocation of the auxiliary processor
enabled exception error handler may be imprecise, and
if one of the imprecise modes for invoking the system
floating-point enabled exception error handler is in
effect (see page 109), then the invocation of the system
floating-point enabled exception error handler may also
be imprecise. When the system error handler is
invoked imprecisely, the excepting instruction does not
appear to complete before the next instruction starts
(because one of the effects of the excepting instruction,
namely the invocation of the system error handler, has
not yet occurred).

Additional information about exception handling can be
found in Book III.

22 Power ISA™ |

Version 2.05

1.10 Storage Addressing

A program references storage using the effective
address computed by the processor when it executes a
Storage Access or Branch instruction (or certain other
instructions described in Book Il and Book Ill), or when
it fetches the next sequential instruction.

Bytes in storage are numbered consecutively starting
with 0. Each number is the address of the correspond-
ing byte.

The byte ordering (Big-Endian or Little-Endian) for a
storage access is specified by the operating system. In
the Embedded environment this ordering is a page
attribute (see Book Il) and is specified independently
for each virtual page, while in the Server environment it
is a mode (see Book III-S) and applies to all storage.

1.10.1 Storage Operands

Storage operands may be bytes, halfwords, words,
doublewords, or quadwords (see book lll), or, for the
Load/Store Multiple and Move Assist instructions, a
sequence of bytes or words. The address of a storage
operand is the address of its first byte (i.e., of its low-
est-numbered byte).

Operand length is implicit for each instruction.

The operand of a single-register Storage Access
instruction or quadword Load or Store instruction, has a
“natural” alignment boundary equal to the operand
length. In other words, the “natural” address of an oper-
and is an integral multiple of the operand length. A stor-
age operand is said to be aligned if it is aligned at its
natural boundary; otherwise it is said to be unaligned.
See the following table.

Operand Length Addrgg.g3 if aligned

Byte 8 hits XXXX

Halfword 2 bytes xxx0

Word 4 bytes xx00

Doubleword 8 bytes x000

Quadword 16 bytes 0000

Note: An “Xx” in an address bit position indicates that
the bit can be 0 or 1 independent of the contents of
other bits in the address.

The concept of alignment is also applied more gener-
ally, to any datum in storage. For example, a 12-byte
datum in storage is said to be word-aligned if its
address is an integral multiple of 4.

Some instructions require their storage operands to
have certain alignments. In addition, alignment may
affect performance. For single-register Storage Access
instructions and quadword Load and Store instructions,
the best performance is obtained when storage oper-
ands are aligned. Additional effects of data placement
on performance are described in Chapter 2 of Book 1.

When a storage operand of length N bytes starting at
effective address EA is copied between storage and a
register that is R bytes long (i.e., the register contains
bytes numbered from 0, most significant, through R-1,
least significant), the bytes of the operand are placed
into the register or into storage in a manner that
depends on the byte ordering for the storage access as
shown in Figure 27, unless otherwise specified in the
instruction description.

Big-Endian Byte Ordering

Load Store

for i=0 to N-1: for i=0 to N-1:

RT(Rr-N)+i€ MEM(EA+i,1) |MEM(EA+i,1) « (RS)R-N)+i
Little-Endian Byte Ordering

Load Store
for i=0 to N-1: for i=0 to N-1:
RT(r-1)i € MEM(EA+i,1) |MEM(EA+i,1) € (RS)R.1).i

Notes:

1. In this table, subscripts refer to bytes in a register
rather than to bits as defined in Section 1.3.2.

2. This table does not apply to the Ivebx, Ivehx,
lvewx, stvebx, stvehx, and stvewx instructions.

Figure 27. Storage operands and byte ordering

Figure 28 shows an example of a C language
structure s containing an assortment of scalars and
one character string. The value assumed to be in each
structure element is shown in hex in the C comments;
these values are used below to show how the bytes
making up each structure element are mapped into
storage. It is assumed that structure s is compiled for
32-bit mode or for a 32-bit implementation. (This affects
the length of the pointer to c.)

C structure mapping rules permit the use of padding
(skipped bytes) in order to align the scalars on desir-
able boundaries. Figures 29 and 30 show each scalar
aligned at its natural boundary. This alignment intro-
duces padding of four bytes between a and b, one byte
between d and e, and two bytes between e and f. The
same amount of padding is present for both Big-Endian
and Little-Endian mappings.

The Big-Endian mapping of structure s is shown in
Figure 29. Addresses are shown in hex at the left of
each doubleword, and in small figures below each byte.
The contents of each byte, as indicated in the C exam-
ple in Figure 28, are shown in hex (as characters for
the elements of the string).

The Little-Endian mapping of structure s is shown in
Figure 30. Doublewords are shown laid out from right
to left, which is the common way of showing storage
maps for processors that implement only Little-Endian
byte ordering.

Chapter 1. Introduction 23

Version 2.05

struct {
int a; /¥ 0x1112_1314 word */
double b; [* 0x2122 2324 2526 2728 doubleword */
char* ¢; /* 0x3132_3334 word */
char d[7}; r~‘A,'B,‘C,'D,'E,'F, G array of bytes */
short e; /* 0x5152 halfword */
int f; /* 0x6162_6364 word */

}s;

Figure 28. C structure ‘s’, showing values of

elements

00 11 12 13 14

00 01 02 03 04 05 06 07
08 21 22 23 24 25 26 27 28

08 09 OA 0B 0OC 0D OE OF
10 31 32 33 34 |‘A’ ‘B’ ‘C’ ‘D’

10 1 12 13 14 15 16 17
18 ‘E’ ‘F' G 51 52

18 19 1A | 1B ic__ 1D | 1E 1F
20 61 62 63 64

20 21 22 23

Figure 29. Big-Endian mapping of structure ‘s’

11 12 13 14 00

07 06 05 04 03 02 01 00
21 22 23 24 25 26 27 28 08

OF OE 0D 0C 0B O0A 09 08
‘D ‘¢’ ‘B’ ‘A’ 31 32 33 34 10

17 16 15 14 13 12 1 10
51 52 ‘G’" ‘F' ‘E’ 18

1k 1E | 1D 1c | 1B | 1A 19 18
61 62 63 64 20

23 22 21 20

Figure 30. Little-Endian mapping of structure ‘s’

1.10.2 Instruction Fetches

Instructions are always four bytes long and
word-aligned (except for VLE instructions; see Book
VLE).

When an instruction starting at effective address EA is
fetched from storage, the relative order of the bytes

within the instruction depend on the byte ordering for
the storage access as shown in Figure 31.

Big-Endian Byte Ordering
for i=0 to 3:
inst; « MEM(EA+i,1)
Little-Endian Byte Ordering
for i=0 to 3:
instz.; « MEM(EA+i,1)
Note: In this table, subscripts refer to
bytes of the instruction rather than
to bits as defined in Section 1.3.2.

Figure 31. Instructions and byte ordering

Figure 32 shows an example of a small assembly lan-
guage program p.

loop:
cmplwi r5,0
beq done
lwzux r4,r5,r6
add r7,r7,rd
subi r5,r5,4
b loop
done:
stw r7,total

Figure 32. Assembly language program ‘p’

The Big-Endian mapping of program p is shown in
Figure 33 (assuming the program starts at address 0).

00 loop: cmplwi r5,0 beqg done

00 01 02 03 04 05 06 07

08 lwzux r4,r5,r6 add r7,r7,r4
08 09 0A 0B oC 0D OE OF
10 subi r5,r5,4

10 11 12 13 14 15 16 17

b loop

18 done: stw r7,total

18 19 1A 1B 1c 1D 1E 1F

Figure 33. Big-Endian mapping of program ‘p’

The Little-Endian mapping of program p is shown in
Figure 34.

24 Power ISA™ |

Version 2.05

beq done
07 06 05 04

loop: cmplwi r5,0

03 02 01 00

add r7,r7,r4
OF OE 0D oC

lwzux r4,r5,r6

0B 0A 09 08

b loop
17 16 15 14

subi r5,r5,4

13 12 11 10

1F 1E 1D 1Cc

done: stw r7,total

1B 1A 19 18

Figure 34. Little-Endian mapping of program ‘p’

00

08

10

18

Chapter 1. Introduction 25

Version 2.05

Programming Note

The terms Big-Endian and Little-Endian come from
Part I, Chapter 4, of Jonathan Swift's Gulliver’s Travels.
Here is the complete passage, from the edition printed
in 1734 by George Faulkner in Dublin.

... our Histories of six Thousand Moons make no
Mention of any other Regions, than the two great
Empires of Lilliput and Blefuscu. Which two mighty
Powers have, as | was going to tell you, been
engaged in a most obstinate War for six and thirty
Moons past. It began upon the following Occasion.
It is allowed on all Hands, that the primitive Way of
breaking Eggs before we eat them, was upon the
larger End: But his present Majesty’s Grand-father,
while he was a Boy, going to eat an Egg, and
breaking it according to the ancient Practice, hap-
pened to cut one of his Fingers. Whereupon the
Emperor his Father, published an Edict, com-
manding all his Subjects, upon great Penalties, to
break the smaller End of their Eggs. The People so
highly resented this Law, that our Histories tell us,
there have been six Rebellions raised on that
Account; wherein one Emperor lost his Life, and
another his Crown. These civil Commotions were
constantly fomented by the Monarchs of Blefuscu;
and when they were quelled, the Exiles always fled
for Refuge to that Empire. It is computed that
eleven Thousand Persons have, at several Times,
suffered Death, rather than submit to break their
Eggs at the smaller End. Many hundred large Vol-
umes have been published upon this Controversy:
But the Books of the Big-Endians have been long

forbidden, and the whole Party rendered incapable
by Law of holding Employments. During the
Course of these Troubles, the Emperors of Ble-
fuscu did frequently expostulate by their Ambassa-
dors, accusing us of making a Schism in Religion,
by offending against a fundamental Doctrine of our
great Prophet Lustrog, in the fifty-fourth Chapter of
the Brundrecal, (which is their Alcoran.) This, how-
ever, is thought to be a mere Strain upon the text:
For the Words are these; That all true Believers
shall break their Eggs at the convenient End: and
which is the convenient End, seems, in my humble
Opinion, to be left to every Man’s Conscience, or
at least in the Power of the chief Magistrate to
determine. Now the Big-Endian Exiles have found
so much Credit in the Emperor of Blefuscu’s Court;
and so much private Assistance and Encourage-
ment from their Party here at home, that a bloody
War has been carried on between the two Empires
for six and thirty Moons with various Success; dur-
ing which Time we have lost Forty Capital Ships,
and a much greater Number of smaller Vessels,
together with thirty thousand of our best Seamen
and Soldiers; and the Damage received by the
Enemy is reckoned to be somewhat greater than
ours. However, they have now equipped a numer-
ous Fleet, and are just preparing to make a
Descent upon us: and his Imperial Majesty, placing
great Confidence in your Valour and Strength, hath
commanded me to lay this Account of his Affairs
before you.

1.10.3 Effective Address Calcula-
tion

An effective address is computed by the processor
when executing a Storage Access or Branch instruction
(or certain other instructions described in Book I, Book
Ill, and Book VLE) when fetching the next sequential
instruction, or when invoking a system error handler.
The following provides an overview of this process.
More detail is provided in the individual instruction
descriptions.

Effective address calculations, for both data and
instruction accesses, use 64-bit two's complement
addition. All 64 bits of each address component partici-
pate in the calculation regardless of mode (32-bit or
64-bit). In this computation one operand is an address
(which is by definition an unsigned number) and the
second is a signed offset. Carries out of the most signif-
icant bit are ignored.

In 64-bit mode, the entire 64-bit result comprises the
64-bit effective address. The effective address arith-
metic wraps around from the maximum address,
254 _ 1, to address 0, except that if the current instruc-
tion is at effective address 254 - 4 the effective address
of the next sequential instruction is undefined.

In 32-bit mode, the low-order 32 bits of the 64-bit result,
preceded by 32 0 bits, comprise the 64-bit effective
address for the purpose of addressing storage. When
an effective address is placed into a register by an
instruction or event, the value placed into the
high-order 32 bits of the register differs between the
Server environment and the Embedded environment.

B Server environment:

- Load with Update and Store with Update
instructions set the high-order 32 bits of regis-
ter RA to the high-order 32 bits of the 64-bit
result.

- Inall other cases (e.g., the Link Register when
set by Branch instructions having LK=1, Spe-
cial Purpose Registers when set to an effec-

26 Power ISA™ |

Version 2.05

tive address by invocation of a system error
handler) the high-order 32 bits of the register
are set to Os except as described in the last
sentence of this paragraph.
B Embedded environment:
The high-order 32 bits of the register are set to an
undefined value.
As used to address storage, the effective address arith-
metic appears to wrap around from the maximum
address, 232 - 1, to address 0, except that if the current
instruction is at effective address 232 - 4 the effective
address of the next sequential instruction is undefined.

The 64-bit current instruction address is not affected by
a change from 32-bit mode to 64-bit mode, but is
affected by a change from 64-bit mode to 32-bit mode.
In the latter case, the high-order 32 bits are set to 0.
The same is true for the 64-bit next instruction address,
except as described in the last item of the list below.

RA is a field in the instruction which specifies an
address component in the computation of an effective
address. A zero in the RA field indicates the absence
of the corresponding address component. A value of
zero is substituted for the absent component of the
effective address computation. This substitution is
shown in the instruction descriptions as (RA|0).

Effective addresses are computed as follows. In the
descriptions below, it should be understood that “the
contents of a GPR” refers to the entire 64-bit contents,
independent of mode, but that in 32-bit mode only bits
32:63 of the 64-bit result of the computation are used to
address storage.

® With X-form instructions, in computing the effective
address of a data element, the contents of the
GPR designated by RB (or the value zero for Iswi
and stswi) are added to the contents of the GPR
designated by RA or to zero if RA=0.

m With D-form instructions, the 16-bit D field is
sign-extended to form a 64-bit address compo-
nent. In computing the effective address of a data
element, this address component is added to the
contents of the GPR designated by RA or to zero if
RA=0.

m With DS-form instructions, the 14-bit DS field is
concatenated on the right with Ob00 and
sign-extended to form a 64-bit address compo-
nent. In computing the effective address of a data
element, this address component is added to the
contents of the GPR designated by RA or to zero if
RA=0.

B With I-form Branch instructions, the 24-bit LI field
is concatenated on the right with 0bOO and
sign-extended to form a 64-bit address compo-
nent. If AA=0, this address component is added to
the address of the Branch instruction to form the
effective address of the next instruction. If AA=1,

this address component is the effective address of
the next instruction.

® With B-form Branch instructions, the 14-bit BD field
is concatenated on the right with 0bOO and
sign-extended to form a 64-bit address compo-
nent. If AA=0, this address component is added to
the address of the Branch instruction to form the
effective address of the next instruction. If AA=1,
this address component is the effective address of
the next instruction.

® With XL-form Branch instructions, bits 0:61 of the
Link Register or the Count Register are concate-
nated on the right with 0b00 to form the effective
address of the next instruction.

B With sequential instruction fetching, the value 4 is
added to the address of the current instruction to
form the effective address of the next instruction,
except that if the current instruction is at the maxi-
mum instruction effective address for the mode
(2% - 4 in 64-bit mode, 232 - 4 in 32-bit mode) the
effective address of the next sequential instruction
is undefined. (There is one other exception to this
rule; this exception involves changing between
32-bit mode and 64-bit mode and is described in
Section 5.3.2 of Book IlI-S and Section 4.3.2 of
Book IlI-E.)

If the size of the operand of a storage access instruc-
tion is more than one byte, the effective address for
each byte after the first is computed by adding 1 to the
effective address of the preceding byte.

Chapter 1. Introduction 27

Version 2.05

28 Power ISA™ |

Version 2.05

Chapter 2. Branch Processor

2.1 Branch Processor Overview. 29
2.2 Instruction Execution Order 29
2.3 Branch Processor Registers. 30
2.3.1 Condition Register............ 30
2.3.2 LinkRegister 31
2.3.3 CountRegister............... 31
2.4 Branch Instructions. 31

2.5 Condition Register Instructions. . .. 37
2.5.1 Condition Register Logical Instruc-
tions. 37

2.5.2 Condition Register Field Instruction .
38
2.6 System Call Instruction 39

2.1 Branch Processor Overview

This chapter describes the registers and instructions
that make up the Branch Processor facility.

2.2 Instruction Execution Order

In general, instructions appear to execute sequentially,
in the order in which they appear in storage. The
exceptions to this rule are listed below.

B Branch instructions for which the branch is taken
cause execution to continue at the target address
specified by the Branch instruction.

W Trap instructions for which the trap conditions are
satisfied, and System Call instructions, cause the
appropriate system handler to be invoked.

B Exceptions can cause the system error handler to
be invoked, as described in Section 1.9, “Excep-
tions” on page 22.

B Returning from a system service program, system
trap handler, or system error handler causes exe-
cution to continue at a specified address.

The model of program execution in which the proces-
sor appears to execute one instruction at a time, com-
pleting each instruction before beginning to execute the
next instruction is called the “sequential execution
model”. In general, the processor obeys the sequential
execution model. For the instructions and facilities
defined in this Book, the only exceptions to this rule are
the following.

B A floating-point exception occurs when the proces-
sor is running in one of the Imprecise floating-point
exception modes (see Section 4.4). The instruction

that causes the exception need not complete
before the next instruction begins execution, with
respect to setting exception bits and (if the excep-
tion is enabled) invoking the system error handler.

A Store instruction modifies one or more bytes in
an area of storage that contains instructions that
will subsequently be executed. Before an instruc-
tion in that area of storage is executed, software
synchronization is required to ensure that the
instructions executed are consistent with the
results produced by the Store instruction.

—— Programming Note

This software synchronization will generally be
provided by system library programs (see
Section 1.8 of Book II). Application programs
should call the appropriate system library pro-
gram before attempting to execute modified
instructions.

Chapter 2. Branch Processor

29

Version 2.05

2.3 Branch Processor Registers

2.3.1 Condition Register

The Condition Register (CR) is a 32-bit register which
reflects the result of certain operations, and provides a
mechanism for testing (and branching).

CR |
32 63

Figure 35. Condition Register

The bits in the Condition Register are grouped into
eight 4-bit fields, named CR Field 0 (CRO0), ..., CR Field
7 (CRT7), which are set in one of the following ways.

B Specified fields of the CR can be set by a move to
the CR from a GPR (mtcrf, mtocrf).

B A specified field of the CR can be set by a move to
the CR from another CR field (mcrf), from
XER3y.35 (mcrxr), or from the FPSCR (mcrfs).

B CR Field 0 can be set as the implicit result of a
fixed-point instruction.

B CR Field 1 can be set as the implicit result of a
floating-point instruction.

B CR Field 6 can be set as the implicit result of a
vector instruction.

B A specified CR field can be set as the result of a
Compare instruction.

Instructions are provided to perform logical operations
on individual CR bits and to test individual CR bits.

For all fixed-point instructions in which Rc=1, and for
addic., andi., and andis., the first three bits of CR
Field O (bits 32:34 of the Condition Register) are set by
signed comparison of the result to zero, and the fourth
bit of CR Field 0 (bit 35 of the Condition Register) is
copied from the SO field of the XER. “Result” here
refers to the entire 64-bit value placed into the target
register in 64-bit mode, and to bits 32:63 of the 64-bit
value placed into the target register in 32-bit mode.

if (64-bit mode)

then M € 0

else M « 32
if (target_register)y,q; < 0 then ¢ ¢ 0b100
else if (target register)y.q; > 0 then ¢ ¢ 0b010
else c < 0b001
CRO € ¢ || XERgq

If any portion of the result is undefined, then the value
placed into the first three bits of CR Field 0 is unde-
fined.

The bits of CR Field 0 are interpreted as follows.

Bit Description
0 Negative (LT)

The result is negative.
1 Positive (GT)

The result is positive.
2 Zero (EQ)

The result is zero.

3 Summary Overflow (SO)
This is a copy of the contents of XERgg at the
completion of the instruction.

The stwcx. and stdcx. instructions (see Section 3.4.2,
“Load and Reserve and Store Conditional Instructions”,
in Book 1) also set CR Field 0.

For all floating-point instructions in which Rc=1, CR
Field 1 (bits 36:39 of the Condition Register) is set to
the Floating-Point exception status, copied from bits
0:3 of the Floating-Point Status and Control Register.
This occurs regardless of whether any exceptions are
enabled, and regardless of whether the writing of the
result is suppressed (see Section 4.4, “Floating-Point
Exceptions” on page 108). These bits are interpreted
as follows.

Bit Description

0 Floating-Point Exception Summary (FX)
This is a copy of the contents of FPSCRgx at
the completion of the instruction.

1 Floating-Point Enabled Exception Sum-
mary (FEX)
This is a copy of the contents of FPSCRggy at
the completion of the instruction.

2 Floating-Point Invalid Operation Excep-
tion Summary (VX)
This is a copy of the contents of FPSCRyx at
the completion of the instruction.

3 Floating-Point Overflow Exception (OX)
This is a copy of the contents of FPSCRy at
the completion of the instruction.

For Compare instructions, a specified CR field is set to
reflect the result of the comparison. The bits of the
specified CR field are interpreted as follows. A com-
plete description of how the bits are set is given in the
instruction descriptions in Section 3.3.9, “Fixed-Point
Compare Instructions” on page 71, Section 4.6.8,
“Floating-Point Compare Instructions” on page 138,
and Section 7.3.9, “SPE Instruction Set” on page 268.

Bit Description
0 Less Than, Floating-Point Less Than (LT,
FL)

For fixed-point Compare instructions, (RA) <
Sl or (RB) (signed comparison) or (RA) <Y UI
or (RB) (unsigned comparison). For floating-
point Compare instructions, (FRA) < (FRB).

30 Power ISA™ |

Version 2.05

1 Greater Than, Floating-Point Greater Than
(GT, FG)
For fixed-point Compare instructions, (RA) >
Sl or (RB) (signed comparison) or (RA) > Ul
or (RB) (unsigned comparison). For floating-
point Compare instructions, (FRA) > (FRB).

2 Equal, Floating-Point Equal (EQ, FE)
For fixed-point Compare instructions, (RA) =
SI, Ul, or (RB). For floating-point Compare
instructions, (FRA) = (FRB).

3 Summary Overflow, Floating-Point Unor-
dered (SOFU)
For fixed-point Compare instructions, this is a
copy of the contents of XERgg at the comple-
tion of the instruction. For floating-point Com-
pare instructions, one or both of (FRA) and
(FRB) is a NaN.

2.3.2 Link Register

The Link Register (LR) is a 64-bit register. It can be
used to provide the branch target address for the
Branch Conditional to Link Register instruction, and it
holds the return address after Branch instructions for
which LK=1.

LR
0 63

Figure 36. Link Register

2.3.3 Count Register

The Count Register (CTR) is a 64-hit register. It can be
used to hold a loop count that can be decremented dur-
ing execution of Branch instructions that contain an
appropriately coded BO field. If the value in the Count
Register is 0 before being decremented, it is -1 after-
ward. The Count Register can also be used to provide
the branch target address for the Branch Conditional to
Count Register instruction.

CTR
0 63

Figure 37. Count Register

2.4 Branch Instructions

The sequence of instruction execution can be changed
by the Branch instructions. Because all instructions are
on word boundaries, bits 62 and 63 of the generated
branch target address are ignored by the processor in
performing the branch.

The Branch instructions compute the effective address
(EA) of the target in one of the following four ways, as
described in Section 1.10.3, “Effective Address Calcu-
lation” on page 26.

1. Adding a displacement to the address of the
Branch instruction (Branch or Branch Conditional
with AA=0).

2. Specifying an absolute address (Branch or Branch
Conditional with AA=1).

3. Using the address contained in the Link Register
(Branch Conditional to Link Register).

4. Using the address contained in the Count Register
(Branch Conditional to Count Register).

In all four cases, in 32-bit mode the final step in the
address computation is setting the high-order 32 bits of
the target address to 0.

For the first two methods, the target addresses can be
computed sufficiently ahead of the Branch instruction
that instructions can be prefetched along the target
path. For the third and fourth methods, prefetching
instructions along the target path is also possible pro-
vided the Link Register or the Count Register is loaded
sufficiently ahead of the Branch instruction.

Branching can be conditional or unconditional, and the
return address can optionally be provided. If the return
address is to be provided (LK=1), the effective address
of the instruction following the Branch instruction is
placed into the Link Register after the branch target
address has been computed; this is done regardless of
whether the branch is taken.

For Branch Conditional instructions, the BO field speci-
fies the conditions under which the branch is taken, as
shown in Figure 38. In the figure, M=0 in 64-bit mode
and M=32 in 32-bit mode.

Chapter 2. Branch Processor 31

Version 2.05

BO Description

0000z | Decrement the CTR, then branch if the dec-
remented CTR),.g3#0 and CRg=0

0001z | Decrement the CTR, then branch if the dec-
remented CTRy.63=0 and CRg=0

00lat | Branch if CRg=0

0100z | Decrement the CTR, then branch if the dec-
remented CTR),.63#0 and CRp =1

0101z | Decrement the CTR, then branch if the dec-
remented CTR),.3=0 and CRg=1

Ollat | Branch if CRg=1

1a00t | Decrement the CTR, then branch if the dec-
remented CTR),.g3%0

1a01t | Decrement the CTR, then branch if the dec-
remented CTRy;.63=0

1z1zz | Branch always

Notes:
1. “z" denotes a bit that is ignored.

2. The “a” and “t” bits are used as described below.

Figure 38. BO field encodings

The “a” and “t” bits of the BO field can be used by soft-
ware to provide a hint about whether the branch is
likely to be taken or is likely not to be taken, as shown
in Figure 39.

at Hint

00 No hint is given

01 Reserved

10 The branch is very likely not to be taken
11 The branch is very likely to be taken

Figure 39. “at” bit encodings

—— Programming Note

Many implementations have dynamic mechanisms
for predicting whether a branch will be taken.
Because the dynamic prediction is likely to be very
accurate, and is likely to be overridden by any hint
provided by the “at” bits, the “at” bits should be set
to Ob0O unless the static prediction implied by
at=0b10 or at=0b11 is highly likely to be correct.

For Branch Conditional to Link Register and Branch
Conditional to Count Register instructions, the BH field

provides a hint about the use of the instruction, as
shown in Figure 40.

BH Hint

00 bclr[l]: The instruction is a subroutine
return

becetr[l]: The instruction is not a subroutine
return; the target address is likely to
be the same as the target address
used the preceding time the branch
was taken

01 bclr[l]l: The instruction is not a subroutine
return; the target address is likely to
be the same as the target address
used the preceding time the branch
was taken

becetr[l]: Reserved

10 Reserved
11 belr[l] and bectr[l]: The target address is not
predictable

Figure 40. BH field encodings

Programming Note

The hint provided by the BH field is independent of
the hint provided by the “at” bits (e.g., the BH field
provides no indication of whether the branch is
likely to be taken).

Extended mnemonics for branches

Many extended mnemonics are provided so that
Branch Conditional instructions can be coded with por-
tions of the BO and Bl fields as part of the mnemonic
rather than as part of a numeric operand. Some of
these are shown as examples with the Branch instruc-
tions. See Appendix D for additional extended mne-
monics.

—— Programming Note

The hints provided by the “at” bits and by the BH
field do not affect the results of executing the
instruction.

The “z” bits should be set to 0, because they may
be assigned a meaning in some future version of
the architecture.

32 Power ISA™ |

Version 2.05

Programming Note

Many implementations have dynamic mechanisms for
predicting the target addresses of bclr[l] and bcctr]l]
instructions. These mechanisms may cache return
addresses (i.e., Link Register values set by Branch
instructions for which LK=1 and for which the branch
was taken) and recently used branch target addresses.
To obtain the best performance across the widest
range of implementations, the programmer should
obey the following rules.

B Use Branch instructions for which LK=1 only as
subroutine calls (including function calls, etc.).

B Pair each subroutine call (i.e., each Branch
instruction for which LK=1 and the branch is taken)
with a bclr instruction that returns from the subrou-
tine and has BH=0b00.

B Do not use bclrl as a subroutine call. (Some
implementations access the return address cache
at most once per instruction; such implementations
are likely to treat bclrl as a subroutine return, and
not as a subroutine call.)

W For bcelr[l] and bcectr[l], use the appropriate value
in the BH field.

The following are examples of programming conven-
tions that obey these rules. In the examples, BH is
assumed to contain 0b00 unless otherwise stated. In
addition, the “at” bits are assumed to be coded appro-
priately.

Let A, B, and Glue be specific programs.

B Loop counts:
Keep them in the Count Register, and use a bc
instruction (LK=0) to decrement the count and to
branch back to the beginning of the loop if the dec-
remented count is nonzero.

B Computed goto’s, case statements, etc.:
Use the Count Register to hold the address to
branch to, and use a bcctr instruction (LK=0, and
BH=0b11 if appropriate) to branch to the selected
address.

B Direct subroutine linkage:
Here A calls B and B returns to A. The two
branches should be as follows.
- Acalls B: use a bl or bcl instruction (LK=1).
- B returns to A: use a bclr instruction (LK=0)
(the return address is in, or can be restored to,
the Link Register).

m Indirect subroutine linkage:

Here A calls Glue, Glue calls B, and B returns to A
rather than to Glue. (Such a calling sequence is
common in linkage code used when the subroutine
that the programmer wants to call, here B, is in a
different module from the caller; the Binder inserts
“glue” code to mediate the branch.) The three
branches should be as follows.

- A calls Glue: use a bl or bcl instruction
(LK=1).

- Glue calls B: place the address of B into the
Count Register, and use a bcctr instruction
(LK=0).

- B returns to A: use a bclr instruction (LK=0)
(the return address is in, or can be restored to,
the Link Register).

B Function call:

Here A calls a function, the identity of which may
vary from one instance of the call to another,
instead of calling a specific program B. This case
should be handled using the conventions of the
preceding two bullets, depending on whether the
call is direct or indirect, with the following differ-
ences.

- If the call is direct, place the address of the
function into the Count Register, and use a
bcctrl instruction (LK=1) instead of a bl or bcl
instruction.

- For the bcctr[l] instruction that branches to
the function, use BH=0b11 if appropriate.

Chapter 2. Branch Processor 33

Version 2.05

—— Compatibility Note

The bits corresponding to the current “a” and “t”
bits, and to the current “z” bits except in the “branch
always” BO encoding, had different meanings in
versions of the architecture that precede Version
2.00.

B The bit corresponding to the “t” bit was called
the “y” bit. The “y” bit indicated whether to use
the architected default prediction (y=0) or to
use the complement of the default prediction
(y=1). The default prediction was defined as
follows.

- If the instruction is bc[l][a] with a negative
value in the displacement field, the branch
is taken. (This is the only case in which
the prediction corresponding to the “y” bit
differs from the prediction corresponding
to the “t” bit.)

- Inall other cases (bc[l][a] with a nonnega-
tive value in the displacement field, bclr([l],
or bectrll]), the branch is not taken.

B The BO encodings that test both the Count
Register and the Condition Register had a “y”
bit in place of the current “z” bit. The meaning
of the “y” bit was as described in the preceding
item.

B The “a” bit was a “z” bit.

Because these hits have always been defined
either to be ignored or to be treated as hints, a
given program will produce the same result on any
implementation regardless of the values of the bits.
Also, because even the “y” bit is ignored, in prac-
tice, by most processors that comply with versions
of the architecture that precede Version 2.00, the
performance of a given program on those proces-
sors will not be affected by the values of the bits.

34 Power ISA™ |

Version 2.05

Branch I-form Branch Conditional B-form
b target_addr (AA=0 LK=0) bc BO,Bl,target_addr (AA=0 LK=0)
ba target_addr (AA=1 LK=0) bca BO,Bl target_addr (AA=1 LK=0)
bl target_addr (AA=0 LK=1) bcl BO,Bl target_addr (AA=0 LK=1)
bla target_addr (AA=1 LK=1) bcla BO,Bl target_addr (AA=1 LK=1)
18 LI AA|LK 16 BO Bl BD AA| LK
o 6 30 | 31 0 6 1 16 30|31

if AA then NIA ¢, ., EXTS(LI || 0b00)
else NIA ¢, CIA + EXTS(LI || 0b0O)
if LK then LR ¢, , CIA + 4

lea

target_addr specifies the branch target address.

If AA=0 then the branch target address is the sum of
LI'|| ObOO sign-extended and the address of this
instruction, with the high-order 32 bits of the branch tar-
get address set to 0 in 32-hit mode.

If AA=1 then the branch target address is the value
LI || Ob0OO sign-extended, with the high-order 32 bits of
the branch target address set to 0 in 32-bit mode.

If LK=1 then the effective address of the instruction fol-
lowing the Branch instruction is placed into the Link
Register.

Special Registers Altered:
LR (if LK=1)

if (64-bit mode)

then M « 0
else M « 32
if —BO, then CTR ¢ CTR - 1
ctr ok € BO, | ((CTRy.ey # 0) @ BO,)

cond ok € BO; | (CRgr,3, = BO,)
if ctr_ok & cond ok then

if AA then NIA ¢, ., EXTS(BD || 0b00)

else NIA «;., CIA + EXTS(BD || 0b0O0)
if LK then LR ¢, CIA + 4

lea

BI+32 specifies the Condition Register bit to be tested.
The BO field is used to resolve the branch as described
in Figure 38. target_addr specifies the branch target
address.

If AA=0 then the branch target address is the sum of
BD || Ob00 sign-extended and the address of this
instruction, with the high-order 32 bits of the branch tar-
get address set to 0 in 32-bit mode.

If AA=1 then the branch target address is the value
BD || Ob0O sign-extended, with the high-order 32 bits of
the branch target address set to 0 in 32-bit mode.

If LK=1 then the effective address of the instruction fol-
lowing the Branch instruction is placed into the Link
Register.

Special Registers Altered:
CTR (if BO,=0)
LR (if LK=1)

Extended Mnemonics:

Examples of extended mnemonics for Branch Condi-
tional:

Extended: Equivalent to:

blt target bc 12,0,target
bne cr2,target bc 4,10,target
bdnz target bc 16,0,target

Chapter 2. Branch Processor 35

Version 2.05

Branch Conditional to Link Register

Branch Conditional to Count Register

XL-form XL-form
belr BO,BI,BH (LK=0) bectr BO,BI,BH (LK=0)
belrl BO,BI,BH (LK=1) beetrl BO,BI,BH (LK=1)

19 BO BI /Il |BH 16 LK 19 BO BI /Il TBH 528 LK
0 6 11 16 19 |21 31 (6] 6 11 16 19 |21 31

if (64-bit mode)

then M € 0
else M € 32
if —BO, then CTR ¢« CIR - 1
ctr ok ¢« BO, | ((CTRy.e; # 0) @ BO,

cond ok ¢ BO, | (CRgr,3, = BO,)
if ctr ok & cond ok then NIA «;_, LR;.., || 0b0O
if LK then LR ¢, _, CIA + 4

lea

BI+32 specifies the Condition Register bit to be tested.
The BO field is used to resolve the branch as described
in Figure 38. The BH field is used as described in
Figure 40. The branch target address is LRg.g1 || 0b0O,
with the high-order 32 bits of the branch target address
set to 0 in 32-hit mode.

If LK=1 then the effective address of the instruction fol-
lowing the Branch instruction is placed into the Link
Register.

Special Registers Altered:
CTR (if BO,=0)
LR (if LK=1)

Extended Mnemonics:

Examples of extended mnemonics for Branch Condi-
tional to Link Register:

Extended: Equivalent to:
bclr 4.6 bclr 46,0

bltlr bclr 12,0,0
bnelr cr2 bclr 4,10,0
bdnzir bclr 16,0,0

— Programming Note

bclr, belrl, beetr, and bectrl each serve as both a
basic and an extended mnemonic. The Assembler
will recognize a bclr, bclrl, becetr, or beetrl mne-
monic with three operands as the basic form, and a
bclr, bclrl, beetr, or bectrl mnemonic with two
operands as the extended form. In the extended
form the BH operand is omitted and assumed to be
0b00.

cond ok ¢ BO, | (CRpr,s, = BO;)
if cond ok then NIA ¢«;., CTRy.4; || 0000
if LK then LR ¢, CIA + 4

lea

BI+32 specifies the Condition Register bit to be tested.
The BO field is used to resolve the branch as described
in Figure 38. The BH field is used as described in
Figure 40. The branch target address is
CTRg.g1 || Ob0O, with the high-order 32 bits of the
branch target address set to 0 in 32-bit mode.

If LK=1 then the effective address of the instruction fol-
lowing the Branch instruction is placed into the Link
Register.

If the “decrement and test CTR” option is specified
(BO,=0), the instruction form is invalid.

Special Registers Altered:
LR (if LK=1)

Extended Mnemonics:

Examples of extended mnemonics for Branch Condi-
tional to Count Register.

Extended: Equivalent to:
bccetr 4,6 bcctr 4,6,0

bltctr bccetr 12,0,0
bnectr cr2 bccetr 4,10,0

36 Power ISA™ |

Version 2.05

2.5 Condition Register Instructions

2.5.1 Condition Register Logical Instructions

The Condition Register Logical instructions have pre-
ferred forms; see Section 1.8.1. In the preferred forms,
the BT and BB fields satisfy the following rule.

B The bit specified by BT is in the same Condition
Register field as the bit specified by BB.

Extended mnemonics for Condition
Register logical operations

A set of extended mnemonics is provided that allow
additional Condition Register logical operations,
beyond those provided by the basic Condition Register
Logical instructions, to be coded easily. Some of these
are shown as examples with the Condition Register
Logical instructions. See Appendix D for additional
extended mnemonics.

Condition Register AND XL-form Condition Register NAND XL-form
crand BT,BA,BB crnand BT,BA,BB

19 BT BA BB 257 / 19 BT BA BB 225 /
0 6 11 16 21 31 0 6 11 16 21 31
CRgri32 € CRpas3z & CRppisz CRpr.32 € 7 (CRpp,3z & CRgp,3z)

The bit in the Condition Register specified by BA+32 is
ANDed with the bit in the Condition Register specified
by BB+32, and the result is placed into the bit in the
Condition Register specified by BT+32.

Special Registers Altered:
CRpT432

The bit in the Condition Register specified by BA+32 is
ANDed with the bit in the Condition Register specified
by BB+32, and the complemented result is placed into
the hit in the Condition Register specified by BT+32.

Special Registers Altered:
CRpT+32

Condition Register OR XL-form Condition Register XOR XL-form
cror BT,BA,BB crxor BT,BA,BB

19 BT BA BB 449 / 19 BT BA BB 193 /
0 6 11 16 21 31 0 6 11 16 21 31

CReri3z € CReasiz | CRepisz

The bit in the Condition Register specified by BA+32 is
ORed with the hit in the Condition Register specified by
BB+32, and the result is placed into the bit in the Con-
dition Register specified by BT+32.
Special Registers Altered:

CRpT432

Extended Mnemonics:

Example of extended mnemonics for Condition Regis-
ter OR:

Extended:
crmove Bx,By cror

Equivalent to:
Bx,By,By

CRBT+32 € CRBA+32 ® CRBB+32

The bit in the Condition Register specified by BA+32 is
XORed with the bit in the Condition Register specified
by BB+32, and the result is placed into the bit in the
Condition Register specified by BT+32.

Special Registers Altered:
CRgT4+32
Extended Mnemonics:

Example of extended mnemonics for Condition Regis-
ter XOR:

Extended:
crclr Bx

Equivalent to:
crxor Bx,Bx,Bx

Chapter 2. Branch Processor 37

Version 2.05

Condition Register NOR XL-form Condition Register Equivalent XL-form
crnor BT,BA,BB creqv BT,BA,BB

19 BT BA BB 33 / 19 BT BA BB 289 /
o 6 11 16 21 31 0 6 11 16 21 31
CRpp,32 € 7(CRpa,32 | CRppy3) CRpr432 € CRpas3z = CRppean

The bit in the Condition Register specified by BA+32 is
ORed with the hit in the Condition Register specified by
BB+32, and the complemented result is placed into the
bit in the Condition Register specified by BT+32.
Special Registers Altered:

CRpT432

Extended Mnemonics:

Example of extended mnemonics for Condition Regis-
ter NOR:

Extended: Equivalent to:
crnot Bx,By crnor Bx,By,By

Condition Register AND with Complement

The bit in the Condition Register specified by BA+32 is
XORed with the bit in the Condition Register specified
by BB+32, and the complemented result is placed into
the hit in the Condition Register specified by BT+32.

Special Registers Altered:
CRgT4+32
Extended Mnemonics:

Example of extended mnemonics for Condition Regis-
ter Equivalent:

Extended:
crset BX

Equivalent to:
creqv Bx,Bx,Bx

Condition Register OR with Complement

XL-form XL-form

crandc BT,BA,BB crorc BT,BA,BB
19 BT BA BB 129 / 19 BT BA BB 417 /
0 6 11 16 21 31 0 6 11 16 21 31

CRpri32 € CRpps3z & 7CRppian

The bit in the Condition Register specified by BA+32 is
ANDed with the complement of the bit in the Condition
Register specified by BB+32, and the result is placed
into the bit in the Condition Register specified by
BT+32.

Special Registers Altered:
CRpT432

CRgrs32 € CRpaszz | 7CRppiaz

The bit in the Condition Register specified by BA+32 is
ORed with the complement of the bit in the Condition
Register specified by BB+32, and the result is placed
into the bit in the Condition Register specified by
BT+32.

Special Registers Altered:
CRpT+32

2.5.2 Condition Register Field Instruction

Move Condition Register Field XL-form
mcrf BF,BFA

19 BF [//| BFA [/| Il 0 /
0 6 9 |11 14 |16 21 31

CRyxBF+32:4xBF+35 € CR4xBFA132:4xBFA+35
The contents of Condition Register field BFA are cop-
ied to Condition Register field BF.

Special Registers Altered:
CR field BF

38 Power ISA™ |

Version 2.05

2.6 System Call Instruction

This instruction provides the means by which a pro-
gram can call upon the system to perform a service.

System Call SC-form
sc LEV

17 i 17] LEV [/]1]/
0 6 11 16 20 27 |30(31

This instruction calls the system to perform a service. A
complete description of this instruction can be found in
Book Il.

The use of the LEV field is described in Book Ill. The
LEV values greater than 1 are reserved, and bits 0:5 of
the LEV field (instruction bits 20:25) are treated as a
reserved field.

When control is returned to the program that executed
the System Call instruction, the contents of the regis-
ters will depend on the register conventions used by
the program providing the system service.

This instruction is context synchronizing (see Book IlI).

Special Registers Altered:
Dependent on the system service

—— Programming Note

sc serves as both a basic and an extended mne-
monic. The Assembler will recognize an sc mne-
monic with one operand as the basic form, and an
sc mnemonic with no operand as the extended
form. In the extended form the LEV operand is
omitted and assumed to be 0.

In application programs the value of the LEV oper-
and for sc should be 0.

Chapter 2. Branch Processor

39

Version 2.05

40 Power ISA™ |

Version 2.05

Chapter 3. Fixed-Point Processor

3.1 Fixed-Point Processor Overview .. 41
3.2 Fixed-Point Processor Registers .. 42
3.2.1 General Purpose Registers. 42
3.2.2 Fixed-Point Exception Register. . 42
3.2.3 Program Priority Register [Category:

Server]l ... 43
3.2.4 Software Use SPRs [Category:

Embedded] 43
3.2.5 Device Control Registers

[Category: Embedded] 43

3.3 Fixed-Point Processor Instructions. 44
3.3.1 Fixed-Point Storage Access Instruc-
tions 44
3.3.1.1 Storage Access Exceptions ... 44
3.3.2 Fixed-Point Load Instructions ... 44
3.3.2.1 64-bit Fixed-Point Load Instruc-
tions [Category: 64-Bit] 49
3.3.3 Fixed-Point Store Instructions ... 51
3.3.3.1 64-bit Fixed-Point Store Instruc-

tions [Category: 64-Bit] 54
3.3.4 Fixed-Point Load and Store with Byte
Reversal Instructions 55
3.3.5 Fixed-Point Load and Store Multiple
Instructions 56
3.3.6 Fixed-Point Move Assist Instructions
[Category: Move Assist] 58

3.3.7 Other Fixed-Point Instructions . .. 61

3.3.8 Fixed-Point Arithmetic Instructions62

3.3.8.1 64-bit Fixed-Point Arithmetic
Instructions [Category: 64-Bit]. 69

3.3.9 Fixed-Point Compare Instructions 71
3.3.10 Fixed-Point Trap Instructions . .. 73
3.3.10.1 64-bit Fixed-Point Trap Instruc-

tions [Category: 64-Bit] 74
3.3.11 Fixed-Point Select [Category:
Phased-In (sV2.06)]................ 74

3.3.12 Fixed-Point Logical Instructions . 75

3.3.12.1 64-bit Fixed-Point Logical Instruc-
tions [Category: 64-Bit] 81

3.3.12.2 Phased-In Fixed-Point Logical
Instructions [Category: Phased-In

(SV2.05)] .. 81
3.3.13 Fixed-Point Rotate and Shift
Instructions 82

3.3.13.1 Fixed-Point Rotate Instructions 82
3.3.13.1.1 64-bit Fixed-Point Rotate
Instructions [Category: 64-Bit]. 85
3.3.13.2 Fixed-Point Shift Instructions . 88
3.3.13.2.1 64-bit Fixed-Point Shift Instruc-

tions [Category: 64-Bit] 90
3.3.14 Move To/From System Register
Instructions 92

3.3.14.1 Move to/From One Condition
Register Field Instructions [Category:

Phased-In (sV2.05)]................ 96
3.3.14.2 Move To/From System Registers
[Category: Embedded]. 97

3.1 Fixed-Point Processor Overview

This chapter describes the registers and instructions
that make up the Fixed-Point Processor facility.

Chapter 3. Fixed-Point Processor 41

Version 2.05

3.2 Fixed-Point Processor Registers

3.2.1 General Purpose Registers

All manipulation of information is done in registers
internal to the Fixed-Point Processor. The principal
storage internal to the Fixed-Point Processor is a set of
32 General Purpose Registers (GPRs). See Figure 41.

GPRO
GPR 1

GPR 30
GPR 31
0 63

Figure 41. General Purpose Registers

Each GPR is a 64-bit register.

3.2.2 Fixed-Point Exception Reg-
ister

The Fixed-Point Exception Register (XER) is a 64-bit
register.

XER
0 63

Figure 42. Fixed-Point Exception Register

The bit definitions for the Fixed-Point Exception Regis-
ter are shown below. Here M=0 in 64-bit mode and
M=32 in 32-bit mode.

The bits are set based on the operation of an instruc-
tion considered as a whole, not on intermediate results
(e.g., the Subtract From Carrying instruction, the result
of which is specified as the sum of three values, sets
bits in the Fixed-Point Exception Register based on the
entire operation, not on an intermediate sum).

Bit(s Description
0:31 Reserved

32 Summary Overflow (SO)
The Summary Overflow bit is set to 1 when-
ever an instruction (except mtspr) sets the
Overflow bit. Once set, the SO bit remains set
until it is cleared by an mtspr instruction
(specifying the XER) or an mcrxr instruction.
It is not altered by Compare instructions, nor
by other instructions (except mtspr to the
XER, and mcrxr) that cannot overflow. Exe-
cuting an mtspr instruction to the XER, sup-
plying the values 0 for SO and 1 for OV,

33

34

35:56
57:63

causes SO to be set to 0 and OV to be set to
1.

Overflow (OV)

The Overflow bit is set to indicate that an over-
flow has occurred during execution of an
instruction.

XO-form Add, Subtract From, and Negate
instructions having OE=1 set it to 1 if the carry
out of bit M is not equal to the carry out of bit
M+1, and set it to O otherwise.

XO-form Multiply Low and Divide instructions
having OE=1 set it to 1 if the result cannot be
represented in 64 bits (mulld, divd, divdu) or
in 32 bits (mullw, divw, divwu), and setitto 0
otherwise. The OV bit is not altered by Com-
pare instructions, nor by other instructions
(except mtspr to the XER, and mcrxr) that
cannot overflow.

[Category:

Legacy Integer Multiply-Accumulate]

XO-form Legacy Integer Multiply-Accumulate
instructions set OV when OE=1 to reflect over-
flow of the 32-bit result. For signed-integer
accumulation, overflow occurs when the add
produces a carry out of bit 32 that is not equal
to the carry out of bit 33. For unsigned-integer
accumulation, overflow occurs when the add
produces a carry out of bit 32.

Carry (CA)

The Carry bit is set as follows, during execu-
tion of certain instructions. Add Carrying, Sub-
tract From Carrying, Add Extended, and
Subtract From Extended types of instructions
set it to 1 if there is a carry out of bit M, and
set it to O otherwise. Shift Right Algebraic
instructions set it to 1 if any 1-bits have been
shifted out of a negative operand, and set it to
0 otherwise. The CA bit is not altered by Com-
pare instructions, nor by other instructions
(except Shift Right Algebraic, mtspr to the
XER, and mcrxr) that cannot carry.

Reserved

This field specifies the number of bytes to be
transferred by a Load String Indexed or Store
String Indexed instruction.

[Category: Legacy Move Assist]

This field is used as a target by dmlzb to indi-
cate the byte location of the leftmost zero byte
found.

42 Power ISA™ |

Version 2.05

3.2.3 Program Priority Register
[Category: Server]
The Program Priority Register (PPR) is a 64-bit register

that controls the program’s priority. The layout of the
PPR is shown in Figure 43.

| |PRI| I | ??7?
0 1 14 44 63

Bit(s) Description
11:13 Program Priority (PRI)

010 low
011 medium low
100 medium (normal)

44:63 implementation-specific (read-only; values
written to this field by software are ignored)

All other fields are reserved.

Figure 43. Program Priority Register

—— Programming Note

By setting the PRI field, a programmer may be able
to improve system throughput by causing system
resources to be used more efficiently.

E.g.,, if a program is waiting on a lock (see
Section B.2 of Book Il), it could set low priority, with
the result that more processor resources would be
diverted to the program that holds the lock. This
diversion of resources may enable the lock-holding
program to complete the operation under the lock
more quickly, and then relinquish the lock to the
waiting program.

—— Programming Note

or Rx,Rx,Rx can be used to modify the PRI field;
see Section 3.3.14.

—— Programming Note

When the system error handler is invoked, the PRI
field may be set to an undefined value.

3.2.4 Software Use SPRs [Cate-
gory: Embedded]

Software Use SPRs are 64-bit registers that have no
defined functionality. SPRG4-7 can be read by applica-

tion programs. Additional Software Use SPRs are
defined in Book Il1.

SPRG4
SPRG5
SPRG6

SPRG7
0 63

Figure 44. Software-use SPRs

The VRSAVE is a 32-bit register that also can be used
as a software use SPR. VRSAVE is also defined as
part of Category: Embedded and Vector (see Section
6.3.3)

Programming Note

USPRGO was made a 32-hit register and renamed
to VRSAVE; see Section 6.3.3

3.2.5 Device Control Registers
[Category: Embedded]

Device Control Registers (DCRs) are on-chip registers
that exist architecturally outside the processor and thus
are not actually part of the processor architecture. This
specification simply defines the existence of a Device
Control Register ‘address space’ and the instructions to
access them and does not define the Device Control
Registers themselves.

Device Control Registers may control the use of
on-chip peripherals, such as memory controllers (the
definition of specific Device Control Registers is imple-
mentation-dependent).

The contents of user-mode-accessible Device Control
Registers can be read using mfdcrux and written using
mtdcrux.

Chapter 3. Fixed-Point Processor 43

Version 2.05

3.3 Fixed-Point Processor Instructions

3.3.1 Fixed-Point Storage Access Instructions

The Storage Access instructions compute the effective
address (EA) of the storage to be accessed as
described in Section 1.10.3 on page 26.

Programming Note

The la extended mnemonic permits computing an
effective address as a Load or Store instruction
would, but loads the address itself into a GPR
rather than loading the value that is in storage at
that address.

—— Programming Note

The DS field in DS-form Storage Access instruc-
tions is a word offset, not a byte offset like the D
field in D-form Storage Access instructions. How-
ever, for programming convenience, Assemblers
should support the specification of byte offsets for
both forms of instruction.

3.3.1.1 Storage Access Exceptions

Storage accesses will cause the system data storage
error handler to be invoked if the program is not
allowed to modify the target storage (Store only), or if
the program attempts to access storage that is unavail-
able.

3.3.2 Fixed-Point Load Instructions

The byte, halfword, word, or doubleword in storage
addressed by EA is loaded into register RT.

Many of the Load instructions have an “update” form, in
which register RA is updated with the effective address.
For these forms, if RA#0 and RA#RT, the effective
address is placed into register RA and the storage ele-
ment (byte, halfword, word, or doubleword) addressed
by EA is loaded into RT.

—— Programming Note

In some implementations, the Load Algebraic and
Load with Update instructions may have greater
latency than other types of Load instructions.
Moreover, Load with Update instructions may take
longer to execute in some implementations than
the corresponding pair of a non-update Load
instruction and an Add instruction.

44 Power ISA™ |

Version 2.05

Load Byte and Zero D-form Load Byte and Zero Indexed X-form
Ibz RT,D(RA) Ibzx RT,RA,RB

34 RT RA D 31 RT RA RB 87 /
0 6 11 16 31 0 6 11 16 21 31

if RA = 0 thenb « 0
else b « (Ra)
EA ¢ b + EXTS(D)

RT ¢ %0 || MEM(EA, 1)

Let the effective address (EA) be the sum (RA|0)+ D.
The byte in storage addressed by EA is loaded into
RTs6.63- RTg.55 are set to 0.

Special Registers Altered:
None

Load Byte and Zero with Update D-form

Ibzu RT,D(RA)

35 RT RA D
0 6 11 16 31]

EA ¢« (RA) + EXTS(D)
RT « %0 || MEM(EA, 1)
RA € EA

Let the effective address (EA) be the sum (RA)+ D. The
byte in storage addressed by EA is loaded into RTsg-g3.
RTO:55 are set to 0.

EA is placed into register RA.
If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

if RA =0 thenb ¢« 0
else b « (RA)
EA < b + (RB)

RT ¢ %0 || MEM(EA, 1)

Let the effective address (EA) be the sum
(RA]0)+ (RB). The byte in storage addressed by EA is
loaded into RTgg.63. RT(.55 are set to 0.

Special Registers Altered:
None

Load Byte and Zero with Update Indexed

X-form

Ibzux RT,RA,RB
31 RT RA RB 119 /
0 6 11 16 21 31

EA < (RA) + (RB)
RT ¢ %0 || MEM(EA, 1)
RA ¢ EA

Let the effective address (EA) be the sum (RA)+ (RB).
The byte in storage addressed by EA is loaded into
RT56:63' RTO:55 are setto 0.

EA is placed into register RA.
If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

Chapter 3. Fixed-Point Processor 45

Version 2.05

Load Halfword and Zero D-form Load Halfword and Zero Indexed X-form
lhz RT,D(RA) lhzx RT,RA,RB

40 RT RA D 31 RT RA RB 279 /
0 6 11 16 31 (6] 6 11 16 21 31

if RA = 0 thenb « 0
else b « (Ra)
EA ¢ b + EXTS(D)

RT ¢ %80 || MEM(ER, 2)

Let the effective address (EA) be the sum (RA|0)+ D.
The halfword in storage addressed by EA is loaded into
RT4g.63- RTg.47 are set to 0.

Special Registers Altered:
None

Load Halfword and Zero with Update

if RA =0 thenb ¢« 0
else b « (RA)
EA < b + (RB)

RT ¢ %80 || MEM(EA, 2)

Let the effective address (EA) be the sum
(RAJ0)+ (RB). The halfword in storage addressed by
EA is loaded into RTg.3. RTg.47 are set to 0.

Special Registers Altered:
None

Load Halfword and Zero with Update

D-form Indexed X-form

lhzu RT,D(RA) lhzux RT,RA,RB
41 RT RA D 31 RT RA RB 311 /
0 6 11 16 31 0 6 11 16 21 31

EA ¢« (RA) + EXTS(D)
RT « *80 || MEM(ER, 2)
RA € EA

Let the effective address (EA) be the sum (RA)+ D. The
halfword in storage addressed by EA is loaded into
RT48263' RTO:47 are setto 0.

EA is placed into register RA.
If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

EA < (RA) + (RB)
RT « *80 || MEM(EA, 2)
RA ¢ EA

Let the effective address (EA) be the sum (RA)+ (RB).
The halfword in storage addressed by EA is loaded into
RT48:63' RTO:47 are setto 0.

EA is placed into register RA.
If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

46 Power ISA™ |

Version 2.05

Load Halfword Algebraic D-form Load Halfword Algebraic Indexed X-form
lha RT,D(RA) Ihax RT,RA,RB

42 RT RA D 31 RT RA RB 343 /
0 6 11 16 31 0 6 11 16 21 31

if RA = 0 then b « 0
else b « (Ra)
EA ¢ b + EXTS(D)

RT & EXTS(MEM(ER, 2))

Let the effective address (EA) be the sum (RA|0)+ D.
The halfword in storage addressed by EA is loaded into
RTg.63- RTg47 are filled with a copy of bit O of the
loaded halfword.

Special Registers Altered:
None

Load Halfword Algebraic with Update

if RA =0 thenb « 0
else b « (RA)
EA < b + (RB)

RT ¢ EXTS(MEM(EA, 2))

Let the effective address (EA) be the sum
(RAJ0)+ (RB). The halfword in storage addressed by
EA is loaded into RT,g.63. RTg.47 are filled with a copy
of bit 0 of the loaded halfword.

Special Registers Altered:
None

Load Halfword Algebraic with Update

D-form Indexed X-form

Ihau RT,D(RA) Ihaux RT,RA,RB
43 RT RA D 31 RT RA RB 375 /
0 6 11 16 31 0 6 11 16 21 31

EA < (RA) + EXTS(D)
RT < EXTS(MEM(ERA, 2))
RA € EA

Let the effective address (EA) be the sum (RA)+ D. The
halfword in storage addressed by EA is loaded into
RT45.63- RTo.47 are filled with a copy of bit 0 of the
loaded halfword.

EA is placed into register RA.
If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

EA < (RA) + (RB)
RT € EXTS(MEM(ER, 2))
RA ¢ EA

Let the effective address (EA) be the sum (RA)+ (RB).
The halfword in storage addressed by EA is loaded into
RT4g.63- RTo.47 are filled with a copy of bit 0 of the
loaded halfword.

EA is placed into register RA.
If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

Chapter 3. Fixed-Point Processor a7

Version 2.05

Load Word and Zero D-form Load Word and Zero Indexed X-form
lwz RT,D(RA) lwzx RT,RA,RB

32 RT RA D 31 RT RA RB 23 /
0 6 11 16 31 (6] 6 11 16 21 31

if RA = 0 thenb « 0
else b « (Ra)
EA ¢ b + EXTS(D)

RT ¢ 320 || MEM(EA, 4)

Let the effective address (EA) be the sum (RA|0)+ D.
The word in storage addressed by EA is loaded into
RT35.63- RTg.3; are set to 0.

Special Registers Altered:
None

Load Word and Zero with Update D-form

Iwzu RT,D(RA)

33 RT RA D
0 6 11 16 31

if RA =0 thenb ¢« 0
else b « (RA)
EA < b + (RB)

RT ¢ 320 || MEM(EA, 4)

Let the effective address (EA) be the sum
(RAJ0)+ (RB). The word in storage addressed by EA is
loaded into RT3;.63. RT(.31 are setto 0.

Special Registers Altered:
None

Load Word and Zero with Update Indexed

EA ¢« (RA) + EXTS(D)
RT « 320 || MEM(EA, 4)
RA € EA

Let the effective address (EA) be the sum (RA)+ D. The
word in storage addressed by EA is loaded into
RT32:63. RT0:31 are setto 0.

EA is placed into register RA.
If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

X-form

lwzux RT,RARB
31 RT RA RB 55 /
0 6 11 16 21 31

EA < (RA) + (RB)
RT ¢ 320 || MEM(EA, 4)
RA ¢ EA

Let the effective address (EA) be the sum (RA)+ (RB).
The word in storage addressed by EA is loaded into
RT32:63. RTO:31 are setto 0.

EA is placed into register RA.
If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

48 Power ISA™ |

Version 2.05

3.3.2.1 64-bit Fixed-Point Load Instructions [Category: 64-Bit]

Load Word Algebraic DS-form Load Word Algebraic Indexed X-form
lwa RT,DS(RA) lwax RT,RA,RB

58 RT RA DS 2 31 RT RA RB 341 /
0 6 11 16 30 31 0 6 11 16 21 31

if RA = 0 thenb « 0
else b € (Ra)
EA ¢« b + EXTS(DS || 0b00)
RT & EXTS(MEM(ER, 4))

Let the effective address (EA) be the sum
(RA|0)+ (DS||0b00). The word in storage addressed by
EA is loaded into RT3,.63. RTq:31 are filled with a copy
of bit 0 of the loaded word.

Special Registers Altered:
None

if RA =0 thenb « 0
else b « (RA)
EA < b + (RB)

RT & EXTS(MEM(EA, 4))

Let the effective address (EA) be the sum
(RAJ0)+ (RB). The word in storage addressed by EA is
loaded into RT3;.63. RTp:31 are filled with a copy of bit 0
of the loaded word.

Special Registers Altered:
None

Load Word Algebraic with Update Indexed

X-form

lwaux RT,RA,RB
31 RT RA RB 373 /
o 6 11 16 21 31

EA < (RA) + (RB)
RT ¢« EXTS(MEM(EA, 4))
RA € EA

Let the effective address (EA) be the sum (RA)+ (RB).
The word in storage addressed by EA is loaded into
RT30.63. RTg:31 are filled with a copy of bit O of the
loaded word.

EA is placed into register RA.
If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

Chapter 3. Fixed-Point Processor 49

Version 2.05

Load Doubleword DS-form Load Doubleword Indexed X-form
Id RT,DS(RA) Idx RT,RA,RB

58 RT RA DS 0 31 RT RA RB 21 /
0 6 11 16 30 31 (6] 6 11 16 21 31

if RA = 0 then b « 0
else b < (RA)
EA ¢« b + EXTS(DS || 0b00)
RT ¢ MEM(ER, 8)

Let the effective address (EA) be the sum
(RA|O)+ (DS]|Ob00). The doubleword in storage
addressed by EA is loaded into RT.

Special Registers Altered:
None

Load Doubleword with Update DS-form
du RT,DS(RA)

58 RT RA DS 1
0 6 11 16 30 31

EA « (RA) + EXTS(DS || 0b00)
RT < MEM(EA, 8)
RA € EA

Let the effective address (EA) be the sum
(RA)+ (DS||0b00). The doubleword in storage
addressed by EA is loaded into RT.

EA is placed into register RA.
If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

if RA =0 thenb ¢« 0
else b « (RA)
EA ¢ b + (RB)

RT ¢ MEM(EA, 8)

Let the effective address (EA) be the sum
(RA|0)+ (RB). The doubleword in storage addressed by
EA is loaded into RT.

Special Registers Altered:
None

Load Doubleword with Update Indexed

X-form

Idux RT,RA,RB
31 RT RA RB 53 /
0 6 11 16 21 31

EA < (RA) + (RB)
RT « MEM(EA, 8)
RA ¢ EA

Let the effective address (EA) be the sum (RA)+ (RB).
The doubleword in storage addressed by EA is loaded
into RT.

EA is placed into register RA.
If RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

50 Power ISA™ |

Version 2.05

3.3.3 Fixed-Point Store Instructions

The contents of register RS are stored into the byte,
halfword, word, or doubleword in storage addressed by
EA.

Many of the Store instructions have an “update” form,
in which register RA is updated with the effective
address. For these forms, the following rules apply.

B If RA#0, the effective address is placed into regis-
ter RA.

B If RS=RA, the contents of register RS are copied
to the target storage element and then EA is
placed into RA (RS).

Store Byte D-form Store Byte Indexed X-form
stb RS,D(RA) stbx RS,RA,RB

38 RS RA D 31 RS RA RB 215 /
0 6 11 16 31 0 6 11 16 21 31

if RA =0 thenb < 0
else b « (Ra)
EA ¢ b + EXTS(D)
MEM(EA, 1) € (RS)gg.43

Let the effective address (EA) be the sum (RA|0)+ D.
(RS)s6:63 are stored into the byte in storage addressed
by EA.

Special Registers Altered:
None

if RA =0 thenb € 0
else b €« (RA)
EA ¢ b + (RB)

MEM(ER, 1) ¢ (RS)gg.63

Let the effective address (EA) be the sum
(RA]O)+ (RB). (RS)56.63 are stored into the byte in stor-
age addressed by EA.

Special Registers Altered:
None

Store Byte with Update D-form Store Byte with Update Indexed X-form
stbu RS,D(RA) stbux RS,RA,RB

39 RS RA D 31 RS RA RB 247 /
(0] 6 11 16 31 0 6 11 16 21 31

EA €« (RA) + EXTS(D)
MEM(EA, 1) € (RS)s4.63
RA ¢« EA

Let the effective address (EA) be the sum (RA)+ D.
(RS)s6.63 are stored into the byte in storage addressed
by EA.

EA is placed into register RA.
If RA=0, the instruction form is invalid.

Special Registers Altered:
None

EA < (RA) + (RB)
MEM(EA, 1) ¢ (RS)s6.63
RA ¢ EA

Let the effective address (EA) be the sum (RA)+ (RB).
(RS)s6:63 are stored into the byte in storage addressed
by EA.

EA is placed into register RA.
If RA=0, the instruction form is invalid.

Special Registers Altered:
None

Chapter 3. Fixed-Point Processor 51

Version 2.05

Store Halfword D-form Store Halfword Indexed X-form
sth RS,D(RA) sthx RS,RA,RB

44 RS RA D 31 RS RA RB 407 /
0 6 11 16 31 (6] 6 11 16 21 31

if RA = 0 thenb « 0
else b « (Ra)
EA ¢ b + EXTS(D)
MEM(EA, 2) € (RS)4g5.63

Let the effective address (EA) be the sum (RA|0)+ D.
(RS)4g.63 are stored into the halfword in storage
addressed by EA.

Special Registers Altered:
None

Store Halfword with Update D-form
sthu RS,D(RA)

45 RS RA D
0 6 11 16 31

EA < (RA) + EXTS(D)
MEM(ER, 2) < (RS),5.63
RA « EA

Let the effective address (EA) be the sum (RA)+ D.
(RS)4g.63 are stored into the halfword in storage
addressed by EA.

EA is placed into register RA.
If RA=0, the instruction form is invalid.

Special Registers Altered:
None

if RA =0 thenb ¢« 0
else b « (RA)
EA ¢ b + (RB)

MEM(ER, 2) ¢ (RS)4g5.63

Let the effective address (EA) be the sum
(RAJO)+ (RB). (RS)4g:63 are stored into the halfword in
storage addressed by EA.

Special Registers Altered:
None

Store Halfword with Update Indexed

X-form

sthux RS,RA,RB
31 RS RA RB 439 /
0 6 11 16 21 31

EA ¢« (RA) + (RB)
MEM(ER, 2) € (RS)4g5.63
RA € EA

Let the effective address (EA) be the sum (RA)+ (RB).
(RS)45:63 are stored into the halfword in storage
addressed by EA.

EA is placed into register RA.
If RA=0, the instruction form is invalid.

Special Registers Altered:
None

52 Power ISA™ |

Version 2.05

Store Word D-form Store Word Indexed X-form
stw RS,D(RA) Stwx RS,RA,RB

36 RS RA D 31 RS RA RB 151 /
0 6 11 16 31 (6] 6 11 16 21 31

if RA = 0 thenb « 0
else b « (Ra)
EA ¢ b + EXTS(D)
MEM(EA, 4) € (RS)35.43

Let the effective address (EA) be the sum (RA|0)+ D.
(RS)3,-63 are stored into the word in storage addressed
by EA.

Special Registers Altered:
None

if RA =0 thenb ¢« 0
else b « (RA)
EA ¢ b + (RB)

MEM(ER, 4) ¢ (RS)35.63

Let the effective address (EA) be the sum
(RA]0)+ (RB). (RS)3,.63 are stored into the word in stor-
age addressed by EA.

Special Registers Altered:
None

Store Word with Update D-form Store Word with Update Indexed X-form
stwu RS,D(RA) stwux RS,RARB

37 RS RA D 31 RS RA RB 183 /
0 6 11 16 31 0 6 11 16 21 31

EA < (RA) + EXTS(D)
MEM(EA, 4) < (RS)3;.63
RA < EA

Let the effective address (EA) be the sum (RA)+ D.
(RS)30.63 are stored into the word in storage addressed
by EA.

EA is placed into register RA.
If RA=0, the instruction form is invalid.

Special Registers Altered:
None

EA < (RA) + (RB)
MEM(EA, 4) € (RS)35.63
RA < EA

Let the effective address (EA) be the sum (RA)+ (RB).
(RS)32:63 are stored into the word in storage addressed
by EA.

EA is placed into register RA.
If RA=0, the instruction form is invalid.

Special Registers Altered:
None

Chapter 3. Fixed-Point Processor 53

Version 2.05

3.3.3.1 64-bit Fixed-Point Store Instructions [Category: 64-Bit]

Store Doubleword DS-form Store Doubleword Indexed X-form
std RS,DS(RA) stdx RS,RA,RB

62 RS RA DS 0 31 RS RA RB 149 /
0 6 11 16 30 31 (6] 6 11 16 21 31

if RA = 0 thenb « 0
else b € (Ra)
EA ¢« b + EXTS(DS || 0b00)
MEM (EA, 8) ¢« (RS)

Let the effective address (EA) be the sum
(RA|0)+ (DS||0b00). (RS) is stored into the doubleword
in storage addressed by EA.

Special Registers Altered:
None

Store Doubleword with Update DS-form
stdu RS,DS(RA)

62 RS RA DS 1
0 6 11 16 30 31

EA « (RA) + EXTS(DS || 0b00)
MEM(EA, 8) ¢ (RS)
RA ¢ EA

Let the effective address (EA) be the sum
(RA)+ (DS||0b00). (RS) is stored into the doubleword in
storage addressed by EA.

EA is placed into register RA.
If RA=0, the instruction form is invalid.

Special Registers Altered:
None

if RA =0 thenb « 0
else b « (RA)
EA < b + (RB)

MEM (EA, 8) < (RS)

Let the effective address (EA) be the sum
(RA|0)+ (RB). (RS) is stored into the doubleword in
storage addressed by EA.

Special Registers Altered:
None

Store Doubleword with Update Indexed

X-form

stdux RS,RA,RB
31 RS RA RB 181 /
0 6 11 16 21 31

EA < (RA) + (RB)
MEM(EA, 8) ¢ (RS)
RA € EA

Let the effective address (EA) be the sum (RA)+ (RB).
(RS) is stored into the doubleword in storage
addressed by EA.

EA is placed into register RA.
If RA=0, the instruction form is invalid.

Special Registers Altered:
None

54 Power ISA™ |

Version 2.05

3.3.4 Fixed-Point Load and Store with Byte Reversal Instructions

Programming Note

These instructions have the effect of loading and
storing data in the opposite byte ordering from that
which would be used by other Load and Store
instructions.

Programming Note
In some implementations, the Load Byte-Reverse
instructions may have greater latency than other
Load instructions.

Load Halfword Byte-Reverse Indexed

Store Halfword Byte-Reverse Indexed

X-form X-form

lhbrx RT,RA,RB sthbrx RS,RA,RB
31 RT RA RB 790 / 31 RS RA RB 018 /
0 6 11 16 21 31 0 6 11 16 21 31

if RA = 0 then b ¢« 0

else b « (RA)

EA € b + (RB)

load data ¢ MEM(EA, 2)

RT « *%0 || load datag,;s || load datag,-

Let the effective address (EA) be the sum (RA|0)+(RB).
Bits 0:7 of the halfword in storage addressed by EA are
loaded into RTgg.63. Bits 8:15 of the halfword in storage
addressed by EA are loaded into RT,g.55. RTg47 are
set to 0.

Special Registers Altered:
None

Load Word Byte-Reverse Indexed X-form

lwbrx RT,RA,RB

if RA =0 thenb € 0

else b € (RA)
EA < b + (RB)
MEM(ER, 2) € (RS)sg.e3 || (RS)4s.ss

Let the effective address (EA) be the sum
(RAJ0)+ (RB). (RS)s56:63 are stored into bits 0:7 of the
halfword in storage addressed by EA. (RS),g:55 are
stored into bits 8:15 of the halfword in storage
addressed by EA.

Special Registers Altered:
None

Store Word Byte-Reverse Indexed X-form

stwbrx RS,RA,RB

31 RT RA RB 534 /

0 6 11 16 21 31

31 RS RA RB 662 /
0 6 11 16 21 31

if RA =0 then b ¢« 0

else b €« (RA)

EA ¢ b + (RB)

load data ¢ MEM(EA, 4)

RT ¢ 320 || load data,,.;; || load data;g,.,
|| load datag.,s || load datay,,

Let the effective address (EA) be the sum
(RA|0)+ (RB). Bits 0:7 of the word in storage addressed
by EA are loaded into RTgg.63. Bits 8:15 of the word in
storage addressed by EA are loaded into RT,g.55. Bits
16:23 of the word in storage addressed by EA are
loaded into RT4q.47. Bits 24:31 of the word in storage
addressed by EA are loaded into RT35.39. RT(:31 are
setto 0.

Special Registers Altered:
None

if RA =0 thenb € 0

else b €« (RA)

EA ¢ b + (RB)

MEM(ER, 4) € (RS)sg.e3 || (RS)4g.s5 || (RS)40.47
|1 (RS)32.30

Let the effective address (EA) be the sum
(RAJO)+ (RB). (RS)s56.63 are stored into bits 0:7 of the
word in storage addressed by EA. (RS),g.55 are stored
into bits 8:15 of the word in storage addressed by EA.
(RS)40:47 are stored into bits 16:23 of the word in stor-
age addressed by EA. (RS)35.39 are stored into bits
24:31 of the word in storage addressed by EA.

Special Registers Altered:
None

Chapter 3. Fixed-Point Processor 55

Version 2.05

3.3.5 Fixed-Point Load and Store Multiple Instructions

The Load/Store Multiple instructions have preferred
forms; see Section 1.8.1, “Preferred Instruction Forms”
on page 21. In the preferred forms, storage alignment
satisfies the following rule.

B The combination of the EA and RT (RS) is such
that the low-order byte of GPR 31 is loaded

(stored) from (into) the last byte of an aligned
quadword in storage.

For the Server environment, the Load/Store Multiple
instructions are not supported in Little-Endian mode. If
they are executed in Little-Endian mode, the system

| alignment error handler is invoked.

Load Multiple Word D-form
Imw RT,D(RA)

46 RT RA D
0 6 11 16 31

if RA =0 thenb « 0

else b « (Ra)
EA ¢ b + EXTS(D)
r € RT

do while r < 31
GPR(r) « 20 || MEM(EA, 4)
re<r+l
EA « EA + 4

Let n = (32-RT). Let the effective address (EA) be the
sum (RA|0)+ D.

n consecutive words starting at EA are loaded into the
low-order 32 bits of GPRs RT through 31. The
high-order 32 hits of these GPRs are set to zero.

If RA is in the range of registers to be loaded, including
the case in which RA=0, the instruction form is invalid.

Special Registers Altered:
None

56 Power ISA™ |

Version 2.05

Store Multiple Word D-form
stmw RS,D(RA)

47 RS RA
0 6 11 16 31

if RA = 0 thenb « 0

else b « (Ra)
EA ¢ b + EXTS(D)
r € RS

do while r < 31
MEM(EA, 4) € GPR(r);5.¢3
rée<r+1l
EA € EA + 4

Let n = (32-RS). Let the effective address (EA) be the

sum (RA|0)+ D.

n consecutive words starting at EA are stored from the

low-order 32 bhits of GPRs RS through 31.

Special Registers Altered:
None

Chapter 3. Fixed-Point Processor

57

Version 2.05

3.3.6 Fixed-Point Move Assist Instructions [Category: Move Assist]

The Move Assist instructions allow movement of data
from storage to registers or from registers to storage
without concern for alignment. These instructions can
be used for a short move between arbitrary storage
locations or to initiate a long move between unaligned
storage fields.

The Load/Store String instructions have preferred
forms; see Section 1.8.1, “Preferred Instruction Forms”
on page 21. In the preferred forms, register usage sat-
isfies the following rules.

B RS=4o0r5

B RT=4o0r5
W |ast register loaded/stored < 12

For some implementations, using GPR 4 for RS and
RT may result in slightly faster execution than using
GPR 5.

For the Server environment, the Move Assist instruc-
tions are not supported in Little-Endian mode. If they
are executed in Little-Endian mode, the system align-
ment error handler may be invoked or the instructions
may be treated as no-ops if the number of bytes speci-
fied by the instruction is 0.

58 Power ISA™ |

Version 2.05

Load String Word Immediate X-form Load String Word Indexed X-form
Iswi RT,RA,NB Iswx RT,RA,RB

31 RT RA NB 597 / 31 RT RA RB 533 /
0 6 11 16 21 31 0 6 11 16 21 31
if RA = 0 then EA « 0 if RA = 0 then b ¢« 0
else EA < (RA) else b « (RA)
if NB = 0 then n « 32 EA < b + (RB)
else n €< NB n € XERgy.63
r € RT -1 r € RT -1
i€ 32 i€ 32

do while n > 0
if 1 = 32 then
r < r+ 1 (mod 32)
GPR(r) < 0
GPR(r);.;,7 € MEM(EA, 1)
ie€1+8
if 1 = 64 then 1 « 32
EA € EA + 1
ne<n-1

Let the effective address (EA) be (RA|0). Let n = NB if
NB=0, n = 32 if NB=0; n is the number of bytes to load.
Let nr=CEIL(n/4); nr is the number of registers to
receive data.

n consecutive bytes starting at EA are loaded into
GPRs RT through RT+nr-1. Data are loaded into the
low-order four bytes of each GPR; the high-order four
bytes are set to 0.

Bytes are loaded left to right in each register. The
sequence of registers wraps around to GPR O if
required. If the low-order four bytes of register
RT+nr-1 are only partially filled, the unfilled low-order
byte(s) of that register are set to 0.

If RA is in the range of registers to be loaded, including
the case in which RA=0, the instruction form is invalid.

Special Registers Altered:
None

RT ¢ undefined

do whilen > 0
if 1 = 32 then
r < r+ 1 (mod 32)
GPR(r) < 0
GPR(r) ;447
ie1i+8
if 1 = 64 then 1 « 32
EA € EA + 1
ne<n-1

« MEM(EA, 1)

Let the effective address (EA) be the sum
(RA|0)+ (RB). Let n=XERg7.3; n is the number of bytes
to load. Let nr=CEIL(n/4); nr is the number of registers
to receive data.

If n>0, n consecutive bytes starting at EA are loaded
into GPRs RT through RT+nr-1. Data are loaded into
the low-order four bytes of each GPR; the high-order
four bytes are set to 0.

Bytes are loaded left to right in each register. The
sequence of registers wraps around to GPR O if
required. If the low-order four bytes of register
RT+nr-1 are only partially filled, the unfilled low-order
byte(s) of that register are set to 0.

If n=0, the contents of register RT are undefined.

If RA or RB is in the range of registers to be loaded,
including the case in which RA=0, the instruction is
treated as if the instruction form were invalid. If RT=RA
or RT=RB, the instruction form is invalid.

Special Registers Altered:
None

Chapter 3. Fixed-Point Processor 59

Version 2.05

Store String Word Immediate X-form Store String Word Indexed X-form
stswi RS,RA,NB Sstswx RS,RA,RB

31 RS RA NB 725 / 31 RS RA RB 661 /
0 6 11 16 21 31 0 6 11 16 21 31
if RA = 0 then EA « 0 if RA = 0 then b ¢« 0
else EA < (RA) else b « (RA)
if NB = 0 then n « 32 EA € b + (RB)
else n €< NB n € XERgy.63
r < RS -1 r € RS -1
i€ 32 i€ 32

do while n > 0
if 1 =32 thenr € r + 1 (mod 32)
MEM(EA, 1) € GPR(r);.i,7
iei+ 8
if 1 = 64 then 1 « 32
EA € EA + 1
ne<n-1

Let the effective address (EA) be (RA|0). Let n = NB if
NB=0, n = 32 if NB=0; n is the number of bytes to store.
Let nr =CEIL(n/4); nr is the number of registers to sup-
ply data.

n consecutive bytes starting at EA are stored from
GPRs RS through RS+nr-1. Data are stored from the
low-order four bytes of each GPR.

Bytes are stored left to right from each register. The
sequence of registers wraps around to GPR O if
required.

Special Registers Altered:
None

do while n > 0
if 1 =32 thenr ¢ r + 1 (mod 32)
MEM(EA, 1) € GPRI(I);.;,7
iei+8
if 1 = 64 then 1 « 32
EA € EA + 1
n<n-1

Let the effective address (EA) be the sum
(RA|O)+ (RB). Let n = XERg7.63; N is the number of
bytes to store. Let nr = CEIL(n/4); nr is the number of
registers to supply data.

If n>0, n consecutive bytes starting at EA are stored
from GPRs RS through RS+nr-1. Data are stored from
the low-order four bytes of each GPR.

Bytes are stored left to right from each register. The
sequence of registers wraps around to GPR O if
required.

If n=0, no bytes are stored.

Special Registers Altered:
None

60 Power ISA™ |

Version 2.05

3.3.7 Other Fixed-Point Instructions

The remainder of the fixed-point instructions use the
contents of the General Purpose Registers (GPRs) as
source operands, and place results into GPRs, into the
Fixed-Point Exception Register (XER), and into Condi-
tion Register fields. In addition, the Trap instructions
test the contents of a GPR or XER bit, invoking the sys-
tem trap handler if the result of the specified test is true.

These instructions treat the source operands as signed
integers unless the instruction is explicitly identified as
performing an unsigned operation.

The X-form and XO-form instructions with Rc=1, and
the D-form instructions addic., andi., and andis., set
the first three bits of CR Field 0 to characterize the
result placed into the target register. In 64-bit mode,

these bits are set by signed comparison of the result to
zero. In 32-bit mode, these bits are set by signed com-
parison of the low-order 32 bits of the result to zero.

Unless otherwise noted and when appropriate, when
CR Field 0 and the XER are set they reflect the value
placed into the target register.

Programming Note

Instructions with the OE bit set or that set CA may
execute slowly or may prevent the execution of sub-
sequent instructions until the instruction has com-
pleted.

Chapter 3. Fixed-Point Processor 61

Version 2.05

3.3.8 Fixed-Point Arithmetic Instructions

The XO-form Arithmetic instructions with Rc=1, and the
D-form Arithmetic instruction addic., set the first three
bits of CR Field 0 as described in Section 3.3.7, “Other
Fixed-Point Instructions”.

addic, addic., subfic, addc, subfc, adde, subfe,
addme, subfme, addze, and subfze always set CA, to
reflect the carry out of bit 0 in 64-bit mode and out of bit
32 in 32-bit mode. The XO-form Arithmetic instructions
set SO and OV when OE=1 to reflect overflow of the
result. Except for the Multiply Low and Divide instruc-
tions, the setting of these bits is mode-dependent, and
reflects overflow of the 64-bit result in 64-bit mode and
overflow of the low-order 32-bit result in 32-bit mode.
For XO-form Multiply Low and Divide instructions, the
setting of these bits is mode-independent, and reflects
overflow of the 64-bit result for mulld, divd, and divdu,
and overflow of the low-order 32-bit result for mullw,
divw, and divwu.

Programming Note

Notice that CR Field 0 may not reflect the “true”
(infinitely precise) result if overflow occurs.

Extended mnemonics for addition and
subtraction

Several extended mnemonics are provided that use the
Add Immediate and Add Immediate Shifted instructions
to load an immediate value or an address into a target
register. Some of these are shown as examples with
the two instructions.

The Power ISA supplies Subtract From instructions,
which subtract the second operand from the third. A set
of extended mnemonics is provided that use the more
“normal” order, in which the third operand is subtracted
from the second, with the third operand being either an
immediate field or a register. Some of these are shown
as examples with the appropriate Add and Subtract
From instructions.

See Appendix D for additional extended mnemonics.

Add Immediate D-form Add Immediate Shifted D-form
addi RT,RA,SI addis RT,RA,SI

14 RT RA Sl 15 RT RA S|
0 6 11 16 31 (6] 6 11 16 31

if RA = 0 then RT ¢ EXTS(SI)
else RT < (RA) + EXTS(SI)

The sum (RA|0) + Sl is placed into register RT.

Special Registers Altered:
None

Extended Mnemonics:

Examples of extended mnemonics for Add Immediate:

Extended: Equivalent to:

li Rx,value addi Rx,0,value

la Rx,disp(Ry) addi Rx,Ry,disp
subi Rx,Ry,value addi Rx,Ry,-value

—— Programming Note

addi, addis, add, and subf are the preferred
instructions for addition and subtraction, because
they set few status bits.

Notice that addi and addis use the value 0, not the
contents of GPR 0, if RA=0.

if RA = 0 then RT ¢ EXTS(SI || *°0)
else RT ¢ (RA) + EXTS(SI || *%0)

The sum (RA|0) + (SI || 0x0000) is placed into register
RT.

Special Registers Altered:
None

Extended Mnemonics:

Examples of extended mnemonics for Add Immediate
Shifted:

Extended: Equivalent to:
lis Rxvalue addis Rx,0,value
subis Rx,Ry,value addis Rx,Ry,-value

62 Power ISA™ |

Version 2.05

Add XO-form Subtract From XO-form
add RT,RA,RB (OE=0 Rc=0) subf RT,RA,RB (OE=0 Rc=0)
add. RT,RA,RB (OE=0 Rc=1) subf. RT,RA,RB (OE=0 Rc=1)
addo RT,RA,RB (OE=1 Rc=0) subfo RT,RA,RB (OE=1 Rc=0)
addo. RT,RA,RB (OE=1Rc=1) subfo. RT,RA,RB (OE=1 Rc=1)
31 RT RA RB [OE|[266 [Rc 31 RT RA RB [OE 40 Rc
0 6 11 16 21 |22 31 (6] 6 11 16 21 |22 31

RT ¢« (RA) + (RB)
The sum (RA) + (RB) is placed into register RT.

Special Registers Altered:
CRO (if Rc=1)
SO oV (if OE=1)

Add Immediate Carrying D-form
addic RT,RASI

12 RT RA Sl
0 6 11 16 31

RT ¢ (RA) + EXTS(SI)
The sum (RA) + Sl is placed into register RT.

Special Registers Altered:
CA

Extended Mnemonics:

Example of extended mnemonics for Add Immediate
Carrying:

Extended: Equivalent to:
subic Rx,Ry,value addic Rx,Ry,-value

RT ¢« - (RA) + (RB) + 1
The sum —=(RA) + (RB) +1 is placed into register RT.

Special Registers Altered:
CRO (if Rc=1)
SO oV (if OE=1)

Extended Mnemonics:

Example of extended mnemonics for Subtract From:

Extended: Equivalent to:
sub Rx,Ry,Rz subf Rx,Rz,Ry

Add Immediate Carrying and Record
D-form

addic. RT,RA,SI

13 RT RA SI

RT ¢ (RA) + EXTS(SI)
The sum (RA) + Sl is placed into register RT.

Special Registers Altered:
CRO CA

Extended Mnemonics:

Example of extended mnemonics for Add Immediate
Carrying and Record:

Extended: Equivalent to:
subic. Rx,Ry,\value addic. Rx,Ry,-value

Chapter 3. Fixed-Point Processor 63

Version 2.05

Subtract From Immediate Carrying
D-form

subfic RT,RA,SI

8 RT RA SI
o 6 11 16 31

RT « =(RA) + EXTS(SI) + 1
The sum —(RA) + Sl + 1 is placed into register RT.

Special Registers Altered:
CA

Add Carrying XO-form Subtract From Carrying XO-form
addc RT,RA,RB (OE=0 Rc=0) subfc RT,RA,RB (OE=0 Rc=0)
addc. RT,RA,RB (OE=0 Rc=1) subfc. RT,RA,RB (OE=0 Rc=1)
addco RT,RA,RB (OE=1 Rc=0) subfco RT,RA,RB (OE=1 Rc=0)
addco. RT,RA,RB (OE=1Rc=1) subfco. RT,RA,RB (OE=1Rc=1)
31 RT RA RB [OE] 10 [Rc 31 RT RA RB [OE 8 Rc
0 6 11 16 21 |22 31 0 6 11 16 21 |22 31

RT ¢« (RA) + (RB)
The sum (RA) + (RB) is placed into register RT.
Special Registers Altered:

CA
CRO (if Re=1)
SO ov (if OE=1)

RT ¢« - (RA) + (RB) + 1
The sum —=(RA) + (RB) + 1 is placed into register RT.

Special Registers Altered:

CA
CRO (if Re=1)
sSo oV (if OE=1)

Extended Mnemonics:

Example of extended mnemonics for Subtract From
Carrying:

Extended: Equivalent to:
subc Rx,Ry,Rz subfc Rx,Rz,Ry

64 Power ISA™ |

Version 2.05

Add Extended XO-form Subtract From Extended XO-form
adde RT,RA,RB (OE=0 Rc=0) subfe RT,RA,RB (OE=0 Rc=0)
adde. RT,RA,RB (OE=0 Rc=1) subfe. RT,RA,RB (OE=0 Rc=1)
addeo RT,RA,RB (OE=1 Rc=0) subfeo RT,RA,RB (OE=1 Rc=0)
addeo. RT,RA,RB (OE=1 Rc=1) subfeo. RT,RA,RB (OE=1Rc=1)
31 RT RA RB [OE[138 [Rc 31 RT RA RB [OE[136 [Rc
0 6 11 16 21 |22 31 (6] 6 11 16 21 |22 31

RT < (RA) + (RB) + CA
The sum (RA) + (RB) + CA is placed into register RT.
Special Registers Altered:

CA
CRO (if Rc=1)
SO oV (if OE=1)
Add to Minus One Extended XO-form
addme RT,RA (OE=0 Rc=0)
addme. RT,RA (OE=0 Rc=1)
addmeo RT,RA (OE=1 Rc=0)
addmeo. RT,RA (OE=1Rc=1)
31 RT RA 1 OE 234 Rc
0 6 11 16 21 |22 31

RT « (RA) + CA - 1
The sum (RA) + CA + %1 is placed into register RT.
Special Registers Altered:

CA
CRO (if Re=1)
SO ov (if OE=1)

RT ¢« -(RA) + (RB) + CA
The sum —=(RA) + (RB) + CA is placed into register RT.

Special Registers Altered:

CA
CRO (if Re=1)
soov (if OE=1)

Subtract From Minus One Extended

XO-form
subfme RT,RA (OE=0 Rc=0)
subfme. RT,RA (OE=0 Rc=1)
subfmeo RT,RA (OE=1 Rc=0)
subfmeo. RT,RA (OE=1 Rc=1)

31 RT RA i OE 232 Rc
0 6 11 16 21 |22 31

RT ¢ -(RA) + CA - 1
The sum =(RA) + CA + %1 is placed into register RT.

Special Registers Altered:

CA
CRO (if Re=1)
sSo oV (if OE=1)

Chapter 3. Fixed-Point Processor 65

Version 2.05

Add to Zero Extended XO-form Subtract From Zero Extended XO-form
addze RT,RA (OE=0 Rc=0) subfze RT,RA (OE=0 Rc=0)
addze. RT,RA (OE=0 Rc=1) subfze. RT,RA (OE=0 Rc=1)
addzeo RT,RA (OE=1 Rc=0) subfzeo RT,RA (OE=1 Rc=0)
addzeo. RT,RA (OE=1 Rc=1) subfzeo. RT,RA (OE=1 Rc=1)
31 RT RA il JOE] 202 [Rc 31 RT RA /I TOE] 200 [Rc
0 6 11 16 21 |22 31 (6] 6 11 16 21 22 31

RT < (RA) + CA
The sum (RA) + CA is placed into register RT.
Special Registers Altered:

CA
CRO (if Re=1)
SO ov (if OE=1)

RT ¢« - (RA) + CA
The sum —=(RA) + CA is placed into register RT.

Special Registers Altered:

CA
CRO (if Re=1)
soov (if OE=1)

—— Programming Note

The setting of CA by the Add and Subtract From
instructions, including the Extended versions
thereof, is mode-dependent. If a sequence of
these instructions is used to perform extended-pre-
cision addition or subtraction, the same mode
should be used throughout the sequence.

Negate XO-form
neg RT,RA (OE=0 Rc=0)
neg. RT,RA (OE=0 Rc=1)
nego RT,RA (OE=1 Rc=0)
nego. RT,RA (OE=1 Rc=1)
31 RT RA /Il |OE| 104 |Rc
o 6 11 16 21 |22 31

RT ¢ - (RA) + 1
The sum =(RA) + 1 is placed into register RT.

If the processor is in 64-bit mode and register RA con-
tains the most negative 64-bit number (0x8000
0000_0000_0000), the result is the most negative num-
ber and, if OE=1, OV is set to 1. Similarly, if the pro-
cessor is in 32-bit mode and (RA)35.63 contain the most
negative 32-bit number (0x8000_0000), the low-order
32 bits of the result contain the most negative 32-bit
number and, if OE=1, OV is set to 1.

Special Registers Altered:
CRO (if Rc=1)
SO oV (if OE=1)

66 Power ISA™ |

Version 2.05

Multiply Low Immediate D-form
mulli RT,RA,SI

7 RT RA Sl
0 6 11 16 31

prodg,157 € (RA) X EXTS(SI)
RT € prodgs.127

The 64-bit first operand is (RA). The 64-bit second
operand is the sign-extended value of the Sl field. The
low-order 64 bits of the 128-bit product of the operands
are placed into register RT.

Both operands and the product are interpreted as
signed integers.

Special Registers Altered:
None

Multiply Low Word XO-form
mullw RT,RA,RB (OE=0 Rc=0)
mullw. RT,RA,RB (OE=0 Rc=1)
mullwo RT,RARB (OE=1 Rc=0)
mullwo. RT,RARB (OE=1 Rc=1)
31 RT RA RB [OE[235 [Rc
0 6 11 16 21 |22 31

RT €« (RA)32;63 X (RB)32:63

The 32-bit operands are the low-order 32 bits of RA
and of RB. The 64-bit product of the operands is
placed into register RT.

If OE=1 then OV is set to 1 if the product cannot be rep-
resented in 32 bits.

Both operands and the product are interpreted as
signed integers.

Special Registers Altered:
CRO (if Rc=1)
SO oV (if OE=1)

—— Programming Note

For mulli and mullw, the low-order 32 bits of the
product are the correct 32-bit product for 32-bit
mode.

For mulli and mulld, the low-order 64 bits of the
product are independent of whether the operands
are regarded as signed or unsigned 64-bit integers.
For mulli and mullw, the low-order 32 bits of the
product are independent of whether the operands
are regarded as signed or unsigned 32-bit integers.

Multiply High Word XO-form
mulhw RT,RA,RB (Rc=0)
mulhw. RT,RA,RB (Re=1)

31 RT RA RB / 75 Rc
0 6 11 16 21 [22 31
prodg.e3 € (RA)35.63 X (RB)33.63

RT35.63 € pProdg.s;
RTy.31 € undefined

The 32-bit operands are the low-order 32 bits of RA
and of RB. The high-order 32 bits of the 64-bit product

of the operands are placed into RT3,.63. The contents
of RTq.3; are undefined.

Both operands and the product are interpreted as
signed integers.

Special Registers Altered:
CRO (bits 0:2 undefined in 64-bit mode) (if Rc=1)

Multiply High Word Unsigned XO-form
mulhwu RT,RA,RB (Rc=0)
mulhwu. RT,RARB (Re=1)

31 RT RA RB |/ 11 Rc
0 6 11 16 21 22 31

prody.e3 € (RR)35.63 X (RB)33.63
RT35.63 € prodg.s;
RTy.31; € undefined

The 32-bit operands are the low-order 32 bits of RA
and of RB. The high-order 32 bits of the 64-bit product
of the operands are placed into RT3,.63. The contents
of RTy.3; are undefined.

Both operands and the product are interpreted as
unsigned integers, except that if Rc=1 the first three
bits of CR Field 0 are set by signed comparison of the
result to zero.

Special Registers Altered:

CRO (bits 0:2undefined in 64-bit mode) (if Rc=1)

Chapter 3. Fixed-Point Processor 67

Version 2.05

Divide Word XO-form Divide Word Unsigned XO-form
divw RT,RARB (OE=0 Rc=0) divwu RT,RA,RB (OE=0 Rc=0)
divw. RT,RA,RB (OE=0 Rc=1) divwu. RT,RA,RB (OE=0 Rc=1)
divwo RT,RA,RB (OE=1 Rc=0) divwuo RT,RA,RB (OE=1 Rc=0)
divwo. RT,RA,RB (OE=1 Rc=1) divwuo. RT,RA,RB (OE=1 Rc=1)
31 RT RA RB [OE[491 [Rc 31 RT RA RB [OE[459 [Rc
0 6 11 16 21 |22 31 0 6 11 16 21 (22 31
dividendy,¢; ¢ EXTS((RA)3p,¢3) dividendy.esy € 220 || (RA)az.¢3
divisory,e; € EXTS((RB)3,,e3) divisory.e3 € 20 || (RB)3,.63

RT3,.63 ¢ dividend + divisor
RTg.3; € undefined

The 64-bit dividend is the sign-extended value of
(RA)35.63. The 64-bit divisor is the sign-extended value
of (RB)3s.63. The 64-bit quotient is formed. The
low-order 32 bits of the 64-bit quotient are placed into
RT3,.63. The contents of RTp.3; are undefined. The
remainder is not supplied as a result.

Both operands and the quotient are interpreted as
signed integers. The quotient is the unique signed inte-
ger that satisfies

dividend = (quotient x divisor) + r

where 0 < r < |divisor| if the dividend is nonnegative,
and -|divisor| < r < 0 if the dividend is negative.

If an attempt is made to perform any of the divisions

0x8000_0000 + -1
<anything> + 0

then the contents of register RT are undefined as are
(if Rc=1) the contents of the LT, GT, and EQ bits of CR
Field 0. In these cases, if OE=1 then OV is set to 1.

Special Registers Altered:
CRO (bits 0:2 undefined in 64-bit mode) (if Rc=1)
SO oV (if OE=1)

— Programming Note

The 32-bit signed remainder of dividing (RA)3-63
by (RB)3,.63 can be computed as follows, except in
the case that (RA)32:63 = —231 and (RB)32:63 =-1.

divw RT,RA,RB # RT = quotient
mullw RT,RT,RB # RT = quotientxdivisor
subf RT,RT,RA # RT = remainder

RT3,.63 € dividend + divisor
RTg.37 € undefined

The 64-bit dividend is the zero-extended value of
(RA)35.63. The 64-bit divisor is the zero-extended value
of (RB)3p.3. The 64-bit quotient is formed. The
low-order 32 bits of the 64-bit quotient are placed into
RT3,.63. The contents of RTy.3; are undefined. The
remainder is not supplied as a result.

Both operands and the quotient are interpreted as
unsigned integers, except that if Rc=1 the first three
bits of CR Field 0 are set by signed comparison of the
result to zero. The quotient is the unique unsigned
integer that satisfies

dividend = (quotient x divisor) + r

where 0 <r < divisor.

If an attempt is made to perform the division

<anything> + 0

then the contents of register RT are undefined as are (if
Rc=1) the contents of the LT, GT, and EQ bits of CR
Field 0. In this case, if OE=1 then OV is set to 1.

Special Registers Altered:
CRO (bits 0:2 undefined in 64-bit mode) (if Rc=1)
SO oV (if OE=1)

—— Programming Note

The 32-bit unsigned remainder of dividing (RA)32.63
by (RB)3,.63 can be computed as follows.

divwu RT,RA,RB # RT = quotient
mullw RT,RT,RB # RT = quotientxdivisor
subf RT,RT,RA # RT = remainder

68 Power ISA™ |

Version 2.05

3.3.8.1 64-bit Fixed-Point Arithmetic Instructions [Category: 64-Bit]

Multiply Low Doubleword XO-form Multiply High Doubleword XO-form

mulld RT,RA,RB (OE=0 Rc=0) mulhd RT,RA,RB (Rc=0)

mulld. RT,RARB (OE=0 Rc=1) mulhd. RT,RA,RB (Re=1)

mulldo RT,RARB (OE=1 Rc=0)

mulldo. RT,RA,RB (OE=1 Rc=1) 31 RT RA RB [/ 73 Rc

0 6 11 16 21122 31

31 RT RA RB [OE[] 233 |[Rc

0 6 11 16 21 |22 31 prod0;127 < (RA) X (RB)

prody.q157 € (RA) X (RB)
RT € prodgs.i127

The 64-bit operands are (RA) and (RB). The low-order
64 bits of the 128-bit product of the operands are
placed into register RT.

If OE=1 then OV is set to 1 if the product cannot be rep-
resented in 64 bits.

Both operands and the product are interpreted as
signed integers.

Special Registers Altered:
CRO (if Rc=1)
SO oV (if OE=1)

Programming Note

The XO-form Multiply instructions may execute
faster on some implementations if RB contains the
operand having the smaller absolute value.

Multiply High Doubleword Unsigned

XO-form
mulhdu RT,RA,RB (Rc=0)
mulhdu. RT,RA,RB (Re=1)

31 RT RA RB |/ 9 Rc
0 6 11 16 21 22 31

prodg.,7 € (RA) X (RB)
RT ¢ prody. g3

The 64-bit operands are (RA) and (RB). The
high-order 64 bits of the 128-bit product of the oper-
ands are placed into register RT.

Both operands and the product are interpreted as
unsigned integers, except that if Rc=1 the first three
bits of CR Field 0 are set by signed comparison of the
result to zero.

Special Registers Altered:
CRO (if Rc=1)

RT ¢ prodg.e3

The 64-bit operands are (RA) and (RB). The
high-order 64 bits of the 128-bit product of the oper-
ands are placed into register RT.

Both operands and the product are interpreted as
signed integers.

Special Registers Altered:
CRO (if Rc=1)

Chapter 3. Fixed-Point Processor 69

Version 2.05

Divide Doubleword XO-form Divide Doubleword Unsigned XO-form
divd RT,RARB (OE=0 Rc=0) divdu RT,RA,RB (OE=0 Rc=0)
divd. RT,RA,RB (OE=0 Rc=1) divdu. RT,RA,RB (OE=0 Rc=1)
divdo RT,RA,RB (OE=1 Rc=0) divduo RT,RA,RB (OE=1 Rc=0)
divdo. RT,RARB (OE=1 Rc=1) divduo. RT,RA,RB (OE=1Rc=1)
31 RT RA RB [OE[489 [Rc 31 RT RA RB [OE[457 [Rc
0 6 11 16 21 |22 31 0 6 11 16 21 (22 31

dividendj.g3 ¢ (RA)
divisory,g; ¢ (RB)
RT ¢ dividend + divisor

The 64-bit dividend is (RA). The 64-bit divisor is (RB).
The 64-bit quotient of the dividend and divisor is placed
into register RT. The remainder is not supplied as a
result.

Both operands and the quotient are interpreted as
signed integers. The quotient is the unique signed inte-
ger that satisfies

dividend = (quotient x divisor) +r

where 0 < r < [divisor| if the dividend is nonnegative,
and -|divisor| < r < 0 if the dividend is negative.

If an attempt is made to perform any of the divisions

0x8000_0000_0000_0000 + -1
<anything> + 0

then the contents of register RT are undefined as are (if
Rc=1) the contents of the LT, GT, and EQ bits of CR
Field 0. In these cases, if OE=1 then OV is set to 1.

Special Registers Altered:
CRO (if Rc=1)
SO oV (if OE=1)

—— Programming Note

The 64-bit signed remainder of dividing (RA) by
(RB) can be computed as follows, except in the
case that (RA) = -2%% and (RB) = -1.

divd RT,RA,RB # RT = quotient
mulld RT,RT,RB # RT = quotientxdivisor
subf RT,RT,RA # RT = remainder

dividendy,g3 ¢ (RA)
divisory,g3 ¢ (RB)
RT ¢ dividend + divisor

The 64-bit dividend is (RA). The 64-bit divisor is (RB).
The 64-bit quotient of the dividend and divisor is placed
into register RT. The remainder is not supplied as a
result.

Both operands and the quotient are interpreted as
unsigned integers, except that if Rc=1 the first three
bits of CR Field 0 are set by signed comparison of the
result to zero. The quotient is the unique unsigned
integer that satisfies

dividend = (quotient x divisor) + r

where 0 <r < divisor.

If an attempt is made to perform the division

<anything> + 0

then the contents of register RT are undefined as are (if
Rc=1) the contents of the LT, GT, and EQ bits of CR
Field 0. In this case, if OE=1 then OV is set to 1.

Special Registers Altered:
CRO (if Rc=1)
SO oV (if OE=1)

—— Programming Note

The 64-bit unsigned remainder of dividing (RA) by
(RB) can be computed as follows.

divdu RT,RA,RB # RT = quotient
mulld RT,RT,RB # RT = quotientxdivisor
subf RT,RT,RA # RT = remainder

70 Power ISA™ |

Version 2.05

3.3.9 Fixed-Point Compare Instructions

The fixed-point Compare instructions compare the con-
tents of register RA with (1) the sign-extended value of
the Sl field, (2) the zero-extended value of the Ul field,
or (3) the contents of register RB. The comparison is
signed for cmpi and cmp, and unsigned for cmpli and
cmpl.

The L field controls whether the operands are treated
as 64-bit or 32-bit quantities, as follows:

L Operand length
0 32-bit operands
1 64-bit operands

L=1 is part of Category: 64-Bit.

When the operands are treated as 32-bit signed quanti-
ties, bit 32 of the register (RA or RB) is the sign bit.

The Compare instructions set one bit in the leftmost
three bits of the designated CR field to 1, and the other

two to 0. XERgg is copied to bit 3 of the designated CR
field.

The CR field is set as follows

Bit Name Description

0 LT (RA) < Sl or (RB) (signed comparison)
(RA) <" Ul or (RB) (unsigned comparison)

1 GT (RA)>Slor (RB) (signed comparison)
(RA) >" Ul or (RB) (unsigned comparison)

2 EQ (RA)=SI, Ul or (RB)

3 SO Summary Overflow from the XER

Extended mnemonics for compares

A set of extended mnemonics is provided so that com-
pares can be coded with the operand length as part of
the mnemonic rather than as a numeric operand. Some
of these are shown as examples with the Compare
instructions. See Appendix D for additional extended
mnemonics.

Compare Immediate D-form Compare X-form
cmpi BF,L,RA,SI cmp BF,L,RA,RB

1 BF [/[L] RA S 31 BF [/[L] RA RB 0 /
0 6 911011 16 31 0 6 9(10(11 16 21 31

if L = 0 then a ¢ EXTS((RA)35.¢3)
else a ¢« (RA)

if a < EXTS(SI) then ¢ < 0bl100
else if a > EXTS(SI) then ¢ ¢ 0b010
else c € 0b001

CRyxpr+32:4xer+35 € € || XERgg

The contents of register RA ((RA)3,-63 Sign-extended to
64 bits if L=0) are compared with the sign-extended
value of the Sl field, treating the operands as signed
integers. The result of the comparison is placed into CR
field BF.

Special Registers Altered:
CR field BF

Extended Mnemonics:

Examples of extended mnemonics for Compare Imme-
diate:

Extended: Equivalent to:
cmpdi Rxyvalue cmpi 0,1,Rx,value
cmpwi cr3,Rxyvalue cmpi 3,0,Rx\value

if L = 0 then a ¢ EXTS((RA)35.45)
b € EXTS((RB)35.63)
else a ¢ (RA)
b < (RB)
if a < b then ¢ € 0b100
else if a > b then ¢ ¢ 0b010
else c € 0b001

CRaxpr+32:4xer+35 € C || XERgo

The contents of register RA ((RA)35.63 if L=0) are com-
pared with the contents of register RB ((RB)3543 if
L=0), treating the operands as signed integers. The
result of the comparison is placed into CR field BF.

Special Registers Altered:
CR field BF

Extended Mnemonics:

Examples of extended mnemonics for Compare:

Extended: Equivalent to:
cmpd Rx,Ry cmp 0,1,Rx,Ry
cmpw cr3,Rx,Ry cmp 3,0,Rx,Ry

Chapter 3. Fixed-Point Processor 71

Version 2.05

Compare Logical Immediate D-form Compare Logical X-form
cmpli BF,L,RA,UI cmpl BF,L,RA,RB
10 BF |/|L| RA ul 31 BF |/|{L| RA RB 32 /
0 6 9|10]1 16 31 0 6 0 [10 |1 16 21 31
if L = 0 then a « 320 || (RA)3,.43 if L= 0 then a « 20 || (RA)35.63
else a « (RA) b « 320 || (RB)35,¢3
if a <* (*8 || UI) then ¢ ¢ 0b100 else a € (RA)
else if a >% (*®0 || UI) then ¢ €« 0b010 b « (RB)
else ¢ € 0b001 if a <" b then ¢ ¢ 0b100
CRaxprs+32:axpre3s < C || XERgq else if a >" b then ¢ ¢ 0b010
The contents of register RA ((RA) zero-extended else ¢ tbool
9 32:63 CRyxpr+32:axBF+35 < C || XERgo

to 64 bits if L=0) are compared with *%0 || UI, treating
the operands as unsigned integers. The result of the
comparison is placed into CR field BF.

Special Registers Altered:
CR field BF

Extended Mnemonics:

Examples of extended mnemonics for Compare Logi-
cal Immediate:

Extended: Equivalent to:
cmpldi Rx,value cmpli 0,1,Rx,value
cmplwi cr3,Rxyvalue cmpli 3,0,Rx,value

The contents of register RA ((RA)35.63 if L=0) are com-
pared with the contents of register RB ((RB)3543 if
L=0), treating the operands as unsigned integers. The
result of the comparison is placed into CR field BF.

Special Registers Altered:
CR field BF

Extended Mnemonics:

Examples of extended mnemonics for Compare Logi-
cal:

Extended: Equivalent to:
cmpld Rx,Ry cmpl 0,1,Rx,Ry
cmplw cr3,Rx,Ry cmpl 3,0,Rx,Ry

72 Power ISA™ |

Version 2.05

3.3.10 Fixed-Point Trap Instructions

The Trap instructions are provided to test for a speci-
fied set of conditions. If any of the conditions tested by
a Trap instruction are met, the system trap handler is
invoked. If none of the tested conditions are met,
instruction execution continues normally.

The contents of register RA are compared with either
the sign-extended value of the Sl field or the contents
of register RB, depending on the Trap instruction. For
tdi and td, the entire contents of RA (and RB) partici-
pate in the comparison; for twi and tw, only the con-
tents of the low-order 32 bits of RA (and RB) participate
in the comparison.

This comparison results in five conditions which are
ANDed with TO. If the result is not 0 the system trap
handler is invoked. These conditions are as follows.

TO Bit ANDed with Condition

Less Than, using signed comparison
Greater Than, using signed comparison
Equal

Less Than, using unsigned comparison
Greater Than, using unsigned comparison

A WNPFO

Extended mnemonics for traps

A set of extended mnemonics is provided so that traps
can be coded with the condition as part of the mne-
monic rather than as a numeric operand. Some of
these are shown as examples with the Trap instruc-
tions. See Appendix D for additional extended mne-
monics.

Trap Word Immediate D-form Trap Word X-form
twi TO,RA,SI tw TO,RA,RB

3 TO RA Sl 31 TO RA RB 4 /
0 6 11 16 31 0 6 11 16 21 31

a € EXTS((RA)35.63

)
if (a < EXTS(SI)) & TO, then TRAP
if (a > EXTS(SI)) & TO; then TRAP
if (a = EXTS(SI)) & TO, then TRAP
if (a <" EXTS(SI)) & TO; then TRAP
if (a >" EXTS(SI)) & TO, then TRAP

The contents of RAgz,e3 are compared with the
sign-extended value of the Sl field. If any bit in the TO
field is set to 1 and its corresponding condition is met
by the result of the comparison, the system trap han-
dler is invoked.

If the trap conditions are met, this instruction is context
synchronizing (see Book IlI).

Special Registers Altered:
None

Extended Mnemonics:

Examples of extended mnemonics for Trap Word
Immediate:

Extended: Equivalent to:
twgti Rx,value twi 8,Rx,value
twllei Rx,yvalue twi 6,Rxvalue

a € EXTS((RA)35.43)
b ¢ EXTS((RB)3,.65)

if (a < b) & TO, then TRAP
if (a > b) & TO; then TRAP
if (a = b) & TO, then TRAP
if (a <" b) & TO; then TRAP
if (a >" b) & TO, then TRAP

The contents of RA3,.43 are compared with the con-
tents of RB3,.63. If any bit in the TO field is set to 1 and
its corresponding condition is met by the result of the
comparison, the system trap handler is invoked.

If the trap conditions are met, this instruction is context
synchronizing (see Book Il1).

Special Registers Altered:
None

Extended Mnemonics:

Examples of extended mnemonics for Trap Word:

Extended: Equivalent to:
tweq Rx,Ry tw 4,Rx,Ry
twige Rx,Ry tw 5,Rx,Ry
trap tw 31,0,0

Chapter 3. Fixed-Point Processor 73

Version 2.05

3.3.10.1 64-bit Fixed-Point Trap Instructions [Category: 64-Bit]

Trap Doubleword Immediate D-form
tai TO,RASI Trap Doubleword X-form
2 TO RA Sl td TO,RA,RB
0 6 11 16 31
31 TO RA RB 68 /

a < (Ra) 0 6 11 16 21 31
b « EXTS(SI)
if (a < b) & TO, then TRAP
if (a > b) & TO, then TRAP a < (RA)
if (a = b) & TO, then TRAP b « (RB)
if (a <" b) & TO; then TRAP if (a < b) & TOy then TRAP
if (a >" b) & TO, then TRAP if (a > b) & TO, then TRAP

if (a = b) & TO, then TRAP
The contents of register RA are compared with the if (a <" b) & TO; then TRAP
sign-extended value of the Sl field. If any bit in the TO if (a > b) & TO, then TRAP

field is set to 1 and its corresponding condition is met
by the result of the comparison, the system trap han-
dler is invoked.

The contents of register RA are compared with the con-
tents of register RB. If any bit in the TO field is setto 1
and its corresponding condition is met by the result of
If the trap conditions are met, this instruction is context the comparison, the system trap handler is invoked.

synchronizing (see Book IIl). If the trap conditions are met, this instruction is context

Special Registers Altered: synchronizing (see Book Il1).
None Special Registers Altered:

Extended Mnemonics: None

Examples of extended mnemonics for Trap Double- Extended Mnemonics:

word Immediate: Examples of extended mnemonics for Trap Double-

Extended: Equivalent to: word:
tdlti Rx,value tdi 16,Rx,value -
. ’ . T Extended: Equivalent to:
tdnei Rx,value tdi 24,Rxvalue tdge RX,RY td 12,RX,Ry
tdinl Rx,Ry td 5,Rx,Ry

3.3.11 Fixed-Point Select [Category: Phased-In (sV2.06)]

Integer Select A-form
isel RT,RA,RB,BC

31 RT RA | RB BC 15 [/
(0] 6 11 16 21 26 31

if RA=0 then a €0 else a ¢« (RA)
if CRpe,3p=1 then RT € a
else RT < (RB)

If the contents of bit BC+32 of the Condition Register
are equal to 1, then the contents of register RA (or 0)
are placed into register RT. Otherwise, the contents of
register RB are placed into register RT.

Special Registers Altered:
None

74 Power ISA™ |

Version 2.05

3.3.12 Fixed-Point Logical Instructions

The Logical instructions perform bit-parallel operations
on 64-bit operands.

The X-form Logical instructions with Rc=1, and the
D-form Logical instructions andi. and andis., set the
first three bits of CR Field 0 as described in
Section 3.3.7, “Other Fixed-Point Instructions” on
page 61. The Logical instructions do not change the
SO, OV, and CA bits in the XER.

Extended mnemonics for logical oper-
ations

Extended mnemonics are provided that generate two
different types of "no-ops" (instructions that do noth-
ing). The first type is the preferred form, which is opti-
mized to minimize its use of the processor's execution

resources. This form is based on the OR Immediate
instruction. The second type is the executed form,
which is intended to consume the same amount of the
processor's execution resources as if it were not a
no-op. This form is based on the XOR Immediate
instruction. (There are also no-ops which affect pro-
gram priority, for which extended mnemonics have not
been assigned.)

Extended mnemonics are provided that use the OR
and NOR instructions to copy the contents of one regis-
ter to another, with and without complementing. These
are shown as examples with the two instructions.

See Appendix D, “Assembler Extended Mnemonics” on
page 383 for additional extended mnemonics.

AND Immediate D-form OR Immediate D-form
andi. RA,RS,Ul ori RA,RS,Ul

28 RS RA ul 24 RS RA ul
0 6 11 16 31 (6] 6 11 16 31
RA € (RS) & (*®0 || UI) RA €« (RS) | (*fo || UD)

The contents of register RS are ANDed with #80 || Ul
and the result is placed into register RA.

Special Registers Altered:

CRO
AND Immediate Shifted D-form
andis. RA,RS,Ul
29 RS RA ul
0 6 11 16 31

RA € (RS) & (*%0 || UI || *f0)

The contents of register RS are ANDed with
320 || U1 || *%0 and the result is placed into register RA.

Special Registers Altered:
CRO

The contents of register RS are ORed with *80 || Ul and
the result is placed into register RA.

The preferred “no-op” (an instruction that does nothing)
is:

ori 0,0,0

Special Registers Altered:
None

Extended Mnemonics:

Example of extended mnemonics for OR Immediate:

Extended: Equivalent to:
no-op ori 0,0,0

Chapter 3. Fixed-Point Processor 75

Version 2.05

OR Immediate Shifted D-form
oris RA,RS,Ul

25 RS RA ul
0 6 11 16 31
RA < (RS) | (*%0 || UT || *®0)

The contents of register RS are ORed with
320 || U1 || *%0 and the result is placed into register RA.

Special Registers Altered:
None

XOR Immediate D-form XOR Immediate Shifted D-form
XOri RA,RS,UI XOris RA,RS,Ul

26 RS RA Ul 27 RS RA ul
0 6 11 16 31 (6] 6 11 16 31

RA « (RS) XOR (“80 || UI)

The contents of register RS are XORed with “80 || Ul
and the result is placed into register RA.

The executed form of a “no-op” (an instruction that
does nothing, but consumes execution resources nev-
ertheless) is:

xori 0,0,0

Special Registers Altered:
None

Extended Mnemonics:

Example of extended mnemonics for XOR Immediate:

Extended: Equivalent to:
Xnop Xori 0,0,0

Programming Note

The executed form of no-op should be used only
when the intent is to alter the timing of a program.

RA € (RS) XOR (*%0 || UI || *f0)

The contents of register RS are XORed with
320 || UI|| *60 and the result is placed into register RA.

Special Registers Altered:
None

76 Power ISA™ |

Version 2.05

AND X-form OR X-form
and RA,RS,RB (Rc=0) or RA,RS,RB (Rc=0)
and. RA,RS,RB (Rc=1) or. RA,RS,RB (Rc=1)

31 RS RA RB 28 Rc 31 RS RA RB 444 Rc
0 6 11 16 21 31 (6] 6 11 16 21 31
RA ¢« (RS) & (RB) RA ¢ (RS) | (RB)

The contents of register RS are ANDed with the con-
tents of register RB and the result is placed into register
RA.

Special Registers Altered:

The contents of register RS are ORed with the contents
of register RB and the result is placed into register RA.

For implementations that support the PPR (see Section
3.2.3), or Rx,Rx,Rx can be used to set PPRpg, as
shown in Figure 45. or. Rx,Rx,Rx does not set PPRpg;.

Rx PPRpR, | Priority

1 010 low

6 011 medium low

2 100 medium (normal)

CRO (if Rc=1)
XOR X-form
xor RA,RS,RB (Rc=0)
Xor. RA,RS,RB (Rc=1)

31 RS RA RB 316 Rc
0 6 11 16 21 31

RA < (RS) @ (RB)

The contents of register RS are XORed with the con-
tents of register RB and the result is placed into register
RA.

Special Registers Altered:

Figure 45. Priority levels for or Rx,Rx,Rx

Special Registers Altered:
CRO (if Rc=1)

Extended Mnemonics:

Example of extended mnemonics for OR:

Extended:
mr Rx,Ry or

Equivalent to:
Rx,Ry,Ry

— Programming Note

Warning: Other forms of or Rx,Rx,Rx that are not
described in Figure 45 may also cause program
priority to change. Use of these forms should be
avoided except when software explicitly intends to
alter program priority. If a no-op is needed, the pre-
ferred no-op (ori 0,0,0) should be used.

CRO (if Rc=1)
NAND X-form
nand RA,RS,RB (Rc=0)
nand. RA,RS,RB (Rec=1)

31 RS RA RB 476 Rc
0 6 11 16 21 31

RA ¢ = ((RS) & (RB))

The contents of register RS are ANDed with the con-
tents of register RB and the complemented result is
placed into register RA.

Special Registers Altered:
CRO (if Rc=1)

Programming Note

nand or nor with RS=RB can be used to obtain the
one’s complement.

Chapter 3. Fixed-Point Processor 77

Version 2.05

NOR X-form Equivalent X-form

nor RA,RS,RB (Rc=0) eqv RA,RS,RB (Rc=0)

nor. RA,RS,RB (Rec=1) eqv. RA,RS,RB (Rc=1)
31 RS RA RB 124 Rc 31 RS RA RB 284 Rc

0 6 11 16 21 31 0 6 11 16 21 31
RA < 7 ((RS) | (RB)) RA ¢ (RS) = (RB)

The contents of register RS are ORed with the contents
of register RB and the complemented result is placed
into register RA.

Special Registers Altered:
CRO (if Rc=1)

Extended Mnemonics:

Example of extended mnemonics for NOR:

The contents of register RS are XORed with the con-
tents of register RB and the complemented result is
placed into register RA.

Special Registers Altered:
CRO (if Rc=1)

Extended: Equivalent to:

not Rx,Ry nor Rx,Ry,Ry
AND with Complement X-form OR with Complement X-form
andc RA,RS,RB (Rc=0) orc RA,RS,RB (Rc=0)
andc. RA,RS,RB (Rc=1) orc. RA,RS,RB (Rc=1)

31 RS RA RB 60 Rc 31 RS RA RB 412 Rc
o 6 11 16 21 31 0 6 11 16 21 31

RA &« (RS) & —1(RB)

The contents of register RS are ANDed with the com-
plement of the contents of register RB and the result is
placed into register RA.

Special Registers Altered:
CRO (if Rc=1)

RA ¢ (RS) | - (RB)

The contents of register RS are ORed with the comple-
ment of the contents of register RB and the result is
placed into register RA.

Special Registers Altered:
CRO (if Rc=1)

78 Power ISA™ |

Version 2.05

Extend Sign Byte X-form Extend Sign Halfword X-form
extsb RA,RS (Rc=0) extsh RA,RS (Rc=0)
extsb. RA,RS (Rc=1) extsh. RA,RS (Rc=1)

31 RS RA 1 954 Rc 31 RS RA " 922 Rc
0 6 11 16 21 31 0 6 11 16 21 31
s € (RS)s¢ s € (RS),g

(RS)s6:63 are placed into RAgg.63- RAg:55 are filled with
a copy of (RS)se.

Special Registers Altered:

(RS)4g:63 are placed into RA4g.63- RAq:47 are filled with
a copy of (RS)g.

Special Registers Altered:

CRO (if Re=1)
Compare Bytes X-form
cmpb RA,RS,RB

31 RS RA RB 508 /
0 6 11 16 21 31]

CRO (if Rc=1)
Count Leading Zeros Word X-form
cntlzw RA,RS (Rc=0)
cntlzw. RARS (Rc=1)

31 RS RA n 26 Rc
0 6 11 16 21 31
n € 32

do while n < 64
if (RS), = 1 then leave
ne<n+1l

RA € n - 32

A count of the number of consecutive zero bits starting
at bit 32 of register RS is placed into register RA. This
number ranges from 0 to 32, inclusive.

If Rc=1, CR Field 0 is set to reflect the result.

Special Registers Altered:
CRO (if Rc=1)

Programming Note

For both Count Leading Zeros instructions, if Rc=1
then LT is set to 0 in CR Field 0.

don=20¢to?7
if RSgxn:gxns7 = (BRB)BXH:SXH+7 then

RABXn :8Xn+7 <1
else

8
RAgun.gxns7 € 0

Each byte of the contents of register RS is compared to
each corresponding byte of the contents in register RB.
If they are equal, the corresponding byte in RA is set to
OxFF. Otherwise the corresponding byte in RA is set to
0x00.

Special Registers Altered:
None

Chapter 3. Fixed-Point Processor 79

Version 2.05

Parity Doubleword X-form
prtyd RA,RS
[Category: 64-bit]

31 RS RA i 186 /
0 6 11 16 21 31

s €0
doi=0to?7

s € 5@ (RS)ixgr
RA « %30 || s

The least significant bit in each byte of the contents of
register RS is examined. If there is an odd number of

one bits the value 1 is placed into register RA; other-
wise the value 0 is placed into register RA.

Special Registers Altered:
None

Parity Word X-form

prtyw RA,RS

31 RS RA i 154 /

The least significant bit in each byte of (RS)g.31 is
examined. If there is an odd number of one bits the
value 1 is placed into RAq.3;; otherwise the value 0 is
placed into RA(.31. The least significant bit in each byte
of (RS)32.63 is examined. If there is an odd number of
one bits the value 1 is placed into RA35.¢3; Otherwise
the value 0 is placed into RAz5.43.

Special Registers Altered:
None

—— Programming Note

The Parity instructions are designed to be used in
conjunction with the Population Count instruction to
compute the parity of words or a doubleword. The
parity of the upper and lower words in (RS) can be
computed as follows.

popcntb RA, RS

prtyw RA, RA

The parity of (RS) can be computed as follows.
popcntb RA, RS
prtyd RA, RA

80 Power ISA™ |

Version 2.05

3.3.12.1 64-bit Fixed-Point Logical
Instructions [Category: 64-Bit]

Extend Sign Word X-form
extsw RARS (Rc=0)
extsw. RA,RS (Rc=1)

31 RS RA 1 986 Rc
0 6 11 16 21 31
s € (RS)3,

RA35.63 “3;R5)32:63
RAg.31 € 778

(RS)30.63 are placed into RAz.63- RAg:31 are filled with
a copy of (RS)3o.

Special Registers Altered:
CRO (if Rc=1)

Count Leading Zeros Doubleword X-form

cntlzd RA,RS (Rc=0)
cntlzd. RA,RS (Rc=1)

31 RS RA " 58 Rc
o 6 11 16 21 31
n<o

do while n < 64
if (RS), = 1 then leave
ne<n+l

RA € n

A count of the number of consecutive zero bits starting
at bit O of register RS is placed into register RA. This
number ranges from 0 to 64, inclusive.

If Rc=1, CR Field 0 is set to reflect the result.

Special Registers Altered:
CRO (if Rc=1)

3.3.12.2 Phased-In Fixed-Point Logical
Instructions [Category: Phased-In
(sVv2.05)]

Population Count Bytes X-form
popcntb RA, RS

31 RS RA i 122 /
0 6 11 16 21 31

doi=0to7
n<o
doj=0¢to7
if (RS)(iX8}+j = 1 then
n € n+l

RA(ixg): (ixg)+7 € 1

A count of the number of one bits in each byte of regis-
ter RS is placed into the corresponding byte of register
RA. This number ranges from 0 to 8, inclusive.

Special Registers Altered:
None

—— Programming Note

The total number of one bits in register RS can be
computed as follows. In this example it is assumed
that register RB contains the value
0x0101_0101_0101_0101

popcntb RA,RS
mulld RT,RA,RB

srdi RT,RT, 56 # RT = population count

Chapter 3. Fixed-Point Processor 81

Version 2.05

3.3.13 Fixed-Point Rotate and Shift Instructions

The Fixed-Point Processor performs rotation opera-
tions on data from a GPR and returns the result, or a
portion of the result, to a GPR.

The rotation operations rotate a 64-bit quantity left by a
specified number of bit positions. Bits that exit from
position 0 enter at position 63.

Two types of rotation operation are supported.

For the first type, denoted rotateg, or ROTLg,, the value
rotated is the given 64-bit value. The rotateg, operation
is used to rotate a given 64-bit quantity.

For the second type, denoted rotatez, or ROTL3,, the
value rotated consists of two copies of bits 32:63 of the
given 64-bit value, one copy in bits 0:31 and the other
in bits 32:63. The rotate, operation is used to rotate a
given 32-bit quantity.

The Rotate and Shift instructions employ a mask gen-
erator. The mask is 64 bits long, and consists of 1-bits
from a start bit, mstart, through and including a stop bit,
mstop, and 0-bits elsewhere. The values of mstart and
mstop range from 0 to 63. If mstart > mstop, the 1-bits
wrap around from position 63 to position 0. Thus the
mask is formed as follows:

if mstart < mstop then

maSkmstart:mstop = ones

mask,11 other bits = Z€r0S
else

maskngrare:63 = OneS
masky.pseop = ONES

maska11 other bits = Z€r0S

There is no way to specify an all-zero mask.

For instructions that use the rotates, operation, the
mask start and stop positions are always in the
low-order 32 bits of the mask.

The use of the mask is described in following sections.

The Rotate and Shift instructions with Rc=1 set the first
three bits of CR field 0 as described in Section 3.3.7,
“Other Fixed-Point Instructions” on page 61. Rotate
and Shift instructions do not change the OV and SO
bits. Rotate and Shift instructions, except algebraic
right shifts, do not change the CA bit.

Extended mnemonics for rotates and
shifts

The Rotate and Shift instructions, while powerful, can
be complicated to code (they have up to five operands).
A set of extended mnemonics is provided that allow
simpler coding of often-used functions such as clearing
the leftmost or rightmost bits of a register, left justifying
or right justifying an arbitrary field, and performing sim-
ple rotates and shifts. Some of these are shown as
examples with the Rotate instructions. See
Appendix D, “Assembler Extended Mnemonics” on
page 383 for additional extended mnemonics.

3.3.13.1 Fixed-Point Rotate Instructions

These instructions rotate the contents of a register.
The result of the rotation is

B inserted into the target register under control of a
mask (if a mask bit is 1 the associated bit of the
rotated data is placed into the target register, and if
the mask bit is 0 the associated bit in the target
register remains unchanged); or

B ANDed with a mask before being placed into the
target register.

The Rotate Left instructions allow right-rotation of the
contents of a register to be performed (in concept) by a
left-rotation of 64-n, where n is the number of bits by
which to rotate right. They allow right-rotation of the
contents of the low-order 32 bits of a register to be per-
formed (in concept) by a left-rotation of 32-n, where n
is the number of bits by which to rotate right.

Rotate Left Word Immediate then AND

with Mask M-form
rlwinm RA,RS,SH,MB,ME (Rc=0)
rlwinm. RA,RS,SH,MB,ME (Rc=1)

21 RS RA SH MB ME |Rc
0 6 11 16 21 26 31
n < SH

T € ROTLy, ((RS)35.63, 1)
m « MASK(MB+32, ME+32)
RA€ré&m

The contents of register RS are rotateds, left SH bits.
A mask is generated having 1-bits from bit MB+32
through bit ME+32 and 0-bits elsewhere. The rotated
data are ANDed with the generated mask and the
result is placed into register RA.

Special Registers Altered:
CRO (if Rc=1)

82 Power ISA™ |

Version 2.05

Extended Mnemonics:

Examples of extended mnemonics for Rotate Left Word

Immediate then AND with Mask:

Extended: Equivalent to:

extiwi Rx,Ry,n,b riwinm Rx,Ry,b,0,n-1
Srwi Rx,Ry,n riwinm Rx,Ry,32-n,n,31
clrrwi - Rx,Ry,n riwvinm Rx,Ry,0,0,31-n

—— Programming Note

Let RSL represent the low-order 32 bits of register
RS, with the bits numbered from 0 through 31.

rlwinm can be used to extract an n-bit field that
starts at bit position b in RSL, right-justified into the
low-order 32 bits of register RA (clearing the
remaining 32-n bits of the low-order 32 bits of RA),
by setting SH=b+n, MB=32-n, and ME=31. It can
be used to extract an n-bit field that starts at bit
position b in RSL, left-justified into the low-order 32
bits of register RA (clearing the remaining 32-n bits
of the low-order 32 bits of RA), by setting SH=b,
MB = 0, and ME=n-1. It can be used to rotate the
contents of the low-order 32 bits of a register left
(right) by n bits, by setting SH=n (32-n), MB=0, and
ME=31. It can be used to shift the contents of the
low-order 32 bits of a register right by n bits, by set-
ting SH=32-n, MB=n, and ME=31. It can be used
to clear the high-order b bits of the low-order 32 bits
of the contents of a register and then shift the result
left by n bits, by setting SH=n, MB=b-n, and
ME=31-n. It can be used to clear the low-order n
bits of the low-order 32 bits of a register, by setting
SH=0, MB=0, and ME=31-n.

For all the uses given above, the high-order 32 bits
of register RA are cleared.

Extended mnemonics are provided for all of these
uses; see Appendix D, “Assembler Extended Mne-
monics” on page 383.

Rotate Left Word then AND with Mask

M-form
rlwnm RA,RS,RB,MB,ME (Rc=0)
rlwnm. RA,RS,RB,MB,ME (Rc=1)

23 RS RA RB MB ME |Rc
0 6 11 16 21 26 31

n € (RB)sg.63

r € ROTL,, ((RS)35.¢5, 1)
m ¢ MASK(MB+32, ME+32)
RA € r &m

The contents of register RS are rotateds, left the num-
ber of bits specified by (RB)5g.63. A mask is generated
having 1-bits from bit MB+32 through bit ME+32 and
0-bits elsewhere. The rotated data are ANDed with the
generated mask and the result is placed into register
RA.

Special Registers Altered:
CRO (if Rc=1)

Extended Mnemonics:

Example of extended mnemonics for Rotate Left Word
then AND with Mask:

Extended: Equivalent to:
rotlw Rx,Ry,Rz rivnm Rx,Ry,Rz,0,31

—— Programming Note

Let RSL represent the low-order 32 bits of register
RS, with the bits numbered from 0 through 31.

rlwnm can be used to extract an n-bit field that
starts at variable bit position b in RSL, right-justified
into the low-order 32 bhits of register RA (clearing
the remaining 32-n bits of the low-order 32 bits of
RA), by setting RBgg.g3=b+n, MB=32-n, and
ME=31. It can be used to extract an n-bit field that
starts at variable bit position b in RSL, left-justified
into the low-order 32 bhits of register RA (clearing
the remaining 32-n bits of the low-order 32 bits of
RA), by setting RBgg.63=b, MB = 0, and ME=n-1. It
can be used to rotate the contents of the low-order
32 bits of a register left (right) by variable n bits, by
setting RBsg.3=n (32-n), MB=0, and ME=31.

For all the uses given above, the high-order 32 bits
of register RA are cleared.

Extended mnemonics are provided for some of
these uses; see Appendix D, “Assembler Extended
Mnemonics” on page 383.

Chapter 3. Fixed-Point Processor 83

Version 2.05

Rotate Left Word Immediate then Mask

Insert M-form
riwimi RA,RS,SH,MB,ME (Rc=0)
riwimi. RA,RS,SH,MB,ME (Re=1)

20 RS RA SH MB ME |Rc
0 6 11 16 21 26 31
n € SH

r € ROTLs, ((RS)35,¢3, 1)
m ¢ MASK(MB+32, ME+32)
RA €« r&m | (RA)&m

The contents of register RS are rotateds, left SH bits.
A mask is generated having 1-bits from bit MB+32
through bit ME+32 and 0-bits elsewhere. The rotated
data are inserted into register RA under control of the
generated mask.

Special Registers Altered:
CRO (if Rc=1)

Extended Mnemonics:

Example of extended mnemonics for Rotate Left Word
Immediate then Mask Insert:

Extended: Equivalent to:
inslwi Rx,Ry,n,b rlwimi Rx,Ry,32-b,b,b+n-1

—— Programming Note

Let RAL represent the low-order 32 bits of register
RA, with the bits numbered from 0 through 31.

rlwimi can be used to insert an n-bit field that is
left-justified in the low-order 32 bits of register RS,
into RAL starting at bit position b, by setting
SH=32-b, MB=b, and ME=(b+n)-1. It can be used
to insert an n-bit field that is right-justified in the
low-order 32 bits of register RS, into RAL starting at
bit position b, by setting SH=32-(b+n), MB=b, and
ME=(b+n)-1.

Extended mnemonics are provided for both of
these uses; see Appendix D, “Assembler Extended
Mnemonics” on page 383.

84 Power ISA™ |

Version 2.05

3.3.13.1.1 64-bit Fixed-Point Rotate Instructions [Category: 64-Bit]

Rotate Left Doubleword Immediate then

Rotate Left Doubleword Immediate then

Clear Left MD-form Clear Right MD-form

ridicl RA,RS,SH,MB (Rc=0) ridicr RA,RS,SH,ME (Rc=0)

ridicl. RA,RS,SH,MB (Re=1) ridicr. RA,RS,SH,ME (Re=1)
30 RS RA sh mb 0 |sh|Rc 30 RS RA sh me 1 (sh|Rc

o 6 11 16 21 27 3031 o 6 11 16 21 27 3031

n € shg || shg.y n € shg || shy.y

r ¢« ROTLg, ((RS), n) r € ROTLg, ((RS), n)

b « mbg || mby,4 e € meg | MEo.q

m € MASK(b, 63) m € MASK(0, e)

RA€r&m RA€ré&m

The contents of register RS are rotatedg, left SH bits.
A mask is generated having 1-bits from bit MB through
bit 63 and 0-bits elsewhere. The rotated data are
ANDed with the generated mask and the result is
placed into register RA.

Special Registers Altered:
CRO (if Rc=1)

Extended Mnemonics:

Examples of extended mnemonics for Rotate Left Dou-
bleword Immediate then Clear Left:

Extended: Equivalent to:

extrdi Rx,Ry,n,b ridicl Rx,Ry,b+n,64-n
srdi Rx,Ry,n ridicl Rx,Ry,64-n,n
clrldi Rx,Ry,n ridicl Rx,Ry,0,n

— Programming Note

rldicl can be used to extract an n-bit field that starts
at bit position b in register RS, right-justified into
register RA (clearing the remaining 64-n bits of
RA), by setting SH=b+n and MB=64-n. It can be
used to rotate the contents of a register left (right)
by n bits, by setting SH=n (64-n) and MB=0. It can
be used to shift the contents of a register right by n
bits, by setting SH=64-n and MB=n. It can be used
to clear the high-order n bits of a register, by setting
SH=0 and MB=n.

Extended mnemonics are provided for all of these
uses; see Appendix D, “Assembler Extended Mne-
monics” on page 383.

The contents of register RS are rotatedg, left SH bits.
A mask is generated having 1-bits from bit O through bit
ME and 0-bits elsewhere. The rotated data are ANDed
with the generated mask and the result is placed into
register RA.

Special Registers Altered:
CRO (if Rc=1)

Extended Mnemonics:

Examples of extended mnemonics for Rotate Left Dou-
bleword Immediate then Clear Right:

Extended: Equivalent to:

extldi Rx,Ry,n,b ridicr Rx,Ry,b,n-1
sldi Rx,Ry,n ridicr Rx,Ry,n,63-n
clrrdi - Rx,Ry,n ridicr Rx,Ry,0,63-n

— Programming Note

ridicr can be used to extract an n-bit field that
starts at bit position b in register RS, left-justified
into register RA (clearing the remaining 64-n bits
of RA), by setting SH=b and ME=n-1. It can be
used to rotate the contents of a register left (right)
by n bits, by setting SH=n (64-n) and ME=63. It
can be used to shift the contents of a register left by
n bits, by setting SH=n and ME=63-n. It can be
used to clear the low-order n bits of a register, by
setting SH=0 and ME=63-n.

Extended mnemonics are provided for all of these
uses (some devolve to rldicl); see Appendix D,
“Assembler Extended Mnemonics” on page 383.

Chapter 3. Fixed-Point Processor 85

Version 2.05

Rotate Left Doubleword Immediate then

Rotate Left Doubleword then Clear Left

Clear MD-form MDS-form

ridic RA,RS,SH,MB (Rc=0) ridcl RA,RS,RB,MB (Rc=0)

ridic. RA,RS,SH,MB (Rc=1) ridcl. RA,RS,RB,MB (Rc=1)
30 RS RA sh mb 2 |sh|Rc 30 RS RA RB mb 8 |Rc

o 6 11 16 21 27 |30(31 0 6 11 16 21 27 31

n € shg || shg.y n < (RB)sg.63

r € ROTLg, ((RS), n) r € ROTLg, ((RS), n)

b « mbg || mby,4 b € mog || mbg,y

m ¢ MASK(b, —n) m < MASK(b, 63)

RA€r&m RA€r&m

The contents of register RS are rotatedg, left SH bits.
A mask is generated having 1-bits from bit MB through
bit 63-SH and 0-bits elsewhere. The rotated data are
ANDed with the generated mask and the result is
placed into register RA.

Special Registers Altered:
CRO (if Rc=1)

Extended Mnemonics:

Example of extended mnemonics for Rotate Left Dou-
bleword Immediate then Clear:

Extended: Equivalent to:
clrisldi Rx,Ry,b,n ridic Rx,Ry,n,b-n

— Programming Note

rldic can be used to clear the high-order b bits of
the contents of a register and then shift the result
left by n bits, by setting SH=n and MB=b-n. It can
be used to clear the high-order n bits of a register,
by setting SH=0 and MB=n.

Extended mnemonics are provided for both of
these uses (the second devolves to rldicl); see
Appendix D, “Assembler Extended Mnemonics” on
page 383.

The contents of register RS are rotatedg, left the num-
ber of bits specified by (RB)sg.63- A mask is generated
having 1-bits from bit MB through bit 63 and 0-bits else-
where. The rotated data are ANDed with the generated
mask and the result is placed into register RA.

Special Registers Altered:
CRO (if Rc=1)

Extended Mnemonics:

Example of extended mnemonics for Rotate Left Dou-
bleword then Clear Left:

Extended: Equivalent to:
rotld Rx,Ry,Rz ridcl Rx,Ry,Rz,0

— Programming Note

rldcl can be used to extract an n-bit field that starts
at variable bit position b in register RS, right-justi-
fied into register RA (clearing the remaining 64-n
bits of RA), by setting RBgg.g3=b+n and MB=64-n.
It can be used to rotate the contents of a register
left (right) by variable n bits, by setting RBgg.g3=n
(64-n) and MB=0.

Extended mnemonics are provided for some of
these uses; see Appendix D, “Assembler Extended
Mnemonics” on page 383.

86 Power ISA™ |

Version 2.05

Rotate Left Doubleword then Clear Right

Rotate Left Doubleword Immediate then

MDS-form Mask Insert MD-form
ridcr RA,RS,RB,ME (Rc=0) rldimi RA,RS,SH,MB (Rc=0)
ridcr. RA,RS,RB,ME (Rc=1) rldimi. RA,RS,SH,MB (Rc=1)

30 RS RA RB me 9 [Rc 30 RS RA sh mb 3 [sh|Rc
o 6 11 16 21 27 31 0 6 11 16 21 27 30|31
n < (RB)58:63 n € ShS H Sh0:4
r € ROTLg, ((RS), n) r € ROTLg, ((RS), n)
e € mes || meg,y b € mog || mbg,y
m < MASK(0, e) m < MASK(b, —n)
RA ¢ r&nm RA € r&m | (RA)&m

The contents of register RS are rotatedg, left the num-
ber of bits specified by (RB)sg.63. A mask is generated
having 1-bits from bit O through bit ME and 0-bits else-
where. The rotated data are ANDed with the generated
mask and the result is placed into register RA.

Special Registers Altered:
CRO (if Rc=1)

—— Programming Note

rldcr can be used to extract an n-bit field that starts
at variable bit position b in register RS, left-justified
into register RA (clearing the remaining 64-n bits
of RA), by setting RBsg.g3=b and ME=n-1. It can
be used to rotate the contents of a register left
(right) by variable n bits, by setting RBgg.g3=n
(64-n) and ME=63.

Extended mnemonics are provided for some of
these uses (some devolve to rldcl); see
Appendix D, “Assembler Extended Mnemonics” on
page 383.

The contents of register RS are rotatedg, left SH bits.
A mask is generated having 1-bits from bit MB through
bit 63-SH and 0-bits elsewhere. The rotated data are
inserted into register RA under control of the generated
mask.

Special Registers Altered:
CRO (if Rc=1)

Extended Mnemonics:

Example of extended mnemonics for Rotate Left Dou-
bleword Immediate then Mask Insert:

Extended:
insrdi Rx,Ry,n,b ridimi

Equivalent to:
Rx,Ry,64-(b+n),b

— Programming Note

rldimi can be used to insert an n-bit field that is
right-justified in register RS, into register RA start-
ing at bit position b, by setting SH=64-(b+n) and
MB=b.

An extended mnemonic is provided for this use;
see Appendix D, “Assembler Extended Mnemon-
ics” on page 383.

Chapter 3. Fixed-Point Processor 87

Version 2.05

3.3.13.2 Fixed-Point Shift Instructions

The instructions in this section perform left and right
shifts.

Extended mnemonics for shifts

Immediate-form logical (unsigned) shift operations are
obtained by specifying appropriate masks and shift val-
ues for certain Rotate instructions. A set of extended
mnemonics is provided to make coding of such shifts
simpler and easier to understand. Some of these are
shown as examples with the Rotate instructions. See
Appendix D, “Assembler Extended Mnemonics” on
page 383 for additional extended mnemonics.

—— Programming Note

Any Shift Right Algebraic instruction, followed by
addze, can be used to divide quickly by 2". The
setting of the CA bit by the Shift Right Algebraic
instructions is independent of mode.

—— Programming Note

Multiple-precision shifts can be programmed as
shown in Section E.1, “Multiple-Precision Shifts” on
page 397.

Shift Left Word X-form Shift Right Word X-form
slw RA,RS,RB (Rc=0) Srw RA,RS,RB (Rc=0)
slw. RA,RS,RB (Rc=1) SIw. RA,RS,RB (Rc=1)

31 RS RA RB 24 Rc 31 RS RA RB 536 Rc
o 6 11 16 21 31 0 6 11 16 21 31

n < (RB)sg.63
r € ROTL3,5((RS)35.63, D)
if (RB)gg = 0 then

m ¢« MASK(32, 63-n)
else m « %0
RA €r&nm

The contents of the low-order 32 bits of register RS are
shifted left the number of bits specified by (RB)sg.g3.
Bits shifted out of position 32 are lost. Zeros are sup-
plied to the vacated positions on the right. The 32-bit
result is placed into RAz,.63. RAg.3; are set to zero.
Shift amounts from 32 to 63 give a zero result.

Special Registers Altered:
CRO (if Rc=1)

n < (RB)sg.63
T € ROTLy,((RS)35.653, 64-1)
if (RB)gg = 0 then

m ¢ MASK(n+32, 63)
else m « %0
RA € r &m

The contents of the low-order 32 bits of register RS are
shifted right the number of bits specified by (RB)sg.g3.
Bits shifted out of position 63 are lost. Zeros are sup-
plied to the vacated positions on the left. The 32-bit
result is placed into RAz,.63. RAg.31 are set to zero.
Shift amounts from 32 to 63 give a zero result.

Special Registers Altered:
CRO (if Rc=1)

88 Power ISA™ |

Version 2.05

Shift Right Algebraic Word Immediate

X-form
srawi RA,RS,SH (Rc=0)
srawi. RA,RS,SH (Rc=1)

31 RS RA SH 824 Rc
o 6 11 16 21 31
n < SH
r € ROTL3,((RS)55.¢3, 64-1)
m ¢ MASK(n+32, 63)
s € (RS)3,
RA © rsm | (®%s)&m

CA € 5 & ((r&™m)5,,43%#0)

The contents of the low-order 32 bits of register RS are
shifted right SH bits. Bits shifted out of position 63 are
lost. Bit 32 of RS is replicated to fill the vacated posi-
tions on the left. The 32-bit result is placed into
RA3,.63. Bit 32 of RS is replicated to fill RAg.3;. CAis
set to 1 if the low-order 32 bits of (RS) contain a nega-
tive number and any 1-bits are shifted out of position
63; otherwise CA is set to 0. A shift amount of zero
causes RA to receive EXTS((RS)3,:63), and CA to be
set to 0.

Special Registers Altered:
CA
CRO (if Rc=1)

Shift Right Algebraic Word X-form
sraw RA,RS,RB (Rc=0)
sraw. RA,RS,RB (Rc=1)

31 RS RA RB 792 Rc
0 6 11 16 21 31

n € (RB)gg.63
T € ROTLy, ((RS)5,,63, 64-1)
if (RB)gg = 0 then
m € MASK(n+32, 63)
else m « 40
s € (RS)3,
RA < rem | (**s)&m
CA € 5 & ((r&mm)s;,,43%0)

The contents of the low-order 32 hits of register RS are
shifted right the number of bits specified by (RB)s5g.63.
Bits shifted out of position 63 are lost. Bit 32 of RS is
replicated to fill the vacated positions on the left. The
32-bit result is placed into RA35.63. Bit 32 of RS is repli-
cated to fill RAg.3;. CA is set to 1 if the low-order 32
bits of (RS) contain a negative number and any 1-bits
are shifted out of position 63; otherwise CA is set to 0.
A shift amount of zero causes RA to receive
EXTS((RS)3,:63), and CA to be set to 0. Shift amounts
from 32 to 63 give a result of 64 sign bits, and cause
CA to receive the sign bit of (RS)32:63

Special Registers Altered:
CA
CRO (if Rc=1)

Chapter 3. Fixed-Point Processor 89

Version 2.05

3.3.13.2.1 64-bit Fixed-Point Shift
Instructions [Category: 64-Bit]

Shift Left Doubleword X-form Shift Right Doubleword X-form
sld RA,RS,RB (Rc=0) srd RA,RS,RB (Rc=0)
sld. RA,RS,RB (Re=1) srd. RA,RS,RB (Re=1)

31 RS [RA [RB 27 Rc 31 RS | RA [RB 539 Rc
0 6 11 16 21 31 0 § 11 16 21 31

n < (RB)sg.63
r € ROTLg, ((RS), n)
if (RB)g; = 0 then
m € MASK(0, 63-n)
else m « %0
RA € re&m

The contents of register RS are shifted left the number
of bits specified by (RB)57.63. Bits shifted out of posi-
tion O are lost. Zeros are supplied to the vacated posi-
tions on the right. The result is placed into register RA.
Shift amounts from 64 to 127 give a zero result.

Special Registers Altered:
CRO (if Rc=1)

n € (RB)sg. 63
r ¢« ROTLg, ((RS), 64-n)
if (RB)g = 0 then

m € MASK(n, 63)
else m « %0
RA€Cr&m

The contents of register RS are shifted right the num-
ber of bits specified by (RB)s7.63. Bits shifted out of
position 63 are lost. Zeros are supplied to the vacated
positions on the left. The result is placed into register
RA. Shift amounts from 64 to 127 give a zero result.

Special Registers Altered:
CRO (if Rc=1)

90 Power ISA™ |

Version 2.05

Shift Right Algebraic Doubleword

Shift Right Algebraic Doubleword X-form

srad RA,RS,RB (Rc=0)
srad. RA,RS,RB (Re=1)

31 RS RA RB 794 Rc
0 6 11 16 21 31

Immediate XS-form

sradi RA,RS,SH (Rc=0)

sradi. RA,RS,SH (Rc=1)
31 RS RA sh 413 sh|Rc

o 6 11 16 21 3031

n € shy || shy.q

r € ROTLg, ((RS), 64-n)

m ¢ MASK(n, 63)

s € (RS),

RA © rsm | (®%s)&m
CA € s & ((r&m)=0)

The contents of register RS are shifted right SH bits.
Bits shifted out of position 63 are lost. Bit 0 of RS is
replicated to fill the vacated positions on the left. The
result is placed into register RA. CA is set to 1 if (RS) is
negative and any 1-bits are shifted out of position 63;
otherwise CA is set to 0. A shift amount of zero causes
RA to be set equal to (RS), and CA to be setto 0.

Special Registers Altered:
CA
CRO (if Rc=1)

n < (RB)sg.63
r € ROTL64((RS), 64-n)
if (RB)g; = O then

m ¢ MASK(n, 63)
else m « %%
s € (RS),
RA < rem | (**s)&m
CA < s & ((r&m)=0)

The contents of register RS are shifted right the num-
ber of bits specified by (RB)s7.63. Bits shifted out of
position 63 are lost. Bit 0 of RS is replicated to fill the
vacated positions on the left. The result is placed into
register RA. CA is set to 1 if (RS) is negative and any
1-bits are shifted out of position 63; otherwise CA is set
to 0. A shift amount of zero causes RA to be set equal
to (RS), and CA to be set to 0. Shift amounts from 64
to 127 give a result of 64 sign bits in RA, and cause CA
to receive the sign bit of (RS).

Special Registers Altered:
CA
CRO (if Rc=1)

Chapter 3. Fixed-Point Processor 91

Version 2.05

3.3.14 Move To/From System Register Instructions

The Move To Condition Register Fields instruction has
a preferred form; see Section 1.8.1, “Preferred Instruc-
tion Forms” on page 21. In the preferred form, the FXM
field satisfies the following rule.

B Exactly one bit of the FXM field is set to 1.

Extended mnemonics

Extended mnemonics are provided for the mtspr and
mfspr instructions so that they can be coded with the

SPR name as part of the mnemonic rather than as a
numeric operand. An extended mnemonic is provided
for the mtcrf instruction for compatibility with old soft-
ware (written for a version of the architecture that pre-
cedes Version 2.00) that uses it to set the entire
Condition Register. Some of these extended mnemon-
ics are shown as examples with the relevant instruc-
tions. See AppendixD, “Assembler Extended
Mnemonics” on page 383 for additional extended mne-
monics.

92 Power ISA™ |

Version 2.05

Move To Special Purpose Register

XFX-form

mtspr SPR,RS

31 RS spr 467 /
0 6 11 21 31
n € sprs.g || spro.4
if length(SPR(n)) = 64 then

SPR(n) ¢« (RS)

else

SPR(n) € (RS)3,.43

The SPR field denotes a Special Purpose Register,
encoded as shown in the table below. The contents of
register RS are placed into the designated Special Pur-
pose Register. For Special Purpose Registers that are
32 bits long, the low-order 32 bits of RS are placed into

—— Compiler and Assembler Note

For the mtspr and mfspr instructions, the SPR
number coded in assembler language does not
appear directly as a 10-bit binary number in the
instruction. The number coded is split into two 5-bit
halves that are reversed in the instruction, with the
high-order 5 bits appearing in bits 16:20 of the
instruction and the low-order 5 bits in bits 11:15.

the SPR.

. SPR! Register
decimal
SPrs:9 SPro.a Name

1 00000 00001 XER

8 00000 01000 LR

9 00000 01001 CTR
256 01000 00000 | VRSAVE?
512 10000 00000 SPEFSCR®
896 11100 00000 PPR*

1 Note that the order of the two 5-bit halves
of the SPR number is reversed.
Category: Embedded and Vector (<E>
see Programming Note in Section 3.2.4).
3 Category: SPE.

Category: Server.

If execution of this instruction specifying an SPR num-
ber other than one of the values shown above is
attempted, then one of the following occurs.
B If sprg = O, the illegal instruction error handler is
invoked.
B |f spry = 1, the system privileged instruction error
handler is invoked.

A complete description of this instruction can be found
in Book III.

Special Registers Altered:
See above

Extended Mnemonics:

Examples of extended mnemonics for Move To Special
Purpose Register:

Extended: Equivalent to:
mtxer RXx mtspr 1,Rx
mtlr Rx mtspr 8,RxX
mtctr RX mtspr 9,Rx

Chapter 3. Fixed-Point Processor 93

Version 2.05

Move From Special Purpose Register

XFX-form

mfspr RT,SPR

31 RT spr 339 /
o 6 11 21 31
n € sprs.g || spro.4
if length(SPR(n)) = 64 then

RT ¢ SPR(n)

else

RT « *20 || SPR(n)

The SPR field denotes a Special Purpose Register,
encoded as shown in the table below. The contents of
the designated Special Purpose Register are placed
into register RT. For Special Purpose Registers that
are 32 bits long, the low-order 32 bits of RT receive the
contents of the Special Purpose Register and the

high-order 32 bits of RT are set to zero.

. SPR? Register
decimal
SPrs.9 SPro:.4 Name
1 00000 00001 XER
8 00000 01000 LR
9 00000 01001 CTR
136 00100 01000 CTRL
256 01000 00000 | VRSAVE?
259 01000 00011 SPRG3
260 01000 00100 SPRG43
261 01000 00101 SPRG53
262 01000 00110 SPRG63
263 01000 00111 SPRG7°
268 01000 01100 TB*
269 01000 01101 TBU*
512 10000 00000 | SPEFSCR®
526 10000 01110 ATB46
527 10000 01111 ATBU*6
896 11100 00000 PPR’
1" Note that the order of the two 5-hit halves
of the SPR number is reversed.
2 Category: Embedded and Vector (<E>
see Programming Note in Section 3.2.4).
3 Category: Embedded.
4 See Chapter 4 of Book II.
5 category: SPE.
6 category: Alternate Time Base.
7 Category: Server.

If execution of this instruction specifying an SPR num-
ber other than one of the values shown above is
attempted, then one of the following occurs.
m If sprg = 0, the illegal instruction error handler is
invoked.
W If sprg = 1, the system privileged instruction error
handler is invoked.

A complete description of this instruction can be found
in Book III.

Special Registers Altered:
None

Extended Mnemonics:

Examples of extended mnemonics for Move From Spe-
cial Purpose Register:

Extended: Equivalent to:
mfxer RX mfspr Rx,1
mflr Rx mfspr Rx,8
mfctr RX mfspr Rx,9

Note
’:ee the Notes that appear with mtspr.

94 Power ISA™ |

Version 2.05

Move To Condition Register Fields

Move From Condition Register XFX-form

mfcr RT

31 RT |O m 19 /

0 6 11|12 21 31

XEX-form
mtcrf FXM,RS
31 RS |0 FXM / 144 /
o 6 112 20[21 31
mask « *(FxM,) || *(FxMy) || ... *(FXM.)
CR ¢ ((RS)35.63 & mask) | (CR & —mask)

The contents of bits 32:63 of register RS are placed
into the Condition Register under control of the field
mask specified by FXM. The field mask identifies the
4-bit fields affected. Let i be an integer in the range
0-7. If FXM;=1 then CR field i (CR bits 4xi+32:4xi+35)
is set to the contents of the corresponding field of the
low-order 32 bits of RS.

Special Registers Altered:
CR fields selected by mask

Extended Mnemonics:

Example of extended mnemonics for Move To Condi-
tion Register Fields:

Extended:
mtcr Rx mtcrf

Equivalent to:
OxFF,Rx

Programming Note

In the preferred form of this instruction (mtocrf),
only one Condition Register field is updated.

RT « %0 || CR

The contents of the Condition Register are placed into
RT32:63. RTO:31 are set to 0.

Special Registers Altered:
None

Chapter 3. Fixed-Point Processor 95

Version 2.05

3.3.14.1 Move to/From One Condition Register Field Instructions [Category:

Phased-In (sV2.05)]

Move To One Condition Register Field

Move From One Condition Register Field

XFX-form XFX-form
mtocrf FXM,RS mfocrf RTFXM
[Category: Phased-In] [Category: Phased-In]
31 RS |1| FXM |/ 144 / 31 RT |[1] FXM |/ 19 /
0 6 1112 2021 31 0 6 1112 20|21 31

count € 0
doi=0to?7
if FXM; = 1 then
n €1
count € count + 1
if count = 1 then

CRaxn+32:axn+35 € (RS)4xni32:axne3s

else CR ¢ undefined

If exactly one bit of the FXM field is set to 1, let n be the
position of that bit in the field (0 < n < 7). The contents
of bits 4xn+32:4xn+35 of register RS are placed into
CR field n (CR bits 4xn+32:4xn+35). Otherwise, the
contents of the Condition Register are undefined.

Special Registers Altered:
CR field selected by FXM

— Programming Note

These forms of the mtcrf and mfcr instructions are
intended to replace the old forms of the instructions
(the forms shown in page 95), which will eventually
be phased out of the architecture. The new forms
are backward compatible with most processors that
comply with versions of the architecture that pre-
cede Version 2.00. On those processors, the new
forms are treated as the old forms.

However, on some processors that comply with ver-
sions of the architecture that precede Version 2.00
the new forms may be treated as follows:

mtocrf: may cause the system illegal instruction
error handler to be invoked

mfocrf: may place an undefined value into register
RT

RT ¢ undefined
count € 0
doi=0¢to?7
if FXM; = 1 then
n e i
count € count + 1
if count = 1 then

RT4xn+32:4xn+35 € CRaxn+32:4xn+35

If exactly one bit of the FXM field is set to 1, let n be the
position of that bit in the field (0 < n < 7). The contents
of CR field n (CR bits 4xn+32:4xn+35) are placed into
bits 4xn+32:4xn+35 of register RT and the contents of
the remaining bits of register RT are undefined. Other-
wise, the contents of register RT are undefined.

Special Registers Altered:
None

96 Power ISA™ |

Version 2.05

3.3.14.2 Move To/From System Registers [Category: Embedded]

Move to Condition Register from XER

X-form

mcrxr BF
31 BF | // " i 512 /
0 6 9 |11 16 21 31

CRyxBF+32:4xBF+35 € XER33.35
XERs,.35 € 0b0000

The contents of XER35.35 are copied to Condition Reg-
ister field BF. XER35.35 are set to zero.

Special Registers Altered:
CR field BF XERg35.35

Move To Device Control Register

Move From APID Indirect X-form
mfapidi RT,RA

31 RT RA 7 275 /
(6] 6 11 16 21 31

RT ¢ implementation-dependent value based on (RA)

The contents of RA are provided to any auxiliary pro-
cessors that may be present. A value, that is implemen-
tation-dependent, is placed in RT.

Special Registers Altered:
None

Programming Note

This instruction is provided as a mechanism for
software to query the presence and configuration of
one or more auxiliary processors. See the imple-
mentation for details on the behavior of this instruc-
tion.

Move From Device Control Register

User-mode Indexed X-form User-mode Indexed X-form
mtdcrux RS,RA mfdcrux RT,RA

31 RS RA n 419 / 31 RT RA 17l 291 /
0 6 11 16 21 31 0 6 11 16 21 31
DCRN <« (RA) DCRN < (RA)

DCR(DCRN) ¢ RS

Let the contents of register RA denote a Device Control
Register. (The supported Device Control Registers are
implementation-dependent.)

The contents of RS are placed into the designated
Device Control Register. For 32-bit Device Control
Registers, the contents of bits 32:63 of RS are placed
into the Device Control Register.

See “Move To Device Control Register Indexed X-form”
on page 624 in Book Ill for more information on this
instruction.

Special Registers Altered:
Implementation-dependent

RT ¢ DCR(DCRN)

Let the contents of register RA denote a Device Control
Register. (The supported Device Control Registers are
implementation-dependent.)

The contents of the designated Device Control Register
are placed into RT. For 32-bit Device Control Regis-
ters, the contents of bits 32:63 of the designated
Device Control Register are placed into RT.

See “Move From Device Control Register Indexed
X-form” on page 625 in Book Il for more information on
this instruction.

Special Registers Altered:
Implementation-dependent

Chapter 3. Fixed-Point Processor 97

Version 2.05

98 Power ISA™ |

Version 2.05

Chapter 4. Floating-Point Processor [Category:

Floating-Point]

4.1 Floating-Point Processor Overview 99
4.2 Floating-Point Processor Registers 100

4.2.1 Floating-Point Registers 100
4.2.2 Floating-Point Status and Control

Register., 101
4.3 Floating-PointData. 103
43.1 DataFormat................ 103
4.3.2 Value Representation 104
4.3.3 SignofResult 105
4.3.4 Normalization and

Denormalization 106

4.3.5 Data Handling and Precision. .. 106
4.3.5.1 Single-Precision Operands. .. 106
4.3.5.2 Integer-Valued Operands 107

436 Rounding.................. 107
4.4 Floating-Point Exceptions. 108
4.4.1 Invalid Operation Exception. ... 110
4.41.1 Definition................. 110
4412 Action................... 110
4.4.2 Zero Divide Exception......... 111
4421 Definition.................. 111
4422 Action.................... 111
4.4.3 Overflow Exception 111
4.43.1 Definition.................. 111
4432 Action................... 112
4.4.4 Underflow Exception 112
4.4.4.1 Definition................. 112
4442 Action................... 112
4.45 Inexact Exception 113
4.45.1 Definition................. 113
4452 Action................... 113

4.5 Floating-Point Execution Models . 113
4.5.1 Execution Model for IEEE Opera-
tions 113

4.5.2 Execution Model for

Multiply-Add Type Instructions 115
4.6 Floating-Point Processor Instructions .
116
4.6.1 Floating-Point Storage Access
Instructions 117

4.6.1.1 Storage Access Exceptions .. 117
4.6.2 Floating-Point Load Instructions. 117
4.6.3 Floating-Point Store Instructions 121
4.6.4 Floating-Point Load Store Double-
word Pair Instructions [Category: Float-
ing-PointPhased-Out] 125
4.6.5 Floating-Point Move Instructions 126
4.6.6 Floating-Point Arithmetic Instructions
127
4.6.6.1 Floating-Point Elementary Arith-
metic Instructions. 127
4.6.6.2 Floating-Point Multiply-Add Instruc-
tions. 132
4.6.7 Floating-Point Rounding and Con-
version Instructions 134
4.6.7.1 Floating-Point Rounding Instruc-
tion. . ..o 134
4.6.7.2 Floating-Point Convert To/From
Integer Instructions 134
4.6.7.3 Floating Round to Integer Instruc-
tions [Category: Floating-PointPhased-In

(sV2.05)] ..o 136
4.6.8 Floating-Point Compare Instructions
138

4.6.9 Floating-Point Select Instruction 139
4.6.10 Floating-Point Status and Control
Register Instructions 140

4.1 Floating-Point Processor
Overview

This chapter describes the registers and instructions
that make up the Floating-Point Processor facility.

The processor (augmented by appropriate software
support, where required) implements a floating-point
system compliant with the ANSI/IEEE Standard
754-1985, "IEEE Standard for Binary Floating-Point
Arithmetic" (hereafter referred to as "the IEEE stan-
dard"). That standard defines certain required "opera-
tions" (addition, subtraction, etc.). Herein, the term

Chapter 4. Floating-Point Processor [Category: Floating-Point] 99

Version 2.05

"floating-point operation" is used to refer to one of
these required operations and to additional operations
defined (e.g., those performed by Multiply-Add or
Reciprocal Estimate instructions). A Non-IEEE mode is
also provided. This mode, which may produce results
not in strict compliance with the IEEE standard, allows
shorter latency.

Instructions are provided to perform arithmetic, round-
ing, conversion, comparison, and other operations in
floating-point registers; to move floating-point data
between storage and these registers; and to manipu-
late the Floating-Point Status and Control Register
explicitly.

These instructions are divided into two categories.
B computational instructions

The computational instructions are those that per-
form addition, subtraction, multiplication, division,
extracting the square root, rounding, conversion,
comparison, and combinations of these opera-
tions. These instructions provide the floating-point
operations. They place status information into the
Floating-Point Status and Control Register. They
are the instructions described in Sections 4.6.6
through 4.6.8.

B non-computational instructions

The non-computational instructions are those that
perform loads and stores, move the contents of a
floating-point register to another floating-point reg-
ister possibly altering the sign, manipulate the
Floating-Point Status and Control Register explic-
itly, and select the value from one of two float-
ing-point registers based on the value in a third
floating-point register. The operations performed
by these instructions are not considered float-
ing-point operations. With the exception of the
instructions that manipulate the Floating-Point Sta-
tus and Control Register explicitly, they do not alter
the Floating-Point Status and Control Register.
They are the instructions described in Sections
4.6.2 through 4.6.5, and 4.6.10.

A floating-point number consists of a signed exponent
and a signed significand. The quantity expressed by
this number is the product of the significand and the
number 28XPO"eNt Encodings are provided in the data
format to represent finite numeric values, £Infinity, and
values that are “Not a Number” (NaN). Operations
involving infinities produce results obeying traditional
mathematical conventions. NaNs have no mathemati-
cal interpretation. Their encoding permits a variable
diagnostic information field. They may be used to indi-
cate such things as uninitialized variables and can be
produced by certain invalid operations.

There is one class of exceptional events that occur dur-
ing instruction execution that is unique to the Float-
ing-Point Processor: the Floating-Point Exception.
Floating-point exceptions are signaled with bits set in

the Floating-Point Status and Control Register
(FPSCR). They can cause the system floating-point
enabled exception error handler to be invoked, pre-
cisely or imprecisely, if the proper control bits are set.

Floating-Point Exceptions

The following floating-point exceptions are detected by
the processor:

® [nvalid Operation Exception (VX)
SNaN (VXSNAN)
Infinity - Infinity (VXISI)
Infinity=Infinity (VXIDI)
Zero+Zero (VXZDz)
InfinityxZero (VXIMZ)
Invalid Compare (VXVC)
Software-Defined Condition (VXSOFT)
Invalid Square Root (VXSQRT)
Invalid Integer Convert (VXCVI)
B Zero Divide Exception (ZX)
B Overflow Exception (OX)
B Underflow Exception (UX)
B [nexact Exception (XX)

Each floating-point exception, and each category of
Invalid Operation Exception, has an exception bit in the
FPSCR. In addition, each floating-point exception has a
corresponding enable bit in the FPSCR. See
Section 4.2.2, “Floating-Point Status and Control Reg-
ister” on page 101 for a description of these exception
and enable bits, and Section 4.4, “Floating-Point
Exceptions” on page 108 for a detailed discussion of
floating-point exceptions, including the effects of the
enable bits.

4.2 Floating-Point Processor
Registers

4.2.1 Floating-Point Registers

Implementations of this architecture provide 32 float-
ing-point registers (FPRs). The floating-point instruction
formats provide 5-bit fields for specifying the FPRs to
be used in the execution of the instruction. The FPRs
are numbered 0-31. See Figure 46 on page 101.

Each FPR contains 64 bits that support the float-
ing-point double format. Every instruction that inter-
prets the contents of an FPR as a floating-point value
uses the floating-point double format for this interpreta-
tion.

The computational instructions, and the Move and
Select instructions, operate on data located in FPRs
and, with the exception of the Compare instructions,
place the result value into an FPR and optionally (when
Rc=1) place status information into the Condition Reg-

100 Power ISA™ |

Version 2.05

ister. Instruction forms with Rc=1 are part of Category:
Floating-Point.Record.

Load Double and Store Double instructions are pro-
vided that transfer 64 bits of data between storage and
the FPRs with no conversion. Load Single instructions
are provided to transfer and convert floating-point val-
ues in floating-point single format from storage to the
same value in floating-point double format in the FPRs.
Store Single instructions are provided to transfer and
convert floating-point values in floating-point double
format from the FPRs to the same value in float-
ing-point single format in storage.

Instructions are provided that manipulate the Float-
ing-Point Status and Control Register and the Condi-
tion Register explicitly. Some of these instructions copy
data from an FPR to the Floating-Point Status and Con-
trol Register or vice versa.

The computational instructions and the Select instruc-
tion accept values from the FPRs in double format. For
single-precision arithmetic instructions, all input values
must be representable in single format; if they are not,
the result placed into the target FPR, and the setting of
status bits in the FPSCR and in the Condition Register
(if Rc=1), are undefined.

FPR O
FPR 1

FPR 30
FPR 31
0 63

Figure 46. Floating-Point Registers

4.2.2 Floating-Point Status and
Control Register

The Floating-Point Status and Control Register
(FPSCR) controls the handling of floating-point excep-
tions and records status resulting from the float-
ing-point operations. Bits 32:55 are status bits. Bits
56:63 are control bits.

The exception bits in the FPSCR (bits 35:44, 53:55) are
sticky; that is, once set to 1 they remain set to 1 until
they are set to 0 by an mcrfs, mtfsfi, mtfsf, or mtfsb0
instruction. The exception summary bits in the FPSCR
(FX, FEX, and VX, which are bits 32:34) are not consid-
ered to be “exception bits”, and only FX is sticky.

FEX and VX are simply the ORs of other FPSCR bits.
Therefore these two bits are not listed among the
FPSCR bits affected by the various instructions.

| FPSCR
| 5

63

Figure 47. Floating-Point Status and Control
Register

The bit definitions for the FPSCR are as follows.

Bit(s) Description
0:31 Reserved

32 Floating-Point Exception Summary (FX)
Every floating-point instruction, except mtfsfi
and mtfsf, implicitly sets FPSCRgx to 1 if that
instruction causes any of the floating-point
exception bits in the FPSCR to change from 0
to 1. mecrfs, mtfsfi, mtfsf, mtfsb0, and
mtfsbl can alter FPSCRgy explicitly.

—— Programming Note

FPSCREyx is defined not to be altered
implicity by mtfsfi and mtfsf because
permitting these instructions to alter
FPSCREyx implicitly could cause a para-
dox. An example is an mtfsfi or mtfsf
instruction that supplies 0 for FPSCRgx
and 1 for FPSCRpy, and is executed
when FPSCREyx=0. See also the Pro-
gramming Notes with the definition of
these two instructions.

33 Floating-Point Enabled Exception Sum-
mary (FEX)
This bit is the OR of all the floating-point
exception bits masked by their respective
enable bits. mcrfs, mtfsfi, mtfsf, mtfsb0, and
mtfsb1 cannot alter FPSCRggx explicitly.

34 Floating-Point Invalid Operation Excep-
tion Summary (VX)
This bit is the OR of all the Invalid Operation
exception bits. mcrfs, mtfsfi, mtfsf, mtfsb0,
and mtfsb1 cannot alter FPSCRyyx explicitly.

35 Floating-Point Overflow Exception (OX)
See Section 4.4.3, “Overflow Exception” on
page 111.

36 Floating-Point Underflow Exception (UX)
See Section 4.4.4, “Underflow Exception” on
page 112.

37 Floating-Point Zero Divide Exception (ZX)
See Section 4.4.2, “Zero Divide Exception” on
page 111.

38 Floating-Point Inexact Exception (XX)
See Section 4.4.5, “Inexact Exception” on
page 113.

Chapter 4. Floating-Point Processor [Category: Floating-Point] 101

Version 2.05

39

40

41

42

43

44

45

46

47:51

FPSCRyy is a sticky version of FPSCRE, (see
below). Thus the following rules completely
describe how FPSCRyy is set by a given
instruction.

B If the instruction affects FPSCRg, the
new value of FPSCRyy is obtained by
ORing the old value of FPSCRyy with
the new value of FPSCRg,.

m [f the instruction does not affect
FPSCRE), the value of FPSCRyy is
unchanged.

Floating-Point Invalid Operation Excep-
tion (SNaN) (VXSNAN)

See Section 4.4.1, “Invalid Operation Excep-
tion” on page 110.

Floating-Point Invalid Operation Excep-
tion (ee - o) (VXISI)
See Section 4.4.1.

Floating-Point Invalid Operation
tion (eo+ o0) (VXIDI)
See Section 4.4.1.

Excep-

Floating-Point Invalid Operation
tion (0 +0) (VXZDZ)
See Section 4.4.1.

Excep-

Floating-Point Invalid Operation
tion (eox0) (VXIMZ)
See Section 4.4.1.

Excep-

Floating-Point Invalid Operation
tion (Invalid Compare) (VXVC)
See Section 4.4.1.

Floating-Point Fraction Rounded (FR)

The last Arithmetic or Rounding and Conver-
sion instruction incremented the fraction dur-
ing rounding. See Section 4.3.6, “Rounding”
on page 107. This bit is not sticky.

Excep-

Floating-Point Fraction Inexact (FI)

The last Arithmetic or Rounding and Conver-
sion instruction either produced an inexact
result during rounding or caused a disabled
Overflow Exception. See Section 4.3.6. This
bit is not sticky.

See the definition of FPSCRyy, above,
regarding the relationship between FPSCRE,
and FPSCRXX

Floating-Point Result Flags (FPRF)

Arithmetic, rounding, and Convert From Inte-
ger instructions set this field based on the
result placed into the target register and on
the target precision, except that if any portion
of the result is undefined then the value
placed into FPRF is undefined. Floating-point
Compare instructions set this field based on
the relative values of the operands being com-
pared. For Convert To Integer instructions, the

47

48:51

48

49

50
51
52
53

54

value placed into FPRF is undefined. Addi-
tional details are given below.

—— Programming Note

A single-precision operation that produces
a denormalized result sets FPRF to indi-
cate a denormalized number. When pos-
sible, single-precision denormalized
numbers are represented in normalized
double format in the target register.

Floating-Point Result Class Descriptor (C)
Arithmetic, rounding, and Convert From Inte-
ger instructions may set this bit with the FPCC
bits, to indicate the class of the result as
shown in Figure 48 on page 103.

Floating-Point Condition Code (FPCC)
Floating-point Compare instructions set one of
the FPCC bits to 1 and the other three FPCC
bits to 0. Arithmetic, rounding, and Convert
From Integer instructions may set the FPCC
bits with the C bit, to indicate the class of the
result as shown in Figure 48 on page 103.
Note that in this case the high-order three bits
of the FPCC retain their relational significance
indicating that the value is less than, greater
than, or equal to zero.

Floating-Point Less Than or Negative (FL
or<)

Floating-Point Greater Than or Positive
(FG or >)

Floating-Point Equal or Zero (FE or =)
Floating-Point Unordered or NaN (FU or ?)
Reserved

Floating-Point Invalid Operation Excep-
tion (Software-Defined Condition)
(VXSOFT)

This bit can be altered only by mcrfs, mtfsfi,
mtfsf, mtfsb0, or mtfsb1l. See Section 4.4.1.

—— Programming Note

FPSCRyxsorT Can be used by software
to indicate the occurrence of an arbitrary,
software-defined, condition that is to be
treated as an Invalid Operation Exception.
For example, the bit could be set by a pro-
gram that computes a base 10 logarithm if
the supplied input is negative.

Floating-Point Invalid Operation Excep-
tion (Invalid Square Root) (VXSQRT)
See Section 4.4.1.

102

Power ISA™ |

Version 2.05

55

56

57

58

59

60

61

Floating-Point Invalid Operation Excep-
tion (Invalid Integer Convert) (VXCVI)
See Section 4.4.1.

Floating-Point Invalid Operation Excep-
tion Enable (VE)
See Section 4.4.1.

Floating-Point Overflow Exception Enable
(OE)

See Section 4.4.3, “Overflow Exception” on
page 111.

Floating-Point Underflow
Enable (UE)
See Section 4.4.4, “Underflow Exception” on

page 112.

Exception

Floating-Point Zero Divide
Enable (ZE)
See Section 4.4.2, “Zero Divide Exception” on

page 111.

Exception

Floating-Point Inexact Exception Enable
(XE)

See Section 4.4.5, “Inexact Exception” on
page 113.

Floating-Point Non-IEEE Mode (NI)
Floating-point non-IEEE mode is optional. If
floating-point non-IEEE mode is not imple-
mented, this bit is treated as reserved, and the
remainder of the definition of this bit does not
apply.

If floating-point non-IEEE mode is imple-
mented, this bit has the following meaning.

0 The processor is not in floating-point
non-lEEE mode (i.e., all floating-point
operations conform to the IEEE standard).

1 The processor is in floating-point
non-lEEE mode.

When the processor is in floating-point
non-IEEE mode, the remaining FPSCR bits
may have meanings different from those given
in this document, and floating-point operations
need not conform to the IEEE standard. The
effects of executing a given floating-point
instruction with FPSCRy=1, and any addi-
tional requirements for using non-IEEE mode,
are implementation-dependent. The results of
executing a given instruction in non-IEEE
mode may vary between implementations,
and between different executions on the same
implementation.

—— Programming Note

When the processor is in floating-point
non-IEEE mode, the results of float-
ing-point operations may be approximate,
and performance for these operations
may be better, more predictable, or less
data-dependent than when the processor
is not in non-IEEE mode. For example, in
non-IEEE mode an implementation may
return O instead of a denormalized num-
ber, and may return a large number
instead of an infinity.

62:63 Floating-Point Rounding Control (RN) See
Section 4.3.6, “Rounding” on page 107.

00 Round to Nearest

01 Round toward Zero
10 Round toward +Infinity
11 Round toward -Infinity

Result

Flags Result Value Class
C<>=7?
10001 Quiet NaN
0100 1] - Infinity
0100 0| - Normalized Number
1100 0| - Denormalized Number
10010 - Zero
00010/ +Zero
1010 0| +Denormalized Number
0010 0| +Normalized Number
0010 1] +Infinity

Figure 48. Floating-Point Result Flags

4.3 Floating-Point Data

4.3.1 Data Format

This architecture defines the representation of a float-
ing-point value in two different binary fixed-length for-
mats. The format may be a 32-bit single format for a
single-precision value or a 64-bit double format for a
double-precision value. The single format may be used
for data in storage. The double format may be used for
data in storage and for data in floating-point registers.

The lengths of the exponent and the fraction fields dif-
fer between these two formats. The structure of the sin-
gle and double formats is shown below.

|s| EXP | FRACTION
3233 41 63

Figure 49. Floating-point single format

Chapter 4. Floating-Point Processor [Category: Floating-Point] 103

Version 2.05

\sl EXP FRACTION
01 12 63

Figure 50. Floating-point double format

Values in floating-point format are composed of three
fields:

S sign bit
EXP exponent+bias
FRACTION fraction

Representation of numeric values in the floating-point
formats consists of a sign bit (S), a biased exponent
(EXP), and the fraction portion (FRACTION) of the sig-
nificand. The significand consists of a leading implied
bit concatenated on the right with the FRACTION. This
leading implied bit is 1 for normalized numbers and 0
for denormalized numbers and is located in the unit bit
position (i.e., the first bit to the left of the binary point).
Values representable within the two floating-point for-
mats can be specified by the parameters listed in
Figure 51.

Format
Single Double

Exponent Bias +127 +1023
Maximum Exponent +127 +1023
Minimum Exponent -126 -1022
Widths (bits)

Format 32 64

Sign 1 1

Exponent 8 11

Fraction 23 52

Significand 24 53

Figure 51. IEEE floating-point fields

The architecture requires that the FPRs of the Float-
ing-Point Processor support the floating-point double
format only.

4.3.2 Value Representation

This architecture defines numeric and non-numeric val-
ues representable within each of the two supported for-
mats. The numeric values are approximations to the
real numbers and include the normalized numbers,
denormalized numbers, and zero values. The
non-numeric values representable are the infinities and
the Not a Numbers (NaNs). The infinities are adjoined
to the real numbers, but are not numbers themselves,
and the standard rules of arithmetic do not hold when
they are used in an operation. They are related to the
real numbers by order alone. It is possible however to
define restricted operations among numbers and infini-

ties as defined below. The relative location on the real
number line for each of the defined entities is shown in
Figure 52.

-INF | -NOR
i

< T

|—DEN |-0 ho|+DEN| +NOR | +INF
T T T T T ;

Figure 52. Approximation to real numbers

The NaNs are not related to the numeric values or infin-
ities by order or value but are encodings used to con-
vey diagnostic information such as the representation
of uninitialized variables.

The following is a description of the different float-
ing-point values defined in the architecture:

Binary floating-point numbers

Machine representable values used as approximations
to real numbers. Three categories of numbers are sup-
ported: normalized numbers, denormalized numbers,
and zero values.

Normalized numbers (£ NOR)
These are values that have a biased exponent value in
the range:

1 to 254 in single format
1 to 2046 in double format

They are values in which the implied unit bit is 1. Nor-
malized numbers are interpreted as follows:

NOR = (-1)° x 2 x (1.fraction)

where s is the sign, E is the unbiased exponent, and
1.fraction is the significand, which is composed of a
leading unit bit (implied bit) and a fraction part.

The ranges covered by the magnitude (M) of a normal-
ized floating-point number are approximately equal to:

Single Format:
1.2x10738 < M < 3.4x1038

Double Format:
2.2x107308 <\ < 1.8x10308

Zero values (+ 0)

These are values that have a biased exponent value of
zero and a fraction value of zero. Zeros can have a
positive or negative sign. The sign of zero is ignored by
comparison operations (i.e., comparison regards +0 as
equal to -0).

Denormalized numbers (£ DEN)

These are values that have a biased exponent value of
zero and a nonzero fraction value. They are nonzero
numbers smaller in magnitude than the representable
normalized numbers. They are values in which the
implied unit bit is 0. Denormalized numbers are inter-
preted as follows:

DEN = (-1)° x 2EM" x (0.fraction)

104 Power ISA™ |

Version 2.05

where Emin is the minimum representable exponent
value (-126 for single-precision, -1022 for double-pre-
cision).

Infinities (£ <)
These are values that have the maximum biased expo-
nent value:

255 in single format
2047 in double format

and a zero fraction value. They are used to approxi-
mate values greater in magnitude than the maximum
normalized value.

Infinity arithmetic is defined as the limiting case of real
arithmetic, with restricted operations defined among
numbers and infinities. Infinities and the real numbers
can be related by ordering in the affine sense:

- oo < every finite number < + oo

Arithmetic on infinities is always exact and does not
signal any exception, except when an exception occurs
due to the invalid operations as described in
Section 4.4.1, “Invalid Operation Exception” on
page 110.

For comparison operations, +Infinity compares equal to
+Infinity and -Infinity compares equal to -Infinity.

Not a Numbers (NaNs)

These are values that have the maximum biased expo-
nent value and a nonzero fraction value. The sign bit is
ignored (i.e., NaNs are neither positive nor negative). If
the high-order bit of the fraction field is O then the NaN
is a Signaling NaN; otherwise it is a Quiet NaN.

Signaling NaNs are used to signal exceptions when
they appear as operands of computational instructions.

Quiet NaNs are used to represent the results of certain
invalid operations, such as invalid arithmetic operations
on infinities or on NaNs, when Invalid Operation Excep-
tion is disabled (FPSCRyg=0). Quiet NaNs propagate
through all floating-point operations except ordered
comparison, Floating Round to Single-Precision, and
conversion to integer. Quiet NaNs do not signal excep-
tions, except for ordered comparison and conversion to
integer operations. Specific encodings in QNaNs can
thus be preserved through a sequence of floating-point
operations, and used to convey diagnostic information
to help identify results from invalid operations.

When a QNaN is the result of a floating-point operation
because one of the operands is a NaN or because a
QNaN was generated due to a disabled Invalid Opera-
tion Exception, then the following rule is applied to
determine the NaN with the high-order fraction bit set to
1 that is to be stored as the result.

if (FRA) is a NaN
then FRT « (FRA)
else if (FRB) is a NaN
then if instruction is frsp

then FRT « (FRB)g.34 || 2°0
else FRT « (FRB)
else if (FRC) is a NaN
then FRT « (FRC)
else if generated QNaN
then FRT « generated QNaN

If the operand specified by FRA is a NaN, then that
NaN is stored as the result. Otherwise, if the operand
specified by FRB is a NaN (if the instruction specifies
an FRB operand), then that NaN is stored as the result,
with the low-order 29 bits of the result set to O if the
instruction is frsp. Otherwise, if the operand specified
by FRC is a NaN (if the instruction specifies an FRC
operand), then that NaN is stored as the result. Other-
wise, if a QNaN was generated due to a disabled
Invalid Operation Exception, then that QNaN is stored
as the result. If a QNaN is to be generated as a result,
then the QNaN generated has a sign bit of 0, an expo-
nent field of all 1s, and a high-order fraction bit of 1 with
all other fraction bits 0. Any instruction that generates a
QNaN as the result of a disabled Invalid Operation
Exception generates this QNaN (i.e.,
0x7FF8_0000_0000_0000).

A double-precision NaN is considered to be represent-
able in single format if and only if the low-order 29 bits
of the double-precision NaN'’s fraction are zero.

4.3.3 Sign of Result

The following rules govern the sign of the result of an
arithmetic, rounding, or conversion operation, when the
operation does not yield an exception. They apply even
when the operands or results are zeros or infinities.

B The sign of the result of an add operation is the
sign of the operand having the larger absolute
value. If both operands have the same sign, the
sign of the result of an add operation is the same
as the sign of the operands. The sign of the result
of the subtract operation x-y is the same as the
sign of the result of the add operation x+(-y).

When the sum of two operands with opposite sign,
or the difference of two operands with the same
sign, is exactly zero, the sign of the result is posi-
tive in all rounding modes except Round toward
- Infinity, in which mode the sign is negative.

B The sign of the result of a multiply or divide opera-
tion is the Exclusive OR of the signs of the oper-
ands.

B The sign of the result of a Square Root or Recipro-
cal Square Root Estimate operation is always pos-
itive, except that the square root of -0 is -0 and
the reciprocal square root of -0 is -Infinity.

B The sign of the result of a Round to Single-Preci-
sion, or Convert From Integer, or Round to Integer
operation is the sign of the operand being con-
verted.

Chapter 4. Floating-Point Processor [Category: Floating-Point] 105

Version 2.05

For the Multiply-Add instructions, the rules given above
are applied first to the multiply operation and then to
the add or subtract operation (one of the inputs to the
add or subtract operation is the result of the multiply
operation).

4.3.4 Normalization and
Denormalization

The intermediate result of an arithmetic or frsp instruc-
tion may require normalization and/or denormalization
as described below. Normalization and denormalization
do not affect the sign of the result.

When an arithmetic or rounding instruction produces an
intermediate result which carries out of the significand,
or in which the significand is nonzero but has a leading
zero bit, it is not a normalized number and must be nor-
malized before it is stored. For the carry-out case, the
significand is shifted right one bit, with a one shifted
into the leading significand bit, and the exponent is
incremented by one. For the leading-zero case, the sig-
nificand is shifted left while decrementing its exponent
by one for each bit shifted, until the leading significand
bit becomes one. The Guard bit and the Round bit (see
Section 4.5.1, “Execution Model for IEEE Operations”
on page 113) participate in the shift with zeros shifted
into the Round bit. The exponent is regarded as if its
range were unlimited.

After normalization, or if normalization was not
required, the intermediate result may have a nonzero
significand and an exponent value that is less than the
minimum value that can be represented in the format
specified for the result. In this case, the intermediate
result is said to be “Tiny” and the stored result is deter-
mined by the rules described in Section 4.4.4, “Under-
flow Exception”. These rules may require
denormalization.

A number is denormalized by shifting its significand
right while incrementing its exponent by 1 for each bit
shifted, until the exponent is equal to the format’s mini-
mum value. If any significant bits are lost in this shifting
process then “Loss of Accuracy” has occurred (See
Section 4.4.4, “Underflow Exception” on page 112) and
Underflow Exception is signaled.

4.3.5 Data Handling and Precision

Most of the Floating-Point Processor Architecture,
including all computational, Move, and Select instruc-
tions, use the floating-point double format to represent
data in the FPRs. Single-precision and integer-valued
operands may be manipulated using double-precision
operations. Instructions are provided to coerce these
values from a double format operand. Instructions are
also provided for manipulations which do not require
double-precision. In addition, instructions are provided

to access a true single-precision representation in stor-
age, and a fixed-point integer representation in GPRs.

4.3.5.1 Single-Precision Operands

For single format data, a format conversion from single
to double is performed when loading from storage into
an FPR and a format conversion from double to single
is performed when storing from an FPR to storage. No
floating-point exceptions are caused by these instruc-
tions. An instruction is provided to explicitly convert a
double format operand in an FPR to single-precision.
Floating-point single-precision is enabled with four
types of instruction.

1. Load Floating-Point Single

This form of instruction accesses a single-preci-
sion operand in single format in storage, converts
it to double format, and loads it into an FPR. No
floating-point exceptions are caused by these
instructions.

2. Round to Floating-Point Single-Precision

The Floating Round to Single-Precision instruction
rounds a double-precision operand to single-preci-
sion, checking the exponent for single-precision
range and handling any exceptions according to
respective enable bits, and places that operand
into an FPR in double format. For results produced
by single-precision arithmetic instructions, sin-
gle-precision loads, and other instances of the
Floating Round to Single-Precision instruction, this
operation does not alter the value.

3. Single-Precision Arithmetic Instructions

This form of instruction takes operands from the
FPRs in double format, performs the operation as
if it produced an intermediate result having infinite
precision and unbounded exponent range, and
then coerces this intermediate result to fit in single
format. Status bits, in the FPSCR and optionally in
the Condition Register, are set to reflect the sin-
gle-precision result. The result is then converted to
double format and placed into an FPR. The result
lies in the range supported by the single format.

All input values must be representable in single
format; if they are not, the result placed into the
target FPR, and the setting of status bits in the
FPSCR and in the Condition Register (if Rc=1),
are undefined.

4. Store Floating-Point Single

This form of instruction converts a double-preci-
sion operand to single format and stores that oper-
and into storage. No floating-point exceptions are
caused by these instructions. (The value being
stored is effectively assumed to be the result of an
instruction of one of the preceding three types.)

106 Power ISA™ |

Version 2.05

When the result of a Load Floating-Point Single, Float-
ing Round to Single-Precision, or single-precision arith-
metic instruction is stored in an FPR, the low-order 29

FRACTION bits are zero.

—— Programming Note

The Floating Round to Single-Precision instruction
is provided to allow value conversion from dou-
ble-precision to single-precision with appropriate
exception checking and rounding. This instruction
should be used to convert double-precision float-
ing-point values (produced by double-precision
load and arithmetic instructions and by fcfid) to sin-
gle-precision values prior to storing them into single
format storage elements or using them as oper-
ands for single-precision arithmetic instructions.
Values produced by single-precision load and arith-
metic instructions are already single-precision val-
ues and can be stored directly into single format
storage elements, or used directly as operands for
single-precision arithmetic instructions, without pre-
ceding the store, or the arithmetic instruction, by a
Floating Round to Single-Precision instruction.

—— Programming Note

A single-precision value can be used in double-pre-
cision arithmetic operations. The reverse is true
only if the double-precision value is representable
in single format.

Some implementations may execute single-preci-
sion arithmetic instructions faster than double-pre-
cision arithmetic instructions. Therefore, if
double-precision accuracy is not required, sin-
gle-precision data and instructions should be used.

4.3.5.2 Integer-Valued Operands

Instructions are provided to round floating-point oper-
ands to integer values in floating-point format. To facili-
tate exchange of data between the floating-point and
fixed-point processors, instructions are provided to
convert between floating-point double format and
fixed-point integer format in an FPR. Computation on
integer-valued operands may be performed using arith-
metic instructions of the required precision. (The results
may not be integer values.) The two groups of instruc-
tions provided specifically to support integer-valued

operands are described below.

1. Floating Round to Integer

The Floating Round to Integer instructions round a
double-precision operand to an integer value in
floating-point double format. These instructions
may cause Invalid Operation (VXSNAN) excep-
tions. See Sections 4.3.6 and 4.5.1 for more infor-

mation about rounding.

2. Floating Convert To/From Integer

The Floating Convert To Integer instructions con-
vert a double-precision operand to a 32-bit or
64-bit signed fixed-point integer format. Variants
are provided both to perform rounding based on
the value of FPSCRgy and to round toward zero.
These instructions may cause Invalid Operation
(VXSNaN, VXCVI) and Inexact exceptions. The
Floating Convert From Integer instruction converts
a 64-bit signed fixed-point integer to a double-pre-
cision floating-point integer. Because of the limita-
tions of the source format, only an Inexact
exception may be generated.

4.3.6 Rounding

The material in this section applies to operations that
have numeric operands (i.e., operands that are not
infinities or NaNs). Rounding the intermediate result of
such an operation may cause an Overflow Exception,
an Underflow Exception, or an Inexact Exception. The
remainder of this section assumes that the operation
causes no exceptions and that the result is numeric.
See Section 4.3.2, “Value Representation” and
Section 4.4, “Floating-Point Exceptions” for the cases
not covered here.

The Arithmetic and Rounding and Conversion instruc-
tions round their intermediate results. With the excep-
tion of the Estimate instructions, these instructions
produce an intermediate result that can be regarded as
having infinite precision and unbounded exponent
range. All but two groups of these instructions normal-
ize or denormalize the intermediate result prior to
rounding and then place the final result into the target
FPR in double format. The Floating Round to Integer
and Floating Convert To Integer instructions with
biased exponents ranging from 1022 through 1074 are
prepared for rounding by repetitively shifting the signifi-
cand right one position and incrementing the biased
exponent until it reaches a value of 1075. (Intermediate
results with biased exponents 1075 or larger are
already integers, and with biased exponents 1021 or
less round to zero.) After rounding, the final result for
Floating Round to Integer is normalized and put in dou-
ble format, and for Floating Convert To Integer is con-
verted to a signed fixed-point integer.

FPSCR bits FR and FI generally indicate the results of
rounding. Each of the instructions which rounds its
intermediate result sets these bits. If the fraction is
incremented during rounding then FR is set to 1, other-
wise FR is set to 0. If the result is inexact then Fl is set
to 1, otherwise Fl is set to zero. The Round to Integer
instructions are exceptions to this rule, setting FR and
Fl to 0. The Estimate instructions set FR and FI to
undefined values. The remaining floating-point instruc-
tions do not alter FR and FI.

Four user-selectable rounding modes are provided
through the Floating-Point Rounding Control field in the

Chapter 4. Floating-Point Processor [Category: Floating-Point] 107

Version 2.05

FPSCR. See Section 4.2.2, “Floating-Point Status and
Control Register”. These are encoded as follows.

RN Rounding Mode

00 Round to Nearest

01 Round toward Zero

10 Round toward +Infinity
11 Round toward -Infinity

Let Z be the intermediate arithmetic result or the oper-
and of a convert operation. If Z can be represented
exactly in the target format, then the result in all round-
ing modes is Z as represented in the target format. If Z
cannot be represented exactly in the target format, let
Z1 and Z2 bound Z as the next larger and next smaller
numbers representable in the target format. Then Z1 or
Z2 can be used to approximate the result in the target
format.

Figure 53 shows the relation of Z, Z1, and Z2 in this
case. The following rules specify the rounding in the
four modes. “LSB” means “least significant bit”.

By Incrementing LSB of Z

Infinitely Precise Value ———

T By Truncating after LSB
| | | []|
i 5 85
Z 4

Negative values <—l_>

Figure 53. Selection of Z1 and Z2

Positive values

Round to Nearest
Choose the value that is closer to Z (Z1 or
Z2). In case of a tie, choose the one that is
even (least significant bit 0).

Round toward Zero
Choose the smaller in magnitude (Z1 or Z2).

Round toward +Infinity
Choose Z1.

Round toward -Infinity
Choose Z2.

See Section 4.5.1, “Execution Model for IEEE Opera-
tions” on page 113 for a detailed explanation of round-

ing.

4.4 Floating-Point Exceptions

This architecture defines the following floating-point
exceptions:

® [nvalid Operation Exception
SNaN
Infinity - Infinity
Infinity=Infinity
Zero+Zero
InfinityxZero
Invalid Compare
Software-Defined Condition
Invalid Square Root
Invalid Integer Convert
Zero Divide Exception
Overflow Exception
Underflow Exception
B Inexact Exception

These exceptions, other than Invalid Operation Excep-
tion due to Software-Defined Condition, may occur dur-
ing execution of computational instructions. An Invalid
Operation Exception due to Software-Defined Condi-
tion occurs when a Move To FPSCR instruction sets

Each floating-point exception, and each category of
Invalid Operation Exception, has an exception bit in the
FPSCR. In addition, each floating-point exception has a
corresponding enable bit in the FPSCR. The exception
bit indicates occurrence of the corresponding excep-
tion. If an exception occurs, the corresponding enable
bit governs the result produced by the instruction and,
in conjunction with the FEO and FE1 bits (see
page 109), whether and how the system floating-point
enabled exception error handler is invoked. (In general,
the enabling specified by the enable bit is of invoking
the system error handler, not of permitting the excep-
tion to occur. The occurrence of an exception depends
only on the instruction and its inputs, not on the setting
of any control bits. The only deviation from this general
rule is that the occurrence of an Underflow Exception
may depend on the setting of the enable bit.)

A single instruction, other than mtfsfi or mtfsf, may set

more than one exception bit only in the following cases:

W [nexact Exception may be set with Overflow
Exception.

B [nexact Exception may be set with Underflow
Exception.

W [nvalid Operation Exception (SNaN) is set with
Invalid Operation Exception (e=x0) for Multiply-Add
instructions for which the values being multiplied
are infinity and zero and the value being added is
an SNaN.

B Invalid Operation Exception (SNaN) may be set
with Invalid Operation Exception (Invalid Compare)
for Compare Ordered instructions.

B Invalid Operation Exception (SNaN) may be set
with Invalid Operation Exception (Invalid Integer
Convert) for Convert To Integer instructions.

108 Power ISA™ |

Version 2.05

When an exception occurs the writing of a result to the
target register may be suppressed or a result may be
delivered, depending on the exception.

The writing of a result to the target register is sup-
pressed for the following kinds of exception, so that
there is no possibility that one of the operands is lost:

B Enabled Invalid Operation
B Enabled Zero Divide

For the remaining kinds of exception, a result is gener-
ated and written to the destination specified by the
instruction causing the exception. The result may be a
different value for the enabled and disabled conditions
for some of these exceptions. The kinds of exception
that deliver a result are the following:

B Disabled Invalid Operation
Disabled Zero Divide
Disabled Overflow
Disabled Underflow
Disabled Inexact

Enabled Overflow
Enabled Underflow

B Enabled Inexact

Subsequent sections define each of the floating-point
exceptions and specify the action that is taken when
they are detected.

The IEEE standard specifies the handling of excep-
tional conditions in terms of “traps” and “trap handlers”.
In this architecture, an FPSCR exception enable bit of 1
causes generation of the result value specified in the
IEEE standard for the “trap enabled” case; the expecta-
tion is that the exception will be detected by software,
which will revise the result. An FPSCR exception
enable bit of O causes generation of the “default result”
value specified for the “trap disabled” (or “no trap
occurs” or “trap is not implemented”) case; the expecta-
tion is that the exception will not be detected by soft-
ware, which will simply use the default result. The result
to be delivered in each case for each exception is
described in the sections below.

The IEEE default behavior when an exception occurs is
to generate a default value and not to notify software. In
this architecture, if the IEEE default behavior when an
exception occurs is desired for all exceptions, all
FPSCR exception enable bits should be set to 0 and
Ignore Exceptions Mode (see below) should be used.
In this case the system floating-point enabled exception
error handler is not invoked, even if floating-point
exceptions occur: software can inspect the FPSCR
exception bits if necessary, to determine whether
exceptions have occurred.

In this architecture, if software is to be notified that a
given kind of exception has occurred, the correspond-
ing FPSCR exception enable bit must be setto 1 and a
mode other than Ignore Exceptions Mode must be
used. In this case the system floating-point enabled
exception error handler is invoked if an enabled float-

ing-point exception occurs. The system floating-point
enabled exception error handler is also invoked if a
Move To FPSCR instruction causes an exception bit
and the corresponding enable bit both to be 1; the
Move To FPSCR instruction is considered to cause the
enabled exception.

The FEO and FE1 bits control whether and how the
system floating-point enabled exception error handler
is invoked if an enabled floating-point exception occurs.
The location of these bits and the requirements for
altering them are described in Book Ill. (The system
floating-point enabled exception error handler is never
invoked because of a disabled floating-point excep-
tion.) The effects of the four possible settings of these
bits are as follows.

FEO FE1 Description

0 0 Ignore Exceptions Mode
Floating-point exceptions do not cause
the system floating-point enabled excep-

tion error handler to be invoked.

Imprecise Nonrecoverable Mode

The system floating-point enabled excep-
tion error handler is invoked at some point
at or beyond the instruction that caused
the enabled exception. It may not be pos-
sible to identify the excepting instruction
or the data that caused the exception.
Results produced by the excepting
instruction may have been used by or may
have affected subsequent instructions
that are executed before the error handler
is invoked.

Imprecise Recoverable Mode

The system floating-point enabled excep-
tion error handler is invoked at some point
at or beyond the instruction that caused
the enabled exception. Sufficient informa-
tion is provided to the error handler that it
can identify the excepting instruction and
the operands, and correct the result. No
results produced by the excepting instruc-
tion have been used by or have affected
subsequent instructions that are executed
before the error handler is invoked.

Precise Mode

The system floating-point enabled excep-
tion error handler is invoked precisely at
the instruction that caused the enabled
exception.

In all cases, the question of whether a floating-point
result is stored, and what value is stored, is governed
by the FPSCR exception enable bits, as described in
subsequent sections, and is not affected by the value of
the FEO and FEL1 bits.

In all cases in which the system floating-point enabled
exception error handler is invoked, all instructions

Chapter 4. Floating-Point Processor [Category: Floating-Point] 109

Version 2.05

before the instruction at which the system floating-point
enabled exception error handler is invoked have com-
pleted, and no instruction after the instruction at which
the system floating-point enabled exception error han-
dler is invoked has begun execution. The instruction at
which the system floating-point enabled exception error
handler is invoked has completed if it is the excepting
instruction and there is only one such instruction. Oth-
erwise it has not begun execution (or may have been
partially executed in some cases, as described in Book

1.

—— Programming Note

In any of the three non-Precise modes, a Float-
ing-Point Status and Control Register instruction
can be used to force any exceptions, due to
instructions initiated before the Floating-Point Sta-
tus and Control Register instruction, to be recorded
in the FPSCR. (This forcing is superfluous for Pre-
cise Mode.)

In either of the Imprecise modes, a Floating-Point
Status and Control Register instruction can be used
to force any invocations of the system floating-point
enabled exception error handler, due to instructions
initiated before the Floating-Point Status and Con-
trol Register instruction, to occur. (This forcing has
no effect in Ignore Exceptions Mode, and is super-
fluous for Precise Mode.)

The last sentence of the paragraph preceding this
Programming Note can apply only in the Imprecise
modes, or if the mode has just been changed from
Ignore Exceptions Mode to some other mode. (It
always applies in the latter case.)

In order to obtain the best performance across the wid-
est range of implementations, the programmer should
obey the following guidelines.

B If the IEEE default results are acceptable to the
application, Ignore Exceptions Mode should be
used with all FPSCR exception enable bits set to
0.

B If the IEEE default results are not acceptable to the
application, Imprecise Nonrecoverable Mode
should be used, or Imprecise Recoverable Mode if
recoverability is needed, with FPSCR exception
enable bits set to 1 for those exceptions for which
the system floating-point enabled exception error
handler is to be invoked.

W [gnore Exceptions Mode should not, in general, be
used when any FPSCR exception enable bits are
setto 1.

B Precise Mode may degrade performance in some
implementations, perhaps substantially, and there-
fore should be used only for debugging and other
specialized applications.

4.4.1 Invalid Operation Exception

4.41.1 Definition

An Invalid Operation Exception occurs when an oper-
and is invalid for the specified operation. The invalid
operations are:
® Any floating-point operation on a Signaling NaN
(SNaN)
B For add or subtract operations, magnitude subtrac-
tion of infinities (co -)

Division of infinity by infinity (co + o)

Division of zero by zero (0 + 0)

Multiplication of infinity by zero (e x 0)

Ordered comparison involving a NaN (Invalid

Compare)

Square root or reciprocal square root of a negative

(and nonzero) number (Invalid Square Root)

W Integer convert involving a number too large in
magnitude to be represented in the target format,
or involving an infinity or a NaN (Invalid Integer
Convert)

An Invalid Operation Exception also occurs when an
mtfsfi, mtfsf, or mtfsbl instruction is executed that
sets FPSCRyxsopT t0 1 (Software-Defined Condition).

4.4.1.2 Action

The action to be taken depends on the setting of the
Invalid Operation Exception Enable bit of the FPSCR.

When Invalid Operation Exception is enabled
(FPSCRyg=1) and an Invalid Operation Exception
occurs, the following actions are taken:

1. One or two Invalid Operation Exceptions are set

FPSCRyxsnaN (if SNaN)
FPSCRyxs| (if oo - o)
FPSCva|D| (If o 4+ OO)
FPSCRVXZDZ (|f O - O)
FPSCva|MZ (|f oo X O)
FPSCRyxvc (if invalid comp)
FPSCRyxsorT (if sfw-def cond)
FPSCRyxsorT (if invalid sqrt)
FPSCRyxcvi (if invalid int cvrt)

2. If the operation is an arithmetic, Floating Round to
Single-Precision, Floating Round to Integer, or
convert to integer operation,

the target FPR is unchanged
FPSCRgR g are set to zero
FPSCREpgRe is unchanged

3. If the operation is a compare,

FPSCRgR g c are unchanged
FPSCREpcc is set to reflect unordered

4. If an mtfsfi, mtfsf, or mtfsbl instruction is exe-
cuted that sets FPSCRyxsopFt 10 1,

The FPSCR is set as specified in the instruc-
tion description.

110 Power ISA™ |

Version 2.05

When Invalid Operation Exception is disabled
(FPSCRyg=0) and an Invalid Operation Exception
occurs, the following actions are taken:

1. One or two Invalid Operation Exceptions are set

FPSCRVXSNAN (if SNaN)
FPSCRyxs (if oo - o)
FPSCRyxioi (if oo + o)
FPSCRVXZDZ (If 0+ 0)
FPSCRVXlMZ (lf oo X 0)
FPSCRyxvc (if invalid comp)
FPSCRVXSOFT (if sfw-def cond)
FPSCRVXSQRT (if invalid sqrt)
FPSCRVXC\” (if invalid int cvrt)

2. If the operation is an arithmetic or Floating Round
to Single-Precision operation,
the target FPR is set to a Quiet NaN
FPSCRgR) are set to zero
FPSCREpRE is set to indicate the class of the
result (Quiet NaN)
3. If the operation is a convert to 64-hit integer opera-
tion,
the target FPR is set as follows:
FRT is set to the most positive 64-bit integer
if the operand in FRB is a positive number
or + «, and to the most negative 64-bit inte-
ger if the operand in FRB is a negative num-
ber, - o, or NaN
FPSCRgR) are set to zero
FPSCREpRE is undefined
4. If the operation is a convert to 32-bit integer opera-
tion,
the target FPR is set as follows:
FRTy.31 < undefined
FRT3,.63 are set to the most positive 32-bit
integer if the operand in FRB is a positive
number or +infinity, and to the most nega-
tive 32-hit integer if the operand in FRB is a
negative number, -infinity, or NaN
FPSCRgR) are set to zero
FPSCREpRE is undefined
5. If the operation is a compare,
FPSCRER | ¢ are unchanged
FPSCREpcc is set to reflect unordered

6. If an mtfsfi, mtfsf, or mtfsbl instruction is exe-
cuted that sets FPSCRyxsofFT t0 1,
The FPSCR is set as specified in the instruc-
tion description.

4.4.2 Zero Divide Exception

4.4.2.1 Definition

A Zero Divide Exception occurs when a Divide instruc-
tion is executed with a zero divisor value and a finite
nonzero dividend value. It also occurs when a Recipro-
cal Estimate instruction (fre[s] or frsqrte[s]) is exe-
cuted with an operand value of zero.

4.42.2 Action

The action to be taken depends on the setting of the
Zero Divide Exception Enable bit of the FPSCR.

When Zero Divide Exception is enabled (FPSCRzg=1)
and a Zero Divide Exception occurs, the following
actions are taken:

1. Zero Divide Exception is set
FPSCRzx < 1

2. The target FPR is unchanged

3. FPSCRgg [are set to zero

4. FPSCRgpgf is unchanged

When Zero Divide Exception is disabled (FPSCRzg=0)
and a Zero Divide Exception occurs, the following
actions are taken:

1. Zero Divide Exception is set
FPSCRzx < 1

2. The target FPR is set to + Infinity, where the sign is
determined by the XOR of the signs of the oper-
ands

3. FPSCRgR) are set to zero

4. FPSCRgpRE is set to indicate the class and sign of
the result (+ Infinity)

4.4.3 Overflow Exception

4.4.3.1 Definition

An Overflow Exception occurs when the magnitude of
what would have been the rounded result if the expo-
nent range were unbounded exceeds that of the largest
finite number of the specified result precision.

4.43.2 Action

The action to be taken depends on the setting of the
Overflow Exception Enable bit of the FPSCR.

When Overflow Exception is enabled (FPSCRpg=1)
and an Overflow Exception occurs, the following
actions are taken:

1. Overflow Exception is set
FPSCRox ¢« 1

2. For double-precision arithmetic instructions, the
exponent of the normalized intermediate result is
adjusted by subtracting 1536

3. For single-precision arithmetic instructions and the
Floating Round to Single-Precision instruction, the
exponent of the normalized intermediate result is
adjusted by subtracting 192

4. The adjusted rounded result is placed into the tar-
get FPR

5. FPSCRgpRE is set to indicate the class and sign of
the result (£ Normal Number)

When Overflow Exception is disabled (FPSCRog=0)
and an Overflow Exception occurs, the following
actions are taken:

Chapter 4. Floating-Point Processor [Category: Floating-Point] 111

Version 2.05

1. Overflow Exception is set
FPSCRpx < 1
2. Inexact Exception is set
FPSCRyx ¢ 1
3. The result is determined by the rounding mode
(FPSCRRgy) and the sign of the intermediate result
as follows:
- Round to Nearest
Store * Infinity, where the sign is the sign
of the intermediate result
- Round toward Zero
Store the format’s largest finite number
with the sign of the intermediate result
- Round toward + Infinity
For negative overflow, store the format’s
most negative finite number; for positive
overflow, store +Infinity
- Round toward - Infinity
For negative overflow, store -Infinity; for
positive overflow, store the format’s larg-
est finite number
The result is placed into the target FPR
FPSCRgR is undefined
FPSCRp is setto 1
FPSCREpRE is set to indicate the class and sign of
the result (z Infinity or £ Normal Number)

No ok

4.4.4 Underflow Exception

4.44.1 Definition

Underflow Exception is defined separately for the
enabled and disabled states:

E Enabled:
Underflow occurs when the intermediate result is
“Tiny”".

W Disabled:
Underflow occurs when the intermediate result is
“Tiny” and there is “Loss of Accuracy”.

A “Tiny” result is detected before rounding, when a
nonzero intermediate result computed as though both
the precision and the exponent range were unbounded
would be less in magnitude than the smallest normal-
ized number.

If the intermediate result is “Tiny” and Underflow
Exception is disabled (FPSCRyg=0) then the interme-
diate result is denormalized (see Section 4.3.4, “Nor-
malization and Denormalization” on page 106) and
rounded (see Section 4.3.6, “Rounding” on page 107)
before being placed into the target FPR.

“Loss of Accuracy” is detected when the delivered
result value differs from what would have been com-
puted were both the precision and the exponent range
unbounded.

4.4.4.2 Action

The action to be taken depends on the setting of the
Underflow Exception Enable bit of the FPSCR.

When Underflow Exception is enabled (FPSCRg=1)
and an Underflow Exception occurs, the following
actions are taken:

1. Underflow Exception is set
FPSCRyx < 1

2. For double-precision arithmetic instructions, the
exponent of the normalized intermediate result is
adjusted by adding 1536

3. For single-precision arithmetic instructions and the
Floating Round to Single-Precision instruction, the
exponent of the normalized intermediate result is
adjusted by adding 192

4. The adjusted rounded result is placed into the tar-
get FPR

5. FPSCRgpRgE is set to indicate the class and sign of
the result (£ Normalized Number)

112 Power ISA™ |

Version 2.05

—— Programming Note

The FR and FI bits are provided to allow the system
floating-point enabled exception error handler,
when invoked because of an Underflow Exception,
to simulate a “trap disabled” environment. That is,
the FR and FI bits allow the system floating-point
enabled exception error handler to unround the
result, thus allowing the result to be denormalized.

When Underflow Exception is disabled (FPSCRyg=0)
and an Underflow Exception occurs, the following
actions are taken:

1. Underflow Exception is set
FPSCRyx ¢ 1
2. The rounded result is placed into the target FPR
3. FPSCRgpRge is set to indicate the class and sign of
the result (= Normalized Number, = Denormalized
Number, or £ Zero)

4.4.5 Inexact Exception

4451 Definition

An Inexact Exception occurs when one of two condi-
tions occur during rounding:

1. The rounded result differs from the intermediate
result assuming both the precision and the expo-
nent range of the intermediate result to be
unbounded. In this case the result is said to be
inexact. (If the rounding causes an enabled Over-
flow Exception or an enabled Underflow Excep-
tion, an Inexact Exception also occurs only if the
significands of the rounded result and the interme-
diate result differ.)

2. The rounded result overflows and Overflow Excep-
tion is disabled.

4452 Action

The action to be taken does not depend on the setting
of the Inexact Exception Enable bit of the FPSCR.

When an Inexact Exception occurs, the following
actions are taken:

1. Inexact Exception is set
FPSCRyy ¢ 1
2. The rounded or overflowed result is placed into the
target FPR
3. FPSCRgpRge is set to indicate the class and sign of
the result

Programming Note

In some implementations, enabling Inexact Excep-
tions may degrade performance more than does
enabling other types of floating-point exception.

4.5 Floating-Point Execution
Models

All implementations of this architecture must provide
the equivalent of the following execution models to
ensure that identical results are obtained.

Special rules are provided in the definition of the com-
putational instructions for the infinities, denormalized
numbers and NaNs. The material in the remainder of
this section applies to instructions that have numeric
operands and a numeric result (i.e., operands and
result that are not infinities or NaNs), and that cause no
exceptions. See Section 4.3.2 and Section 4.4 for the
cases not covered here.

Although the double format specifies an 11-bit expo-
nent, exponent arithmetic makes use of two additional
bits to avoid potential transient overflow conditions.
One extra bit is required when denormalized dou-
ble-precision numbers are prenormalized. The second
bit is required to permit the computation of the adjusted
exponent value in the following cases when the corre-
sponding exception enable bit is 1:

® Underflow during multiplication using a denormal-
ized operand.

® Overflow during division using a denormalized divi-
sor.

The IEEE standard includes 32-bit and 64-bit arith-
metic. The standard requires that single-precision arith-
metic be provided for single-precision operands. The
standard permits double-precision floating-point opera-
tions to have either (or both) single-precision or dou-
ble-precision operands, but states that single-precision
floating-point operations should not accept double-pre-
cision operands. The Power ISA follows these guide-
lines; double-precision arithmetic instructions can have
operands of either or both precisions, while single-pre-
cision arithmetic instructions require all operands to be
single-precision. Double-precision arithmetic instruc-
tions and fcfid produce double-precision values, while
single-precision arithmetic instructions produce sin-
gle-precision values.

For arithmetic instructions, conversions from dou-
ble-precision to single-precision must be done explicitly
by software, while conversions from single-precision to
double-precision are done implicitly.

45.1 Execution Model for IEEE
Operations

The following description uses 64-bit arithmetic as an
example. 32-bit arithmetic is similar except that the
FRACTION is a 23-bit field, and the single-precision
Guard, Round, and Sticky bits (described in this sec-
tion) are logically adjacent to the 23-bit FRACTION
field.

Chapter 4. Floating-Point Processor [Category: Floating-Point] 113

Version 2.05

IEEE-conforming significand arithmetic is considered to
be performed with a floating-point accumulator having
the following format, where bits 0:55 comprise the sig-
nificand of the intermediate result.

Is|c]L] FRACTION |G|R[X]
01 53 54 55

Figure 54. |EEE 64-bit execution model
The S bit is the sign bit.

The C bit is the carry bit, which captures the carry out
of the significand.

The L bit is the leading unit bit of the significand, which
receives the implicit bit from the operand.

The FRACTION is a 52-bit field that accepts the frac-
tion of the operand.

The Guard (G), Round (R), and Sticky (X) bits are
extensions to the low-order bits of the accumulator.
The G and R bits are required for postnormalization of
the result. The G, R, and X bits are required during
rounding to determine if the intermediate result is
equally near the two nearest representable values. The
X bit serves as an extension to the G and R bits by rep-
resenting the logical OR of all bits that may appear to
the low-order side of the R bit, due either to shifting the
accumulator right or to other generation of low-order
result bits. The G and R bits participate in the left shifts
with zeros being shifted into the R bit. Figure 55 shows
the significance of the G, R, and X bits with respect to
the intermediate result (IR), the representable number
next lower in magnitude (NL), and the representable
number next higher in magnitude (NH).

G R X | Interpretation
000 |IRisexact
001

010 |IRclosertoNL
011

100 |IR midway between NL and NH

101
110 |IR closer to NH

111

Figure 55. Interpretation of G, R, and X bits

Figure 56 shows the positions of the Guard, Round,
and Sticky bits for double-precision and single-preci-
sion floating-point numbers relative to the accumulator
illustrated in Figure 54.

Format |Guard |Round [Sticky
Double |G bit R bit X bit
Single (24 25 OR of 26:52, G, R, X

Figure 56. Location of the Guard, Round, and
Sticky bits in the IEEE execution model

The significand of the intermediate result is prepared
for rounding by shifting its contents right, if required,
until the least significant bit to be retained is in the
low-order bit position of the fraction. Four user-select-
able rounding modes are provided through FPSCRRy
as described in Section 4.3.6, “Rounding” on page 107.
Using Z1 and Z2 as defined on page 107, the rules for
rounding in each mode are as follows.

B Round to Nearest

Guard bit=0

The result is truncated. (Result exact (GRX=000)
or closest to next lower value in magnitude
(GRX=001, 010, or 011))

Guard bit=1
Depends on Round and Sticky bits:

Case a
If the Round or Sticky bit is 1 (inclusive), the
result is incremented. (Result closest to
next higher value in magnitude (GRX=101,
110, or 111))

Case b

If the Round and Sticky bits are 0 (result
midway between closest representable val-
ues), then if the low-order bit of the result is
1 the result is incremented. Otherwise (the
low-order bit of the result is 0) the result is
truncated (this is the case of a tie rounded
to even).

B Round toward Zero
Choose the smaller in magnitude of Z1 or Z2. If the
Guard, Round, or Sticky bit is nonzero, the result is

inexact.

B Round toward + Infinity
Choose Z1.

B Round toward - Infinity
Choose Z2.

If rounding results in a carry into C, the significand is
shifted right one position and the exponent is incre-
mented by one. This yields an inexact result, and possi-
bly also exponent overflow. If any of the Guard, Round,
or Sticky bits is nonzero, then the result is also inexact.
Fraction bits are stored to the target FPR. For Floating
Round to Integer, Floating Round to Single-Precision,
and single-precision arithmetic instructions, low-order
zeros must be appended as appropriate to fill out the
double-precision fraction.

114 Power ISA™ |

Version 2.05

4.5.2 Execution Model for
Multiply-Add Type Instructions

The Power ISA provides a special form of instruction
that performs up to three operations in one instruction
(a multiplication, an addition, and a negation). With this
added capability comes the special ability to produce a
more exact intermediate result as input to the rounder.
32-bit arithmetic is similar except that the FRACTION
field is smaller.

Multiply-add significand arithmetic is considered to be
performed with a floating-point accumulator having the
following format, where bits 0:106 comprise the signifi-
cand of the intermediate result.

[s|c]L] FRACTION Ed
0123 106

Figure 57. Multiply-add 64-bit execution model

The first part of the operation is a multiplication. The
multiplication has two 53-bit significands as inputs,
which are assumed to be prenormalized, and produces
a result conforming to the above model. If there is a
carry out of the significand (into the C bit), then the sig-
nificand is shifted right one position, shifting the L bit
(leading unit bit) into the most significant bit of the
FRACTION and shifting the C bit (carry out) into the L
bit. All 106 bits (L bit, the FRACTION) of the product
take part in the add operation. If the exponents of the
two inputs to the adder are not equal, the significand of
the operand with the smaller exponent is aligned
(shifted) to the right by an amount that is added to that
exponent to make it equal to the other input’s exponent.
Zeros are shifted into the left of the significand as it is
aligned and bits shifted out of bit 105 of the significand
are ORed into the X' bit. The add operation also pro-
duces a result conforming to the above model with the
X' bit taking part in the add operation.

The result of the addition is then normalized, with all
bits of the addition result, except the X’ bit, participating
in the shift. The normalized result serves as the inter-
mediate result that is input to the rounder.

For rounding, the conceptual Guard, Round, and Sticky
bits are defined in terms of accumulator bits. Figure 58
shows the positions of the Guard, Round, and Sticky
bits for double-precision and single-precision float-
ing-point numbers in the multiply-add execution model.

Format [{Guard |Round
Double |53 54
Single |24 25

Sticky
OR of 55:105, X’
OR of 26:105, X'

Figure 58. Location of the Guard, Round, and
Sticky bits in the multiply-add execution
model

The rules for rounding the intermediate result are the
same as those given in Section 4.5.1.

If the instruction is Floating Negative Multiply-Add or
Floating Negative Multiply-Subtract, the final result is
negated.

Chapter 4. Floating-Point Processor [Category: Floating-Point] 115

Version 2.05

4.6 Floating-Point Processor Instructions

For each instruction in this section that defines the use
of an Rc bit, the behavior defined for the instruction cor-
responding to Rc=1 is considered part of the Float-
ing-Point.Record category.

116 Power ISA™ |

Version 2.05

4.6.1 Floating-Point Storage Access Instructions

The Storage Access instructions compute the effective
address (EA) of the storage to be accessed as
described in Section 1.10.3, “Effective Address Calcu-
lation” on page 26.

—— Programming Note

The la extended mnemonic permits computing an
effective address as a Load or Store instruction
would, but loads the address itself into a GPR
rather than loading the value that is in storage at
that address. This extended mnemonic is
described in Section D.9, “Miscellaneous Mnemon-
ics” on page 393.

4.6.1.1 Storage Access Exceptions

Storage accesses will cause the system data storage
error handler to be invoked if the program is not
allowed to modify the target storage (Store only), or if
the program attempts to access storage that is unavail-
able.

4.6.2 Floating-Point Load Instructions

There are three basic forms of load instruction: sin-
gle-precision, double-precision, and integer. The inte-
ger form is provided by the Load Floating-Point as
Integer Word Algebraic instruction, described on
page 120. Because the FPRs support only float-
ing-point double format, single-precision Load Float-
ing-Point instructions convert single-precision data to
double format prior to loading the operand into the tar-
get FPR. The conversion and loading steps are as fol-
lows.

Let WORDg.3; be the floating-point single-precision
operand accessed from storage.

Normalized Operand
if WORD;.g > 0 and WORD; g < 255 then
FRTy.; « WORDg,
FRT, ¢ “WORD;
FRT3 « "WORD;
FRT, « "WORD;
FRTs5.63 « WORD,.3y || %0

Denormalized Operand
if WORD1:8 =0 and WORD9:31 #0 then
sign « WORD,
exp « -126
fraco.s, < ObO || WORDg.g; | 2%0
normalize the operand
do while fracy = 0
fraCO:52 &« fraC]_:52 ” (0] o]0}

expeexp-1
FRTg < sign
FRT]_:]_]_ < exp + 1023
FRT12.63 < fracys,

Zero [Infinity / NaN
if WORD]_:S =255 or WORD1:31 =0 then
FRTOIl &« WORDo:l
FRT, « WORD,
FRT3 « WORD,
FRT, « WORD,
FRTs.63 « WORDy.3; || 2%

For double-precision Load Floating-Point instructions
and for the Load Floating-Point as Integer Word Alge-
braic instruction no conversion is required, as the data
from storage are copied directly into the FPR.

Many of the Load Floating-Point instructions have an
“update” form, in which register RA is updated with the
effective address. For these forms, if RA20, the effec-
tive address is placed into register RA and the storage
element (word or doubleword) addressed by EA is
loaded into FRT.

Note: Recall that RA and RB denote General Purpose
Registers, while FRT denotes a Floating-Point Regis-
ter.

Chapter 4. Floating-Point Processor [Category: Floating-Point] 117

Version 2.05

Load Floating-Point Single D-form
Ifs FRT,D(RA)

48 FRT | RA D
0 6 11 16 31

Load Floating-Point Single Indexed

if RA = 0 then b « 0
else b « (Ra)
EA ¢ b + EXTS(D)

FRT ¢ DOUBLE (MEM(EA, 4))

Let the effective address (EA) be the sum (RA|0)+D.

The word in storage addressed by EA is interpreted as
a floating-point single-precision operand. This word is
converted to floating-point double format (see
page 117) and placed into register FRT.

Special Registers Altered:
None

Load Floating-Point Single with Update

X-form

Ifsx FRT,RA,RB
31 FRT RA RB 535 /
(6] 6 11 16 21 31

if RA =0 thenb « 0
else b €« (RA)
EA ¢ b + (RB)

FRT < DOUBLE (MEM (EA, 4))

Let the effective address (EA) be the sum (RA|0)+(RB).

The word in storage addressed by EA is interpreted as
a floating-point single-precision operand. This word is
converted to floating-point double format (see
page 117) and placed into register FRT.

Special Registers Altered:
None

Load Floating-Point Single with Update

D-form Indexed X-form

Ifsu FRT,D(RA) Ifsux FRT,RA,RB
49 FRT RA D 31 FRT RA RB 567 /
0 6 11 16 31 0 6 11 16 21 31

EA < (RA) + EXTS(D)
FRT < DOUBLE (MEM (EA, 4))
RA ¢ EA

Let the effective address (EA) be the sum (RA)+D.

The word in storage addressed by EA is interpreted as
a floating-point single-precision operand. This word is
converted to floating-point double format (see
page 117) and placed into register FRT.

EA is placed into register RA.
If RA=0, the instruction form is invalid.

Special Registers Altered:
None

EA < (RA) + (RB)
FRT ¢ DOUBLE (MEM(ER, 4))
RA € EA

Let the effective address (EA) be the sum (RA)+(RB).

The word in storage addressed by EA is interpreted as
a floating-point single-precision operand. This word is
converted to floating-point double format (see
page 117) and placed into register FRT.

EA is placed into register RA.
If RA=0, the instruction form is invalid.

Special Registers Altered:
None

118 Power ISA™ |

Version 2.05

Load Floating-Point Double D-form
Ifd FRT,D(RA)

50 FRT | RA D
0 6 11 16 31

if RA = 0 thenb « 0
else b « (Ra)
EA ¢ b + EXTS(D)

FRT < MEM(EA, 8)

Let the effective address (EA) be the sum (RA|0)+D.

The doubleword in storage addressed by EA is loaded
into register FRT.

Special Registers Altered:
None

Load Floating-Point Double with Update

Load Floating-Point Double Indexed

X-form

Ifdx FRT,RA,RB
31 FRT RA RB 599 /
(6] 6 11 16 21 31

if RA =0 thenb « 0
else b €« (RA)
EA ¢ b + (RB)

FRT < MEM(EA, 8)

Let the effective address (EA) be the sum (RA|0)+(RB).

The doubleword in storage addressed by EA is loaded
into register FRT.

Special Registers Altered:
None

Load Floating-Point Double with Update

D-form Indexed X-form
Ifdu FRT,D(RA) Ifdux FRT,RA,RB
51 FRT RA D 31 FRT RA RB 631 /
0 6 11 16 31 0 6 11 16 21 31
EA < (RA) + EXTS(D) EA < (RA) + (RB)
FRT < MEM(EA, 8) FRT < MEM(EA, 8)
RA < EA RA €« EA

Let the effective address (EA) be the sum (RA)+D.

The doubleword in storage addressed by EA is loaded
into register FRT.

EA is placed into register RA.
If RA=0, the instruction form is invalid.

Special Registers Altered:
None

Let the effective address (EA) be the sum (RA)+(RB).

The doubleword in storage addressed by EA is loaded
into register FRT.

EA is placed into register RA.
If RA=0, the instruction form is invalid.

Special Registers Altered:
None

Chapter 4. Floating-Point Processor [Category: Floating-Point]

119

Version 2.05

Load Floating-Point as Integer Word

Algebraic Indexed X-form
Ifiwax FRT,RA,RB
31 FRT | RA RB 855 /

if RA = 0 then b « 0
else b € (RA)
EA ¢« b + (RB)

FRT ¢ EXTS(MEM(EA, 4))

Let the effective address (EA) be the sum (RA|0)+(RB).

The word in storage addressed by EA is loaded into
FRT35.63. FRTq.31 are filled with a copy of bit 0 of the
loaded word.

Special Registers Altered:
None

120 Power ISA™ |

Version 2.05

4.6.3 Floating-Point Store Instructions

There are three basic forms of store instruction: sin-
gle-precision, double-precision, and integer. The inte-
ger form is provided by the Store Floating-Point as
Integer Word instruction, described on page 124.
Because the FPRs support only floating-point double
format for floating-point data, single-precision Store
Floating-Point instructions convert double-precision
data to single format prior to storing the operand into
storage. The conversion steps are as follows.

Let WORDg.3; be the word in storage written to.

No Denormalization Required (includes Zero / Infin-
ity / NaN)
if FRS4.11 > 896 or FRS;.63 = 0 then

WORDy.; ¢« FRSq.1

WORD3:3; < FRS5:34

Denormalization Required
if 874 < FRS]_:]_]_ < 896 then
sign « FRS,,
exp « FRS]_:]_]_ - 1023
fraco.sp < Obl || FRS;5.63
denormalize operand
do while exp < -126
fraC0:52 < 0b0 || fraC0:51
expeexp+1
WORD,, ¢ sign
WORD1:8 < 0x00
WORDg:3; « frac;.p3
else WORD « undefined

Notice that if the value to be stored by a single-preci-
sion Store Floating-Point instruction is larger in magni-
tude than the maximum number representable in single
format, the first case above (No Denormalization
Required) applies. The result stored in WORD is then
a well-defined value, but is not numerically equal to the
value in the source register (i.e., the result of a sin-

gle-precision Load Floating-Point from WORD will not
compare equal to the contents of the original source
register).

For double-precision Store Floating-Point instructions
and for the Store Floating-Point as Integer Word
instruction no conversion is required, as the data from
the FPR are copied directly into storage.

Many of the Store Floating-Point instructions have an
“update” form, in which register RA is updated with the
effective address. For these forms, if RA20, the effec-
tive address is placed into register RA.

Note: Recall that RA and RB denote General Purpose
Registers, while FRS denotes a Floating-Point Regis-
ter.

Chapter 4. Floating-Point Processor [Category: Floating-Point] 121

Version 2.05

Store Floating-Point Single D-form
stfs FRS,D(RA)

52 FRS | RA D
0 6 11 16 31

if RA = 0 then b « 0

else b « (Ra)
EA ¢ b + EXTS(D)

MEM (EA, 4) ¢ SINGLE((FRS))

Let the effective address (EA) be the sum (RA|0)+D.

The contents of register FRS are converted to single
format (see page 121) and stored into the word in stor-
age addressed by EA.

Special Registers Altered:
None

Store Floating-Point Single with Update

Store Floating-Point Single Indexed

X-form

stfsx FRS,RA,RB
31 FRS RA RB 663 /
(6] 6 11 16 21 31

if RA =0 thenb « 0

else b €« (RA)
EA ¢ b + (RB)

MEM (EA, 4) ¢« SINGLE((FRS))

Let the effective address (EA) be the sum (RA|0)+(RB).

The contents of register FRS are converted to single
format (see page 121) and stored into the word in stor-
age addressed by EA.

Special Registers Altered:
None

Store Floating-Point Single with Update

D-form Indexed X-form

stfsu FRS,D(RA) stfsux FRS,RA,RB
53 FRS RA D 31 FRS RA RB 695 /
(] 6 11 16 31 0 6 11 16 21 31

EA < (RA) + EXTS(D)
MEM (EA, 4) ¢ SINGLE((FRS))
RA ¢ EA

Let the effective address (EA) be the sum (RA)+D.

The contents of register FRS are converted to single
format (see page 121) and stored into the word in stor-
age addressed by EA.

EA is placed into register RA.
If RA=0, the instruction form is invalid.

Special Registers Altered:
None

EA < (RA) + (RB)
MEM(EA, 4) ¢ SINGLE((FRS))
RA € EA

Let the effective address (EA) be the sum (RA)+(RB).

The contents of register FRS are converted to single
format (see page 121) and stored into the word in stor-
age addressed by EA.

EA is placed into register RA.
If RA=0, the instruction form is invalid.

Special Registers Altered:
None

122 Power ISA™ |

Version 2.05

Store Floating-Point Double D-form
stfd FRS,D(RA)

54 FRS | RA D
0 6 11 16 31

if RA = 0 then b « 0
else b « (Ra)
EA ¢ b + EXTS(D)

MEM (EA, 8) ¢« (FRS)

Let the effective address (EA) be the sum (RA|0)+D.

The contents of register FRS are stored into the dou-
bleword in storage addressed by EA.

Special Registers Altered:
None

Store Floating-Point Double with Update

Store Floating-Point Double Indexed

X-form

stfdx FRS,RA,RB
31 FRS RA RB 727 /
(6] 6 11 16 21 31

if RA =0 thenb « 0
else b €« (RA)
EA ¢ b + (RB)

MEM (EA, 8) ¢« (FRS)

Let the effective address (EA) be the sum (RA|0)+(RB).

The contents of register FRS are stored into the dou-
bleword in storage addressed by EA.

Special Registers Altered:
None

Store Floating-Point Double with Update

D-form Indexed X-form

stfdu FRS,D(RA) stfdux FRS,RA,RB
55 FRS RA D 31 FRS RA RB 759 /
0 6 11 16 31 0 6 11 16 21 31

EA < (RA) + EXTS(D)
MEM (EA, 8) ¢« (FRS)
RA ¢« EA

Let the effective address (EA) be the sum (RA)+D.

The contents of register FRS are stored into the dou-
bleword in storage addressed by EA.

EA is placed into register RA.
If RA=0, the instruction form is invalid.

Special Registers Altered:
None

EA < (RA) + (RB)
MEM(EA, 8) < (FRS)
RA < EA

Let the effective address (EA) be the sum (RA)+(RB).

The contents of register FRS are stored into the dou-
bleword in storage addressed by EA.

EA is placed into register RA.
If RA=0, the instruction form is invalid.

Special Registers Altered:
None

Chapter 4. Floating-Point Processor [Category: Floating-Point] 123

Version 2.05

Store Floating-Point as Integer Word

Indexed X-form
stfiwx FRS,RA,RB

31 FRS RA RB 083 /
0 6 11 16 21 31

if RA =0 thenb « 0
else b « (RA)
EA € b + (RB)

MEM(EA, 4) € (FRS);35.45

Let the effective address (EA) be the sum (RA|0)+(RB).

(FRS)3,.63 are stored, without conversion, into the word
in storage addressed by EA.

If the contents of register FRS were produced, either
directly or indirectly, by a Load Floating-Point Single
instruction, a single-precision Arithmetic instruction, or
frsp, then the value stored is undefined. (The contents
of register FRS are produced directly by such an
instruction if FRS is the target register for the instruc-
tion. The contents of register FRS are produced indi-
rectly by such an instruction if FRS is the final target
register of a sequence of one or more Floating-Point
Move instructions, with the input to the sequence hav-
ing been produced directly by such an instruction.)

Special Registers Altered:
None

124 Power ISA™ |

Version 2.05

4.6.4 Floating-Point Load Store Doubleword Pair Instructions [Category:

Floating-PointPhased-Out]

For Ifdp[x], the doubleword-pair in storage addressed
by EA is loaded into an even-odd pair of FPRs with the
even-numbered FPR being loaded with the leftmost
doubleword from storage and the odd-numbered FPR
being loaded with the rightmost doubleword.

For stfdp[x], the content of an even-odd pair of FPRs
is stored into the doubleword-pair in storage
addressed by EA, with the even-numbered FPR being
stored into the leftmost doubleword in storage and the

odd-numbered FPR being stored into the rightmost
doubleword.

Programming Note

The instructions described in this section should
not be used to access an operand in DFP128 for-
mat when MSR| g=1.

Load Floating-Point Double Pair DS-form

Ifdp FRTp,DS(RA)

Store Floating-Point Double Pair DS-form

stfdp FRSp,DS(RA)

57 FRTp RA DS 00

0 6 11 16 30 31

61 | FRSp | RA DS 00

0 6 11 16 30 31

if RA = 0 then b « 0
else b «(RA)
EA ¢ b + EXTS(DS||0b00)
FRTp ¢ MEM(EA, 16)

Let the effective address (EA) be the sum (RA|0) +
(DS||0b00). The doubleword-pair in storage addressed
by EA is placed into register-pair FRTp.

If FRTp is odd, the instruction form is invalid.

Special Registers Altered:
None

Load Floating-Point Double Pair Indexed
X-form

Ifdpx FRTp,RA,RB

31 FRTp RA RB 791 /

0 6 11 16 21 31

if RA =0 thenb « 0
else b « (RA)
EA € b + (RB)

FRTp ¢« MEM(EA, 16)

Let the effective address (EA) be the sum (RA|O) +
(RB). The doubleword-pair in storage addressed by EA
is placed into register-pair FRTp.

If FRTp is odd, the instruction form is invalid.

Special Registers Altered:
None

if RA = 0 then b ¢« 0
else b « (RA)
EA « b + EXTS(DS||0b00)
MEM(EA, 16) ¢« FRSp

Let the effective address (EA) be the sum (RA|O) +
(DS||0b00). The contents of register-pair FRSp are
stored into the doubleword-pair in storage addressed
by EA.

If FRSp is odd, the instruction form is invalid.

Special Registers Altered:
None

Store Floating-Point Double Pair Indexed
X-form

stfdpx FRSp,RA,RB

31 FRSp RA RB 919 /

0 6 11 16 21 31

if RA =0 thenb € 0
else b €« (RA)
EA ¢ b + (RB)

MEM (EA, 16) ¢« FRSp

Let the effective address (EA) be the sum (RA|0) +
(RB). The contents of register-pair FRSp are stored
into the doubleword-pair in storage addressed by EA.

If FRSp is odd, the instruction form is invalid.

Special Registers Altered:
None

Chapter 4. Floating-Point Processor [Category: Floating-Point] 125

Version 2.05

4.6.5 Floating-Point Move Instructions

These instructions copy data from one floating-point
register to another, altering the sign bit (bit 0) as
described below for fneg, fabs, fnabs, and fcpsgn.
These instructions treat NaNs just like any other kind of

value (e.g., the sign bit of a NaN may be altered by
fneg, fabs, fnabs, and fcpsgn). These instructions do
not alter the FPSCR.

Floating Move Register X-form Floating Negate X-form
fmr FRT,FRB (Rc=0) fneg FRTFRB (Rc=0)
fmr. FRTFRB (Rc=1) fneg. FRTFRB (Rc=1)

63 FRT 7 FRB 72 Rc 63 FRT 17 FRB 40 Rc
0 6 11 16 21 31 0 6 11 16 21 31

The contents of register FRB are placed into register
FRT.

Special Registers Altered:

The contents of register FRB with bit 0 inverted are
placed into register FRT.

Special Registers Altered:

CR1 (if Rc=1) CR1 (if Rc=1)
Floating Absolute Value X-form Floating Copy Sign X-form
fabs FRTFRB (Rc=0) fcpsgn FRT, FRA, FRB (Rc=0)
fabs. FRT,FRB (Rc=1) fcpsgn. FRT, FRA, FRB (Rc=1)

63 FRT i FRB 264 Rc 63 FRT FRA FRB 8 Rc
o 6 11 16 21 31 0 6 11 16 21 31

The contents of register FRB with bit 0 set to zero are
placed into register FRT.

Special Registers Altered:
CR1 (if Rc=1)

Floating Negative Absolute Value X-form

fnabs FRTFRB (Rc=0)

fnabs. FRTFRB (Rc=1)
63 FRT i FRB 136 Rc

o 6 11 16 21 31

The contents of register FRB with bit 0 set to one are
placed into register FRT.

Special Registers Altered:
CR1 (if Rc=1)

The contents of register FRB with bit 0 set to the value
of bit 0 of register FRA are placed into register FRT.

Special Registers Altered:
CR1 (if Re=1)

126 Power ISA™ |

Version 2.05

4.6.6 Floating-Point Arithmetic Instructions

4.6.6.1 Floating-Point Elementary Arithmetic Instructions

Floating Add [Single] A-form
fadd FRTFRAFRB (Rc=0)
fadd. FRTFRAFRB (Re=1)

Floating Subtract [Single] A-form
fsub FRTFRAFRB (Rc=0)
fsub. FRTFRAFRB (Re=1)

63 FRT | FRA | FRB 7 21 |Rc

63 FRT | FRA | FRB 1 20 |Rc

0 6 11 16 21 26 31 (6] 6 11 16 21 26 31
fadds FRTFRAFRB (Rc=0) fsubs FRTFRAFRB (Rc=0)
fadds. FRTFRAFRB (Re=1) fsubs. FRTFRAFRB (Re=1)

59 FRT | FRA | FRB 1 21 |Rc
0 6 11 16 21 26 31

59 FRT | FRA | FRB 7 20 |Rc
0 6 11 16 21 26 31

The floating-point operand in register FRA is added to
the floating-point operand in register FRB.

If the most significant bit of the resultant significand is
not 1, the result is normalized. The result is rounded to
the target precision under control of the Floating-Point
Rounding Control field RN of the FPSCR and placed
into register FRT.

Floating-point addition is based on exponent compari-
son and addition of the two significands. The expo-
nents of the two operands are compared, and the
significand accompanying the smaller exponent is
shifted right, with its exponent increased by one for
each bit shifted, until the two exponents are equal. The
two significands are then added or subtracted as
appropriate, depending on the signs of the operands, to
form an intermediate sum. All 53 bits of the significand
as well as all three guard bits (G, R, and X) enter into
the computation.

If a carry occurs, the sum’s significand is shifted right
one bit position and the exponent is increased by one.

FPSCREpRE is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRVE:]..

Special Registers Altered:
FPRF FR FI
FX OX UX XX
VXSNAN VXISI
CR1 (if Rc=1)

The floating-point operand in register FRB is subtracted
from the floating-point operand in register FRA.

If the most significant bit of the resultant significand is
not 1, the result is normalized. The result is rounded to
the target precision under control of the Floating-Point
Rounding Control field RN of the FPSCR and placed
into register FRT.

The execution of the Floating Subtract instruction is
identical to that of Floating Add, except that the con-
tents of FRB participate in the operation with the sign
bit (bit 0) inverted.

FPSCREpRg Is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRVE:]..

Special Registers Altered:
FPRF FR FI
FX OX UX XX
VXSNAN VXISI
CR1 (if Re=1)

Chapter 4. Floating-Point Processor [Category: Floating-Point] 127

Version 2.05

Floating Multiply [Single] A-form
fmul FRTFRAFRC (Rc=0)
fmul. FRTFRAFRC (Rc=1)

Floating Divide [Single] A-form
fdiv FRT,FRAFRB (Rc=0)
fdiv. FRTFRAFRB (Rc=1)

63 FRT | FRA 7 FRC 25 |Rc

63 FRT | FRA | FRB 7 18 |Rc

o 6 11 16 21 26 31 0 6 11 16 21 26 31
fmuls FRTFRAFRC (Rc=0) fdivs FRTFRAFRB (Rc=0)
fmuls. FRTFRAFRC (Rec=1) fdivs. FRTFRAFRB (Rc=1)

59 FRT | FRA 1 FRC 25 |Rc
0 6 11 16 21 26 31

59 FRT | FRA | FRB 7 18 |Rc
0 6 11 16 21 26 31

The floating-point operand in register FRA is multiplied
by the floating-point operand in register FRC.

If the most significant bit of the resultant significand is
not 1, the result is normalized. The result is rounded to
the target precision under control of the Floating-Point
Rounding Control field RN of the FPSCR and placed
into register FRT.

Floating-point multiplication is based on exponent addi-
tion and multiplication of the significands.

FPSCRgpRr is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRyg=1.

Special Registers Altered:
FPRF FR FI
FX OX UX XX
VXSNAN VXIMZ
CR1 (if Rc=1)

The floating-point operand in register FRA is divided by
the floating-point operand in register FRB. The remain-
der is not supplied as a result.

If the most significant bit of the resultant significand is
not 1, the result is normalized. The result is rounded to
the target precision under control of the Floating-Point
Rounding Control field RN of the FPSCR and placed
into register FRT.

Floating-point division is based on exponent subtrac-
tion and division of the significands.

FPSCRpRr is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRyg=1 and Zero Divide Exceptions when
FPSCRzg=1.

Special Registers Altered:
FPRF FR FI
FX OX UX ZX XX
VXSNAN VXIDI VXzZDzZ
CR1 (if Rc=1)

128 Power ISA™ |

Version 2.05

Floating Square Root [Single] A-form Floating Reciprocal Estimate [Single]
A-form
fsqrt FRTFRB (Rc=0)
fsqrt. FRTFRB (Re=1) fre FRTFRB,L (Rc=0)
fre. FRTFRB,L (Rc=1)
63 FRT " FRB " 22 |Rc [Category: Floating-PointPhased-In (sV2.05)]
0 6 11 16 21 26 31
63 FRT | /I |L| FRB i 24 |Rc
fsqrts FRTFRB (Rc=0) c e e = 2B
fsqrts. FRT,FRB (Rc=1)
fres FRTFRB,L (Rc=0)
59 FRT [/I | FRB [Il 22 |Rc fres. FRTFRB,L (Re=1)

0 6 11 16 21 26 31

The square root of the floating-point operand in register
FRB is placed into register FRT.

If the most significant bit of the resultant significand is
not 1, the result is normalized. The result is rounded to
the target precision under control of the Floating-Point
Rounding Control field RN of the FPSCR and placed
into register FRT.

Operation with various special values of the operand is
summarized below.

Operand Result Exception
oo QNaN? VXSQRT
<0 QNaN? VXSQRT
-0 -0 None

400 400 None
SNaN QNaN? VXSNAN
QNaN QNaN None

1 No result if FPSCRyg = 1

FPSCREpRe is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRyg=1.

Special Registers Altered:
FPRF FR FI
FX XX
VXSNAN VXSQRT
CR1 (if Rc=1)

[Category: Floating-PointPhased-In (sV2.05)]

59 FRT /il L] FRB 1 24 |Rc

0 6 11 15|16 21 26 31

An estimate of the reciprocal of the floating-point oper-
and in register FRB is placed into register FRT. The
estimate placed into register FRT is correct to a preci-
sion of one part in 256 of the reciprocal of (FRB), i.e.,
estimate —1/x 1
ABS(1/x)< 56
where x is the initial value in FRB.

Operation with various special values of the operand is
summarized below.

Operand Result Exception
-0 -0 None

-0 —ool ZX

+0 +ool ZX

+00 +0 None
SNaN QNaN? VXSNAN
QNaN QNaN None

1 No result if FPSCRz = 1.
2 No result if FPSCRyg = 1.

If L=1 [Category: Phased-Out], an operand may be
treated as if it were zero having the same sign as the
operand in the following cases.

B The operand is a denormalized number.

B The operand would be a denormalized number in
single format and was produced by a Load Float-
ing-Point Single instruction, a single-precision
arithmetic instruction, or frsp, or by a sequence of
one or more Floating-Point Move instructions for
which the input to the sequence was produced by
such an instruction.

FPSCREpRe is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRyg=1 and Zero Divide Exceptions when
FPSCRze=1.

The results of executing this instruction may vary
between implementations, and between different exe-
cutions on the same implementation.

Special Registers Altered:
FPRF FR (undefined) FI (undefined)

Chapter 4. Floating-Point Processor [Category: Floating-Point] 129

Version 2.05

FX OX UX ZX XX (undefined)
VXSNAN
CR1 (if Re=1)

—— Programming Note

fre and fres serve as both basic and extended
mnemonics. The Assembler will recognize a fre or
fres mnemonic with three operands as the basic
form, and a fre or fres mnemonic with two oper-
ands as the extended form. In the extended form
the L operand is omitted and assumed to be 0.

—— Programming Note

For the Floating-Point Estimate instructions, some
implementations might implement a precision
higher than the minimum architected precision.
Thus, a program may take advantage of the higher
precision instructions to increase performance by
decreasing the iterations needed for software emu-
lation of floating-point instructions. However, there
is no guarantee given about the precision which
may vary (up or down) between implementations.
Only programs targeted at a specific implementa-
tion (i.e., the program will not be migrated to
another implementation) should take advantage of
the higher precision of the instructions. All other
programs should rely on the minimum architected
precision, which will guarantee the program to run
properly across different implementations.

—— Programming Note

In some implementations execution of fre[s]. with
L=1 may have a shorter latency than execution with
L=0.

Floating Reciprocal Square Root Estimate

[Single] A-form
frsqrte FRTFRB,L (Rc=0)
frsqrte. FRTFRB,L (Rc=1)

[Category: Floating-PointPhased-In (sV2.05)]

63 FRT il |L| FRB 1 26 |Rc

0 6 11 15|16 21 26 31

frsqrtes FRT,FRB,L
frsqrtes. FRT,FRB,L
[Category: Floating-PointPhased-In (sV2.05)]

(Rc=0)
(Rc=1)

59 FRT /Il |L| FRB 1 26 |Rc

0 6 11 15|16 21 26 31

An estimate of the reciprocal of the square root of the
floating-point operand in register FRB is placed into
register FRT. The estimate placed into register FRT is
correct to a precision of one part in 32 of the reciprocal
of the square root of (FRB), i.e.,

ABS(estimate — 1/gﬁq) <1
/X) 32

1/
where X is the initial value in FRB.

Operation with various special values of the operand is
summarized below.

Operand Result Exception
-~ QNaN? VXSOQRT
<0 QNaN? VXSQRT
-0 oot ZX

+0 +ool ZX

+00 +0 None
SNaN QNaN? VXSNAN
QNaN QNaN None

1 No result if FPSCR,g = 1.
2 No result if FPSCRyg = 1.

If L=1 [Category: Phased-Out], an operand may be
treated as if it were zero having the same sign as the
operand in the following cases.

B The operand is a denormalized number.

B The operand would be a denormalized number in
single format and was produced by a Load Float-
ing-Point Single instruction, a single-precision
arithmetic instruction, or frsp, or by a sequence of
one or more Floating-Point Move instructions for
which the input to the sequence was produced by
such an instruction.

FPSCRpRr is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRyg=1 and Zero Divide Exceptions when
FPSCRzg=1.

The results of executing this instruction may vary
between implementations, and between different exe-
cutions on the same implementation.

130 Power ISA™ |

Version 2.05

Special Registers Altered:
FPRF FR (undefined) FI (undefined)
FX zX XX (undefined)
VXSNAN VXSQRT
CR1 (if Rc=1)

Note
| ’zee the Notes that appear with fre[s].

Chapter 4. Floating-Point Processor [Category: Floating-Point] 131

Version 2.05

4.6.6.2 Floating-Point Multiply-Add Instructions

These instructions combine a multiply and an add oper-
ation without an intermediate rounding operation. The
fraction part of the intermediate product is 106 bits wide
(L bit, FRACTION), and all 106 bits take part in the add/
subtract portion of the instruction.

Status bits are set as follows.

m Overflow, Underflow, and Inexact Exception bits,
the FR and FI bits, and the FPRF field are set

based on the final result of the operation, and not
on the result of the multiplication.

B Invalid Operation Exception bits are set as if the
multiplication and the addition were performed
using two separate instructions (fmul[s], followed
by fadd[s] or fsub[s]). That is, multiplication of
infinity by 0 or of anything by an SNaN, and/or
addition of an SNaN, cause the corresponding
exception bits to be set.

Floating Multiply-Add [Single] A-form
fmadd FRTFRAFRCFRB (Rc=0)
fmadd. FRTFRAFRCFRB (Re=1)

Floating Multiply-Subtract [Single] A-form

fmsub
fmsub.

FRTFRAFRCFRB
FRTFRAFRCFRB

(Rc=0)
(Re=1)

63 FRT | FRA | FRB | FRC 29 |Rc

63 FRT | FRA | FRB | FRC 28 |Rc

o 6 11 16 21 26 31 0 6 11 16 21 26 31
fmadds FRTFRAFRCFRB (Rc=0) fmsubs FRTFRAFRCFRB (Rc=0)
fmadds. FRTFRAFRCFRB (Re=1) fmsubs. FRTFRAFRCFRB (Rec=1)

59 FRT | FRA | FRB | FRC 29 |Rc
0 6 11 16 21 26 31

59 FRT | FRA | FRB | FRC 28 |Rc
0 6 11 16 21 26 31

The operation
FRT « [(FRA)X(FRC)] + (FRB)
is performed.

The floating-point operand in register FRA is multiplied
by the floating-point operand in register FRC. The
floating-point operand in register FRB is added to this
intermediate result.

If the most significant bit of the resultant significand is
not 1, the result is normalized. The result is rounded to
the target precision under control of the Floating-Point
Rounding Control field RN of the FPSCR and placed
into register FRT.

FPSCREpRg is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRyg=1.

Special Registers Altered:
FPRF FR FI
FX OX UX XX
VXSNAN VXISI VXIMZ
CR1 (if Rc=1)

The operation
FRT « [(FRA)X(FRC)] - (FRB)
is performed.

The floating-point operand in register FRA is multiplied
by the floating-point operand in register FRC. The
floating-point operand in register FRB is subtracted
from this intermediate result.

If the most significant bit of the resultant significand is
not 1, the result is normalized. The result is rounded to
the target precision under control of the Floating-Point
Rounding Control field RN of the FPSCR and placed
into register FRT.

FPSCREpRe is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRyg=1.

Special Registers Altered:
FPRF FR FI
FX OX UX XX
VXSNAN VXISl VXIMZ
CR1 (if Rc=1)

132 Power ISA™ |

Version 2.05

Floating Negative Multiply-Add [Single]
A-form

fnmadd
fnmadd.

FRTFRAFRCFRB
FRTFRAFRCFRB

(Rc=0)
(Rc=1)

Floating Negative Multiply-Subtract

[Single] A-form
fnmsub FRTFRAFRCFRB (Rc=0)
fnmsub. FRTFRAFRCFRB (Re=1)

63 FRT | FRA | FRB | FRC 31 |Rc

63 FRT | FRA | FRB | FRC 30 |[Rc

o 6 11 16 21 26 31 0 6 11 16 21 26 31
fnmadds FRTFRAFRCFRB (Rc=0) fnmsubs FRTFRAFRCFRB (Rc=0)
fnmadds. FRTFRAFRCFRB (Rc=1) fnmsubs. FRTFRAFRCFRB (Rc=1)

59 FRT | FRA | FRB | FRC 31 |Rc
o 6 11 16 21 26 31

59 FRT | FRA | FRB | FRC 30 |Rc
0 6 11 16 21 26 31

The operation
FRT « - ([(FRA)X(FRC)] + (FRB))
is performed.

The floating-point operand in register FRA is multiplied
by the floating-point operand in register FRC. The
floating-point operand in register FRB is added to this
intermediate result.

If the most significant bit of the resultant significand is
not 1, the result is normalized. The result is rounded to
the target precision under control of the Floating-Point
Rounding Control field RN of the FPSCR, then negated
and placed into register FRT.

This instruction produces the same result as would be
obtained by using the Floating Multiply-Add instruction
and then negating the result, with the following excep-
tions.

B QNaNs propagate with no effect on their “sign” bit.

B QNaNs that are generated as the result of a dis-
abled Invalid Operation Exception have a “sign” bit
of 0.

B SNaNs that are converted to QNaNs as the result
of a disabled Invalid Operation Exception retain
the “sign” bit of the SNaN.

FPSCRgpRr is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRyg=1.

Special Registers Altered:
FPRF FR FI
FX OX UX XX
VXSNAN VXISI VXIMZ
CR1 (if Rc=1)

The operation
FRT « - ([(FRA)X(FRC)] - (FRB))
is performed.

The floating-point operand in register FRA is multiplied
by the floating-point operand in register FRC. The
floating-point operand in register FRB is subtracted
from this intermediate result.

If the most significant bit of the resultant significand is
not 1, the result is normalized. The result is rounded to
the target precision under control of the Floating-Point
Rounding Control field RN of the FPSCR, then negated
and placed into register FRT.

This instruction produces the same result as would be
obtained by using the Floating Multiply-Subtract
instruction and then negating the result, with the follow-
ing exceptions.

B QNaNs propagate with no effect on their “sign” bit.

B QNaNs that are generated as the result of a dis-
abled Invalid Operation Exception have a “sign” bit
of 0.

B SNaNs that are converted to QNaNs as the result
of a disabled Invalid Operation Exception retain
the “sign” bit of the SNaN.

FPSCRpRr is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRyg=1.

Special Registers Altered:
FPRF FR FI
FX OX UX XX
VXSNAN VXISI VXIMZ
CR1 (if Rc=1)

Chapter 4. Floating-Point Processor [Category: Floating-Point] 133

Version 2.05

4.6.7 Floating-Point Rounding and Conversion Instructions

Programming Note

Examples of uses of these instructions to perform
various conversions can be found in Section E.2,
“Floating-Point Conversions [Category: Float-
ing-Point]” on page 400.

4.6.7.1 Floating-Point Rounding
Instruction

Floating Round to Single-Precision

4.6.7.2 Floating-Point Convert To/From
Integer Instructions

Floating Convert To Integer Doubleword

X-form X-form
frsp FRTFRB (Rc=0) fctid FRTFRB (Rc=0)
frsp. FRTFRB (Re=1) fctid. FRTFRB (Rc=1)

63 FRT 17 FRB 12 Rc 63 FRT 11 FRB 814 Rc
0 6 11 16 21 31 (6] 6 11 16 21 31

The floating-point operand in register FRB is rounded
to single-precision, using the rounding mode specified
by FPSCRRgy, and placed into register FRT.

The rounding is described fully in Section A.1, “Float-
ing-Point Round to Single-Precision Model” on
page 361.

FPSCREpRe is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRyg=1.

Special Registers Altered:
FPRF FR FI
FX OX UX XX
VXSNAN
CR1 (if Rc=1)

The floating-point operand in register FRB is converted
to a 64-bit signed fixed-point integer, using the round-
ing mode specified by FPSCRRgy, and placed into regis-
ter FRT.

If the operand in FRB is greater than 253 - 1, then FRT
is set to Ox7FFF_FFFF_FFFF_FFFF. If the operand in
FRB is less than -2% then FRT is set to
0x8000_0000_0000_0000.

The conversion is described fully in Section A.2, “Float-
ing-Point Convert to Integer Model” on page 365.

Except for enabled Invalid Operation Exceptions,
FPSCRgpgrE is undefined. FPSCRgpg, is set if the result
is incremented when rounded. FPSCRg, is set if the
result is inexact.

Special Registers Altered:
FPRF (undefined) FR FI
FX XX
VXSNAN VXCVI
CR1 (if Rc=1)

Programming Note

The Floating Convert From Integer Word function
can be performed by loading the desired word into
an FPR using Ifiwax (see Section 4.6.2), and then
converting the contents of that FPR to a float-
ing-point integer using fcfid.

134 Power ISA™ |

Version 2.05

Floating Convert To Integer Doubleword

with round toward Zero X-form
fctidz FRTFRB (Rc=0)
fctidz. FRTFRB (Rc=1)
63 FRT I FRB 815 Rc
0 6 11 16 21 31

The floating-point operand in register FRB is converted
to a 64-bit signed fixed-point integer, using the round-
ing mode Round toward Zero, and placed into register
FRT.

If the operand in FRB is greater than 253 - 1, then FRT
is set to Ox7FFF_FFFF_FFFF_FFFF. If the operand in
FRB is less than -2% then FRT is set to
0x8000_0000_0000_0000.

The conversion is described fully in Section A.2, “Float-
ing-Point Convert to Integer Model” on page 365.

Except for enabled Invalid Operation Exceptions,
FPSCREpRE is undefined. FPSCRgp, is set if the result
is incremented when rounded. FPSCRg, is set if the
result is inexact.

Special Registers Altered:
FPRF (undefined) FR FI
FX XX
VXSNAN VXCVI
CR1 (if Rc=1)

Floating Convert To Integer Word X-form

fctiw FRTFRB (Rc=0)
fctiw. FRTFRB (Rc=1)

63 FRT | /I | FRB 14 RC
0 6 11 16 21 31

The floating-point operand in register FRB is converted
to a 32-bit signed fixed-point integer, using the round-
ing mode specified by FPSCRgy, and placed into
FRT35.63. The contents of FRT.3; are undefined.

If the operand in FRB is greater than 231 - 1, then bits
32:63 of FRT are set to 0x7FFF_FFFF. If the operand
in FRB is less than -231, then bits 32:63 of FRT are set
to 0x8000_0000.

The conversion is described fully in Section A.2, “Float-
ing-Point Convert to Integer Model” on page 365.

Except for enabled Invalid Operation Exceptions,
FPSCReprr is undefined. FPSCRgpg is set if the result
is incremented when rounded. FPSCRg, is set if the
result is inexact.

Special Registers Altered:
FPRF (undefined) FR FI
FX XX
VXSNAN VXCVI
CR1 (if Rc=1)

Chapter 4. Floating-Point Processor [Category: Floating-Point] 135

Version 2.05

Floating Convert To Integer Word with

round toward Zero X-form

fctiwz FRTFRB (Rc=0) |

fctiwz. FRTFRB (Rc=1)
63 FRT 17 FRB 15 Rc

0 6 11 16 21 31

The floating-point operand in register FRB is converted
to a 32-bit signed fixed-point integer, using the round-
ing mode Round toward Zero, and placed into
FRT30.63. The contents of FRT(.3; are undefined.

If the operand in FRB is greater than 231 - 1, then bits
32:63 of FRT are set to Ox7FFF_FFFF. If the operand
in FRB is less than -23, then bits 32:63 of FRT are set
to 0x8000_0000.

The conversion is described fully in Section A.2, “Float-
ing-Point Convert to Integer Model”.

Except for enabled Invalid Operation Exceptions,
FPSCREpRE is undefined. FPSCRgR is set if the result
is incremented when rounded. FPSCRg, is set if the
result is inexact.

Special Registers Altered:
FPRF (undefined) FR FlI
FX XX
VXSNAN VXCVI
CR1 (if Rc=1)

Floating Convert From Integer

Doubleword X-form
fcfid FRTFRB (Rc=0)
fcfid. FRTFRB (Rc=1)
63 FRT 17 FRB 846 Rc
0 6 11 16 21 31

The 64-bit signed fixed-point operand in register FRB is
converted to an infinitely precise floating-point integer.
The result of the conversion is rounded to double-preci-
sion, using the rounding mode specified by FPSCRRgy;,
and placed into register FRT.

The conversion is described fully in Section A.3, “Float-
ing-Point Convert from Integer Model”.

FPSCREpRE is set to the class and sign of the result.
FPSCRgR is set if the result is incremented when
rounded. FPSCRg, is set if the result is inexact.

Special Registers Altered:
FPRF FR FI
FX XX
CR1 (if Rc=1)

4.6.7.3 Floating Round to Integer
Instructions [Category: Float-
ing-PointPhased-In (sV2.05)]

The Floating Round to Integer instructions provide
direct support for rounding functions found in high level
languages. For example, frin, friz, frip, and frim imple-
ment C++ round(), trunc(), ceil(), and floor(), respec-
tively. Note that frin does not implement the IEEE
Round to Nearest function, which is often further
described as “ties to even.” The rounding performed by
these instructions is described fully in Section A.4,
“Floating-Point Round to Integer Model” on page 369.

—— Programming Note

These instructions set FPSCRgg g to 0b00 regard-
less of whether the result is inexact or rounded
because there is a desire to preserve the value of
FPSCRyx. Furthermore, it is believed that most
programs do not need to know whether these
rounding operations produce inexact or rounded
results. If it is necessary to determine whether the
result is inexact or rounded, software must com-
pare the result with the original source operand.

136 Power ISA™ |

Version 2.05

Floating Round to Integer Nearest X-form Floating Round to Integer Plus X-form
frin FRTFRB (Rc=0) frip FRTFRB (Rc=0)
frin. FRTFRB (Re=1) frip. FRTFRB (Rc=1)

63 FRT [/I FRB 392 Rc 63 FRT | /Il | FRB 456 Rc
0 6 11 16 21 31 0 6 11 16 21 31

The floating-point operand in register FRB is rounded
to an integral value as follows, with the result placed
into register FRT. If the sign of the operand is positive,
(FRB) + 0.5 is truncated to an integral value, otherwise
(FRB) - 0.5 is truncated to an integral value.

FPSCRgpRr is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRyg = 1.

Special Registers Altered:
FPRF FR (set to 0) FI (set to 0)
FX
VXSNAN
CR1 (if Rc=1)

Floating Round to Integer Toward Zero

X-form
friz FRTFRB (Rc=0)
friz. FRTFRB (Rc=1)

63 FRT 17l FRB 424 Rc
0 6 11 16 21 31

The floating-point operand in register FRB is rounded
to an integral value using the rounding mode round
toward zero, and the result is placed into register FRT.

FPSCREpRr is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRyg = 1.

Special Registers Altered:
FPRF FR (set to 0) FI (set to 0)
FX
VXSNAN
CR1 (if Rc=1)

The floating-point operand in register FRB is rounded
to an integral value using the rounding mode round
toward +infinity, and the result is placed into register
FRT.

FPSCRpRr is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRyg = 1.

Special Registers Altered:
FPRF FR (set to 0) FI (set to 0)
FX
VXSNAN
CR1 (if Rc=1)

Floating Round to Integer Minus X-form
frim FRTFRB (Rc=0)
frim. FRTFRB (Re=1)

63 FRT | FRB 488 Rc
0 6 11 16 21 31

The floating-point operand in register FRB is rounded
to an integral value using the rounding mode round
toward -infinity, and the result is placed into register
FRT.

FPSCREpRe is set to the class and sign of the result,
except for Invalid Operation Exceptions when
FPSCRyg = 1.

Special Registers Altered:
FPRF FR (set to 0) FI (set to 0)
FX
VXSNAN
CR1 (if Rc=1)

Chapter 4. Floating-Point Processor [Category: Floating-Point] 137

Version 2.05

4.6.8 Floating-Point Compare Instructions

The floating-point Compare instructions compare the
contents of two floating-point registers. Comparison
ignores the sign of zero (i.e., regards +0 as equal to
-0). The comparison can be ordered or unordered.

The comparison sets one bit in the designated CR field
to 1 and the other three to 0. The FPCC is set in the
same way.

The CR field and the FPCC are set as follows.

Bit Name Description

0 FL (FRA) < (FRB)

1 FG (FRA) > (FRB)

2 FE (FRA) = (FRB)

3 FU (FRA) ? (FRB) (unordered)

Floating Compare Unordered X-form Floating Compare Ordered X-form
fcmpu BFFRAFRB fcmpo BFFRAFRB

63 BF [//| FRA | FRB 0 / 63 BF [//] FRA | FRB 32 /
0 6 9 |11 16 21 31 0 6 9 |11 16 21 31

if (FRA) is a NaN or

(FRB) is a NaN then ¢ ¢« 000001
else if (FRA) < (FRB) then ¢ ¢« 001000
else if (FRA) > (FRB) then c ¢« 0b0100
else c € 0b0010
FPCC ¢ ¢

CRyxpF:4xBF+3 € C
if (FRA) is an SNaN or

(FRB) is an SNaN then
VXSNAN €« 1

The floating-point operand in register FRA is compared
to the floating-point operand in register FRB. The
result of the compare is placed into CR field BF and the
FPCC.

If either of the operands is a NaN, either quiet or signal-
ing, then CR field BF and the FPCC are set to reflect
unordered. If either of the operands is a Signaling NaN,
then VXSNAN is set.

Special Registers Altered:
CR field BF
FPCC
FX
VXSNAN

if (FRA) is a NaN or

(FRB) is a NaN then c¢ ¢« 000001
else if (FRA) < (FRB) then ¢ ¢ 001000
else if (FRA) > (FRB) then c ¢ 0b0100
else ¢ € 0b0010
FPCC ¢« ¢

CRyxpF:4xBF+3 € C
if (FRA) is an SNaN or

(FRB) is an SNaN then
VXSNAN €« 1
if VE = 0 then VXVC « 1
else if (FRA) is a QNaN or
(FRB) is a QNaN then VXVC <« 1

The floating-point operand in register FRA is compared
to the floating-point operand in register FRB. The
result of the compare is placed into CR field BF and the
FPCC.

If either of the operands is a NaN, either quiet or signal-
ing, then CR field BF and the FPCC are set to reflect
unordered. If either of the operands is a Signaling NaN,
then VXSNAN is set and, if Invalid Operation is dis-
abled (VE=0), VXVC is set. If neither operand is a Sig-
naling NaN but at least one operand is a Quiet NaN,
then VXVC is set.

Special Registers Altered:
CR field BF
FPCC
FX
VXSNAN VXVC

138 Power ISA™ |

Version 2.05

4.6.9 Floating-Point Select Instruction

Floating Select A-form
fsel FRTFRAFRCFRB (Rc=0)
fsel. FRTFRAFRCFRB (Re=1)

63 FRT | FRA | FRB | FRC 23 |Rc
0 6 11 16 21 26 31

if (FRA) > 0.0 then FRT ¢« (FRC)
else FRT ¢« (FRB)

The floating-point operand in register FRA is compared
to the value zero. If the operand is greater than or
equal to zero, register FRT is set to the contents of reg-
ister FRC. If the operand is less than zero or is a NaN,
register FRT is set to the contents of register FRB. The
comparison ignores the sign of zero (i.e., regards +0 as
equal to -0).

Special Registers Altered:
CR1 (if Rc=1)

—— Programming Note

Examples of uses of this instruction can be found in
Sections E.2, “Floating-Point Conversions [Cate-
gory: Floating-Point]” on page 400 and E.3, “Float-
ing-Point Selection [Category: Floating-Point]” on
page 402.

Warning: Care must be taken in using fsel if IEEE
compatibility is required, or if the values being
tested can be NaNs or infinities; see Section E.3.4,
“Notes” on page 402.

Chapter 4. Floating-Point Processor [Category: Floating-Point] 139

Version 2.05

4.6.10 Floating-Point Status and Control Register Instructions

Every Floating-Point Status and Control Register
instruction synchronizes the effects of all floating-point
instructions executed by a given processor. Executing
a Floating-Point Status and Control Register instruction
ensures that all floating-point instructions previously ini-
tiated by the given processor have completed before
the Floating-Point Status and Control Register instruc-
tion is initiated, and that no subsequent floating-point
instructions are initiated by the given processor until
the Floating-Point Status and Control Register instruc-
tion has completed. In particular:

W All exceptions that will be caused by the previously
initiated instructions are recorded in the FPSCR
before the Floating-Point Status and Control Reg-
ister instruction is initiated.

B All invocations of the system floating-point enabled
exception error handler that will be caused by the
previously initiated instructions have occurred
before the Floating-Point Status and Control Reg-
ister instruction is initiated.

B No subsequent floating-point instruction that
depends on or alters the settings of any FPSCR
bits is initiated until the Floating-Point Status and
Control Register instruction has completed.

(Floating-point Storage Access instructions are not
affected.)

The instruction descriptions in this section refer to
“FPSCR fields,” where FPSCR field k is FPSCR bits
4Axk:4xk+3.

Move From FPSCR X-form
mffs FRT (Rc=0)
mffs. FRT (Rc=1)
63 FRT 1/ " 583 Rc
0 6 11 16 21 31

The contents of the FPSCR are placed into register
FRT.

Special Registers Altered:

CR1 (if Re=1)
Move to Condition Register from FPSCR
X-form
mcrfs BF,BFA
63 BF [/[| BFA (/| 1l 64 /
0 6 911 14116 21 31

The contents of FPSCR35.43 field BFA are copied to
Condition Register field BF. All exception bits copied
are set to 0 in the FPSCR. If the FX bit is copied, it is
set to 0 in the FPSCR.

Special Registers Altered:

CR field BF
FX OX (if BFA=0)
UX ZX XX VXSNAN (if BFA=1)
VXISI VXIDI VXZDZ VXIMZ (if BFA=2)
VXVC (if BFA=3)
VXSOFT VXSQRT VXCVI (if BFA=5)

140 Power ISA™ |

Version 2.05

Move To FPSCR Field Immediate X-form Move To FPSCR Fields XFL-form
mtfsfi BF,UW (Rc=0) mtfsf FLMFRB,LW (Rc=0)
mtfsfi. BF,UW (Re=1) mitfsf. FLMFRB,LW (Rc=1)

63 BF [/ /1l W] U [/ 134 Rc 63 |L FLM W[FRB 711 Rc
0 6 9 |11 15(16 20|21 31 (6] 6 (7 15|16 21 31

The value of the U field is placed into FPSCR field

BF+8x(1-W).
FPSCREgy is altered only if BF =0 and W = 0.

Special Registers Altered:
FPSCR field BF + 8x(1-W)

CR1 (if Re=1)

—— Programming Note

mtfsfi serves as both a basic and an extended
mnemonic. The Assembler will recognize a mtfsfi
mnemonic with three operands as the basic form,
and a mtfsfi mnemonic with two operands as the
extended form. In the extended form the W oper-
and is omitted and assumed to be O.

—— Programming Note

When FPSCR35.35 is specified, bits 32 (FX) and 35
(OX) are set to the values of Uy and U, (i.e., even if
this instruction causes OX to change from 0 to 1,
FX is set from Ug and not by the usual rule that FX
is set to 1 when an exception bit changes from 0 to
1). Bits 33 and 34 (FEX and VX) are set according
to the usual rule, given on page 101, and not from

Upo.

The FPSCR is modified as specified by the FLM, L, and
W fields.

L=0

The contents of register FRB are placed into the
FPSCR under control of the W field and the field
mask specified by FLM. W and the field mask iden-
tify the 4-bit fields affected. Let i be an integer in
the range 0-7. If FLM;=1 then FPSCR field k is set
to the contents of the corresponding field of regis-
ter FRB, where k = i+8x(1-W).

L=1

The contents of register FRB are placed into the
FPSCR.

FPSCREgy is not altered implicitly by this instruction.

Special Registers Altered:
FPSCR fields selected by mask, L, and W
CR1 (if Rc=1)

—— Programming Note

mtfsf serves as both a basic and an extended
mnemonic. The Assembler will recognize a mtfsf
mnemonic with four operands as the basic form,
and a mtfsf mnemonic with two operands as the
extended form. In the extended form the W and L
operands are omitted and both are assumed to be
0.

—— Programming Note

Updating fewer than eight fields of the FPSCR may
have substantially poorer performance on some
implementations than updating eight fields or all of
the fields.

—— Programming Note

If L=1 or if L=0 and FPSCR3,.35 is specified, bits 32
(FX) and 35 (OX) are set to the values of (FRB)3,
and (FRB)35 (i.e., even if this instruction causes OX
to change from 0 to 1, FX is set from (FRB)3, and
not by the usual rule that FX is set to 1 when an
exception bit changes from 0 to 1). Bits 33 and 34
(FEX and VX) are set according to the usual rule,
given on page 101, and not from (FRB)33:34-

Chapter 4. Floating-Point Processor [Category: Floating-Point] 141

Version 2.05

Move To FPSCR Bit 0 X-form Move To FPSCR Bit 1 X-form
mtfsbO BT (Rc=0) mtfsbl BT (Rc=0)
mtfsbO. BT (Rc=1) mtfsbl. BT (Re=1)
63 BT " i 70 Rc 63 BT 7 " 38 Rc

o 11 16 21 31 0 11 16 21 31
Bit BT+32 of the FPSCR is set to 0. Bit BT+32 of the FPSCR is set to 1.
Special Registers Altered: Special Registers Altered:

FPSCR bit BT+32 FPSCR hits BT+32 and FX

CR1 (if Rc=1) CR1 (if Rc=1)

Programming Note

Bits 33 and 34 (FEX and VX) cannot be explicitly

reset.

Programming Note

Bits 32 and 34 (FEX and VX) cannot be explicitly

set.

142

Power ISA™ |

Version 2.05

Chapter 5. Decimal Floating-Point [Category: Decimal

Floating-Point]

5.1 Decimal Floating-Point (DFP) Proces-

SOrOverview.c.ovvven.. 143
5.2 DFP Register Handling. 144
5.2.1 DFP Usage of Floating-Point Regis-

ters ... 144
5.3 DFP Support for Non-DFP Data Types

146
5.4 DFP Number Representation 147
54.1 DFP DataFormat 148

5.4.1.1 Fields Within the Data Format 148
5.4.1.2 Summary of DFP Data Formats . .

149
5.4.1.3 Preferred DPD Encoding 149
5.4.2 Classesof DFP Data......... 149
5.5 DFP Execution Model. 150
551 Rounding.................. 150
5.5.2 Rounding Mode Specification . . 151
5.5.3 Formation of Final Result. 152
5.5.3.1 Use of Ideal Exponent 152
5.5.4 Arithmetic Operations 152
5.5.4.1 Sign of Arithmetic Result 152
5.5.5 Compare Operations......... 153
5.5.6 TestOperations............. 153
5.5.7 Quantum Adjustment Operations 153
5.5.8 Conversion Operations 153

5.5.8.1 Data-Format Conversion. 153
5.5.8.2 Data-Type Conversion 154
5.5.9 Format Operations. 154
5.5.10 DFP Exceptions 154
5.5.10.1 Invalid Operation Exception . 156
5.5.10.2 Zero Divide Exception. 157
5.5.10.3 Overflow Exception........ 157
5.5.10.4 Underflow Exception 158
5.5.10.5 Inexact Exception 159
5.5.11 Summary of Normal Rounding And
Range Actions. 160
5.6 DFP Instruction Descriptions. 162
5.6.1 DFP Arithmetic Instructions 163
5.6.2 DFP Compare Instructions. 167
5.6.3 DFP Test Instructions. 170
5.6.4 DFP Quantum Adjustment Instruc-
tions. 173

5.6.5 DFP Conversion Instructions . .. 182
5.6.5.1 DFP Data-Format Conversion

Instructions 182
5.6.5.2 DFP Data-Type Conversion

Instructions 185
5.6.6 DFP Format Instructions 187
5.6.7 DFP Instruction Summary 191

5.1 Decimal Floating-Point
(DFP) Processor Overview

This chapter describes the behavior of the decimal
floating-point processor, the supported data types, for-
mats, and classes, and the usage of registers. Also
included are the execution model, exceptions, and
instructions supported by the decimal floating-point
processor.

The decimal floating-point (DFP) processor shares the
32 floating-point registers (FPRs) and the Floating-
Point Status and Control Register (FPSCR) with the
binary floating-point (BFP) processor. However, the
interpretation of data formats in the FPRs, and the

meaning of some control and status bits in the FPSCR
are different between the BFP and DFP processors.

The DFP processor also shares the Condition Register
(CR) with the fixed-point processor, the BFP proces-
sor, and the vector processor.

The DFP processor supports three DFP data formats:
DFP Short (single precision), DFP Long (double preci-
sion), and DFP Extended (quad precision). Most opera-
tions are performed on DFP Long or DFP Extended
format directly. Support for DFP Short is limited to con-
version to and from DFP Long. Some DFP instructions
operate on other data types, including signed or
unsigned binary fixed-point data, and signed or
unsigned decimal data.

Chapter 5. Decimal Floating-Point [Category: Decimal Floating-Point] 143

Version 2.05

DFP instructions are provided to perform arithmetic,
compare, test, quantum-adjustment, conversion, and
format operations on operands held in FPRs or FPR
pairs.

B Arithmetic instructions

These instructions perform addition, subtraction,
multiplication, and division operations.

B Compare instructions

These instructions perform a comparison opera-
tion on the numerical value of two DFP operands.

B Test instructions

These instructions test the data class, the data
group, the exponent, or the number of significant
digits of a DFP operand.

B Quantum-adjustment instructions

These instructions convert a DFP number to a
result in the form that has the designated expo-
nent, which may be explicitly or implicitly specified.

B Conversion instructions

These instructions perform conversion between
different data formats or data types.

B Format instructions

These instructions facilitate composing or decom-
posing a DFP operand.

These instructions are described in Section 5.6 “DFP
Instruction Descriptions” on page 162.

The three DFP data formats allow finite numbers to be
represented with different precision and ranges. Spe-
cial codes are also provided to represent +Infinity,
-Infinity, Quiet NaN (Not-a-Number), and Signaling
NaN. Operations involving infinities produce results
obeying traditional mathematical conventions. NaNs
have no mathematical interpretation. The encoding of
NaNs provides a diagnostic information field. This diag-
nostic field may be used to indicate such things as the
source of an uninitialized variable or the reason an
invalid result was produced.

The DFP processor recognizes a set of DFP excep-
tions which are indicated via bits set in the FPSCR.
Additionally, the DFP exception actions depend on the
setting of the various exception enable bits in the
FPSCR.

The following DFP exceptions are detected by the DFP
processor. The exception status bits in the FPSCR are
indicated in parentheses.

® [nvalid Operation Exception (VX)
SNaN (VXSNAN)
o0 - oo (VXISI)
o0 + oo (VXIDI)
0+0 (VXZDZ)
e x 0 (VXIMZ)

Invalid Compare (VXVC)

Invalid conversion (VXCVI)
B Zero Divide Exception (ZX)
B Overflow Exception (OX)
B Underflow Exception (UX)
B Inexact Exception (XX)

Each DFP exception and each category of Invalid
Operation Exception has an exception status bit in the
FPSCR. In addition, each of the five DFP exceptions
has a corresponding enable bit in the FPSCR. These
enable bits enable or disable the invocation of the sys-
tem floating-point enabled exception error handler, and
may affect the setting of some exception status bits in
the FPSCR.

The usage of these bits by the DFP processor differs
from the usage by the BFP processor. Section 5.5.10
“DFP Exceptions” on page 154 provides a detailed dis-
cussion of DFP exceptions, including the effects of the
enable bits.

5.2 DFP Register Handling

The following sections describe first how the floating-
point registers are utilized by the DFP processor. The
subsequent section covers the DFP usage of CR and
FPSCR.

5.2.1 DFP Usage of Floating-Point
Registers

The DFP processor shares the same 32 64-bit FPRs
with the BFP processor. Like the BFP instructions, DFP
instructions also use 5-bit fields for designating the
FPRs to hold the source or target operands.

When data in DFP Short format is held in a FPR, it
occupies the rightmost 32 bits of the FPR. The Load
Floating-Point as Integer Word Algebraic instruction is
provided to load the rightmost 32 bits of a FPR with a
single-word data from storage. The Store Floating-
Point as Integer Word instruction is available to store
the rightmost 32 bits of a FPR to a storage location.

Data in DFP Long format, 64-bit binary fixed-point val-
ues, or 64-bit BCD values is held in a FPR using all 64
bits. Data of 64 bits may be loaded from storage via
any of the Load Floating-Point Double instructions and
stored via any of the Store Floating-Point Double
instructions.

Data in DFP Extended format or 128-bit BCD values is
held in an even-odd FPR pair using all 128 bits. Data of
128 bits must be loaded into the desired even-odd pair
of floating-point registers using an appropriate
sequence of the Load Floating-Point Double instruc-
tions and stored using an appropriate sequence of the
Store Floating-Point Double instructions.

Data used as a source operand by any Decimal Float-
ing-Point instruction that was produced, either directly

144 Power ISA™ [- lI

Version 2.05

or indirectly, by a Load Floating-Point Single instruc-
tion, a Floating Round to Single-Precision instruction,
or a binary floating-point single-precision arithmetic
instruction is boundedly undefined.

When an even-odd FPR pair is used to hold a 128-bit
operand, the even-numbered FPR is used to hold the
leftmost doubleword of the operand and the next
higher-numbered FPR is used to hold the rightmost
doubleword. A DFP instruction designating an odd-
numbered FPR for a 128-bit operand is an invalid
instruction form.

Programming Note

The Floating-Point Move instructions can be used
to move operands between FPRs.

The bit definitions for the FPSCR are as follows.

Bit(s)
0:28
29:31

32

33

34

Description
Reserved

DFP Rounding Control (DRN)
See Section 5.5.2, “Rounding Mode Specifi-
cation” on page 151.

000 Round to Nearest, Ties to Even

001 Round toward Zero

010 Round toward +Infinity

011 Round toward -Infinity

100 Round to Nearest, Ties away from 0
101 Round to Nearest, Ties toward O

110 Round to away from Zero

111 Round to Prepare for Shorter Precision

Programming Note
FPSCRyg is reserved for extension of the
DRN field, therefore DRN may be set
using the mtfsfi instruction to set the
rounding mode.

Floating-Point Exception Summary (FX)
Every floating-point instruction, except mtfsfi
and mtfsf, implicitly sets FPSCRgx to 1 if that
instruction causes any of the floating-point
exception bits in the FPSCR to change from 0
to 1. mcrfs, mtfsfi, mtfsf, mtfsbO, and
mtfsbl can alter FPSCRgy explicitly.

Floating-Point Enabled Exception Sum-
mary (FEX)

This bit is the OR of all the floating-point
exception bits masked by their respective
enable bits. mecrfs, mtfsfi, mtfsf, mtfsbO,
and mtfsb1 cannot alter FPSCRggyx explicitly.

Floating-Point Invalid Operation Excep-
tion Summary (VX)

This bit is the OR of all the Invalid Operation
exception bits. mcrfs, mtfsfi, mtfsf, mtfsbo,
and mtfsb1 cannot alter FPSCRy/x explicitly.

35

36

37

38

39

40

41

142

43

44

45

46

Floating-Point Overflow Exception (OX)
See Section 5.5.10.3, “Overflow Exception”
on page 157.

Floating-Point Underflow Exception (UX)
See Section 5.5.10.4, “Underflow Exception”
on page 158.

Floating-Point Zero Divide Exception (ZX)
See Section 5.5.10.2, “Zero Divide Exception”
on page 157.

Floating-Point Inexact Exception (XX)
See Section 5.5.10.5, “Inexact Exception” on
page 159.

FPSCRyx is a sticky version of FPSCRE; (see
below). Thus the following rules completely
describe how FPSCRyy is set by a given
instruction.

B If the instruction affects FPSCRg, the
new value of FPSCRyx is obtained by
ORing the old value of FPSCRyy with
the new value of FPSCRg;.

m |f the instruction does not affect
FPSCRg,, the value of FPSCRyy is
unchanged.

Floating-Point Invalid
tion (SNaN) (VXSNAN)
See Section 5.5.10.1,
Exception” on page 156.

Operation Excep-

“Invalid Operation

Floating-Point Invalid
tion (00 - 00 (VXISI)
See Section 5.5.10.1.

Floating-Point Invalid
tion (o0 = 00) (VXIDI)
See Section 5.5.10.1.

Floating-Point Invalid
tion (0+0) (VXZDZ)
See Section 5.5.10.1.

Floating-Point Invalid
tion (0 x0) (VXIMZ)
See Section 5.5.10.1.

Floating-Point Invalid Operation
tion (Invalid Compare) (VXVC)
See Section 5.5.10.1.

Floating-Point Fraction Rounded (FR)

The last Arithmetic or Rounding and Conver-
sion instruction incremented the fraction dur-
ing rounding. See Section 5.5.1, “Rounding”
on page 150. This bit is not sticky.

Operation Excep-

Operation Excep-

Operation Excep-

Operation Excep-

Excep-

Floating-Point Fraction Inexact (FI)

The last Arithmetic or Rounding and Conver-
sion instruction either produced an inexact
result during rounding or caused a disabled
Overflow Exception. See Section 5.5.1. This
bit is not sticky.

Chapter 5. Decimal Floating-Point [Category: Decimal Floating-Point]

145

Version 2.05

47:51

a7

48:51

48

49

50
51
52
53

54

55

56

See the definition of FPSCRyy, above,
regarding the relationship between FPSCRE,
and FPSCRyy.

Floating-Point Result Flags (FPRF)

This field is set as described below. For arith-
metic, rounding, and conversion instructions,
the field is set based on the result placed into
the target register, except that if any portion of
the result is undefined then the value placed
into FPRF is undefined.

Floating-Point Result Class Descriptor (C)
Arithmetic, rounding, and conversion instruc-
tions may set this bit with the FPCC bhits, to
indicate the class of the result as shown in
Figure 59 on page 146.

Floating-Point Condition Code (FPCC)
Floating-point Compare and DFP Test instruc-
tions set one of the FPCC bits to 1 and the
other three FPCC bits to 0. Arithmetic, round-
ing, and conversion instructions may set the
FPCC bits with the C bit, to indicate the class
of the result as shown in Figure 59 on
page 146. Note that in this case the high-order
three bits of the FPCC retain their relational
significance indicating that the value is less
than, greater than, or equal to zero.

Floating-Point Less Than or Negative (FL
or <)

Floating-Point Greater Than or Positive
(FG or >)

Floating-Point Equal or Zero (FE or =)
Floating-Point Unordered or NaN (FU or ?)
Reserved

Floating-Point Invalid Operation Excep-
tion (Software Request) (VXSOFT)

This bit can be altered only by mcrfs, mtfsfi,
mtfsf, mtfsbO, or mtfsb1l. See
Section 5.5.10.1, “Invalid Operation Excep-
tion” on page 156.

Neither used nor changed by DFP.

— Programming Note

Although the architecture does not pro-
vide a DFP square root instruction, if soft-
ware simulates such an instruction, it
should set bit 54 whenever the source
operand of the square root function is
invalid.

Floating-Point Invalid Operation Excep-
tion (Invalid Conversion) (VXCVI)
See Section 5.5.10.1.

Floating-Point
tion Enable (VE)
See Section 5.5.10.1.

Invalid Operation Excep-

57

58

59

60

61

62:63

Floating-Point Overflow Exception Enable
(CE)

See Section 5.5.10.3, “Overflow Exception
on page 157.

”

Floating-Point Underflow
Enable (UE)
See Section 5.5.10.4, “Underflow Exception

on page 158.

Exception

”

Floating-Point Zero Divide
Enable (ZE)
See Section 5.5.10.2, “Zero Divide Exception”

on page 157.

Exception

Floating-Point Inexact Exception Enable
(XE)

See Section 5.5.10.5, “Inexact Exception” on
page 159

Reserved (not used by DFP)

Binary Floating-Point Rounding Control
(RN)
See Section 5.5.1, “Rounding” on page 150.

00 Round to Nearest

01 Round toward Zero
10 Round toward +Infinity
11 Round toward -Infinity

Result
Flags

Result Value Class

<

>

oOcoroOoORrErooOor o
Oo0Oo0oO0OOoOPrRBRFRPRFR OO

PFRPrPOOOOOOO
OO0 ORrR PR OOOO O]
P OO0OO0OO0OOORPR PRy

Signaling NaN (DFP only)
Quiet NaN

- Infinity

- Normal Number

- Subnormal Number

- Zero

+ Zero

+ Subnormal Number

+ Normal Number

+ Infinity

Figure 59. Floating-Point Result Flags

5.3 DFP Support for Non-DFP
Data Types

In addition to the DFP data types, the DFP processor
provides limited support for the following non-DFP data
types: signed or unsigned binary fixed-point data, and
signed or unsigned decimal data.

In unsigned binary fixed-point data, all bits are used to
express the absolute value of the number. For signed
binary fixed-point data, the leftmost bit represents the
sign, which is followed by the numeric field. Positive
numbers are represented in true binary notation with
the sign bit set to zero. When the value is zero, all bits

146

Power ISA™ | - |l

Version 2.05

are zeros, including the sign bit. Negative numbers are
represented in two’s complement binary notation with a
one in the sign-bit position.

For decimal data, each byte contains a pair of four-bit
nibbles; each four-bit nibble contains a binary-coded-
decimal (BCD) code. There are two kinds of BCD
codes: digit code and sign code. For unsigned decimal
data, all nibbles contain a digit code (D) as shown in
Figure 60

p[p[p|bp]|...]p|[D][D][D]

Figure 60. Format for Unsigned Decimal Data

For signed decimal data, the rightmost nibble contains
a sign code (S) and all other nibbles contain a digit
code as shown in Figure 61.

p[p[p|bp]|...]p][D][D]s]|

Figure 61. Format for Signed Decimal Data

The decimal digits 0-9 have the binary encoding 0000-
1001. The preferred plus-sign codes are 1100 and
1111. The preferred minus sign code is 1101. These are
the sign codes generated for the results of the Decode
DPD To BCD instruction. A selection is provided by this
instruction to specify which of the two preferred plus
sign codes is to be generated. Alternate sign codes are
also recognized as valid in the sign position: 1010 and
1110 are alternate sign codes for plus, and 1011 is an
alternate sign code for minus. Alternate sign codes are
accepted for any source operand, but are not gener-
ated as a result by the instruction. When an invalid digit
or sign code is detected by the Encode BCD To DPD
instruction, an invalid-operation exception occurs. A

summary of digit and sign codes are provided in
Figure 62.

Binary Recognized As

Code Digit Sign

0000 0 Invalid

0001 1 Invalid

0010 2 Invalid

0011 3 Invalid

0100 4 Invalid

0101 5 Invalid

0110 6 Invalid

0111 7 Invalid

1000 8 Invalid

1001 9 Invalid

1010 Invalid Plus

1011 Invalid Minus

1100 Invalid Plus (preferred; option 1)
1101 Invalid Minus (preferred)
1110 Invalid Plus

1111 Invalid Plus (preferred; option 2)

Figure 62. Summary of BCD Digit and Sign Codes

5.4 DFP Number Representation

A DFP finite number consists of three components: a
sign bit, a signed exponent, and a significand. The
signed exponent is a signed binary integer. The signifi-
cand consists of a number of decimal digits, which are
to the left of the implied decimal point. The rightmost
digit of the significand is called the units digit. The
numerical value of a DFP finite number is represented
as (-1)8'9" X significand X 108*PONeNt and the unit value
of this number is (1 X 108XPoNenty \yhich is called the
quantum.

DFP finite numbers are not normalized. This allows
leading zeros and trailing zeros to exist in the signifi-
cand. This unnormalized DFP number representation
allows some values to have redundant forms; each
form represents the DFP number with a different com-
bination of the significand value and the exponent
value. For example, 1000000 X 10° and 10 X 101° are
two different forms of the same numerical value. A form
of this number representation carries information about
both the numerical value and the quantum of a DFP
finite number.

The significant digits of a DFP finite number are the
digits in the significand beginning with the leftmost non-
zero digit and ending with the units digit.

Chapter 5. Decimal Floating-Point [Category: Decimal Floating-Point] 147

Version 2.05

5.4.1 DFP Data Format

DFP numbers and NaNs may be represented in FPRs
in any of the three data formats: DFP Short, DFP Long,
or DFP Extended. The contents of each data format
represent encoded information. Special codes are
assigned to NaNs and infinities. Different formats sup-
port different sizes in both significand and exponent.
Arithmetic, compare, test, quantum-adjustment, and
format instructions are provided for DFP Long and DFP
Extended formats only.

The sign is encoded as a one bit binary value. Signifi-
cand is encoded as an unsigned decimal integer in two
distinct parts. The leftmost digit (LMD) of the significand
is encoded as part of the combination field; the remain-
ing digits of the significand are encoded in the trailing
significand field. The exponent is contained in the com-
bination field in two parts. However, prior to encoding,
the exponent is converted to an unsigned binary value
called the biased exponent by adding a bias value
which is a constant for each format. The two leftmost
bits of the biased exponent are encoded with the left-
most digit of the significand in the leftmost bits of the
combination field. The rest of the biased exponent
occupies the remaining portion of the combination field.

5.4.1.1 Fields Within the Data Format

The DFP data representation comprises three fields, as
diagrammed below for each of the three formats:

sLe | Tt]
01 © 3L
Figure 63. DFP Short format

s e | T |
01 14 63
Figure 64. DFP Long format

S e | T |
01 18 63

| T (continued) ‘
64 127
Figure 65. DFP Extended format

The fields are defined as follows:

Sign bit (S)
The sign bit is in bit 0 of each format, and is zero for
plus and one for minus.

Combination field (G)

As the name implies, this field provides a combination
of the exponent and the left-most digit (LMD) of the sig-
nificand, for finite numbers, or provides a special code

for denoting the value as either a Not-a-Number or an
Infinity.

The first 5 bits of the combination field contain the
encoding of NaN or infinity, or the two leftmost bits of
the biased exponent and the leftmost digit (LMD) of the
significand. The following tables show the encoding:

Go:a Description
11111 NaN
11110 Infinity
All others | Finite Number (see Figure 67)

Figure 66. Encoding of the G field for Special

Symbols
Leftmost 2-bits of biased exponent
LMD
00 01 10

0 00000 01000 10000
1 00001 01001 10001
2 00010 01010 10010
3 00011 01011 10011
4 00100 01100 10100
5 00101 01101 10101
6 00110 01110 10110
7 00111 01111 10111
8 11000 11010 11100
9 11001 11011 11101

Figure 67. Encoding of bits 0:4 of the G field for
Finite Numbers

For DFP finite numbers, the rightmost N-5 bits of the
N-bit combination field contain the remaining bits of the
biased exponent. For NaNs, bit 5 of the combination
field is used to distinguish a Quiet NaN from a Signal-
ing NaN; the remaining bits in a source operand are
ignored and they are set to zeros in a target operand by
most operations. For infinities, the rightmost N-5 bits of
the N-bit combination field of a source operand are
ignored and they are set to zeros in a target operand by
most operations.

Trailing Significand field (T)

For DFP finite numbers, this field contains the remain-
ing significand digits. For NaNs, this field may be used
to contain diagnostic information. For infinities, con-
tents in this field of a source operand are ignored and
they are set to zeros in a target operand by most oper-
ations. The trailing significand field is a multiple of 10-
bit blocks. The multiple depends on the format. Each
10-bit block is called a declet and represents three dec-
imal digits, using the Densely Packed Decimal (DPD)
encoding defined in Appendix A.

148 Power ISA™ [- lI

Version 2.05

5.4.1.2 Summary of DFP Data Formats

The properties of the three DFP formats are summa-
rized in the following table:.

Format
DFP Short DFP Long DFP Extended

Widths (bits):

Format 32 64 128

Sign (S) 1 1 1

Combination (G) 11 13 17

Trailing Significand (T) 20 50 110
Exponent:

Maximum biased 191 767 12,287

Maximum (Xmax) 90 369 6111

Minimum (Xin) -101 -398 -6176

Bias 101 398 6176
Precision (p) (digits) 7 16 34
Magnitude:

Maximum normal number (Nyay) (107- 1) x 10%° (1016 - 1) x 10%6° (1034 - 1) x 106111

Minimum normal number (Npin) 1x10°% 1x 107383 1x 106143

Minimum subnormal number (Dpyi) 1x 10101 1x1073% 1x 106176

Figure 68. Summary of DFP Formats

5.4.1.3 Preferred DPD Encoding

Execution of DFP instructions decodes source oper-
ands from DFP data formats to an internal format for
processing, and encodes the operation result before
the final result is returned as the target operand.

As part of the decoding process, declets in the trailing
significand field of source operands are decoded to
their corresponding BCD digit codes using the DPD-to-
BCD decoding algorithm. As part of the encoding pro-
cess, BCD digit codes to be stored into the trailing sig-
nificand field of the target operand are encoded into
declets using the BCD-to-DPD encoding algorithm.
Both the decoding and encoding algorithms are defined
in Appendix A.

As explained in Appendix A, there are eight 3-digit dec-
imal values that have redundant DPD codes and one
preferred DPD code. All redundant DPD codes are rec-
ognized in source operands for the associated 3-digit
decimal number. DFP operations will always generate
the preferred DPD codes for the trailing significand field
of the target operand.

5.4.2 Classes of DFP Data

There are six classes of DFP data, which include
numerical and nonnumeric entities. The numerical enti-
ties include zero, subnormal number, normal number,
and infinity data classes. The nonnumeric entities
include quiet and signaling NaNs data classes. The
value of a DFP finite number, including zero, subnor-
mal number, and normal number, is a quantization of
the real number based on the data format. The Test
Data Class instruction may be used to determine the
class of a DFP operand. In general, an operation that
returns a DFP result sets the FPSCRgpge field to indi-
cate the data class of the result.

The following tables show the value ranges for finite-
number data classes, and the codes for NaNs and
infinities.

Chapter 5. Decimal Floating-Point [Category: Decimal Floating-Point]

149

Version 2.05

Data Class Sign Magnitude
Zero * 0*
Subnormal + Dmin £ IXI < Nmin
Normal * Nmin £ Y] £ Npax

* The significand is zero and the exponent is any rep-
resentable value

Figure 69. Value Ranges for Finite Number Data

Classes
Data Class S G T
+Infinity 0 | 11110XXX .. . XXX | XXX ... XXX
—Infinity 1] I1110XXX . . . XXX | XXX ...XXX
Quiet NaN X | 112220XX . .. XXX | XXX ... XXX
Signaling NaN X | II11TIXX . .. XXX | XXX ... XXX

x Don't care

Figure 70. Encoding of NaN and
Classes

Infinity Data

Zeros

Zeros have a zero significand and any representable
value in the exponent. A +0 is distinct from -0, and
zeros with different exponents are distinct, except that
comparison treats them as equal.

Subnormal Numbers
Subnormal numbers have values that are smaller than
Nmin @nd greater than zero in magnitude.

Normal Numbers
Normal numbers are nonzero finite numbers whose
magnitude is between Ny, and Np,ax inclusively.

Infinities

Infinities are represented by 0b11110 in the leftmost 5
bits of the combination field. When an operation is
defined to generate an infinity as the result, a default
infinity is sometimes supplied. A default infinity has all
remaining bits in the combination field and trailing sig-
nificand field set to zeros.

When infinities are used as source operands, only the
leftmost 5 bits of the combination field are interpreted
(i.e., Ob11110 indicates the value is an infinity). The
trailing significand field of infinities is usually ignored.
For generated infinities, the leftmost 5 bits of the combi-
nation field are set to 0b11110 and all remaining combi-
nation bits are set to zero.

Infinities can participate in most arithmetic operations
and give a consistent result. In comparisons, any
+Infinity compares greater than any finite number, and
any -Infinity compares less than any finite number. All
+Infinity are compared equal and all -Infinity are com-
pared equal.

Signaling and Quiet NaNs
There are two types of Not-a-Numbers (NaNs), Signal-
ing (SNaN) and Quiet (QNaN).

0b111110 in the leftmost 6 bits of the combination field
indicates a Quiet NaN, whereas 0b111111 indicates a
Signaling NaN.

A special QNaN is sometimes supplied as the default
QNaN for a disabled invalid-operation exception; it has
a plus sign, the leftmost 6 bits of the combination field
set to Ob111110 and remaining bits in the combination
field and the trailing significand field set to zero.

Normally, source QNaNs are propagated during opera-
tions so that they will remain visible at the end. When a
QNaN is propagated, the sign is preserved, the decimal
value of the trailing significand field is preserved but
reencoded using the preferred DPD codes, and the
contents in the rightmost N-6 bits of the combination
field set to zero, where N is the width of the combina-
tion field for the format.

A source SNaN generally causes an invalid-operation
exception. If the exception is disabled, the SNaN is
converted to the corresponding QNaN and propagated.
The primary encoding difference between an SNaN
and a QNaN is that bit 5 of an SNaN is 1 and bit 5 of a
QNaN is 0. When an SNaN is propagated as a QNaN,
bit 5 is set to 0, and, just as with QNaN proagation, the
sign is preserved, the decimal value of the trailing sig-
nificand field is preserved but reencoded using the pre-
ferred DPD codes, and the contents in the rightmost N-
6 bits of the combination field set to zero, where N is
the width of the combination field for the format. For
some format-conversion instructions, a source SNaN
does not cause an invalid-operation exception, and an
SNaN is returned as the target operand.

For instructions with two source NaNs and a NaN is to
be propagated as the result, do the following.
W |If there is a QNaN in FRA and an SNaN in FRB,
the SNaN in FRB is propagated.
B Otherwise, propagate the NaN is FRA.

5.5 DFP Execution Model

DFP operations are performed as if they first produce
an intermediate result correct to infinite precision and
with unbounded range. The intermediate result is then
rounded to the destination’s precision according to one
of the eight DFP rounding modes. If the rounded result
has only one form, it is delivered as the final result; if
the rounded result has redundant forms, then an ideal
exponent is used to select the form of the final result.
The ideal exponent determines the form, not the value,
of the final result. (See Section 5.5.3 “Formation of
Final Result” on page 152.)

5.5.1 Rounding

Rounding takes a number regarded as infinitely precise
and, if necessary, modifies it to fit the destination’s pre-
cision. The destination’s precision of an operation
defines the set of permissible resultant values. For

150 Power ISA™ [- lI

Version 2.05

most operations, the destination’s precision is the tar-
get-format precision and the permissible resultant val-
ues are those values representable in the target format.
For some special operations, the destination precision
is constrained by both the target format and some addi-
tional restrictions, and the permissible resultant values
are a subset of the values representable in the target
format.

Rounding sets FPSCR bits FR and FI. When an inex-
act exception occurs, Fl is set to one; otherwise, Fl is
set to zero. When an inexact exception occurs and if
the rounded result is greater in magnitude than the
intermediate result, then FR is set to one; otherwise,
FR is set to zero. The exception is the Round to FP
Integer Without Inexact instruction, which always sets
FR and Fl to zero. Rounding may cause an overflow
exception or underflow exception; it may also cause an
inexact exception.

Refer to Figure 71 below for rounding. Let Z be the
intermediate result of a DFP operation. Z may or may
not fit in the destination’s precision. If Z is exactly one
of the permissible representable resultant values, then
the final result in all rounding modes is Z. Otherwise,
either Z1 or Z2 is chosen to approximate the result,
where Z1 and Z2 are the next larger and smaller per-
missible resultant values, respectively.

By increasing |Z|
Infinitely precise value
By decreasing |Z|

s

j¢l

[| |

| |

ZZ‘ Z1
Z

»
»

|| |

| |
Z‘Zl 0
Z

Negative values «——F}— Positive Values

<
|
Z

Figure 71. Rounding

Round to Nearest, Ties to Even

Choose the value that is closer to Z (Z1 or Z2). In case
of a tie, choose the one whose units digit would have
been even in the form with the largest common quan-
tum of the two permissible resultant values. However,
an infinitely precise result with magnitude at least (Nyax
+ 0.5Q(Nmax) is rounded to infinity with no change in
sign; where Q(Nyay) is the quantum of Ny ax-

Round toward 0
Choose the smaller in magnitude (Z1 or Z2).

Round toward +e
Choose Z1.

Round toward -e
Choose Z2.

Round to Nearest, Ties away from 0
Choose the value that is closer to Z (Z1 or Z2). In case

of a tie, choose the larger in magnitude (Z1 or Z2).
However, an infinitely precise result with magnitude at
least (Npyax + 0.5Q(Nimay)) is rounded to infinity with no
change in sign; where Q(Np,ax) is the quantum of Ny 4.

Round to Nearest, Ties toward 0

Choose the value that is closer to Z (Z1 or Z2). In case
of a tie, choose the smaller in magnitude (Z1 or Z2).
However, an infinitely precise result with magnitude
greater than (Nyax + 0.5Q(Nmax)) is rounded to infinity
with no change in sign; where Q(Np,4) is the quantum
of Nipax-

Round away from 0
Choose the larger in magnitude (Z1 or Z2).

Round to prepare for shorter precision

Choose the smaller in magnitude (Z1 or Z2). If the
selected value is inexact and the units digit of the
selected value is either O or 5, then the digit is incre-
mented by one and the incremented result is delivered.
In all other cases, the selected value is delivered.
When a value has redundant forms, the units digit is
determined by using the form that has the smallest
exponent.

5.5.2 Rounding Mode Specifica-
tion

Unless otherwise specified in the instruction definition,
the rounding mode used by an operation is specified in
the DFP rounding control (DRN) field of the FPSCR.
The eight DFP rounding modes are encoded in the
DRN field as specified in the table below.

DRN Rounding Mode

000 Round to Nearest, Ties to Even

001 Round toward O

010 Round toward +Infinity

011 Round toward -Infinity

100 Round to Nearest, Ties away from O
101 Round to Nearest, Ties toward 0

110 Round away from 0

111 Round to Prepare for Shorter Precision

Figure 72. Encoding of
Control (DRN)

DFP Rounding-Mode

For the quantum-adjustment, a 2-bit immediate field,
called RMC (Rounding Mode Control), in the instruction
specifies the rounding mode used. The RMC field may
contain a primary encoding or a secondary encoding.
For Quantize, Quantize Immediate, and Reround, the
RMC field contains the primary encoding. For Round
to FP Integer the field contains either encoding,
depending on the setting of a RMC-encoding-selection

Chapter 5. Decimal Floating-Point [Category: Decimal Floating-Point] 151

Version 2.05

bit. The following tables define the primary encoding
and the secondary encoding.

Pgﬂgy Rounding Mode
00 Round to nearest, ties to even
01 Round toward 0
10 Round to nearest, ties away from 0

11 Round according to FPSCRpryn

Figure 73. Primary Encoding of Rounding-Mode
Control

Secondary
RMC
00 Round to + =
01 Round to - «
10 Round away from 0
11 Round to nearest, ties toward 0

Rounding Mode

Figure 74. Secondary Encoding of Rounding-Mode
Control

5.5.3 Formation of Final Result

An ideal exponent is defined for each DFP instruction
that returns a DFP data operand.

5.5.3.1 Use of Ideal Exponent

For all DFP operations,

W if the rounded intermediate result has only one
form, then that form is delivered as the final resullt.

W f the rounded intermediate result has redundant.
forms and is exact, then the form with the expo-
nent closest to the ideal exponent is delivered.

W if the rounded intermediate result has redundant
forms and is inexact, then the form with the small-
est exponent is delivered.

The following table specifies the ideal exponent for
each instruction.

Operations Ideal Exponent

Add min(E(FRA), E(FRB))

Subtract min(E(FRA), E(FRB))
Multiply E(FRA) + E(FRB)
Divide E(FRA) - E(FRB)

Quantize-Immediate | See Instruction Description
E(FRA)

Reround See Instruction Description
Round to FP Integer | max(0, E(FRA))

Convert to DFP Long | E(FRA)

Quantize

Convert to DFP E(FRA)
Extended

Round to DFP Short | E(FRA)

Round to DFP Long | E(FRA)

Convert from Fixed 0
Encode BCD to DPD |0
Insert Biased Expo- | E(FRA)
nent

Notes:
E(x) - exponent of the DFP operand in register x.

Figure 75. Summary of Ideal Exponents

5.5.4 Arithmetic Operations

Four arithmetic operations are provided: Add, Subtract,
Multiply, and Divide.

5.5.4.1 Sign of Arithmetic Result

The following rules govern the sign of an arithmetic
operation when the operation does not yield an excep-
tion. They apply even when the operands or results are
zeros or infinities.

B The sign of the result of an add operation is the
sign of the source operand having the larger abso-
lute value. If both source operands have the same
sign, the sign of the result of an add operation is
the same as the sign of the source operands.
When the sum of two operands with opposite signs
is exactly zero, the sign of the result is positive in
all rounding modes except Round toward -e, in
which case the sign is negative.

B The sign of the result of the subtract operation x - y
is the same as the sign of the result of the add
operation X + (-y).

B The sign of the result of a multiply or divide opera-
tion is the exclusive-OR of the signs of the source
operands.

152 Power ISA™ [- lI

Version 2.05

5.5.,5 Compare Operations

Two sets of instructions are provided for comparing
numerical values: Compare Ordered and Compare
Unordered. In the absence of NaNs, these instructions
work the same. These instructions work differently
when either of the followings is true:

1. Atleast one source operand of the instruction is an
SNaN and the invalid-operation exception is dis-
abled.

2. When there is no SNaN in any source operand, at
least one source operand of the instruction is a
ONaN

In case 1, Compare Unordered recognizes an invalid-
operation exception and sets the FPSCRyxsnan flag,
but Compare Ordered recognizes the exception and
sets both the FPSCRyxgyan and FPSCRyxyc flags.
In case 2, Compare Unordered does not recognize an
exception, but Compare Ordered recognizes an invalid-
operation exception and sets the FPSCRyy,¢ flag.

For finite numbers, comparisons are performed on val-
ues, that is, all redundant forms of a DFP number are
treated equal.

Comparisons are always exact and cannot cause an
inexact exception.

Comparison ignores the sign of zero, that is, +0 equals
-0.

Infinities with like sign compare equal, that is, +eo
equals +eo, and -« equals -co.

A NaN compares as unordered with any other operand,
whether a finite number, an infinity, or another NaN,
including itself.

Execution of a compare instruction always completes,
regardless of whether any DFP exception occurs or
not, and whether the exception is enabled or not.

5.5.6 Test Operations

Four kinds of test operations are provided: Test Data
Class, Test Data Group, Test Exponent, and Test Sig-
nificance.

The Test Data Class instruction examines the contents
of a source operand and determines if the operand is
one of the specified data classes. The test result and
the sign of the source operand are indicated in the
FPSCREpc field and CR field BF.

The Test Data Group instruction examines the contents
of a source operand and determines if the operand is
one of the specified data groups. The test result and
the sign of the source operand are indicated in the
FPSCREpc(field and CR field BF.

The Test Exponent instruction compares the exponent
of the two source operands. The test operation ignores
the sign and significand of operands. Infinities compare

equal, and NaNs compare equal. The test result is indi-
cated in the FPSCRgpc(field and CR field BF.

The Test Significance instruction compares the number
of significant digits of one source operand with the ref-
erenced number of significant digits in another source
operand. The test result is indicated in the FPSCRgpcc
field and CR field BF.

Execution of a test instruction does not cause any DFP
exception.

5.5.7 Quantum Adjustment Opera-
tions

Four kinds of quantum-adjustment operations are pro-
vided: Quantize, Quantize Immediate, Reround, and
Round To FP Integer. Each of them has an immediate
field which specifies whether the rounding mode in
FPSCR or a different one is to be used.

The Quantize instruction is used to adjust a DFP num-
ber to the form that has the specified target exponent.
The Quantize Immediate instruction is similar to the
Quantize instruction, except that the target exponent is
specified in a 5-bit immediate field as a signed binary
integer and has a limited range.

The Reround instruction is used to simulate a DFP
operation of a precision other than that of DFP Long or
DFP Extended. For the Reround instruction to produce
a result which accurately reflects that which would have
resulted from a DFP operation of the desired precision
d in the range {1: 33} inclusively, the following condi-
tions must be met:

B The precision of the preceding DFP operation
must be at least one digit larger than d.

B The rounding mode used by the preceding DFP
operation must be round-to-prepare-for-shorter-
precision.

The Round To FP Integer instruction is used to round a
DFP number to an integer value of the same format.
The target exponent is implicitly specified, and is
greater than or equal to zero.

5.5.8 Conversion Operations

There are two kinds of conversion operations: data-for-
mat conversion and data-type conversion.

5.5.8.1 Data-Format Conversion

The instructions Convert To DFP Long and Convert To
DFP Extended convert DFP operands to wider formats;
the instructions Round To DFP Short and Round To
DFP Long convert DFP operands to narrower formats.

When converting a finite number to a wider format, the
result is exact. When converting a finite number to a
narrower format, the source operand is rounded to the

Chapter 5. Decimal Floating-Point [Category: Decimal Floating-Point] 153

Version 2.05

target-format precision, which is specified by the
instruction, not by the target register size.

When converting a finite number, the ideal exponent of
the result is the source exponent.

Conversion of an infinity or NaN to a different format
does not preserve the source combination field. Let N
be the width of the target format’s combination field.

B When the result is an infinity or a QNaN, the con-
tents of the rightmost N-5 bits of the N-bit target
combination field are set to zero.

B When the result is an SNaN, bit 5 of the target for-
mat’s combination field is set to one and the right-
most N-6 bits of the N-bit target combination field
are set to zero.

When converting a NaN to a wider format or when con-
verting an infinity from DFP Short to DFP Long, digits in
the source trailing significand field are reencoded using
the preferred DPD codes with sufficient zeros
appended on the left to form the target trailing signifi-
cand field. When converting a NaN to a narrower for-
mat or when converting an infinity from DFP Long to
DFP Short, the appropriate number of leftmost digits of
the source trailing significand field are removed and the
remaining digits of the field are reencoded using the
preferred DPD codes to form the target trailing signifi-
cand field.

When converting an infinity between DFP Long and
DFP Extended, a default infinity with the same sign is
produced.

When converting an SNaN between DFP Short and
DFP Long, it is converted to an SNaN without causing
an invalid-operation exception. When converting an
SNaN between DFP Long and DFP Extended, the
invalid-operation exception occurs; if the invalid-opera-
tion exception is disabled, the result is converted to the
corresponding QNaN.

5.5.8.2 Data-Type Conversion

The instructions Convert From Fixed and Convert To
Fixed are provided to convert a number between the
DFP data type and the signed 64-bit binary-integer
data type.

Conversion of a signed 64-bit binary integer to a DFP
Extended number is always exact.

Conversion of a DFP number to a signed 64-bit binary
integer results in an invalid-operation exception when
the converted value does not fit into the target format,
or when the source operand is an infinity or NaN. When
the exception is disabled, the most positive integer is
returned if the source operand is a positive number or
+o00, and the most negative integer is returned if the
source operand is a negative number, -, or NaN.

5.5.9 Format Operations

The format instructions are provided to facilitate com-
posing or decomposing a DFP number, and consist of
Encode BCD To DPD, Decode DPD To BCD, Extract
Biased Exponent, Insert Biased Exponent, Shift Signifi-
cand Left Immediate, and Shift Significand Right Imme-
diate. A source operand of SNaN does not cause an
invalid-operation exception, and an SNaN may be pro-
duced as the target operand.

5.5.10 DFP Exceptions

This architecture defines the following DFP exceptions:

® Invalid Operation Exception
SNaN
0+0
Invalid Compare
Invalid Conversion
Zero Divide Exception
Overflow Exception
Underflow Exception
B Inexact Exception

These exceptions may occur during execution of a DFP
instruction.

Each DFP exception, and each category of the Invalid
Operation Exception, has an exception status bit in the
FPSCR. In addition, each DFP exception has a corre-
sponding enable bit in the FPSCR. The exception sta-
tus bit indicates occurrence of the corresponding
exception. If an exception occurs, the corresponding
enable bit governs the result produced by the instruc-
tion and, in conjunction with the FEO and FEL1 bits (see
the discussion of FEO and FE1 below), whether and
how the system floating-point enabled exception error
handler is invoked. (In general, the enabling specified
by the enable bit is of invoking the system error han-
dler, not of permitting the exception to occur. The
occurrence of an exception depends only on the
instruction and its source operands, not on the setting
of any control bits. The only deviation from this general
rule is that the occurrence of an Underflow Exception
may depend on the setting of the enable bit.)

A single instruction, other than mtfsfi or mtfsf, may set
more than one exception bit only in the following cases:

B Inexact Exception may be set with Overflow
Exception.

B Inexact Exception may be set with Underflow
Exception.

B Invalid Operation Exception (SNaN) may be set
with Invalid Operation Exception (Invalid Compare)
for Compare Ordered instructions

154 Power ISA™ [- lI

Version 2.05

B Invalid Operation Exception (SNaN) may be set
with Invalid Operation Exception (Invalid Conver-
sion) for Convert To Fixed instructions.

When an exception occurs the instruction execution
may be completed or partially completed, depending on
the exception and the operation.

For all instructions, except for the Compare and Test
instructions, the following exceptions cause the instruc-
tion execution to be partially completed. That is, setting
of CR field 1(when Rc=1) and exception status flags is
performed, but no result is stored into the target FPR or
FPR pair. For Compare and Test instructions, instruc-
tion execution is always completed, regardless of
whether any DFP exception occurs or not, and whether
the exception is enabled or not.

B Enabled Invalid Operation
B Enabled Zero Divide

For the remaining kinds of exceptions, instruction exe-
cution is completed, a result, if specified by the instruc-
tion, is generated and stored into the target FPR or
FPR pair, and appropriate status flags are set. The
result may be a different value for the enabled and dis-
abled conditions for some of these exceptions. The
kinds of exceptions that deliver a result in target FPR
are the following:

B Disabled Invalid Operation
Disabled Zero Divide
Disabled Overflow
Disabled Underflow
Disabled Inexact

Enabled Overflow
Enabled Underflow

B Enabled Inexact

Subsequent sections define each of the DFP excep-
tions and specify the action that is taken when they are
detected.

The IEEE standard specifies the handling of excep-
tional conditions in terms of “traps” and “trap handlers”.
In this architecture, a FPSCR exception enable bit of 1
causes generation of the result value specified in the
IEEE standard for the “trap enabled” case: the expecta-
tion is that the exception will be detected by software,
which will revise the result. A FPSCR exception enable
bit of O causes generation of the “default result” value
specified for the “trap disabled” (or “no trap occurs” or
“trap is not implemented”) case: the expectation is that
the exception will not be detected by software, which
will simply use the default result. The result to be deliv-
ered in each case for each exception is described in
the sections below.

The IEEE default behavior when an exception occurs is
to generate a default value and not to notify software.
In this architecture, if the IEEE default behavior when
an exception occurs is desired for all exceptions, all
FPSCR exception enable bits should be set to zero and
Ignore Exceptions Mode (see below) should be used.

In this case the system floating-point enabled exception
error handler is not invoked, even if DFP exceptions
occur: software can inspect the FPSCR exception bits
if necessary, to determine whether exceptions have
occurred.

In this architecture, if software is to be notified that a
given kind of exception has occurred, the correspond-
ing FPSCR exception enable bit must be set to one and
a mode other than Ignore Exceptions Mode must be
used. In this case the system floating-point enabled
exception error handler is invoked if an enabled DFP
exception occurs. The system floating-point enabled
exception error handler is also invoked if a Move To
FPSCR instruction causes an exception bit and the cor-
responding enable bit both to be 1; the Move To
FPSCR instruction is considered to cause the enabled
exception.

The FEO and FE1 bits control whether and how the
system floating-point enabled exception error handler
is invoked if an enabled DFP exception occurs. The
location of these bits and the requirements for altering
them are described in Book Ill, PowerPC AS Operating
Environment Architecture. (The system floating-point
enabled exception error handler is never invoked
because of a disabled DFP exception.) The effects of
the four possible settings of these bits are as follows.

FEO FE1 Description

0 0 Ignore Exceptions Mode
DFP exceptions do not cause the system
floating-point enabled exception error

handler to be invoked.

Imprecise Nonrecoverable Mode

The system floating-point enabled excep-
tion error handler is invoked at some point
at or beyond the instruction that caused
the enabled exception. It may not be pos-
sible to identify the excepting instruction
or the data that caused the exception.
Results produced by the excepting
instruction may have been used by or may
have affected subsequent instructions
that are executed before the error handler
is invoked.

Imprecise Recoverable Mode

The system floating-point enabled excep-
tion error handler is invoked at some point
at or beyond the instruction that caused
the enabled exception. Sufficient informa-
tion is provided to the error handler that it
can identify the excepting instruction and
the operands, and correct the result. No
results produced by the excepting instruc-
tion have been used by or have affected
subsequent instructions that are executed
before the error handler is invoked.

Chapter 5. Decimal Floating-Point [Category: Decimal Floating-Point]

155

Version 2.05

FEO FE1 Description

1 1 Precise Mode

The system floating-point enabled excep-
tion error handler is invoked precisely at
the instruction that caused the enabled

exception.

In all cases, the question of whether a DFP result is
stored, and what value is stored, is governed by the
FPSCR exception enable bits, as described in subse-
guent sections, and is not affected by the value of the
FEO and FE1 bits.

In all cases in which the system floating-point enabled
exception error handler is invoked, all instructions
before the instruction at which the system floating-point
enabled exception error handler is invoked have com-
pleted, and no instruction after the instruction at which
the system floating-point enabled exception error han-
dler is invoked has begun execution. (Recall that, for
the two Imprecise modes, the instruction at which the
system floating-point enabled exception error handler
is invoked need not be the instruction that caused the
exception.) The instruction at which the system float-
ing-point enabled exception error handler is invoked
has not been executed unless it is the excepting
instruction, in which case it has been executed if the
exception is not among those listed on page 154 as
suppressed.

—— Programming Note

In the ignore and both imprecise modes, a Float-
ing-Point Status and Control Register instruction
can be used to force any exceptions, due to
instructions initiated before the Floating-Point Sta-
tus and Control Register instruction, to be recorded
in the FPSCR. (This forcing is superfluous for Pre-
cise Mode.)

In either of the Imprecise modes, a Floating-Point
Status and Control Register instruction can be
used to force any invocations of the system float-
ing-point enabled exception error handler, due to
instructions initiated before the Floating-Point Sta-
tus and Control Register instruction, to occur. (This
forcing has no effect in Ignore Exceptions Mode,
and is superfluous for Precise Mode.)

In order to obtain the best performance across the wid-
est range of implementations, the programmer should
obey the following guidelines.

W If the IEEE default results are acceptable to the
application, Ignore Exceptions Mode should be
used with all FPSCR exception enable bits set to
zero.

W If the IEEE default results are not acceptable to the
application, Imprecise Nonrecoverable Mode
should be used, or Imprecise Recoverable Mode if
recoverability is needed, with FPSCR exception

enable bits set to one for those exceptions for
which the system floating-point enabled exception
error handler is to be invoked.

W |gnore Exceptions Mode should not, in general, be
used when any FPSCR exception enable bits are
set to one.

B Precise Mode may degrade performance in some
implementations, perhaps substantially, and there-
fore should be used only for debugging and other
specialized applications.

5.5.10.1 Invalid Operation Exception

Definition

An Invalid Operation Exception occurs when an oper-
and is invalid for the specified DFP operation. The
invalid DFP operations are:

B Any DFP operation on a signaling NaN (SNaN),

except for Test, Round To DFP Short, Convert To

DFP Long, Decode DPD To BCD, Extract Biased

Exponent, Insert Biased Exponent, Shift Signifi-

cand Left Immediate, and Shift Significand Right

Immediate

For add or subtract operations, magnitude subtrac-

tion of infinities (+oo0) + (-o0)

Division of infinity by infinity (co + o)

Division of zero by zero (0 + 0)

Multiplication of infinity by zero (e X 0)

Ordered comparison involving a NaN (Invalid

Compare)

The Quantize operation detects that the signifi-

cand associated with the specified target exponent

would have more significant digits than the target-

format precision

B For the Quantize operation, when one source
operand specifies an infinity and the other speci-
fies a finite number

B The Reround operation detects that the target
exponent associated with the specified target sig-
nificance would be greater than X4

B The Encode BCD To DPD operation detects an
invalid BCD digit or sign code

B The Convert To Fixed operation involving a num-
ber too large in magnitude to be represented in the
target format, or involving a NaN.

156 Power ISA™ [- lI

Version 2.05

—— Programming Note

In addition, an Invalid Operation Exception occurs if
software explicitly requests this by executing an
mtfsfi, mtfsf, or mtfsbl instruction that sets
FPSCRyxsorT to 1 (Software Request). The pur-
pose of FPSCRyxsopt is to allow software to
cause an Invalid Operation Exception for a condi-
tion that is not necessarily associated with the exe-
cution of a DFP instruction. For example, it might
be set by a program that computes a square root, if
the source operand is negative.

Action

The action to be taken depends on the setting of the
Invalid Operation Exception Enable bit of the FPSCR.

When Invalid Operation Exception is enabled
(FPSCRyg=1) and Invalid Operation occurs, the follow-
ing actions are taken:

1. One or two Invalid Operation Exceptions are set:

FPSCRVXSNAN (lf SNaN)
FPSCRyxsi (if oo - o0)
FPSCRyxpI (if o + o0)
FPSCRVXZDZ (lfo = 0)
FPSCRyximz (if o X 0)
FPSCRyxvc (if invalid comp)
FPSCRyxcv (if invalid conversion)

2. If the operation is an arithmetic, quantum-adjust-
ment, conversion, or format,
the target FPR is unchanged,
FPSCRgR are set to zero, and
FPSCRgpRr is unchanged.
3. If the operation is a compare,
FPSCRgR i ¢ are unchanged, and
FPSCRgpcc is set to reflect unordered.

When Invalid Operation Exception is disabled
(FPSCRyg=0) and Invalid Operation occurs, the follow-
ing actions are taken:

1. One or two Invalid Operation Exceptions are set:

FPSCRVXSNAN (if SNaN)
FPSCRVX|S| (lf o - °°)
FPSCRyxp) (if o0 + o0)
FPSCRVXZDZ (If 0+ 0)
FPSCRVX”\AZ (lf o0 X 0)
FPSCRyxvc (if invalid comp)
FPSCRyxcv (if invalid conversion)

2. If the operation is an arithmetic, quantum-adjust-
ment, Round to DFP Long, Convert to DFP
Extended, or format

the target FPR is set to a Quiet NaN

FPSCRgR g are set to zero

FPSCREpRE is set to indicate the class of the
result (Quiet NaN)

3. If the operation is a Convert To Fixed

the target FPR is set as follows:
FRT is set to the most positive 64-bit binary
integer if the operand in FRB is a positive or

+e0, and to the most negative 64-bit binary
integer if the operand in FRB is a negative
number, -, or NaN.

FPSCRgR g are set to zero

FPSCREpgRe is unchanged

4. If the operation is a compare,
FPSCRgR g c are unchanged
FPSCREpcc is set to reflect unordered

5.5.10.2 Zero Divide Exception

Definition

A Zero Divide Exception occurs when a Divide instruc-
tion is executed with a zero divisor value and a finite
nonzero dividend value.

Action

The action to be taken depends on the setting of the
Zero Divide Exception Enable bit of the FPSCR.

When Zero Divide Exception is enabled (FPSCRzg=1)
and Zero Divide occurs, the following actions are taken:

1. Zero Divide Exception is set
FPSCRzx < 1

2. The target FPR is unchanged

3. FPSCRgR [are set to zero

4. FPSCRgpgf is unchanged

When Zero Divide Exception is disabled (FPSCRzg=0)
and Zero Divide occurs, the following actions are taken:

1. Zero Divide Exception is set
FPSCRzx < 1

2. The target FPR is set to +e, where the sign is
determined by the XOR of the signs of the oper-
ands

3. FPSCRgR [are set to zero

4. FPSCRgpRe is set to indicate the class and sign of
the result (£eo)

5.5.10.3 Overflow Exception

Definition

An overflow exception occurs whenever the target for-
mat's largest finite number is exceeded in magnitude
by what would have been the rounded result if the
exponent range were unbounded.

Action

Except for Reround, the following describes the han-
dling of the IEEE overflow exception condition. The
Reround operation does not recognize an overflow
exception condition.

The action to be taken depends on the setting of the
Overflow Exception Enable bit of the FPSCR.

Chapter 5. Decimal Floating-Point [Category: Decimal Floating-Point] 157

Version 2.05

When Overflow Exception is enabled (FPSCRpg=1)
and overflow occurs, the following actions are taken:

1. Overflow Exception is set
FPSCRoy < 1

2. The infinitely precise result is divided by 10¢. That
is, the exponent adjustment o is subtracted from
the exponent. This is called the wrapped result.
The exponent adjustment for all operations, except
for Round To DFP Short and Round To DFP Long,
is 576 for DFP Long and 9216 for DFP Extended.
For Round To DFP Short and Round To DFP
Long, the exponent adjustment is 192 for the
source format of DFP Long and 3072 for the
source format of DFP Extended.

3. The wrapped result is rounded to the target-format
precision. This is called the wrapped rounded
result.

4. If the wrapped rounded result has only one form, it
is the delivered result. If the wrapped rounded
result has redundant forms and is exact, the result
of the form that has the exponent closest to the
wrapped ideal exponent is returned. If the wrapped
rounded result has redundant forms and is inexact,
the result of the form that has the smallest expo-
nent is returned. The wrapped ideal exponent is
the result of subtracting the exponent adjustment
from the ideal exponent.

5. FPSCRgpge is set to indicate the class and sign of
the result (+ Normal Number)

When Overflow Exception is disabled (FPSCRpg=0)
and overflow occurs, the following actions are taken:

1. Overflow Exception is set
FPSCRpx « 1
2. Inexact Exception is set
FPSCRyx < 1
3. The result is determined by the rounding mode
and the sign of the intermediate result as follows.

Sign of inter-
mediate result
Rounding Mode Plus | Minus
Round to Nearest, Ties to Even +oo -00
Round toward 0 *+Nmax | “Nmax
Round toward +eo + o0 -Nmax
Round toward - e +Nmax -o0
Round to Nearest, Ties away +oo -0
from O
Round to Nearest, Ties toward O +oo -00
Round away from 0 +oo -0
Round to prepare for shorter pre- | +Npax | -Nmax
cision

Figure 76. Overflow Results When Exception Is
Disabled

The result is placed into the target FPR

FPSCRER is set to one if the returned result is + oo,
and is set to zero if the returned result is N5«
FPSCRE, is set to one

7. FPSCRgpgE is set to indicate the class and sign of
the result (x = or + Normal number)

ok

o

5.5.10.4 Underflow Exception

Definition

Except for Reround, the following describes the han-
dling of the IEEE underflow exception condition. The
Reround operation does not recognize an underflow
exception condition.

The Underflow Exception is defined differently for the
enabled and disabled states. However, a tininess con-
dition is recognized in both states when a result com-
puted as though both the precision and exponent range
were unbounded would be nonzero and less than the
target format's smallest normal number, N, in magni-
tude.

Unless otherwise defined in the instruction description,
an underflow exception occurs as follows:

B Enabled:
When the tininess condition is recognized.

B Disabled:
When the tininess condition is recognized and
when the delivered result value differs from what
would have been computed were both the preci-
sion and the exponent range unbounded.

Action

The action to be taken depends on the setting of the
Underflow Exception Enable bit of the FPSCR.

When Underflow Exception is enabled (FPSCRyg=1)
and underflow occurs, the following actions are taken:

1. Underflow Exception is set
FPSCRyx < 1

2. The infinitely precise result is multiplied by 10%
That is, the exponent adjustment o. is added to the
exponent. This is called the wrapped result. The
exponent adjustment for all operations, except for
Round To DFP Short and Round To DFP Long, is
576 for DFP Long and 9216 for DFP Extended. For
Round To DFP Short and Round To DFP Long,
the exponent adjustment is 192 for the source for-
mat of DFP Long and 3072 for the source format of
DFP Extended.

3. The wrapped result is rounded to the target-format
precision. This is called the wrapped rounded
result.

4. If the wrapped rounded result has only one form, it
is the delivered result. If the wrapped rounded
result has redundant forms and is exact, the result
of the form that has the exponent closest to the

158 Power ISA™ [- lI

Version 2.05

wrapped ideal exponent is returned. If the wrapped
rounded result has redundant forms and is inexact,
the result of the form that has the smallest expo-
nent is returned. The wrapped ideal exponent is
the result of adding the exponent adjustment to the
ideal exponent.

5. FPSCRgpge is set to indicate the class and sign of
the result (+ Normal number)

When Underflow Exception is disabled (FPSCRyg=0)
and underflow occurs, the following actions are taken:

1. Underflow Exception is set
FPSCRyx < 1

2. The infinitely precise result is rounded to the tar-
get-format precision.

3. The rounded result is returned. If this result has
redundant forms, the result of the form that is clos-
est to the ideal exponent is returned.

4. FPSCRgpRg is set to indicate the class and sign of
the result (= Normal number, + Subnormal Num-
ber, or £ Zero)

5.5.10.5 Inexact Exception

Definition

Except for Round to FP Integer Without Inexact, the fol-
lowing describes the handling of the IEEE inexact
exception condition. The Round to FP Integer Without
Inexact does not recognize an inexact exception condi-
tion.

An Inexact Exception occurs when either of two condi-
tions occur during rounding:

1. The delivered result differs from what would have
been computed were both the precision and expo-
nent range unbounded.

2. The rounded result overflows and Overflow Excep-
tion is disabled.

Action

The action to be taken does not depend on the setting
of the Inexact Exception Enable bit of the FPSCR.

When Inexact Exception occurs, the following actions
are taken:

1. Inexact Exception is set
FPSCRyx < 1
2. The rounded or overflowed result is placed into the
target FPR
3. FPSCRgpRgE is set to indicate the class and sign of
the result

Programming Note

In some implementations, enabling Inexact Excep-
tions may degrade performance more than does
enabling other types of floating-point exception.

Chapter 5. Decimal Floating-Point [Category: Decimal Floating-Point] 159

Version 2.05

5.5.11 Summary of Normal Rounding And Range Actions

Figure 77 and Figure 78 summarize rounding and B The Round to FP Integer Without Inexact opera-
range actions, with the following exceptions: tion does not recognize the inexact operation
B The Reround operation recognizes neither an exception.

underflow nor an overflow exception.

Result (r)
when Rounding Mode Is
Range of v Case RNE RNTZ RNAZ RAFZ RTMI RFSP RTPI RTZ
v < -Nmax, g < -Nmax Overflow | oot -ool —ool -0l -0l -Nmax | -Nmax | -Nmax
v < -Nmax, g = -Nmax Normal -Nmax | -Nmax | -Nmax — — -Nmax | -Nmax | -Nmax
-Nmax <v < -Nmin Normal b b b b b b b b
-Nmin <v £-Dmin Tiny b* b* b* b* b* b* b b
-Dmin < v < -Dmin/2 Tiny -Dmin -Dmin -Dmin -Dmin -Dmin -Dmin -0 -0
v = -Dmin/2 Tiny -0 -0 -Dmin -Dmin -Dmin -Dmin -0 -0
-Dmin/2<v<0 Tiny -0 -0 -0 -Dmin -Dmin -Dmin -0 -0
v=0 EZD +0 +0 +0 +0 -0 +0 +0 +0
0 <v < +Dmin/2 Tiny +0 +0 +0 +Dmin +0 +Dmin | +Dmin +0
v = +Dmin/2 Tiny +0 +0 +Dmin | +Dmin +0 +Dmin | +Dmin +0
+Dmin/2 < v < +Dmin Tiny +Dmin | +Dmin | +Dmin | +Dmin +0 +Dmin | +Dmin +0
+Dmin < v < +Nmin Tiny b* b* b* b* b b* b* b
+Nmin < v < +Nmax Normal b b b b b b b b
+Nmax <v, g = +Nmax Normal +Nmax | +Nmax | +Nmax — +Nmax | +Nmax — +Nmax
+Nmax < v, g > +Nmax Overflow | +eo! +ool +ool +ool | +Nmax | +Nmax | +e! | +Nmax
Explanation:
— This situation cannot occur.
1 The normal result r is considered to have been incremented.
* The rounded value, in the extreme case, may be Nmin. In this case, the exception conditions are underflow,
inexact, and incremented.
b The value derived when the precise result v is rounded to the destination’s precision, including both bounded
precision and bounded exponent range.
q The value derived when the precise result v is rounded to the destination’s precision, but assuming an
unbounded exponent range.
r This is the returned value when neither overflow nor underflow is enabled.
v Precise result before rounding, assuming unbounded precision and an unbounded exponent range. For data-
format conversion operations, v is the source value.

Dmin Smallest (in magnitude) representable subnormal number in the target format.

EZD The result r of the exact-zero-difference case applies only to ADD and SUBTRACT with both source operands
having opposite signs. (For ADD and SUBTRACT, when both source operands have the same sign, the sign of
the zero result is the same sign as the sign of the source operands.)

Nmax Largest (in magnitude) representable finite number in the target format.

Nmin Smallest (in magnitude) representable normalized number in the target format.
RAFZ Round away from 0.

RFSP Round to Prepare for Shorter Precision.

RNAZ Round to Nearest, Ties away from 0.

RNE Round to Nearest, Ties to even.

RNTZ Round to Nearest, Ties toward 0.

RTPI Round toward +ee.

RTMI Round toward -co.

RTZ Round toward 0.

Figure 77. Rounding and Range Actions (Part 1)

160 Power ISA™ [- lI

Version 2.05

Isr Isrincre-| Isqg |Isq Incre-
inexact mented | inexact | mented
Case (r#v) |OE=1|UE=1|XE=1| (|r]>|v]) (g=v) | (lal>Iv]) Returned Results and Status Setting*
Overflow | Yes? No — No No — — T(r), OX¢— 1, Fle~ 1, FR« 0, XX « 1
Overflow | Yes! No — No Yes — — T(r), OXe 1, Fl« 1, FR< 1, XX « 1
Overflow | Yes! No — | Yes No — — T(r), OXe~ 1, Fl« 1, FR« 0, XX « 1, TX
Overflow | Yes! No — | Yes Yes — — T(r), OX¢— 1, Fle— 1, FR 1, XX « 1, TX
Overflow | Yes! | Yes | — | — — No No!' |Tw(g+p), OX« 1, Fl— 0, FR< 0, TO
Overflow | Yes! | Yes | — — — Yes No Tw(g+B), OX« 1, Fl«— 1, FR« 0, XX« 1,TO
Overflow | Yes! | Yes | — — — Yes Yes Tw(g+B), OX¢ 1, Fl«— 1, FRe 1, XX« 1,TO
Normal No — — — — — — T(r), Fl«< 0, FR« 0
Normal Yes — — No No — — T(r), Fl- 1, FR< 0, XX « 1
Normal Yes — — No Yes — — T(r), Fl 1, FR« 1, XX « 1
Normal Yes — — | Yes No — — T(r), Fl 1, FR« 0, XX « 1, TX
Normal Yes — — | Yes Yes — — T(r), Fle- 1, FR< 1, XX < 1, TX

Tiny No — No — — — — T(r), Fl< 0, FR« 0

Tiny No — | Yes | — — Nol No® |Tw(geB), UX« 1, Fl- 0, FR« 0, TU

Tiny Yes — No No No — — T(r), UXe 1, Fl— 1, FR 0, XX < 1

Tiny Yes — No No Yes — — T(r), UXe 1, Fle~ 1, FR 1, XX < 1

Tiny Yes — No | Yes No — — T(r), UXe< 1, Fl«~ 1, FR« 0, XX < 1, TX

Tiny Yes — No | Yes Yes — — T(r), UXe< 1, Fle~ 1, FR« 1, XX < 1, TX

Tiny Yes — | Yes | — — No No?! Tw(geB), UX« 1, Fl« 0, FR« 0, TU

Tiny Yes — | Yes | — — Yes No Tw(geB), UX« 1, Fl«~ 1, FR« 0, XX « 1,TU

Tiny Yes — | Yes | — — Yes Yes Tw(geB), UX«— 1, Fl— 1, FR« 1, XX « 1,TU

Explanation:

— The results do not depend on this condition.

1 This condition is true by virtue of the state of some condition to the left of this column.

* Rounding sets only the Fl and FR status flags. Setting of the OX, XX, or UX flag is part of the exception actions. They
are listed here for reference.

B Wrap adjust, which depends on the type of operation and operand format. For all operations except Round to DFP
Short and Round to DFP Long, the wrap adjust depends on the target format: § = 10% where o is 576 for DFP Long,
and 9216 for DFP Extended. For Round to DFP Short and Round to DFP Long, the wrap adjust depends on the source
format: B = 10¥ where x is 192 for DFP Long and 3072 for DFP Extended.

q The value derived when the precise result v is rounded to destination’s precision, but assuming an unbounded exponent
range.

r The result as defined in Part 1 of this figure.

v Precise result before rounding, assuming unbounded precision and unbounded exponent range.

Fl Floating-Point-Fraction-Inexact status flag, FPSCRg,. This status flag is non-sticky.

FR Floating-Point-Fraction-Rounded status flag, FPSCRgg.

OoX Floating-Point Overflow Exception status flag, FPSCRgy.

TO The system floating-point enabled exception error handler is invoked for the overflow exception if the FEO and FE1 bits
in the machine-state register are set to any mode other than the ignore-exception mode.

TU The system floating-point enabled exception error handler is invoked for the underflow exception if the FEO and FE1 bits
in the machine-state register are set to any mode other than the ignore-exception mode.

X The system floating-point enabled exception error handler is invoked for the inexact exception if the FEO and FE1 bits in
the machine-state register are set to any mode other than the ignore-exception mode.

T(x) The value x is placed at the target operand location.

Tw(x) The wrapped rounded result x is placed at the target operand location. For all operations except data format
conversions, the wrapped rounded result is in the same format and length as normal results at the target location. For
data format conversions, the wrapped rounded result is in the same format and length as the source, but rounded to the
target-format precision.

UX Floating-Point-Underflow-Exception status flag, FPSCRx

XX Float-Point-Inexact-Exception Status flag, FPSCRyy. The flag is a sticky version of FPSCRg,. When FPSCRE, is set to a
new value, the new value of FPSCRyy is set to the result of ORing the old value of FPSCRyy with the new value of
FPSCRg;.

| Figure 78. Rounding and Range Actions (Part 2)

Chapter 5. Decimal Floating-Point [Category: Decimal Floating-Point] 161

Version 2.05

5.6 DFP Instruction Descriptions

The following sections describe the DFP instructions.
When a 128-bit operand is used, it is held in a FPR pair
and the instruction mnemonic uses a letter “q” to mean
the quad-precision operation. Note that in the following
descriptions, FPXp denotes a FPR pair and must
address an even-odd pair. If the FPXp field specifies
an odd-numbered register, then the instruction form is
invalid. The notation FPX[p] means either a FPR, FPX,
or a FPR pair, FPXp.

For DFP instructions, if a DFP operand is returned, the
trailing significand field of the target operand is
encoded using preferred DPD codes.

162 Power ISA™ [- lI

Version 2.05

| 5.6.1 DFP Arithmetic Instructions

All DFP arithmetic instructions are X-form instructions.
They all set the Fl and FR status flags, and also set the
FPSCRgpgE field. Furthermore, they all have an ideal
exponent assigned and employ the record bit (Rc).

The arithmetic instructions consist of Add, Divide, Multi-
ply, and Subtract.

DFP Add [Quad] X-form DFP Subtract [Quad] X-form
dadd FRTFRAFRB (Rc=0) dsub FRTFRAFRB (Rc=0)
dadd. FRTFRAFRB (Rc=1) dsub. FRTFRAFRB (Rc=1)

59 FRT | FRA | FRB 2 Rc 59 FRT | FRA | FRB 514 Rc
0 6 11 16 21 31 0 6 1 16 21 31
daddqg FRTp,FRApFRBp (Rc=0) dsubq FRTp,FRAp,FRBp (Rc=0)
daddg. FRTp,FRApFRBp (Rc=1) dsubq. FRTp,FRAp,FRBp (Rc=1)

63 FRTp | FRAp | FRBp 2 Rc 63 FRTp | FRAp | FRBp 514 Rc
0 6 11 16 21 31 0 6 1 16 21 31

The DFP operand in FRA[p] is added to the DFP oper-
and in FRBI[p].

The result is rounded to the target-format precision
under control of the DRN (bits 29:31) of the FPSCR.
An appropriate form of the rounded result is selected
based on the ideal exponent and is placed in FRT[p].
The ideal exponent is the smaller exponent of the two
source operands.

Figure 79 summarizes the actions for Add. Figure 79
does not include the setting of the FPSCRgpge field.
The FPSCRgpgf field is always set to the class and
sign of the result, except for an enabled invalid-opera-
tion exception, in which case the field remains
unchanged.

Special Registers Altered:
FPRF FR FI
FX OX UX XX
VXSNAN VXISI
CR1 (if Rc=1)

The DFP operand in FRB[p] is subtracted from the DFP
operand in FRA[p].

The result is rounded to the target-format precision
under control of the DRN (bits 29:31) of the FPSCR.
An appropriate form of the rounded result is selected
based on the ideal exponent and is placed in FRT[p].
The ideal exponent is the smaller exponent of the two
source operands.

The execution of Subtract is identical to that of Add,
except that the operand in FRB participates in the oper-
ation with its sign bit inverted. See Figure 79. The table
does not include the setting of the FPSCRgpge field.
The FPSCRgpgr field is always set to the class and
sign of the result, except for an enabled invalid-opera-
tion exception, in which case the field remains
unchanged.

Special Registers Altered:
FPRF FR FI
FX OX UX XX
VXSNAN VXISI
CR1 (if Rc=1)

Chapter 5. Decimal Floating-Point [Category: Decimal Floating-Point] 163

Version 2.05

Operand a Actions for Add (a + b) when operand b in FRB[p] is

in FRA[p] is -co F +oo0 QNaN SNaN
-00 T(-dINF) T(-dINF) Vysi: T(dNaN) P(b) Vysnan: U(b)
F T(-dINF) S(a+b) T(+dINF) P(b) Vysnan: U(b)

+oo Vys: T(dNaN) T(+dINF) T(+dINF) P(b) Vysnan: U(b)

QNaN P(a) P(a) P(a) P(@) Vxsnan: U(b)

SNaN Vxsnan: U(@) Vxsnan: U(@) Vxsnan: U(@) Vxsnan: U(a) Vxsnan: U(a)

Explanation:

a+b The value a added to b, rounded to the target-format precision and returned in the appropriate
form. (See Section 5.5.11 on page 160)

+dINF Default plus infinity.

- dINF Default minus infinity.

dNaN Default quiet NaN.

F All finite numbers, including zeros.

P(x) The QNaN of operand x is propagated and placed in FRT[p].

S(x) The value x is placed in FRT[p] with the sign set by the rules of algebra. When the source oper-
ands have the same sign, the sign of the result is the same as the sign of the operands, includ-
ing the case when the result is zero. When the operands have opposite signs, the sign of a zero
result is positive in all rounding modes, except round toward -e, in which case, the sign is
minus.

T(x) The value x is placed in FRT[p].

U(x) The SNaN of operand x is converted to the corresponding QNaN and placed in FRT[p].

Vs The Invalid-Operation Exception (VXISI) occurs. The result is produced only when the exception is
disabled. (See Section 5.5.10.1 “Invalid Operation Exception” on page 156 for the exception
actions.)

VxSNAN The Invalid-Operation Exception (VXSNAN) occurs. The result is produced only when the excep-

tion is disabled. (See Section 5.5.10.1
exception actions.)

“Invalid Operation Exception” on page 156 for the

Figure 79. Actions: Add

164

Power ISA™ | - |l

Version 2.05

DFP Multiply [Quad] X-form Special Registers Altered:
FPRF FR FI
dmul FRT,FRAFRB (Rc=0) FX OX UX XX
dmul. FRT,FRAFRB (Rc=1) VXSNAN VXIMZ
CR1 (if Re=1)
59 FRT FRA | FRB 34 Rc
0 6 1 16 21 31
dmulg FRTp,FRApFRBp (Rc=0)
dmulg. FRTp,FRApFRBp (Rc=1)
63 FRTp | FRAp | FRBp 34 Rc
0 6 1 16 21 31
The DFP operand in FRA[p] is multiplied by the DFP
operand in FRBJp].
The result is rounded to the target-format precision
under control of the DRN (bits 29:31) of the FPSCR.
An appropriate form of the rounded result is selected
based on the ideal exponent and is placed in FRT[p].
The ideal exponent is the sum of the two exponents of
the source operands.
Figure 80 summarizes the actions for Multiply.
Figure 80 does not include the setting of the FPSCRE.
pre field. The FPSCRgpgf field is always set to the
class and sign of the result, except for an enabled
invalid-operation exception, in which case the field
remains unchanged.
Operand a Actions for Multiply (a*b) when operand b in FRB[p] is
in FRA[p] is 0 Fn o0 QNaN SNaN
0 S(a*h) S(a*b) Vymz: T(dNaN) P(b) VySNAN: U(b)
Fn S(a*b) S(a*b) S(dINF) P(b) Vysnan: U(b)
oo Vymz: T(dNaN) S(dINF) S(dINF) P(b) Vysnan: U(b)
QNaN P(a) P(a) P(a) P(a) VXSNAN: U(b)
SNaN Vxsnan: U(@) Vxsnan: U(@) Vxsnan: U(@) Vxsnan: U(a) Vxsnan: U(a)
Explanation:
a*b The value a multiplied by b, rounded to the target-format precision and returned in the appropriate

form. (See Section 5.5.11 on page 160)

dINF Default infinity.
dNaN Default quiet NaN.
Fn Finite nonzero number (includes both normal and subnormal numbers).
P(x) The QNaN of operand x is propagated and placed in FRT[p].
S(x) The value x is placed in FRT[p] with the sign set to the exclusive-OR of the source-operand signs.
T(X) The value x is placed in FRT[p].
U(x) The SNaN of operand x is converted to the corresponding QNaN and placed in FRT[p].

Vymz: The Invalid-Operation Exception (VXIMZ) occurs. The result is produced only when the exception is
disabled. (See Section 5.5.10.1 “Invalid Operation Exception” on page 156 for the exception
actions.)

Vxsnan: The Invalid-Operation Exception (VXSNAN) occurs. The result is produced only when the exception

is disabled. (See Section 5.5.10.1
actions.)

“Invalid Operation Exception” on page 156 for the exception

| Figure 80. Actions: Multiply

Chapter 5. Decimal Floating-Point [Category: Decimal Floating-Point]

165

Version 2.05

DFP Divide [Quad] X-form
ddiv FRTFRAFRB (Rc=0)
ddiv. FRTFRAFRB (Rc=1)

59 FRT | FRA | FRB 546 Rc
0 6 11 16 21 31
ddivq FRTp,FRApFRBp (Rc=0)
ddivq. FRTp,FRApFRBp (Rc=1)

63 FRTp | FRAp | FRBp 546 Rc
0 6 11 16 21 31

The DFP operand in FRA[p] is divided by the DFP
operand in FRBJp].

The result is rounded to the target-format precision
under control of the DRN (bits 29:31) of the FPSCR.
An appropriate form of the rounded result is selected
based on the ideal exponent and is placed in FRT[p].
The ideal exponent is the difference of subtracting the
exponent of the divisor from the exponent of the divi-
dend.

Figure 81 summarizes the actions for Divide. Figure 81
does not include the setting of the FPSCRgpge field.
The FPSCRgpgr field is always set to the class and
sign of the result, except for an enabled invalid-opera-
tion and enabled zero-divide exceptions, in which
cases the field remains unchanged.

Special Registers Altered:
FPRF FR FI
FX OX UX ZX XX
VXSNAN VXIDI VXZDZz
CR1 (if Rc=1)

Section 5.5.10.2

Operand a Actions for Divide (a + b) when operand b in FRB[p] is
in FRA[p] is 0 Fn oo QNaN SNaN
0 Vxzpz: T(dNaN) S(a+b) S(zt) P(b) Vysnan: U(b)
Fn Zx: S(dINF) S(a+h) S(zt) P(b) Vysnan: U(b)
oo S(dINF) S(dINF) Vypi: T(dNaN) P(b) Vysnan: U(b)
QNaN P(a) P(a) P(a) P(a) Vxsnan: U(b)
SNaN Vxsnan: U(a) Vxsnan: U(@) Vxsnan: U(@) Vxsnan: U(@) Vxsnan: U(@)
Explanation:

a+b The value a divided by b, rounded to the target-format precision and returned in the appropriate
form. (See Section 5.5.11 on page 160.)

dINF Default infinity.

dNaN Default quiet NaN.

Fn Finite nonzero number (includes both normal and subnormal numbers).

P(x) The QNaN of operand x is propagated and placed in FRT[p].

S(x) The value x is placed in FRT[p] with the sign set to the exclusive-OR of the source-operand signs.
T(X) The value x is placed in FRT[p].

U(x) The SNaN of operand x is converted to the corresponding QNaN and placed in FRT[p].

Vyipi: The Invalid-Operation Exception (VXIDI) occurs. The result is produced only when the exception is
disabled. (See Section 5.5.10.1 “Invalid Operation Exception” on page 156 for the exception
actions.)

VyXSNAN: The Invalid-Operation Exception (VXSNAN) occurs. The result is produced only when the exception
is disabled. (See Section 5.5.10.1 “Invalid Operation Exception” on page 156 for the exception
actions.)

Vxzpz: The Invalid-Operation Exception (VXZDZ) occurs. The result is produced only when the exception
is disabled. (See Section 5.5.10.1 “Invalid Operation Exception” on page 156 for the exception
actions.)

zt True zero (zero significand and most negative exponent).
Zx The Zero-Divide Exception occurs. The result is produced only when the exception is disabled (See

“Zero Divide Exception” on page 157 for the exception actions.)

Figure 81. Actions: Divide

166 Power ISA™ [- lI

Version 2.05

| 5.6.2 DFP Compare Instructions

The DFP compare instructions consist of the Compare
Ordered and Compare Unordered instructions. The
compare instructions do not provide the record bit.

The comparison sets the designated CR field to indi-
cate the result. The FPSCRgpcc is set in the same
way.

The codes in the CR field BF and FPSCRgpcc are
defined for the DFP compare operations as follows.

Bit Name Description

0

1
2
3

FL
FG
FE
FU

(FRA[p]) < (FRB[p])
(FRA[p]) > (FRB[p])
(FRA[p]) = (FRB[p])
(FRA[p]) ? (FRB[p])

Chapter 5. Decimal Floating-Point [Category: Decimal Floating-Point] 167

Version 2.05

DFP Compare Unordered [Quad] X-form

dcmpu BFFRAFRB

59 BF |//| FRA | FRB 642 /
0 6 |9 |11 16 21 31
dcmpugq BFFRApFRBp

63 BF | // | FRAp | FRBp 642 /
0 6 |9 |11 16 21 31

The DFP operand in FRA[p] is compared to the DFP
operand in FRBJ[p]. The result of the compare is placed
into CR field BF and the FPSCRgpcc.

Special Registers Altered:

CR field BF
FPCC
FX
VXSNAN
Operand a in Actions for Compare Unordered (a:b) when operand b in FRB[p] is
FRA[p] is -0 F +oo QNaN SNaN
-o0 AeqB AltB AltB AuoB Fu, Vxsnan
F AgtB C(a:b) AltB AuoB Fu, Vysnan
+oo AgtB AgtB AeqB AuoB FU, VxsnaN
QNaN AuoB AuoB AuoB AuoB Fu, VxsnaN
SNaN Fu, Vxsnan Fu, Vxsnan Fu, Vxsnan Fu, Vxsnan Fu, Vxsnan
Explanation:
C(a:b) Algebraic comparison. See the table below.
F All finite numbers, including zeros.
AeqB CR field BF and FPSCRgpc are set to 0b0010.
AgtB CR field BF and FPSCRgpc are set to 0b0100.
AltB CR field BF and FPSCRgpc are set to 0b1000.
AuoB CR field BF and FPSCRgpcc are set to 0b0001.
VxSNAN The invalid-operation exception (VXSNAN) occurs. See Section 5.5.10.1 for actions.

Relation of Value ato Value b

Action for C(a:b)

a=>b AeqB
a<b AltB
a>bhb AgtB

Figure 82. Actions: Compare Unordered

168 Power ISA™ [- lI

Version 2.05

DFP Compare Ordered [Quad] X-form
dcmpo BFFRAFRB

59 |BF|//| FRA | FRB 130 /
0 6 9 |11 16 21 31
dcmpoq BFFRApFRBp

63 |BF|//| FRAp | FRBp 130 /
0 6 9 |11 16 21 31

The DFP operand in FRA[p] is compared to the DFP
operand in FRBJ[p]. The result of the compare is placed
into CR field BF and the FPSCRgpcc.

Special Registers Altered:

CR field BF
FPCC
FX

VXSNAN VXVC

Operand ain

Actions for Compare ordered (a:b) when operand b in FRB[p] is

FRA[p] is -00 F +oo QNaN SNaN
-00 AeqB AltB AltB AuoB, Vyyc AuoB, Vysy
F AgtB C(a:b) AltB AuoB, Vyyc AuoB, Vygy
+oo AgtB AgtB AeqB Au0B, Vyyc AuOB, Vxsy
QNaN AuOB, Vyyc AuOB, Vyyc AuOB, Vyyc Au0B, Vyyc AUOB, Vysy
SNaN AuOB, Vygy AUOB, Vysy AUOB, Vysy AUOB, Vysy AUOB, Vysy
Explanation:
C(a:b) Algebraic comparison. See the table below
F All finite numbers, including zeros
AeqB CR field BF and FPSCRgpc are set to 0b0010.
AgtB CR field BF and FPSCRgp¢ are set to 0b0100.
AltB CR field BF and FPSCRgpc are set to 0b1000.
AuoB CR field BF and FPSCRgpcc are set to 0b0001.
Vysy The invalid-operation exception (VXSNAN) occurs. Additionally, if the exception is disabled
(FPSCRyg=0), then FPSCRyx\c is also set to one. See Section 5.5.10.1 for actions.
Vyve The invalid-operation exception (VXVC) occurs. See Section 5.5.10.1 for actions.
Relation of Value ato Value b Action for C(a:b)
a=m>b AeqB
a<bhb AltB
a>bh AgtB

Figure 83. Actions: Compare Ordered

Chapter 5. Decimal Floating-Point [Category: Decimal Floating-Point]

169

Version 2.05

5.6.3 DFP Test Instructions

The DFP test instructions consist of the Test Data
Class, Test Data Group, Test Exponent, and Test Sig-
nificance instructions, and they do not provide the
record bit.

The test instructions set the designated CR field to indi-
cate the result. The FPSCRgpcc is set in the same
way.

DFP Test Data Class [Quad] Z22-form DFP Test Data Group [Quad] Z22-form
dtstdc BFFRA,DCM dtstdg BFFRA,DGM

59 |BF|//| FRA | DCM 194 / 59 |BF|//| FRA | DGM 226 /
0 6 9 11 16 22 31 0 6 9 |11 16 22 31
dtstdcq BFFRAp,DCM dtstdgq BF FRAp,DGM

63 |BF|//|FRAp| DCM 194 / 63 |BF|//| FRAp | DGM 226 /
0 6 9 11 16 22 31 0 6 9 |11 16 22 31

Let the DCM (Data Class Mask) field specify one or
more of the 6 possible data classes, where each bit
corresponds to a specific data class.

DCM Bit Data Class
Zero
Subnormal
Normal
Infinity

Quiet NaN
Signaling NaN

ga b~ wWwNPEF O

CR field BF and FPSCRgpcc are set to indicate the
sign of the DFP operand in FRA[p] and whether the
data class of the DFP operand in FRA[p] matches any
of the data classes specified by DCM.

Field Meaning
0000 Operand positive with no match
0010 Operand positive with match
1000 Operand negative with no match
1010 Operand negative with match
Special Registers Altered:

CR field BF

FPCC

Let the DGM (Data Group Mask) field specify one or
more of the 6 possible data groups, where each bit cor-
responds to a specific data group.

The term extreme exponent means either the maxi-
mum exponent, Xax, O the minimum exponent, Xpjn.

DGM Bit Data Group

0 Zero with non-extreme exponent

1 Zero with extreme exponent

2 Subnormal or (Normal with extreme expo-
nent)

3 Normal with non-extreme exponent and
leftmost zero digit in significand

4 Normal with non-extreme exponent and
leftmost nonzero digit in significand

5 Special symbol (Infinity, QNaN, or SNaN)

CR field BF and FPSCRgpcc are set to indicate the
sign of the DFP operand in FRA[p] and whether the
data group of the DFP operand in FRA[p] matches any
of the data groups specified by DGM.

Field Meaning

0000 Operand positive with no match
0010 Operand positive with match
1000 Operand negative with no match
1010 Operand negative with match

Special Registers Altered:
CR field BF
FPCC

170 Power ISA™ [- lI

Version 2.05

DFP Test Exponent [Quad] X-form
dtstex BFFRAFRB

59 |BF|//| FRA | FRB 162 /
0 6 9 |11 16 21 31
dtstexq BF FRAp,FRBp

63 |BF|//| FRAp | FRBp 162 /
0 6 9 |11 16 21 31

The exponent value (Ea) of the DFP operand in FRA[p]
is compared to the exponent value (Eb) of the DFP

operand in FRB [p].

The result of the compare is

placed into CR field BF and the FPSCRgpcc.

The codes in the CR field BF and FPSCRgpcc are
defined for the DFP Test Exponent operations as fol-

lows.

Bit Description

0 Ea<Eb

1 Ea>Eb

2 Ea =Eb

3 Ea ? Eb
Special Registers Altered:

CR field BF

FPCC

Operand ain

Actions for Test Exponent (Ea:Eb) when operand b in FRB[p] is

FRA[p] is F oo QNaN SNaN
F C(Ea:Eb) AuoB AuoB AuoB
) AuoB AeqB AuoB AuoB
QNaN AuoB AuoB AegB AegB
SNaN AuoB AuoB AeqB AeqB
Explanation:
C(Ea:Eb) Algebraic comparison. See the table below.
F All finite numbers, including zeros
AeqgB CR field BF and FPSCRgpc are set to 0b0010.
AgtB CR field BF and FPSCRgpc are set to 0b0100.
AltB CR field BF and FPSCRgpc are set to 0b1000.
AuoB CR field BF and FPSCRgpc are set to 0b0001.
Relation of Value Ea to Value Eb Action for C(Ea:Eb)
Ea = Eb AegB
Ea < Eb AltB
Ea > Eb AgtB

Figure 84. Actions: Test Exponent

Chapter 5. Decimal Floating-Point [Category: Decimal Floating-Point]

171

Version 2.05

DFP Test Significance [Quad] X-form
dtstsf BFFRAFRB

59 |BF|//| FRA | FRB 674 /
0 6 9 |11 16 21 31
dtstsfq BFFRAFRBp

63 |BF|//| FRA | FRBp 674 /
0 6 9 |11 16 21 31

Let k be the contents of bits 58:63 of FRA that specifies
the reference significance.

The number of significant digits of the DFP operand in
FRBI[p], NSDb, is compared to the reference signifi-
cance, k. For this instruction, the number of significant
digits of the value 0 is considered to be zero. The
result of the compare is placed into CR field BF and the
FPSCREpcc as follows.

Bit Description

0 k0 and k < NSDb
1 k+0and k > NSDb,ork=0
2 k=0 and k = NSDb
3 k ? NSDb
Special Registers Altered:
CR field BF
FPCC

Programming Note

The reference significance can be loaded into a
FPR using a Load Float as Integer Word Algebraic
instruction

Actions for Test Significance when the operand in

FRBI[p] is
F oo QNaN SNaN
C(k: NSDb) AuoB AuoB AuoB
Explanation:
C(k: NSDb) Algebraic comparison. See the
table below.
F All finite numbers, including zeros.
AeqB CR field BF and FPSCRgpcc are
set to 0b0010.
AgtB CR field BF and FPSCRgpcc are
set to 0b0100.
AltB CR field BF and FPSCRppcc are
set to 0b1000.
AuoB CR field BF and FPSCRgpcc are
set to Ob0001.
Relation of Value NSDb to Action for
Value k C(k:NSDb)
k+ 0and k = NSDb AegB
k+ 0and k < NSDb AltB
k+0and k> NSDb,ork=0 AgtB

Figure 85. Actions: Test Significance

172 Power ISA™ [- lI

Version 2.05

| 5.6.4 DFP Quantum Adjustment Instructions

The Quantum Adjustment operations consist of the
Quantize, Quantize Immediate, Reround, and Round
To FP Integer operations.

The Quantum Adjustment instructions are Z23-form
instructions and have an immediate RMC (Rounding-
Mode-Control) field, which specifies the rounding mode
used. For Quantize, Quantize Immediate, and
Reround, the RMC field contains the primary encoding.
For Round to FP Integer, the field contains either pri-

mary or secondary encoding, depending on the setting
of a RMC-encoding-selection bhit. See Section 5.5.2
“Rounding Mode Specification” on page 151 for the
definition of RMC encoding.

All Quantum Adjustment instructions set the FI and FR
status flags, and also set the FPSCRgpgr field. The
record bit is provided to each of these instructions.
They return the target operand in a form with the ideal
exponent.

DFP Quantize Immediate [Quad] Z23-form

dquai TEFRTFRB,RMC (Rc=0)
dquai. TEFRTFRB,RMC (Rc=1)
59 FRT | TE | FRB [RMC 67 Rc
0 6 11 16 21 |23 31
dquaiq TEFRTp,FRBp,RMC (Rc=0)
dquaiq. TEFRTp,FRBp,RMC (Rc=1)
63 |FRTp| TE |FRBp|RMC 67 Rc
0 6 11 16 21 |23 31

The DFP operand in FRB[p] is converted and rounded
to the form with the exponent specified by TE based on
the rounding mode specified in the RMC field. TE is a
5-bit signed binary integer. The result of that form is
placed in FRT[p]. The sign of the result is the same as
the sign of the operand in FRB[p]. The ideal exponent
is the exponent specified by TE.

When the value of the operand in FRBJp] is greater
than (10P-1) X 10"E, where p is the format precision, an
invalid operation exception is recognized.

When the delivered result differs in value from the oper-
and in FRBI[p], an inexact exception is recognized. No
underflow exception is recognized by this operation,
regardless of the value of the operand in FRB[p].

The FPSCRgpgf field is always set to the class and
sign of the result, except for an enabled invalid-opera-
tion exception, in which case the field remains
unchanged.

Special Registers Altered:
FPRF FR FI
FX XX
VXSNAN VXCVI
CR1 (if Rc=1)

—— Programming Note

DFP Quantize Immediate can be used to adjust
values to a form having the specified exponent in
the range -16 to 15. If the adjustment requires the
significand to be shifted left, then:

B if the result would cause overflow from the
most significant digit, the result is a default
QNaN.;

B otherwise the result is the adjusted value (left
shifted with matching exponent).

If the adjustment requires the significand to be
shifted right, the result is rounded based on the
value of the RMC field.

DFP Quantize Immediate can round a value to a
specific number of fractional digits. Consider the
computation of sales tax. Values expressed in U.S.
dollars have 2 fractional digits, and sales tax rates
typically have 3 fractional digits. The product of
value and rate will yield 5 fractional digits. For
example:

39.95 * 0.075 = 2.99625

This result needs to be rounded to the penny to
compute the correct tax of $3.00.

The following sequence computes the sales tax
assuming the pre-tax total is in FRA and the tax
rate is in FRB. The DFP Quantize Immediate
instruction rounds the product (FRA * FRB) to 2
fractional digits (TE field = -2) using Round to near-
est, ties away from 0 (RMC field = 2). The quan-
tized and rounded result is placed in FRT.

dmul £0,FRA,FRB
dquai -2,FRT,£0,2

Chapter 5. Decimal Floating-Point [Category: Decimal Floating-Point] 173

Version 2.05

DFP Quantize [Quad] Z23-form
dqua FRTFRAFRB,RMC (Rc=0)
dqua. FRTFRAFRB,RMC (Rc=1)
59 FRT | FRA | FRB |RMC 3 Rc
0 6 11 16 21 23 31
dquaqg FRTp,FRApFRBp,RMC (Rc=0)
dquag. FRTp,FRAp,FRBp,RMC (Rc=1)
63 |FRTp|FRAp|FRBp|RMC 3 Rc
0 6 11 16 21 23 31

The DFP operand in register FRB[p] is converted and
rounded to the form with the same exponent as that of
the DFP operand in FRA[p] based on the rounding
mode specified in the RMC field. The result of that form
is placed in FRT[p]. The sign of the result is the same
as the sign of the operand in FRBJ[p]. The ideal expo-
nent is the exponent specified in FRA[p].

When the value of the operand in FRBJ[p] is greater
than (10P-1) X 102 where p is the format precision
and Ea is the exponent of the operand in FRA[p], an
invalid operation exception is recognized.

When the delivered result differs in value from the oper-
and in FRBJ[p], an inexact exception is recognized. No

underflow exception is recognized by this operation,
regardless of the value of the operand in FRBI[p].

Figure 87 and Figure 88 summarize the actions. The
tables do not include the setting of the FPSCRgpre
field. The FPSCRgpgf field is always set to the class
and sign of the result, except for an enabled invalid-
operation exception, in which case the field remains
unchanged.

Special Register Altered:

FPRF FR FI

FX XX

VXSNAN VXCVI

CR1 (if Re=1)

—— Programming Note

DFP Quantize can be used to adjust one DFP
value (FRB[p]) to a form having the same exponent
as a second DFP value (FRA[p]). If the adjustment
requires the significand to be shifted left, then:

B if the result would cause overflow from the
most significant digit, the result is a default
QNaN.;

B otherwise the result is the adjusted value (left
shifted with matching exponent).

If the adjustment requires the significand to be
shifted right, the result is rounded based on the
value of the RMC field. Figure 86 shows examples
of these adjustments.

FRA FRB

FRT when RMC=1

FRT when RMC=2

1(1x10° 9. (9 x 109

9 (9 x 109

9 (9 x 10°)

1.00 (100 x 107?) 9. (9 x 109

9.00 (900 x 1072

9.00 (900 x 1072

1 (1 x 109 49.1234 (491234 x 10™%)

49 (49 x 109

49 (49 x 10°)

1.00 (100 x 107?) 49.1234 (491234 x 10™%)

49.12 (4912 x 10°2)

49.12 (4912 x 10°%)

1 (1 x10° 49.9876 (499876 x 10™)

49 (49 x 109

50 (50 x 10°)

1.00 (100 x 107?) 49.9876 (499876 x 10™%)

49.98 (4998 x 107?)

49.99 (4999 x 10°?)

0.01 (1x 107%) 49.9876 (499876 x 10™%)

49.98 (4998 x 107?)

49.99 (4999 x 10°?)

9999999999999999

(0]
1(x107) (9999999999999999 x 10°)

9999999999999999

(9999999999999999 x 10°)

9999999999999999

(9999999999999999 x 10°)

9999999999999999

-1
1.0(10x107) (9999999999999999 x 10°)

QNaN

QNaN

Figure 86. DFP Quantize examples

174 Power ISA™ [- lI

Version 2.05

Operand a Actions for Quantize when operand b in FRB][p] is
in FRA[p] is 0 Fn oo QNaN SNaN
0 * * Vxcvi: T(dNaN) P(b) Vxsnan: U(b)
Fn * * Vxcwvi: T(dNaN) P(b) Vxsnan: U(b)
. Vaoyr: T@NaN) | Vyeyr: T(dNaN) T(dINF) P(b) Vsenan: U(D)
QNaN P(a) P(a) P(a) P(a) Vxsnan: U(b)
SNaN Vxsnan: U(@) Vxsnan: U(@) Vxsnan: U(@) Vxsnan: U(@) Vxsnan: U(@)
Explanation:

*

dINF
dNaN
Fn
P(x)
T(X)
U(X)
Vxcwvi

VxSNAN

See next table.

Default infinity

Default quiet NaN

Finite nonzero numbers (includes both subnormal and normal numbers)

The QNaN of operand x is propagated and placed in FRT[p]

The value x is placed in FRT[p]

The SNaN of operand x is converted to the corresponding QNaN and placed in FRT[p].

The Invalid-Operation Exception (VXCVI) occurs. The result is produced only when the exception is
disabled. (See Section 5.5.10.1 for actions)

The Invalid-Operation Exception (VXSNAN) occurs. The result is produced only when the exception
is disabled. (See Section 5.5.10.1 for actions)

Figure 87. Actions (part 1) Quantize

Actions for Quantize when operand b in FRB[p] is
0 Fn
Te < Se | V,>(10P-1)x10'® E(0) Vycyi: T(dNaN)
Vp < (10P-1)x10'® E(0) L(b)
Te = Se E(0) W(b)
Te > Se E(0) QR(b)
Explanation:
dNaN Default quiet NaN
E(0) The value of zero with the exponent value Te is placed in FRT[p].
L(x) The operand x is converted to the form with the exponent value Te.
p The precision of the format.
QR(X) The operand x is rounded to the result of the form with the exponent value Te based on the specified
rounding mode. The result of that form is placed in FRT[p].
Se The exponent of the operand in FRBJ[p].
Te The target exponent; FRA[p] for dqualq], or TE, a 5-bit signed binary integer for dquai[q].
T(x) The value x is placed in FRT[p].
Vp The value of the operand in FRB[p].
W(x) The value and the form of operand x is placed in FRT[p].
Vxcvi: The Invalid-Operation Exception (VXCVI) occurs. The result is produced only when the exception is
disabled. (See Section 5.5.10.1 for actions.)
Figure 88. Actions (part2) Quantize

Chapter 5. Decimal Floating-Point [Category: Decimal Floating-Point]

175

Version 2.05

DFP Reround [Quad] Z23-form
drrnd FRTFRAFRB,RMC (Rc=0)
drrnd. FRTFRAFRB,RMC (Re=1
59 FRT | FRA | FRB |RMC 35 Rc
0 6 11 16 21 |23 31
drrndq FRTp,FRAFRBp,RMC (Rc=0)
drrndg. FRTp,FRAFRBp,RMC (Rc=1)
63 |FRTp| FRA |FRBp|RMC 35 Rc
0 6 11 16 21 |23 31

Let k be the contents of bits 58:63 of FRA that specifies
the reference significance.

When the DFP operand in FRB[p] is a finite number,
and if the reference significance is zero, or if the refer-
ence significance is nonzero and the number of signifi-
cant digits of the source operand is less than or equal
to the reference significance, then the value and the
form of the source operand is placed in FRT[p]. If the
reference significance is nonzero and the number of
significant digits of the source operand is greater than
the reference significance, then the source operand is
converted and rounded to the number of significant dig-
its specified in the reference significance based on the
rounding mode specified in the RMC field. The result
of the form with the specified number of significant dig-
its is placed in FRT[p]. The sign of the result is the
same as the sign of the operand in FRBJ[p].

For this instruction, the number of significant digits of
the value 0 is considered to be zero. The ideal expo-
nent is the greater value of the exponent of the operand
in FRB[p] and the referenced exponent. The refer-
enced exponent is the resultant exponent if the oper-
and in FRBJ[p] would have been converted and rounded
to the number of significant digits specified in the refer-
ence significance based on the rounding mode speci-
fied in the RMC field.

If the exponent of the rounded result of the form that
has the specified number of significant digits would be
greater than Xpay an invalid operation exception
(VXCVI) occurs. When the invalid-operation exception
occurs, and if the exception is disabled, a default QNaN
is returned. When an invalid-operation exception
occurs, no inexact exception is recognized.

In the absence of an invalid-operation exception, if the
result differs in value from the operand in FRB[p], an
inexact exception is recognized.

This operation causes neither an overflow nor an
underflow exception.

Figure 90 summarizes the actions for Reround. The
table does not include the setting of the FPSCRgprg
field. The FPSCREpgE field is always set to the class
and sign of the result, except for an enabled invalid-

operation exception, in which case the field remains
unchanged.

Special Registers Altered:

FPRF FR FI
FX XX

VXSNAN VXCVI

CR1 (if Re=1)

—— Programming Note

DFP Reround can be used to adjust a DFP value
(FRBJp]) to have no more than a specified number
(FRA[p]58:63) of significant digits. The result
(FRT[p]) is right-justified leaving the specified num-
ber of digits and rounded as specified by the RMC
field. If rounding increases the number of significant
digits, the result is adjusted again (the significand is
shifted right 1 digit and the exponent is incremented
by 1). Figure 89 has example results from DFP
Reround for 1, 2, and 10 significant digits.

—— Programming Note

DFP Reround is primarily used to round a DFP
value to a specific number of digits before conver-
sion to string format for printing or display. Another
use for DFP Reround is to obtain the effective expo-
nent of the most significant digit by specifying a ref-
erence significance of 1. The exponent can be
extracted and used to compute the number of signif-
icant digits or to left-justify a value.

For example, the following sequence computes the
number of significant digits and returns it as an inte-
ger. FRB is the DFP value for which we want the
number of significant digits; f13 contains the refer-
ence significance value 0x0000000000000001; and
rl is the stack pointer, with free space for double-
words at offsets -8 and -16. These doublewords are
used to transfer the biased exponents from the
FPRs to GPRs for integer computation. R3 contains
the result of E(reround(1FRA)) - E(FRA) + 1,
where E(x) represents the biased exponent of x.

dxex f0,FRB

stfd £0,-16(rl)

drrnd £1,£f13,FRB,1 # reround 1 digit toward 0
dxex f1,f1

stfd f1,-8(rl)

1fd rll,-16(rl)

1fd r3,-8(rl)

subf r3,rll,r3

addi r3,r3,1

Given the value 412.34 the result is E(4 x 102) -
E(41234 x 10-2) + 1 = (398+2) - (398-2) + 1 = 400 -
396 + 1 = 5. Additional code is required to detect
and handle special values like Subnormal, Infinity,
and NAN.

176 Power ISA™ [- lI

Version 2.05

FRAsgg.63 (Dinary) FRB FRT when RMC=1 FRT when RMC=2
1 0.41234 (41234 x 10°) 0.4 (4x1071 0.4 (4x 10
1 4.1234 (41234 x 104 4 (4 x 109 4 (4 x 100)
1 41.234 (41234 x 10°3) 4 (4 x 10Y 4 (4 x 10%)
1 412.34 (41234 x 1079 4 (4% 102 4 (4 x 102)
2 0.491234 (491234 x 107) 0.49 (49 x 102 0.49 (49 x 10?9
2 0.499876 (499876 x 107) 0.49 (49 x 102 0.50 (50 x 1079
2 0.999876 (999876 x 107) 0.99 (99 x 102 1.0 (10 x 10}
10 0.491234 (491234 x 1075) 0.491234 (491234 x 10°6) 0.491234 (491234 x 10°5)
10 999.999 (999999 x 1073) 999.999 (999999 x 10°3) 999.999 (999999 X 10°3)
10 9999999999999999 . 9999999999E+1§ LOOOOOOOOOE+1%
(9999999999999999 x 10°) (9999999999 x 10°) (1000000000 x 10°)

Figure 89. DFP Reround examples

—— Programming Note

DFP Reround combined with DFP Quantize can be
used to left justify a value (as needed by the frexp
function). FRB is the DFP value for which we want
to left justify; f13 contains the reference significance
value 0x0000000000000001; and rl is the stack
pointer, with free space for a doubleword at offset -
8. This doubleword is used to transfer the biased
exponents from the FPR to a GPR, for integer com-
putation. The adjusted biased exponent (+ format
precision - 1) is transferred back into an FPR so it
can be inserted into the rerounded value. The
adjusted rerounded value becomes the quantize
reference value. The quantize instruction returns
the left justified result in FRT.

drrnd £1,f13,FRB,1 # reround 1 digit toward 0

dxex f0,f1l

stfd £0,-8(rl)

1fd rll,-8(rl)

addi rl1l,r11,15 # biased exp + precision - 1

1fd rll,-8(rl)

stfd £0,-8(rl)

diex f1,f0,f1 # adjust exponent

dqua FRT,f1,£0,1 # quantize to adjusted
exponent

Chapter 5. Decimal Floating-Point [Category: Decimal Floating-Point] 177

Version 2.05

Actions for Reround when operand b in FRB][p] is
0* Fn o QNaN SNaN
- RR(b) or T(dINF P(b V :U((b
K+0, Kk<m s (T()dNaN) (dINF) (b) xsnan: U(b)
k#0,k=m - W(b) T(dINF) P(b) Vysnan: U(b)
k#+0and k >m, W(b) W(b) T(dINF) P(b) Vxsnan: U(b)
ork=0
Explanation:
* The number of significant digits of the value 0 is considered to be zero for this instruction.
- Not applicable.
dINF Default infinity.
Fn Finite nonzero numbers (includes both subnormal and normal numbers).
k Reference significance, which specifies the number of significant digits in the target operand.
m Number of significant digits in the operand in FRBI[p].
P(x) The QNaN of operand x is propagated and placed in FRT[p].
RR(X) The value x is rounded to the form that has the specified number of significant digits.
If RR(X) < (10K-1) x 10X™3X then RR(x) is returned; otherwise an invalid-operation excep-
tion is recognized.
T(X) The value x is placed in FRT[p].
U(x) The SNaN of operand x is converted to the corresponding QNaN and placed in FRT([p].
Vv The Invalid-Operation Exception (VXCVI) occurs. The result is produced only when the
exception is disabled. (See Section 5.5.10.1 for actions.)
VxSNAN: The Invalid-Operation Exception (VXSNAN) occurs. The result is produced only when the
exception is disabled. See Section 5.5.10.1 for actions.
W(x) The value and the form of x is placed in FRT[p].

Figure 90. Actions: Reround

178

Power ISA™ | - |l

Version 2.05

DFP Round To FP Integer With Inexact

[Quad] Z23-form
drintx RFRTFRB,RMC (Rc=0)
drintx. RFRTFRB,RMC (Rc=1)
59 FRT | /il |R| FRB |[RMC 99 Rc
0 6 11 |15 (16 21 |23 31
drintxq RFRTp,FRBp,RMC (Rc=0)
drintxq. RFRTpFRBp,RMC (Rc=1)
63 |FRTp| /// |R|FRBp|RMC 99 Rc
0 6 11 |15 (16 21 |23 31

The DFP operand in FRBJ[p] is rounded to a floating-
point integer and placed into FRT[p]. The sign of the
result is the same as the sign of the operand in FRBJ[p].
The ideal exponent is the larger value of zero and the
exponent of the operand in FRBJ[p].

The rounding mode used is specified in the RMC field.
When the RMC-encoding-selection (R) bit is zero, the
RMC field contains the primary encoding; when the bit
is one, the field contains the secondary encoding.

In addition to coercion of the converted value to fit the
target format, the special rounding used by Round To
FP Integer also coerces the target exponent to the ideal
exponent.

When the operand in FRBJ[p] is a finite number and the
exponent is less than zero, the operand is rounded to
the result with an exponent of zero. When the expo-
nent is greater than or equal to zero, the result is set to
the numerical value and the form of the operand in
FRB[p].

When the result differs in value from the operand in
FRB[p], an inexact exception is recognized. No under-
flow exception is recognized by this operation, regard-
less of the value of the operand in FRB[p].

Figure 91 summarizes the actions for Round To FP
Integer With Inexact. The table does not include the
setting of the FPSCRgpgE field. The FPSCRpgE field
is always set to the class and sign of the result, except
for an enabled invalid-operation, in which case the field
remains unchanged.

Special Registers Altered:
FPRF FR FI
FX XX
VXSNAN
CR1 (if Rc=1)

—— Programming Note

The DFP Round To FP Integer With Inexact and
DFP Round To FP Integer With Inexact Quad
instructions can be used to implement the decimal
equivalent of the C99 rint function by specifying the
primary RMC encoding for round according to
FPSCRpgrn (R=0, RMC=11). The specification for
rint requires the inexact exception be raised if
detected.

Chapter 5. Decimal Floating-Point [Category: Decimal Floating-Point] 179

Version 2.05

Operandb | Is n not pre- Inv.-O.p. Inexapt Is nIncre-
in FRB is | cise (n #b) Exception | Exception mented .
Enabled Enabled (In| > |b]) | Actions*
o0 No? - - - T(-dINF), FI € 0, FR « 0
F No - . . W(n), Fl « 0, FR « 0
F Yes - No No W(n), Fl«1,FR« 0, XX« 1
F Yes - No Yes W(n), Fl € 1, FR « 1, XX « 1
F Yes - Yes No W(n), Fl « 1, FR « 0, XX « 1, TX
F Yes - Yes Yes W(n), Fl« 1, FR« 1, XX« 1, TX
+oo No? - - - T(+dINF), Fl « 0, FR « 0
ONaN Nol - - - P(b), Fl « 0, FR « 0
SNaN No! No - - U(b), Fl « 0, FR « 0, VXSNAN « 1
SNaN No?! Yes - - VXSNAN « 1, TV
Explanation:
* Setting of XX and VXSNAN is part of the corresponding exception actions. Also, when an invalid-
operation exception occurs, setting of FI and FR is part of the exception actions.(See the sections,
“Inexact Exception” and “Invalid Operation Exception” for more details.)
- The actions do not depend on this condition.
1 This condition is true by virtue of the state of some condition to the left of this column.
dINF Default infinity.
F All finite numbers, including zeros.

FI Floating-Point-Fraction-Inexact status flag, FPSCRg;.

FR Floating-Point-Fraction-Rounded status flag, FPSCRgg.

n The value derived when the source operand, b, is rounded to an integer using the special rounding
for Round To FP Integer.

P(x) The QNaN of operand x is propagated and placed in FRT[p].

T(x) The value x is placed in FRT[p].

TV The system floating-point enabled exception error handler is invoked for the invalid-operation excep-
tion if the FEO and FEL1 bits in the machine-state register are set to any mode other than the
ignore-exception mode.

TX The system floating-point enabled exception error handler is invoked for the inexact exception if the
FEO and FE1 bits in the machine-state register are set to any mode other than the ignore-excep-
tion mode.

U(x) The SNaN of operand x is converted to the corresponding QNaN and placed in FPT[p].

W(X) The value x in the form of zero exponent or the source exponent is placed in FRT[p].

XX Floating-Point-Inexact-Exception status flag, FPSCRxx.

Figure 91. Actions: Round to FP Integer With Inexact

180

Power ISA™ | - |l

Version 2.05

DFP Round To FP Integer Without Inexact

[Quad] Z23-form
drintn RFRTFRB,RMC (Rc=0)
drintn. RFRTFRB,RMC (Rc=1)

59 FRT | /Il |R| FRB |[RMC 227 Rc

0 6 11 |15[16 21 23 31
drintng RFRTp,FRBp,RMC (Rc=0)
drintng. RFRTpFRBp,RMC (Rc=1)

63 |FRTp| /ll |R|FRBp|RMC 227 Rc
0 6 1 |15|16 21 |23 31

This operation is the same as the Round To FP Integer
With Inexact operation, except that this operation does
not recognize an inexact exception.

Figure 92 summarizes the actions for Round To FP
Integer Without Inexact. The table does not include the
setting of the FPSCRgpRE field. The FPSCRpgE field
is always set to the class and sign of the result, except
for an enabled invalid-operation, in which case the field
remains unchanged.

Special Registers Altered:
FPRF FR (setto0) FI (setto0)
FX
VXSNAN
CR1 (if Re=1)

—— Programming Note

The DFP Round To FP Integer Without Inexact and
DFP Round To FP Integer Without Inexact Quad
instructions can be used to implement decimal
equivalents of several C99 rounding functions by
specifying the appropriate R and RMC field values.

Function R RMC
Ceil 1 0b00
Floor 1 0b01
Nearbyint 0 Ob11
Round 0 0b10
Trunc 0 0b01

Note that nearbyint is similar to the rint function but
without raising the inexact exception. Similarly ceil,
floor, round, and trunc do not require the inexact
exception.

Operation Exception” for more details.)

dINF Default infinity.

Round-To-FP-Integer.

T(X) The value x is placed in FRT[p].

exception mode.

ran in Inv.-Op. Exception .
Op?:SBo:sb (?Epnablzsp ° Actions*
-00 - T(-dINF), FI« 0, FR « 0
F - W(n), Fl « 0,FR « 0
+o0 - T(+dINF), Fl « 0, FR « 0
QNaN - P(b), FI«0,FR « 0
SNaN No U(b), FI « 0, FR « 0, VXSNAN«1
SNaN Yes VXSNAN « 1, TV
Explanation:
* Setting of VXSNAN is part of the corresponding exception actions. Also, when an invalid-operation

exception occurs, setting of Fl and FR bits is part of the exception actions. (See the sections, “Invalid

- The actions do not depend on this condition.

F All finite numbers, including zeros.

Fl Floating-Point-Fraction-Inexact status flag, FPSCRE,.

FR Floating-Point-Fraction-Rounded status flag, FPSCRgg.

n The value derived when the source operand, b, is rounded to an integer using the special rounding for

P(x) The QNaN of operand x is propagated and placed in FRT[p].

TV The system floating-point enabled exception error handler is invoked for the invalid-operation exception
if the FEO and FE1 bits in the machine-state register are set to any mode other than the ignore-

U(x) The SNaN of operand x is converted to the corresponding QNaN and placed in FPT[p].
W(X) The value x in the form of zero exponent or the source exponent is placed in FRT[p].

Figure 92. Actions: Round to FP Integer Without Inexact

Chapter 5. Decimal Floating-Point [Category: Decimal Floating-Point] 181

Version 2.05

5.6.5 DFP Conversion Instructions

The DFP conversion instructions consist of data-format
conversion instructions and data-type conversion
instructions. They are all X-form instructions and
employ the record bit (Rc).

5.6.5.1 DFP Data-Format Conversion
Instructions

The data-format conversion instructions consist of Con-
vert To DFP Long, Convert To DFP Extended, Round
To DFP Short, and Round To DFP Long. Figure 93
summarizes the actions for these instructions.

I Programming Note

DFP does not provide operations on short oper-
ands, so they must be converted to long format,
and then converted back to be stored. Preserving
correct signaling NaN semantics requires that sig-
naling NaNs be propagated from the source to the
result without recognizing an exception during wid-
ening from short to long or narrowing from long to
short. Because DFP does not provide equivalents
to the BFP Load Floating-Point Single and Store
Floating-Point Single functions, the widening is per-
formed by loading the DFP short value with a Load
Floating as Integer Word Indexed followed by a
DFP Convert to DFP Long, and narrowing is per-
formed by a DFP Round to DFP Short followed by
a Store Floating-Point as Integer Word Indexed. |If
the SNaN or infinity in DFP short format uses the
preferred DPD encoding, then converting this oper-
and to DFP long format and back to DFP short will
result in the original bit pattern.

| i Actions when operand b in FRB[p] is
nstruction = = ONaN SNaN
Convert To DFP Long T(b)! P(b)>* P(b)>* P(b)>*
Convert To DFP Extended T(b)! T(dINF) P(b)%* Vysnan: Ub)>4
Round To DFP Short R(b)! P(b)>° P(b)%° P(b)3°
Round To DFP Long R(b)! T(dINF) P(b)>° Vysnan: U(D)>°
Explanation:
1 The ideal exponent is the exponent of the source operand.
2 Bits 5:N-1 of the N-bit combination field are set to zero.
3 Bit 5 of the N-bit combination field is set to one. Bits 6:N-1 of the combination field are set to zero.
4 The trailing significand field is padded on the left with zeros.
5 Leftmost digits in the trailing significand field are removed.
dINF Default infinity.
F All finite numbers, including zeros.
P(x) The special symbol in operand x is propagated into FRT[p].
R(x) The value x is rounded to the target-format precision; see Section 5.5.11
T(X) The value x is placed in FRT[p].
U(x) The SNaN of operand x is converted to the corresponding QNaN.
Vxsnan The Invalid-Operation Exception (VXSNAN) occurs. The result is produced only when the excep-

tion is disabled. See Section 5.5.10.1 for actions.

Figure 93. Actions: Data-Format Conversion Instructions

182 Power ISA™ [- lI

Version 2.05

DFP Convert To DFP Long X-form DFP Convert To DFP Extended X-form
dctdp FRT,FRB (Rc=0) dctgpqg FRTp,FRB (Rc=0)
dctdp. FRT,FRB (Rc=1) dctgpg. FRTp,FRB (Re=1)
59 FRT i FRB 258 Rc 63 FRTp | /I FRB 258 Rc
0 6 11 16 21 31 0 6 11 16 21 31

The DFP short operand in bits 32-63 of FRB is con-
verted to DFP long format and the converted result is
placed into FRT. The sign of the result is the same as
the sign of the source operand. The ideal exponent is
the exponent of the source operand.

If the operand in FRB is an SNaN, it is converted to an
SNaN in DFP long format and does not cause an
invalid-operation exception.

Special Registers Altered:
FPRF FR (undefined) FI (undefined)
CR1 (if Rc=1)

Programming Note

Note that DFP short format is a storage-only for-
mat, Therefore, conversion of a short SNaN to long
format will not cause an exception and the SNaN is
preserved. Subsequent operation on that SNaN in
long format will cause an exception.

The DFP long operand in the FRB is converted to DFP
extended format and placed into FRTp. The sign of the
result is the same as the sign of the operand in FRB.
The ideal exponent is the exponent of the operand in
FRB.

If the operand in FRB is an SNaN, an invalid-operation
exception is recognized. If the exception is disabled,
the SNaN is converted to the corresponding QNaN in
DFP extended format.

Special Registers Altered:
FPRF FR (setto0) FI (setto0)
FX
VXSNAN
CR1 (if Rc=1)

Chapter 5. Decimal Floating-Point [Category: Decimal Floating-Point] 183

Version 2.05

DFP Round To DFP Short X-form DFP Round To DFP Long X-form

drsp FRTFRB (Rc=0) drdpq FRTp,FRBp (Rc=0)

drsp. FRT,FRB (Rc=1) drdpg. FRTp,FRBp (Re=1)
59 FRT m FRB 770 Rc 63 FRTp 1 FRBp 770 Rc

0 6 1 16 21 31 0 6 11 16 21 31

The DFP long operand in FRB is converted and
rounded to DFP short format. The DFP short value is
extended on the left with zeros to form a 64-bit entity
and placed into FRT. The sign of the result is the same
as the sign of the source operand. The ideal exponent
is the exponent of the source operand.

If the operand in FRB is an SNaN, it is converted to an
SNaN in DFP short format and does not cause an
invalid-operation exception.

Normally, the result is in the format and length of the
target. However, when an overflow or underflow
exception occurs and if the exception is enabled, the
operation is completed by producing a wrapped
rounded result in the same format and length as the
source but rounded to the target-format precision.

Special Registers Altered:
FPRF FR FI
FX OX UX XX
CR1 (if Rc=1)

Programming Note

Note that DFP short format is a storage-only for-
mat, Therefore, conversion of a long SNaN to short
format will not cause an exception. Converting a
long format SNaN to short format is an implied
move operation.

The DFP extended operand in FRBp is converted and
rounded to DFP long format. The result concatenated
with 64 0Os is placed in FRTp. The sign of the result is
the same as the sign of the source operand. The ideal
exponent is the exponent of the operand in FRBp.

If the operand in FRBp is an SNaN, an invalid-opera-
tion exception is recognized. If the exception is dis-
abled, the SNaN is converted to the corresponding
QNaN in DFP long format.

Normally, the result is in the format and length of the
target. However, when an overflow or underflow
exception occurs and if the exception is enabled, the
operation is completed by producing a wrapped
rounded result in the same format and length as the
source but rounded to the target-format precision.

Special Registers Altered:
FPRF FR FI
FX OX UX XX
VXSNAN
CR1 (if Rc=1)

Programming Note
Note that DFP Round to DFP Long, while produc-

ing a result in DFP long format, actually targets a
register pair, writing 64 Os in FRTp+1.

184 Power ISA™ [- lI

Version 2.05

| 5.6.5.2 DFP Data-Type Conversion Instructions

The DFP data-type conversion instructions are used to
convert data type between DFP and fixed.

The data-type conversion instructions consist of Con-
vert From Fixed and Convert To Fixed.

zero exponent is returned.

The following table summarizes the actions for Convert
From Fixed. The table does not include the setting of
the FPSCRFPRF field. The FPSCRFPRF field is always
set to the class and sign of the result.

Special Registers Altered:
FPRF FR (undefined) FI (undefined)
CR1 (if Rc=1)

DFP Convert From Fixed Quad X-form DFP Convert To Fixed [Quad] X-form
dcffixq FRTp,FRB (Rc=0) dctfix FRTFRB (Rc=0)
dcffixq. FRTp,FRB (Rc=1) dctfix. FRTFRB (Rc=1)
63 FRTp m FRB 802 Rc 59 FRT n FRB 290 Rc
0 6 1 16 21 31 0 6 11 16 21 31
The 64-bit signed binary integer in FRB is converted dctfixq FRT,FRBp (Rc=0)
and rounded to a DFP Extended value and placed into dctfixq. FRT,FRBp (Rc=1)
FRTp. The sign of the result is the same as the sign of
the source operand. The ideal exponent is zero. 63 FRT /i FRBp 290 Rc
If the source operand is a zero, then a plus zero with a 0 6 1 16 2t st

The DFP operand in FRB[p] is rounded to an integer
value and is placed into FRT in the 64-bit signed binary
integer format. The sign of the result is the same as
the sign of the source operand, except when the source
operand is a NaN or a zero.

Figure 94 summarizes the actions for Convert To
Fixed.

Special Registers Altered:
FPRF (undefined) FR FlI
FX XX
VXSNAN VXCVI
CR1 (if Rc=1)

— Programming Note

It is recommended that software pre-round the
operand to a floating-point integral using drintx[q]
or drintn[q] is a rounding mode other than the cur-
rent rounding mode specified by FPSCRpry is
needed. Saving, modifying and restoring the
FPSCR just to temporarily change the rounding
mode is less efficient than just employing drintx[p]
or drint[p] which override the current rounding
mode using an immediate control field.

For example if the desired function rounding is
Round to Nearest, Ties away from 0 but the default
rounding (from FPSCRpgy) is Round to Nearest,
Ties to Even then following is preferred.

drintn 0,f1,f1,2
detfix f1,f1

Chapter 5. Decimal Floating-Point [Category: Decimal Floating-Point] 185

Version 2.05

Operand b . Isn qot Inv.-Op. | Inexact |Isn Incre- .
in FRB[p] is g is | precise | Except. | Except. | mented Actions *
(n#b) | Enabled | Enabled | (|n] > |b|)
o < b<MN| <MN - No - - T(MN), Fl « 0, FR « 0, VXCVI « 1
-0 < b<MN | <MN - Yes - - VXCVI« 1, TV
-0 < b<MN | =MN - - No - T(MN), FlI«1,FR« 0, XX « 1
-0 < b<MN| =MN - - Yes - T(MN), Fl« 1, FR « 0, XX « 1TX
MN< b<O - No - - - T(n), FI«0,FR« 0
MN< b<O0 - Yes - No No T(n), FlI«1,FR« 0, XX« 1
MN< b<O - Yes - No Yes T(n), Fl«1,FR« 1, XX« 1
MN< b<O - Yes - Yes No T(n), Fl«1,FR« 0, XX « 1, TX
MN< b<O - Yes - Yes Yes T(n), Fl« 1,FR« 1, XX 1, TX
+0 - No - - - T(0), FI«0,FR« 0
O0<b< MP - No - - - T(n), FI«0,FR« 0
O0<b< MP - Yes - No No T(n), FlI«1,FR« 0, XX« 1
0<b< MP - Yes - No Yes T(n), FlI« 1,FR« 1, XX« 1
O0<b<MP - Yes - Yes No T(n), Fl«1,FR« 0, XX « 1, TX
0<b< MP - Yes - Yes Yes T(n), Fl« 1,FR« 1, XX 1, TX
MP <b <+ | =MP - - No - T(MP), Fl « 1, FR « 0, XX « 1
MP <b<+e | =MP - - Yes - T(MP), Fl « 1, FR « 0, XX « 1, TX
MP <b <+« | >MP - No - - T(MP), Fl « 0, FR « 0, VXCVI « 1
MP <b <+« | >MP - Yes - - VXCVI « 1, TV
QNaN - - No - - T(MN), FI<0, FR<0, VXCVI«<1
QNaN - - Yes - - VXCVI<1, TV
SNaN - - No - - T(MN),FI<0, FR<0, VXCVI<1VXSNAN «1
SNaN - - Yes - - VXCVI<1VXSNAN « 1, TV
Explanation:
* Setting of XX, VXCVI, and VXSNAN is part of the corresponding exception actions. Also, when an

invalid-operation exception occurs, setting of Fl and FR bits is part of the exception actions. (See the
sections, “Inexact Exception” and “Invalid Operation Exception” for more details.)

The actions do not depend on this condition.

Fl Floating-Point-Fraction-Inexact status flag, FPSCRg;.

FR Floating-Point-Fraction-Rounded status flag, FPSCRgg.

MN Maximum negative number representable by the 64-bit binary integer format

MP Maximum positive number representable by the 64-bit binary integer format.

n The value g converted to a fixed-point result.
q The value derived when the source value b is rounded to an integer using the specified rounding mode

T(X) The value x is placed in FRT[p].

TV The system floating-point enabled exception error handler is invoked for the invalid-operation exception
if the FEO and FE1 bits in the machine-state register are set to any mode other than the ignore-excep-
tion mode.

TX The system floating-point enabled exception error handler is invoked for the inexact exception if the FEO
and FEL1 bits in the machine-state register are set to any mode other than the ignore-exception mode.

VXCVI The FPSCRyxcy, invalid operation exception status bit.
VXSNAN The FPSCRyxsnan invalid operation exception status bit.
XX Floating-Point-Inexact-Exception status flag, FPSCRyx.
Figure 94. Actions: Convert To Fixed

186

Power ISA™ | - |l

Version 2.05

| 5.6.6 DFP Format Instructions

The DFP format instructions are used to compose or
decompose a DFP operand. A source operand of
SNaN does not cause an invalid-operation exception.
All format instructions employ the record bit (Rc).

The format instructions consist of Decode DPD To
BCD, Encode BCD To DPD, Extract Biased Exponent,
Insert Biased Exponent, Shift Significand Left Immedi-
ate, and Shift Significand Right Immediate.

DFP Decode DPD To BCD [Quad] X-form

DFP Encode BCD To DPD [Quad] X-form

ddedpd SPFRTFRB (Rc=0) denbcd SFRTFRB (Rc=0)
ddedpd. SPFRTFRB (Rc=1) denbcd. SFRTFRB (Rc=1)

59 FRT [SP| /ll | FRB 322 Rc 59 FRT (S| /I FRB 834 Rc
0 6 1 |13 |16 21 31 0 6 1 |12 16 21 31
ddedpdq SPFRTp,FRBp (Rc=0) denbcdq SFRTpFRBp (Rc=0)
ddedpdg. SPJFRTp,FRBp (Rc=1) denbcdq. SFRTpFRBp (Rc=1)

63 FRTp |SP| /// | FRBp 322 Rc 63 FRTp |S| /Il | FRBp 834 Rc
0 6 11 |13 |16 21 31 0 6 1 |12 16 21 31

A portion of the significand of the DFP operand in
FRB[p] is converted to a signed or unsigned BCD num-
ber depending on the SP field. For infinity and NaN, the
significand is considered to be the contents in the trail-
ing significand field padded on the left by a zero digit.

SPy =0 (unsigned conversion)

The rightmost 16 digits of the significand (32 digits
for ddedpdq) is converted to an unsigned BCD
number and the result is placed into FRT[p].

SPy =1 (signed conversion)

The rightmost 15 digits of the significand (31 digits
for ddedpdq) is converted to a signed BCD num-
ber with the same sign as the DFP operand, and
the result is placed into FRT[p]. If the DFP operand
is negative, the sign is encoded as 0b1101. If the
DFP operand is positive, SP4 indicates which pre-
ferred plus sign encoding is used. If SP; = 0, the
plus sign is encoded as 0b1100 (the option-1 pre-
ferred sign code), otherwise the plus sign is
encoded as Obl11l(the option-2 preferred sign
code).

Special Registers Altered:
CR1 (if Rc=1)

The signed or unsigned BCD operand, depending on
the S field, in FRB[p] is converted to a DFP number.
The ideal exponent is zero.

S =0 (unsigned BCD operand)

The unsigned BCD operand in FRBIp] is converted
to a positive DFP number of the same magnitude
and the result is placed into FRT[p].

S =1 (signed BCD operand)

The signed BCD operand in FRB[p] is converted to
the corresponding DFP number and the result is
placed into FRT[p].

If an invalid BCD digit or sign code is detected in the
source operand, an invalid-operation exception
(VXCVI) occurs.

FPSCREpRg Is set to the class and sign of the result,
except for Invalid Operation Exception when
FPSCRVE:]..

Special Registers Altered:
FPRF FR (setto0) FI (setto0)
FX
VXCVI
CR1 (if Re=1)

Chapter 5. Decimal Floating-Point [Category: Decimal Floating-Point] 187

Version 2.05

DFP Extract Biased Exponent [Quad] X-
form

DFP Insert Biased Exponent [Quad] X-
form

dxex FRTFRB (Rc=0) diex FRTFRAFRB (Rc=0)
dxex. FRT,FRB (Rc=1) diex. FRTFRAFRB (Rc=1)

59 FRT 1 FRB 354 Rc 59 FRT | FRA | FRB 866 Rc
0 6 1 16 21 31 0 6 1 16 21 31
dxexq FRTFRBp (Rc=0) diexq FRTp,FRAFRBp (Rc=0)
dxexaq. FRT,FRBp (Rc=1) diexq. FRTp,FRAFRBp (Rc=1)

63 FRT i FRBp 354 Rc 63 FRTp | FRA | FRBp 866 Rc
0 6 1 16 21 31 0 6 1 16 21 31

The biased exponent of the operand in FRB[p] is
extracted and placed into FRT in the 64-bit signed
binary integer format. When the operand in FRB is an
infinity, QNaN, or SNaN, a special code is returned.

Operand Result

Finite Number biased exponent value
Infinity -1

QNaN 2

SNaN -3

Special Registers Altered:
CR1 (if Rc=1)

Programming Note

The exponent bias value is 101 for DFP Short, 398
for DFP Long, and 6176 for DFP Extended.

Let a be the value of the 64-bit signed binary integer in
FRA.

a Result
a>MBE! OQNaN
MBE >a >0 Finite number with biased exponent a
a=-1 Infinity
a=-2 QNaN
a=-3 SNaN
a<-3 QNaN

1 Maximum biased exponent for the target format

When 0 < a < MBE, ais the biased target exponent that
is combined with the sign bit and the significand value
of the DFP operand in FRBIp] to form the DFP result in
FRT[p]. The ideal exponent is the specified target
exponent.

When a specifies a special code (a < 0 or a > MBE), an
infinity, QNaN, or SNaN is formed in FRT[p] with the
trailing significand field containing the value from the
trailing significand field of the source operand in
FRB[p], and with an N-bit combination field set as fol-
lows.

® For an Infinity result,
B the leftmost 5 bits are set to 0b11110, and
m the rightmost N-5 bits are set to zero.
B For a QNaN result,
B the leftmost 5 bits are set to 0b11111,
H bit 5 is set to zero, and
m the rightmost N-5 bits are set to zero.
B For an SNaN result,
B the leftmost 5 bits are set to 0b11111,
m bit 5 is set to one, and
m the rightmost N-5 bits are set to zero.

Special Registers Altered:
CR1 (if Re=1)

Programming Note

The exponent bias value is 101 for DFP Short, 398
for DFP Long, and 6176 for DFP Extended.

188 Power ISA™ [- lI

Version 2.05

Operand ain

Actions for Insert Biased Exponent when operand b in FRB[p] specifies

FRA[p] specifies F oo QNaN SNaN
F N, Rb Z,Rb Z,Rb Z,Rb
oo I, Rb I, Rb I, Rb I, Rb
QNaN Q,Rb Q,Rb Q,Rb Q,Rb
SNaN S,Rb S,Rb S,Rb S,Rb
Explanation:
F All finite numbers, including zeros
I The combination field in FRT[p] is set to indicate a default Infinity.
N The combination field in FRT[p] is set to the specified biased exponent in FRA and
the leftmost significand digit in FRB[p].
Q The combination field in FRT[p] is set to indicate a default QNaN.
S The combination field in FRT[p] is set to indicate a default SNaN.
Z The combination field in FRT[p] is set to indicate the specific biased exponent in FRA
and a leftmost coefficient digit of zero.
Rb The contents of the trailing significand field in FRB[p] are reencoded using preferred

DPD encodings and the reencoded result is placed in the same field in FRT[p]. The
sign bit of FRB[p] is copied into the sign bit in FRT[p].

Figure 95. Actions: Insert Biased Exponent

Chapter 5. Decimal Floating-Point [Category: Decimal Floating-Point]

189

Version 2.05

DFP Shift Significand Left Immediate

DFP Shift Significand Right Immediate

[Quad] Z22-form [Quad] Z22-form
dscli FRT,FRA,SH (Rc=0) dscri FRT,FRA,SH (Rc=0)
dscli. FRTFRA,SH (Re=1) dscri. FRT,FRA,SH (Re=1)
59 FRT | FRA | SH 66 Rc 59 FRT | FRA | SH 98 Rc
0 6 11 16 22 31 0 6 11 16 22 31
dscliq FRTp,FRAD,SH (Rc=0) gscr!q Egp'i';ﬁp'gﬂ (gcfg)
dsclig. FRTp,FRAp,SH (Rc=1) scrq. P.FRAP, (Re=1)
63 | FRTp | FRAp | SH 66 Rc 63 | FRTp | FRAp | SH %8 Re
0 6 11 16 22 31

0 6 11 16 22 31

The significand of the DFP operand in FRA[p] is shifted
left SH digits. For a NaN or infinity, all significand digits
are in the trailing significand field. SH is a 6-hit
unsigned binary integer. Digits shifted out of the left-
most digit are lost. Zeros are supplied to the vacated
positions on the right. The result is placed into FRT[p].
The sign of the result is the same as the sign of the
source operand in FRA[p].

If the source operand in FRA[p] is a finite number, the
exponent of the result is the same as the exponent of
the source operand.

For an Infinity, QNaN or SNaN result, the target for-
mat’s N-bit combination field is set as follows.

B For an Infinity result,
B the leftmost 5 bits are set to 0b11110, and
W the rightmost N-5 bits are set to zero.
B For a QNaN result,
B the leftmost 5 bits are set to 0b11111,
B bit 5 is set to zero, and
W the rightmost N-6 bits are set to zero.
B For an SNaN result,
B the leftmost 5 bits are set to 0b11111,
B bit 5 is set to one, and
W the rightmost N-6 bits are set to zero.

Special Registers Altered:
CR1 (if Rc=1)

The significand of the DFP operand in FRA[p] is shifted
right SH digits. For a NaN or infinity, all significand dig-
its are in the trailing significand field. SH is a 6-bit
unsigned binary integer. Digits shifted out of the units
digit are lost. Zeros are supplied to the vacated posi-
tions on the left. The result is placed into FRT[p]. The
sign of the result is the same as the sign of the source
operand in FRA[p].

If the source operand in FRA[p] is a finite number, the
exponent of the result is the same as the exponent of
the source operand.

For an Infinity, QNaN or SNaN result, the target for-
mat’s N-bit combination field is set as follows.

B For an Infinity result,
B the leftmost 5 bits are set to 0b11110, and
m the rightmost N-5 bits are set to zero.
B For a QNaN result,
B the leftmost 5 bits are set to 0b11111,
H bit 5 is set to zero, and
W the rightmost N-6 bits are set to zero.
B For an SNaN result,
B the leftmost 5 bits are set to 0b11111,
H bit 5 is set to one, and
m the rightmost N-6 bits are set to zero.

Special Registers Altered:
CR1 (if Re=1)

190 Power ISA™ [- lI

Version 2.05

5.6.7 DFP Instruction Summary

§ 2 FPRF

g = 3 Q FP =

e g SNaN | ¢ O | Exception % o

= Full Name IL | Operands Vs G| w |o|lL|VZOoOUX | |IE | x
dadd DFP Add X | FRT, FRA, FRB Y N|RE|Y |[Y |V OUX|Y|Y]|Y
daddqg DFP Add Quad X | FRTp, FRAp, FRBp Y N|RE|Y |[Y |V OUX|Y|Y]|Y
dsub DFP Subtract X | FRT, FRA, FRB Y N|RE|Y |[Y |V OUX|Y|Y]|Y
dsubq DFP Subtract Quad X | FRTp, FRAp, FRBp Y N|IRE|Y | Y |V OUX|Y|Y]|Y
dmul DFP Multiply X | FRT, FRA, FRB Y N|IRE|Y |Y |V OUX|Y|Y]|Y
dmulg | DFP Multiply Quad X | FRTp, FRAp, FRBp Y N|IRE|Y|Y|V OUX|Y|Y]|Y
ddiv DFP Divide X | FRT, FRA, FRB Y NIRE[|Y | Y |[VZOUX|Y |Y]|Y
ddivg DFP Divide Quad X | FRTp, FRAp, FRBp Y NIRE|Y |[Y|VZOUX|Y |Y]|Y
dcmpo DFP Compare Ordered X | BF, FRA, FRB Y - - N|[Y [V - - | N
dcmpog | DFP Compare Ordered Quad X | BF, FRAp, FRBp Y - - N|[Y [V - - | N
decmpu DFP Compare Unordered X |